python_code
stringlengths 0
290k
| repo_name
stringclasses 30
values | file_path
stringlengths 6
125
|
---|---|---|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, skip_mps, torch_device
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = DanceDiffusionPipeline
params = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
batch_params = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
test_attention_slicing = False
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet1DModel(
block_out_channels=(32, 32, 64),
extra_in_channels=16,
sample_size=512,
sample_rate=16_000,
in_channels=2,
out_channels=2,
flip_sin_to_cos=True,
use_timestep_embedding=False,
time_embedding_type="fourier",
mid_block_type="UNetMidBlock1D",
down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
)
scheduler = IPNDMScheduler()
components = {
"unet": unet,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"batch_size": 1,
"generator": generator,
"num_inference_steps": 4,
}
return inputs
def test_dance_diffusion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = DanceDiffusionPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = pipe(**inputs)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@nightly
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_dance_diffusion(self):
device = torch_device
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
def test_dance_diffusion_fp16(self):
device = torch_device
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/dance_diffusion/test_dance_diffusion.py |
diffusers-main | tests/pipelines/score_sde_ve/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNet2DModel
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch, torch_device
enable_full_determinism()
class ScoreSdeVeipelineFastTests(unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
unet = self.dummy_uncond_unet
scheduler = ScoreSdeVeScheduler()
sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
sde_ve.to(torch_device)
sde_ve.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
generator = torch.manual_seed(0)
image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
0
]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@nightly
@require_torch
class ScoreSdeVePipelineIntegrationTests(unittest.TestCase):
def test_inference(self):
model_id = "google/ncsnpp-church-256"
model = UNet2DModel.from_pretrained(model_id)
scheduler = ScoreSdeVeScheduler.from_pretrained(model_id)
sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
sde_ve.to(torch_device)
sde_ve.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/score_sde_ve/test_score_sde_ve.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
MultiAdapter,
PNDMScheduler,
StableDiffusionAdapterPipeline,
T2IAdapter,
UNet2DConditionModel,
)
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class AdapterTests:
pipeline_class = StableDiffusionAdapterPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
def get_dummy_components(self, adapter_type):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
if adapter_type == "full_adapter" or adapter_type == "light_adapter":
adapter = T2IAdapter(
in_channels=3,
channels=[32, 64],
num_res_blocks=2,
downscale_factor=2,
adapter_type=adapter_type,
)
elif adapter_type == "multi_adapter":
adapter = MultiAdapter(
[
T2IAdapter(
in_channels=3,
channels=[32, 64],
num_res_blocks=2,
downscale_factor=2,
adapter_type="full_adapter",
),
T2IAdapter(
in_channels=3,
channels=[32, 64],
num_res_blocks=2,
downscale_factor=2,
adapter_type="full_adapter",
),
]
)
else:
raise ValueError(
f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter', 'light_adapter', or 'multi_adapter''"
)
components = {
"adapter": adapter,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0, num_images=1):
if num_images == 1:
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
else:
image = [floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) for _ in range(num_images)]
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
class StableDiffusionFullAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
return super().get_dummy_components("full_adapter")
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionAdapterPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4858, 0.5500, 0.4278, 0.4669, 0.6184, 0.4322, 0.5010, 0.5033, 0.4746])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
class StableDiffusionLightAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
return super().get_dummy_components("light_adapter")
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionAdapterPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4965, 0.5548, 0.4330, 0.4771, 0.6226, 0.4382, 0.5037, 0.5071, 0.4782])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
class StableDiffusionMultiAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
return super().get_dummy_components("multi_adapter")
def get_dummy_inputs(self, device, seed=0):
inputs = super().get_dummy_inputs(device, seed, num_images=2)
inputs["adapter_conditioning_scale"] = [0.5, 0.5]
return inputs
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionAdapterPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4902, 0.5539, 0.4317, 0.4682, 0.6190, 0.4351, 0.5018, 0.5046, 0.4772])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
def test_inference_batch_consistent(
self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"]
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
for batch_size in batch_sizes:
batched_inputs = {}
for name, value in inputs.items():
if name in self.batch_params:
# prompt is string
if name == "prompt":
len_prompt = len(value)
# make unequal batch sizes
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
# make last batch super long
batched_inputs[name][-1] = 100 * "very long"
elif name == "image":
batched_images = []
for image in value:
batched_images.append(batch_size * [image])
batched_inputs[name] = batched_images
else:
batched_inputs[name] = batch_size * [value]
elif name == "batch_size":
batched_inputs[name] = batch_size
else:
batched_inputs[name] = value
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
batched_inputs["output_type"] = "np"
if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
batched_inputs.pop("output_type")
output = pipe(**batched_inputs)
assert len(output[0]) == batch_size
batched_inputs["output_type"] = "np"
if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
batched_inputs.pop("output_type")
output = pipe(**batched_inputs)[0]
assert output.shape[0] == batch_size
logger.setLevel(level=diffusers.logging.WARNING)
def test_num_images_per_prompt(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_sizes = [1, 2]
num_images_per_prompts = [1, 2]
for batch_size in batch_sizes:
for num_images_per_prompt in num_images_per_prompts:
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
if key == "image":
batched_images = []
for image in inputs[key]:
batched_images.append(batch_size * [image])
inputs[key] = batched_images
else:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
def test_inference_batch_single_identical(
self,
batch_size=3,
test_max_difference=None,
test_mean_pixel_difference=None,
relax_max_difference=False,
expected_max_diff=2e-3,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
if test_max_difference is None:
# TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
# make sure that batched and non-batched is identical
test_max_difference = torch_device != "mps"
if test_mean_pixel_difference is None:
# TODO same as above
test_mean_pixel_difference = torch_device != "mps"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batch_size = batch_size
for name, value in inputs.items():
if name in self.batch_params:
# prompt is string
if name == "prompt":
len_prompt = len(value)
# make unequal batch sizes
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
# make last batch super long
batched_inputs[name][-1] = 100 * "very long"
elif name == "image":
batched_images = []
for image in value:
batched_images.append(batch_size * [image])
batched_inputs[name] = batched_images
else:
batched_inputs[name] = batch_size * [value]
elif name == "batch_size":
batched_inputs[name] = batch_size
elif name == "generator":
batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
else:
batched_inputs[name] = value
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
if self.pipeline_class.__name__ != "DanceDiffusionPipeline":
batched_inputs["output_type"] = "np"
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs)
logger.setLevel(level=diffusers.logging.WARNING)
if test_max_difference:
if relax_max_difference:
# Taking the median of the largest <n> differences
# is resilient to outliers
diff = np.abs(output_batch[0][0] - output[0][0])
diff = diff.flatten()
diff.sort()
max_diff = np.median(diff[-5:])
else:
max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
assert max_diff < expected_max_diff
if test_mean_pixel_difference:
assert_mean_pixel_difference(output_batch[0][0], output[0][0])
@slow
@require_torch_gpu
class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_adapter(self):
test_cases = [
(
"TencentARC/t2iadapter_color_sd14v1",
"CompVis/stable-diffusion-v1-4",
"snail",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/color.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_color_sd14v1.npy",
),
(
"TencentARC/t2iadapter_depth_sd14v1",
"CompVis/stable-diffusion-v1-4",
"desk",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd14v1.npy",
),
(
"TencentARC/t2iadapter_depth_sd15v2",
"runwayml/stable-diffusion-v1-5",
"desk",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd15v2.npy",
),
(
"TencentARC/t2iadapter_keypose_sd14v1",
"CompVis/stable-diffusion-v1-4",
"person",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/person_keypose.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_keypose_sd14v1.npy",
),
(
"TencentARC/t2iadapter_openpose_sd14v1",
"CompVis/stable-diffusion-v1-4",
"person",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/iron_man_pose.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_openpose_sd14v1.npy",
),
(
"TencentARC/t2iadapter_seg_sd14v1",
"CompVis/stable-diffusion-v1-4",
"motorcycle",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_seg_sd14v1.npy",
),
(
"TencentARC/t2iadapter_zoedepth_sd15v1",
"runwayml/stable-diffusion-v1-5",
"motorcycle",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motorcycle.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_zoedepth_sd15v1.npy",
),
(
"TencentARC/t2iadapter_canny_sd14v1",
"CompVis/stable-diffusion-v1-4",
"toy",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd14v1.npy",
),
(
"TencentARC/t2iadapter_canny_sd15v2",
"runwayml/stable-diffusion-v1-5",
"toy",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd15v2.npy",
),
(
"TencentARC/t2iadapter_sketch_sd14v1",
"CompVis/stable-diffusion-v1-4",
"cat",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd14v1.npy",
),
(
"TencentARC/t2iadapter_sketch_sd15v2",
"runwayml/stable-diffusion-v1-5",
"cat",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd15v2.npy",
),
]
for adapter_model, sd_model, prompt, image_url, input_channels, out_url in test_cases:
image = load_image(image_url)
expected_out = load_numpy(out_url)
if input_channels == 1:
image = image.convert("L")
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16)
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
generator = torch.Generator(device="cpu").manual_seed(0)
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images
self.assertTrue(np.allclose(out, expected_out))
def test_stable_diffusion_adapter_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1")
pipe = StableDiffusionAdapterPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png"
)
pipe(prompt="foo", image=image, num_inference_steps=2)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_adapter.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class CycleDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = CycleDiffusionPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"})
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "An astronaut riding an elephant",
"source_prompt": "An astronaut riding a horse",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"eta": 0.1,
"strength": 0.8,
"guidance_scale": 3,
"source_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_cycle(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = CycleDiffusionPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = pipe(**inputs)
images = output.images
image_slice = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_cycle_fp16(self):
components = self.get_dummy_components()
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.half()
pipe = CycleDiffusionPipeline(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)
images = output.images
image_slice = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
@unittest.skip("non-deterministic pipeline")
def test_inference_batch_single_identical(self):
return super().test_inference_batch_single_identical()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
@nightly
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_cycle_diffusion_pipeline_fp16(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
)
init_image = init_image.resize((512, 512))
model_id = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(
model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,
image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
generator=generator,
output_type="np",
)
image = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image).max() < 5e-1
def test_cycle_diffusion_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
)
init_image = init_image.resize((512, 512))
model_id = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,
image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
generator=generator,
output_type="np",
)
image = output.images
assert np.abs(image - expected_image).max() < 2e-2
| diffusers-main | tests/pipelines/stable_diffusion/test_cycle_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImg2ImgPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import (
floats_tensor,
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
hub_checkpoint = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def get_dummy_inputs(self, seed=0):
image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed))
generator = np.random.RandomState(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_pipeline_default_ddim(self):
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def test_pipeline_pndm(self):
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_lms(self):
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
# warmup pass to apply optimizations
_ = pipe(**self.get_dummy_inputs())
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler(self):
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler_ancestral(self):
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_dpm_multistep(self):
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_pndm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
# using the PNDM scheduler by default
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="onnx",
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
expected_slice = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def test_inference_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx"
)
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
scheduler=lms_scheduler,
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
num_inference_steps=20,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
expected_slice = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| diffusers-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_img2img.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import (
floats_tensor,
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionUpscalePipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
# TODO: is there an appropriate internal test set?
hub_checkpoint = "ssube/stable-diffusion-x4-upscaler-onnx"
def get_dummy_inputs(self, seed=0):
image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed))
generator = np.random.RandomState(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_pipeline_default_ddpm(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.6957, 0.7002, 0.7186, 0.6881, 0.6693, 0.6910, 0.7445, 0.7274, 0.7056])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def test_pipeline_pndm(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.7349, 0.7347, 0.7034, 0.7696, 0.7876, 0.7597, 0.7916, 0.8085, 0.8036])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_dpm_multistep(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler_ancestral(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_ddpm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((128, 128))
# using the PNDM scheduler by default
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def test_inference_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((128, 128))
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler"
)
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx",
scheduler=lms_scheduler,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
guidance_scale=7.5,
num_inference_steps=20,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566]
)
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| diffusers-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_upscale.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPix2PixPipeline,
UNet2DConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionInstructPix2PixPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionInstructPix2PixPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=8,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"image_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_pix2pix_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInstructPix2PixPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInstructPix2PixPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_multiple_init_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInstructPix2PixPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * 2
image = np.array(inputs["image"]).astype(np.float32) / 255.0
image = torch.from_numpy(image).unsqueeze(0).to(device)
image = image / 2 + 0.5
image = image.permute(0, 3, 1, 2)
inputs["image"] = image.repeat(2, 1, 1, 1)
image = sd_pipe(**inputs).images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
expected_slice = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = EulerAncestralDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
sd_pipe = StableDiffusionInstructPix2PixPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
slice = [round(x, 4) for x in image_slice.flatten().tolist()]
print(",".join([str(x) for x in slice]))
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
# Overwrite the default test_latents_inputs because pix2pix encode the image differently
def test_latents_input(self):
components = self.get_dummy_components()
pipe = StableDiffusionInstructPix2PixPipeline(**components)
pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
vae = components["vae"]
inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
for image_param in self.image_latents_params:
if image_param in inputs.keys():
inputs[image_param] = vae.encode(inputs[image_param]).latent_dist.mode()
out_latents_inputs = pipe(**inputs)[0]
max_diff = np.abs(out - out_latents_inputs).max()
self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")
@slow
@require_torch_gpu
class StableDiffusionInstructPix2PixPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, seed=0):
generator = torch.manual_seed(seed)
image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg"
)
inputs = {
"prompt": "turn him into a cyborg",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"image_guidance_scale": 1.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_pix2pix_default(self):
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", safety_checker=None
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_k_lms(self):
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", safety_checker=None
)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_ddim(self):
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", safety_checker=None
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 3
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs()
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def test_stable_diffusion_pix2pix_pipeline_multiple_of_8(self):
inputs = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
inputs["image"] = inputs["image"].resize((504, 504))
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
output = pipe(**inputs)
image = output.images[0]
image_slice = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
expected_slice = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_instruction_pix2pix.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionSAGPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionSAGPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": ".",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 1.0,
"sag_scale": 1.0,
"output_type": "numpy",
}
return inputs
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_1(self):
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
sag_pipe = sag_pipe.to(torch_device)
sag_pipe.set_progress_bar_config(disable=None)
prompt = "."
generator = torch.manual_seed(0)
output = sag_pipe(
[prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
def test_stable_diffusion_2(self):
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
sag_pipe = sag_pipe.to(torch_device)
sag_pipe.set_progress_bar_config(disable=None)
prompt = "."
generator = torch.manual_seed(0)
output = sag_pipe(
[prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
def test_stable_diffusion_2_non_square(self):
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
sag_pipe = sag_pipe.to(torch_device)
sag_pipe.set_progress_bar_config(disable=None)
prompt = "."
generator = torch.manual_seed(0)
output = sag_pipe(
[prompt],
width=768,
height=512,
generator=generator,
guidance_scale=7.5,
sag_scale=1.0,
num_inference_steps=20,
output_type="np",
)
image = output.images
assert image.shape == (1, 512, 768, 3)
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_sag.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
PNDMScheduler,
StableDiffusionModelEditingPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class StableDiffusionModelEditingPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionModelEditingPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler()
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
generator = torch.manual_seed(seed)
inputs = {
"prompt": "A field of roses",
"generator": generator,
# Setting height and width to None to prevent OOMs on CPU.
"height": None,
"width": None,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_model_editing_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionModelEditingPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4755, 0.5132, 0.4976, 0.3904, 0.3554, 0.4765, 0.5139, 0.5158, 0.4889])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_model_editing_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionModelEditingPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4992, 0.5101, 0.5004, 0.3949, 0.3604, 0.4735, 0.5216, 0.5204, 0.4913])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_model_editing_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = EulerAncestralDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
sd_pipe = StableDiffusionModelEditingPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4747, 0.5372, 0.4779, 0.4982, 0.5543, 0.4816, 0.5238, 0.4904, 0.5027])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_model_editing_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler()
sd_pipe = StableDiffusionModelEditingPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
# the pipeline does not expect pndm so test if it raises error.
with self.assertRaises(ValueError):
_ = sd_pipe(**inputs).images
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=5e-3)
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=5e-3)
@slow
@require_torch_gpu
class StableDiffusionModelEditingSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, seed=0):
generator = torch.manual_seed(seed)
inputs = {
"prompt": "A field of roses",
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_model_editing_default(self):
model_ckpt = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionModelEditingPipeline.from_pretrained(model_ckpt, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.6749496, 0.6386453, 0.51443267, 0.66094905, 0.61921215, 0.5491332, 0.5744417, 0.58075106, 0.5174658]
)
assert np.abs(expected_slice - image_slice).max() < 1e-2
# make sure image changes after editing
pipe.edit_model("A pack of roses", "A pack of blue roses")
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
assert np.abs(expected_slice - image_slice).max() > 1e-1
def test_stable_diffusion_model_editing_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
model_ckpt = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
pipe = StableDiffusionModelEditingPipeline.from_pretrained(
model_ckpt, scheduler=scheduler, safety_checker=None
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs()
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 4.4 GB is allocated
assert mem_bytes < 4.4 * 10**9
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_model_editing.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import traceback
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_2,
require_torch_gpu,
run_test_in_subprocess,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
# Will be run via run_test_in_subprocess
def _test_img2img_compile(in_queue, out_queue, timeout):
error = None
try:
inputs = in_queue.get(timeout=timeout)
torch_device = inputs.pop("torch_device")
seed = inputs.pop("seed")
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 768, 3)
expected_slice = np.array([0.0606, 0.0570, 0.0805, 0.0579, 0.0628, 0.0623, 0.0843, 0.1115, 0.0806])
assert np.abs(expected_slice - image_slice).max() < 1e-3
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class StableDiffusionImg2ImgPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_img2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4555, 0.3216, 0.4049, 0.4620, 0.4618, 0.4126, 0.4122, 0.4629, 0.4579])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4593, 0.3408, 0.4232, 0.4749, 0.4476, 0.4115, 0.4357, 0.4733, 0.4663])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_multiple_init_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * 2
inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
image = sd_pipe(**inputs).images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
expected_slice = np.array([0.4241, 0.5576, 0.5711, 0.4792, 0.4311, 0.5952, 0.5827, 0.5138, 0.5109])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = LMSDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4398, 0.4949, 0.4337, 0.6580, 0.5555, 0.4338, 0.5769, 0.5955, 0.5175])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass(expected_max_diff=5e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
@slow
@require_torch_gpu
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
)
inputs = {
"prompt": "a fantasy landscape, concept art, high resolution",
"image": init_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_stable_diffusion_img2img_default(self):
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 768, 3)
expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_img2img_k_lms(self):
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 768, 3)
expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_img2img_ddim(self):
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 768, 3)
expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_img2img_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 2
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def test_stable_diffusion_pipeline_with_model_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
# Normal inference
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
safety_checker=None,
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# With model offloading
# Reload but don't move to cuda
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
safety_checker=None,
torch_dtype=torch.float16,
)
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
_ = pipe(**inputs)
mem_bytes_offloaded = torch.cuda.max_memory_allocated()
assert mem_bytes_offloaded < mem_bytes
for module in pipe.text_encoder, pipe.unet, pipe.vae:
assert module.device == torch.device("cpu")
def test_img2img_2nd_order(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 10
inputs["strength"] = 0.75
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/img2img_heun.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 5e-2
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 11
inputs["strength"] = 0.75
image_other = sd_pipe(**inputs).images[0]
mean_diff = np.abs(image - image_other).mean()
# images should be very similar
assert mean_diff < 5e-2
def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
# resize to resolution that is divisible by 8 but not 16 or 32
init_image = init_image.resize((760, 504))
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
image_slice = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
def test_img2img_safety_checker_works(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 20
# make sure the safety checker is activated
inputs["prompt"] = "naked, sex, porn"
out = sd_pipe(**inputs)
assert out.nsfw_content_detected[0], f"Safety checker should work for prompt: {inputs['prompt']}"
assert np.abs(out.images[0]).sum() < 1e-5 # should be all zeros
@require_torch_2
def test_img2img_compile(self):
seed = 0
inputs = self.get_inputs(torch_device, seed=seed)
# Can't pickle a Generator object
del inputs["generator"]
inputs["torch_device"] = torch_device
inputs["seed"] = seed
run_test_in_subprocess(test_case=self, target_func=_test_img2img_compile, inputs=inputs)
@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
)
inputs = {
"prompt": "a fantasy landscape, concept art, high resolution",
"image": init_image,
"generator": generator,
"num_inference_steps": 50,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_img2img_pndm(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img2img_ddim(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img2img_lms(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img2img_dpm(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 30
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMParallelScheduler,
DDPMParallelScheduler,
StableDiffusionParadigmsPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionParadigmsPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionParadigmsPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = DDIMParallelScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"generator": generator,
"num_inference_steps": 10,
"guidance_scale": 6.0,
"output_type": "numpy",
"parallel": 3,
"debug": True,
}
return inputs
def test_stable_diffusion_paradigms_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionParadigmsPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4773, 0.5417, 0.4723, 0.4925, 0.5631, 0.4752, 0.5240, 0.4935, 0.5023])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_paradigms_default_case_ddpm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
torch.manual_seed(0)
components["scheduler"] = DDPMParallelScheduler()
torch.manual_seed(0)
sd_pipe = StableDiffusionParadigmsPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.3573, 0.4420, 0.4960, 0.4799, 0.3796, 0.3879, 0.4819, 0.4365, 0.4468])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# override to speed the overall test timing up.
def test_inference_batch_consistent(self):
super().test_inference_batch_consistent(batch_sizes=[1, 2])
# override to speed the overall test timing up.
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3e-3)
def test_stable_diffusion_paradigms_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionParadigmsPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4771, 0.5420, 0.4683, 0.4918, 0.5636, 0.4725, 0.5230, 0.4923, 0.5015])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class StableDiffusionParadigmsPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, seed=0):
generator = torch.Generator(device=torch_device).manual_seed(seed)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"generator": generator,
"num_inference_steps": 10,
"guidance_scale": 7.5,
"output_type": "numpy",
"parallel": 3,
"debug": True,
}
return inputs
def test_stable_diffusion_paradigms_default(self):
model_ckpt = "stabilityai/stable-diffusion-2-base"
scheduler = DDIMParallelScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
pipe = StableDiffusionParadigmsPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9622, 0.9602, 0.9748, 0.9591, 0.9630, 0.9691, 0.9661, 0.9631, 0.9741])
assert np.abs(expected_slice - image_slice).max() < 1e-2
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_paradigms.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
enable_full_determinism()
@slow
@require_torch_gpu
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_1(self):
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
sd_pipe.set_scheduler("sample_euler")
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_2(self):
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
sd_pipe.set_scheduler("sample_euler")
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1
def test_stable_diffusion_karras_sigmas(self):
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
sd_pipe.set_scheduler("sample_dpmpp_2m")
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=7.5,
num_inference_steps=15,
output_type="np",
use_karras_sigmas=True,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_noise_sampler_seed(self):
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
sd_pipe.set_scheduler("sample_dpmpp_sde")
prompt = "A painting of a squirrel eating a burger"
seed = 0
images1 = sd_pipe(
[prompt],
generator=torch.manual_seed(seed),
noise_sampler_seed=seed,
guidance_scale=9.0,
num_inference_steps=20,
output_type="np",
).images
images2 = sd_pipe(
[prompt],
generator=torch.manual_seed(seed),
noise_sampler_seed=seed,
guidance_scale=9.0,
num_inference_steps=20,
output_type="np",
).images
assert images1.shape == (1, 512, 512, 3)
assert images2.shape == (1, 512, 512, 3)
assert np.abs(images1.flatten() - images2.flatten()).max() < 1e-2
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_k_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import (
CLIPProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionGLIGENTextImagePipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import CLIPImageProjection
from diffusers.utils import load_image
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import (
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class GligenTextImagePipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionGLIGENTextImagePipeline
params = TEXT_TO_IMAGE_PARAMS | {"gligen_phrases", "gligen_images", "gligen_boxes"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
attention_type="gated-text-image",
)
# unet.position_net = PositionNet(32,32)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image_encoder_config = CLIPVisionConfig(
hidden_size=32,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
image_project = CLIPImageProjection(hidden_size=32)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
"image_encoder": image_encoder,
"image_project": image_project,
"processor": processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
gligen_images = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/livingroom_modern.png"
)
inputs = {
"prompt": "A modern livingroom",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"gligen_phrases": ["a birthday cake"],
"gligen_images": [gligen_images],
"gligen_boxes": [[0.2676, 0.6088, 0.4773, 0.7183]],
"output_type": "np",
}
return inputs
def test_gligen(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionGLIGENTextImagePipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5069, 0.5561, 0.4577, 0.4792, 0.5203, 0.4089, 0.5039, 0.4919, 0.4499])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(batch_size=3, expected_max_diff=3e-3)
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_gligen_text_image.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import time
import traceback
import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
logging,
)
from diffusers.models.attention_processor import AttnProcessor
from diffusers.utils.testing_utils import (
CaptureLogger,
enable_full_determinism,
load_numpy,
nightly,
numpy_cosine_similarity_distance,
require_torch_2,
require_torch_gpu,
run_test_in_subprocess,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
error = None
try:
inputs = in_queue.get(timeout=timeout)
torch_device = inputs.pop("torch_device")
seed = inputs.pop("seed")
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.unet.to(memory_format=torch.channels_last)
sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)
sd_pipe.set_progress_bar_config(disable=None)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
assert np.abs(image_slice - expected_slice).max() < 5e-3
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class StableDiffusionPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
text_inputs = sd_pipe.tokenizer(
prompt,
padding="max_length",
max_length=sd_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]
inputs["prompt_embeds"] = prompt_embeds
# forward
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
embeds = []
for p in [prompt, negative_prompt]:
text_inputs = sd_pipe.tokenizer(
p,
padding="max_length",
max_length=sd_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
embeds.append(sd_pipe.text_encoder(text_inputs)[0])
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
# forward
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = negative_prompt
prompt = 3 * [inputs.pop("prompt")]
text_inputs = sd_pipe.tokenizer(
prompt,
padding="max_length",
max_length=sd_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]
inputs["prompt_embeds"] = prompt_embeds
# forward
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_ddim_factor_8(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, height=136, width=136)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 136, 136, 3)
expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_no_safety_checker(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
)
assert isinstance(pipe, StableDiffusionPipeline)
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
def test_stable_diffusion_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler_ancestral(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4872, 0.5444, 0.4846, 0.5003, 0.5549, 0.4850, 0.5189, 0.4941, 0.5067])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_vae_slicing(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
image_count = 4
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * image_count
output_1 = sd_pipe(**inputs)
# make sure sliced vae decode yields the same result
sd_pipe.enable_vae_slicing()
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * image_count
output_2 = sd_pipe(**inputs)
# there is a small discrepancy at image borders vs. full batch decode
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3
def test_stable_diffusion_vae_tiling(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# make sure here that pndm scheduler skips prk
components["safety_checker"] = None
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
# Test that tiled decode at 512x512 yields the same result as the non-tiled decode
generator = torch.Generator(device=device).manual_seed(0)
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
# make sure tiled vae decode yields the same result
sd_pipe.enable_vae_tiling()
generator = torch.Generator(device=device).manual_seed(0)
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1
# test that tiled decode works with various shapes
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
for shape in shapes:
zeros = torch.zeros(shape).to(device)
sd_pipe.vae.decode(zeros)
def test_stable_diffusion_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5114, 0.5706, 0.4772, 0.5028, 0.5637, 0.4732, 0.5169, 0.4881, 0.4977])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_long_prompt(self):
components = self.get_dummy_components()
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
do_classifier_free_guidance = True
negative_prompt = None
num_images_per_prompt = 1
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
logger.setLevel(logging.WARNING)
prompt = 100 * "@"
with CaptureLogger(logger) as cap_logger:
negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if negative_text_embeddings is not None:
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
# 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
assert cap_logger.out.count("@") == 25
negative_prompt = "Hello"
with CaptureLogger(logger) as cap_logger_2:
negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if negative_text_embeddings_2 is not None:
text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
assert cap_logger.out == cap_logger_2.out
prompt = 25 * "@"
with CaptureLogger(logger) as cap_logger_3:
negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if negative_text_embeddings_3 is not None:
text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
assert text_embeddings.shape[1] == 77
assert cap_logger_3.out == ""
def test_stable_diffusion_height_width_opt(self):
components = self.get_dummy_components()
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "hey"
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
image_shape = output.images[0].shape[:2]
assert image_shape == (64, 64)
output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
image_shape = output.images[0].shape[:2]
assert image_shape == (96, 96)
config = dict(sd_pipe.unet.config)
config["sample_size"] = 96
sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
image_shape = output.images[0].shape[:2]
assert image_shape == (192, 192)
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class StableDiffusionPipelineSlowTests(unittest.TestCase):
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_1_1_pndm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592])
assert np.abs(image_slice - expected_slice).max() < 3e-3
def test_stable_diffusion_1_4_pndm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748])
assert np.abs(image_slice - expected_slice).max() < 3e-3
def test_stable_diffusion_ddim(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
assert np.abs(image_slice - expected_slice).max() < 1e-4
def test_stable_diffusion_lms(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
assert np.abs(image_slice - expected_slice).max() < 3e-3
def test_stable_diffusion_dpm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
assert np.abs(image_slice - expected_slice).max() < 3e-3
def test_stable_diffusion_attention_slicing(self):
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe.unet.set_default_attn_processor()
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# enable attention slicing
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
image_sliced = pipe(**inputs).images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 3.75 GB is allocated
assert mem_bytes < 3.75 * 10**9
# disable slicing
pipe.disable_attention_slicing()
pipe.unet.set_default_attn_processor()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
image = pipe(**inputs).images
# make sure that more than 3.75 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 3.75 * 10**9
max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
assert max_diff < 1e-3
def test_stable_diffusion_vae_slicing(self):
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
# enable vae slicing
pipe.enable_vae_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
inputs["prompt"] = [inputs["prompt"]] * 4
inputs["latents"] = torch.cat([inputs["latents"]] * 4)
image_sliced = pipe(**inputs).images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 4 GB is allocated
assert mem_bytes < 4e9
# disable vae slicing
pipe.disable_vae_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
inputs["prompt"] = [inputs["prompt"]] * 4
inputs["latents"] = torch.cat([inputs["latents"]] * 4)
image = pipe(**inputs).images
# make sure that more than 4 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 4e9
# There is a small discrepancy at the image borders vs. a fully batched version.
max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
assert max_diff < 1e-2
def test_stable_diffusion_vae_tiling(self):
torch.cuda.reset_peak_memory_stats()
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
pipe.vae = pipe.vae.to(memory_format=torch.channels_last)
prompt = "a photograph of an astronaut riding a horse"
# enable vae tiling
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
output_chunked = pipe(
[prompt],
width=1024,
height=1024,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
# disable vae tiling
pipe.disable_vae_tiling()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(
[prompt],
width=1024,
height=1024,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
)
image = output.images
assert mem_bytes < 1e10
max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
assert max_diff < 1e-2
def test_stable_diffusion_fp16_vs_autocast(self):
# this test makes sure that the original model with autocast
# and the new model with fp16 yield the same result
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device, dtype=torch.float16)
image_fp16 = pipe(**inputs).images
with torch.autocast(torch_device):
inputs = self.get_inputs(torch_device)
image_autocast = pipe(**inputs).images
# Make sure results are close enough
diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
# They ARE different since ops are not run always at the same precision
# however, they should be extremely close.
assert diff.mean() < 2e-2
def test_stable_diffusion_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == inputs["num_inference_steps"]
def test_stable_diffusion_low_cpu_mem_usage(self):
pipeline_id = "CompVis/stable-diffusion-v1-4"
start_time = time.time()
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
pipeline_low_cpu_mem_usage.to(torch_device)
low_cpu_mem_usage_time = time.time() - start_time
start_time = time.time()
_ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
normal_load_time = time.time() - start_time
assert 2 * low_cpu_mem_usage_time < normal_load_time
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.8 GB is allocated
assert mem_bytes < 2.8 * 10**9
def test_stable_diffusion_pipeline_with_model_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
# Normal inference
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
)
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
outputs = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# With model offloading
# Reload but don't move to cuda
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
)
pipe.unet.set_default_attn_processor()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device, dtype=torch.float16)
outputs_offloaded = pipe(**inputs)
mem_bytes_offloaded = torch.cuda.max_memory_allocated()
images = outputs.images
offloaded_images = outputs_offloaded.images
max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
assert max_diff < 1e-3
assert mem_bytes_offloaded < mem_bytes
assert mem_bytes_offloaded < 3.5 * 10**9
for module in pipe.text_encoder, pipe.unet, pipe.vae, pipe.safety_checker:
assert module.device == torch.device("cpu")
# With attention slicing
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe.enable_attention_slicing()
_ = pipe(**inputs)
mem_bytes_slicing = torch.cuda.max_memory_allocated()
assert mem_bytes_slicing < mem_bytes_offloaded
assert mem_bytes_slicing < 3 * 10**9
def test_stable_diffusion_textual_inversion(self):
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
a111_file_neg = hf_hub_download(
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
)
pipe.load_textual_inversion(a111_file)
pipe.load_textual_inversion(a111_file_neg)
pipe.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(1)
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
neg_prompt = "Style-Winter-neg"
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 8e-1
def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.enable_model_cpu_offload()
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
a111_file_neg = hf_hub_download(
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
)
pipe.load_textual_inversion(a111_file)
pipe.load_textual_inversion(a111_file_neg)
generator = torch.Generator(device="cpu").manual_seed(1)
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
neg_prompt = "Style-Winter-neg"
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 8e-1
def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.enable_sequential_cpu_offload()
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
a111_file_neg = hf_hub_download(
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
)
pipe.load_textual_inversion(a111_file)
pipe.load_textual_inversion(a111_file_neg)
generator = torch.Generator(device="cpu").manual_seed(1)
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
neg_prompt = "Style-Winter-neg"
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 8e-1
@require_torch_2
def test_stable_diffusion_compile(self):
seed = 0
inputs = self.get_inputs(torch_device, seed=seed)
# Can't pickle a Generator object
del inputs["generator"]
inputs["torch_device"] = torch_device
inputs["seed"] = seed
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_download_from_hub(self):
ckpt_paths = [
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
"https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
]
for ckpt_path in ckpt_paths:
pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]
assert image_out.shape == (512, 512, 3)
def test_download_local(self):
filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")
pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]
assert image_out.shape == (512, 512, 3)
def test_download_ckpt_diff_format_is_same(self):
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"
pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(0)
image_ckpt = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_1_4_pndm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_1_5_pndm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_ddim(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 3e-3
def test_stable_diffusion_lms(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_euler(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_dpm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import traceback
import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AsymmetricAutoencoderKL,
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipeline,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import AttnProcessor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_2,
require_torch_gpu,
run_test_in_subprocess,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
# Will be run via run_test_in_subprocess
def _test_inpaint_compile(in_queue, out_queue, timeout):
error = None
try:
inputs = in_queue.get(timeout=timeout)
torch_device = inputs.pop("torch_device")
seed = inputs.pop("seed")
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179])
assert np.abs(expected_slice - image_slice).max() < 3e-3
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class StableDiffusionInpaintPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset([])
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
if output_pil:
# Get random floats in [0, 1] as image
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
mask_image = torch.ones_like(image)
# Convert image and mask_image to [0, 255]
image = 255 * image
mask_image = 255 * mask_image
# Convert to PIL image
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
else:
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
# Convert image to [-1, 1]
init_image = 2.0 * image - 1.0
mask_image = torch.ones((1, 1, img_res, img_res), device=device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_inpaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_image_tensor(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
out_pil = output.images
inputs = self.get_dummy_inputs(device)
inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
output = sd_pipe(**inputs)
out_tensor = output.images
assert out_pil.shape == (1, 64, 64, 3)
assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
def test_stable_diffusion_inpaint_strength_zero_test(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
# check that the pipeline raises value error when num_inference_steps is < 1
inputs["strength"] = 0.01
with self.assertRaises(ValueError):
sd_pipe(**inputs).images
def test_stable_diffusion_inpaint_mask_latents(self):
device = "cpu"
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(device)
sd_pipe.set_progress_bar_config(disable=None)
# normal mask + normal image
## `image`: pil, `mask_image``: pil, `masked_image_latents``: None
inputs = self.get_dummy_inputs(device)
inputs["strength"] = 0.9
out_0 = sd_pipe(**inputs).images
# image latents + mask latents
inputs = self.get_dummy_inputs(device)
image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
masked_image = image * (mask < 0.5)
generator = torch.Generator(device=device).manual_seed(0)
image_latents = (
sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor
)
torch.randn((1, 4, 32, 32), generator=generator)
mask_latents = (
sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
* sd_pipe.vae.config.scaling_factor
)
inputs["image"] = image_latents
inputs["masked_image_latents"] = mask_latents
inputs["mask_image"] = mask
inputs["strength"] = 0.9
generator = torch.Generator(device=device).manual_seed(0)
torch.randn((1, 4, 32, 32), generator=generator)
inputs["generator"] = generator
out_1 = sd_pipe(**inputs).images
assert np.abs(out_0 - out_1).max() < 1e-2
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
pipeline_class = StableDiffusionInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset([])
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
# Convert images to [-1, 1]
init_image1 = 2.0 * image1 - 1.0
init_image2 = 2.0 * image2 - 1.0
# empty mask
mask_image = torch.zeros((1, 1, img_res, img_res), device=device)
if str(device).startswith("mps"):
generator1 = torch.manual_seed(seed)
generator2 = torch.manual_seed(seed)
else:
generator1 = torch.Generator(device=device).manual_seed(seed)
generator2 = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": ["A painting of a squirrel eating a burger"] * 2,
"image": [init_image1, init_image2],
"mask_image": [mask_image] * 2,
"generator": [generator1, generator2],
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_inpaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_2_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
# test to confirm if we pass two same image, we will get same output
inputs = self.get_dummy_inputs(device)
gen1 = torch.Generator(device=device).manual_seed(0)
gen2 = torch.Generator(device=device).manual_seed(0)
for name in ["prompt", "image", "mask_image"]:
inputs[name] = [inputs[name]] * 2
inputs["generator"] = [gen1, gen2]
images = sd_pipe(**inputs).images
assert images.shape == (2, 64, 64, 3)
image_slice1 = images[0, -3:, -3:, -1]
image_slice2 = images[1, -3:, -3:, -1]
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4
# test to confirm that if we pass two different images, we will get different output
inputs = self.get_dummy_inputs_2images(device)
images = sd_pipe(**inputs).images
assert images.shape == (2, 64, 64, 3)
image_slice1 = images[0, -3:, -3:, -1]
image_slice2 = images[1, -3:, -3:, -1]
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
def setUp(self):
super().setUp()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_mask.png"
)
inputs = {
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_inpaint_ddim(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])
assert np.abs(expected_slice - image_slice).max() < 6e-4
def test_stable_diffusion_inpaint_fp16(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451])
assert np.abs(expected_slice - image_slice).max() < 5e-2
def test_stable_diffusion_inpaint_pndm(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])
assert np.abs(expected_slice - image_slice).max() < 5e-3
def test_stable_diffusion_inpaint_k_lms(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])
assert np.abs(expected_slice - image_slice).max() < 6e-3
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
@require_torch_2
def test_inpaint_compile(self):
seed = 0
inputs = self.get_inputs(torch_device, seed=seed)
# Can't pickle a Generator object
del inputs["generator"]
inputs["torch_device"] = torch_device
inputs["seed"] = seed
run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
# change input image to a random size (one that would cause a tensor mismatch error)
inputs["image"] = inputs["image"].resize((127, 127))
inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
inputs["height"] = 128
inputs["width"] = 128
image = pipe(**inputs).images
# verify that the returned image has the same height and width as the input height and width
assert image.shape == (1, inputs["height"], inputs["width"], 3)
def test_stable_diffusion_inpaint_strength_test(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
# change input strength
inputs["strength"] = 0.75
image = pipe(**inputs).images
# verify that the returned image has the same height and width as the input height and width
assert image.shape == (1, 512, 512, 3)
image_slice = image[0, 253:256, 253:256, -1].flatten()
expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_simple_inpaint_ddim(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_download_local(self):
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 1
image_out = pipe(**inputs).images[0]
assert image_out.shape == (512, 512, 3)
def test_download_ckpt_diff_format_is_same(self):
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"
pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 5
image_ckpt = pipe(**inputs).images[0]
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 5
image = pipe(**inputs).images[0]
assert np.max(np.abs(image - image_ckpt)) < 1e-4
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
def setUp(self):
super().setUp()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_mask.png"
)
inputs = {
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_inpaint_ddim(self):
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.vae = vae
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_inpaint_fp16(self):
vae = AsymmetricAutoencoderKL.from_pretrained(
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
)
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.vae = vae
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179])
assert np.abs(expected_slice - image_slice).max() < 5e-2
def test_stable_diffusion_inpaint_pndm(self):
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.vae = vae
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288])
assert np.abs(expected_slice - image_slice).max() < 5e-3
def test_stable_diffusion_inpaint_k_lms(self):
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.vae = vae
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990])
assert np.abs(expected_slice - image_slice).max() < 6e-3
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
vae = AsymmetricAutoencoderKL.from_pretrained(
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
)
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
)
pipe.vae = vae
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.45 GB is allocated
assert mem_bytes < 2.45 * 10**9
@require_torch_2
def test_inpaint_compile(self):
pass
def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
vae = AsymmetricAutoencoderKL.from_pretrained(
"cross-attention/asymmetric-autoencoder-kl-x-1-5",
)
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.vae = vae
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
# change input image to a random size (one that would cause a tensor mismatch error)
inputs["image"] = inputs["image"].resize((127, 127))
inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
inputs["height"] = 128
inputs["width"] = 128
image = pipe(**inputs).images
# verify that the returned image has the same height and width as the input height and width
assert image.shape == (1, inputs["height"], inputs["width"], 3)
def test_stable_diffusion_inpaint_strength_test(self):
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.vae = vae
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
# change input strength
inputs["strength"] = 0.75
image = pipe(**inputs).images
# verify that the returned image has the same height and width as the input height and width
assert image.shape == (1, 512, 512, 3)
image_slice = image[0, 253:256, 253:256, -1].flatten()
expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
assert np.abs(expected_slice - image_slice).max() < 3e-3
def test_stable_diffusion_simple_inpaint_ddim(self):
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
pipe.vae = vae
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_download_local(self):
vae = AsymmetricAutoencoderKL.from_pretrained(
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
)
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
pipe.vae = vae
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 1
image_out = pipe(**inputs).images[0]
assert image_out.shape == (512, 512, 3)
def test_download_ckpt_diff_format_is_same(self):
pass
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_mask.png"
)
inputs = {
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_inpaint_ddim(self):
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_inpaint_pndm(self):
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_inpaint_lms(self):
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_inpaint_dpm(self):
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 30
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
def test_pil_inputs(self):
height, width = 32, 32
im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
im = Image.fromarray(im)
mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
mask = Image.fromarray((mask * 255).astype(np.uint8))
t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
self.assertTrue(isinstance(t_mask, torch.Tensor))
self.assertTrue(isinstance(t_masked, torch.Tensor))
self.assertTrue(isinstance(t_image, torch.Tensor))
self.assertEqual(t_mask.ndim, 4)
self.assertEqual(t_masked.ndim, 4)
self.assertEqual(t_image.ndim, 4)
self.assertEqual(t_mask.shape, (1, 1, height, width))
self.assertEqual(t_masked.shape, (1, 3, height, width))
self.assertEqual(t_image.shape, (1, 3, height, width))
self.assertTrue(t_mask.dtype == torch.float32)
self.assertTrue(t_masked.dtype == torch.float32)
self.assertTrue(t_image.dtype == torch.float32)
self.assertTrue(t_mask.min() >= 0.0)
self.assertTrue(t_mask.max() <= 1.0)
self.assertTrue(t_masked.min() >= -1.0)
self.assertTrue(t_masked.min() <= 1.0)
self.assertTrue(t_image.min() >= -1.0)
self.assertTrue(t_image.min() >= -1.0)
self.assertTrue(t_mask.sum() > 0.0)
def test_np_inputs(self):
height, width = 32, 32
im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
im_pil = Image.fromarray(im_np)
mask_np = (
np.random.randint(
0,
255,
(
height,
width,
),
dtype=np.uint8,
)
> 127.5
)
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
im_np, mask_np, height, width, return_image=True
)
t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
im_pil, mask_pil, height, width, return_image=True
)
self.assertTrue((t_mask_np == t_mask_pil).all())
self.assertTrue((t_masked_np == t_masked_pil).all())
self.assertTrue((t_image_np == t_image_pil).all())
def test_torch_3D_2D_inputs(self):
height, width = 32, 32
im_tensor = torch.randint(
0,
255,
(
3,
height,
width,
),
dtype=torch.uint8,
)
mask_tensor = (
torch.randint(
0,
255,
(
height,
width,
),
dtype=torch.uint8,
)
> 127.5
)
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
)
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
im_np, mask_np, height, width, return_image=True
)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
self.assertTrue((t_image_tensor == t_image_np).all())
def test_torch_3D_3D_inputs(self):
height, width = 32, 32
im_tensor = torch.randint(
0,
255,
(
3,
height,
width,
),
dtype=torch.uint8,
)
mask_tensor = (
torch.randint(
0,
255,
(
1,
height,
width,
),
dtype=torch.uint8,
)
> 127.5
)
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
)
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
im_np, mask_np, height, width, return_image=True
)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
self.assertTrue((t_image_tensor == t_image_np).all())
def test_torch_4D_2D_inputs(self):
height, width = 32, 32
im_tensor = torch.randint(
0,
255,
(
1,
3,
height,
width,
),
dtype=torch.uint8,
)
mask_tensor = (
torch.randint(
0,
255,
(
height,
width,
),
dtype=torch.uint8,
)
> 127.5
)
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
)
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
im_np, mask_np, height, width, return_image=True
)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
self.assertTrue((t_image_tensor == t_image_np).all())
def test_torch_4D_3D_inputs(self):
height, width = 32, 32
im_tensor = torch.randint(
0,
255,
(
1,
3,
height,
width,
),
dtype=torch.uint8,
)
mask_tensor = (
torch.randint(
0,
255,
(
1,
height,
width,
),
dtype=torch.uint8,
)
> 127.5
)
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
)
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
im_np, mask_np, height, width, return_image=True
)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
self.assertTrue((t_image_tensor == t_image_np).all())
def test_torch_4D_4D_inputs(self):
height, width = 32, 32
im_tensor = torch.randint(
0,
255,
(
1,
3,
height,
width,
),
dtype=torch.uint8,
)
mask_tensor = (
torch.randint(
0,
255,
(
1,
1,
height,
width,
),
dtype=torch.uint8,
)
> 127.5
)
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0][0]
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
)
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
im_np, mask_np, height, width, return_image=True
)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
self.assertTrue((t_image_tensor == t_image_np).all())
def test_torch_batch_4D_3D(self):
height, width = 32, 32
im_tensor = torch.randint(
0,
255,
(
2,
3,
height,
width,
),
dtype=torch.uint8,
)
mask_tensor = (
torch.randint(
0,
255,
(
2,
height,
width,
),
dtype=torch.uint8,
)
> 127.5
)
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy() for mask in mask_tensor]
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
)
nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
t_image_np = torch.cat([n[2] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
self.assertTrue((t_image_tensor == t_image_np).all())
def test_torch_batch_4D_4D(self):
height, width = 32, 32
im_tensor = torch.randint(
0,
255,
(
2,
3,
height,
width,
),
dtype=torch.uint8,
)
mask_tensor = (
torch.randint(
0,
255,
(
2,
1,
height,
width,
),
dtype=torch.uint8,
)
> 127.5
)
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy()[0] for mask in mask_tensor]
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
)
nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
t_image_np = torch.cat([n[2] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
self.assertTrue((t_image_tensor == t_image_np).all())
def test_shape_mismatch(self):
height, width = 32, 32
# test height and width
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(
torch.randn(
3,
height,
width,
),
torch.randn(64, 64),
height,
width,
return_image=True,
)
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(
torch.randn(
2,
3,
height,
width,
),
torch.randn(4, 64, 64),
height,
width,
return_image=True,
)
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(
torch.randn(
2,
3,
height,
width,
),
torch.randn(4, 1, 64, 64),
height,
width,
return_image=True,
)
def test_type_mismatch(self):
height, width = 32, 32
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(
torch.rand(
3,
height,
width,
),
torch.rand(
3,
height,
width,
).numpy(),
height,
width,
return_image=True,
)
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(
torch.rand(
3,
height,
width,
).numpy(),
torch.rand(
3,
height,
width,
),
height,
width,
return_image=True,
)
def test_channels_first(self):
height, width = 32, 32
# test channels first for 3D tensors
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(
torch.rand(height, width, 3),
torch.rand(
3,
height,
width,
),
height,
width,
return_image=True,
)
def test_tensor_range(self):
height, width = 32, 32
# test im <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(
torch.ones(
3,
height,
width,
)
* 2,
torch.rand(
height,
width,
),
height,
width,
return_image=True,
)
# test im >= -1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(
torch.ones(
3,
height,
width,
)
* (-2),
torch.rand(
height,
width,
),
height,
width,
return_image=True,
)
# test mask <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(
torch.rand(
3,
height,
width,
),
torch.ones(
height,
width,
)
* 2,
height,
width,
return_image=True,
)
# test mask >= 0
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(
torch.rand(
3,
height,
width,
),
torch.ones(
height,
width,
)
* -1,
height,
width,
return_image=True,
)
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_pndm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="onnx",
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx"
)
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="onnx",
scheduler=lms_scheduler,
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=20,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint.py |
diffusers-main | tests/pipelines/stable_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
hub_checkpoint = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def get_dummy_inputs(self, seed=0):
generator = np.random.RandomState(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_pipeline_default_ddim(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_pndm(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_lms(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_euler(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_euler_ancestral(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_dpm_multistep(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_prompt_embeds(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
inputs = self.get_dummy_inputs()
prompt = 3 * [inputs.pop("prompt")]
text_inputs = pipe.tokenizer(
prompt,
padding="max_length",
max_length=pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_inputs = text_inputs["input_ids"]
prompt_embeds = pipe.text_encoder(input_ids=text_inputs.astype(np.int32))[0]
inputs["prompt_embeds"] = prompt_embeds
# forward
output = pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_negative_prompt_embeds(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
inputs = self.get_dummy_inputs()
prompt = 3 * [inputs.pop("prompt")]
embeds = []
for p in [prompt, negative_prompt]:
text_inputs = pipe.tokenizer(
p,
padding="max_length",
max_length=pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_inputs = text_inputs["input_ids"]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.int32))[0])
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
# forward
output = pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
@nightly
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_pndm(self):
# using the PNDM scheduler by default
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="onnx",
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
np.random.seed(0)
output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=10, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_ddim(self):
ddim_scheduler = DDIMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx"
)
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
scheduler=ddim_scheduler,
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "open neural network exchange"
generator = np.random.RandomState(0)
output = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_k_lms(self):
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx"
)
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
scheduler=lms_scheduler,
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "open neural network exchange"
generator = np.random.RandomState(0)
output = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
test_callback_fn.has_been_called = False
pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "Andromeda galaxy in a bottle"
generator = np.random.RandomState(0)
pipe(
prompt=prompt,
num_inference_steps=5,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def test_stable_diffusion_no_safety_checker(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
assert isinstance(pipe, OnnxStableDiffusionPipeline)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = OnnxStableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
| diffusers-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class StableDiffusionOnnxInpaintLegacyPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy"
)
# using the PNDM scheduler by default
pipe = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="onnx",
safety_checker=None,
feature_extractor=None,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
strength=0.75,
guidance_scale=7.5,
num_inference_steps=15,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
| diffusers-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint_legacy.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModelWithProjection
from diffusers import (
AutoencoderKL,
DPMSolverMultistepScheduler,
PNDMScheduler,
StableDiffusionImageVariationPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
numpy_cosine_similarity_distance,
print_tensor_test,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionImageVariationPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionImageVariationPipeline
params = IMAGE_VARIATION_PARAMS
batch_params = IMAGE_VARIATION_BATCH_PARAMS
image_params = frozenset([])
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=32,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
image_size=32,
patch_size=4,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"image_encoder": image_encoder,
"feature_extractor": feature_extractor,
"safety_checker": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed))
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_img_variation_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionImageVariationPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5239, 0.5723, 0.4796, 0.5049, 0.5550, 0.4685, 0.5329, 0.4891, 0.4921])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img_variation_multiple_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionImageVariationPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["image"] = 2 * [inputs["image"]]
output = sd_pipe(**inputs)
image = output.images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
expected_slice = np.array([0.6892, 0.5637, 0.5836, 0.5771, 0.6254, 0.6409, 0.5580, 0.5569, 0.5289])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class StableDiffusionImageVariationPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/input_image_vermeer.png"
)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"image": init_image,
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_stable_diffusion_img_variation_pipeline_default(self):
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", safety_checker=None
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_inputs(generator_device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.8449, 0.9079, 0.7571, 0.7873, 0.8348, 0.7010, 0.6694, 0.6873, 0.6138])
print_tensor_test(image_slice)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 1e-4
def test_stable_diffusion_img_variation_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.7974, -0.4343, -1.087, 0.04785, -1.327, 0.855, -2.148, -0.1725, 1.439])
max_diff = numpy_cosine_similarity_distance(latents_slice.flatten(), expected_slice)
assert max_diff < 1e-3
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.3232, 0.004883, 0.913, -1.084, 0.6143, -1.6875, -2.463, -0.439, -0.419])
max_diff = numpy_cosine_similarity_distance(latents_slice.flatten(), expected_slice)
assert max_diff < 1e-3
callback_fn.has_been_called = False
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers",
safety_checker=None,
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
generator_device = "cpu"
inputs = self.get_inputs(generator_device, dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == inputs["num_inference_steps"]
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.6 GB is allocated
assert mem_bytes < 2.6 * 10**9
@nightly
@require_torch_gpu
class StableDiffusionImageVariationPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/input_image_vermeer.png"
)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"image": init_image,
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_img_variation_pndm(self):
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained("fusing/sd-image-variations-diffusers")
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/lambdalabs_variations_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img_variation_dpm(self):
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained("fusing/sd-image-variations-diffusers")
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/lambdalabs_variations_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_image_variation.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDM3DPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class StableDiffusionLDM3DPipelineFastTests(unittest.TestCase):
pipeline_class = StableDiffusionLDM3DPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=6,
out_channels=6,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components)
ldm3d_pipe = ldm3d_pipe.to(torch_device)
ldm3d_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = ldm3d_pipe(**inputs)
rgb, depth = output.rgb, output.depth
image_slice_rgb = rgb[0, -3:, -3:, -1]
image_slice_depth = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
expected_slice_rgb = np.array(
[0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262]
)
expected_slice_depth = np.array([103.46727, 85.812004, 87.849236])
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1e-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1e-2
def test_stable_diffusion_prompt_embeds(self):
components = self.get_dummy_components()
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components)
ldm3d_pipe = ldm3d_pipe.to(torch_device)
ldm3d_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = ldm3d_pipe(**inputs)
rgb_slice_1, depth_slice_1 = output.rgb, output.depth
rgb_slice_1 = rgb_slice_1[0, -3:, -3:, -1]
depth_slice_1 = depth_slice_1[0, -3:, -1]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
text_inputs = ldm3d_pipe.tokenizer(
prompt,
padding="max_length",
max_length=ldm3d_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
prompt_embeds = ldm3d_pipe.text_encoder(text_inputs)[0]
inputs["prompt_embeds"] = prompt_embeds
# forward
output = ldm3d_pipe(**inputs)
rgb_slice_2, depth_slice_2 = output.rgb, output.depth
rgb_slice_2 = rgb_slice_2[0, -3:, -3:, -1]
depth_slice_2 = depth_slice_2[0, -3:, -1]
assert np.abs(rgb_slice_1.flatten() - rgb_slice_2.flatten()).max() < 1e-4
assert np.abs(depth_slice_1.flatten() - depth_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components)
ldm3d_pipe = ldm3d_pipe.to(device)
ldm3d_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = ldm3d_pipe(**inputs, negative_prompt=negative_prompt)
rgb, depth = output.rgb, output.depth
rgb_slice = rgb[0, -3:, -3:, -1]
depth_slice = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
expected_slice_rgb = np.array(
[0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217]
)
expected_slice_depth = np.array([107.84738, 84.62802, 89.962135])
assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1e-2
assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1e-2
@nightly
@require_torch_gpu
class StableDiffusionLDM3DPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_ldm3d_stable_diffusion(self):
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d")
ldm3d_pipe = ldm3d_pipe.to(torch_device)
ldm3d_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
output = ldm3d_pipe(**inputs)
rgb, depth = output.rgb, output.depth
rgb_slice = rgb[0, -3:, -3:, -1].flatten()
depth_slice = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512)
expected_slice_rgb = np.array(
[0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706]
)
expected_slice_depth = np.array(
[0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706]
)
assert np.abs(rgb_slice - expected_slice_rgb).max() < 3e-3
assert np.abs(depth_slice - expected_slice_depth).max() < 3e-3
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_ldm3d(self):
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d").to(torch_device)
ldm3d_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
output = ldm3d_pipe(**inputs)
rgb, depth = output.rgb, output.depth
expected_rgb_mean = 0.495586
expected_rgb_std = 0.33795515
expected_depth_mean = 112.48518
expected_depth_std = 98.489746
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3
assert np.abs(expected_depth_std - depth.std()) < 1e-3
def test_ldm3d_v2(self):
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c").to(torch_device)
ldm3d_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
output = ldm3d_pipe(**inputs)
rgb, depth = output.rgb, output.depth
expected_rgb_mean = 0.4194127
expected_rgb_std = 0.35375586
expected_depth_mean = 0.5638502
expected_depth_std = 0.34686103
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512, 1)
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3
assert np.abs(expected_depth_std - depth.std()) < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_ldm3d.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, skip_mps, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class StableDiffusionPanoramaPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionPanoramaPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=1,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler()
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
generator = torch.manual_seed(seed)
inputs = {
"prompt": "a photo of the dolomites",
"generator": generator,
# Setting height and width to None to prevent OOMs on CPU.
"height": None,
"width": None,
"num_inference_steps": 1,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_panorama_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPanoramaPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_panorama_circular_padding_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPanoramaPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs, circular_padding=True).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6127, 0.6299, 0.4595, 0.4051, 0.4543, 0.3925, 0.5510, 0.5693, 0.5031])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# override to speed the overall test timing up.
def test_inference_batch_consistent(self):
super().test_inference_batch_consistent(batch_sizes=[1, 2])
# override to speed the overall test timing up.
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=5.0e-3)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
def test_stable_diffusion_panorama_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPanoramaPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_panorama_views_batch(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPanoramaPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, view_batch_size=2)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_panorama_views_batch_circular_padding(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPanoramaPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, circular_padding=True, view_batch_size=2)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6127, 0.6299, 0.4595, 0.4051, 0.4543, 0.3925, 0.5510, 0.5693, 0.5031])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_panorama_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = EulerAncestralDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
sd_pipe = StableDiffusionPanoramaPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_panorama_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
)
sd_pipe = StableDiffusionPanoramaPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@nightly
@require_torch_gpu
class StableDiffusionPanoramaNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, seed=0):
generator = torch.manual_seed(seed)
inputs = {
"prompt": "a photo of the dolomites",
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_panorama_default(self):
model_ckpt = "stabilityai/stable-diffusion-2-base"
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
expected_slice = np.array(
[
0.36968392,
0.27025372,
0.32446766,
0.28379387,
0.36363274,
0.30733347,
0.27100027,
0.27054125,
0.25536096,
]
)
assert np.abs(expected_slice - image_slice).max() < 1e-2
def test_stable_diffusion_panorama_k_lms(self):
pipe = StableDiffusionPanoramaPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base", safety_checker=None
)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
expected_slice = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
]
)
assert np.abs(expected_slice - image_slice).max() < 1e-2
def test_stable_diffusion_panorama_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[
0.18681869,
0.33907816,
0.5361276,
0.14432865,
-0.02856611,
-0.73941123,
0.23397987,
0.47322682,
-0.37823164,
]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[
0.18539645,
0.33987248,
0.5378559,
0.14437142,
-0.02455261,
-0.7338317,
0.23990755,
0.47356272,
-0.3786505,
]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
model_ckpt = "stabilityai/stable-diffusion-2-base"
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 3
def test_stable_diffusion_panorama_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
model_ckpt = "stabilityai/stable-diffusion-2-base"
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs()
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_panorama.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipelineLegacy,
UNet2DConditionModel,
UNet2DModel,
VQModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
preprocess_image,
require_torch_gpu,
slow,
torch_device,
)
enable_full_determinism()
class StableDiffusionInpaintLegacyPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_inpaint_legacy(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4941, 0.5396, 0.4689, 0.6338, 0.5392, 0.4094, 0.5477, 0.5904, 0.5165])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_legacy_batched(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
init_images_tens = preprocess_image(init_image, batch_size=2)
init_masks_tens = init_images_tens + 4
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
images = sd_pipe(
[prompt] * 2,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_images_tens,
mask_image=init_masks_tens,
).images
assert images.shape == (2, 32, 32, 3)
image_slice_0 = images[0, -3:, -3:, -1].flatten()
image_slice_1 = images[1, -3:, -3:, -1].flatten()
expected_slice_0 = np.array([0.4697, 0.3770, 0.4096, 0.4653, 0.4497, 0.4183, 0.3950, 0.4668, 0.4672])
expected_slice_1 = np.array([0.4105, 0.4987, 0.5771, 0.4921, 0.4237, 0.5684, 0.5496, 0.4645, 0.5272])
assert np.abs(expected_slice_0 - image_slice_0).max() < 1e-2
assert np.abs(expected_slice_1 - image_slice_1).max() < 1e-2
def test_stable_diffusion_inpaint_legacy_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
negative_prompt = "french fries"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
prompt,
negative_prompt=negative_prompt,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4941, 0.5396, 0.4689, 0.6338, 0.5392, 0.4094, 0.5477, 0.5904, 0.5165])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_legacy_num_images_per_prompt(self):
device = "cpu"
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
# test num_images_per_prompt=1 (default)
images = sd_pipe(
prompt,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
assert images.shape == (1, 32, 32, 3)
# test num_images_per_prompt=1 (default) for batch of prompts
batch_size = 2
images = sd_pipe(
[prompt] * batch_size,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
assert images.shape == (batch_size, 32, 32, 3)
# test num_images_per_prompt for single prompt
num_images_per_prompt = 2
images = sd_pipe(
prompt,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (num_images_per_prompt, 32, 32, 3)
# test num_images_per_prompt for batch of prompts
batch_size = 2
images = sd_pipe(
[prompt] * batch_size,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)
@slow
@require_torch_gpu
class StableDiffusionInpaintLegacyPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, generator_device="cpu", seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_mask.png"
)
inputs = {
"prompt": "A red cat sitting on a park bench",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_inpaint_legacy_pndm(self):
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.5665, 0.6117, 0.6430, 0.4057, 0.4594, 0.5658, 0.1596, 0.3106, 0.4305])
assert np.abs(expected_slice - image_slice).max() < 3e-3
def test_stable_diffusion_inpaint_legacy_batched(self):
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
inputs["prompt"] = [inputs["prompt"]] * 2
inputs["image"] = preprocess_image(inputs["image"], batch_size=2)
mask = inputs["mask_image"].convert("L")
mask = np.array(mask).astype(np.float32) / 255.0
mask = torch.from_numpy(1 - mask)
masks = torch.vstack([mask[None][None]] * 2)
inputs["mask_image"] = masks
image = pipe(**inputs).images
assert image.shape == (2, 512, 512, 3)
image_slice_0 = image[0, 253:256, 253:256, -1].flatten()
image_slice_1 = image[1, 253:256, 253:256, -1].flatten()
expected_slice_0 = np.array(
[0.52093095, 0.4176447, 0.32752383, 0.6175223, 0.50563973, 0.36470804, 0.65460044, 0.5775188, 0.44332123]
)
expected_slice_1 = np.array(
[0.3592432, 0.4233033, 0.3914635, 0.31014425, 0.3702293, 0.39412856, 0.17526966, 0.2642669, 0.37480092]
)
assert np.abs(expected_slice_0 - image_slice_0).max() < 3e-3
assert np.abs(expected_slice_1 - image_slice_1).max() < 3e-3
def test_stable_diffusion_inpaint_legacy_k_lms(self):
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None
)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.4534, 0.4467, 0.4329, 0.4329, 0.4339, 0.4220, 0.4244, 0.4332, 0.4426])
assert np.abs(expected_slice - image_slice).max() < 3e-3
def test_stable_diffusion_inpaint_legacy_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.5977, 1.5449, 1.0586, -0.3250, 0.7383, -0.0862, 0.4631, -0.2571, -1.1289])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.5190, 1.1621, 0.6885, 0.2424, 0.3337, -0.1617, 0.6914, -0.1957, -0.5474])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
callback_fn.has_been_called = False
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 2
@nightly
@require_torch_gpu
class StableDiffusionInpaintLegacyPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_mask.png"
)
inputs = {
"prompt": "A red cat sitting on a park bench",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 50,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_inpaint_pndm(self):
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_inpaint_ddim(self):
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_inpaint_lms(self):
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_lms.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_inpaint_dpm(self):
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 30
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint_legacy.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionGLIGENPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import (
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class GligenPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionGLIGENPipeline
params = TEXT_TO_IMAGE_PARAMS | {"gligen_phrases", "gligen_boxes"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
attention_type="gated",
)
# unet.position_net = PositionNet(32,32)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A modern livingroom",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"gligen_phrases": ["a birthday cake"],
"gligen_boxes": [[0.2676, 0.6088, 0.4773, 0.7183]],
"output_type": "np",
}
return inputs
def test_gligen(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionGLIGENPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5069, 0.5561, 0.4577, 0.4792, 0.5203, 0.4089, 0.5039, 0.4919, 0.4499])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(batch_size=3, expected_max_diff=3e-3)
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_gligen.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DDPMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
StableDiffusionPix2PixZeroPipeline,
UNet2DConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
load_pt,
nightly,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
@skip_mps
class StableDiffusionPix2PixZeroPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionPix2PixZeroPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"image"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def setUpClass(cls):
cls.source_embeds = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/src_emb_0.pt"
)
cls.target_embeds = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/tgt_emb_0.pt"
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler()
inverse_scheduler = DDIMInverseScheduler()
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
"inverse_scheduler": inverse_scheduler,
"caption_generator": None,
"caption_processor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
generator = torch.manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"cross_attention_guidance_amount": 0.15,
"source_embeds": self.source_embeds,
"target_embeds": self.target_embeds,
"output_type": "numpy",
}
return inputs
def get_dummy_inversion_inputs(self, device, seed=0):
dummy_image = floats_tensor((2, 3, 32, 32), rng=random.Random(seed)).to(torch_device)
dummy_image = dummy_image / 2 + 0.5
generator = torch.manual_seed(seed)
inputs = {
"prompt": [
"A painting of a squirrel eating a burger",
"A painting of a burger eating a squirrel",
],
"image": dummy_image.cpu(),
"num_inference_steps": 2,
"guidance_scale": 6.0,
"generator": generator,
"output_type": "numpy",
}
return inputs
def get_dummy_inversion_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
inputs = self.get_dummy_inversion_inputs(device, seed)
if input_image_type == "pt":
image = inputs["image"]
elif input_image_type == "np":
image = VaeImageProcessor.pt_to_numpy(inputs["image"])
elif input_image_type == "pil":
image = VaeImageProcessor.pt_to_numpy(inputs["image"])
image = VaeImageProcessor.numpy_to_pil(image)
else:
raise ValueError(f"unsupported input_image_type {input_image_type}")
inputs["image"] = image
inputs["output_type"] = output_type
return inputs
def test_save_load_optional_components(self):
if not hasattr(self.pipeline_class, "_optional_components"):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components})
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 1e-4)
def test_stable_diffusion_pix2pix_zero_inversion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
inputs["image"] = inputs["image"][:1]
inputs["prompt"] = inputs["prompt"][:1]
image = sd_pipe.invert(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4823, 0.4783, 0.5638, 0.5201, 0.5247, 0.5644, 0.5029, 0.5404, 0.5062])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_zero_inversion_batch(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
image = sd_pipe.invert(**inputs).images
image_slice = image[1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
expected_slice = np.array([0.6446, 0.5232, 0.4914, 0.4441, 0.4654, 0.5546, 0.4650, 0.4938, 0.5044])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_zero_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4863, 0.5053, 0.5033, 0.4007, 0.3571, 0.4768, 0.5176, 0.5277, 0.4940])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_zero_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5177, 0.5097, 0.5047, 0.4076, 0.3667, 0.4767, 0.5238, 0.5307, 0.4958])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_zero_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = EulerAncestralDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5421, 0.5525, 0.6085, 0.5279, 0.4658, 0.5317, 0.4418, 0.4815, 0.5132])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_zero_ddpm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = DDPMScheduler()
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4861, 0.5053, 0.5038, 0.3994, 0.3562, 0.4768, 0.5172, 0.5280, 0.4938])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_outputs_equivalent(self):
device = torch_device
components = self.get_dummy_components()
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
output_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pt")).images
output_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="np")).images
output_pil = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pil")).images
max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
self.assertLess(max_diff, 1e-4, "`output_type=='pt'` generate different results from `output_type=='np'`")
max_diff = np.abs(np.array(output_pil[0]) - (output_np[0] * 255).round()).max()
self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_inputs_equivalent(self):
device = torch_device
components = self.get_dummy_components()
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
out_input_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="pt")).images
out_input_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="np")).images
out_input_pil = sd_pipe.invert(
**self.get_dummy_inversion_inputs_by_type(device, input_image_type="pil")
).images
max_diff = np.abs(out_input_pt - out_input_np).max()
self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
assert_mean_pixel_difference(out_input_pil, out_input_np, expected_max_diff=1)
# Non-determinism caused by the scheduler optimizing the latent inputs during inference
@unittest.skip("non-deterministic pipeline")
def test_inference_batch_single_identical(self):
return super().test_inference_batch_single_identical()
@nightly
@require_torch_gpu
class StableDiffusionPix2PixZeroPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def setUpClass(cls):
cls.source_embeds = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat.pt"
)
cls.target_embeds = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.pt"
)
def get_inputs(self, seed=0):
generator = torch.manual_seed(seed)
inputs = {
"prompt": "turn him into a cyborg",
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"cross_attention_guidance_amount": 0.15,
"source_embeds": self.source_embeds,
"target_embeds": self.target_embeds,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_pix2pix_zero_default(self):
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.5742, 0.5757, 0.5747, 0.5781, 0.5688, 0.5713, 0.5742, 0.5664, 0.5747])
assert np.abs(expected_slice - image_slice).max() < 5e-2
def test_stable_diffusion_pix2pix_zero_k_lms(self):
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.6367, 0.5459, 0.5146, 0.5479, 0.4905, 0.4753, 0.4961, 0.4629, 0.4624])
assert np.abs(expected_slice - image_slice).max() < 5e-2
def test_stable_diffusion_pix2pix_zero_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.1345, 0.268, 0.1539, 0.0726, 0.0959, 0.2261, -0.2673, 0.0277, -0.2062])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.1393, 0.2637, 0.1617, 0.0724, 0.0987, 0.2271, -0.2666, 0.0299, -0.2104])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 3
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs()
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 8.2 GB is allocated
assert mem_bytes < 8.2 * 10**9
@nightly
@require_torch_gpu
class InversionPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def setUpClass(cls):
raw_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png"
)
raw_image = raw_image.convert("RGB").resize((512, 512))
cls.raw_image = raw_image
def test_stable_diffusion_pix2pix_inversion(self):
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
caption = "a photography of a cat with flowers"
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10)
inv_latents = output[0]
image_slice = inv_latents[0, -3:, -3:, -1].flatten()
assert inv_latents.shape == (1, 4, 64, 64)
expected_slice = np.array([0.8447, -0.0730, 0.7588, -1.2070, -0.4678, 0.1511, -0.8555, 1.1816, -0.7666])
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2
def test_stable_diffusion_2_pix2pix_inversion(self):
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
)
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
caption = "a photography of a cat with flowers"
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10)
inv_latents = output[0]
image_slice = inv_latents[0, -3:, -3:, -1].flatten()
assert inv_latents.shape == (1, 4, 64, 64)
expected_slice = np.array([0.8970, -0.1611, 0.4766, -1.1162, -0.5923, 0.1050, -0.9678, 1.0537, -0.6050])
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2
def test_stable_diffusion_2_pix2pix_full(self):
# numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog_2.png
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog_2.npy"
)
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
)
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
caption = "a photography of a cat with flowers"
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipe.invert(caption, image=self.raw_image, generator=generator)
inv_latents = output[0]
source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
source_embeds = pipe.get_embeds(source_prompts)
target_embeds = pipe.get_embeds(target_prompts)
image = pipe(
caption,
source_embeds=source_embeds,
target_embeds=target_embeds,
num_inference_steps=125,
cross_attention_guidance_amount=0.015,
generator=generator,
latents=inv_latents,
negative_prompt=caption,
output_type="np",
).images
mean_diff = np.abs(expected_image - image).mean()
assert mean_diff < 0.25
| diffusers-main | tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py |
diffusers-main | tests/pipelines/dit/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, Transformer2DModel
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = DiTPipeline
params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
transformer = Transformer2DModel(
sample_size=16,
num_layers=2,
patch_size=4,
attention_head_dim=8,
num_attention_heads=2,
in_channels=4,
out_channels=8,
attention_bias=True,
activation_fn="gelu-approximate",
num_embeds_ada_norm=1000,
norm_type="ada_norm_zero",
norm_elementwise_affine=False,
)
vae = AutoencoderKL()
scheduler = DDIMScheduler()
components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"class_labels": [1],
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 16, 16, 3))
expected_slice = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457])
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
@nightly
@require_torch_gpu
class DiTPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_dit_256(self):
generator = torch.manual_seed(0)
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256")
pipe.to("cuda")
words = ["vase", "umbrella", "white shark", "white wolf"]
ids = pipe.get_label_ids(words)
images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images
for word, image in zip(words, images):
expected_image = load_numpy(
f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy"
)
assert np.abs((expected_image - image).max()) < 1e-2
def test_dit_512(self):
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
words = ["vase", "umbrella"]
ids = pipe.get_label_ids(words)
generator = torch.manual_seed(0)
images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images
for word, image in zip(words, images):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f"/dit/{word}_512.npy"
)
assert np.abs((expected_image - image).max()) < 1e-1
| diffusers-main | tests/pipelines/dit/test_dit.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class IFInpaintingPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
pipeline_class = IFInpaintingPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
def get_dummy_components(self):
return self._get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
mask_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_float16(expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def test_save_load_local(self):
self._test_save_load_local()
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2,
)
| diffusers-main | tests/pipelines/deepfloyd_if/test_if_inpainting.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import torch
from diffusers import IFSuperResolutionPipeline
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class IFSuperResolutionPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
pipeline_class = IFSuperResolutionPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
def get_dummy_components(self):
return self._get_superresolution_dummy_components()
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_float16(expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def test_save_load_local(self):
self._test_save_load_local()
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2,
)
| diffusers-main | tests/pipelines/deepfloyd_if/test_if_superresolution.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import torch
from diffusers import IFImg2ImgSuperResolutionPipeline
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class IFImg2ImgSuperResolutionPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
pipeline_class = IFImg2ImgSuperResolutionPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"})
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
def get_dummy_components(self):
return self._get_superresolution_dummy_components()
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
original_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = floats_tensor((1, 3, 16, 16), rng=random.Random(seed)).to(device)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_float16(expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def test_save_load_local(self):
self._test_save_load_local()
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2,
)
| diffusers-main | tests/pipelines/deepfloyd_if/test_if_img2img_superresolution.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import torch
from diffusers import IFImg2ImgPipeline
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class IFImg2ImgPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
pipeline_class = IFImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
def get_dummy_components(self):
return self._get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_float16(expected_max_diff=1e-1)
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def test_save_load_local(self):
self._test_save_load_local()
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2,
)
| diffusers-main | tests/pipelines/deepfloyd_if/test_if_img2img.py |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
# WARN: the hf-internal-testing/tiny-random-t5 text encoder has some non-determinism in the `save_load` tests.
class IFPipelineTesterMixin:
def _get_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=1,
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=3,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _get_superresolution_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=[1, 2],
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=6,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
class_embed_type="timestep",
mid_block_scale_factor=1.414,
time_embedding_act_fn="gelu",
time_embedding_dim=32,
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
image_noising_scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
# this test is modified from the base class because if pipelines set the text encoder
# as optional with the intention that the user is allowed to encode the prompt once
# and then pass the embeddings directly to the pipeline. The base class test uses
# the unmodified arguments from `self.get_dummy_inputs` which will pass the unencoded
# prompt to the pipeline when the text encoder is set to None, throwing an error.
# So we make the test reflect the intended usage of setting the text encoder to None.
def _test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
if "image" in inputs:
image = inputs["image"]
else:
image = None
if "mask_image" in inputs:
mask_image = inputs["mask_image"]
else:
mask_image = None
if "original_image" in inputs:
original_image = inputs["original_image"]
else:
original_image = None
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
# Modified from `PipelineTesterMixin` to set the attn processor as it's not serialized.
# This should be handled in the base test and then this method can be removed.
def _test_save_load_local(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
| diffusers-main | tests/pipelines/deepfloyd_if/__init__.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import torch
from diffusers import (
IFImg2ImgPipeline,
IFImg2ImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
pipeline_class = IFPipeline
params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
def get_dummy_components(self):
return self._get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_float16(expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def test_save_load_local(self):
self._test_save_load_local()
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2,
)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
@slow
@require_torch_gpu
class IFPipelineSlowTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_all(self):
# if
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe_2 = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None
)
# pre compute text embeddings and remove T5 to save memory
pipe_1.text_encoder.to("cuda")
prompt_embeds, negative_prompt_embeds = pipe_1.encode_prompt("anime turtle", device="cuda")
del pipe_1.tokenizer
del pipe_1.text_encoder
gc.collect()
pipe_1.tokenizer = None
pipe_1.text_encoder = None
pipe_1.enable_model_cpu_offload()
pipe_2.enable_model_cpu_offload()
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)
pipe_1.remove_all_hooks()
pipe_2.remove_all_hooks()
# img2img
pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)
pipe_1.enable_model_cpu_offload()
pipe_2.enable_model_cpu_offload()
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_img2img(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)
pipe_1.remove_all_hooks()
pipe_2.remove_all_hooks()
# inpainting
pipe_1 = IFInpaintingPipeline(**pipe_1.components)
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)
pipe_1.enable_model_cpu_offload()
pipe_2.enable_model_cpu_offload()
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)
def _test_if(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
# pipeline 1
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe_1(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_inference_steps=2,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (64, 64, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy"
)
assert_mean_pixel_difference(image, expected_image)
# pipeline 2
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
output = pipe_2(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
generator=generator,
num_inference_steps=2,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy"
)
assert_mean_pixel_difference(image, expected_image)
def _test_if_img2img(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
# pipeline 1
_start_torch_memory_measurement()
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe_1(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
num_inference_steps=2,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (64, 64, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy"
)
assert_mean_pixel_difference(image, expected_image)
# pipeline 2
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
output = pipe_2(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
original_image=original_image,
generator=generator,
num_inference_steps=2,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy"
)
assert_mean_pixel_difference(image, expected_image)
def _test_if_inpainting(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
# pipeline 1
_start_torch_memory_measurement()
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe_1(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
mask_image=mask_image,
num_inference_steps=2,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (64, 64, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy"
)
assert_mean_pixel_difference(image, expected_image)
# pipeline 2
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device)
mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device)
output = pipe_2(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
mask_image=mask_image,
original_image=original_image,
generator=generator,
num_inference_steps=2,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy"
)
assert_mean_pixel_difference(image, expected_image)
def _start_torch_memory_measurement():
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| diffusers-main | tests/pipelines/deepfloyd_if/test_if.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class IFInpaintingSuperResolutionPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
pipeline_class = IFInpaintingSuperResolutionPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"})
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
def get_dummy_components(self):
return self._get_superresolution_dummy_components()
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = floats_tensor((1, 3, 16, 16), rng=random.Random(seed)).to(device)
original_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
mask_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_float16(expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def test_save_load_local(self):
self._test_save_load_local()
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2,
)
| diffusers-main | tests/pipelines/deepfloyd_if/test_if_inpainting_superresolution.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
TextToVideoSDPipeline,
UNet3DConditionModel,
)
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class TextToVideoSDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = TextToVideoSDPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback",
"callback_steps",
]
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet3DConditionModel(
block_out_channels=(32, 32),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"),
up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"),
cross_attention_dim=4,
attention_head_dim=4,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=(32,),
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D"],
latent_channels=4,
sample_size=32,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=4,
intermediate_size=16,
layer_norm_eps=1e-05,
num_attention_heads=2,
num_hidden_layers=2,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "pt",
}
return inputs
def test_text_to_video_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = TextToVideoSDPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["output_type"] = "np"
frames = sd_pipe(**inputs).frames
image_slice = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
expected_slice = np.array([91.0, 152.0, 66.0, 192.0, 94.0, 126.0, 101.0, 123.0, 152.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False, expected_max_diff=3e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2)
# (todo): sayakpaul
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
def test_inference_batch_consistent(self):
pass
# (todo): sayakpaul
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
def test_inference_batch_single_identical(self):
pass
@unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.")
def test_num_images_per_prompt(self):
pass
def test_progress_bar(self):
return super().test_progress_bar()
@slow
@skip_mps
@require_torch_gpu
class TextToVideoSDPipelineSlowTests(unittest.TestCase):
def test_two_step_model(self):
expected_video = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy"
)
pipe = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b")
pipe = pipe.to(torch_device)
prompt = "Spiderman is surfing"
generator = torch.Generator(device="cpu").manual_seed(0)
video_frames = pipe(prompt, generator=generator, num_inference_steps=2, output_type="pt").frames
video = video_frames.cpu().numpy()
assert np.abs(expected_video - video).mean() < 5e-2
| diffusers-main | tests/pipelines/text_to_video/test_text_to_video.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNet3DConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
is_flaky,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class VideoToVideoSDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = VideoToVideoSDPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"}) - {"image", "width", "height"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"}) - {"image"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
test_attention_slicing = False
# No `output_type`.
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback",
"callback_steps",
]
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet3DConditionModel(
block_out_channels=(32, 64, 64, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D"),
up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
cross_attention_dim=32,
attention_head_dim=4,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=True,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
# 3 frames
video = floats_tensor((1, 3, 3, 32, 32), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"video": video,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "pt",
}
return inputs
def test_text_to_video_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = VideoToVideoSDPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["output_type"] = "np"
frames = sd_pipe(**inputs).frames
image_slice = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
expected_slice = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@is_flaky()
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=0.001)
@is_flaky()
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent()
@is_flaky()
def test_save_load_local(self):
super().test_save_load_local()
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=5e-3)
# (todo): sayakpaul
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
def test_inference_batch_consistent(self):
pass
# (todo): sayakpaul
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
def test_inference_batch_single_identical(self):
pass
@unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.")
def test_num_images_per_prompt(self):
pass
def test_progress_bar(self):
return super().test_progress_bar()
@slow
@skip_mps
class VideoToVideoSDPipelineSlowTests(unittest.TestCase):
def test_two_step_model(self):
pipe = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
# 10 frames
generator = torch.Generator(device="cpu").manual_seed(0)
video = torch.randn((1, 10, 3, 1024, 576), generator=generator)
video = video.to("cuda")
prompt = "Spiderman is surfing"
video_frames = pipe(prompt, video=video, generator=generator, num_inference_steps=3, output_type="pt").frames
expected_array = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656])
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array).sum() < 1e-2
| diffusers-main | tests/pipelines/text_to_video/test_video_to_video.py |
diffusers-main | tests/pipelines/text_to_video/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import DDIMScheduler, TextToVideoZeroPipeline
from diffusers.utils.testing_utils import load_pt, require_torch_gpu, slow
from ..test_pipelines_common import assert_mean_pixel_difference
@slow
@require_torch_gpu
class TextToVideoZeroPipelineSlowTests(unittest.TestCase):
def test_full_model(self):
model_id = "runwayml/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
generator = torch.Generator(device="cuda").manual_seed(0)
prompt = "A bear is playing a guitar on Times Square"
result = pipe(prompt=prompt, generator=generator).images
expected_result = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text-to-video/A bear is playing a guitar on Times Square.pt"
)
assert_mean_pixel_difference(result, expected_result)
| diffusers-main | tests/pipelines/text_to_video/test_text_to_video_zero.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyV22PriorEmb2EmbPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class KandinskyV22PriorEmb2EmbPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22PriorEmb2EmbPipeline
params = ["prompt", "image"]
batch_params = ["prompt", "image"]
required_optional_params = [
"num_images_per_prompt",
"strength",
"generator",
"num_inference_steps",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModelWithProjection(config)
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"num_attention_heads": 2,
"attention_head_dim": 12,
"embedding_dim": self.text_embedder_hidden_size,
"num_layers": 1,
}
model = PriorTransformer(**model_kwargs)
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape))
return model
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,
image_size=224,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
num_attention_heads=4,
num_channels=3,
num_hidden_layers=5,
patch_size=14,
)
model = CLIPVisionModelWithProjection(config)
return model
@property
def dummy_image_processor(self):
image_processor = CLIPImageProcessor(
crop_size=224,
do_center_crop=True,
do_normalize=True,
do_resize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
resample=3,
size=224,
)
return image_processor
def get_dummy_components(self):
prior = self.dummy_prior
image_encoder = self.dummy_image_encoder
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
image_processor = self.dummy_image_processor
scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="sample",
num_train_timesteps=1000,
clip_sample=True,
clip_sample_range=10.0,
)
components = {
"prior": prior,
"image_encoder": image_encoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
inputs = {
"prompt": "horse",
"image": init_image,
"strength": 0.5,
"generator": generator,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_kandinsky_prior_emb2emb(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.image_embeds
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -10:]
image_from_tuple_slice = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
expected_slice = np.array(
[
0.1071284,
1.3330271,
0.61260223,
-0.6691065,
-0.3846852,
-1.0303661,
0.22716111,
0.03348901,
0.30040675,
-0.24805029,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-2)
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
test_mean_pixel_difference = False
self._test_attention_slicing_forward_pass(
test_max_difference=test_max_difference,
test_mean_pixel_difference=test_mean_pixel_difference,
)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky_prior_emb2emb.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyV22Img2ImgPipeline,
KandinskyV22PriorPipeline,
UNet2DConditionModel,
VQModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 32
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
unet = self.dummy_unet
movq = self.dummy_movq
ddim_config = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.00085,
"beta_end": 0.012,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
scheduler = DDIMScheduler(**ddim_config)
components = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to(
device
)
# create init_image
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
class KandinskyV22Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22Img2ImgPipeline
params = ["image_embeds", "negative_image_embeds", "image"]
batch_params = [
"image_embeds",
"negative_image_embeds",
"image",
]
required_optional_params = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummies = Dummies()
return dummies.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummies = Dummies()
return dummies.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky_img2img(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5712, 0.5443, 0.4725, 0.6195, 0.5184, 0.4651, 0.4473, 0.4590, 0.5016])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=2e-1)
@slow
@require_torch_gpu
class KandinskyV22Img2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_img2img(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy"
)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
prompt = "A red cartoon frog, 4k"
pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyV22Img2ImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
output = pipeline(
image=init_image,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
height=768,
width=768,
strength=0.2,
output_type="np",
)
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyV22ControlnetPipeline,
KandinskyV22PriorPipeline,
UNet2DConditionModel,
VQModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class KandinskyV22ControlnetPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22ControlnetPipeline
params = ["image_embeds", "negative_image_embeds", "hint"]
batch_params = ["image_embeds", "negative_image_embeds", "hint"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
unet = self.dummy_unet
movq = self.dummy_movq
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
beta_start=0.00085,
beta_end=0.012,
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
thresholding=False,
)
components = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to(
device
)
# create hint
hint = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_kandinsky_controlnet(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
@nightly
@require_torch_gpu
class KandinskyV22ControlnetPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_controlnet(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy"
)
hint = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png"
)
hint = torch.from_numpy(np.array(hint)).float() / 255.0
hint = hint.permute(2, 0, 1).unsqueeze(0)
pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyV22ControlnetPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
prompt = "A robot, 4k photo"
generator = torch.Generator(device="cuda").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
generator = torch.Generator(device="cuda").manual_seed(0)
output = pipeline(
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
hint=hint,
generator=generator,
num_inference_steps=100,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky_controlnet.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyV22Pipeline, KandinskyV22PriorPipeline, UNet2DConditionModel, VQModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 32
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
unet = self.dummy_unet
movq = self.dummy_movq
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
beta_start=0.00085,
beta_end=0.012,
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
thresholding=False,
)
components = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to(
device
)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
class KandinskyV22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22Pipeline
params = [
"image_embeds",
"negative_image_embeds",
]
batch_params = ["image_embeds", "negative_image_embeds"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_inputs(self, device, seed=0):
dummies = Dummies()
return dummies.get_dummy_inputs(device=device, seed=seed)
def get_dummy_components(self):
dummies = Dummies()
return dummies.get_dummy_components()
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.3420, 0.9505, 0.3919, 1.0000, 0.5188, 0.3109, 0.6139, 0.5624, 0.6811])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
@slow
@require_torch_gpu
class KandinskyV22PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_text2img(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy"
)
pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyV22Pipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
prompt = "red cat, 4k photo"
generator = torch.Generator(device="cuda").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
generator = torch.Generator(device="cuda").manual_seed(0)
output = pipeline(
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import (
KandinskyV22CombinedPipeline,
KandinskyV22Img2ImgCombinedPipeline,
KandinskyV22InpaintCombinedPipeline,
)
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin
from .test_kandinsky import Dummies
from .test_kandinsky_img2img import Dummies as Img2ImgDummies
from .test_kandinsky_inpaint import Dummies as InpaintDummies
from .test_kandinsky_prior import Dummies as PriorDummies
enable_full_determinism()
class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22CombinedPipeline
params = [
"prompt",
]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = True
def get_dummy_components(self):
dummy = Dummies()
prior_dummy = PriorDummies()
components = dummy.get_dummy_components()
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
return components
def get_dummy_inputs(self, device, seed=0):
prior_dummy = PriorDummies()
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
inputs.update(
{
"height": 64,
"width": 64,
}
)
return inputs
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.3013, 0.0471, 0.5176, 0.1817, 0.2566, 0.7076, 0.6712, 0.4421, 0.7503])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
def test_model_cpu_offload_forward_pass(self):
super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)
class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22Img2ImgCombinedPipeline
params = ["prompt", "image"]
batch_params = ["prompt", "negative_prompt", "image"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummy = Img2ImgDummies()
prior_dummy = PriorDummies()
components = dummy.get_dummy_components()
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
return components
def get_dummy_inputs(self, device, seed=0):
prior_dummy = PriorDummies()
dummy = Img2ImgDummies()
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
inputs.pop("image_embeds")
inputs.pop("negative_image_embeds")
return inputs
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4353, 0.4710, 0.5128, 0.4806, 0.5054, 0.5348, 0.5224, 0.4603, 0.5025])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
def test_model_cpu_offload_forward_pass(self):
super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)
class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22InpaintCombinedPipeline
params = ["prompt", "image", "mask_image"]
batch_params = ["prompt", "negative_prompt", "image", "mask_image"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummy = InpaintDummies()
prior_dummy = PriorDummies()
components = dummy.get_dummy_components()
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
return components
def get_dummy_inputs(self, device, seed=0):
prior_dummy = PriorDummies()
dummy = InpaintDummies()
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
inputs.pop("image_embeds")
inputs.pop("negative_image_embeds")
return inputs
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5039, 0.4926, 0.4898, 0.4978, 0.4838, 0.4942, 0.4738, 0.4702, 0.4816])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
def test_model_cpu_offload_forward_pass(self):
super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky_combined.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyV22PriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModelWithProjection(config)
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"num_attention_heads": 2,
"attention_head_dim": 12,
"embedding_dim": self.text_embedder_hidden_size,
"num_layers": 1,
}
model = PriorTransformer(**model_kwargs)
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape))
return model
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,
image_size=224,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
num_attention_heads=4,
num_channels=3,
num_hidden_layers=5,
patch_size=14,
)
model = CLIPVisionModelWithProjection(config)
return model
@property
def dummy_image_processor(self):
image_processor = CLIPImageProcessor(
crop_size=224,
do_center_crop=True,
do_normalize=True,
do_resize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
resample=3,
size=224,
)
return image_processor
def get_dummy_components(self):
prior = self.dummy_prior
image_encoder = self.dummy_image_encoder
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
image_processor = self.dummy_image_processor
scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="sample",
num_train_timesteps=1000,
clip_sample=True,
clip_sample_range=10.0,
)
components = {
"prior": prior,
"image_encoder": image_encoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"generator": generator,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
class KandinskyV22PriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22PriorPipeline
params = ["prompt"]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"num_images_per_prompt",
"generator",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummies = Dummies()
return dummies.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummies = Dummies()
return dummies.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky_prior(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.image_embeds
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -10:]
image_from_tuple_slice = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
expected_slice = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
test_mean_pixel_difference = False
self._test_attention_slicing_forward_pass(
test_max_difference=test_max_difference,
test_mean_pixel_difference=test_mean_pixel_difference,
)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky_prior.py |
diffusers-main | tests/pipelines/kandinsky_v22/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyV22InpaintPipeline,
KandinskyV22PriorPipeline,
UNet2DConditionModel,
VQModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 32
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
unet = self.dummy_unet
movq = self.dummy_movq
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
beta_start=0.00085,
beta_end=0.012,
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
thresholding=False,
)
components = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to(
device
)
# create init_image
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
# create mask
mask = np.zeros((64, 64), dtype=np.float32)
mask[:32, :32] = 1
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
class KandinskyV22InpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22InpaintPipeline
params = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
batch_params = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummies = Dummies()
return dummies.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummies = Dummies()
return dummies.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky_inpaint(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
def test_model_cpu_offload_forward_pass(self):
super().test_inference_batch_single_identical(expected_max_diff=5e-4)
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=5e-4)
def test_sequential_cpu_offload_forward_pass(self):
super().test_sequential_cpu_offload_forward_pass(expected_max_diff=5e-4)
@slow
@require_torch_gpu
class KandinskyV22InpaintPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_inpaint(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy"
)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
mask = np.zeros((768, 768), dtype=np.float32)
mask[:250, 250:-250] = 1
prompt = "a hat"
pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyV22InpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
output = pipeline(
image=init_image,
mask_image=mask,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
height=768,
width=768,
output_type="np",
)
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky_inpaint.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyV22ControlnetImg2ImgPipeline,
KandinskyV22PriorEmb2EmbPipeline,
UNet2DConditionModel,
VQModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class KandinskyV22ControlnetImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22ControlnetImg2ImgPipeline
params = ["image_embeds", "negative_image_embeds", "image", "hint"]
batch_params = ["image_embeds", "negative_image_embeds", "image", "hint"]
required_optional_params = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
unet = self.dummy_unet
movq = self.dummy_movq
ddim_config = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.00085,
"beta_end": 0.012,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
scheduler = DDIMScheduler(**ddim_config)
components = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to(
device
)
# create init_image
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
# create hint
hint = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def test_kandinsky_controlnet_img2img(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1.75e-3)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=2e-1)
@slow
@require_torch_gpu
class KandinskyV22ControlnetImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_controlnet_img2img(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy"
)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
init_image = init_image.resize((512, 512))
hint = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png"
)
hint = torch.from_numpy(np.array(hint)).float() / 255.0
hint = hint.permute(2, 0, 1).unsqueeze(0)
prompt = "A robot, 4k photo"
pipe_prior = KandinskyV22PriorEmb2EmbPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
image=init_image,
strength=0.85,
generator=generator,
negative_prompt="",
).to_tuple()
output = pipeline(
image=init_image,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
hint=hint,
generator=generator,
num_inference_steps=100,
height=512,
width=512,
strength=0.5,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky_v22/test_kandinsky_controlnet_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLPipeline,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionXLPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionXLPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
}
return inputs
def test_stable_diffusion_xl_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5873, 0.6128, 0.4797, 0.5122, 0.5674, 0.4639, 0.5227, 0.5149, 0.4747])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_xl_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 2 * [inputs["prompt"]]
inputs["num_images_per_prompt"] = 2
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
prompt = 2 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_xl_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_img2img_prompt_embeds_only(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
_,
pooled_prompt_embeds,
_,
) = sd_pipe.encode_prompt(prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_two_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps,
split,
scheduler_cls_orig,
expected_tss,
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss))
expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {
**inputs,
**{
"denoising_end": 1.0 - (split / num_train_timesteps),
"output_type": "latent",
},
}
latents = pipe_1(**inputs_1).images[0]
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
inputs_2 = {
**inputs,
**{
"denoising_start": 1.0 - (split / num_train_timesteps),
"image": latents,
},
}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
steps = 10
for split in [300, 500, 700]:
for scheduler_cls_timesteps in [
(DDIMScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]),
(EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]),
(DPMSolverMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]),
(UniPCMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]),
(
HeunDiscreteScheduler,
[
901.0,
801.0,
801.0,
701.0,
701.0,
601.0,
601.0,
501.0,
501.0,
401.0,
401.0,
301.0,
301.0,
201.0,
201.0,
101.0,
101.0,
1.0,
1.0,
],
),
]:
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1])
steps = 25
for split in [300, 500, 700]:
for scheduler_cls_timesteps in [
(
DDIMScheduler,
[
961,
921,
881,
841,
801,
761,
721,
681,
641,
601,
561,
521,
481,
441,
401,
361,
321,
281,
241,
201,
161,
121,
81,
41,
1,
],
),
(
EulerDiscreteScheduler,
[
961.0,
921.0,
881.0,
841.0,
801.0,
761.0,
721.0,
681.0,
641.0,
601.0,
561.0,
521.0,
481.0,
441.0,
401.0,
361.0,
321.0,
281.0,
241.0,
201.0,
161.0,
121.0,
81.0,
41.0,
1.0,
],
),
(
DPMSolverMultistepScheduler,
[
951,
913,
875,
837,
799,
761,
723,
685,
647,
609,
571,
533,
495,
457,
419,
381,
343,
305,
267,
229,
191,
153,
115,
77,
39,
],
),
(
UniPCMultistepScheduler,
[
951,
913,
875,
837,
799,
761,
723,
685,
647,
609,
571,
533,
495,
457,
419,
381,
343,
305,
267,
229,
191,
153,
115,
77,
39,
],
),
(
HeunDiscreteScheduler,
[
961.0,
921.0,
921.0,
881.0,
881.0,
841.0,
841.0,
801.0,
801.0,
761.0,
761.0,
721.0,
721.0,
681.0,
681.0,
641.0,
641.0,
601.0,
601.0,
561.0,
561.0,
521.0,
521.0,
481.0,
481.0,
441.0,
441.0,
401.0,
401.0,
361.0,
361.0,
321.0,
321.0,
281.0,
281.0,
241.0,
241.0,
201.0,
201.0,
161.0,
161.0,
121.0,
121.0,
81.0,
81.0,
41.0,
41.0,
1.0,
1.0,
],
),
]:
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1])
def test_stable_diffusion_three_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
pipe_3 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipe_3.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps,
split_1,
split_2,
scheduler_cls_orig,
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1))
split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2))
expected_steps_1 = expected_steps[:split_1_ts]
expected_steps_2 = expected_steps[split_1_ts:split_2_ts]
expected_steps_3 = expected_steps[split_2_ts:]
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps))
expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps))
expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}}
latents = pipe_1(**inputs_1).images[0]
assert (
expected_steps_1 == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
with self.assertRaises(ValueError) as cm:
inputs_2 = {
**inputs,
**{
"denoising_start": split_2,
"denoising_end": split_1,
"image": latents,
"output_type": "latent",
},
}
pipe_2(**inputs_2).images[0]
assert "cannot be larger than or equal to `denoising_end`" in str(cm.exception)
inputs_2 = {
**inputs,
**{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"},
}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}}
pipe_3(**inputs_3).images[0]
assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :]
assert (
expected_steps == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
for steps in [7, 11, 20]:
for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]):
for scheduler_cls in [
DDIMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
]:
assert_run_mixture(steps, split_1, split_2, scheduler_cls)
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
def test_stable_diffusion_xl_negative_conditions(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice_with_no_neg_cond = image[0, -3:, -3:, -1]
image = sd_pipe(
**inputs,
negative_original_size=(512, 512),
negative_crops_coords_top_left=(0, 0),
negative_target_size=(1024, 1024),
).images
image_slice_with_neg_cond = image[0, -3:, -3:, -1]
self.assertTrue(np.abs(image_slice_with_no_neg_cond - image_slice_with_neg_cond).max() > 1e-2)
def test_stable_diffusion_xl_save_from_pretrained(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
with tempfile.TemporaryDirectory() as tmpdirname:
sd_pipe.save_pretrained(tmpdirname)
sd_pipe = StableDiffusionXLPipeline.from_pretrained(tmpdirname).to(torch_device)
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py |
diffusers-main | tests/pipelines/stable_diffusion_xl/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
StableDiffusionXLInpaintPipeline,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionXLInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset([])
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self, skip_first_text_encoder=False):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=72, # 5 * 8 + 32
cross_attention_dim=64 if not skip_first_text_encoder else 32,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder if not skip_first_text_encoder else None,
"tokenizer": tokenizer if not skip_first_text_encoder else None,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"requires_aesthetics_score": True,
}
return components
def get_dummy_inputs(self, device, seed=0):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# create mask
image[8:, 8:, :] = 255
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"strength": 1.0,
"output_type": "np",
}
return inputs
def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
# Convert images to [-1, 1]
init_image1 = 2.0 * image1 - 1.0
init_image2 = 2.0 * image2 - 1.0
# empty mask
mask_image = torch.zeros((1, 1, img_res, img_res), device=device)
if str(device).startswith("mps"):
generator1 = torch.manual_seed(seed)
generator2 = torch.manual_seed(seed)
else:
generator1 = torch.Generator(device=device).manual_seed(seed)
generator2 = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": ["A painting of a squirrel eating a burger"] * 2,
"image": [init_image1, init_image2],
"mask_image": [mask_image] * 2,
"generator": [generator1, generator2],
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
}
return inputs
def test_components_function(self):
init_components = self.get_dummy_components()
init_components.pop("requires_aesthetics_score")
pipe = self.pipeline_class(**init_components)
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
def test_stable_diffusion_xl_inpaint_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8029, 0.5523, 0.5825, 0.6003, 0.6702, 0.7018, 0.6369, 0.5955, 0.5123])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
def test_save_load_optional_components(self):
pass
def test_stable_diffusion_xl_inpaint_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_refiner(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(skip_first_text_encoder=True)
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.7045, 0.4838, 0.5454, 0.6270, 0.6168, 0.6717, 0.6484, 0.5681, 0.4922])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_two_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
split_ts = num_train_timesteps - int(round(num_train_timesteps * split))
expected_steps_1 = expected_steps[:split_ts]
expected_steps_2 = expected_steps[split_ts:]
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps))
expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}}
latents = pipe_1(**inputs_1).images[0]
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
for steps in [5, 8, 20]:
for split in [0.33, 0.49, 0.71]:
for scheduler_cls in [
DDIMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
]:
assert_run_mixture(steps, split, scheduler_cls)
def test_stable_diffusion_three_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
pipe_3 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_3.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps,
split_1,
split_2,
scheduler_cls_orig,
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1))
split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2))
expected_steps_1 = expected_steps[:split_1_ts]
expected_steps_2 = expected_steps[split_1_ts:split_2_ts]
expected_steps_3 = expected_steps[split_2_ts:]
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps))
expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps))
expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}}
latents = pipe_1(**inputs_1).images[0]
assert (
expected_steps_1 == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
inputs_2 = {
**inputs,
**{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"},
}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}}
pipe_3(**inputs_3).images[0]
assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :]
assert (
expected_steps == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
for steps in [7, 11, 20]:
for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]):
for scheduler_cls in [
DDIMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
]:
assert_run_mixture(steps, split_1, split_2, scheduler_cls)
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
def test_stable_diffusion_xl_img2img_negative_conditions(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1]
image = sd_pipe(
**inputs,
negative_original_size=(512, 512),
negative_crops_coords_top_left=(
0,
0,
),
negative_target_size=(1024, 1024),
).images
image_slice_with_neg_conditions = image[0, -3:, -3:, -1]
assert (
np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max()
> 1e-4
)
def test_stable_diffusion_xl_inpaint_mask_latents(self):
device = "cpu"
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(device)
sd_pipe.set_progress_bar_config(disable=None)
# normal mask + normal image
## `image`: pil, `mask_image``: pil, `masked_image_latents``: None
inputs = self.get_dummy_inputs(device)
inputs["strength"] = 0.9
out_0 = sd_pipe(**inputs).images
# image latents + mask latents
inputs = self.get_dummy_inputs(device)
image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
masked_image = image * (mask < 0.5)
generator = torch.Generator(device=device).manual_seed(0)
image_latents = sd_pipe._encode_vae_image(image, generator=generator)
torch.randn((1, 4, 32, 32), generator=generator)
mask_latents = sd_pipe._encode_vae_image(masked_image, generator=generator)
inputs["image"] = image_latents
inputs["masked_image_latents"] = mask_latents
inputs["mask_image"] = mask
inputs["strength"] = 0.9
generator = torch.Generator(device=device).manual_seed(0)
torch.randn((1, 4, 32, 32), generator=generator)
inputs["generator"] = generator
out_1 = sd_pipe(**inputs).images
assert np.abs(out_0 - out_1).max() < 1e-2
def test_stable_diffusion_xl_inpaint_2_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
# test to confirm if we pass two same image, we will get same output
inputs = self.get_dummy_inputs(device)
gen1 = torch.Generator(device=device).manual_seed(0)
gen2 = torch.Generator(device=device).manual_seed(0)
for name in ["prompt", "image", "mask_image"]:
inputs[name] = [inputs[name]] * 2
inputs["generator"] = [gen1, gen2]
images = sd_pipe(**inputs).images
assert images.shape == (2, 64, 64, 3)
image_slice1 = images[0, -3:, -3:, -1]
image_slice2 = images[1, -3:, -3:, -1]
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4
# test to confirm that if we pass two different images, we will get different output
inputs = self.get_dummy_inputs_2images(device)
images = sd_pipe(**inputs).images
assert images.shape == (2, 64, 64, 3)
image_slice1 = images[0, -3:, -3:, -1]
image_slice2 = images[1, -3:, -3:, -1]
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2
| diffusers-main | tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionXLImg2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
require_torch_gpu,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionXLImg2ImgPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionXLImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self, skip_first_text_encoder=False):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=72, # 5 * 8 + 32
cross_attention_dim=64 if not skip_first_text_encoder else 32,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder if not skip_first_text_encoder else None,
"tokenizer": tokenizer if not skip_first_text_encoder else None,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"requires_aesthetics_score": True,
}
return components
def test_components_function(self):
init_components = self.get_dummy_components()
init_components.pop("requires_aesthetics_score")
pipe = self.pipeline_class(**init_components)
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"strength": 0.8,
}
return inputs
def test_stable_diffusion_xl_img2img_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4664, 0.4886, 0.4403, 0.6902, 0.5592, 0.4534, 0.5931, 0.5951, 0.5224])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
def test_save_load_optional_components(self):
pass
def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
negative_prompt = 3 * ["this is a negative prompt"]
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["num_inference_steps"] = 5
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
def test_stable_diffusion_xl_img2img_negative_conditions(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1]
image = sd_pipe(
**inputs,
negative_original_size=(512, 512),
negative_crops_coords_top_left=(
0,
0,
),
negative_target_size=(1024, 1024),
).images
image_slice_with_neg_conditions = image[0, -3:, -3:, -1]
assert (
np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max()
> 1e-4
)
class StableDiffusionXLImg2ImgRefinerOnlyPipelineFastTests(
PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=72, # 5 * 8 + 32
cross_attention_dim=32,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"tokenizer": None,
"text_encoder": None,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"requires_aesthetics_score": True,
}
return components
def test_components_function(self):
init_components = self.get_dummy_components()
init_components.pop("requires_aesthetics_score")
pipe = self.pipeline_class(**init_components)
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"strength": 0.8,
}
return inputs
def test_stable_diffusion_xl_img2img_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4745, 0.4924, 0.4338, 0.6468, 0.5547, 0.4419, 0.5646, 0.5897, 0.5146])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_img2img_negative_conditions(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1]
image = sd_pipe(
**inputs,
negative_original_size=(512, 512),
negative_crops_coords_top_left=(
0,
0,
),
negative_target_size=(1024, 1024),
).images
image_slice_with_neg_conditions = image[0, -3:, -3:, -1]
assert (
np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max()
> 1e-4
)
def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
negative_prompt = 3 * ["this is a negative prompt"]
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_xl_img2img_prompt_embeds_only(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
_,
pooled_prompt_embeds,
_,
) = sd_pipe.encode_prompt(prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
| diffusers-main | tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from parameterized import parameterized
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
MultiAdapter,
StableDiffusionXLAdapterPipeline,
T2IAdapter,
UNet2DConditionModel,
)
from diffusers.utils import logging
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class StableDiffusionXLAdapterPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionXLAdapterPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
def get_dummy_components(self, adapter_type="full_adapter_xl"):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
if adapter_type == "full_adapter_xl":
adapter = T2IAdapter(
in_channels=3,
channels=[32, 64],
num_res_blocks=2,
downscale_factor=4,
adapter_type=adapter_type,
)
elif adapter_type == "multi_adapter":
adapter = MultiAdapter(
[
T2IAdapter(
in_channels=3,
channels=[32, 64],
num_res_blocks=2,
downscale_factor=4,
adapter_type="full_adapter_xl",
),
T2IAdapter(
in_channels=3,
channels=[32, 64],
num_res_blocks=2,
downscale_factor=4,
adapter_type="full_adapter_xl",
),
]
)
else:
raise ValueError(
f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter_xl', or 'multi_adapter''"
)
components = {
"adapter": adapter,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0, num_images=1):
if num_images == 1:
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
else:
image = [floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) for _ in range(num_images)]
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLAdapterPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.5752919, 0.6022097, 0.4728038, 0.49861962, 0.57084894, 0.4644975, 0.5193715, 0.5133664, 0.4729858]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
@parameterized.expand(["full_adapter", "full_adapter_xl", "light_adapter"])
def test_total_downscale_factor(self, adapter_type):
"""Test that the T2IAdapter correctly reports its total_downscale_factor."""
batch_size = 1
in_channels = 3
out_channels = [320, 640, 1280, 1280]
in_image_size = 512
adapter = T2IAdapter(
in_channels=in_channels,
channels=out_channels,
num_res_blocks=2,
downscale_factor=8,
adapter_type=adapter_type,
)
adapter.to(torch_device)
in_image = floats_tensor((batch_size, in_channels, in_image_size, in_image_size)).to(torch_device)
adapter_state = adapter(in_image)
# Assume that the last element in `adapter_state` has been downsampled the most, and check
# that it matches the `total_downscale_factor`.
expected_out_image_size = in_image_size // adapter.total_downscale_factor
assert adapter_state[-1].shape == (
batch_size,
out_channels[-1],
expected_out_image_size,
expected_out_image_size,
)
class StableDiffusionXLMultiAdapterPipelineFastTests(
StableDiffusionXLAdapterPipelineFastTests, PipelineTesterMixin, unittest.TestCase
):
def get_dummy_components(self):
return super().get_dummy_components("multi_adapter")
def get_dummy_inputs(self, device, seed=0):
inputs = super().get_dummy_inputs(device, seed, num_images=2)
inputs["adapter_conditioning_scale"] = [0.5, 0.5]
return inputs
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLAdapterPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.5813032, 0.60995954, 0.47563356, 0.5056669, 0.57199144, 0.4631841, 0.5176794, 0.51252556, 0.47183886]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
def test_inference_batch_consistent(
self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"]
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
for batch_size in batch_sizes:
batched_inputs = {}
for name, value in inputs.items():
if name in self.batch_params:
# prompt is string
if name == "prompt":
len_prompt = len(value)
# make unequal batch sizes
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
# make last batch super long
batched_inputs[name][-1] = 100 * "very long"
elif name == "image":
batched_images = []
for image in value:
batched_images.append(batch_size * [image])
batched_inputs[name] = batched_images
else:
batched_inputs[name] = batch_size * [value]
elif name == "batch_size":
batched_inputs[name] = batch_size
else:
batched_inputs[name] = value
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
batched_inputs["output_type"] = "np"
output = pipe(**batched_inputs)
assert len(output[0]) == batch_size
batched_inputs["output_type"] = "np"
output = pipe(**batched_inputs)[0]
assert output.shape[0] == batch_size
logger.setLevel(level=diffusers.logging.WARNING)
def test_num_images_per_prompt(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_sizes = [1, 2]
num_images_per_prompts = [1, 2]
for batch_size in batch_sizes:
for num_images_per_prompt in num_images_per_prompts:
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
if key == "image":
batched_images = []
for image in inputs[key]:
batched_images.append(batch_size * [image])
inputs[key] = batched_images
else:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
def test_inference_batch_single_identical(
self,
batch_size=3,
test_max_difference=None,
test_mean_pixel_difference=None,
relax_max_difference=False,
expected_max_diff=2e-3,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
if test_max_difference is None:
# TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
# make sure that batched and non-batched is identical
test_max_difference = torch_device != "mps"
if test_mean_pixel_difference is None:
# TODO same as above
test_mean_pixel_difference = torch_device != "mps"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batch_size = batch_size
for name, value in inputs.items():
if name in self.batch_params:
# prompt is string
if name == "prompt":
len_prompt = len(value)
# make unequal batch sizes
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
# make last batch super long
batched_inputs[name][-1] = 100 * "very long"
elif name == "image":
batched_images = []
for image in value:
batched_images.append(batch_size * [image])
batched_inputs[name] = batched_images
else:
batched_inputs[name] = batch_size * [value]
elif name == "batch_size":
batched_inputs[name] = batch_size
elif name == "generator":
batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
else:
batched_inputs[name] = value
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs)
logger.setLevel(level=diffusers.logging.WARNING)
if test_max_difference:
if relax_max_difference:
# Taking the median of the largest <n> differences
# is resilient to outliers
diff = np.abs(output_batch[0][0] - output[0][0])
diff = diff.flatten()
diff.sort()
max_diff = np.median(diff[-5:])
else:
max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
assert max_diff < expected_max_diff
if test_mean_pixel_difference:
assert_mean_pixel_difference(output_batch[0][0], output[0][0])
| diffusers-main | tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_adapter.py |
# coding=utf-8
# Copyright 2023 Harutatsu Akiyama and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
UNet2DConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_instruct_pix2pix import (
StableDiffusionXLInstructPix2PixPipeline,
)
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionXLInstructPix2PixPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLInstructPix2PixPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=8,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 5 * 8 + 32
cross_attention_dim=64,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"image_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def test_components_function(self):
init_components = self.get_dummy_components()
pipe = self.pipeline_class(**init_components)
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=2e-3)
# Overwrite the default test_latents_inputs because pix2pix encode the image differently
def test_latents_input(self):
components = self.get_dummy_components()
pipe = StableDiffusionXLInstructPix2PixPipeline(**components)
pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
vae = components["vae"]
inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
for image_param in self.image_latents_params:
if image_param in inputs.keys():
inputs[image_param] = vae.encode(inputs[image_param]).latent_dist.mode()
out_latents_inputs = pipe(**inputs)[0]
max_diff = np.abs(out - out_latents_inputs).max()
self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")
def test_cfg(self):
pass
| diffusers-main | tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNet2DModel
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch, torch_device
enable_full_determinism()
class PNDMPipelineFastTests(unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
unet = self.dummy_uncond_unet
scheduler = PNDMScheduler()
pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
pndm.to(torch_device)
pndm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images
generator = torch.manual_seed(0)
image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@nightly
@require_torch
class PNDMPipelineIntegrationTests(unittest.TestCase):
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = PNDMScheduler()
pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
pndm.to(torch_device)
pndm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pndm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/pndm/test_pndm.py |
diffusers-main | tests/pipelines/pndm/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionDualGuidedPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
@nightly
@require_torch_gpu
class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_remove_unused_weights_save_load(self):
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion")
# remove text_unet
pipe.remove_unused_weights()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
second_prompt = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
)
generator = torch.manual_seed(0)
image = pipe(
prompt="first prompt",
image=second_prompt,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained(tmpdirname)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe(
prompt="first prompt",
image=second_prompt,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
assert np.abs(image - new_image).max() < 1e-5, "Models don't have the same forward pass"
def test_inference_dual_guided(self):
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion")
pipe.remove_unused_weights()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
first_prompt = "cyberpunk 2077"
second_prompt = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
)
generator = torch.manual_seed(0)
image = pipe(
prompt=first_prompt,
image=second_prompt,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0787, 0.0849, 0.0826, 0.0812, 0.0807, 0.0795, 0.0818, 0.0798, 0.0779])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_dual_guided.py |
diffusers-main | tests/pipelines/versatile_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionImageVariationPipelineFastTests(unittest.TestCase):
pass
@nightly
@require_torch_gpu
class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase):
def test_inference_image_variations(self):
pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
image_prompt = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
)
generator = torch.manual_seed(0)
image = pipe(
image=image_prompt,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_image_variation.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase):
pass
@nightly
@require_torch_gpu
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_from_save_pretrained(self):
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
)
generator = torch.manual_seed(0)
image = pipe.dual_guided(
prompt="first prompt",
image=prompt_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe.dual_guided(
prompt="first prompt",
image=prompt_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
assert np.abs(image - new_image).max() < 1e-5, "Models don't have the same forward pass"
def test_inference_dual_guided_then_text_to_image(self):
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "cyberpunk 2077"
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
)
generator = torch.manual_seed(0)
image = pipe.dual_guided(
prompt=prompt,
image=init_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
prompt = "A painting of a squirrel eating a burger "
generator = torch.manual_seed(0)
image = pipe.text_to_image(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
| diffusers-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_mega.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionTextToImagePipelineFastTests(unittest.TestCase):
pass
@nightly
@require_torch_gpu
class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_remove_unused_weights_save_load(self):
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion")
# remove text_unet
pipe.remove_unused_weights()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy"
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained(tmpdirname)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy"
).images
assert np.abs(image - new_image).max() < 1e-5, "Models don't have the same forward pass"
def test_inference_text2img(self):
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained(
"shi-labs/versatile-diffusion", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_text_to_image.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
enable_full_determinism()
class StableDiffusionUpscalePipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet_upscale(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 32, 64),
layers_per_block=2,
sample_size=32,
in_channels=7,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=8,
use_linear_projection=True,
only_cross_attention=(True, True, False),
num_class_embeds=100,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
return CLIPTextModel(config)
def test_stable_diffusion_upscale(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_upscale_batch(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
output = sd_pipe(
2 * [prompt],
image=2 * [low_res_image],
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
assert image.shape[0] == 2
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
num_images_per_prompt=2,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
assert image.shape[0] == 2
def test_stable_diffusion_upscale_prompt_embeds(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt(prompt, device, 1, False)
if negative_prompt_embeds is not None:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
image_from_prompt_embeds = sd_pipe(
prompt_embeds=prompt_embeds,
image=[low_res_image],
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_prompt_embeds_slice = image_from_prompt_embeds[0, -3:, -3:, -1]
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_prompt_embeds_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_upscale_fp16(self):
"""Test that stable diffusion upscale works with fp16"""
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# put models in fp16, except vae as it overflows in fp16
unet = unet.half()
text_encoder = text_encoder.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
num_inference_steps=2,
output_type="np",
).images
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
def test_stable_diffusion_upscale_from_save_pretrained(self):
pipes = []
device = "cpu" # ensure determinism for the device-dependent torch.Generator
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=self.dummy_cond_unet_upscale,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=self.dummy_vae,
text_encoder=self.dummy_text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
pipes.append(sd_pipe)
with tempfile.TemporaryDirectory() as tmpdirname:
sd_pipe.save_pretrained(tmpdirname)
sd_pipe = StableDiffusionUpscalePipeline.from_pretrained(tmpdirname).to(device)
pipes.append(sd_pipe)
prompt = "A painting of a squirrel eating a burger"
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
image_slices = []
for pipe in pipes:
generator = torch.Generator(device=device).manual_seed(0)
image = pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
@slow
@require_torch_gpu
class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_upscale_pipeline(self):
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat.npy"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "a cat sitting on a park bench"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_upscale_pipeline_fp16(self):
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat_fp16.npy"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "a cat sitting on a park bench"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "a cat sitting on a park bench"
generator = torch.manual_seed(0)
_ = pipe(
prompt=prompt,
image=image,
generator=generator,
num_inference_steps=5,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_upscale.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import nightly, require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@nightly
@require_flax
class FlaxStableDiffusion2PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def test_stable_diffusion_flax(self):
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2",
revision="bf16",
dtype=jnp.bfloat16,
)
prompt = "A painting of a squirrel eating a burger"
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = sd_pipe.prepare_inputs(prompt)
params = replicate(params)
prompt_ids = shard(prompt_ids)
prng_seed = jax.random.PRNGKey(0)
prng_seed = jax.random.split(prng_seed, jax.device_count())
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
image_slice = images[0, 253:256, 253:256, -1]
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
expected_slice = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512])
print(f"output_slice: {output_slice}")
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
@nightly
@require_flax
class FlaxStableDiffusion2PipelineNightlyTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def test_stable_diffusion_dpm_flax(self):
model_id = "stabilityai/stable-diffusion-2"
scheduler, scheduler_params = FlaxDPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained(
model_id,
scheduler=scheduler,
revision="bf16",
dtype=jnp.bfloat16,
)
params["scheduler"] = scheduler_params
prompt = "A painting of a squirrel eating a burger"
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = sd_pipe.prepare_inputs(prompt)
params = replicate(params)
prompt_ids = shard(prompt_ids)
prng_seed = jax.random.PRNGKey(0)
prng_seed = jax.random.split(prng_seed, jax.device_count())
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
image_slice = images[0, 253:256, 253:256, -1]
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
expected_slice = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297])
print(f"output_slice: {output_slice}")
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_flax.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
logging,
)
from diffusers.utils.testing_utils import (
CaptureLogger,
enable_full_determinism,
load_numpy,
nightly,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusion2PipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler_ancestral(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_unflawed(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = DDIMScheduler.from_config(
components["scheduler"].config, timestep_spacing="trailing"
)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["guidance_rescale"] = 0.7
inputs["num_inference_steps"] = 10
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4736, 0.5405, 0.4705, 0.4955, 0.5675, 0.4812, 0.5310, 0.4967, 0.5064])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_long_prompt(self):
components = self.get_dummy_components()
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
do_classifier_free_guidance = True
negative_prompt = None
num_images_per_prompt = 1
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
logger.setLevel(logging.WARNING)
prompt = 25 * "@"
with CaptureLogger(logger) as cap_logger_3:
text_embeddings_3, negeative_text_embeddings_3 = sd_pipe.encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if negeative_text_embeddings_3 is not None:
text_embeddings_3 = torch.cat([negeative_text_embeddings_3, text_embeddings_3])
prompt = 100 * "@"
with CaptureLogger(logger) as cap_logger:
text_embeddings, negative_embeddings = sd_pipe.encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if negative_embeddings is not None:
text_embeddings = torch.cat([negative_embeddings, text_embeddings])
negative_prompt = "Hello"
with CaptureLogger(logger) as cap_logger_2:
text_embeddings_2, negative_text_embeddings_2 = sd_pipe.encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if negative_text_embeddings_2 is not None:
text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
assert text_embeddings.shape[1] == 77
assert cap_logger.out == cap_logger_2.out
# 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
assert cap_logger.out.count("@") == 25
assert cap_logger_3.out == ""
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class StableDiffusion2PipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_default_ddim(self):
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
assert np.abs(image_slice - expected_slice).max() < 7e-3
def test_stable_diffusion_pndm(self):
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
assert np.abs(image_slice - expected_slice).max() < 7e-3
def test_stable_diffusion_k_lms(self):
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006])
assert np.abs(image_slice - expected_slice).max() < 3e-3
def test_stable_diffusion_attention_slicing(self):
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
)
pipe.unet.set_default_attn_processor()
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# enable attention slicing
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
image_sliced = pipe(**inputs).images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 3.3 GB is allocated
assert mem_bytes < 3.3 * 10**9
# disable slicing
pipe.disable_attention_slicing()
pipe.unet.set_default_attn_processor()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
image = pipe(**inputs).images
# make sure that more than 3.3 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 3.3 * 10**9
assert np.abs(image_sliced - image).max() < 1e-3
def test_stable_diffusion_text2img_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == inputs["num_inference_steps"]
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.8 GB is allocated
assert mem_bytes < 2.8 * 10**9
def test_stable_diffusion_pipeline_with_model_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
# Normal inference
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base",
torch_dtype=torch.float16,
)
pipe.unet.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
outputs = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# With model offloading
# Reload but don't move to cuda
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base",
torch_dtype=torch.float16,
)
pipe.unet.set_default_attn_processor()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device, dtype=torch.float16)
outputs_offloaded = pipe(**inputs)
mem_bytes_offloaded = torch.cuda.max_memory_allocated()
images = outputs.images
images_offloaded = outputs_offloaded.images
max_diff = numpy_cosine_similarity_distance(images.flatten(), images_offloaded.flatten())
assert max_diff < 1e-3
assert mem_bytes_offloaded < mem_bytes
assert mem_bytes_offloaded < 3 * 10**9
for module in pipe.text_encoder, pipe.unet, pipe.vae:
assert module.device == torch.device("cpu")
# With attention slicing
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe.enable_attention_slicing()
_ = pipe(**inputs)
mem_bytes_slicing = torch.cuda.max_memory_allocated()
assert mem_bytes_slicing < mem_bytes_offloaded
@nightly
@require_torch_gpu
class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_2_0_default_ddim(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_2_1_default_pndm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_ddim(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_lms(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_euler(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_stable_diffusion_dpm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusion2InpaintPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset(
[]
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_inpaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_inpaint_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench.npy"
)
model_id = "stabilityai/stable-diffusion-2-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 9e-3
def test_stable_diffusion_inpaint_pipeline_fp16(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy"
)
model_id = "stabilityai/stable-diffusion-2-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
)
model_id = "stabilityai/stable-diffusion-2-inpainting"
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
safety_checker=None,
scheduler=pndm,
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.manual_seed(0)
_ = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
num_inference_steps=2,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_inpaint.py |
diffusers-main | tests/pipelines/stable_diffusion_2/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionDiffEditPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionDiffEditPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
image_params = frozenset(
[]
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
inverse_scheduler = DDIMInverseScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_zero=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"inverse_scheduler": inverse_scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
mask = floats_tensor((1, 16, 16), rng=random.Random(seed)).to(device)
latents = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "a dog and a newt",
"mask_image": mask,
"image_latents": latents,
"generator": generator,
"num_inference_steps": 2,
"inpaint_strength": 1.0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def get_dummy_mask_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": image,
"source_prompt": "a cat and a frog",
"target_prompt": "a dog and a newt",
"generator": generator,
"num_inference_steps": 2,
"num_maps_per_mask": 2,
"mask_encode_strength": 1.0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def get_dummy_inversion_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": image,
"prompt": "a cat and a frog",
"generator": generator,
"num_inference_steps": 2,
"inpaint_strength": 1.0,
"guidance_scale": 6.0,
"decode_latents": True,
"output_type": "numpy",
}
return inputs
def test_save_load_optional_components(self):
if not hasattr(self.pipeline_class, "_optional_components"):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components})
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 1e-4)
def test_mask(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_mask_inputs(device)
mask = pipe.generate_mask(**inputs)
mask_slice = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16))
expected_slice = np.array([0] * 9)
max_diff = np.abs(mask_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
self.assertEqual(mask[0, -3, -4], 0)
def test_inversion(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
image = pipe.invert(**inputs).images
image_slice = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3))
expected_slice = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5105, 0.5015, 0.4407, 0.4799],
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=5e-3)
def test_inversion_dpm(self):
device = "cpu"
components = self.get_dummy_components()
scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"}
components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args)
components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args)
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
image = pipe.invert(**inputs).images
image_slice = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3))
expected_slice = np.array(
[0.5305, 0.4673, 0.5314, 0.5308, 0.4886, 0.5279, 0.5142, 0.4724, 0.4892],
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
@require_torch_gpu
@slow
class StableDiffusionDiffEditPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def setUpClass(cls):
raw_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png"
)
raw_image = raw_image.convert("RGB").resize((768, 768))
cls.raw_image = raw_image
def test_stable_diffusion_diffedit_full(self):
generator = torch.manual_seed(0)
pipe = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
source_prompt = "a bowl of fruit"
target_prompt = "a bowl of pears"
mask_image = pipe.generate_mask(
image=self.raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
generator=generator,
)
inv_latents = pipe.invert(
prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator
).latents
image = pipe(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
generator=generator,
negative_prompt=source_prompt,
inpaint_strength=0.7,
output_type="numpy",
).images[0]
expected_image = (
np.array(
load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/diffedit/pears.png"
).resize((768, 768))
)
/ 255
)
assert np.abs((expected_image - image).max()) < 5e-1
@nightly
@require_torch_gpu
class StableDiffusionDiffEditPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def setUpClass(cls):
raw_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png"
)
raw_image = raw_image.convert("RGB").resize((768, 768))
cls.raw_image = raw_image
def test_stable_diffusion_diffedit_dpm(self):
generator = torch.manual_seed(0)
pipe = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
source_prompt = "a bowl of fruit"
target_prompt = "a bowl of pears"
mask_image = pipe.generate_mask(
image=self.raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
generator=generator,
)
inv_latents = pipe.invert(
prompt=source_prompt,
image=self.raw_image,
inpaint_strength=0.7,
generator=generator,
num_inference_steps=25,
).latents
image = pipe(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
generator=generator,
negative_prompt=source_prompt,
inpaint_strength=0.7,
num_inference_steps=25,
output_type="numpy",
).images[0]
expected_image = (
np.array(
load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/diffedit/pears.png"
).resize((768, 768))
)
/ 255
)
assert np.abs((expected_image - image).max()) < 5e-1
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import time
import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import AttnProcessor
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
enable_full_determinism()
class StableDiffusion2VPredictionPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=64,
)
return CLIPTextModel(config)
def test_stable_diffusion_v_pred_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
prediction_type="v_prediction",
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6569, 0.6525, 0.5142, 0.4968, 0.4923, 0.4601, 0.4996, 0.5041, 0.4544])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_k_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = EulerDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="v_prediction"
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5644, 0.6514, 0.5190, 0.5663, 0.5287, 0.4953, 0.5430, 0.5243, 0.4778])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_v_pred_fp16(self):
"""Test that stable diffusion v-prediction works with fp16"""
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
prediction_type="v_prediction",
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch_gpu
class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_v_pred_default(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.1868, 0.1922, 0.1527, 0.1921, 0.1908, 0.1624, 0.1779, 0.1652, 0.1734])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_upcast_attention(self):
sd_pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.4209, 0.4087, 0.4097, 0.4209, 0.3860, 0.4329, 0.4280, 0.4324, 0.4187])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
def test_stable_diffusion_v_pred_euler(self):
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler")
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.1781, 0.1695, 0.1661, 0.1705, 0.1588, 0.1699, 0.2005, 0.1589, 0.1677])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_dpm(self):
"""
TODO: update this test after making DPM compatible with V-prediction!
"""
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"stabilityai/stable-diffusion-2", subfolder="scheduler"
)
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.manual_seed(0)
image = sd_pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.3303, 0.3184, 0.3291, 0.3300, 0.3256, 0.3113, 0.2965, 0.3134, 0.3192])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_attention_slicing_v_pred(self):
torch.cuda.reset_peak_memory_stats()
model_id = "stabilityai/stable-diffusion-2"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
# make attention efficient
pipe.enable_attention_slicing()
generator = torch.manual_seed(0)
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 5.5 GB is allocated
assert mem_bytes < 5.5 * 10**9
# disable slicing
pipe.disable_attention_slicing()
generator = torch.manual_seed(0)
output = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")
image = output.images
# make sure that more than 5.5 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 5.5 * 10**9
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_chunked.flatten())
assert max_diff < 1e-3
def test_stable_diffusion_text2img_pipeline_v_pred_default(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"sd2-text2img/astronaut_riding_a_horse_v_pred.npy"
)
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
pipe.to(torch_device)
pipe.enable_attention_slicing()
pipe.set_progress_bar_config(disable=None)
prompt = "astronaut riding a horse"
generator = torch.manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
assert max_diff < 1e-3
def test_stable_diffusion_text2img_pipeline_unflawed(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"sd2-text2img/lion_galaxy.npy"
)
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
pipe.scheduler = DDIMScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing", rescale_betas_zero_snr=True
)
pipe.to(torch_device)
pipe.enable_attention_slicing()
pipe.set_progress_bar_config(disable=None)
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
generator = torch.Generator("cpu").manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, guidance_rescale=0.7, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
assert max_diff < 1e-2
def test_stable_diffusion_text2img_pipeline_v_pred_fp16(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"sd2-text2img/astronaut_riding_a_horse_v_pred_fp16.npy"
)
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "astronaut riding a horse"
generator = torch.manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
assert max_diff < 1e-3
def test_download_local(self):
filename = hf_hub_download("stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.safetensors")
pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]
assert image_out.shape == (768, 768, 3)
def test_download_ckpt_diff_format_is_same(self):
single_file_path = (
"https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors"
)
pipe_single = StableDiffusionPipeline.from_single_file(single_file_path)
pipe_single.scheduler = DDIMScheduler.from_config(pipe_single.scheduler.config)
pipe_single.unet.set_attn_processor(AttnProcessor())
pipe_single.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(0)
image_ckpt = pipe_single("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())
assert max_diff < 1e-3
def test_stable_diffusion_text2img_intermediate_state_v_pred(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.7749, 0.0325, 0.5088, 0.1619, 0.3372, 0.3667, -0.5186, 0.6860, 1.4326])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 19:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([1.3887, 1.0273, 1.7266, 0.0726, 0.6611, 0.1598, -1.0547, 0.1522, 0.0227])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
test_callback_fn.has_been_called = False
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Andromeda galaxy in a bottle"
generator = torch.manual_seed(0)
pipe(
prompt=prompt,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 20
def test_stable_diffusion_low_cpu_mem_usage_v_pred(self):
pipeline_id = "stabilityai/stable-diffusion-2"
start_time = time.time()
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
pipeline_low_cpu_mem_usage.to(torch_device)
low_cpu_mem_usage_time = time.time() - start_time
start_time = time.time()
_ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
normal_load_time = time.time() - start_time
assert 2 * low_cpu_mem_usage_time < normal_load_time
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading_v_pred(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipeline_id = "stabilityai/stable-diffusion-2"
prompt = "Andromeda galaxy in a bottle"
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
pipeline = pipeline.to(torch_device)
pipeline.enable_attention_slicing(1)
pipeline.enable_sequential_cpu_offload()
generator = torch.manual_seed(0)
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.8 GB is allocated
assert mem_bytes < 2.8 * 10**9
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_v_pred.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
load_numpy,
numpy_cosine_similarity_distance,
require_torch_gpu,
skip_mps,
slow,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
@skip_mps
class StableDiffusionAttendAndExcitePipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionAttendAndExcitePipeline
test_attention_slicing = False
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"})
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
# Attend and excite requires being able to run a backward pass at
# inference time. There's no deterministic backward operator for pad
@classmethod
def setUpClass(cls):
super().setUpClass()
torch.use_deterministic_algorithms(False)
@classmethod
def tearDownClass(cls):
super().tearDownClass()
torch.use_deterministic_algorithms(True)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=1,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = inputs = {
"prompt": "a cat and a frog",
"token_indices": [2, 5],
"generator": generator,
"num_inference_steps": 1,
"guidance_scale": 6.0,
"output_type": "numpy",
"max_iter_to_alter": 2,
"thresholds": {0: 0.7},
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 64, 64, 3))
expected_slice = np.array(
[0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_sequential_cpu_offload_forward_pass(self):
super().test_sequential_cpu_offload_forward_pass(expected_max_diff=5e-4)
def test_inference_batch_consistent(self):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(batch_size=2, expected_max_diff=7e-4)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def test_pt_np_pil_outputs_equivalent(self):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4)
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=5e-4)
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=4e-4)
@require_torch_gpu
@slow
class StableDiffusionAttendAndExcitePipelineIntegrationTests(unittest.TestCase):
# Attend and excite requires being able to run a backward pass at
# inference time. There's no deterministic backward operator for pad
@classmethod
def setUpClass(cls):
super().setUpClass()
torch.use_deterministic_algorithms(False)
@classmethod
def tearDownClass(cls):
super().tearDownClass()
torch.use_deterministic_algorithms(True)
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_attend_and_excite_fp16(self):
generator = torch.manual_seed(51)
pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
)
pipe.to("cuda")
prompt = "a painting of an elephant with glasses"
token_indices = [5, 7]
image = pipe(
prompt=prompt,
token_indices=token_indices,
guidance_scale=7.5,
generator=generator,
num_inference_steps=5,
max_iter_to_alter=5,
output_type="numpy",
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy"
)
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
assert max_diff < 5e-1
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_attend_and_excite.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import (
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
DPTConfig,
DPTFeatureExtractor,
DPTForDepthEstimation,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionDepth2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils import is_accelerate_available, is_accelerate_version
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class StableDiffusionDepth2ImgPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionDepth2ImgPipeline
test_save_load_optional_components = False
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=5,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
backbone_config = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [96, 192, 384, 768],
"num_groups": 2,
}
depth_estimator_config = DPTConfig(
image_size=32,
patch_size=16,
num_channels=3,
hidden_size=32,
num_hidden_layers=4,
backbone_out_indices=(0, 1, 2, 3),
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
is_decoder=False,
initializer_range=0.02,
is_hybrid=True,
backbone_config=backbone_config,
backbone_featmap_shape=[1, 384, 24, 24],
)
depth_estimator = DPTForDepthEstimation(depth_estimator_config).eval()
feature_extractor = DPTFeatureExtractor.from_pretrained(
"hf-internal-testing/tiny-random-DPTForDepthEstimation"
)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"depth_estimator": depth_estimator,
"feature_extractor": feature_extractor,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed))
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_save_load_local(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 1e-4)
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
components = self.get_dummy_components()
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.to(torch_device).half()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for name, component in pipe_loaded.components.items():
if hasattr(component, "dtype"):
self.assertTrue(
component.dtype == torch.float16,
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 2e-2, "The output of the fp16 pipeline changed after saving and loading.")
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_float16_inference(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.half()
pipe_fp16 = self.pipeline_class(**components)
pipe_fp16.to(torch_device)
pipe_fp16.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(torch_device))[0]
output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]
max_diff = np.abs(output - output_fp16).max()
self.assertLess(max_diff, 1.3e-2, "The outputs of the fp16 and fp32 pipelines are too different.")
@unittest.skipIf(
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
)
def test_cpu_offload_forward_pass(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_without_offload = pipe(**inputs)[0]
pipe.enable_sequential_cpu_offload()
inputs = self.get_dummy_inputs(torch_device)
output_with_offload = pipe(**inputs)[0]
max_diff = np.abs(output_with_offload - output_without_offload).max()
self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
def test_dict_tuple_outputs_equivalent(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(torch_device))[0]
output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]
max_diff = np.abs(output - output_tuple).max()
self.assertLess(max_diff, 1e-4)
def test_progress_bar(self):
super().test_progress_bar()
def test_stable_diffusion_depth2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546])
else:
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6296, 0.5125, 0.3890, 0.4456, 0.5955, 0.4621, 0.3810, 0.5310, 0.4626])
else:
expected_slice = np.array([0.6012, 0.4507, 0.3769, 0.4121, 0.5566, 0.4585, 0.3803, 0.5045, 0.4631])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_multiple_init_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * 2
inputs["image"] = 2 * [inputs["image"]]
image = pipe(**inputs).images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551])
else:
expected_slice = np.array([0.6557, 0.6214, 0.6254, 0.5775, 0.4785, 0.5949, 0.5904, 0.4785, 0.4730])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_pil(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
if torch_device == "mps":
expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439])
else:
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=7e-3)
@slow
@require_torch_gpu
class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
inputs = {
"prompt": "two tigers",
"image": init_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_depth2img_pipeline_default(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
assert np.abs(expected_slice - image_slice).max() < 6e-1
def test_stable_diffusion_depth2img_pipeline_k_lms(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.6363, 0.6274, 0.6309, 0.6370, 0.6226, 0.6286, 0.6213, 0.6453, 0.6306])
assert np.abs(expected_slice - image_slice).max() < 8e-4
def test_stable_diffusion_depth2img_pipeline_ddim(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.6424, 0.6524, 0.6249, 0.6041, 0.6634, 0.6420, 0.6522, 0.6555, 0.6436])
assert np.abs(expected_slice - image_slice).max() < 5e-4
def test_stable_diffusion_depth2img_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.7168, -1.5137, -0.1418, -2.9219, -2.7266, -2.4414, -2.1035, -3.0078, -1.7051]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.7109, -1.5068, -0.1403, -2.9160, -2.7207, -2.4414, -2.1035, -3.0059, -1.7090]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 2
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
inputs = {
"prompt": "two tigers",
"image": init_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_depth2img_pndm(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_depth2img_ddim(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img2img_lms(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_lms.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img2img_dpm(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
inputs["num_inference_steps"] = 30
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_depth.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def check_same_shape(tensor_list):
shapes = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:])
class StableDiffusionLatentUpscalePipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionLatentUpscalePipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
required_optional_params = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = frozenset(
[]
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
@property
def dummy_image(self):
batch_size = 1
num_channels = 4
sizes = (16, 16)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def get_dummy_components(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
act_fn="gelu",
attention_head_dim=8,
norm_num_groups=None,
block_out_channels=[32, 32, 64, 64],
time_cond_proj_dim=160,
conv_in_kernel=1,
conv_out_kernel=1,
cross_attention_dim=32,
down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
),
in_channels=8,
mid_block_type=None,
only_cross_attention=False,
out_channels=5,
resnet_time_scale_shift="scale_shift",
time_embedding_type="fourier",
timestep_post_act="gelu",
up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),
)
vae = AutoencoderKL(
block_out_channels=[32, 32, 64, 64],
in_channels=3,
out_channels=3,
down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
scheduler = EulerDiscreteScheduler(prediction_type="sample")
text_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="quick_gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 256, 256, 3))
expected_slice = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3)
def test_sequential_cpu_offload_forward_pass(self):
super().test_sequential_cpu_offload_forward_pass(expected_max_diff=3e-3)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=7e-3)
def test_pt_np_pil_outputs_equivalent(self):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3)
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=3e-3)
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=3e-3)
def test_karras_schedulers_shape(self):
skip_schedulers = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=True)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 2
outputs = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
scheduler_cls = getattr(diffusers, scheduler_enum.name)
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
output = pipe(**inputs)[0]
outputs.append(output)
assert check_same_shape(outputs)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
@require_torch_gpu
@slow
class StableDiffusionLatentUpscalePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_latent_upscaler_fp16(self):
generator = torch.manual_seed(33)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe.to("cuda")
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
)
upscaler.to("cuda")
prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
low_res_latents = pipe(prompt, generator=generator, output_type="latent").images
image = upscaler(
prompt=prompt,
image=low_res_latents,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
output_type="np",
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy"
)
assert np.abs((expected_image - image).mean()) < 5e-2
def test_latent_upscaler_fp16_image(self):
generator = torch.manual_seed(33)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
)
upscaler.to("cuda")
prompt = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
low_res_img = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png"
)
image = upscaler(
prompt=prompt,
image=low_res_img,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
output_type="np",
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy"
)
assert np.abs((expected_image - image).max()) < 5e-2
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_latent_upscale.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class FlaxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def test_stable_diffusion_inpaint_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
)
model_id = "xvjiarui/stable-diffusion-2-inpainting"
pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
init_image = num_samples * [init_image]
mask_image = num_samples * [mask_image]
prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(prompt, init_image, mask_image)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
processed_masked_images = shard(processed_masked_images)
processed_masks = shard(processed_masks)
output = pipeline(
prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True
)
images = output.images.reshape(num_samples, 512, 512, 3)
image_slice = images[0, 253:256, 253:256, -1]
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
expected_slice = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084]
)
print(f"output_slice: {output_slice}")
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_flax_inpaint.py |
diffusers-main | tests/pipelines/ddpm/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
enable_full_determinism()
class DDPMPipelineFastTests(unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_fast_inference(self):
device = "cpu"
unet = self.dummy_uncond_unet
scheduler = DDPMScheduler()
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[9.956e-01, 5.785e-01, 4.675e-01, 9.930e-01, 0.0, 1.000, 1.199e-03, 2.648e-04, 5.101e-04]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_predict_sample(self):
unet = self.dummy_uncond_unet
scheduler = DDPMScheduler(prediction_type="sample")
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = torch.manual_seed(0)
image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy")[0]
image_slice = image[0, -3:, -3:, -1]
image_eps_slice = image_eps[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
tolerance = 1e-2 if torch_device != "mps" else 3e-2
assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance
@slow
@require_torch_gpu
class DDPMPipelineIntegrationTests(unittest.TestCase):
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDPMScheduler.from_pretrained(model_id)
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4200, 0.3588, 0.1939, 0.3847, 0.3382, 0.2647, 0.4155, 0.3582, 0.3385])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/ddpm/test_ddpm.py |
diffusers-main | tests/pipelines/unclip/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = UnCLIPPipeline
params = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
"guidance_scale",
"prompt_embeds",
"cross_attention_kwargs",
}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
required_optional_params = [
"generator",
"return_dict",
"prior_num_inference_steps",
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModelWithProjection(config)
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"num_attention_heads": 2,
"attention_head_dim": 12,
"embedding_dim": self.text_embedder_hidden_size,
"num_layers": 1,
}
model = PriorTransformer(**model_kwargs)
return model
@property
def dummy_text_proj(self):
torch.manual_seed(0)
model_kwargs = {
"clip_embeddings_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"cross_attention_dim": self.cross_attention_dim,
}
model = UnCLIPTextProjModel(**model_kwargs)
return model
@property
def dummy_decoder(self):
torch.manual_seed(0)
model_kwargs = {
"sample_size": 32,
# RGB in channels
"in_channels": 3,
# Out channels is double in channels because predicts mean and variance
"out_channels": 6,
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": "identity",
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_super_res_kwargs(self):
return {
"sample_size": 64,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def dummy_super_res_first(self):
torch.manual_seed(0)
model = UNet2DModel(**self.dummy_super_res_kwargs)
return model
@property
def dummy_super_res_last(self):
# seeded differently to get different unet than `self.dummy_super_res_first`
torch.manual_seed(1)
model = UNet2DModel(**self.dummy_super_res_kwargs)
return model
def get_dummy_components(self):
prior = self.dummy_prior
decoder = self.dummy_decoder
text_proj = self.dummy_text_proj
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
super_res_first = self.dummy_super_res_first
super_res_last = self.dummy_super_res_last
prior_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="sample",
num_train_timesteps=1000,
clip_sample_range=5.0,
)
decoder_scheduler = UnCLIPScheduler(
variance_type="learned_range",
prediction_type="epsilon",
num_train_timesteps=1000,
)
super_res_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="epsilon",
num_train_timesteps=1000,
)
components = {
"prior": prior,
"decoder": decoder,
"text_proj": text_proj,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"prior_scheduler": prior_scheduler,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"generator": generator,
"prior_num_inference_steps": 2,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_unclip(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.9997,
0.9988,
0.0028,
0.9997,
0.9984,
0.9965,
0.0029,
0.9986,
0.0025,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_unclip_passed_text_embed(self):
device = torch.device("cpu")
class DummyScheduler:
init_noise_sigma = 1
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
prior = components["prior"]
decoder = components["decoder"]
super_res_first = components["super_res_first"]
tokenizer = components["tokenizer"]
text_encoder = components["text_encoder"]
generator = torch.Generator(device=device).manual_seed(0)
dtype = prior.dtype
batch_size = 1
shape = (batch_size, prior.config.embedding_dim)
prior_latents = pipe.prepare_latents(
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
)
shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size)
decoder_latents = pipe.prepare_latents(
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
)
shape = (
batch_size,
super_res_first.config.in_channels // 2,
super_res_first.config.sample_size,
super_res_first.config.sample_size,
)
super_res_latents = pipe.prepare_latents(
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
)
pipe.set_progress_bar_config(disable=None)
prompt = "this is a prompt example"
generator = torch.Generator(device=device).manual_seed(0)
output = pipe(
[prompt],
generator=generator,
prior_num_inference_steps=2,
decoder_num_inference_steps=2,
super_res_num_inference_steps=2,
prior_latents=prior_latents,
decoder_latents=decoder_latents,
super_res_latents=super_res_latents,
output_type="np",
)
image = output.images
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
text_model_output = text_encoder(text_inputs.input_ids)
text_attention_mask = text_inputs.attention_mask
generator = torch.Generator(device=device).manual_seed(0)
image_from_text = pipe(
generator=generator,
prior_num_inference_steps=2,
decoder_num_inference_steps=2,
super_res_num_inference_steps=2,
prior_latents=prior_latents,
decoder_latents=decoder_latents,
super_res_latents=super_res_latents,
text_model_output=text_model_output,
text_attention_mask=text_attention_mask,
output_type="np",
)[0]
# make sure passing text embeddings manually is identical
assert np.abs(image - image_from_text).max() < 1e-4
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
# because UnCLIP GPU undeterminism requires a looser check.
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01)
# Overriding PipelineTesterMixin::test_inference_batch_single_identical
# because UnCLIP undeterminism requires a looser check.
@skip_mps
def test_inference_batch_single_identical(self):
additional_params_copy_to_batched_inputs = [
"prior_num_inference_steps",
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
self._test_inference_batch_single_identical(
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3
)
def test_inference_batch_consistent(self):
additional_params_copy_to_batched_inputs = [
"prior_num_inference_steps",
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
batch_sizes = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=batch_sizes,
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
)
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
)
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local(expected_max_difference=5e-3)
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@unittest.skip("UnCLIP produces very large differences in fp16 vs fp32. Test is not useful.")
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1.0)
@nightly
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_unclip_karlo_cpu_fp32(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/unclip/karlo_v1_alpha_horse_cpu.npy"
)
pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha")
pipeline.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipeline(
"horse",
num_images_per_prompt=1,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).max() < 1e-1
@nightly
@require_torch_gpu
class UnCLIPPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_unclip_karlo(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/unclip/karlo_v1_alpha_horse_fp16.npy"
)
pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipeline(
"horse",
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert_mean_pixel_difference(image, expected_image)
def test_unclip_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_ = pipe(
"horse",
num_images_per_prompt=1,
prior_num_inference_steps=2,
decoder_num_inference_steps=2,
super_res_num_inference_steps=2,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| diffusers-main | tests/pipelines/unclip/test_unclip.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
UnCLIPImageVariationPipeline,
UnCLIPScheduler,
UNet2DConditionModel,
UNet2DModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = UnCLIPImageVariationPipeline
params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
batch_params = IMAGE_VARIATION_BATCH_PARAMS
required_optional_params = [
"generator",
"return_dict",
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModelWithProjection(config)
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
num_hidden_layers=5,
num_attention_heads=4,
image_size=32,
intermediate_size=37,
patch_size=1,
)
return CLIPVisionModelWithProjection(config)
@property
def dummy_text_proj(self):
torch.manual_seed(0)
model_kwargs = {
"clip_embeddings_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"cross_attention_dim": self.cross_attention_dim,
}
model = UnCLIPTextProjModel(**model_kwargs)
return model
@property
def dummy_decoder(self):
torch.manual_seed(0)
model_kwargs = {
"sample_size": 32,
# RGB in channels
"in_channels": 3,
# Out channels is double in channels because predicts mean and variance
"out_channels": 6,
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": "identity",
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_super_res_kwargs(self):
return {
"sample_size": 64,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def dummy_super_res_first(self):
torch.manual_seed(0)
model = UNet2DModel(**self.dummy_super_res_kwargs)
return model
@property
def dummy_super_res_last(self):
# seeded differently to get different unet than `self.dummy_super_res_first`
torch.manual_seed(1)
model = UNet2DModel(**self.dummy_super_res_kwargs)
return model
def get_dummy_components(self):
decoder = self.dummy_decoder
text_proj = self.dummy_text_proj
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
super_res_first = self.dummy_super_res_first
super_res_last = self.dummy_super_res_last
decoder_scheduler = UnCLIPScheduler(
variance_type="learned_range",
prediction_type="epsilon",
num_train_timesteps=1000,
)
super_res_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="epsilon",
num_train_timesteps=1000,
)
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
image_encoder = self.dummy_image_encoder
return {
"decoder": decoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_proj": text_proj,
"feature_extractor": feature_extractor,
"image_encoder": image_encoder,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
def get_dummy_inputs(self, device, seed=0, pil_image=True):
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
if pil_image:
input_image = input_image * 0.5 + 0.5
input_image = input_image.clamp(0, 1)
input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]
return {
"image": input_image,
"generator": generator,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "np",
}
def test_unclip_image_variation_input_tensor(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
output = pipe(**pipeline_inputs)
image = output.images
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
image_from_tuple = pipe(
**tuple_pipeline_inputs,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.9997,
0.0002,
0.9997,
0.9997,
0.9969,
0.0023,
0.9997,
0.9969,
0.9970,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_unclip_image_variation_input_image(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
output = pipe(**pipeline_inputs)
image = output.images
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
image_from_tuple = pipe(
**tuple_pipeline_inputs,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_unclip_image_variation_input_list_images(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
pipeline_inputs["image"] = [
pipeline_inputs["image"],
pipeline_inputs["image"],
]
output = pipe(**pipeline_inputs)
image = output.images
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
tuple_pipeline_inputs["image"] = [
tuple_pipeline_inputs["image"],
tuple_pipeline_inputs["image"],
]
image_from_tuple = pipe(
**tuple_pipeline_inputs,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
expected_slice = np.array(
[
0.9997,
0.9989,
0.0008,
0.0021,
0.9960,
0.0018,
0.0014,
0.0002,
0.9933,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_unclip_passed_image_embed(self):
device = torch.device("cpu")
class DummyScheduler:
init_noise_sigma = 1
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
dtype = pipe.decoder.dtype
batch_size = 1
shape = (
batch_size,
pipe.decoder.config.in_channels,
pipe.decoder.config.sample_size,
pipe.decoder.config.sample_size,
)
decoder_latents = pipe.prepare_latents(
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
)
shape = (
batch_size,
pipe.super_res_first.config.in_channels // 2,
pipe.super_res_first.config.sample_size,
pipe.super_res_first.config.sample_size,
)
super_res_latents = pipe.prepare_latents(
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
img_out_1 = pipe(
**pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents
).images
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
# Don't pass image, instead pass embedding
image = pipeline_inputs.pop("image")
image_embeddings = pipe.image_encoder(image).image_embeds
img_out_2 = pipe(
**pipeline_inputs,
decoder_latents=decoder_latents,
super_res_latents=super_res_latents,
image_embeddings=image_embeddings,
).images
# make sure passing text embeddings manually is identical
assert np.abs(img_out_1 - img_out_2).max() < 1e-4
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
# because UnCLIP GPU undeterminism requires a looser check.
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
# Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
expected_max_diff = 1e-2
self._test_attention_slicing_forward_pass(
test_max_difference=test_max_difference, expected_max_diff=expected_max_diff
)
# Overriding PipelineTesterMixin::test_inference_batch_single_identical
# because UnCLIP undeterminism requires a looser check.
@skip_mps
def test_inference_batch_single_identical(self):
additional_params_copy_to_batched_inputs = [
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
self._test_inference_batch_single_identical(
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3
)
def test_inference_batch_consistent(self):
additional_params_copy_to_batched_inputs = [
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
batch_sizes = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=batch_sizes,
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
)
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
)
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local(expected_max_difference=4e-3)
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@unittest.skip("UnCLIP produces very large difference in fp16 vs fp32. Test is not useful.")
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1.0)
@nightly
@require_torch_gpu
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_unclip_image_variation_karlo(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/unclip/karlo_v1_alpha_cat_variation_fp16.npy"
)
pipeline = UnCLIPImageVariationPipeline.from_pretrained(
"kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipeline(
input_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert_mean_pixel_difference(image, expected_image, 15)
| diffusers-main | tests/pipelines/unclip/test_unclip_image_variation.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionConfig
from diffusers import AutoencoderKL, PaintByExamplePipeline, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
nightly,
require_torch_gpu,
torch_device,
)
from ..pipeline_params import IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class PaintByExamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = PaintByExamplePipeline
params = IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset([]) # TO_DO: update the image_prams once refactored VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=32,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
image_size=32,
patch_size=4,
)
image_encoder = PaintByExampleImageEncoder(config, proj_size=32)
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"image_encoder": image_encoder,
"safety_checker": None,
"feature_extractor": feature_extractor,
}
return components
def convert_to_pt(self, image):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
def get_dummy_inputs(self, device="cpu", seed=0):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
example_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"example_image": example_image,
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_paint_by_example_inpaint(self):
components = self.get_dummy_components()
# make sure here that pndm scheduler skips prk
pipe = PaintByExamplePipeline(**components)
pipe = pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
output = pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4686, 0.5687, 0.4007, 0.5218, 0.5741, 0.4482, 0.4940, 0.4629, 0.4503])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_paint_by_example_image_tensor(self):
device = "cpu"
inputs = self.get_dummy_inputs()
inputs.pop("mask_image")
image = self.convert_to_pt(inputs.pop("image"))
mask_image = image.clamp(0, 1) / 2
# make sure here that pndm scheduler skips prk
pipe = PaintByExamplePipeline(**self.get_dummy_components())
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(image=image, mask_image=mask_image[:, 0], **inputs)
out_1 = output.images
image = image.cpu().permute(0, 2, 3, 1)[0]
mask_image = mask_image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB")
output = pipe(**self.get_dummy_inputs())
out_2 = output.images
assert out_1.shape == (1, 64, 64, 3)
assert np.abs(out_1.flatten() - out_2.flatten()).max() < 5e-2
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@nightly
@require_torch_gpu
class PaintByExamplePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_paint_by_example(self):
# make sure here that pndm scheduler skips prk
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/paint_by_example/dog_in_bucket.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/paint_by_example/mask.png"
)
example_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/paint_by_example/panda.jpg"
)
pipe = PaintByExamplePipeline.from_pretrained("Fantasy-Studio/Paint-by-Example")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(321)
output = pipe(
image=init_image,
mask_image=mask_image,
example_image=example_image,
generator=generator,
guidance_scale=5.0,
num_inference_steps=50,
output_type="np",
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.4834, 0.4811, 0.4874, 0.5122, 0.5081, 0.5144, 0.5291, 0.5290, 0.5374])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/paint_by_example/test_paint_by_example.py |
diffusers-main | tests/pipelines/paint_by_example/__init__.py |
|
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class ActivationsTests(unittest.TestCase):
def test_swish(self):
act = get_activation("swish")
self.assertIsInstance(act, nn.SiLU)
self.assertEqual(act(torch.tensor(-100, dtype=torch.float32)).item(), 0)
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(0, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(20, dtype=torch.float32)).item(), 20)
def test_silu(self):
act = get_activation("silu")
self.assertIsInstance(act, nn.SiLU)
self.assertEqual(act(torch.tensor(-100, dtype=torch.float32)).item(), 0)
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(0, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(20, dtype=torch.float32)).item(), 20)
def test_mish(self):
act = get_activation("mish")
self.assertIsInstance(act, nn.Mish)
self.assertEqual(act(torch.tensor(-200, dtype=torch.float32)).item(), 0)
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(0, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(20, dtype=torch.float32)).item(), 20)
def test_gelu(self):
act = get_activation("gelu")
self.assertIsInstance(act, nn.GELU)
self.assertEqual(act(torch.tensor(-100, dtype=torch.float32)).item(), 0)
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(0, dtype=torch.float32)).item(), 0)
self.assertEqual(act(torch.tensor(20, dtype=torch.float32)).item(), 20)
| diffusers-main | tests/models/test_activations.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import tempfile
import traceback
import unittest
import unittest.mock as mock
import uuid
from typing import Dict, List, Tuple
import numpy as np
import requests_mock
import torch
from huggingface_hub import delete_repo
from requests.exceptions import HTTPError
from diffusers.models import UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor
from diffusers.training_utils import EMAModel
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
CaptureLogger,
require_torch_2,
require_torch_gpu,
run_test_in_subprocess,
torch_device,
)
from ..others.test_utils import TOKEN, USER, is_staging_test
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
error = None
try:
init_dict, model_class = in_queue.get(timeout=timeout)
model = model_class(**init_dict)
model.to(torch_device)
model = torch.compile(model)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = model_class.from_pretrained(tmpdirname)
new_model.to(torch_device)
assert new_model.__class__ == model_class
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class ModelUtilsTest(unittest.TestCase):
def tearDown(self):
super().tearDown()
def test_accelerate_loading_error_message(self):
with self.assertRaises(ValueError) as error_context:
UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")
# make sure that error message states what keys are missing
assert "conv_out.bias" in str(error_context.exception)
def test_cached_files_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
orig_model = UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
)
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
model = UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
)
for p1, p2 in zip(orig_model.parameters(), model.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_one_request_upon_cached(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
use_safetensors = False
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
download_requests = [r.method for r in m.request_history]
assert download_requests.count("HEAD") == 2, "2 HEAD requests one for config, one for model"
assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"
with requests_mock.mock(real_http=True) as m:
UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
cache_requests = [r.method for r in m.request_history]
assert (
"HEAD" == cache_requests[0] and len(cache_requests) == 1
), "We should call only `model_info` to check for _commit hash and `send_telemetry`"
def test_weight_overwrite(self):
with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
in_channels=9,
)
# make sure that error message states what keys are missing
assert "Cannot load" in str(error_context.exception)
with tempfile.TemporaryDirectory() as tmpdirname:
model = UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
in_channels=9,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True,
)
assert model.config.in_channels == 9
class UNetTesterMixin:
def test_forward_signature(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["sample", "timestep"]
self.assertListEqual(arg_names[:2], expected_arg_names)
def test_forward_with_norm_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 16
init_dict["block_out_channels"] = (16, 32)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
class ModelTesterMixin:
main_input_name = None # overwrite in model specific tester class
base_precision = 1e-3
def test_from_save_pretrained(self, expected_max_diff=5e-5):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
if hasattr(model, "set_default_attn_processor"):
model.set_default_attn_processor()
model.to(torch_device)
model.eval()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname)
if hasattr(new_model, "set_default_attn_processor"):
new_model.set_default_attn_processor()
new_model.to(torch_device)
with torch.no_grad():
image = model(**inputs_dict)
if isinstance(image, dict):
image = image.to_tuple()[0]
new_image = new_model(**inputs_dict)
if isinstance(new_image, dict):
new_image = new_image.to_tuple()[0]
max_diff = (image - new_image).abs().max().item()
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
def test_getattr_is_correct(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
# save some things to test
model.dummy_attribute = 5
model.register_to_config(test_attribute=5)
logger = logging.get_logger("diffusers.models.modeling_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
assert hasattr(model, "dummy_attribute")
assert getattr(model, "dummy_attribute") == 5
assert model.dummy_attribute == 5
# no warning should be thrown
assert cap_logger.out == ""
logger = logging.get_logger("diffusers.models.modeling_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
assert hasattr(model, "save_pretrained")
fn = model.save_pretrained
fn_1 = getattr(model, "save_pretrained")
assert fn == fn_1
# no warning should be thrown
assert cap_logger.out == ""
# warning should be thrown
with self.assertWarns(FutureWarning):
assert model.test_attribute == 5
with self.assertWarns(FutureWarning):
assert getattr(model, "test_attribute") == 5
with self.assertRaises(AttributeError) as error:
model.does_not_exist
assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"
@require_torch_gpu
def test_set_attn_processor_for_determinism(self):
torch.use_deterministic_algorithms(False)
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
if not hasattr(model, "set_attn_processor"):
# If not has `set_attn_processor`, skip test
return
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
with torch.no_grad():
output_1 = model(**inputs_dict)[0]
model.set_default_attn_processor()
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
output_2 = model(**inputs_dict)[0]
model.enable_xformers_memory_efficient_attention()
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
output_3 = model(**inputs_dict)[0]
model.set_attn_processor(AttnProcessor2_0())
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
with torch.no_grad():
output_4 = model(**inputs_dict)[0]
model.set_attn_processor(AttnProcessor())
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
output_5 = model(**inputs_dict)[0]
model.set_attn_processor(XFormersAttnProcessor())
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
output_6 = model(**inputs_dict)[0]
torch.use_deterministic_algorithms(True)
# make sure that outputs match
assert torch.allclose(output_2, output_1, atol=self.base_precision)
assert torch.allclose(output_2, output_3, atol=self.base_precision)
assert torch.allclose(output_2, output_4, atol=self.base_precision)
assert torch.allclose(output_2, output_5, atol=self.base_precision)
assert torch.allclose(output_2, output_6, atol=self.base_precision)
def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
if hasattr(model, "set_default_attn_processor"):
model.set_default_attn_processor()
model.to(torch_device)
model.eval()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
if hasattr(new_model, "set_default_attn_processor"):
new_model.set_default_attn_processor()
# non-variant cannot be loaded
with self.assertRaises(OSError) as error_context:
self.model_class.from_pretrained(tmpdirname)
# make sure that error message states what keys are missing
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)
new_model.to(torch_device)
with torch.no_grad():
image = model(**inputs_dict)
if isinstance(image, dict):
image = image.to_tuple()[0]
new_image = new_model(**inputs_dict)
if isinstance(new_image, dict):
new_image = new_image.to_tuple()[0]
max_diff = (image - new_image).abs().max().item()
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
@require_torch_2
def test_from_save_pretrained_dynamo(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
inputs = [init_dict, self.model_class]
run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
def test_from_save_pretrained_dtype(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
for dtype in [torch.float32, torch.float16, torch.bfloat16]:
if torch_device == "mps" and dtype == torch.bfloat16:
continue
with tempfile.TemporaryDirectory() as tmpdirname:
model.to(dtype)
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
assert new_model.dtype == dtype
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
assert new_model.dtype == dtype
def test_determinism(self, expected_max_diff=1e-5):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**inputs_dict)
if isinstance(first, dict):
first = first.to_tuple()[0]
second = model(**inputs_dict)
if isinstance(second, dict):
second = second.to_tuple()[0]
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, expected_max_diff)
def test_output(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
# input & output have to have the same shape
input_tensor = inputs_dict[self.main_input_name]
expected_shape = input_tensor.shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_from_pretrained(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
# test if the model can be loaded from the config
# and has all the expected shape
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname)
new_model.to(torch_device)
new_model.eval()
# check if all parameters shape are the same
for param_name in model.state_dict().keys():
param_1 = model.state_dict()[param_name]
param_2 = new_model.state_dict()[param_name]
self.assertEqual(param_1.shape, param_2.shape)
with torch.no_grad():
output_1 = model(**inputs_dict)
if isinstance(output_1, dict):
output_1 = output_1.to_tuple()[0]
output_2 = new_model(**inputs_dict)
if isinstance(output_2, dict):
output_2 = output_2.to_tuple()[0]
self.assertEqual(output_1.shape, output_2.shape)
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
def test_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
input_tensor = inputs_dict[self.main_input_name]
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
def test_ema_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
ema_model = EMAModel(model.parameters())
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
input_tensor = inputs_dict[self.main_input_name]
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
ema_model.step(model.parameters())
def test_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
# Temporary fallback until `aten::_index_put_impl_` is implemented in mps
# Track progress in https://github.com/pytorch/pytorch/issues/77764
device = t.device
if device.type == "mps":
t = t.to("cpu")
t[t != t] = 0
return t.to(device)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs_dict = model(**inputs_dict)
outputs_tuple = model(**inputs_dict, return_dict=False)
recursive_check(outputs_tuple, outputs_dict)
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_enable_disable_gradient_checkpointing(self):
if not self.model_class._supports_gradient_checkpointing:
return # Skip test if model does not support gradient checkpointing
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
# at init model should have gradient checkpointing disabled
model = self.model_class(**init_dict)
self.assertFalse(model.is_gradient_checkpointing)
# check enable works
model.enable_gradient_checkpointing()
self.assertTrue(model.is_gradient_checkpointing)
# check disable works
model.disable_gradient_checkpointing()
self.assertFalse(model.is_gradient_checkpointing)
def test_deprecated_kwargs(self):
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
" from `_deprecated_kwargs = [<deprecated_argument>]`"
)
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
identifier = uuid.uuid4()
repo_id = f"test-model-{identifier}"
org_repo_id = f"valid_org/{repo_id}-org"
def test_push_to_hub(self):
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
model.push_to_hub(self.repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.repo_id, token=TOKEN)
def test_push_to_hub_in_organization(self):
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
model.push_to_hub(self.org_repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.org_repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.org_repo_id, token=TOKEN)
| diffusers-main | tests/models/test_modeling_common.py |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNet2DConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class FlaxUNet2DConditionModelIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
dtype = jnp.bfloat16 if fp16 else jnp.float32
image = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype)
return image
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
dtype = jnp.bfloat16 if fp16 else jnp.float32
revision = "bf16" if fp16 else None
model, params = FlaxUNet2DConditionModel.from_pretrained(
model_id, subfolder="unet", dtype=dtype, revision=revision
)
return model, params
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
dtype = jnp.bfloat16 if fp16 else jnp.float32
hidden_states = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype)
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
]
)
def test_compvis_sd_v1_4_flax_vs_torch_fp16(self, seed, timestep, expected_slice):
model, params = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
sample = model.apply(
{"params": params},
latents,
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=encoder_hidden_states,
).sample
assert sample.shape == latents.shape
output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32)
expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32)
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2)
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
]
)
def test_stabilityai_sd_v2_flax_vs_torch_fp16(self, seed, timestep, expected_slice):
model, params = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)
sample = model.apply(
{"params": params},
latents,
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=encoder_hidden_states,
).sample
assert sample.shape == latents.shape
output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32)
expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32)
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2)
| diffusers-main | tests/models/test_models_unet_2d_flax.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from diffusers.models.unet_2d_blocks import * # noqa F403
from diffusers.utils.testing_utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class DownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = DownBlock2D # noqa F405
block_type = "down"
def test_output(self):
expected_slice = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
super().test_output(expected_slice)
class ResnetDownsampleBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = ResnetDownsampleBlock2D # noqa F405
block_type = "down"
def test_output(self):
expected_slice = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
super().test_output(expected_slice)
class AttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnDownBlock2D # noqa F405
block_type = "down"
def test_output(self):
expected_slice = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
super().test_output(expected_slice)
class CrossAttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = CrossAttnDownBlock2D # noqa F405
block_type = "down"
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983]
super().test_output(expected_slice)
class SimpleCrossAttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SimpleCrossAttnDownBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_encoder_hidden_states=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps", "MPS result is not consistent")
def test_output(self):
expected_slice = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
super().test_output(expected_slice)
class SkipDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SkipDownBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_skip_sample=True)
def test_output(self):
expected_slice = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
super().test_output(expected_slice)
class AttnSkipDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnSkipDownBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_skip_sample=True)
def test_output(self):
expected_slice = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
super().test_output(expected_slice)
class DownEncoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = DownEncoderBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 32,
"out_channels": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
super().test_output(expected_slice)
class AttnDownEncoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnDownEncoderBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 32,
"out_channels": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
super().test_output(expected_slice)
class UNetMidBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UNetMidBlock2D # noqa F405
block_type = "mid"
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 32,
"temb_channels": 128,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
super().test_output(expected_slice)
class UNetMidBlock2DCrossAttnTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UNetMidBlock2DCrossAttn # noqa F405
block_type = "mid"
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335]
super().test_output(expected_slice)
class UNetMidBlock2DSimpleCrossAttnTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UNetMidBlock2DSimpleCrossAttn # noqa F405
block_type = "mid"
@property
def dummy_input(self):
return super().get_dummy_input(include_encoder_hidden_states=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
super().test_output(expected_slice)
class UpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
super().test_output(expected_slice)
class ResnetUpsampleBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = ResnetUpsampleBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
super().test_output(expected_slice)
class CrossAttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = CrossAttnUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582]
super().test_output(expected_slice)
class SimpleCrossAttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SimpleCrossAttnUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True, include_encoder_hidden_states=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
super().test_output(expected_slice)
class AttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
@unittest.skipIf(torch_device == "mps", "MPS result is not consistent")
def test_output(self):
expected_slice = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
super().test_output(expected_slice)
class SkipUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SkipUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
super().test_output(expected_slice)
class AttnSkipUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnSkipUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
super().test_output(expected_slice)
class UpDecoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UpDecoderBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {"in_channels": 32, "out_channels": 32}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
super().test_output(expected_slice)
class AttnUpDecoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnUpDecoderBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {"in_channels": 32, "out_channels": 32}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
super().test_output(expected_slice)
| diffusers-main | tests/models/test_unet_2d_blocks.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import UNet1DModel
from diffusers.utils.testing_utils import floats_tensor, slow, torch_device
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
class UNet1DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet1DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (4, 14, 16)
def test_ema_training(self):
pass
def test_training(self):
pass
def test_determinism(self):
super().test_determinism()
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
def test_from_save_pretrained(self):
super().test_from_save_pretrained()
def test_from_save_pretrained_variant(self):
super().test_from_save_pretrained_variant()
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
def test_output(self):
super().test_output()
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64, 128, 256),
"in_channels": 14,
"out_channels": 14,
"time_embedding_type": "positional",
"use_timestep_embedding": True,
"flip_sin_to_cos": False,
"freq_shift": 1.0,
"out_block_type": "OutConv1DBlock",
"mid_block_type": "MidResTemporalBlock1D",
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
"up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"),
"act_fn": "swish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet"
)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet")
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_features = model.config.in_channels
seq_len = 16
noise = torch.randn((1, seq_len, num_features)).permute(
0, 2, 1
) # match original, we can update values and remove
time_step = torch.full((num_features,), 0)
with torch.no_grad():
output = model(noise, time_step).sample.permute(0, 2, 1)
output_slice = output[0, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass
@slow
def test_unet_1d_maestro(self):
model_id = "harmonai/maestro-150k"
model = UNet1DModel.from_pretrained(model_id, subfolder="unet")
model.to(torch_device)
sample_size = 65536
noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device)
timestep = torch.tensor([1]).to(torch_device)
with torch.no_grad():
output = model(noise, timestep).sample
output_sum = output.abs().sum()
output_max = output.abs().max()
assert (output_sum - 224.0896).abs() < 0.5
assert (output_max - 0.0607).abs() < 4e-4
class UNetRLModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet1DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (4, 14, 1)
def test_determinism(self):
super().test_determinism()
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
def test_from_save_pretrained(self):
super().test_from_save_pretrained()
def test_from_save_pretrained_variant(self):
super().test_from_save_pretrained_variant()
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
def test_output(self):
# UNetRL is a value-function is different output shape
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1))
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_ema_training(self):
pass
def test_training(self):
pass
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 14,
"out_channels": 14,
"down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"],
"up_block_types": [],
"out_block_type": "ValueFunction",
"mid_block_type": "ValueFunctionMidBlock1D",
"block_out_channels": [32, 64, 128, 256],
"layers_per_block": 1,
"downsample_each_block": True,
"use_timestep_embedding": True,
"freq_shift": 1.0,
"flip_sin_to_cos": False,
"time_embedding_type": "positional",
"act_fn": "mish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
value_function, vf_loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
)
self.assertIsNotNone(value_function)
self.assertEqual(len(vf_loading_info["missing_keys"]), 0)
value_function.to(torch_device)
image = value_function(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
value_function, vf_loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_features = value_function.config.in_channels
seq_len = 14
noise = torch.randn((1, seq_len, num_features)).permute(
0, 2, 1
) # match original, we can update values and remove
time_step = torch.full((num_features,), 0)
with torch.no_grad():
output = value_function(noise, time_step).sample
# fmt: off
expected_output_slice = torch.tensor([165.25] * seq_len)
# fmt: on
self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3))
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass
| diffusers-main | tests/models/test_models_unet_1d.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import math
import unittest
import torch
from diffusers import UNet2DModel
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
slow,
torch_all_close,
torch_device,
)
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
"up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
"attention_head_dim": 3,
"out_channels": 3,
"in_channels": 3,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_mid_block_attn_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 16
init_dict["add_attention"] = True
init_dict["attn_norm_num_groups"] = 8
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
self.assertIsNotNone(
model.mid_block.attentions[0].group_norm, "Mid block Attention group norm should exist but does not."
)
self.assertEqual(
model.mid_block.attentions[0].group_norm.num_groups,
init_dict["attn_norm_num_groups"],
"Mid block Attention group norm does not have the expected number of groups.",
)
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"layers_per_block": 2,
"block_out_channels": (32, 64),
"attention_head_dim": 32,
"down_block_types": ("DownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "UpBlock2D"),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
def test_from_pretrained_accelerate(self):
model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
def test_from_pretrained_accelerate_wont_change_results(self):
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model_accelerate.to(torch_device)
model_accelerate.eval()
noise = torch.randn(
1,
model_accelerate.config.in_channels,
model_accelerate.config.sample_size,
model_accelerate.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
arr_accelerate = model_accelerate(noise, time_step)["sample"]
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
model_normal_load, _ = UNet2DModel.from_pretrained(
"fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
)
model_normal_load.to(torch_device)
model_normal_load.eval()
arr_normal_load = model_normal_load(noise, time_step)["sample"]
assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
def test_output_pretrained(self):
model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
model.eval()
model.to(torch_device)
noise = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self, sizes=(32, 32)):
batch_size = 4
num_channels = 3
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64, 64, 64],
"in_channels": 3,
"layers_per_block": 1,
"out_channels": 3,
"time_embedding_type": "fourier",
"norm_eps": 1e-6,
"mid_block_scale_factor": math.sqrt(2.0),
"norm_num_groups": None,
"down_block_types": [
"SkipDownBlock2D",
"AttnSkipDownBlock2D",
"SkipDownBlock2D",
"SkipDownBlock2D",
],
"up_block_types": [
"SkipUpBlock2D",
"SkipUpBlock2D",
"AttnSkipUpBlock2D",
"SkipUpBlock2D",
],
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@slow
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
inputs = self.dummy_input
noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
inputs["sample"] = noise
image = model(**inputs)
assert image is not None, "Make sure output is not None"
@slow
def test_output_pretrained_ve_mid(self):
model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
model.to(torch_device)
batch_size = 4
num_channels = 3
sizes = (256, 256)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_output_pretrained_ve_large(self):
model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
model.to(torch_device)
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_forward_with_norm_groups(self):
# not required for this model
pass
| diffusers-main | tests/models/test_models_unet_2d.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers.models import ModelMixin, UNet3DConditionModel
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
logger = logging.get_logger(__name__)
@skip_mps
class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet3DConditionModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
num_frames = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 4, 32, 32)
@property
def output_shape(self):
return (4, 4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": (
"CrossAttnDownBlock3D",
"DownBlock3D",
),
"up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 1,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
# Overriding to set `norm_num_groups` needs to be different for this model.
def test_forward_with_norm_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 32
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
# Overriding since the UNet3D outputs a different structure.
def test_determinism(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
# Warmup pass when using mps (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
model(**self.dummy_input)
first = model(**inputs_dict)
if isinstance(first, dict):
first = first.sample
second = model(**inputs_dict)
if isinstance(second, dict):
second = second.sample
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_model_attention_slicing(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
model.set_attention_slice("auto")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice("max")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice(2)
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
def test_feed_forward_chunking(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 32
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)[0]
model.enable_forward_chunking()
with torch.no_grad():
output_2 = model(**inputs_dict)[0]
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match")
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2
| diffusers-main | tests/models/test_models_unet_3d_condition.py |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class FlaxAutoencoderKLTests(FlaxModelTesterMixin, unittest.TestCase):
model_class = FlaxAutoencoderKL
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
prng_key = jax.random.PRNGKey(0)
image = jax.random.uniform(prng_key, ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
| diffusers-main | tests/models/test_models_vae_flax.py |
diffusers-main | tests/models/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import Tuple
import torch
from diffusers.utils.testing_utils import floats_tensor, require_torch, torch_all_close, torch_device
from diffusers.utils.torch_utils import randn_tensor
@require_torch
class UNetBlockTesterMixin:
@property
def dummy_input(self):
return self.get_dummy_input()
@property
def output_shape(self):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.")
def get_dummy_input(
self,
include_temb=True,
include_res_hidden_states_tuple=False,
include_encoder_hidden_states=False,
include_skip_sample=False,
):
batch_size = 4
num_channels = 32
sizes = (32, 32)
generator = torch.manual_seed(0)
device = torch.device(torch_device)
shape = (batch_size, num_channels) + sizes
hidden_states = randn_tensor(shape, generator=generator, device=device)
dummy_input = {"hidden_states": hidden_states}
if include_temb:
temb_channels = 128
dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device)
if include_res_hidden_states_tuple:
generator_1 = torch.manual_seed(1)
dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),)
if include_encoder_hidden_states:
dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device)
if include_skip_sample:
dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device)
return dummy_input
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 32,
"out_channels": 32,
"temb_channels": 128,
}
if self.block_type == "up":
init_dict["prev_output_channel"] = 32
if self.block_type == "mid":
init_dict.pop("out_channels")
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self, expected_slice):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
unet_block = self.block_class(**init_dict)
unet_block.to(torch_device)
unet_block.eval()
with torch.no_grad():
output = unet_block(**inputs_dict)
if isinstance(output, Tuple):
output = output[0]
self.assertEqual(output.shape, self.output_shape)
output_slice = output[0, -1, -3:, -3:]
expected_slice = torch.tensor(expected_slice).to(torch_device)
assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3)
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
def test_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.block_class(**init_dict)
model.to(torch_device)
model.train()
output = model(**inputs_dict)
if isinstance(output, Tuple):
output = output[0]
device = torch.device(torch_device)
noise = randn_tensor(output.shape, device=device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
| diffusers-main | tests/models/test_unet_blocks_common.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import VQModel
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class VQModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = VQModel
main_input_name = "sample"
@property
def dummy_input(self, sizes=(32, 32)):
batch_size = 4
num_channels = 3
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 3,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
def test_from_pretrained_hub(self):
model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = VQModel.from_pretrained("fusing/vqgan-dummy")
model.to(torch_device).eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
image = image.to(torch_device)
with torch.no_grad():
output = model(image).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
| diffusers-main | tests/models/test_models_vq.py |
import tempfile
import unittest
import numpy as np
import torch
from diffusers import DiffusionPipeline
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor
class AttnAddedKVProcessorTests(unittest.TestCase):
def get_constructor_arguments(self, only_cross_attention: bool = False):
query_dim = 10
if only_cross_attention:
cross_attention_dim = 12
else:
# when only cross attention is not set, the cross attention dim must be the same as the query dim
cross_attention_dim = query_dim
return {
"query_dim": query_dim,
"cross_attention_dim": cross_attention_dim,
"heads": 2,
"dim_head": 4,
"added_kv_proj_dim": 6,
"norm_num_groups": 1,
"only_cross_attention": only_cross_attention,
"processor": AttnAddedKVProcessor(),
}
def get_forward_arguments(self, query_dim, added_kv_proj_dim):
batch_size = 2
hidden_states = torch.rand(batch_size, query_dim, 3, 2)
encoder_hidden_states = torch.rand(batch_size, 4, added_kv_proj_dim)
attention_mask = None
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"attention_mask": attention_mask,
}
def test_only_cross_attention(self):
# self and cross attention
torch.manual_seed(0)
constructor_args = self.get_constructor_arguments(only_cross_attention=False)
attn = Attention(**constructor_args)
self.assertTrue(attn.to_k is not None)
self.assertTrue(attn.to_v is not None)
forward_args = self.get_forward_arguments(
query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"]
)
self_and_cross_attn_out = attn(**forward_args)
# only self attention
torch.manual_seed(0)
constructor_args = self.get_constructor_arguments(only_cross_attention=True)
attn = Attention(**constructor_args)
self.assertTrue(attn.to_k is None)
self.assertTrue(attn.to_v is None)
forward_args = self.get_forward_arguments(
query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"]
)
only_cross_attn_out = attn(**forward_args)
self.assertTrue((only_cross_attn_out != self_and_cross_attn_out).all())
class DeprecatedAttentionBlockTests(unittest.TestCase):
def test_conversion_when_using_device_map(self):
pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None)
pre_conversion = pipe(
"foo",
num_inference_steps=2,
generator=torch.Generator("cpu").manual_seed(0),
output_type="np",
).images
# the initial conversion succeeds
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", device_map="sequential", safety_checker=None
)
conversion = pipe(
"foo",
num_inference_steps=2,
generator=torch.Generator("cpu").manual_seed(0),
output_type="np",
).images
with tempfile.TemporaryDirectory() as tmpdir:
# save the converted model
pipe.save_pretrained(tmpdir)
# can also load the converted weights
pipe = DiffusionPipeline.from_pretrained(tmpdir, device_map="sequential", safety_checker=None)
after_conversion = pipe(
"foo",
num_inference_steps=2,
generator=torch.Generator("cpu").manual_seed(0),
output_type="np",
).images
self.assertTrue(np.allclose(pre_conversion, conversion, atol=1e-5))
self.assertTrue(np.allclose(conversion, after_conversion, atol=1e-5))
| diffusers-main | tests/models/test_attention_processor.py |
import inspect
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
@require_flax
class FlaxModelTesterMixin:
def test_output(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"])
jax.lax.stop_gradient(variables)
output = model.apply(variables, inputs_dict["sample"])
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_forward_with_norm_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 16
init_dict["block_out_channels"] = (16, 32)
model = self.model_class(**init_dict)
variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"])
jax.lax.stop_gradient(variables)
output = model.apply(variables, inputs_dict["sample"])
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_deprecated_kwargs(self):
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
" from `_deprecated_kwargs = [<deprecated_argument>]`"
)
| diffusers-main | tests/models/test_modeling_common_flax.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from torch import nn
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.models.lora import LoRACompatibleLinear
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformer_2d import Transformer2DModel
from diffusers.utils.testing_utils import torch_device
class EmbeddingsTests(unittest.TestCase):
def test_timestep_embeddings(self):
embedding_dim = 256
timesteps = torch.arange(16)
t1 = get_timestep_embedding(timesteps, embedding_dim)
# first vector should always be composed only of 0's and 1's
assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5
assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5
# last element of each vector should be one
assert (t1[:, -1] - 1).abs().sum() < 1e-5
# For large embeddings (e.g. 128) the frequency of every vector is higher
# than the previous one which means that the gradients of later vectors are
# ALWAYS higher than the previous ones
grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1)
prev_grad = 0.0
for grad in grad_mean:
assert grad > prev_grad
prev_grad = grad
def test_timestep_defaults(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim)
t2 = get_timestep_embedding(
timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000
)
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)
def test_timestep_flip_sin_cos(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True)
t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1)
t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False)
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)
def test_timestep_downscale_freq_shift(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0)
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1)
# get cosine half (vectors that are wrapped into cosine)
cosine_half = (t1 - t2)[:, embedding_dim // 2 :]
# cosine needs to be negative
assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5
def test_sinoid_embeddings_hardcoded(self):
embedding_dim = 64
timesteps = torch.arange(128)
# standard unet, score_vde
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False)
# glide, ldm
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True)
# grad-tts
t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000)
assert torch.allclose(
t1[23:26, 47:50].flatten().cpu(),
torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]),
1e-3,
)
assert torch.allclose(
t2[23:26, 47:50].flatten().cpu(),
torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]),
1e-3,
)
assert torch.allclose(
t3[23:26, 47:50].flatten().cpu(),
torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]),
1e-3,
)
class Upsample2DBlockTests(unittest.TestCase):
def test_upsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=False)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=True, out_channels=64)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 64, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_transpose(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Downsample2DBlockTests(unittest.TestCase):
def test_downsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=False)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179])
max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
assert max_diff <= 1e-3
# assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)
def test_downsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913],
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_pad1(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True, padding=1)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True, out_channels=16)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 16, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class ResnetBlock2DTests(unittest.TestCase):
def test_resnet_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 64, 64)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.9010, -0.2974, -0.8245, -1.3533, 0.8742, -0.9645, -2.0584, 1.3387, -0.4746], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_restnet_with_use_in_shortcut(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, use_in_shortcut=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 64, 64)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[0.2226, -1.0791, -0.1629, 0.3659, -0.2889, -1.2376, 0.0582, 0.9206, 0.0044], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_resnet_up(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, up=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 128, 128)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[1.2130, -0.8753, -0.9027, 1.5783, -0.5362, -0.5001, 1.0726, -0.7732, -0.4182], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_resnet_down(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, down=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 32, 32)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_restnet_with_kernel_fir(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="fir", down=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 32, 32)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.0934, -0.5729, 0.0909, -0.2710, -0.5044, 0.0243, -0.0665, -0.5267, -0.3136], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_restnet_with_kernel_sde_vp(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
temb = torch.randn(1, 128).to(torch_device)
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="sde_vp", down=True).to(torch_device)
with torch.no_grad():
output_tensor = resnet_block(sample, temb)
assert output_tensor.shape == (1, 32, 32, 32)
output_slice = output_tensor[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Transformer2DModelTests(unittest.TestCase):
def test_spatial_transformer_default(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=32,
num_attention_heads=1,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=None,
).to(torch_device)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.9455, -0.0066, -1.3933, -1.5878, 0.5325, -0.6486, -1.8648, 0.7515, -0.9689], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_cross_attention_dim(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 64, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=64,
num_attention_heads=2,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=64,
).to(torch_device)
with torch.no_grad():
context = torch.randn(1, 4, 64).to(torch_device)
attention_scores = spatial_transformer_block(sample, context).sample
assert attention_scores.shape == (1, 64, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[0.0143, -0.6909, -2.1547, -1.8893, 1.4097, 0.1359, -0.2521, -1.3359, 0.2598], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_timestep(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_embeds_ada_norm = 5
sample = torch.randn(1, 64, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=64,
num_attention_heads=2,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=64,
num_embeds_ada_norm=num_embeds_ada_norm,
).to(torch_device)
with torch.no_grad():
timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device)
timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device)
attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample
attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample
assert attention_scores_1.shape == (1, 64, 64, 64)
assert attention_scores_2.shape == (1, 64, 64, 64)
output_slice_1 = attention_scores_1[0, -1, -3:, -3:]
output_slice_2 = attention_scores_2[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.3923, -1.0923, -1.7144, -1.5570, 1.4154, 0.1738, -0.1157, -1.2998, -0.1703], device=torch_device
)
expected_slice_2 = torch.tensor(
[-0.4311, -1.1376, -1.7732, -1.5997, 1.3450, 0.0964, -0.1569, -1.3590, -0.2348], device=torch_device
)
assert torch.allclose(output_slice_1.flatten(), expected_slice, atol=1e-3)
assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3)
def test_spatial_transformer_dropout(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
spatial_transformer_block = (
Transformer2DModel(
in_channels=32,
num_attention_heads=2,
attention_head_dim=16,
dropout=0.3,
cross_attention_dim=None,
)
.to(torch_device)
.eval()
)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.9380, -0.0083, -1.3771, -1.5819, 0.5209, -0.6441, -1.8545, 0.7563, -0.9615], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
@unittest.skipIf(torch_device == "mps", "MPS does not support float64")
def test_spatial_transformer_discrete(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_embed = 5
sample = torch.randint(0, num_embed, (1, 32)).to(torch_device)
spatial_transformer_block = (
Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
num_vector_embeds=num_embed,
sample_size=16,
)
.to(torch_device)
.eval()
)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, num_embed - 1, 32)
output_slice = attention_scores[0, -2:, -3:]
expected_slice = torch.tensor([-1.7648, -1.0241, -2.0985, -1.8035, -1.6404, -1.2098], device=torch_device)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_default_norm_layers(self):
spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32)
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm
def test_spatial_transformer_ada_norm_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
num_embeds_ada_norm=5,
)
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm
def test_spatial_transformer_default_ff_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
)
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == LoRACompatibleLinear
dim = 32
inner_dim = 128
# First dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
# NOTE: inner_dim * 2 because GEGLU
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2
# Second dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim
def test_spatial_transformer_geglu_approx_ff_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
activation_fn="geglu-approximate",
)
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == LoRACompatibleLinear
dim = 32
inner_dim = 128
# First dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim
# Second dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim
def test_spatial_transformer_attention_bias(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True
)
assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None
assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None
assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None
| diffusers-main | tests/models/test_layers_utils.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import gc
import os
import tempfile
import unittest
import torch
from parameterized import parameterized
from pytest import mark
from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import CustomDiffusionAttnProcessor
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_hf_numpy,
require_torch_gpu,
slow,
torch_all_close,
torch_device,
)
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
def create_custom_diffusion_layers(model, mock_weights: bool = True):
train_kv = True
train_q_out = True
custom_diffusion_attn_procs = {}
st = model.state_dict()
for name, _ in model.attn_processors.items():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
layer_name = name.split(".processor")[0]
weights = {
"to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"],
"to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"],
}
if train_q_out:
weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"]
weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"]
weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"]
if cross_attention_dim is not None:
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
train_kv=train_kv,
train_q_out=train_q_out,
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
).to(model.device)
custom_diffusion_attn_procs[name].load_state_dict(weights)
if mock_weights:
# add 1 to weights to mock trained weights
with torch.no_grad():
custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1
custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1
else:
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
train_kv=False,
train_q_out=False,
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
)
del st
return custom_diffusion_attn_procs
class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DConditionModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_gradient_checkpointing(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
assert not model.is_gradient_checkpointing and model.training
out = model(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
labels = torch.randn_like(out)
loss = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
model_2 = self.model_class(**init_dict)
# clone model
model_2.load_state_dict(model.state_dict())
model_2.to(torch_device)
model_2.enable_gradient_checkpointing()
assert model_2.is_gradient_checkpointing and model_2.training
out_2 = model_2(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_2.zero_grad()
loss_2 = (out_2 - labels).mean()
loss_2.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_2).abs() < 1e-5)
named_params = dict(model.named_parameters())
named_params_2 = dict(model_2.named_parameters())
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))
def test_model_with_attention_head_dim_tuple(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_use_linear_projection(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["use_linear_projection"] = True
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_cross_attention_dim_tuple(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = (32, 32)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_simple_projection(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
batch_size, _, _, sample_size = inputs_dict["sample"].shape
init_dict["class_embed_type"] = "simple_projection"
init_dict["projection_class_embeddings_input_dim"] = sample_size
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_class_embeddings_concat(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
batch_size, _, _, sample_size = inputs_dict["sample"].shape
init_dict["class_embed_type"] = "simple_projection"
init_dict["projection_class_embeddings_input_dim"] = sample_size
init_dict["class_embeddings_concat"] = True
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_attention_slicing(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
model.set_attention_slice("auto")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice("max")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice(2)
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
def test_model_sliceable_head_dim(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
def check_sliceable_dim_attr(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
assert isinstance(module.sliceable_head_dim, int)
for child in module.children():
check_sliceable_dim_attr(child)
# retrieve number of attention layers
for module in model.children():
check_sliceable_dim_attr(module)
def test_gradient_checkpointing_is_applied(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model_class_copy = copy.copy(self.model_class)
modules_with_gc_enabled = {}
# now monkey patch the following function:
# def _set_gradient_checkpointing(self, module, value=False):
# if hasattr(module, "gradient_checkpointing"):
# module.gradient_checkpointing = value
def _set_gradient_checkpointing_new(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
modules_with_gc_enabled[module.__class__.__name__] = True
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new
model = model_class_copy(**init_dict)
model.enable_gradient_checkpointing()
EXPECTED_SET = {
"CrossAttnUpBlock2D",
"CrossAttnDownBlock2D",
"UNetMidBlock2DCrossAttn",
"UpBlock2D",
"Transformer2DModel",
"DownBlock2D",
}
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET
assert all(modules_with_gc_enabled.values()), "All modules should be enabled"
def test_special_attn_proc(self):
class AttnEasyProc(torch.nn.Module):
def __init__(self, num):
super().__init__()
self.weight = torch.nn.Parameter(torch.tensor(num))
self.is_run = False
self.number = 0
self.counter = 0
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states += self.weight
self.is_run = True
self.counter += 1
self.number = number
return hidden_states
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
processor = AttnEasyProc(5.0)
model.set_attn_processor(processor)
model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample
assert processor.counter == 12
assert processor.is_run
assert processor.number == 123
@parameterized.expand(
[
# fmt: off
[torch.bool],
[torch.long],
[torch.float],
# fmt: on
]
)
def test_model_xattn_mask(self, mask_dtype):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)})
model.to(torch_device)
model.eval()
cond = inputs_dict["encoder_hidden_states"]
with torch.no_grad():
full_cond_out = model(**inputs_dict).sample
assert full_cond_out is not None
keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype)
full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample
assert full_cond_keepallmask_out.allclose(
full_cond_out
), "a 'keep all' mask should give the same result as no mask"
trunc_cond = cond[:, :-1, :]
trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample
assert not trunc_cond_out.allclose(
full_cond_out
), "discarding the last token from our cond should change the result"
batch, tokens, _ = cond.shape
mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype)
masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample
assert masked_cond_out.allclose(
trunc_cond_out
), "masking the last token from our cond should be equivalent to truncating that token out of the condition"
# see diffusers.models.attention_processor::Attention#prepare_attention_mask
# note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks.
# since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric.
# maybe it's fine that this only works for the unclip use-case.
@mark.skip(
reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length."
)
def test_model_xattn_padding(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)})
model.to(torch_device)
model.eval()
cond = inputs_dict["encoder_hidden_states"]
with torch.no_grad():
full_cond_out = model(**inputs_dict).sample
assert full_cond_out is not None
batch, tokens, _ = cond.shape
keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool)
keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample
assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result"
trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool)
trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample
assert trunc_mask_out.allclose(
keeplast_out
), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask."
def test_custom_diffusion_processors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
# make sure we can set a list of attention processors
model.set_attn_processor(custom_diffusion_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict).sample
assert (sample1 - sample2).abs().max() < 3e-3
def test_custom_diffusion_save_load(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
model.set_attn_processor(custom_diffusion_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin")
new_model.to(torch_device)
with torch.no_grad():
new_sample = new_model(**inputs_dict).sample
assert (sample - new_sample).abs().max() < 1e-4
# custom diffusion and no custom diffusion should be the same
assert (sample - old_sample).abs().max() < 3e-3
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_custom_diffusion_xformers_on_off(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
model.set_attn_processor(custom_diffusion_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
assert (sample - on_sample).abs().max() < 1e-4
assert (sample - off_sample).abs().max() < 1e-4
def test_pickle(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample = model(**inputs_dict).sample
sample_copy = copy.copy(sample)
assert (sample - sample_copy).abs().max() < 1e-4
@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
revision = "fp16" if fp16 else None
torch_dtype = torch.float16 if fp16 else torch.float32
model = UNet2DConditionModel.from_pretrained(
model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision
)
model.to(torch_device).eval()
return model
def test_set_attention_slice_auto(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
unet = self.get_unet_model()
unet.set_attention_slice("auto")
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def test_set_attention_slice_max(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
unet = self.get_unet_model()
unet.set_attention_slice("max")
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def test_set_attention_slice_int(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
unet = self.get_unet_model()
unet.set_attention_slice(2)
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def test_set_attention_slice_list(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# there are 32 sliceable layers
slice_list = 16 * [2, 3]
unet = self.get_unet_model()
unet.set_attention_slice(slice_list)
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return hidden_states
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]],
[47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]],
[21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]],
[9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_4(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4")
latents = self.get_latents(seed)
encoder_hidden_states = self.get_encoder_hidden_states(seed)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]],
[47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]],
[21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]],
[9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5")
latents = self.get_latents(seed)
encoder_hidden_states = self.get_encoder_hidden_states(seed)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]],
[17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]],
[8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]],
[3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]],
[47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]],
[21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]],
[9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting")
latents = self.get_latents(seed, shape=(4, 9, 64, 64))
encoder_hidden_states = self.get_encoder_hidden_states(seed)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == (4, 4, 64, 64)
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]],
[17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]],
[8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]],
[3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True)
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == (4, 4, 64, 64)
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
]
)
@require_torch_gpu
def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
| diffusers-main | tests/models/test_models_unet_2d_condition.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AsymmetricAutoencoderKL, AutoencoderKL, AutoencoderTiny
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_hf_numpy,
require_torch_gpu,
slow,
torch_all_close,
torch_device,
)
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AutoencoderKL
main_input_name = "sample"
base_precision = 1e-2
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_gradient_checkpointing(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
assert not model.is_gradient_checkpointing and model.training
out = model(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
labels = torch.randn_like(out)
loss = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
model_2 = self.model_class(**init_dict)
# clone model
model_2.load_state_dict(model.state_dict())
model_2.to(torch_device)
model_2.enable_gradient_checkpointing()
assert model_2.is_gradient_checkpointing and model_2.training
out_2 = model_2(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_2.zero_grad()
loss_2 = (out_2 - labels).mean()
loss_2.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_2).abs() < 1e-5)
named_params = dict(model.named_parameters())
named_params_2 = dict(model_2.named_parameters())
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))
def test_from_pretrained_hub(self):
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
model = model.to(torch_device)
model.eval()
if torch_device == "mps":
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
image = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
image = image.to(torch_device)
with torch.no_grad():
output = model(image, sample_posterior=True, generator=generator).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
expected_output_slice = torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
]
)
elif torch_device == "cpu":
expected_output_slice = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]
)
else:
expected_output_slice = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]
)
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AsymmetricAutoencoderKL
main_input_name = "sample"
base_precision = 1e-2
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
mask = torch.ones((batch_size, 1) + sizes).to(torch_device)
return {"sample": image, "mask": mask}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"down_block_out_channels": [32, 64],
"layers_per_down_block": 1,
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"up_block_out_channels": [32, 64],
"layers_per_up_block": 1,
"act_fn": "silu",
"latent_channels": 4,
"norm_num_groups": 32,
"sample_size": 32,
"scaling_factor": 0.18215,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_forward_with_norm_groups(self):
pass
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
model_class = AutoencoderTiny
main_input_name = "sample"
base_precision = 1e-2
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 3,
"out_channels": 3,
"encoder_block_out_channels": (32, 32),
"decoder_block_out_channels": (32, 32),
"num_encoder_blocks": (1, 2),
"num_decoder_blocks": (2, 1),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_outputs_equivalence(self):
pass
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
torch_dtype = torch.float16 if fp16 else torch.float32
model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
model.to(torch_device).eval()
return model
@parameterized.expand(
[
[(1, 4, 73, 97), (1, 3, 584, 776)],
[(1, 4, 97, 73), (1, 3, 776, 584)],
[(1, 4, 49, 65), (1, 3, 392, 520)],
[(1, 4, 65, 49), (1, 3, 520, 392)],
[(1, 4, 49, 49), (1, 3, 392, 392)],
]
)
def test_tae_tiling(self, in_shape, out_shape):
model = self.get_sd_vae_model()
model.enable_tiling()
with torch.no_grad():
zeros = torch.zeros(in_shape).to(torch_device)
dec = model.decode(zeros).sample
assert dec.shape == out_shape
def test_stable_diffusion(self):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed=33)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand([(True,), (False,)])
def test_tae_roundtrip(self, enable_tiling):
# load the autoencoder
model = self.get_sd_vae_model()
if enable_tiling:
model.enable_tiling()
# make a black image with a white square in the middle,
# which is large enough to split across multiple tiles
image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
image[..., 256:768, 256:768] = 1.0
# round-trip the image through the autoencoder
with torch.no_grad():
sample = model(image).sample
# the autoencoder reconstruction should match original image, sorta
def downscale(x):
return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)
assert torch_all_close(downscale(sample), downscale(image), atol=0.125)
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
revision = "fp16" if fp16 else None
torch_dtype = torch.float16 if fp16 else torch.float32
model = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
torch_dtype=torch_dtype,
revision=revision,
)
model.to(torch_device)
return model
def get_generator(self, seed=0):
if torch_device == "mps":
return torch.manual_seed(seed)
return torch.Generator(device=torch_device).manual_seed(seed)
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
]
)
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
]
)
@require_torch_gpu
def test_stable_diffusion_fp16(self, seed, expected_slice):
model = self.get_sd_vae_model(fp16=True)
image = self.get_sd_image(seed, fp16=True)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
]
)
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
]
)
@require_torch_gpu
def test_stable_diffusion_decode(self, seed, expected_slice):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
]
)
@require_torch_gpu
def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
model = self.get_sd_vae_model(fp16=True)
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand([(13,), (16,), (27,)])
@require_torch_gpu
@unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.")
def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
model = self.get_sd_vae_model(fp16=True)
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)
with torch.no_grad():
sample = model.decode(encoding).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
sample_2 = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
assert torch_all_close(sample, sample_2, atol=1e-1)
@parameterized.expand([(13,), (16,), (37,)])
@require_torch_gpu
@unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.")
def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
sample_2 = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
assert torch_all_close(sample, sample_2, atol=1e-2)
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
]
)
def test_stable_diffusion_encode_sample(self, seed, expected_slice):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
dist = model.encode(image).latent_dist
sample = dist.sample(generator=generator)
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
tolerance = 3e-3 if torch_device != "mps" else 1e-2
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
def test_stable_diffusion_model_local(self):
model_id = "stabilityai/sd-vae-ft-mse"
model_1 = AutoencoderKL.from_pretrained(model_id).to(torch_device)
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
model_2 = AutoencoderKL.from_single_file(url).to(torch_device)
image = self.get_sd_image(33)
with torch.no_grad():
sample_1 = model_1(image).sample
sample_2 = model_2(image).sample
assert sample_1.shape == sample_2.shape
output_slice_1 = sample_1[-1, -2:, -2:, :2].flatten().float().cpu()
output_slice_2 = sample_2[-1, -2:, -2:, :2].flatten().float().cpu()
assert torch_all_close(output_slice_1, output_slice_2, atol=3e-3)
@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
revision = "main"
torch_dtype = torch.float32
model = AsymmetricAutoencoderKL.from_pretrained(
model_id,
torch_dtype=torch_dtype,
revision=revision,
)
model.to(torch_device).eval()
return model
def get_generator(self, seed=0):
if torch_device == "mps":
return torch.manual_seed(seed)
return torch.Generator(device=torch_device).manual_seed(seed)
@parameterized.expand(
[
# fmt: off
[33, [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078], [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824]],
[47, [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529], [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089]],
# fmt: on
]
)
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097], [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078]],
[47, [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531], [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531]],
# fmt: on
]
)
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand(
[
# fmt: off
[13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
[37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
# fmt: on
]
)
@require_torch_gpu
def test_stable_diffusion_decode(self, seed, expected_slice):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)
@parameterized.expand([(13,), (16,), (37,)])
@require_torch_gpu
@unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.")
def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
sample_2 = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
assert torch_all_close(sample, sample_2, atol=5e-2)
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
]
)
def test_stable_diffusion_encode_sample(self, seed, expected_slice):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
dist = model.encode(image).latent_dist
sample = dist.sample(generator=generator)
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
tolerance = 3e-3 if torch_device != "mps" else 1e-2
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
| diffusers-main | tests/models/test_models_vae.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, slow, torch_all_close, torch_device
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class PriorTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = PriorTransformer
main_input_name = "hidden_states"
@property
def dummy_input(self):
batch_size = 4
embedding_dim = 8
num_embeddings = 7
hidden_states = floats_tensor((batch_size, embedding_dim)).to(torch_device)
proj_embedding = floats_tensor((batch_size, embedding_dim)).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def get_dummy_seed_input(self, seed=0):
torch.manual_seed(seed)
batch_size = 4
embedding_dim = 8
num_embeddings = 7
hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)
proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def input_shape(self):
return (4, 8)
@property
def output_shape(self):
return (4, 8)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=True
)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
hidden_states = model(**self.dummy_input)[0]
assert hidden_states is not None, "Make sure output is not None"
def test_forward_signature(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], expected_arg_names)
def test_output_pretrained(self):
model = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy")
model = model.to(torch_device)
if hasattr(model, "set_default_attn_processor"):
model.set_default_attn_processor()
input = self.get_dummy_seed_input()
with torch.no_grad():
output = model(**input)[0]
output_slice = output[0, :5].flatten().cpu()
print(output_slice)
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
expected_output_slice = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239])
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
@slow
class PriorTransformerIntegrationTests(unittest.TestCase):
def get_dummy_seed_input(self, batch_size=1, embedding_dim=768, num_embeddings=77, seed=0):
torch.manual_seed(seed)
batch_size = batch_size
embedding_dim = embedding_dim
num_embeddings = num_embeddings
hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)
proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]],
[37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]],
# fmt: on
]
)
def test_kandinsky_prior(self, seed, expected_slice):
model = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior")
model.to(torch_device)
input = self.get_dummy_seed_input(seed=seed)
with torch.no_grad():
sample = model(**input)[0]
assert list(sample.shape) == [1, 768]
output_slice = sample[0, :8].flatten().cpu()
print(output_slice)
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
| diffusers-main | tests/models/test_models_prior.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class CustomLocalPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
eta (`float`, *optional*, defaults to 0.0):
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
generator=generator,
)
image = image.to(self.device)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
image = self.scheduler.step(model_output, t, image).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=image), "This is a local test"
| diffusers-main | tests/fixtures/custom_pipeline/pipeline.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class CustomLocalPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
eta (`float`, *optional*, defaults to 0.0):
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
generator=generator,
)
image = image.to(self.device)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
image = self.scheduler.step(model_output, t, image).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=image), "This is a local test"
| diffusers-main | tests/fixtures/custom_pipeline/what_ever.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerDiscreteScheduler,
StableDiffusionPipeline,
StableDiffusionXLPipeline,
UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import (
LoRAAttnProcessor,
LoRAAttnProcessor2_0,
)
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import floats_tensor, require_peft_backend, require_torch_gpu, slow
if is_peft_available():
from peft import LoraConfig
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import get_peft_model_state_dict
def create_unet_lora_layers(unet: nn.Module):
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_processor_class = (
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
)
lora_attn_procs[name] = lora_attn_processor_class(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
)
unet_lora_layers = AttnProcsLayers(lora_attn_procs)
return lora_attn_procs, unet_lora_layers
@require_peft_backend
class PeftLoraLoaderMixinTests:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline_class = None
scheduler_cls = None
scheduler_kwargs = None
has_two_text_encoders = False
unet_kwargs = None
vae_kwargs = None
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(**self.unet_kwargs)
scheduler = self.scheduler_cls(**self.scheduler_kwargs)
torch.manual_seed(0)
vae = AutoencoderKL(**self.vae_kwargs)
text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
if self.has_two_text_encoders:
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
text_lora_config = LoraConfig(
r=4, lora_alpha=4, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False
)
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
if self.has_two_text_encoders:
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
else:
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
lora_components = {
"unet_lora_layers": unet_lora_layers,
"unet_lora_attn_procs": unet_lora_attn_procs,
}
return pipeline_components, lora_components, text_lora_config
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
# copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
def get_dummy_tokens(self):
max_seq_length = 77
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))
prepared_inputs = {}
prepared_inputs["input_ids"] = inputs
return prepared_inputs
def check_if_lora_correctly_set(self, model) -> bool:
"""
Checks if the LoRA layers are correctly set with peft
"""
for module in model.modules():
if isinstance(module, BaseTunerLayer):
return True
return False
def test_simple_inference(self):
"""
Tests a simple inference and makes sure it works as expected
"""
components, _, _ = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(self.torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs()
output_no_lora = pipe(**inputs).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
def test_simple_inference_with_text_lora(self):
"""
Tests a simple inference with lora attached on the text encoder
and makes sure it works as expected
"""
components, _, text_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(self.torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
)
def test_simple_inference_with_text_lora_and_scale(self):
"""
Tests a simple inference with lora attached on the text encoder + scale argument
and makes sure it works as expected
"""
components, _, text_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(self.torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
)
output_lora_scale = pipe(
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
).images
self.assertTrue(
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
"Lora + scale should change the output",
)
output_lora_0_scale = pipe(
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
).images
self.assertTrue(
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
"Lora + 0 scale should lead to same result as no LoRA",
)
def test_simple_inference_with_text_lora_fused(self):
"""
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
and makes sure it works as expected
"""
components, _, text_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(self.torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.fuse_lora()
# Fusing should still keep the LoRA layers
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
)
def test_simple_inference_with_text_lora_unloaded(self):
"""
Tests a simple inference with lora attached to text encoder, then unloads the lora weights
and makes sure it works as expected
"""
components, _, text_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(self.torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.unload_lora_weights()
# unloading should remove the LoRA layers
self.assertFalse(
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
)
if self.has_two_text_encoders:
self.assertFalse(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly unloaded in text encoder 2"
)
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
)
def test_simple_inference_with_text_lora_save_load(self):
"""
Tests a simple usecase where users could use saving utilities for LoRA.
"""
components, _, text_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(self.torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
with tempfile.TemporaryDirectory() as tmpdirname:
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
if self.has_two_text_encoders:
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
text_encoder_2_lora_layers=text_encoder_2_state_dict,
safe_serialization=False,
)
else:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
safe_serialization=False,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
pipe.unload_lora_weights()
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
self.assertTrue(
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)
def test_simple_inference_save_pretrained(self):
"""
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
"""
components, _, text_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(self.torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
pipe_from_pretrained.to(self.torch_device)
self.assertTrue(
self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
"Lora not correctly set in text encoder",
)
if self.has_two_text_encoders:
self.assertTrue(
self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
"Lora not correctly set in text encoder 2",
)
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)
class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
pipeline_class = StableDiffusionPipeline
scheduler_cls = DDIMScheduler
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 1,
}
unet_kwargs = {
"block_out_channels": (32, 64),
"layers_per_block": 2,
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
"cross_attention_dim": 32,
}
vae_kwargs = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
@slow
@require_torch_gpu
def test_integration_logits_with_scale(self):
path = "runwayml/stable-diffusion-v1-5"
lora_id = "takuma104/lora-test-text-encoder-lora-target"
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
pipe.load_lora_weights(lora_id)
pipe = pipe.to("cuda")
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder),
"Lora not correctly set in text encoder 2",
)
prompt = "a red sks dog"
images = pipe(
prompt=prompt,
num_inference_steps=15,
cross_attention_kwargs={"scale": 0.5},
generator=torch.manual_seed(0),
output_type="np",
).images
expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])
predicted_slice = images[0, -3:, -3:, -1].flatten()
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))
@slow
@require_torch_gpu
def test_integration_logits_no_scale(self):
path = "runwayml/stable-diffusion-v1-5"
lora_id = "takuma104/lora-test-text-encoder-lora-target"
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
pipe.load_lora_weights(lora_id)
pipe = pipe.to("cuda")
self.assertTrue(
self.check_if_lora_correctly_set(pipe.text_encoder),
"Lora not correctly set in text encoder",
)
prompt = "a red sks dog"
images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images
expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])
predicted_slice = images[0, -3:, -3:, -1].flatten()
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))
class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
has_two_text_encoders = True
pipeline_class = StableDiffusionXLPipeline
scheduler_cls = EulerDiscreteScheduler
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
}
unet_kwargs = {
"block_out_channels": (32, 64),
"layers_per_block": 2,
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
"attention_head_dim": (2, 4),
"use_linear_projection": True,
"addition_embed_type": "text_time",
"addition_time_embed_dim": 8,
"transformer_layers_per_block": (1, 2),
"projection_class_embeddings_input_dim": 80, # 6 * 8 + 32
"cross_attention_dim": 64,
}
vae_kwargs = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
"sample_size": 128,
}
| diffusers-main | tests/lora/test_lora_layers_peft.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import random
import tempfile
import time
import unittest
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub.repocard import RepoCard
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
DiffusionPipeline,
EulerDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLPipeline,
UNet2DConditionModel,
UNet3DConditionModel,
)
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin, PatchedLoraProjection, text_encoder_attn_modules
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
AttnProcessor2_0,
LoRAAttnProcessor,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
deprecate_after_peft_backend,
floats_tensor,
load_image,
nightly,
require_torch_gpu,
slow,
torch_device,
)
def create_lora_layers(model, mock_weights: bool = True):
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
if mock_weights:
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
def create_unet_lora_layers(unet: nn.Module):
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_processor_class = (
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
)
lora_attn_procs[name] = lora_attn_processor_class(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
)
unet_lora_layers = AttnProcsLayers(lora_attn_procs)
return lora_attn_procs, unet_lora_layers
def create_text_encoder_lora_attn_procs(text_encoder: nn.Module):
text_lora_attn_procs = {}
lora_attn_processor_class = (
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
)
for name, module in text_encoder_attn_modules(text_encoder):
if isinstance(module.out_proj, nn.Linear):
out_features = module.out_proj.out_features
elif isinstance(module.out_proj, PatchedLoraProjection):
out_features = module.out_proj.regular_linear_layer.out_features
else:
assert False, module.out_proj.__class__
text_lora_attn_procs[name] = lora_attn_processor_class(hidden_size=out_features, cross_attention_dim=None)
return text_lora_attn_procs
def create_text_encoder_lora_layers(text_encoder: nn.Module):
text_lora_attn_procs = create_text_encoder_lora_attn_procs(text_encoder)
text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
return text_encoder_lora_layers
def create_lora_3d_layers(model, mock_weights: bool = True):
lora_attn_procs = {}
for name in model.attn_processors.keys():
has_cross_attention = name.endswith("attn2.processor") and not (
name.startswith("transformer_in") or "temp_attentions" in name.split(".")
)
cross_attention_dim = model.config.cross_attention_dim if has_cross_attention else None
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
elif name.startswith("transformer_in"):
# Note that the `8 * ...` comes from: https://github.com/huggingface/diffusers/blob/7139f0e874f10b2463caa8cbd585762a309d12d6/src/diffusers/models/unet_3d_condition.py#L148
hidden_size = 8 * model.config.attention_head_dim
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
if mock_weights:
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
def set_lora_weights(lora_attn_parameters, randn_weight=False, var=1.0):
with torch.no_grad():
for parameter in lora_attn_parameters:
if randn_weight:
parameter[:] = torch.randn_like(parameter) * var
else:
torch.zero_(parameter)
def state_dicts_almost_equal(sd1, sd2):
sd1 = dict(sorted(sd1.items()))
sd2 = dict(sorted(sd2.items()))
models_are_equal = True
for ten1, ten2 in zip(sd1.values(), sd2.values()):
if (ten1 - ten2).abs().max() > 1e-3:
models_are_equal = False
return models_are_equal
@deprecate_after_peft_backend
class LoraLoaderMixinTests(unittest.TestCase):
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder)
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
lora_components = {
"unet_lora_layers": unet_lora_layers,
"text_encoder_lora_layers": text_encoder_lora_layers,
"unet_lora_attn_procs": unet_lora_attn_procs,
}
return pipeline_components, lora_components
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
# copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
def get_dummy_tokens(self):
max_seq_length = 77
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))
prepared_inputs = {}
prepared_inputs["input_ids"] = inputs
return prepared_inputs
def create_lora_weight_file(self, tmpdirname):
_, lora_components = self.get_dummy_components()
LoraLoaderMixin.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
@unittest.skipIf(not torch.cuda.is_available(), reason="xformers requires cuda")
def test_stable_diffusion_attn_processors(self):
# disable_full_determinism()
device = "cuda" # ensure determinism for the device-dependent torch.Generator
components, _ = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs()
# run normal sd pipe
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run xformers attention
sd_pipe.enable_xformers_memory_efficient_attention()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run attention slicing
sd_pipe.enable_attention_slicing()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run vae attention slicing
sd_pipe.enable_vae_slicing()
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run lora attention
attn_processors, _ = create_unet_lora_layers(sd_pipe.unet)
attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()}
sd_pipe.unet.set_attn_processor(attn_processors)
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# run lora xformers attention
attn_processors, _ = create_unet_lora_layers(sd_pipe.unet)
attn_processors = {
k: LoRAXFormersAttnProcessor(hidden_size=v.hidden_size, cross_attention_dim=v.cross_attention_dim)
for k, v in attn_processors.items()
}
attn_processors = {k: v.to("cuda") for k, v in attn_processors.items()}
sd_pipe.unet.set_attn_processor(attn_processors)
image = sd_pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
# enable_full_determinism()
def test_stable_diffusion_lora(self):
components, _ = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward 1
_, _, inputs = self.get_dummy_inputs()
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
# set lora layers
lora_attn_procs = create_lora_layers(sd_pipe.unet)
sd_pipe.unet.set_attn_processor(lora_attn_procs)
sd_pipe = sd_pipe.to(torch_device)
# forward 2
_, _, inputs = self.get_dummy_inputs()
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
image = output.images
image_slice_1 = image[0, -3:, -3:, -1]
# forward 3
_, _, inputs = self.get_dummy_inputs()
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
image = output.images
image_slice_2 = image[0, -3:, -3:, -1]
assert np.abs(image_slice - image_slice_1).max() < 1e-2
assert np.abs(image_slice - image_slice_2).max() > 1e-2
def test_lora_save_load(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs()
original_images = sd_pipe(**pipeline_inputs).images
orig_image_slice = original_images[0, -3:, -3:, -1]
with tempfile.TemporaryDirectory() as tmpdirname:
LoraLoaderMixin.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(tmpdirname)
lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Outputs shouldn't match.
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
def test_lora_save_load_no_safe_serialization(self):
pipeline_components, lora_components = self.get_dummy_components()
unet_lora_attn_procs = lora_components["unet_lora_attn_procs"]
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs()
original_images = sd_pipe(**pipeline_inputs).images
orig_image_slice = original_images[0, -3:, -3:, -1]
with tempfile.TemporaryDirectory() as tmpdirname:
unet = sd_pipe.unet
unet.set_attn_processor(unet_lora_attn_procs)
unet.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
sd_pipe.load_lora_weights(tmpdirname)
lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Outputs shouldn't match.
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
def test_text_encoder_lora_monkey_patch(self):
pipeline_components, _ = self.get_dummy_components()
pipe = StableDiffusionPipeline(**pipeline_components)
dummy_tokens = self.get_dummy_tokens()
# inference without lora
outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
assert outputs_without_lora.shape == (1, 77, 32)
# monkey patch
params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
set_lora_weights(params, randn_weight=False)
# inference with lora
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
assert outputs_with_lora.shape == (1, 77, 32)
assert torch.allclose(
outputs_without_lora, outputs_with_lora
), "lora_up_weight are all zero, so the lora outputs should be the same to without lora outputs"
# create lora_attn_procs with randn up.weights
create_text_encoder_lora_attn_procs(pipe.text_encoder)
# monkey patch
params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
set_lora_weights(params, randn_weight=True)
# inference with lora
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
assert outputs_with_lora.shape == (1, 77, 32)
assert not torch.allclose(
outputs_without_lora, outputs_with_lora
), "lora_up_weight are not zero, so the lora outputs should be different to without lora outputs"
def test_text_encoder_lora_remove_monkey_patch(self):
pipeline_components, _ = self.get_dummy_components()
pipe = StableDiffusionPipeline(**pipeline_components)
dummy_tokens = self.get_dummy_tokens()
# inference without lora
outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
assert outputs_without_lora.shape == (1, 77, 32)
# monkey patch
params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
set_lora_weights(params, randn_weight=True)
# inference with lora
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
assert outputs_with_lora.shape == (1, 77, 32)
assert not torch.allclose(
outputs_without_lora, outputs_with_lora
), "lora outputs should be different to without lora outputs"
# remove monkey patch
pipe._remove_text_encoder_monkey_patch()
# inference with removed lora
outputs_without_lora_removed = pipe.text_encoder(**dummy_tokens)[0]
assert outputs_without_lora_removed.shape == (1, 77, 32)
assert torch.allclose(
outputs_without_lora, outputs_without_lora_removed
), "remove lora monkey patch should restore the original outputs"
def test_text_encoder_lora_scale(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs()
with tempfile.TemporaryDirectory() as tmpdirname:
LoraLoaderMixin.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(tmpdirname)
lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
lora_images_with_scale = sd_pipe(**pipeline_inputs, cross_attention_kwargs={"scale": 0.5}).images
lora_image_with_scale_slice = lora_images_with_scale[0, -3:, -3:, -1]
# Outputs shouldn't match.
self.assertFalse(
torch.allclose(torch.from_numpy(lora_image_slice), torch.from_numpy(lora_image_with_scale_slice))
)
def test_lora_unet_attn_processors(self):
with tempfile.TemporaryDirectory() as tmpdirname:
self.create_lora_weight_file(tmpdirname)
pipeline_components, _ = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# check if vanilla attention processors are used
for _, module in sd_pipe.unet.named_modules():
if isinstance(module, Attention):
self.assertIsInstance(module.processor, (AttnProcessor, AttnProcessor2_0))
# load LoRA weight file
sd_pipe.load_lora_weights(tmpdirname)
# check if lora attention processors are used
for _, module in sd_pipe.unet.named_modules():
if isinstance(module, Attention):
self.assertIsNotNone(module.to_q.lora_layer)
self.assertIsNotNone(module.to_k.lora_layer)
self.assertIsNotNone(module.to_v.lora_layer)
self.assertIsNotNone(module.to_out[0].lora_layer)
def test_unload_lora_sd(self):
pipeline_components, lora_components = self.get_dummy_components()
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
sd_pipe = StableDiffusionPipeline(**pipeline_components)
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
orig_image_slice = original_images[0, -3:, -3:, -1]
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_lora_layers"].parameters(), randn_weight=True)
with tempfile.TemporaryDirectory() as tmpdirname:
LoraLoaderMixin.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(tmpdirname)
lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Unload LoRA parameters.
sd_pipe.unload_lora_weights()
original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
orig_image_slice_two = original_images_two[0, -3:, -3:, -1]
assert not np.allclose(
orig_image_slice, lora_image_slice
), "LoRA parameters should lead to a different image slice."
assert not np.allclose(
orig_image_slice_two, lora_image_slice
), "LoRA parameters should lead to a different image slice."
assert np.allclose(
orig_image_slice, orig_image_slice_two, atol=1e-3
), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters."
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
def test_lora_unet_attn_processors_with_xformers(self):
with tempfile.TemporaryDirectory() as tmpdirname:
self.create_lora_weight_file(tmpdirname)
pipeline_components, _ = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# enable XFormers
sd_pipe.enable_xformers_memory_efficient_attention()
# check if xFormers attention processors are used
for _, module in sd_pipe.unet.named_modules():
if isinstance(module, Attention):
self.assertIsInstance(module.processor, XFormersAttnProcessor)
# load LoRA weight file
sd_pipe.load_lora_weights(tmpdirname)
# check if lora attention processors are used
for _, module in sd_pipe.unet.named_modules():
if isinstance(module, Attention):
self.assertIsNotNone(module.to_q.lora_layer)
self.assertIsNotNone(module.to_k.lora_layer)
self.assertIsNotNone(module.to_v.lora_layer)
self.assertIsNotNone(module.to_out[0].lora_layer)
# unload lora weights
sd_pipe.unload_lora_weights()
# check if attention processors are reverted back to xFormers
for _, module in sd_pipe.unet.named_modules():
if isinstance(module, Attention):
self.assertIsInstance(module.processor, XFormersAttnProcessor)
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
def test_lora_save_load_with_xformers(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs()
# enable XFormers
sd_pipe.enable_xformers_memory_efficient_attention()
original_images = sd_pipe(**pipeline_inputs).images
orig_image_slice = original_images[0, -3:, -3:, -1]
with tempfile.TemporaryDirectory() as tmpdirname:
LoraLoaderMixin.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(tmpdirname)
lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Outputs shouldn't match.
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
class SDXInpaintLoraMixinTests(unittest.TestCase):
def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
if output_pil:
# Get random floats in [0, 1] as image
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
mask_image = torch.ones_like(image)
# Convert image and mask_image to [0, 255]
image = 255 * image
mask_image = 255 * mask_image
# Convert to PIL image
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
else:
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
# Convert image to [-1, 1]
init_image = 2.0 * image - 1.0
mask_image = torch.ones((1, 1, img_res, img_res), device=device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def test_stable_diffusion_inpaint_lora(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward 1
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
# set lora layers
lora_attn_procs = create_lora_layers(sd_pipe.unet)
sd_pipe.unet.set_attn_processor(lora_attn_procs)
sd_pipe = sd_pipe.to(torch_device)
# forward 2
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
image = output.images
image_slice_1 = image[0, -3:, -3:, -1]
# forward 3
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
image = output.images
image_slice_2 = image[0, -3:, -3:, -1]
assert np.abs(image_slice - image_slice_1).max() < 1e-2
assert np.abs(image_slice - image_slice_2).max() > 1e-2
@deprecate_after_peft_backend
class SDXLLoraLoaderMixinTests(unittest.TestCase):
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
text_encoder_one_lora_layers = create_text_encoder_lora_layers(text_encoder)
text_encoder_two_lora_layers = create_text_encoder_lora_layers(text_encoder_2)
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
}
lora_components = {
"unet_lora_layers": unet_lora_layers,
"text_encoder_one_lora_layers": text_encoder_one_lora_layers,
"text_encoder_two_lora_layers": text_encoder_two_lora_layers,
"unet_lora_attn_procs": unet_lora_attn_procs,
}
return pipeline_components, lora_components
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
def test_lora_save_load(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs()
original_images = sd_pipe(**pipeline_inputs).images
orig_image_slice = original_images[0, -3:, -3:, -1]
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(tmpdirname)
lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Outputs shouldn't match.
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
def test_unload_lora_sdxl(self):
pipeline_components, lora_components = self.get_dummy_components()
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
orig_image_slice = original_images[0, -3:, -3:, -1]
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(tmpdirname)
lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Unload LoRA parameters.
sd_pipe.unload_lora_weights()
original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
orig_image_slice_two = original_images_two[0, -3:, -3:, -1]
assert not np.allclose(
orig_image_slice, lora_image_slice
), "LoRA parameters should lead to a different image slice."
assert not np.allclose(
orig_image_slice_two, lora_image_slice
), "LoRA parameters should lead to a different image slice."
assert np.allclose(
orig_image_slice, orig_image_slice_two, atol=1e-3
), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters."
def test_load_lora_locally(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=False,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))
sd_pipe.unload_lora_weights()
def test_text_encoder_lora_state_dict_unchanged(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
text_encoder_1_sd_keys = sorted(sd_pipe.text_encoder.state_dict().keys())
text_encoder_2_sd_keys = sorted(sd_pipe.text_encoder_2.state_dict().keys())
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=False,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))
text_encoder_1_sd_keys_2 = sorted(sd_pipe.text_encoder.state_dict().keys())
text_encoder_2_sd_keys_2 = sorted(sd_pipe.text_encoder_2.state_dict().keys())
sd_pipe.unload_lora_weights()
text_encoder_1_sd_keys_3 = sorted(sd_pipe.text_encoder.state_dict().keys())
text_encoder_2_sd_keys_3 = sorted(sd_pipe.text_encoder_2.state_dict().keys())
# default & unloaded LoRA weights should have identical state_dicts
assert text_encoder_1_sd_keys == text_encoder_1_sd_keys_3
# default & loaded LoRA weights should NOT have identical state_dicts
assert text_encoder_1_sd_keys != text_encoder_1_sd_keys_2
# default & unloaded LoRA weights should have identical state_dicts
assert text_encoder_2_sd_keys == text_encoder_2_sd_keys_3
# default & loaded LoRA weights should NOT have identical state_dicts
assert text_encoder_2_sd_keys != text_encoder_2_sd_keys_2
def test_load_lora_locally_safetensors(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
sd_pipe.unload_lora_weights()
def test_lora_fusion(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
orig_image_slice = original_images[0, -3:, -3:, -1]
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
sd_pipe.fuse_lora()
lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
self.assertFalse(np.allclose(orig_image_slice, lora_image_slice, atol=1e-3))
def test_unfuse_lora(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
orig_image_slice = original_images[0, -3:, -3:, -1]
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
sd_pipe.fuse_lora()
lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Reverse LoRA fusion.
sd_pipe.unfuse_lora()
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
orig_image_slice_two = original_images[0, -3:, -3:, -1]
assert not np.allclose(
orig_image_slice, lora_image_slice
), "Fusion of LoRAs should lead to a different image slice."
assert not np.allclose(
orig_image_slice_two, lora_image_slice
), "Fusion of LoRAs should lead to a different image slice."
assert np.allclose(
orig_image_slice, orig_image_slice_two, atol=1e-3
), "Reversing LoRA fusion should lead to results similar to what was obtained with the pipeline without any LoRA parameters."
def test_lora_fusion_is_not_affected_by_unloading(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
_ = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
sd_pipe.fuse_lora()
lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice = lora_images[0, -3:, -3:, -1]
# Unload LoRA parameters.
sd_pipe.unload_lora_weights()
images_with_unloaded_lora = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
images_with_unloaded_lora_slice = images_with_unloaded_lora[0, -3:, -3:, -1]
assert np.allclose(
lora_image_slice, images_with_unloaded_lora_slice
), "`unload_lora_weights()` should have not effect on the semantics of the results as the LoRA parameters were fused."
def test_fuse_lora_with_different_scales(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
_ = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
sd_pipe.fuse_lora(lora_scale=1.0)
lora_images_scale_one = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice_scale_one = lora_images_scale_one[0, -3:, -3:, -1]
# Reverse LoRA fusion.
sd_pipe.unfuse_lora()
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
sd_pipe.fuse_lora(lora_scale=0.5)
lora_images_scale_0_5 = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice_scale_0_5 = lora_images_scale_0_5[0, -3:, -3:, -1]
assert not np.allclose(
lora_image_slice_scale_one, lora_image_slice_scale_0_5, atol=1e-03
), "Different LoRA scales should influence the outputs accordingly."
def test_with_different_scales(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
original_imagee_slice = original_images[0, -3:, -3:, -1]
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
lora_images_scale_one = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice_scale_one = lora_images_scale_one[0, -3:, -3:, -1]
lora_images_scale_0_5 = sd_pipe(
**pipeline_inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
).images
lora_image_slice_scale_0_5 = lora_images_scale_0_5[0, -3:, -3:, -1]
lora_images_scale_0_0 = sd_pipe(
**pipeline_inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
).images
lora_image_slice_scale_0_0 = lora_images_scale_0_0[0, -3:, -3:, -1]
assert not np.allclose(
lora_image_slice_scale_one, lora_image_slice_scale_0_5, atol=1e-03
), "Different LoRA scales should influence the outputs accordingly."
assert np.allclose(
original_imagee_slice, lora_image_slice_scale_0_0, atol=1e-03
), "LoRA scale of 0.0 shouldn't be different from the results without LoRA."
def test_with_different_scales_fusion_equivalence(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
images_slice = images[0, -3:, -3:, -1]
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True, var=0.1)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True, var=0.1)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True, var=0.1)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
lora_images_scale_0_5 = sd_pipe(
**pipeline_inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
).images
lora_image_slice_scale_0_5 = lora_images_scale_0_5[0, -3:, -3:, -1]
sd_pipe.fuse_lora(lora_scale=0.5)
lora_images_scale_0_5_fusion = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice_scale_0_5_fusion = lora_images_scale_0_5_fusion[0, -3:, -3:, -1]
assert np.allclose(
lora_image_slice_scale_0_5, lora_image_slice_scale_0_5_fusion, atol=1e-03
), "Fusion shouldn't affect the results when calling the pipeline with a non-default LoRA scale."
sd_pipe.unfuse_lora()
images_unfused = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
images_slice_unfused = images_unfused[0, -3:, -3:, -1]
assert np.allclose(images_slice, images_slice_unfused, atol=1e-03), "Unfused should match no LoRA"
assert not np.allclose(
images_slice, lora_image_slice_scale_0_5, atol=1e-03
), "0.5 scale and no scale shouldn't match"
def test_save_load_fused_lora_modules(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
_, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
# Emulate training.
set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True, var=0.1)
set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True, var=0.1)
set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True, var=0.1)
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionXLPipeline.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
sd_pipe.fuse_lora()
lora_images_fusion = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
lora_image_slice_fusion = lora_images_fusion[0, -3:, -3:, -1]
with tempfile.TemporaryDirectory() as tmpdirname:
sd_pipe.save_pretrained(tmpdirname)
sd_pipe_loaded = StableDiffusionXLPipeline.from_pretrained(tmpdirname)
loaded_lora_images = sd_pipe_loaded(**pipeline_inputs, generator=torch.manual_seed(0)).images
loaded_lora_image_slice = loaded_lora_images[0, -3:, -3:, -1]
assert np.allclose(
lora_image_slice_fusion, loaded_lora_image_slice, atol=1e-03
), "The pipeline was serialized with LoRA parameters fused inside of the respected modules. The loaded pipeline should yield proper outputs, henceforth."
class UNet2DConditionLoRAModelTests(unittest.TestCase):
model_class = UNet2DConditionModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_lora_processors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
# make sure we can set a list of attention processors
model.set_attn_processor(lora_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample1 - sample2).abs().max() < 3e-3
assert (sample3 - sample4).abs().max() < 3e-3
# sample 2 and sample 3 should be different
assert (sample2 - sample3).abs().max() > 1e-4
def test_lora_save_load(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 5e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 5e-4
def test_lora_save_load_safetensors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_safetensors_load_torch(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.safetensors")
def test_lora_save_torch_force_load_safetensors_error(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
with self.assertRaises(IOError) as e:
new_model.load_attn_procs(tmpdirname, use_safetensors=True)
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))
def test_lora_on_off(self, expected_max_diff=1e-3):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
model.set_default_attn_processor()
with torch.no_grad():
new_sample = model(**inputs_dict).sample
max_diff_new_sample = (sample - new_sample).abs().max()
max_diff_old_sample = (sample - old_sample).abs().max()
assert max_diff_new_sample < expected_max_diff
assert max_diff_old_sample < expected_max_diff
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self, expected_max_diff=1e-3):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
max_diff_on_sample = (sample - on_sample).abs().max()
max_diff_off_sample = (sample - off_sample).abs().max()
assert max_diff_on_sample < expected_max_diff
assert max_diff_off_sample < expected_max_diff
class UNet3DConditionModelTests(unittest.TestCase):
model_class = UNet3DConditionModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
num_frames = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 4, 32, 32)
@property
def output_shape(self):
return (4, 4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": (
"CrossAttnDownBlock3D",
"DownBlock3D",
),
"up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 1,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_lora_processors(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
# make sure we can set a list of attention processors
model.set_attn_processor(lora_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample1 - sample2).abs().max() < 3e-3
assert (sample3 - sample4).abs().max() < 3e-3
# sample 2 and sample 3 should be different
assert (sample2 - sample3).abs().max() > 3e-3
def test_lora_save_load(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-3
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_load_safetensors(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 3e-3
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_safetensors_load_torch(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_3d_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.safetensors")
def test_lora_save_torch_force_load_safetensors_error(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_3d_layers(model, mock_weights=False)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
with self.assertRaises(IOError) as e:
new_model.load_attn_procs(tmpdirname, use_safetensors=True)
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))
def test_lora_on_off(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 8
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
model.set_attn_processor(AttnProcessor())
with torch.no_grad():
new_sample = model(**inputs_dict).sample
assert (sample - new_sample).abs().max() < 1e-4
assert (sample - old_sample).abs().max() < 3e-3
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = 4
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_3d_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
assert (sample - on_sample).abs().max() < 1e-4
assert (sample - off_sample).abs().max() < 1e-4
@slow
@require_torch_gpu
class LoraIntegrationTests(unittest.TestCase):
def test_dreambooth_old_format(self):
generator = torch.Generator("cpu").manual_seed(0)
lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
pipe = pipe.to(torch_device)
pipe.load_lora_weights(lora_model_id)
images = pipe(
"A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])
self.assertTrue(np.allclose(images, expected, atol=1e-4))
def test_dreambooth_text_encoder_new_format(self):
generator = torch.Generator().manual_seed(0)
lora_model_id = "hf-internal-testing/lora-trained"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
pipe = pipe.to(torch_device)
pipe.load_lora_weights(lora_model_id)
images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])
self.assertTrue(np.allclose(images, expected, atol=1e-4))
def test_a1111(self):
generator = torch.Generator().manual_seed(0)
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
torch_device
)
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
lora_filename = "light_and_shadow.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_lycoris(self):
generator = torch.Generator().manual_seed(0)
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16"
).to(torch_device)
lora_model_id = "hf-internal-testing/edgLycorisMugler-light"
lora_filename = "edgLycorisMugler-light.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_a1111_with_model_cpu_offload(self):
generator = torch.Generator().manual_seed(0)
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
pipe.enable_model_cpu_offload()
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
lora_filename = "light_and_shadow.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_a1111_with_sequential_cpu_offload(self):
generator = torch.Generator().manual_seed(0)
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
pipe.enable_sequential_cpu_offload()
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
lora_filename = "light_and_shadow.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_kohya_sd_v15_with_higher_dimensions(self):
generator = torch.Generator().manual_seed(0)
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
torch_device
)
lora_model_id = "hf-internal-testing/urushisato-lora"
lora_filename = "urushisato_v15.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_vanilla_funetuning(self):
generator = torch.Generator().manual_seed(0)
lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
pipe = pipe.to(torch_device)
pipe.load_lora_weights(lora_model_id)
images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])
self.assertTrue(np.allclose(images, expected, atol=1e-4))
def test_unload_kohya_lora(self):
generator = torch.manual_seed(0)
prompt = "masterpiece, best quality, mountain"
num_inference_steps = 2
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
torch_device
)
initial_images = pipe(
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
).images
initial_images = initial_images[0, -3:, -3:, -1].flatten()
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
lora_filename = "Colored_Icons_by_vizsumit.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
generator = torch.manual_seed(0)
lora_images = pipe(
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
).images
lora_images = lora_images[0, -3:, -3:, -1].flatten()
pipe.unload_lora_weights()
generator = torch.manual_seed(0)
unloaded_lora_images = pipe(
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
).images
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()
self.assertFalse(np.allclose(initial_images, lora_images))
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
def test_load_unload_load_kohya_lora(self):
# This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
# without introducing any side-effects. Even though the test uses a Kohya-style
# LoRA, the underlying adapter handling mechanism is format-agnostic.
generator = torch.manual_seed(0)
prompt = "masterpiece, best quality, mountain"
num_inference_steps = 2
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
torch_device
)
initial_images = pipe(
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
).images
initial_images = initial_images[0, -3:, -3:, -1].flatten()
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
lora_filename = "Colored_Icons_by_vizsumit.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
generator = torch.manual_seed(0)
lora_images = pipe(
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
).images
lora_images = lora_images[0, -3:, -3:, -1].flatten()
pipe.unload_lora_weights()
generator = torch.manual_seed(0)
unloaded_lora_images = pipe(
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
).images
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()
self.assertFalse(np.allclose(initial_images, lora_images))
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
# make sure we can load a LoRA again after unloading and they don't have
# any undesired effects.
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
generator = torch.manual_seed(0)
lora_images_again = pipe(
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
).images
lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()
self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
def test_sdxl_0_9_lora_one(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
lora_filename = "daiton-xl-lora-test.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.enable_model_cpu_offload()
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_sdxl_0_9_lora_two(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
lora_filename = "saijo.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.enable_model_cpu_offload()
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_sdxl_0_9_lora_three(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.enable_model_cpu_offload()
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])
self.assertTrue(np.allclose(images, expected, atol=5e-3))
def test_sdxl_1_0_lora(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.enable_model_cpu_offload()
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
self.assertTrue(np.allclose(images, expected, atol=1e-4))
def test_sdxl_1_0_lora_fusion(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.fuse_lora()
pipe.enable_model_cpu_offload()
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
# This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
self.assertTrue(np.allclose(images, expected, atol=1e-4))
def test_sdxl_1_0_lora_unfusion(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.fuse_lora()
pipe.enable_model_cpu_offload()
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images_with_fusion = images[0, -3:, -3:, -1].flatten()
pipe.unfuse_lora()
generator = torch.Generator().manual_seed(0)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images_without_fusion = images[0, -3:, -3:, -1].flatten()
self.assertFalse(np.allclose(images_with_fusion, images_without_fusion, atol=1e-3))
def test_sdxl_1_0_lora_unfusion_effectivity(self):
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.enable_model_cpu_offload()
generator = torch.Generator().manual_seed(0)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
original_image_slice = images[0, -3:, -3:, -1].flatten()
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.fuse_lora()
generator = torch.Generator().manual_seed(0)
_ = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
pipe.unfuse_lora()
generator = torch.Generator().manual_seed(0)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()
self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3))
def test_sdxl_1_0_lora_fusion_efficiency(self):
generator = torch.Generator().manual_seed(0)
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.enable_model_cpu_offload()
start_time = time.time()
for _ in range(3):
pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
end_time = time.time()
elapsed_time_non_fusion = end_time - start_time
del pipe
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.fuse_lora()
pipe.enable_model_cpu_offload()
start_time = time.time()
generator = torch.Generator().manual_seed(0)
for _ in range(3):
pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
end_time = time.time()
elapsed_time_fusion = end_time - start_time
self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
def test_sdxl_1_0_last_ben(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.enable_model_cpu_offload()
lora_model_id = "TheLastBen/Papercut_SDXL"
lora_filename = "papercut.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_sdxl_1_0_fuse_unfuse_all(self):
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
unet_sd = copy.deepcopy(pipe.unet.state_dict())
pipe.load_lora_weights(
"davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
)
pipe.fuse_lora()
pipe.unload_lora_weights()
pipe.unfuse_lora()
assert state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
assert state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
assert state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
generator = torch.Generator().manual_seed(0)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.enable_sequential_cpu_offload()
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
self.assertTrue(np.allclose(images, expected, atol=1e-3))
def test_canny_lora(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "corgi"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
assert images[0].shape == (768, 512, 3)
original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
assert np.allclose(original_image, expected_image, atol=1e-04)
@nightly
def test_sequential_fuse_unfuse(self):
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
# 1. round
pipe.load_lora_weights("Pclanglais/TintinIA")
pipe.fuse_lora()
generator = torch.Generator().manual_seed(0)
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
image_slice = images[0, -3:, -3:, -1].flatten()
pipe.unfuse_lora()
# 2. round
pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style")
pipe.fuse_lora()
pipe.unfuse_lora()
# 3. round
pipe.load_lora_weights("ostris/crayon_style_lora_sdxl")
pipe.fuse_lora()
pipe.unfuse_lora()
# 4. back to 1st round
pipe.load_lora_weights("Pclanglais/TintinIA")
pipe.fuse_lora()
generator = torch.Generator().manual_seed(0)
images_2 = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
image_slice_2 = images_2[0, -3:, -3:, -1].flatten()
self.assertTrue(np.allclose(image_slice, image_slice_2, atol=1e-3))
| diffusers-main | tests/lora/test_lora_layers_old_backend.py |
Subsets and Splits