python_code
stringlengths
0
290k
repo_name
stringclasses
30 values
file_path
stringlengths
6
125
from pathlib import Path import torch from PIL import Image from PIL.ImageOps import exif_transpose from torch.utils.data import Dataset from torchvision import transforms class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example class DreamBoothDatasetXL(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images. """ def __init__( self, instance_data_root, class_data_root=None, class_num=None, size=1024, center_crop=False, ): self.size = size self.center_crop = center_crop self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if class_num is not None: self.num_class_images = min(len(self.class_images_path), class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) instance_image = exif_transpose(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) class_image = exif_transpose(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) return example class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__(self, config, tokenizers, encoder_hidden_states, instance_prompt_encoder_hidden_states): self.config = config self.tokenizer = tokenizers[0] self.size = self.config.resolution self.center_crop = self.config.center_crop self.tokenizer_max_length = self.config.tokenizer_max_length self.instance_data_root = Path(self.config.image_path) self.instance_prompt = self.config.prompt self.class_data_root = Path(self.config.class_image_path) if self.config.prior_preservation else None self.class_prompt = self.config.class_prompt self.class_num = self.config.num_class_images self.encoder_hidden_states = encoder_hidden_states self.instance_prompt_encoder_hidden_states = instance_prompt_encoder_hidden_states if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(self.instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self._length = self.num_instance_images if self.class_data_root is not None: self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if self.class_num is not None: self.num_class_images = min(len(self.class_images_path), self.class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(self.size) if self.center_crop else transforms.RandomCrop(self.size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def _tokenize_prompt(self, tokenizer, prompt, tokenizer_max_length=None): # this function is here to avoid cyclic import issues if tokenizer_max_length is not None: max_length = tokenizer_max_length else: max_length = tokenizer.model_max_length text_inputs = tokenizer( prompt, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt", ) return text_inputs def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) instance_image = exif_transpose(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) if not self.config.xl: if self.encoder_hidden_states is not None: example["instance_prompt_ids"] = self.encoder_hidden_states else: text_inputs = self._tokenize_prompt( self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length ) example["instance_prompt_ids"] = text_inputs.input_ids example["instance_attention_mask"] = text_inputs.attention_mask if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) class_image = exif_transpose(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) if not self.config.xl: if self.instance_prompt_encoder_hidden_states is not None: example["class_prompt_ids"] = self.instance_prompt_encoder_hidden_states else: class_text_inputs = self._tokenize_prompt( self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length ) example["class_prompt_ids"] = class_text_inputs.input_ids example["class_attention_mask"] = class_text_inputs.attention_mask return example def collate_fn(examples, config): pixel_values = [example["instance_images"] for example in examples] if not config.xl: has_attention_mask = "instance_attention_mask" in examples[0] input_ids = [example["instance_prompt_ids"] for example in examples] if has_attention_mask: attention_mask = [example["instance_attention_mask"] for example in examples] if config.prior_preservation: pixel_values += [example["class_images"] for example in examples] if not config.xl: input_ids += [example["class_prompt_ids"] for example in examples] if has_attention_mask: attention_mask += [example["class_attention_mask"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() batch = { "pixel_values": pixel_values, } if not config.xl: input_ids = torch.cat(input_ids, dim=0) batch["input_ids"] = input_ids if has_attention_mask: # attention_mask = torch.cat(attention_mask, dim=0) batch["attention_mask"] = attention_mask return batch
autotrain-advanced-main
src/autotrain/trainers/dreambooth/datasets.py
autotrain-advanced-main
src/autotrain/trainers/dreambooth/__init__.py
import hashlib import itertools import os from pathlib import Path from typing import Dict import torch from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDiffusionXLPipeline, UNet2DConditionModel from diffusers.utils.import_utils import is_xformers_available from packaging import version from tqdm import tqdm from transformers import AutoTokenizer, PretrainedConfig from autotrain import logger from autotrain.trainers.dreambooth.datasets import PromptDataset VALID_IMAGE_EXTENSIONS = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"] XL_MODELS = [ "stabilityai/stable-diffusion-xl-base-1.0", "stabilityai/stable-diffusion-xl-base-0.9", "diffusers/stable-diffusion-xl-base-1.0", ] def create_model_card(repo_id: str, base_model: str, train_text_encoder: bool, prompt: str, repo_folder: str): if train_text_encoder: text_encoder_text = "trained" else: text_encoder_text = "not trained" yaml = f""" --- base_model: {base_model} instance_prompt: {prompt} tags: - text-to-image - diffusers - autotrain inference: true --- """ model_card = f""" # DreamBooth trained by AutoTrain Text encoder was {text_encoder_text}. """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation elif model_class == "T5EncoderModel": from transformers import T5EncoderModel return T5EncoderModel else: raise ValueError(f"{model_class} is not supported.") def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None): if tokenizer_max_length is not None: max_length = tokenizer_max_length else: max_length = tokenizer.model_max_length text_inputs = tokenizer( prompt, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt", ) return text_inputs def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None): text_input_ids = input_ids.to(text_encoder.device) if text_encoder_use_attention_mask: attention_mask = attention_mask.to(text_encoder.device) else: attention_mask = None prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] return prompt_embeds def encode_prompt_xl(text_encoders, tokenizers, prompt, text_input_ids_list=None): prompt_embeds_list = [] # logger.info(f"Computing text embeddings for prompt: {prompt}") # logger.info(f"Text encoders: {text_encoders}") # logger.info(f"Tokenizers: {tokenizers}") for i, text_encoder in enumerate(text_encoders): if tokenizers is not None: tokenizer = tokenizers[i] text_input_ids = tokenize_prompt(tokenizer, prompt).input_ids # logger.info(f"Text input ids: {text_input_ids}") else: assert text_input_ids_list is not None text_input_ids = text_input_ids_list[i] prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return prompt_embeds, pooled_prompt_embeds def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]: r""" Returns: a state dict containing just the attention processor parameters. """ attn_processors = unet.attn_processors attn_processors_state_dict = {} for attn_processor_key, attn_processor in attn_processors.items(): for parameter_key, parameter in attn_processor.state_dict().items(): attn_processors_state_dict[f"{attn_processor_key}.{parameter_key}"] = parameter return attn_processors_state_dict def setup_prior_preservation(accelerator, config): class_images_dir = Path(config.class_image_path) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < config.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if config.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif config.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif config.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 if config.xl: pipeline = StableDiffusionXLPipeline.from_pretrained( config.model, torch_dtype=torch_dtype, safety_checker=None, revision=config.revision, ) else: pipeline = DiffusionPipeline.from_pretrained( config.model, torch_dtype=torch_dtype, safety_checker=None, revision=config.revision, ) pipeline.set_progress_bar_config(disable=True) num_new_images = config.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(config.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=config.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() def load_model_components(config, device, weight_dtype): tokenizers = [] tokenizers.append( AutoTokenizer.from_pretrained( config.model, subfolder="tokenizer", revision=config.revision, use_fast=False, ) ) if config.xl: tokenizers.append( AutoTokenizer.from_pretrained( config.model, subfolder="tokenizer_2", revision=config.revision, use_fast=False, ) ) cls_text_encoders = [] cls_text_encoders.append( import_model_class_from_model_name_or_path(config.model, config.revision), ) if config.xl: cls_text_encoders.append( import_model_class_from_model_name_or_path(config.model, config.revision, subfolder="text_encoder_2") ) text_encoders = [] text_encoders.append( cls_text_encoders[0].from_pretrained( config.model, subfolder="text_encoder", revision=config.revision, ) ) if config.xl: text_encoders.append( cls_text_encoders[1].from_pretrained( config.model, subfolder="text_encoder_2", revision=config.revision, ) ) try: vae = AutoencoderKL.from_pretrained(config.model, subfolder="vae", revision=config.revision) except OSError: logger.warning("No VAE found. Training without VAE.") vae = None unet = UNet2DConditionModel.from_pretrained( config.model, subfolder="unet", revision=config.revision, ) noise_scheduler = DDPMScheduler.from_pretrained(config.model, subfolder="scheduler") # TODO: non-peft version if vae is not None: vae.requires_grad_(False) for _text_encoder in text_encoders: _text_encoder.requires_grad_(False) unet.requires_grad_(False) if vae is not None: if config.xl: vae.to(device, dtype=torch.float32) else: vae.to(device, dtype=weight_dtype) unet.to(device, dtype=weight_dtype) for _text_encoder in text_encoders: _text_encoder.to(device, dtype=weight_dtype) return tokenizers, text_encoders, vae, unet, noise_scheduler def enable_gradient_checkpointing(unet, text_encoders, config): if config.gradient_checkpointing: logger.info("Enabling gradient checkpointing.") unet.enable_gradient_checkpointing() if config.train_text_encoder: for i in range(len(text_encoders)): text_encoders[i].gradient_checkpointing_enable() def enable_xformers(unet, config): if config.xformers: if is_xformers_available(): logger.info("Enabling xformers") import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") def get_optimizer(config, unet_lora_parameters, text_lora_parameters): # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if config.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW if len(text_lora_parameters) == 0: params_to_optimize = unet_lora_parameters elif len(text_lora_parameters) == 1: params_to_optimize = itertools.chain(unet_lora_parameters, text_lora_parameters[0]) elif len(text_lora_parameters) == 2: params_to_optimize = itertools.chain(unet_lora_parameters, text_lora_parameters[0], text_lora_parameters[1]) else: raise ValueError("More than 2 text encoders are not supported.") optimizer = optimizer_class( params_to_optimize, lr=config.lr, betas=(config.adam_beta1, config.adam_beta2), weight_decay=config.adam_weight_decay, eps=config.adam_epsilon, ) return optimizer def pre_compute_text_embeddings(config, tokenizers, text_encoders): if config.pre_compute_text_embeddings: tokenizer = tokenizers[0] text_encoder = text_encoders[0] def compute_text_embeddings(prompt): with torch.no_grad(): text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=config.tokenizer_max_length) prompt_embeds = encode_prompt( text_encoder, text_inputs.input_ids, text_inputs.attention_mask, text_encoder_use_attention_mask=config.text_encoder_use_attention_mask, ) return prompt_embeds pre_computed_encoder_hidden_states = compute_text_embeddings(config.prompt) # disable validation prompt for now # validation_prompt_negative_prompt_embeds = compute_text_embeddings("") # if args.validation_prompt is not None: # validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt) # else: # validation_prompt_encoder_hidden_states = None if config.prompt is not None: pre_computed_instance_prompt_encoder_hidden_states = compute_text_embeddings(config.prompt) else: pre_computed_instance_prompt_encoder_hidden_states = None else: pre_computed_encoder_hidden_states = None # validation_prompt_encoder_hidden_states = None pre_computed_instance_prompt_encoder_hidden_states = None return pre_computed_encoder_hidden_states, pre_computed_instance_prompt_encoder_hidden_states
autotrain-advanced-main
src/autotrain/trainers/dreambooth/utils.py
import itertools import math import os import shutil import torch import torch.nn.functional as F from diffusers import StableDiffusionXLPipeline from diffusers.loaders import LoraLoaderMixin, text_encoder_lora_state_dict from diffusers.optimization import get_scheduler from huggingface_hub import create_repo, upload_folder from tqdm import tqdm from autotrain import logger from autotrain.trainers.dreambooth import utils class Trainer: def __init__( self, unet, vae, train_dataloader, train_dataset, text_encoders, config, optimizer, accelerator, noise_scheduler, weight_dtype, text_lora_parameters, unet_lora_parameters, tokenizers, ): self.train_dataloader = train_dataloader self.config = config self.optimizer = optimizer self.accelerator = accelerator self.unet = unet self.vae = vae self.noise_scheduler = noise_scheduler self.train_dataset = train_dataset self.weight_dtype = weight_dtype self.text_lora_parameters = text_lora_parameters self.unet_lora_parameters = unet_lora_parameters self.tokenizers = tokenizers self.text_encoders = text_encoders if self.config.xl: self._setup_xl() self.text_encoder1 = text_encoders[0] self.text_encoder2 = None if len(text_encoders) == 2: self.text_encoder2 = text_encoders[1] overrode_max_train_steps = False self.num_update_steps_per_epoch = math.ceil(len(train_dataloader) / config.gradient_accumulation) if self.config.num_steps is None: self.config.num_steps = self.config.epochs * self.num_update_steps_per_epoch overrode_max_train_steps = True self.scheduler = get_scheduler( self.config.scheduler, optimizer=self.optimizer, num_warmup_steps=self.config.warmup_steps * self.accelerator.num_processes, num_training_steps=self.config.num_steps * self.accelerator.num_processes, num_cycles=self.config.num_cycles, power=self.config.lr_power, ) if self.config.train_text_encoder: if len(text_encoders) == 1: ( self.unet, self.text_encoder1, self.optimizer, self.train_dataloader, self.scheduler, ) = self.accelerator.prepare( self.unet, self.text_encoder1, self.optimizer, self.train_dataloader, self.scheduler ) elif len(text_encoders) == 2: ( self.unet, self.text_encoder1, self.text_encoder2, self.optimizer, self.train_dataloader, self.scheduler, ) = self.accelerator.prepare( self.unet, self.text_encoder1, self.text_encoder2, self.optimizer, self.train_dataloader, self.scheduler, ) else: self.unet, self.optimizer, self.train_dataloader, self.scheduler = accelerator.prepare( self.unet, self.optimizer, self.train_dataloader, self.scheduler ) self.num_update_steps_per_epoch = math.ceil(len(self.train_dataloader) / self.config.gradient_accumulation) if overrode_max_train_steps: self.config.num_steps = self.config.epochs * self.num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs self.config.epochs = math.ceil(self.config.num_steps / self.num_update_steps_per_epoch) if self.accelerator.is_main_process: self.accelerator.init_trackers("dreambooth") self.total_batch_size = ( self.config.batch_size * self.accelerator.num_processes * self.config.gradient_accumulation ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(self.train_dataset)}") logger.info(f" Num batches each epoch = {len(self.train_dataloader)}") logger.info(f" Num Epochs = {self.config.epochs}") logger.info(f" Instantaneous batch size per device = {config.batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {self.total_batch_size}") logger.info(f" Gradient Accumulation steps = {self.config.gradient_accumulation}") logger.info(f" Total optimization steps = {self.config.num_steps}") logger.info(f" Training config = {self.config}") self.global_step = 0 self.first_epoch = 0 if config.resume_from_checkpoint: self._resume_from_checkpoint() def compute_text_embeddings(self, prompt): logger.info(f"Computing text embeddings for prompt: {prompt}") with torch.no_grad(): prompt_embeds, pooled_prompt_embeds = utils.encode_prompt_xl(self.text_encoders, self.tokenizers, prompt) prompt_embeds = prompt_embeds.to(self.accelerator.device) pooled_prompt_embeds = pooled_prompt_embeds.to(self.accelerator.device) return prompt_embeds, pooled_prompt_embeds def compute_time_ids(self): # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids original_size = (self.config.resolution, self.config.resolution) target_size = (self.config.resolution, self.config.resolution) # crops_coords_top_left = (self.config.crops_coords_top_left_h, self.config.crops_coords_top_left_w) crops_coords_top_left = (0, 0) add_time_ids = list(original_size + crops_coords_top_left + target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.to(self.accelerator.device, dtype=self.weight_dtype) return add_time_ids def _setup_xl(self): # Handle instance prompt. instance_time_ids = self.compute_time_ids() if not self.config.train_text_encoder: instance_prompt_hidden_states, instance_pooled_prompt_embeds = self.compute_text_embeddings( self.config.prompt ) # Handle class prompt for prior-preservation. if self.config.prior_preservation: class_time_ids = self.compute_time_ids() if not self.config.train_text_encoder: class_prompt_hidden_states, class_pooled_prompt_embeds = self.compute_text_embeddings( self.config.class_prompt ) self.add_time_ids = instance_time_ids if self.config.prior_preservation: self.add_time_ids = torch.cat([self.add_time_ids, class_time_ids], dim=0) if not self.config.train_text_encoder: self.prompt_embeds = instance_prompt_hidden_states self.unet_add_text_embeds = instance_pooled_prompt_embeds if self.config.prior_preservation: self.prompt_embeds = torch.cat([self.prompt_embeds, class_prompt_hidden_states], dim=0) self.unet_add_text_embeds = torch.cat([self.unet_add_text_embeds, class_pooled_prompt_embeds], dim=0) else: self.tokens_one = utils.tokenize_prompt(self.tokenizers[0], self.config.prompt).input_ids self.tokens_two = utils.tokenize_prompt(self.tokenizers[1], self.config.prompt).input_ids if self.config.prior_preservation: class_tokens_one = utils.tokenize_prompt(self.tokenizers[0], self.config.class_prompt).input_ids class_tokens_two = utils.tokenize_prompt(self.tokenizers[1], self.config.class_prompt).input_ids self.tokens_one = torch.cat([self.tokens_one, class_tokens_one], dim=0) self.tokens_two = torch.cat([self.tokens_two, class_tokens_two], dim=0) def _resume_from_checkpoint(self): if self.config.resume_from_checkpoint != "latest": path = os.path.basename(self.config.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(self.config.project_name) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: self.accelerator.print( f"Checkpoint '{self.config.resume_from_checkpoint}' does not exist. Starting a new training run." ) self.config.resume_from_checkpoint = None else: self.accelerator.print(f"Resuming from checkpoint {path}") self.accelerator.load_state(os.path.join(self.config.project_name, path)) self.global_step = int(path.split("-")[1]) resume_global_step = self.global_step * self.config.gradient_accumulation self.first_epoch = self.global_step // self.num_update_steps_per_epoch self.resume_step = resume_global_step % ( self.num_update_steps_per_epoch * self.config.gradient_accumulation ) def _calculate_loss(self, model_pred, noise, model_input, timesteps): if model_pred.shape[1] == 6 and not self.config.xl: model_pred, _ = torch.chunk(model_pred, 2, dim=1) # Get the target for loss depending on the prediction type if self.noise_scheduler.config.prediction_type == "epsilon": target = noise elif self.noise_scheduler.config.prediction_type == "v_prediction": target = self.noise_scheduler.get_velocity(model_input, noise, timesteps) else: raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") if self.config.prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + self.config.prior_loss_weight * prior_loss else: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") return loss def _clip_gradients(self): if self.accelerator.sync_gradients: if len(self.text_lora_parameters) == 0: params_to_clip = self.unet_lora_parameters elif len(self.text_lora_parameters) == 1: params_to_clip = itertools.chain(self.unet_lora_parameters, self.text_lora_parameters[0]) elif len(self.text_lora_parameters) == 2: params_to_clip = itertools.chain( self.unet_lora_parameters, self.text_lora_parameters[0], self.text_lora_parameters[1] ) else: raise ValueError("More than 2 text encoders are not supported.") self.accelerator.clip_grad_norm_(params_to_clip, self.config.max_grad_norm) def _save_checkpoint(self): if self.accelerator.is_main_process: if self.global_step % self.config.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if self.config.checkpoints_total_limit is not None: checkpoints = os.listdir(self.config.project_name) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= self.config.checkpoints_total_limit: num_to_remove = len(checkpoints) - self.config.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(self.config.project_name, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(self.config.project_name, f"checkpoint-{self.global_step}") self.accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") def _get_model_pred(self, batch, channels, noisy_model_input, timesteps, bsz): if self.config.xl: elems_to_repeat = bsz // 2 if self.config.prior_preservation else bsz if not self.config.train_text_encoder: unet_added_conditions = { "time_ids": self.add_time_ids.repeat(elems_to_repeat, 1), "text_embeds": self.unet_add_text_embeds.repeat(elems_to_repeat, 1), } model_pred = self.unet( noisy_model_input, timesteps, self.prompt_embeds.repeat(elems_to_repeat, 1, 1), added_cond_kwargs=unet_added_conditions, ).sample else: unet_added_conditions = {"time_ids": self.add_time_ids.repeat(elems_to_repeat, 1)} prompt_embeds, pooled_prompt_embeds = utils.encode_prompt_xl( text_encoders=self.text_encoders, tokenizers=None, prompt=None, text_input_ids_list=[self.tokens_one, self.tokens_two], ) unet_added_conditions.update({"text_embeds": pooled_prompt_embeds.repeat(bsz, 1)}) prompt_embeds = prompt_embeds.repeat(elems_to_repeat, 1, 1) model_pred = self.unet( noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs=unet_added_conditions ).sample else: if self.config.pre_compute_text_embeddings: encoder_hidden_states = batch["input_ids"] else: encoder_hidden_states = utils.encode_prompt( self.text_encoder1, batch["input_ids"], batch["attention_mask"], text_encoder_use_attention_mask=self.config.text_encoder_use_attention_mask, ) if self.accelerator.unwrap_model(self.unet).config.in_channels == channels * 2: noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1) if self.config.class_labels_conditioning == "timesteps": class_labels = timesteps else: class_labels = None model_pred = self.unet( noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels ).sample return model_pred def train(self): progress_bar = tqdm( range(self.global_step, self.config.num_steps), disable=not self.accelerator.is_local_main_process ) progress_bar.set_description("Steps") for epoch in range(self.first_epoch, self.config.epochs): self.unet.train() if self.config.train_text_encoder: self.text_encoder1.train() if self.config.xl: self.text_encoder2.train() for step, batch in enumerate(self.train_dataloader): # Skip steps until we reach the resumed step if self.config.resume_from_checkpoint and epoch == self.first_epoch and step < self.resume_step: if step % self.config.gradient_accumulation == 0: progress_bar.update(1) continue with self.accelerator.accumulate(self.unet): if self.config.xl: pixel_values = batch["pixel_values"] else: pixel_values = batch["pixel_values"].to(dtype=self.weight_dtype) if self.vae is not None: # Convert images to latent space model_input = self.vae.encode(pixel_values).latent_dist.sample() model_input = model_input * self.vae.config.scaling_factor model_input = model_input.to(dtype=self.weight_dtype) else: model_input = pixel_values # Sample noise that we'll add to the latents noise = torch.randn_like(model_input) bsz, channels, height, width = model_input.shape # Sample a random timestep for each image timesteps = torch.randint( 0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) timesteps = timesteps.long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = self.noise_scheduler.add_noise(model_input, noise, timesteps) model_pred = self._get_model_pred(batch, channels, noisy_model_input, timesteps, bsz) loss = self._calculate_loss(model_pred, noise, model_input, timesteps) self.accelerator.backward(loss) self._clip_gradients() self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() if self.accelerator.sync_gradients: progress_bar.update(1) self.global_step += 1 self._save_checkpoint() logs = {"loss": loss.detach().item(), "lr": self.scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) self.accelerator.log(logs, step=self.global_step) if self.global_step >= self.config.num_steps: break self.accelerator.wait_for_everyone() if self.accelerator.is_main_process: self.unet = self.accelerator.unwrap_model(self.unet) self.unet = self.unet.to(torch.float32) unet_lora_layers = utils.unet_attn_processors_state_dict(self.unet) text_encoder_lora_layers_1 = None text_encoder_lora_layers_2 = None if self.text_encoder1 is not None and self.config.train_text_encoder: text_encoder1 = self.accelerator.unwrap_model(self.text_encoder1) text_encoder1 = text_encoder1.to(torch.float32) text_encoder_lora_layers_1 = text_encoder_lora_state_dict(text_encoder1) if self.text_encoder2 is not None and self.config.train_text_encoder: text_encoder2 = self.accelerator.unwrap_model(self.text_encoder2) text_encoder2 = text_encoder2.to(torch.float32) text_encoder_lora_layers_2 = text_encoder_lora_state_dict(text_encoder2) if self.config.xl: StableDiffusionXLPipeline.save_lora_weights( save_directory=self.config.project_name, unet_lora_layers=unet_lora_layers, text_encoder_lora_layers=text_encoder_lora_layers_1, text_encoder_2_lora_layers=text_encoder_lora_layers_2, safe_serialization=True, ) else: LoraLoaderMixin.save_lora_weights( save_directory=self.config.project_name, unet_lora_layers=unet_lora_layers, text_encoder_lora_layers=text_encoder_lora_layers_1, safe_serialization=True, ) self.accelerator.end_training() def push_to_hub(self): repo_id = create_repo( repo_id=self.config.repo_id, exist_ok=True, private=True, token=self.config.token, ).repo_id utils.create_model_card( repo_id, base_model=self.config.model, train_text_encoder=self.config.train_text_encoder, prompt=self.config.prompt, repo_folder=self.config.project_name, ) upload_folder( repo_id=repo_id, folder_path=self.config.project_name, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], token=self.config.token, )
autotrain-advanced-main
src/autotrain/trainers/dreambooth/trainer.py
import argparse import json import os import diffusers import torch import torch.nn.functional as F import transformers from accelerate import Accelerator from accelerate.utils import ProjectConfiguration, set_seed from diffusers import StableDiffusionXLPipeline from diffusers.loaders import LoraLoaderMixin, text_encoder_lora_state_dict from diffusers.models.attention_processor import ( AttnAddedKVProcessor, AttnAddedKVProcessor2_0, LoRAAttnAddedKVProcessor, LoRAAttnProcessor, LoRAAttnProcessor2_0, SlicedAttnAddedKVProcessor, ) from huggingface_hub import HfApi, snapshot_download from autotrain import logger from autotrain.trainers.dreambooth import utils from autotrain.trainers.dreambooth.datasets import DreamBoothDataset, collate_fn from autotrain.trainers.dreambooth.params import DreamBoothTrainingParams from autotrain.trainers.dreambooth.trainer import Trainer from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() @monitor def train(config): if isinstance(config, dict): config = DreamBoothTrainingParams(**config) config.prompt = str(config.prompt).strip() if config.model in utils.XL_MODELS: config.xl = True if config.repo_id is None and config.username is not None: config.repo_id = f"{config.username}/{config.project_name}" if config.project_name == "/tmp/model": snapshot_download( repo_id=config.image_path, local_dir=config.project_name, token=config.token, repo_type="dataset", ) config.image_path = "/tmp/model/concept1/" accelerator_project_config = ProjectConfiguration( project_dir=config.project_name, logging_dir=os.path.join(config.project_name, "logs") ) if config.fp16: mixed_precision = "fp16" elif config.bf16: mixed_precision = "bf16" else: mixed_precision = "no" accelerator = Accelerator( gradient_accumulation_steps=config.gradient_accumulation, mixed_precision=mixed_precision, log_with="tensorboard" if config.logging else None, project_config=accelerator_project_config, ) if config.train_text_encoder and config.gradient_accumulation > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() set_seed(config.seed) # Generate class images if prior preservation is enabled. if config.prior_preservation: utils.setup_prior_preservation(accelerator, config) # Handle the repository creation if accelerator.is_main_process: if config.project_name is not None: os.makedirs(config.project_name, exist_ok=True) weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 tokenizers, text_encoders, vae, unet, noise_scheduler = utils.load_model_components( config, accelerator.device, weight_dtype ) utils.enable_xformers(unet, config) utils.enable_gradient_checkpointing(unet, text_encoders, config) unet_lora_attn_procs = {} unet_lora_parameters = [] for name, attn_processor in unet.attn_processors.items(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)): lora_attn_processor_class = LoRAAttnAddedKVProcessor else: lora_attn_processor_class = ( LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor ) module = lora_attn_processor_class(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) unet_lora_attn_procs[name] = module unet_lora_parameters.extend(module.parameters()) unet.set_attn_processor(unet_lora_attn_procs) text_lora_parameters = [] if config.train_text_encoder: # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16 text_lora_parameters = [ LoraLoaderMixin._modify_text_encoder(_text_encoder, dtype=torch.float32) for _text_encoder in text_encoders ] def save_model_hook(models, weights, output_dir): # there are only two options here. Either are just the unet attn processor layers # or there are the unet and text encoder atten layers unet_lora_layers_to_save = None text_encoder_lora_layers_to_save = [] for model in models: if isinstance(model, type(accelerator.unwrap_model(unet))): unet_lora_layers_to_save = utils.unet_attn_processors_state_dict(model) for _text_encoder in text_encoders: if isinstance(model, type(accelerator.unwrap_model(_text_encoder))): text_encoder_lora_layers_to_save.append(text_encoder_lora_state_dict(model)) # make sure to pop weight so that corresponding model is not saved again weights.pop() if len(text_encoder_lora_layers_to_save) == 0: LoraLoaderMixin.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=None, safe_serialization=True, ) elif len(text_encoder_lora_layers_to_save) == 1: LoraLoaderMixin.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=text_encoder_lora_layers_to_save[0], safe_serialization=True, ) elif len(text_encoder_lora_layers_to_save) == 2: StableDiffusionXLPipeline.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=text_encoder_lora_layers_to_save[0], text_encoder_2_lora_layers=text_encoder_lora_layers_to_save[1], safe_serialization=True, ) else: raise ValueError("unexpected number of text encoders") def load_model_hook(models, input_dir): unet_ = None text_encoders_ = [] while len(models) > 0: model = models.pop() if isinstance(model, type(accelerator.unwrap_model(unet))): unet_ = model for _text_encoder in text_encoders: if isinstance(model, type(accelerator.unwrap_model(_text_encoder))): text_encoders_.append(model) lora_state_dict, network_alpha = LoraLoaderMixin.lora_state_dict(input_dir) LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alpha=network_alpha, unet=unet_) if len(text_encoders_) == 0: LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=None, ) elif len(text_encoders_) == 1: LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=text_encoders_[0], ) elif len(text_encoders_) == 2: LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=text_encoders_[0], ) LoraLoaderMixin.load_lora_into_text_encoder( lora_state_dict, network_alpha=network_alpha, text_encoder=text_encoders_[1], ) else: raise ValueError("unexpected number of text encoders") accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if config.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if config.scale_lr: config.lr = config.lr * config.gradient_accumulation * config.batch_size * accelerator.num_processes optimizer = utils.get_optimizer(config, unet_lora_parameters, text_lora_parameters) encoder_hs, instance_prompt_encoder_hs = utils.pre_compute_text_embeddings( config=config, text_encoders=text_encoders, tokenizers=tokenizers ) train_dataset = DreamBoothDataset( config=config, tokenizers=tokenizers, encoder_hidden_states=encoder_hs, instance_prompt_encoder_hidden_states=instance_prompt_encoder_hs, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=config.batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, config), num_workers=config.dataloader_num_workers, ) trainer = Trainer( unet=unet, vae=vae, train_dataloader=train_dataloader, text_encoders=text_encoders, config=config, optimizer=optimizer, accelerator=accelerator, noise_scheduler=noise_scheduler, train_dataset=train_dataset, weight_dtype=weight_dtype, text_lora_parameters=text_lora_parameters, unet_lora_parameters=unet_lora_parameters, tokenizers=tokenizers, ) trainer.train() # remove token key from training_params.json located in output directory # first check if file exists if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) training_params.pop("token") json.dump(training_params, open(f"{config.project_name}/training_params.json", "w")) # remove config.image_path directory if it exists if os.path.exists(config.image_path): os.system(f"rm -rf {config.image_path}") # add config.prompt as a text file in the output directory with open(f"{config.project_name}/prompt.txt", "w") as f: f.write(config.prompt) if config.push_to_hub: trainer.push_to_hub() if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = DreamBoothTrainingParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/dreambooth/__main__.py
import os from pydantic import BaseModel, Field from autotrain import logger class TextClassificationParams(BaseModel): data_path: str = Field(None, title="Data path") model: str = Field("bert-base-uncased", title="Model name") lr: float = Field(5e-5, title="Learning rate") epochs: int = Field(3, title="Number of training epochs") max_seq_length: int = Field(128, title="Max sequence length") batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: str = Field(None, title="Validation split") text_column: str = Field("text", title="Text column") target_column: str = Field("target", title="Target column") logging_steps: int = Field(-1, title="Logging steps") project_name: str = Field("Project Name", title="Output directory") auto_find_batch_size: bool = Field(False, title="Auto find batch size") fp16: bool = Field(False, title="Enable fp16") save_total_limit: int = Field(1, title="Save total limit") save_strategy: str = Field("epoch", title="Save strategy") token: str = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") repo_id: str = Field(None, title="Repo id") evaluation_strategy: str = Field("epoch", title="Evaluation strategy") username: str = Field(None, title="Hugging Face Username") def __str__(self): data = self.dict() data["token"] = "*****" if data.get("token") else None return str(data) def save(self, output_dir): os.makedirs(output_dir, exist_ok=True) path = os.path.join(output_dir, "training_params.json") # save formatted json with open(path, "w") as f: f.write(self.json(indent=4)) def __init__(self, **data): super().__init__(**data) # Parameters not supplied by the user defaults = {f.name for f in self.__fields__.values() if f.default == self.__dict__[f.name]} supplied = set(data.keys()) not_supplied = defaults - supplied if not_supplied: logger.warning(f"Parameters not supplied by user and set to default: {', '.join(not_supplied)}") # Parameters that were supplied but not used # This is a naive implementation. It might catch some internal Pydantic params. unused = supplied - set(self.__fields__) if unused: logger.warning(f"Parameters supplied but not used: {', '.join(unused)}")
autotrain-advanced-main
src/autotrain/trainers/text_classification/params.py
autotrain-advanced-main
src/autotrain/trainers/text_classification/__init__.py
import torch class TextClassificationDataset: def __init__(self, data, tokenizer, config): self.data = data self.tokenizer = tokenizer self.config = config self.text_column = self.config.text_column self.target_column = self.config.target_column def __len__(self): return len(self.data) def __getitem__(self, item): text = str(self.data[item][self.text_column]) target = self.data[item][self.target_column] target = int(target) inputs = self.tokenizer( text, max_length=self.config.max_seq_length, padding="max_length", truncation=True, ) ids = inputs["input_ids"] mask = inputs["attention_mask"] if "token_type_ids" in inputs: token_type_ids = inputs["token_type_ids"] else: token_type_ids = None if token_type_ids is not None: return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "labels": torch.tensor(target, dtype=torch.long), } return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "labels": torch.tensor(target, dtype=torch.long), }
autotrain-advanced-main
src/autotrain/trainers/text_classification/dataset.py
import os import numpy as np import requests from sklearn import metrics BINARY_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1", "eval_auc", "eval_precision", "eval_recall", ) MULTI_CLASS_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1_macro", "eval_f1_micro", "eval_f1_weighted", "eval_precision_macro", "eval_precision_micro", "eval_precision_weighted", "eval_recall_macro", "eval_recall_micro", "eval_recall_weighted", ) MODEL_CARD = """ --- tags: - autotrain - text-classification widget: - text: "I love AutoTrain" datasets: - {dataset} --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics {validation_metrics} """ def _binary_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) result = { "f1": metrics.f1_score(labels, predictions), "precision": metrics.precision_score(labels, predictions), "recall": metrics.recall_score(labels, predictions), "auc": metrics.roc_auc_score(labels, raw_predictions[:, 1]), "accuracy": metrics.accuracy_score(labels, predictions), } return result def _multi_class_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) results = { "f1_macro": metrics.f1_score(labels, predictions, average="macro"), "f1_micro": metrics.f1_score(labels, predictions, average="micro"), "f1_weighted": metrics.f1_score(labels, predictions, average="weighted"), "precision_macro": metrics.precision_score(labels, predictions, average="macro"), "precision_micro": metrics.precision_score(labels, predictions, average="micro"), "precision_weighted": metrics.precision_score(labels, predictions, average="weighted"), "recall_macro": metrics.recall_score(labels, predictions, average="macro"), "recall_micro": metrics.recall_score(labels, predictions, average="micro"), "recall_weighted": metrics.recall_score(labels, predictions, average="weighted"), "accuracy": metrics.accuracy_score(labels, predictions), } return results def create_model_card(config, trainer, num_classes): if config.valid_split is not None: eval_scores = trainer.evaluate() valid_metrics = ( BINARY_CLASSIFICATION_EVAL_METRICS if num_classes == 2 else MULTI_CLASS_CLASSIFICATION_EVAL_METRICS ) eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in valid_metrics] eval_scores = "\n\n".join(eval_scores) else: eval_scores = "No validation metrics available" model_card = MODEL_CARD.format( dataset=config.data_path, validation_metrics=eval_scores, ) return model_card def pause_endpoint(params): endpoint_id = os.environ["ENDPOINT_ID"] username = endpoint_id.split("/")[0] project_name = endpoint_id.split("/")[1] api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause" headers = {"Authorization": f"Bearer {params.token}"} r = requests.post(api_url, headers=headers) return r.json()
autotrain-advanced-main
src/autotrain/trainers/text_classification/utils.py
import argparse import json import os import pandas as pd from accelerate.state import PartialState from datasets import Dataset, load_dataset from huggingface_hub import HfApi from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EarlyStoppingCallback, Trainer, TrainingArguments, ) from autotrain import logger from autotrain.trainers.text_classification import utils from autotrain.trainers.text_classification.dataset import TextClassificationDataset from autotrain.trainers.text_classification.params import TextClassificationParams from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() @monitor def train(config): if isinstance(config, dict): config = TextClassificationParams(**config) if config.repo_id is None and config.username is not None: config.repo_id = f"{config.username}/{config.project_name}" if PartialState().process_index == 0: logger.info("Starting training...") logger.info(f"Training config: {config}") train_data = None valid_data = None # check if config.train_split.csv exists in config.data_path if config.train_split is not None: train_path = f"{config.data_path}/{config.train_split}.csv" if os.path.exists(train_path): logger.info("loading dataset from csv") train_data = pd.read_csv(train_path) train_data = Dataset.from_pandas(train_data) else: train_data = load_dataset( config.data_path, split=config.train_split, token=config.token, ) if config.valid_split is not None: valid_path = f"{config.data_path}/{config.valid_split}.csv" if os.path.exists(valid_path): logger.info("loading dataset from csv") valid_data = pd.read_csv(valid_path) valid_data = Dataset.from_pandas(valid_data) else: valid_data = load_dataset( config.data_path, split=config.valid_split, token=config.token, ) classes = train_data.features[config.target_column].names label2id = {c: i for i, c in enumerate(classes)} num_classes = len(classes) if num_classes < 2: raise ValueError("Invalid number of classes. Must be greater than 1.") if config.valid_split is not None: num_classes_valid = len(valid_data.unique(config.target_column)) if num_classes_valid != num_classes: raise ValueError( f"Number of classes in train and valid are not the same. Training has {num_classes} and valid has {num_classes_valid}" ) model_config = AutoConfig.from_pretrained(config.model, num_labels=num_classes) model_config._num_labels = len(label2id) model_config.label2id = label2id model_config.id2label = {v: k for k, v in label2id.items()} try: model = AutoModelForSequenceClassification.from_pretrained( config.model, config=model_config, trust_remote_code=True, token=config.token ) except OSError: model = AutoModelForSequenceClassification.from_pretrained( config.model, config=model_config, from_tf=True, trust_remote_code=True, token=config.token ) tokenizer = AutoTokenizer.from_pretrained(config.model, token=config.token, trust_remote_code=True) train_data = TextClassificationDataset(data=train_data, tokenizer=tokenizer, config=config) if config.valid_split is not None: valid_data = TextClassificationDataset(data=valid_data, tokenizer=tokenizer, config=config) if config.logging_steps == -1: if config.valid_split is not None: logging_steps = int(0.2 * len(valid_data) / config.batch_size) else: logging_steps = int(0.2 * len(train_data) / config.batch_size) if logging_steps == 0: logging_steps = 1 else: logging_steps = config.logging_steps training_args = dict( output_dir=config.project_name, per_device_train_batch_size=config.batch_size, per_device_eval_batch_size=2 * config.batch_size, learning_rate=config.lr, num_train_epochs=config.epochs, fp16=config.fp16, evaluation_strategy=config.evaluation_strategy if config.valid_split is not None else "no", logging_steps=logging_steps, save_total_limit=config.save_total_limit, save_strategy=config.save_strategy, gradient_accumulation_steps=config.gradient_accumulation, report_to="tensorboard", auto_find_batch_size=config.auto_find_batch_size, lr_scheduler_type=config.scheduler, optim=config.optimizer, warmup_ratio=config.warmup_ratio, weight_decay=config.weight_decay, max_grad_norm=config.max_grad_norm, push_to_hub=False, load_best_model_at_end=True if config.valid_split is not None else False, ddp_find_unused_parameters=False, ) if config.valid_split is not None: early_stop = EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01) callbacks_to_use = [early_stop] else: callbacks_to_use = [] args = TrainingArguments(**training_args) trainer_args = dict( args=args, model=model, callbacks=callbacks_to_use, compute_metrics=utils._binary_classification_metrics if num_classes == 2 else utils._multi_class_classification_metrics, ) trainer = Trainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data, ) trainer.train() logger.info("Finished training, saving model...") trainer.save_model(config.project_name) tokenizer.save_pretrained(config.project_name) model_card = utils.create_model_card(config, trainer, num_classes) # remove token key from training_params.json located in output directory # first check if file exists if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) training_params.pop("token") json.dump(training_params, open(f"{config.project_name}/training_params.json", "w")) # save model card to output directory as README.md with open(f"{config.project_name}/README.md", "w") as f: f.write(model_card) if config.push_to_hub: if PartialState().process_index == 0: logger.info("Pushing model to hub...") api = HfApi(token=config.token) api.create_repo(repo_id=config.repo_id, repo_type="model", private=True) api.upload_folder(folder_path=config.project_name, repo_id=config.repo_id, repo_type="model") if PartialState().process_index == 0: if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if "ENDPOINT_ID" in os.environ: # shut down the endpoint logger.info("Pausing endpoint...") utils.pause_endpoint(config) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = TextClassificationParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/text_classification/__main__.py
import os from pydantic import BaseModel, Field class ImageClassificationParams(BaseModel): data_path: str = Field(None, title="Data path") model_name: str = Field("bert-base-uncased", title="Model name") lr: float = Field(5e-5, title="Learning rate") epochs: int = Field(3, title="Number of training epochs") batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: str = Field(None, title="Validation split") logging_steps: int = Field(-1, title="Logging steps") project_name: str = Field("Project Name", title="Output directory") auto_find_batch_size: bool = Field(False, title="Auto find batch size") fp16: bool = Field(False, title="Enable fp16") save_total_limit: int = Field(1, title="Save total limit") save_strategy: str = Field("epoch", title="Save strategy") token: str = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") repo_id: str = Field(None, title="Repo id") evaluation_strategy: str = Field("epoch", title="Evaluation strategy") image_column: str = Field("image", title="Image column") target_column: str = Field("target", title="Target column") def __str__(self): data = self.dict() data["token"] = "*****" if data.get("token") else None return str(data) def save(self, output_dir): os.makedirs(output_dir, exist_ok=True) path = os.path.join(output_dir, "training_params.json") # save formatted json with open(path, "w") as f: f.write(self.json(indent=4))
autotrain-advanced-main
src/autotrain/trainers/image_classification/params.py
autotrain-advanced-main
src/autotrain/trainers/image_classification/__init__.py
import numpy as np import torch class ImageClassificationDataset: def __init__(self, data, transforms, config): self.data = data self.transforms = transforms self.config = config def __len__(self): return len(self.data) def __getitem__(self, item): image = self.data[item][self.config.image_column] target = int(self.data[item][self.config.target_column]) image = self.transforms(image=np.array(image.convert("RGB")))["image"] image = np.transpose(image, (2, 0, 1)).astype(np.float32) return { "pixel_values": torch.tensor(image, dtype=torch.float), "labels": torch.tensor(target, dtype=torch.long), }
autotrain-advanced-main
src/autotrain/trainers/image_classification/dataset.py
import albumentations as A import numpy as np from sklearn import metrics from autotrain.trainers.image_classification.dataset import ImageClassificationDataset BINARY_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1", "eval_auc", "eval_precision", "eval_recall", ) MULTI_CLASS_CLASSIFICATION_EVAL_METRICS = ( "eval_loss", "eval_accuracy", "eval_f1_macro", "eval_f1_micro", "eval_f1_weighted", "eval_precision_macro", "eval_precision_micro", "eval_precision_weighted", "eval_recall_macro", "eval_recall_micro", "eval_recall_weighted", ) MODEL_CARD = """ --- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - {dataset} --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg {validation_metrics} """ def _binary_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) result = { "f1": metrics.f1_score(labels, predictions), "precision": metrics.precision_score(labels, predictions), "recall": metrics.recall_score(labels, predictions), "auc": metrics.roc_auc_score(labels, raw_predictions[:, 1]), "accuracy": metrics.accuracy_score(labels, predictions), } return result def _multi_class_classification_metrics(pred): raw_predictions, labels = pred predictions = np.argmax(raw_predictions, axis=1) results = { "f1_macro": metrics.f1_score(labels, predictions, average="macro"), "f1_micro": metrics.f1_score(labels, predictions, average="micro"), "f1_weighted": metrics.f1_score(labels, predictions, average="weighted"), "precision_macro": metrics.precision_score(labels, predictions, average="macro"), "precision_micro": metrics.precision_score(labels, predictions, average="micro"), "precision_weighted": metrics.precision_score(labels, predictions, average="weighted"), "recall_macro": metrics.recall_score(labels, predictions, average="macro"), "recall_micro": metrics.recall_score(labels, predictions, average="micro"), "recall_weighted": metrics.recall_score(labels, predictions, average="weighted"), "accuracy": metrics.accuracy_score(labels, predictions), } return results def process_data(train_data, valid_data, image_processor, config): if "shortest_edge" in image_processor.size: size = image_processor.size["shortest_edge"] else: size = (image_processor.size["height"], image_processor.size["width"]) try: height, width = size except TypeError: height = size width = size train_transforms = A.Compose( [ A.RandomResizedCrop(height=height, width=width), A.RandomRotate90(), A.HorizontalFlip(p=0.5), A.RandomBrightnessContrast(p=0.2), A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) val_transforms = A.Compose( [ A.Resize(height=height, width=width), A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) train_data = ImageClassificationDataset(train_data, train_transforms, config) if valid_data is not None: valid_data = ImageClassificationDataset(valid_data, val_transforms, config) return train_data, valid_data return train_data, None def create_model_card(config, trainer, num_classes): if config.valid_split is not None: eval_scores = trainer.evaluate() valid_metrics = ( BINARY_CLASSIFICATION_EVAL_METRICS if num_classes == 2 else MULTI_CLASS_CLASSIFICATION_EVAL_METRICS ) eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in valid_metrics] eval_scores = "\n\n".join(eval_scores) else: eval_scores = "No validation metrics available" model_card = MODEL_CARD.format( dataset=config.data_path, validation_metrics=eval_scores, ) return model_card
autotrain-advanced-main
src/autotrain/trainers/image_classification/utils.py
import argparse import json from accelerate.state import PartialState from datasets import load_dataset from huggingface_hub import HfApi from transformers import ( AutoConfig, AutoImageProcessor, AutoModelForImageClassification, EarlyStoppingCallback, Trainer, TrainingArguments, ) from autotrain import logger from autotrain.trainers.image_classification import utils from autotrain.trainers.image_classification.params import ImageClassificationParams def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() def train(config): if isinstance(config, dict): config = ImageClassificationParams(**config) if PartialState().process_index == 0: logger.info("Starting training...") logger.info(f"Training config: {config}") valid_data = None train_data = load_dataset( config.data_path, split=config.train_split, token=config.token, ) if config.valid_split is not None: valid_data = load_dataset( config.data_path, split=config.valid_split, token=config.token, ) classes = train_data.features[config.target_column].names logger.info(f"Classes: {classes}") label2id = {c: i for i, c in enumerate(classes)} num_classes = len(classes) if num_classes < 2: raise ValueError("Invalid number of classes. Must be greater than 1.") if config.valid_split is not None: num_classes_valid = len(valid_data.unique(config.target_column)) if num_classes_valid != num_classes: raise ValueError( f"Number of classes in train and valid are not the same. Training has {num_classes} and valid has {num_classes_valid}" ) model_config = AutoConfig.from_pretrained(config.model_name, num_labels=num_classes) model_config._num_labels = len(label2id) model_config.label2id = label2id model_config.id2label = {v: k for k, v in label2id.items()} try: model = AutoModelForImageClassification.from_pretrained( config.model_name, config=model_config, trust_remote_code=True, token=config.token, ignore_mismatched_sizes=True, ) except OSError: model = AutoModelForImageClassification.from_pretrained( config.model_name, config=model_config, from_tf=True, trust_remote_code=True, token=config.token, ignore_mismatched_sizes=True, ) image_processor = AutoImageProcessor.from_pretrained(config.model_name, token=config.token) train_data, valid_data = utils.process_data(train_data, valid_data, image_processor, config) if config.logging_steps == -1: if config.valid_split is not None: logging_steps = int(0.2 * len(valid_data) / config.batch_size) else: logging_steps = int(0.2 * len(train_data) / config.batch_size) if logging_steps == 0: logging_steps = 1 else: logging_steps = config.logging_steps training_args = dict( output_dir=config.project_name, per_device_train_batch_size=config.batch_size, per_device_eval_batch_size=2 * config.batch_size, learning_rate=config.lr, num_train_epochs=config.epochs, fp16=config.fp16, evaluation_strategy=config.evaluation_strategy if config.valid_split is not None else "no", logging_steps=logging_steps, save_total_limit=config.save_total_limit, save_strategy=config.save_strategy, gradient_accumulation_steps=config.gradient_accumulation, report_to="tensorboard", auto_find_batch_size=config.auto_find_batch_size, lr_scheduler_type=config.scheduler, optim=config.optimizer, warmup_ratio=config.warmup_ratio, weight_decay=config.weight_decay, max_grad_norm=config.max_grad_norm, push_to_hub=False, load_best_model_at_end=True if config.valid_split is not None else False, ddp_find_unused_parameters=False, ) if config.valid_split is not None: early_stop = EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01) callbacks_to_use = [early_stop] else: callbacks_to_use = [] args = TrainingArguments(**training_args) trainer_args = dict( args=args, model=model, callbacks=callbacks_to_use, compute_metrics=utils._binary_classification_metrics if num_classes == 2 else utils._multi_class_classification_metrics, ) trainer = Trainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data, ) trainer.train() logger.info("Finished training, saving model...") trainer.save_model(config.project_name) image_processor.save_pretrained(config.project_name) model_card = utils.create_model_card(config, trainer, num_classes) # save model card to output directory as README.md with open(f"{config.project_name}/README.md", "w") as f: f.write(model_card) if config.push_to_hub: if PartialState().process_index == 0: logger.info("Pushing model to hub...") api = HfApi(token=config.token) api.create_repo(repo_id=config.repo_id, repo_type="model") api.upload_folder(folder_path=config.project_name, repo_id=config.repo_id, repo_type="model") if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = ImageClassificationParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/image_classification/__main__.py
import os from pydantic import BaseModel, Field from autotrain import logger class LLMTrainingParams(BaseModel): model: str = Field("gpt2", title="Model name") data_path: str = Field("data", title="Data path") project_name: str = Field("Project Name", title="Output directory") train_split: str = Field("train", title="Train data config") valid_split: str = Field(None, title="Validation data config") text_column: str = Field("text", title="Text column") token: str = Field(None, title="Huggingface token") lr: float = Field(3e-5, title="Learning rate") epochs: int = Field(1, title="Number of training epochs") batch_size: int = Field(2, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") add_eos_token: bool = Field(True, title="Add EOS token") block_size: int = Field(-1, title="Block size") use_peft: bool = Field(False, title="Use PEFT") lora_r: int = Field(16, title="Lora r") lora_alpha: int = Field(32, title="Lora alpha") lora_dropout: float = Field(0.05, title="Lora dropout") logging_steps: int = Field(-1, title="Logging steps") evaluation_strategy: str = Field("epoch", title="Evaluation strategy") save_total_limit: int = Field(1, title="Save total limit") save_strategy: str = Field("epoch", title="Save strategy") auto_find_batch_size: bool = Field(False, title="Auto find batch size") fp16: bool = Field(False, title="FP16") push_to_hub: bool = Field(False, title="Push to hub") use_int8: bool = Field(False, title="Use int8") model_max_length: int = Field(2048, title="Model max length") repo_id: str = Field(None, title="Repo id") use_int4: bool = Field(False, title="Use int4") trainer: str = Field("default", title="Trainer type") target_modules: str = Field(None, title="Target modules") merge_adapter: bool = Field(False, title="Merge adapter") username: str = Field(None, title="Hugging Face Username") def save(self, output_dir): os.makedirs(output_dir, exist_ok=True) path = os.path.join(output_dir, "training_params.json") # save formatted json with open(path, "w") as f: f.write(self.json(indent=4)) def __str__(self): data = self.dict() data["token"] = "*****" if data.get("token") else None return str(data) def __init__(self, **data): super().__init__(**data) # Parameters not supplied by the user defaults = {f.name for f in self.__fields__.values() if f.default == self.__dict__[f.name]} supplied = set(data.keys()) not_supplied = defaults - supplied if not_supplied: logger.warning(f"Parameters not supplied by user and set to default: {', '.join(not_supplied)}") # Parameters that were supplied but not used # This is a naive implementation. It might catch some internal Pydantic params. unused = supplied - set(self.__fields__) if unused: logger.warning(f"Parameters supplied but not used: {', '.join(unused)}")
autotrain-advanced-main
src/autotrain/trainers/clm/params.py
autotrain-advanced-main
src/autotrain/trainers/clm/__init__.py
import os from itertools import chain import requests import torch from datasets import Dataset from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer from autotrain import logger IGNORE_INDEX = -100 DEFAULT_PAD_TOKEN = "[PAD]" DEFAULT_EOS_TOKEN = "</s>" DEFAULT_BOS_TOKEN = "</s>" DEFAULT_UNK_TOKEN = "</s>" TARGET_MODULES = { "Salesforce/codegen25-7b-multi": "q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj", } MODEL_CARD = """ --- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " --- # Model Trained Using AutoTrain """ def get_target_modules(config): if config.target_modules is None: return TARGET_MODULES.get(config.model) return config.target_modules.split(",") def process_data(data, tokenizer, config): data = data.to_pandas() data = data.fillna("") data = data[[config.text_column]] if config.add_eos_token: data[config.text_column] = data[config.text_column] + tokenizer.eos_token data = Dataset.from_pandas(data) return data def group_texts(examples, config): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= config.block_size: total_length = (total_length // config.block_size) * config.block_size else: total_length = 0 # Split by chunks of max_len. result = { k: [t[i : i + config.block_size] for i in range(0, total_length, config.block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result def tokenize(examples, tokenizer, config): output = tokenizer(examples[config.text_column]) return output def _tokenize(prompt, tokenizer, config): result = tokenizer( prompt, truncation=True, max_length=tokenizer.model_max_length, padding=False, return_tensors=None, ) if result["input_ids"][-1] != tokenizer.eos_token_id and config.add_eos_token: if len(result["input_ids"]) >= tokenizer.model_max_length: result["input_ids"] = result["input_ids"][:-1] result["attention_mask"] = result["attention_mask"][:-1] result["input_ids"].append(tokenizer.eos_token_id) result["attention_mask"].append(1) result["labels"] = result["input_ids"].copy() return result def merge_adapter(base_model_path, target_model_path, adapter_path): logger.info("Loading adapter...") model = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, adapter_path) tokenizer = AutoTokenizer.from_pretrained( base_model_path, trust_remote_code=True, ) model = model.merge_and_unload() logger.info("Saving target model...") model.save_pretrained(target_model_path) tokenizer.save_pretrained(target_model_path) def create_model_card(): return MODEL_CARD.strip() def pause_endpoint(params): endpoint_id = os.environ["ENDPOINT_ID"] username = endpoint_id.split("/")[0] project_name = endpoint_id.split("/")[1] api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause" headers = {"Authorization": f"Bearer {params.token}"} r = requests.post(api_url, headers=headers) return r.json()
autotrain-advanced-main
src/autotrain/trainers/clm/utils.py
import os import torch from peft import set_peft_model_state_dict from transformers import TrainerCallback, TrainerControl, TrainerState, TrainingArguments from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR class SavePeftModelCallback(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") kwargs["model"].save_pretrained(checkpoint_folder) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") torch.save({}, pytorch_model_path) return control class LoadBestPeftModelCallback(TrainerCallback): def on_train_end( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): print(f"Loading best peft model from {state.best_model_checkpoint} (score: {state.best_metric}).") best_model_path = os.path.join(state.best_model_checkpoint, "adapter_model.bin") adapters_weights = torch.load(best_model_path) model = kwargs["model"] set_peft_model_state_dict(model, adapters_weights) return control
autotrain-advanced-main
src/autotrain/trainers/clm/callbacks.py
import argparse import json import os import sys from functools import partial import pandas as pd import torch from accelerate import Accelerator from accelerate.state import PartialState from datasets import Dataset, load_dataset from huggingface_hub import HfApi from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, Trainer, TrainingArguments, default_data_collator, ) from trl import SFTTrainer from autotrain import logger from autotrain.trainers.clm import utils from autotrain.trainers.clm.callbacks import LoadBestPeftModelCallback, SavePeftModelCallback from autotrain.trainers.clm.params import LLMTrainingParams from autotrain.utils import monitor def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() @monitor def train(config): if isinstance(config, dict): config = LLMTrainingParams(**config) if config.repo_id is None and config.username is not None: config.repo_id = f"{config.username}/{config.project_name}" # TODO: remove when SFT is fixed # if config.trainer == "sft": # config.trainer = "default" # check if config.train_split.csv exists in config.data_path if config.train_split is not None: train_path = f"{config.data_path}/{config.train_split}.csv" if os.path.exists(train_path): logger.info("loading dataset from csv") train_data = pd.read_csv(train_path) train_data = Dataset.from_pandas(train_data) else: train_data = load_dataset( config.data_path, split=config.train_split, token=config.token, ) if config.valid_split is not None: valid_path = f"{config.data_path}/{config.valid_split}.csv" if os.path.exists(valid_path): logger.info("loading dataset from csv") valid_data = pd.read_csv(valid_path) valid_data = Dataset.from_pandas(valid_data) else: valid_data = load_dataset( config.data_path, split=config.valid_split, token=config.token, ) tokenizer = AutoTokenizer.from_pretrained( config.model, use_auth_token=config.token, trust_remote_code=True, ) if tokenizer.model_max_length > 2048: tokenizer.model_max_length = config.model_max_length if getattr(tokenizer, "pad_token", None) is None: tokenizer.pad_token = tokenizer.eos_token if config.trainer == "default": train_data = utils.process_data( data=train_data, tokenizer=tokenizer, config=config, ) if config.valid_split is not None: valid_data = utils.process_data( data=valid_data, tokenizer=tokenizer, config=config, ) model_config = AutoConfig.from_pretrained( config.model, use_auth_token=config.token, trust_remote_code=True, ) if config.use_peft: if config.use_int4: bnb_config = BitsAndBytesConfig( load_in_4bit=config.use_int4, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=False, ) elif config.use_int8: bnb_config = BitsAndBytesConfig(load_in_8bit=config.use_int8) else: bnb_config = BitsAndBytesConfig() model = AutoModelForCausalLM.from_pretrained( config.model, config=model_config, use_auth_token=config.token, quantization_config=bnb_config, torch_dtype=torch.float16, device_map={"": Accelerator().process_index} if torch.cuda.is_available() else None, trust_remote_code=True, ) else: model = AutoModelForCausalLM.from_pretrained( config.model, config=model_config, use_auth_token=config.token, trust_remote_code=True, ) model.resize_token_embeddings(len(tokenizer)) if config.use_peft: if config.use_int8 or config.use_int4: model = prepare_model_for_kbit_training(model) peft_config = LoraConfig( r=config.lora_r, lora_alpha=config.lora_alpha, lora_dropout=config.lora_dropout, bias="none", task_type="CAUSAL_LM", target_modules=utils.get_target_modules(config), ) model = get_peft_model(model, peft_config) if config.block_size == -1: config.block_size = None if config.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) block_size = 1024 else: if config.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({config.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(config.block_size, tokenizer.model_max_length) config.block_size = block_size if config.trainer == "default": tokenize_fn = partial(utils.tokenize, tokenizer=tokenizer, config=config) group_texts_fn = partial(utils.group_texts, config=config) train_data = train_data.map( tokenize_fn, batched=True, num_proc=1, remove_columns=list(train_data.features), desc="Running tokenizer on train dataset", ) if config.valid_split is not None: valid_data = valid_data.map( tokenize_fn, batched=True, num_proc=1, remove_columns=list(valid_data.features), desc="Running tokenizer on validation dataset", ) train_data = train_data.map( group_texts_fn, batched=True, num_proc=4, desc=f"Grouping texts in chunks of {block_size}", ) if config.valid_split is not None: valid_data = valid_data.map( group_texts_fn, batched=True, num_proc=4, desc=f"Grouping texts in chunks of {block_size}", ) logger.info("creating trainer") # trainer specific if config.logging_steps == -1: if config.valid_split is not None: logging_steps = int(0.2 * len(valid_data) / config.batch_size) else: logging_steps = int(0.2 * len(train_data) / config.batch_size) if logging_steps == 0: logging_steps = 1 else: logging_steps = config.logging_steps training_args = dict( output_dir=config.project_name, per_device_train_batch_size=config.batch_size, per_device_eval_batch_size=config.batch_size, learning_rate=config.lr, num_train_epochs=config.epochs, evaluation_strategy=config.evaluation_strategy if config.valid_split is not None else "no", logging_steps=logging_steps, save_total_limit=config.save_total_limit, save_strategy=config.save_strategy, gradient_accumulation_steps=config.gradient_accumulation, report_to="tensorboard", auto_find_batch_size=config.auto_find_batch_size, lr_scheduler_type=config.scheduler, optim=config.optimizer, warmup_ratio=config.warmup_ratio, weight_decay=config.weight_decay, max_grad_norm=config.max_grad_norm, fp16=config.fp16, push_to_hub=False, load_best_model_at_end=True if config.valid_split is not None else False, ddp_find_unused_parameters=False, ) args = TrainingArguments(**training_args) callbacks = [] if config.use_peft: callbacks.append(SavePeftModelCallback) if config.valid_split is not None: callbacks.append(LoadBestPeftModelCallback) trainer_args = dict( args=args, model=model, ) if config.trainer == "default": trainer = Trainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data if config.valid_split is not None else None, tokenizer=tokenizer, data_collator=default_data_collator, callbacks=callbacks, ) elif config.trainer == "sft": trainer = SFTTrainer( **trainer_args, train_dataset=train_data, eval_dataset=valid_data if config.valid_split is not None else None, peft_config=peft_config if config.use_peft else None, dataset_text_field=config.text_column, max_seq_length=config.block_size, tokenizer=tokenizer, packing=True, ) else: raise ValueError(f"trainer `{config.trainer}` not supported") model.config.use_cache = False if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) for name, module in trainer.model.named_modules(): # if isinstance(module, LoraLayer): # if script_args.bf16: # module = module.to(torch.bfloat16) if "norm" in name: module = module.to(torch.float32) # if "lm_head" in name or "embed_tokens" in name: # if hasattr(module, "weight"): # if script_args.bf16 and module.weight.dtype == torch.float32: # module = module.to(torch.bfloat16) trainer.train() logger.info("Finished training, saving model...") trainer.save_model(config.project_name) model_card = utils.create_model_card() # save model card to output directory as README.md with open(f"{config.project_name}/README.md", "w") as f: f.write(model_card) if config.use_peft and config.merge_adapter: logger.info("Merging adapter weights...") try: utils.merge_adapter( base_model_path=config.model, target_model_path=config.project_name, adapter_path=config.project_name, ) except Exception as e: logger.warning(f"Failed to merge adapter weights: {e}") logger.warning("Skipping adapter merge. Only adapter weights will be saved.") if config.push_to_hub: if PartialState().process_index == 0: logger.info("Pushing model to hub...") if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) training_params.pop("token") json.dump(training_params, open(f"{config.project_name}/training_params.json", "w")) api = HfApi(token=config.token) api.create_repo(repo_id=config.repo_id, repo_type="model", private=True) api.upload_folder(folder_path=config.project_name, repo_id=config.repo_id, repo_type="model") if PartialState().process_index == 0: if "SPACE_ID" in os.environ: # shut down the space logger.info("Pausing space...") api = HfApi(token=config.token) api.pause_space(repo_id=os.environ["SPACE_ID"]) if "ENDPOINT_ID" in os.environ: # shut down the endpoint logger.info("Pausing endpoint...") utils.pause_endpoint(config) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = LLMTrainingParams(**training_config) train(config)
autotrain-advanced-main
src/autotrain/trainers/clm/__main__.py
autotrain-advanced-main
src/autotrain/infer/__init__.py
from dataclasses import dataclass from typing import Optional import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig @dataclass class TextGenerationInference: model_path: str = "gpt2" use_int4: Optional[bool] = False use_int8: Optional[bool] = False temperature: Optional[float] = 1.0 top_k: Optional[int] = 50 top_p: Optional[float] = 0.95 repetition_penalty: Optional[float] = 1.0 num_return_sequences: Optional[int] = 1 num_beams: Optional[int] = 1 max_new_tokens: Optional[int] = 1024 do_sample: Optional[bool] = True def __post_init__(self): self.model = AutoModelForCausalLM.from_pretrained( self.model_path, load_in_4bit=self.use_int4, load_in_8bit=self.use_int8, torch_dtype=torch.float16, trust_remote_code=True, device_map="auto", ) self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True) self.model.eval() self.device = "cuda" if torch.cuda.is_available() else "cpu" self.generation_config = GenerationConfig( temperature=self.temperature, top_k=self.top_k, top_p=self.top_p, repetition_penalty=self.repetition_penalty, num_return_sequences=self.num_return_sequences, num_beams=self.num_beams, max_length=self.max_new_tokens, eos_token_id=self.tokenizer.eos_token_id, do_sample=self.do_sample, max_new_tokens=self.max_new_tokens, ) def chat(self, prompt): inputs = self.tokenizer([prompt], return_tensors="pt").to(self.device) outputs = self.model.generate(**inputs, generation_config=self.generation_config) return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
autotrain-advanced-main
src/autotrain/infer/text_generation.py
autotrain-advanced-main
src/autotrain/apps/image_classification.py
from functools import partial import gradio as gr import pandas as pd from autotrain.apps import common from autotrain.apps import utils as app_utils from autotrain.dataset import AutoTrainDataset from autotrain.project import AutoTrainProject ALLOWED_MODELS = [ "xgboost", "random_forest", "ridge", "logistic_regression", "svm", "extra_trees", "gradient_boosting", "adaboost", "decision_tree", "knn", ] def start_training( jobs_df, model_choice, training_data, validation_data, project_name, autotrain_username, user_token, col_map_id, col_map_label, task, ): if len(jobs_df) == 0: raise gr.Error("Please add at least one job.") if isinstance(col_map_label, str): col_map_label = [col_map_label] if task == "classification" and len(col_map_label) > 1: task = "tabular_multi_label_classification" elif task == "classification" and len(col_map_label) == 1: task = "tabular_multi_class_classification" elif task == "regression" and len(col_map_label) > 1: task = "tabular_multi_column_regression" elif task == "regression" and len(col_map_label) == 1: task = "tabular_single_column_regression" else: raise gr.Error("Please select a valid task.") training_data = [f.name for f in training_data] if validation_data is None: validation_data = [] else: validation_data = [f.name for f in validation_data] dset = AutoTrainDataset( train_data=training_data, task=task, token=user_token, project_name=project_name, username=autotrain_username, column_mapping={"id": col_map_id, "label": col_map_label}, valid_data=validation_data, percent_valid=None, # TODO: add to UI convert_to_class_label=True, ) dset.prepare() project = AutoTrainProject(dataset=dset, job_params=jobs_df) ids = project.create() return gr.Markdown.update( value=f"Training started for {len(ids)} jobs. You can view the status of your jobs at ids: {', '.join(ids)}", visible=True, ) def main(): with gr.Blocks(theme=app_utils.THEME) as demo: gr.Markdown("### 🚀 Tabular Classification / Regression") user_token, valid_can_pay, who_is_training = common.user_validation() autotrain_username, project_name, model_choice, autotrain_backend = common.base_components(who_is_training) model_choice.update(label="", visible=False, interactive=False) with gr.Row(): training_data, validation_data = common.train_valid_components() with gr.Column(): with gr.Group(): col_map_id = gr.Dropdown( label="`id` column", choices=[], visible=True, interactive=True, elem_id="col_map_id", ) col_map_target = gr.Dropdown( label="`target` column(s)", choices=[], visible=True, interactive=True, elem_id="col_map_target", multiselect=True, ) with gr.Row(): hyp_task = gr.Dropdown( label="Task", choices=["classification", "regression"], value="classification", visible=True, interactive=True, elem_id="hyp_task", ) with gr.Column(): with gr.Group(): with gr.Row(): param_choice = gr.Dropdown( label="Param Choice", choices=["Manual"], value="Manual", visible=True, interactive=True, elem_id="param_choice", ) hyp_model = gr.Dropdown( label="Model", choices=ALLOWED_MODELS, value=ALLOWED_MODELS[0], visible=True, interactive=True, elem_id="hyp_model", ) hyp_categorial_imputer = gr.Dropdown( label="Categorical Imputer", choices=["most_frequent", "none"], value="none", visible=True, interactive=True, elem_id="hyp_categorical_imputer", ) with gr.Row(): hyp_numerical_imputer = gr.Dropdown( label="Numerical Imputer", choices=["mean", "median", "most_frequent", "none"], value="mean", visible=True, interactive=True, elem_id="hyp_numerical_imputer", ) hyp_numeric_scaler = gr.Dropdown( label="Numeric Scaler", choices=["standard", "minmax", "normal", "robust", "none"], value="standard", visible=True, interactive=True, elem_id="hyp_numeric_scaler", ) with gr.Row(): hyp_num_trials = gr.Number( label="Num Trials", value=100, visible=True, interactive=True, elem_id="hyp_num_trials", precision=0, ) hyp_time_limit = gr.Number( label="Time Limit", value=3600, visible=True, interactive=True, elem_id="hyp_time_limit", precision=0, ) with gr.Row(): add_job_button = gr.Button(value="Add Job", elem_id="add_job_button") clear_jobs_button = gr.Button(value="Clear Jobs", elem_id="clear_jobs_button") start_training_button = gr.Button(value="Start Training", elem_id="start_training_button") output_md = gr.Markdown( value="WARNING: Clicking `Start Training` will incur costs!", visible=True, interactive=False ) jobs_df = gr.DataFrame(visible=False, interactive=False, value=pd.DataFrame()) def _update_col_map(training_data): try: data_cols = pd.read_csv(training_data[0].name, nrows=2).columns.tolist() except TypeError: return [ gr.Dropdown.update(visible=True, interactive=False, choices=[], label="`id` column"), gr.Dropdown.update( visible=True, interactive=False, choices=[], label="`target` column(s)", ), ] return [ gr.Dropdown.update( visible=True, interactive=True, choices=[" "] + data_cols, label="`id` column", value="", ), gr.Dropdown.update( visible=True, interactive=True, choices=data_cols, label="`target` column(s)", value=data_cols[1], ), ] training_data.change( _update_col_map, inputs=training_data, outputs=[col_map_id, col_map_target], ) hyperparameters = [ hyp_task, hyp_model, hyp_categorial_imputer, hyp_numerical_imputer, hyp_numeric_scaler, hyp_num_trials, hyp_time_limit, ] model_choice.change( app_utils.handle_model_choice_change, inputs=model_choice, outputs=[jobs_df, param_choice, autotrain_backend], ) def _handle_param_choice_change(components): hyperparam_visibility = {} if components[param_choice] == "AutoTrain": for _hyperparameter in hyperparameters: hyperparam_visibility[_hyperparameter.elem_id] = False else: for _hyperparameter in hyperparameters: hyperparam_visibility[_hyperparameter.elem_id] = True op = [ h.update( interactive=hyperparam_visibility.get(h.elem_id, False), visible=hyperparam_visibility.get(h.elem_id, False), ) for h in hyperparameters ] op.append(jobs_df.update(value=pd.DataFrame(columns=[0]), visible=False, interactive=False)) return op param_choice.change( _handle_param_choice_change, inputs=set([param_choice]), outputs=hyperparameters + [jobs_df], ) def _add_job(components): try: _ = pd.read_csv(components[training_data][0].name, nrows=2).columns.tolist() except TypeError: raise gr.Error("Please upload training data first.") if len(components[col_map_target]) == 0: raise gr.Error("Target column cannot be empty.") if components[param_choice] == "AutoTrain" and components[autotrain_backend] != "AutoTrain": raise gr.Error("AutoTrain param choice is only available with AutoTrain backend.") _training_params = {} if components[param_choice] == "AutoTrain": for _hyperparameter in hyperparameters: if _hyperparameter.elem_id in ["hyp_num_jobs", "hyp_language"]: _training_params[_hyperparameter.elem_id] = components[_hyperparameter] else: for _hyperparameter in hyperparameters: if _hyperparameter.elem_id not in ["hyp_num_jobs", "hyp_language"]: _training_params[_hyperparameter.elem_id] = components[_hyperparameter] _training_params_df = app_utils.fetch_training_params_df( components[param_choice], components[jobs_df], _training_params, components[model_choice], components[autotrain_backend], hide_model_param=True, ) return gr.DataFrame.update(value=_training_params_df, visible=True, interactive=False) add_job_button.click( _add_job, inputs=set( [ training_data, param_choice, autotrain_backend, col_map_id, col_map_target, jobs_df, model_choice, autotrain_backend, ] + hyperparameters ), outputs=jobs_df, ) clear_jobs_button.click( app_utils.clear_jobs, inputs=jobs_df, outputs=jobs_df, ) start_training_button.click( start_training, inputs=[ jobs_df, model_choice, training_data, validation_data, project_name, autotrain_username, user_token, col_map_id, col_map_target, hyp_task, ], outputs=output_md, ) demo.load( app_utils._update_project_name, outputs=project_name, ).then( partial(app_utils._update_hub_model_choices, task="tabular"), outputs=model_choice, ) return demo if __name__ == "__main__": demo = main() demo.launch()
autotrain-advanced-main
src/autotrain/apps/tabular.py
autotrain-advanced-main
src/autotrain/apps/__init__.py
from functools import partial import gradio as gr import pandas as pd from autotrain.apps import common from autotrain.apps import utils as app_utils from autotrain.dataset import AutoTrainDataset from autotrain.project import AutoTrainProject def start_training( jobs_df, model_choice, training_data, validation_data, project_name, autotrain_username, user_token, col_map_text, ): if len(jobs_df) == 0: raise gr.Error("Please add at least one job.") task = "lm_training" training_data = [f.name for f in training_data] if validation_data is None: validation_data = [] else: validation_data = [f.name for f in validation_data] dset = AutoTrainDataset( train_data=training_data, task=task, token=user_token, project_name=project_name, username=autotrain_username, column_mapping={"text": col_map_text}, valid_data=validation_data, percent_valid=None, # TODO: add to UI ) dset.prepare() project = AutoTrainProject(dataset=dset, job_params=jobs_df) ids = project.create() return gr.Markdown.update( value=f"Training started for {len(ids)} jobs. You can view the status of your jobs at ids: {', '.join(ids)}", visible=True, ) def main(): with gr.Blocks(theme=app_utils.THEME) as demo: gr.Markdown("### 🚀 LLM Finetuning") user_token, valid_can_pay, who_is_training = common.user_validation() autotrain_username, project_name, model_choice, autotrain_backend = common.base_components(who_is_training) with gr.Row(): training_data, validation_data = common.train_valid_components() with gr.Column(): with gr.Group(): with gr.Row(): col_map_text = gr.Dropdown( label="Text Column", choices=[], visible=True, interactive=True, elem_id="col_map_text", ) with gr.Row(): hyp_scheduler = gr.Dropdown( label="Scheduler", choices=["cosine", "linear", "constant"], value="linear", visible=True, interactive=True, elem_id="hyp_scheduler", ) hyp_optimizer = gr.Dropdown( label="Optimizer", choices=["adamw_torch", "adamw_hf", "sgd", "adafactor", "adagrad"], value="adamw_torch", visible=True, interactive=True, elem_id="hyp_optimizer", ) with gr.Row(): hyp_use_peft = gr.Checkbox( label="PEFT", value=True, visible=True, interactive=True, elem_id="hyp_use_peft", ) hyp_use_fp16 = gr.Checkbox( label="FP16", value=True, visible=True, interactive=True, elem_id="hyp_use_fp16", ) with gr.Row(): hyp_int4_8 = gr.Dropdown( label="Int4/8", choices=["none", "int4", "int8"], value="int4", visible=True, interactive=True, elem_id="hyp_int4_8", ) hyp_lora_r = gr.Number( label="LoRA R", value=16, visible=True, interactive=True, elem_id="hyp_lora_r", precision=0, ) with gr.Row(): hyp_lora_alpha = gr.Number( label="LoRA Alpha", value=32, visible=True, interactive=True, elem_id="hyp_lora_alpha", precision=0, ) hyp_lora_dropout = gr.Number( label="LoRA Dropout", value=0.1, visible=True, interactive=True, elem_id="hyp_lora_dropout", ) with gr.Column(): with gr.Group(): param_choice = gr.Dropdown( label="Parameter Choice", choices=["Manual"], value="Manual", visible=True, interactive=True, elem_id="param_choice", ) with gr.Row(): hyp_lr = gr.Number( label="Learning Rate", value=2e-4, visible=True, interactive=True, elem_id="hyp_lr", ) hyp_epochs = gr.Number( label="Epochs", value=3, visible=True, interactive=True, elem_id="hyp_epochs", ) with gr.Row(): hyp_block_size = gr.Number( label="Block Size", value=1024, visible=True, interactive=True, elem_id="hyp_block_size", ) hyp_batch_size = gr.Number( label="Batch Size", value=2, visible=True, interactive=True, elem_id="hyp_batch_size", ) with gr.Row(): hyp_warmup_ratio = gr.Number( label="Warmup Ratio", value=0.1, visible=True, interactive=True, elem_id="hyp_warmup_ratio", ) hyp_weight_decay = gr.Number( label="Weight Decay", value=0.01, visible=True, interactive=True, elem_id="hyp_weight_decay", ) with gr.Row(): hyp_gradient_accumulation = gr.Number( label="Grad Acc Steps", value=1, visible=True, interactive=True, elem_id="hyp_gradient_accumulation", ) hyp_trainer = gr.Dropdown( label="Trainer Type", choices=["Default", "SFT"], value="SFT", visible=True, interactive=True, elem_id="hyp_trainer", ) with gr.Row(): add_job_button = gr.Button(value="Add Job", elem_id="add_job_button") clear_jobs_button = gr.Button(value="Clear Jobs", elem_id="clear_jobs_button") start_training_button = gr.Button(value="Start Training", elem_id="start_training_button") output_md = gr.Markdown( value="WARNING: Clicking `Start Training` will incur costs!", visible=True, interactive=False ) jobs_df = gr.DataFrame(visible=False, interactive=False, value=pd.DataFrame()) def _update_col_map(training_data): try: data_cols = pd.read_csv(training_data[0].name, nrows=2).columns.tolist() except TypeError: return (gr.Dropdown.update(visible=True, interactive=False, choices=[], label="`text` column"),) return gr.Dropdown.update( visible=True, interactive=True, choices=data_cols, label="`text` column", value=data_cols[0], ) training_data.change( _update_col_map, inputs=training_data, outputs=col_map_text, ) hyperparameters = [ hyp_scheduler, hyp_optimizer, hyp_use_peft, hyp_use_fp16, hyp_int4_8, hyp_lora_r, hyp_lora_alpha, hyp_lora_dropout, hyp_lr, hyp_epochs, hyp_block_size, hyp_batch_size, hyp_warmup_ratio, hyp_weight_decay, hyp_gradient_accumulation, hyp_trainer, ] model_choice.change( app_utils.handle_model_choice_change, inputs=model_choice, outputs=[jobs_df, param_choice, autotrain_backend], ) def _add_job(components): try: _ = pd.read_csv(components[training_data][0].name, nrows=2).columns.tolist() except TypeError: raise gr.Error("Please upload training data first.") if len(str(components[col_map_text].strip())) == 0: raise gr.Error("Text column cannot be empty.") if components[param_choice] == "AutoTrain" and components[autotrain_backend] != "AutoTrain": raise gr.Error("AutoTrain param choice is only available with AutoTrain backend.") _training_params = {} for _hyperparameter in hyperparameters: _training_params[_hyperparameter.elem_id] = components[_hyperparameter] _training_params_df = app_utils.fetch_training_params_df( components[param_choice], components[jobs_df], _training_params, components[model_choice], components[autotrain_backend], ) return gr.DataFrame.update(value=_training_params_df, visible=True, interactive=False) add_job_button.click( _add_job, inputs=set( [ training_data, param_choice, autotrain_backend, col_map_text, jobs_df, model_choice, autotrain_backend, ] + hyperparameters ), outputs=jobs_df, ) clear_jobs_button.click( app_utils.clear_jobs, inputs=jobs_df, outputs=jobs_df, ) start_training_button.click( start_training, inputs=[ jobs_df, model_choice, training_data, validation_data, project_name, autotrain_username, user_token, col_map_text, ], outputs=output_md, ) demo.load( app_utils._update_project_name, outputs=project_name, ).then( partial(app_utils._update_hub_model_choices, task="lm_training"), outputs=model_choice, ) return demo if __name__ == "__main__": demo = main() demo.launch()
autotrain-advanced-main
src/autotrain/apps/llm.py
from functools import partial import gradio as gr import pandas as pd from autotrain.apps import common from autotrain.apps import utils as app_utils from autotrain.dataset import AutoTrainDataset from autotrain.languages import SUPPORTED_LANGUAGES from autotrain.project import AutoTrainProject def start_training( jobs_df, model_choice, training_data, validation_data, project_name, autotrain_username, user_token, col_map_text, col_map_label, ): if len(jobs_df) == 0: raise gr.Error("Please add at least one job.") task = "text_multi_class_classification" training_data = [f.name for f in training_data] if validation_data is None: validation_data = [] else: validation_data = [f.name for f in validation_data] dset = AutoTrainDataset( train_data=training_data, task=task, token=user_token, project_name=project_name, username=autotrain_username, column_mapping={"text": col_map_text, "label": col_map_label}, valid_data=validation_data, percent_valid=None, # TODO: add to UI convert_to_class_label=True, ) dset.prepare() project = AutoTrainProject(dataset=dset, job_params=jobs_df) ids = project.create() return gr.Markdown.update( value=f"Training started for {len(ids)} jobs. You can view the status of your jobs at ids: {', '.join(ids)}", visible=True, ) def main(): with gr.Blocks(theme=app_utils.THEME) as demo: gr.Markdown("### 🚀 Text Classification") user_token, valid_can_pay, who_is_training = common.user_validation() autotrain_username, project_name, model_choice, autotrain_backend = common.base_components(who_is_training) with gr.Row(): training_data, validation_data = common.train_valid_components() with gr.Column(): with gr.Group(): with gr.Row(): col_map_text = gr.Dropdown( label="Text Column", choices=[], visible=True, interactive=True, elem_id="col_map_text", ) col_map_target = gr.Dropdown( label="Target Column", choices=[], visible=True, interactive=True, elem_id="col_map_target", ) with gr.Row(): hyp_scheduler = gr.Dropdown( label="Scheduler", choices=["cosine", "linear", "constant"], value="linear", visible=True, interactive=True, elem_id="hyp_scheduler", ) hyp_optimizer = gr.Dropdown( label="Optimizer", choices=["adamw_torch", "adamw_hf", "sgd", "adafactor", "adagrad"], value="adamw_torch", visible=True, interactive=True, elem_id="hyp_optimizer", ) hyp_use_fp16 = gr.Checkbox( label="FP16", value=True, visible=True, interactive=True, elem_id="hyp_use_fp16", ) with gr.Column(): with gr.Group(): param_choice = gr.Dropdown( label="Parameter Choice", choices=["Manual", "AutoTrain"], value="Manual", visible=True, interactive=True, elem_id="param_choice", ) with gr.Row(): hyp_language = gr.Dropdown( label="Language", choices=SUPPORTED_LANGUAGES, value="en", visible=False, interactive=False, elem_id="hyp_language", ) with gr.Row(): hyp_num_jobs = gr.Number( label="Num Jobs", value=5, visible=False, interactive=False, elem_id="hyp_num_jobs", precision=0, ) with gr.Row(): hyp_lr = gr.Number( label="Learning Rate", value=5e-5, visible=True, interactive=True, elem_id="hyp_lr", ) hyp_epochs = gr.Number( label="Epochs", value=3, visible=True, interactive=True, elem_id="hyp_epochs", ) with gr.Row(): hyp_max_seq_length = gr.Number( label="Max Seq Length", value=512, visible=True, interactive=True, elem_id="hyp_max_seq_length", ) hyp_batch_size = gr.Number( label="Batch Size", value=8, visible=True, interactive=True, elem_id="hyp_batch_size", ) with gr.Row(): hyp_warmup_ratio = gr.Number( label="Warmup Ratio", value=0.1, visible=True, interactive=True, elem_id="hyp_warmup_ratio", ) hyp_weight_decay = gr.Number( label="Weight Decay", value=0.01, visible=True, interactive=True, elem_id="hyp_weight_decay", ) with gr.Row(): hyp_gradient_accumulation = gr.Number( label="Grad Acc Steps", value=1, visible=True, interactive=True, elem_id="hyp_gradient_accumulation", ) with gr.Row(): add_job_button = gr.Button(value="Add Job", elem_id="add_job_button") clear_jobs_button = gr.Button(value="Clear Jobs", elem_id="clear_jobs_button") start_training_button = gr.Button(value="Start Training", elem_id="start_training_button") output_md = gr.Markdown( value="WARNING: Clicking `Start Training` will incur costs!", visible=True, interactive=False ) jobs_df = gr.DataFrame(visible=False, interactive=False, value=pd.DataFrame()) def _update_col_map(training_data): try: data_cols = pd.read_csv(training_data[0].name, nrows=2).columns.tolist() except TypeError: return [ gr.Dropdown.update(visible=True, interactive=False, choices=[], label="`text` column"), gr.Dropdown.update( visible=True, interactive=False, choices=[], label="`target` column", ), ] return [ gr.Dropdown.update( visible=True, interactive=True, choices=data_cols, label="`text` column", value=data_cols[0], ), gr.Dropdown.update( visible=True, interactive=True, choices=data_cols, label="`target` column", value=data_cols[1], ), ] training_data.change( _update_col_map, inputs=training_data, outputs=[col_map_text, col_map_target], ) hyperparameters = [ hyp_scheduler, hyp_optimizer, hyp_lr, hyp_epochs, hyp_max_seq_length, hyp_batch_size, hyp_warmup_ratio, hyp_weight_decay, hyp_gradient_accumulation, hyp_language, hyp_num_jobs, hyp_use_fp16, ] model_choice.change( app_utils.handle_model_choice_change, inputs=model_choice, outputs=[jobs_df, param_choice, autotrain_backend], ) def _handle_param_choice_change(components): hyperparam_visibility = {} if components[param_choice] == "AutoTrain": for _hyperparameter in hyperparameters: if _hyperparameter.elem_id in ["hyp_num_jobs", "hyp_language"]: hyperparam_visibility[_hyperparameter.elem_id] = True else: hyperparam_visibility[_hyperparameter.elem_id] = False else: for _hyperparameter in hyperparameters: if _hyperparameter.elem_id in ["hyp_num_jobs", "hyp_language"]: hyperparam_visibility[_hyperparameter.elem_id] = False else: hyperparam_visibility[_hyperparameter.elem_id] = True op = [ h.update( interactive=hyperparam_visibility.get(h.elem_id, False), visible=hyperparam_visibility.get(h.elem_id, False), ) for h in hyperparameters ] op.append(jobs_df.update(value=pd.DataFrame(columns=[0]), visible=False, interactive=False)) return op param_choice.change( _handle_param_choice_change, inputs=set([param_choice]), outputs=hyperparameters + [jobs_df], ) def _add_job(components): try: _ = pd.read_csv(components[training_data][0].name, nrows=2).columns.tolist() except TypeError: raise gr.Error("Please upload training data first.") if len(str(components[col_map_text].strip())) == 0: raise gr.Error("Text column cannot be empty.") if len(str(components[col_map_target].strip())) == 0: raise gr.Error("Target column cannot be empty.") if components[col_map_text] == components[col_map_target]: raise gr.Error("Text and Target column cannot be the same.") if components[param_choice] == "AutoTrain" and components[autotrain_backend] != "AutoTrain": raise gr.Error("AutoTrain param choice is only available with AutoTrain backend.") _training_params = {} if components[param_choice] == "AutoTrain": for _hyperparameter in hyperparameters: if _hyperparameter.elem_id in ["hyp_num_jobs", "hyp_language"]: _training_params[_hyperparameter.elem_id] = components[_hyperparameter] else: for _hyperparameter in hyperparameters: if _hyperparameter.elem_id not in ["hyp_num_jobs", "hyp_language"]: _training_params[_hyperparameter.elem_id] = components[_hyperparameter] _training_params_df = app_utils.fetch_training_params_df( components[param_choice], components[jobs_df], _training_params, components[model_choice], components[autotrain_backend], ) return gr.DataFrame.update(value=_training_params_df, visible=True, interactive=False) add_job_button.click( _add_job, inputs=set( [ training_data, param_choice, autotrain_backend, col_map_text, col_map_target, jobs_df, model_choice, autotrain_backend, ] + hyperparameters ), outputs=jobs_df, ) clear_jobs_button.click( app_utils.clear_jobs, inputs=jobs_df, outputs=jobs_df, ) start_training_button.click( start_training, inputs=[ jobs_df, model_choice, training_data, validation_data, project_name, autotrain_username, user_token, col_map_text, col_map_target, ], outputs=output_md, ) demo.load( app_utils._update_project_name, outputs=project_name, ).then( partial(app_utils._update_hub_model_choices, task="text_multi_class_classification"), outputs=model_choice, ) return demo if __name__ == "__main__": demo = main() demo.launch()
autotrain-advanced-main
src/autotrain/apps/text_classification.py
import os import gradio as gr from autotrain import allowed_file_types from autotrain.apps.utils import BACKEND_CHOICES, _login_user from autotrain.utils import get_user_token def user_validation(): user_token = os.environ.get("HF_TOKEN", "") if len(user_token) == 0: user_token = get_user_token() if user_token is None: gr.Markdown( """Please login with a write [token](https://huggingface.co/settings/tokens). Pass your HF token in an environment variable called `HF_TOKEN` and then restart this app. """ ) raise ValueError("Please login with a write token.") user_token, valid_can_pay, who_is_training = _login_user(user_token) if user_token is None or len(user_token) == 0: gr.Error("Please login with a write token.") user_token = gr.Textbox(value=user_token, type="password", lines=1, max_lines=1, visible=False, interactive=False) valid_can_pay = gr.Textbox(value=",".join(valid_can_pay), visible=False, interactive=False) return user_token, valid_can_pay, who_is_training def base_components(who_is_training): with gr.Row(): with gr.Group(): with gr.Column(): with gr.Row(): autotrain_username = gr.Dropdown( label="AutoTrain Username", choices=who_is_training, value=who_is_training[0] if who_is_training else "", interactive=True, ) with gr.Row(): project_name = gr.Textbox( label="Project name", value="", lines=1, max_lines=1, interactive=True, ) model_choice = gr.Dropdown( label="Model Choice", choices=[], visible=True, interactive=True, allow_custom_value=True, ) autotrain_backend = gr.Dropdown( label="Backend", choices=list(BACKEND_CHOICES.keys()), value=list(BACKEND_CHOICES.keys())[0], interactive=True, ) return autotrain_username, project_name, model_choice, autotrain_backend def train_valid_components(): with gr.Column(): with gr.Tabs(elem_id="tabs"): with gr.TabItem("Training Data"): training_data = gr.File( label="Training Data", file_types=allowed_file_types.TEXT_CLASSIFICATION, file_count="multiple", visible=True, interactive=True, elem_id="training_data", ) with gr.TabItem("Validation Data (Optional)"): validation_data = gr.File( label="Validation Data", file_types=allowed_file_types.TEXT_CLASSIFICATION, file_count="multiple", visible=True, interactive=True, elem_id="validation_data", ) return training_data, validation_data
autotrain-advanced-main
src/autotrain/apps/common.py
import copy import random import string import gradio as gr import numpy as np import pandas as pd from huggingface_hub import list_models from autotrain import logger from autotrain.utils import user_authentication THEME = "freddyaboulton/dracula_revamped" BACKEND_CHOICES = { "A10G Large": 3.15, "A10G Small": 1.05, "A100 Large": 4.13, "T4 Medium": 0.9, "T4 Small": 0.6, "CPU Upgrade": 0.03, "CPU (Free)": 0.0, # "Local": 0.0, # "AutoTrain": -1, } def estimate_cost(): pass def _update_hub_model_choices(task): logger.info(f"Updating hub model choices for task: {task}") if task == "text_multi_class_classification": hub_models1 = list_models(filter="fill-mask", sort="downloads", direction=-1, limit=100) hub_models2 = list_models(filter="text-classification", sort="downloads", direction=-1, limit=100) hub_models = list(hub_models1) + list(hub_models2) elif task == "lm_training": hub_models = list(list_models(filter="text-generation", sort="downloads", direction=-1, limit=100)) elif task == "image_multi_class_classification": hub_models = list(list_models(filter="image-classification", sort="downloads", direction=-1, limit=100)) elif task == "dreambooth": hub_models = list(list_models(filter="text-to-image", sort="downloads", direction=-1, limit=100)) elif task == "tabular": return gr.Dropdown.update( choices=[], visible=False, interactive=False, ) else: raise NotImplementedError # sort by number of downloads in descending order hub_models = [{"id": m.modelId, "downloads": m.downloads} for m in hub_models if m.private is False] hub_models = sorted(hub_models, key=lambda x: x["downloads"], reverse=True) if task == "dreambooth": choices = [ "stabilityai/stable-diffusion-xl-base-1.0", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-2-1-base", ] value = choices[0] return gr.Dropdown.update( choices=choices, value=value, visible=True, interactive=True, ) # if task in ("text_multi_class_classification", "image_multi_class_classification"): # choices = ["AutoTrain"] + [m["id"] for m in hub_models] # else: choices = [m["id"] for m in hub_models] return gr.Dropdown.update( choices=choices, value=choices[0], visible=True, interactive=True, ) def _update_project_name(): random_project_name = "-".join( ["".join(random.choices(string.ascii_lowercase + string.digits, k=4)) for _ in range(3)] ) return gr.Text.update(value=random_project_name, visible=True, interactive=True) def _login_user(user_token): user_info = user_authentication(token=user_token) username = user_info["name"] user_can_pay = user_info["canPay"] orgs = user_info["orgs"] valid_orgs = [org for org in orgs if org["canPay"] is True] valid_orgs = [org for org in valid_orgs if org["roleInOrg"] in ("admin", "write")] valid_orgs = [org["name"] for org in valid_orgs] valid_can_pay = [username] + valid_orgs if user_can_pay else valid_orgs who_is_training = [username] + [org["name"] for org in orgs] return user_token, valid_can_pay, who_is_training def fetch_training_params_df( param_choice, jobs_df, training_params, model_choice, autotrain_backend, hide_model_param=False ): if param_choice == "AutoTrain": # create a new dataframe from dict _training_params_df = pd.DataFrame([training_params]) else: # add row to the dataframe if len(jobs_df) == 0: _training_params_df = pd.DataFrame([training_params]) else: _training_params_df = copy.deepcopy(jobs_df) _training_params_df.columns = [f"hyp_{c}" for c in _training_params_df.columns] # convert dataframe to list of dicts _training_params_df = _training_params_df.to_dict(orient="records") # append new dict to the list _training_params_df.append(training_params) _training_params_df = pd.DataFrame(_training_params_df) # drop rows with all nan values _training_params_df.replace("", np.nan, inplace=True) # Drop rows with all missing values _training_params_df = _training_params_df.dropna(how="all") # Drop columns with all missing values _training_params_df = _training_params_df.dropna(axis=1, how="all") # remove hyp_ from column names _training_params_df.columns = [c[len("hyp_") :] for c in _training_params_df.columns] _training_params_df = _training_params_df.reset_index(drop=True) if not hide_model_param: _training_params_df.loc[:, "model_choice"] = model_choice _training_params_df.loc[:, "param_choice"] = param_choice _training_params_df.loc[:, "backend"] = autotrain_backend return _training_params_df def clear_jobs(jobs_df): return gr.DataFrame.update(visible=False, interactive=False, value=pd.DataFrame()) def handle_model_choice_change(model_choice): op = [] op.append(gr.DataFrame.update(value=pd.DataFrame(), visible=False, interactive=False)) if model_choice == "AutoTrain": op.append(gr.Dropdown.update(value="AutoTrain", interactive=False)) op.append(gr.Dropdown.update(value="AutoTrain", interactive=False)) else: op.append(gr.Dropdown.update(value="Manual", interactive=True)) op.append(gr.Dropdown.update(value=list(BACKEND_CHOICES.keys())[0], interactive=True)) return op
autotrain-advanced-main
src/autotrain/apps/utils.py
from functools import partial import gradio as gr import pandas as pd from autotrain.apps import common from autotrain.apps import utils as app_utils from autotrain.dataset import AutoTrainDreamboothDataset from autotrain.project import AutoTrainProject ALLOWED_FILE_TYPES = ["png", "jpg", "jpeg"] MODELS = [ "stabilityai/stable-diffusion-xl-base-1.0", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-2-1-base", ] def start_training( jobs_df, model_choice, training_data, project_name, autotrain_username, user_token, prompt, ): if len(jobs_df) == 0: raise gr.Error("Please add at least one job.") dset = AutoTrainDreamboothDataset( concept_images=training_data, concept_name=prompt, token=user_token, project_name=project_name, username=autotrain_username, ) dset.prepare() project = AutoTrainProject(dataset=dset, job_params=jobs_df) ids = project.create() return gr.Markdown.update( value=f"Training started for {len(ids)} jobs. You can view the status of your jobs at ids: {', '.join(ids)}", visible=True, ) def main(): with gr.Blocks(theme=app_utils.THEME) as demo: gr.Markdown("### 🚀 DreamBooth") user_token, valid_can_pay, who_is_training = common.user_validation() autotrain_username, project_name, model_choice, autotrain_backend = common.base_components(who_is_training) with gr.Row(): training_data = gr.File( label="Images", file_types=ALLOWED_FILE_TYPES, file_count="multiple", visible=True, interactive=True, ) with gr.Column(): with gr.Group(): with gr.Row(): hyp_prompt = gr.Textbox( label="Prompt", placeholder="photo of sks dog", lines=1, visible=True, interactive=True, elem_id="hyp_prompt", ) with gr.Row(): hyp_resolution = gr.Number( label="Resolution", value=1024, visible=True, interactive=True, elem_id="hyp_resolution", precision=0, ) hyp_scheduler = gr.Dropdown( label="Scheduler", choices=["cosine", "linear", "constant"], value="linear", visible=True, interactive=True, elem_id="hyp_scheduler", ) with gr.Row(): with gr.Group(): hyp_gradient_checkpointing = gr.Checkbox( label="Gradient Checkpointing", value=False, visible=True, interactive=True, elem_id="hyp_gradient_checkpointing", ) hyp_xformers = gr.Checkbox( label="Enable XFormers", value=True, visible=True, interactive=True, elem_id="hyp_xformers", ) with gr.Row(): hyp_prior_preservation = gr.Checkbox( label="Prior Preservation", value=False, visible=True, interactive=True, elem_id="hyp_prior_preservation", ) hyp_scale_lr = gr.Checkbox( label="Scale LR", value=False, visible=True, interactive=True, elem_id="hyp_scale_lr", ) with gr.Row(): hyp_use_8bit_adam = gr.Checkbox( label="Use 8bit Adam", value=True, visible=True, interactive=True, elem_id="hyp_use_8bit_adam", ) hyp_train_text_encoder = gr.Checkbox( label="Train Text Encoder", value=False, visible=True, interactive=True, elem_id="hyp_train_text_encoder", ) with gr.Row(): hyp_fp16 = gr.Checkbox( label="FP16", value=True, visible=True, interactive=True, elem_id="hyp_fp16", ) hyp_center_crop = gr.Checkbox( label="Center Crop", value=False, visible=True, interactive=True, elem_id="hyp_center_crop", ) with gr.Column(): with gr.Group(): param_choice = gr.Dropdown( label="Parameter Choice", choices=["Manual"], value="Manual", visible=True, interactive=True, elem_id="param_choice", ) with gr.Row(): hyp_lr = gr.Number( label="Learning Rate", value=1e-4, visible=True, interactive=True, elem_id="hyp_lr", ) hyp_num_steps = gr.Number( label="Number of Steps", value=500, visible=True, interactive=True, elem_id="hyp_num_steps", precision=0, ) with gr.Row(): hyp_warmup_steps = gr.Number( label="Warmup Steps", value=0, visible=True, interactive=True, elem_id="hyp_warmup_steps", precision=0, ) hyp_batch_size = gr.Number( label="Batch Size", value=1, visible=True, interactive=True, elem_id="hyp_batch_size", precision=0, ) with gr.Row(): hyp_prior_loss_weight = gr.Number( label="Prior Loss Weight", value=1.0, visible=True, interactive=True, elem_id="hyp_prior_loss_weight", ) hyp_weight_decay = gr.Number( label="Weight Decay", value=0.01, visible=True, interactive=True, elem_id="hyp_weight_decay", ) with gr.Row(): hyp_gradient_accumulation = gr.Number( label="Gradient Accumulation Steps", value=4, visible=True, interactive=True, elem_id="hyp_gradient_accumulation", precision=0, ) with gr.Row(): add_job_button = gr.Button(value="Add Job", elem_id="add_job_button") clear_jobs_button = gr.Button(value="Clear Jobs", elem_id="clear_jobs_button") start_training_button = gr.Button(value="Start Training", elem_id="start_training_button") output_md = gr.Markdown( value="WARNING: Clicking `Start Training` will incur costs!", visible=True, interactive=False ) jobs_df = gr.DataFrame(visible=False, interactive=False, value=pd.DataFrame()) hyperparameters = [ hyp_prompt, hyp_resolution, hyp_scheduler, hyp_gradient_checkpointing, hyp_xformers, hyp_prior_preservation, hyp_scale_lr, hyp_use_8bit_adam, hyp_train_text_encoder, hyp_fp16, hyp_center_crop, hyp_lr, hyp_num_steps, hyp_warmup_steps, hyp_batch_size, hyp_prior_loss_weight, hyp_weight_decay, hyp_gradient_accumulation, ] model_choice.change( app_utils.handle_model_choice_change, inputs=model_choice, outputs=[jobs_df, param_choice, autotrain_backend], ) def _add_job(components): if not components[training_data]: raise gr.Error("Please upload training images first.") if len(str(components[hyp_prompt].strip())) == 0: raise gr.Error("Prompt cannot be empty.") if components[param_choice] == "AutoTrain" and components[autotrain_backend] != "AutoTrain": raise gr.Error("AutoTrain param choice is only available with AutoTrain backend.") _training_params = {} for _hyperparameter in hyperparameters: _training_params[_hyperparameter.elem_id] = components[_hyperparameter] _training_params_df = app_utils.fetch_training_params_df( components[param_choice], components[jobs_df], _training_params, components[model_choice], components[autotrain_backend], ) return gr.DataFrame.update(value=_training_params_df, visible=True, interactive=False) add_job_button.click( _add_job, inputs=set( [ training_data, param_choice, autotrain_backend, jobs_df, model_choice, autotrain_backend, ] + hyperparameters ), outputs=jobs_df, ) clear_jobs_button.click( app_utils.clear_jobs, inputs=jobs_df, outputs=jobs_df, ) start_training_button.click( start_training, inputs=[ jobs_df, model_choice, training_data, project_name, autotrain_username, user_token, hyp_prompt, ], outputs=output_md, ) demo.load( app_utils._update_project_name, outputs=project_name, ).then( partial(app_utils._update_hub_model_choices, task="dreambooth"), outputs=model_choice, ) return demo if __name__ == "__main__": demo = main() demo.launch()
autotrain-advanced-main
src/autotrain/apps/dreambooth.py
import gradio as gr from autotrain.apps import utils as app_utils from autotrain.apps.dreambooth import main as dreambooth from autotrain.apps.llm import main as llm from autotrain.apps.tabular import main as tabular from autotrain.apps.text_classification import main as text_classification llm = llm() text_classification = text_classification() tabular = tabular() dreambooth = dreambooth() def main(): with gr.Blocks(theme=app_utils.THEME) as demo: gr.Markdown("## 🤗 AutoTrain Advanced") gr.Markdown( "AutoTrain Advanced is a no-code solution that allows you to train machine learning models in just a few clicks." ) with gr.Accordion(label="Issues/Feature Requests", open=False): gr.Markdown( "If you have any issues or feature requests, please submit them to the [AutoTrain GitHub](https://github.com/huggingface/autotrain-advanced)." ) with gr.Accordion(label="Pricing", open=False): gr.Markdown("You will be charged per minute of training time. The prices are as follows:") gr.Markdown("- A10g Large: $0.0525/minute") gr.Markdown("- A10g Small: $0.0175/minute") gr.Markdown("- A100 Large: $0.06883/minute") gr.Markdown("- T4 Medium: $0.015/minute") gr.Markdown("- T4 Small: $0.1/minute") gr.Markdown("- CPU: $0.0005/minute") with gr.Tabs(): with gr.Tab(label="LLM"): llm.render() with gr.Tab(label="Text Classification"): text_classification.render() with gr.Tab(label="Tabular"): tabular.render() with gr.Tab(label="DreamBooth"): dreambooth.render() return demo
autotrain-advanced-main
src/autotrain/apps/main.py
import os import shutil import uuid from dataclasses import dataclass from typing import Optional import pandas as pd from datasets import load_dataset from sklearn.model_selection import train_test_split from autotrain import logger ALLOWED_EXTENSIONS = ("jpeg", "png", "jpg", "JPG", "JPEG", "PNG") @dataclass class ImageClassificationPreprocessor: train_data: str username: str project_name: str token: str valid_data: Optional[str] = None test_size: Optional[float] = 0.2 seed: Optional[int] = 42 def __post_init__(self): # Check if train data path exists if not os.path.exists(self.train_data): raise ValueError(f"{self.train_data} does not exist.") # Check if train data path contains at least 2 folders subfolders = [f.path for f in os.scandir(self.train_data) if f.is_dir()] # list subfolders logger.info(f"🚀 Subfolders: {subfolders}") if len(subfolders) < 2: raise ValueError(f"{self.train_data} should contain at least 2 subfolders.") # Check if each subfolder contains at least 5 image files in jpeg, png or jpg format only for subfolder in subfolders: image_files = [f for f in os.listdir(subfolder) if f.endswith(ALLOWED_EXTENSIONS)] if len(image_files) < 5: raise ValueError(f"{subfolder} should contain at least 5 jpeg, png or jpg files.") # Check if there are no other files except image files in the subfolder if len(image_files) != len(os.listdir(subfolder)): raise ValueError(f"{subfolder} should not contain any other files except image files.") # Check if there are no subfolders inside subfolders subfolders_in_subfolder = [f.path for f in os.scandir(subfolder) if f.is_dir()] if len(subfolders_in_subfolder) > 0: raise ValueError(f"{subfolder} should not contain any subfolders.") if self.valid_data: # Check if valid data path exists if not os.path.exists(self.valid_data): raise ValueError(f"{self.valid_data} does not exist.") # Check if valid data path contains at least 2 folders subfolders = [f.path for f in os.scandir(self.valid_data) if f.is_dir()] # make sure that the subfolders in train and valid data are the same train_subfolders = set(os.path.basename(f.path) for f in os.scandir(self.train_data) if f.is_dir()) valid_subfolders = set(os.path.basename(f.path) for f in os.scandir(self.valid_data) if f.is_dir()) if train_subfolders != valid_subfolders: raise ValueError(f"{self.valid_data} should have the same subfolders as {self.train_data}.") if len(subfolders) < 2: raise ValueError(f"{self.valid_data} should contain at least 2 subfolders.") # Check if each subfolder contains at least 5 image files in jpeg, png or jpg format only for subfolder in subfolders: image_files = [f for f in os.listdir(subfolder) if f.endswith(ALLOWED_EXTENSIONS)] if len(image_files) < 5: raise ValueError(f"{subfolder} should contain at least 5 jpeg, png or jpg files.") # Check if there are no other files except image files in the subfolder if len(image_files) != len(os.listdir(subfolder)): raise ValueError(f"{subfolder} should not contain any other files except image files.") # Check if there are no subfolders inside subfolders subfolders_in_subfolder = [f.path for f in os.scandir(subfolder) if f.is_dir()] if len(subfolders_in_subfolder) > 0: raise ValueError(f"{subfolder} should not contain any subfolders.") def split(self, df): train_df, valid_df = train_test_split( df, test_size=self.test_size, random_state=self.seed, stratify=df["subfolder"], ) train_df = train_df.reset_index(drop=True) valid_df = valid_df.reset_index(drop=True) return train_df, valid_df def prepare(self): random_uuid = uuid.uuid4() cache_dir = os.environ.get("HF_HOME") if not cache_dir: cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface") data_dir = os.path.join(cache_dir, "autotrain", str(random_uuid)) if self.valid_data: shutil.copytree(self.train_data, os.path.join(data_dir, "train")) shutil.copytree(self.valid_data, os.path.join(data_dir, "validation")) dataset = load_dataset("imagefolder", data_dir=data_dir) dataset.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", private=True, token=self.token, ) else: subfolders = [f.path for f in os.scandir(self.train_data) if f.is_dir()] image_filenames = [] subfolder_names = [] for subfolder in subfolders: for filename in os.listdir(subfolder): if filename.endswith(("jpeg", "png", "jpg")): image_filenames.append(filename) subfolder_names.append(os.path.basename(subfolder)) df = pd.DataFrame({"image_filename": image_filenames, "subfolder": subfolder_names}) train_df, valid_df = self.split(df) for row in train_df.itertuples(): os.makedirs(os.path.join(data_dir, "train", row.subfolder), exist_ok=True) shutil.copy( os.path.join(self.train_data, row.subfolder, row.image_filename), os.path.join(data_dir, "train", row.subfolder, row.image_filename), ) for row in valid_df.itertuples(): os.makedirs(os.path.join(data_dir, "validation", row.subfolder), exist_ok=True) shutil.copy( os.path.join(self.train_data, row.subfolder, row.image_filename), os.path.join(data_dir, "validation", row.subfolder, row.image_filename), ) dataset = load_dataset("imagefolder", data_dir=data_dir) dataset.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", private=True, token=self.token, )
autotrain-advanced-main
src/autotrain/preprocessor/vision.py
from dataclasses import dataclass from typing import List, Optional import pandas as pd from datasets import Dataset from sklearn.model_selection import train_test_split RESERVED_COLUMNS = ["autotrain_id", "autotrain_label"] @dataclass class TabularBinaryClassificationPreprocessor: train_data: pd.DataFrame label_column: str username: str project_name: str token: str id_column: Optional[str] = None valid_data: Optional[pd.DataFrame] = None test_size: Optional[float] = 0.2 seed: Optional[int] = 42 def __post_init__(self): # check if id_column and label_column are in train_data if self.id_column is not None: if self.id_column not in self.train_data.columns: raise ValueError(f"{self.id_column} not in train data") if self.label_column not in self.train_data.columns: raise ValueError(f"{self.label_column} not in train data") # check if id_column and label_column are in valid_data if self.valid_data is not None: if self.id_column is not None: if self.id_column not in self.valid_data.columns: raise ValueError(f"{self.id_column} not in valid data") if self.label_column not in self.valid_data.columns: raise ValueError(f"{self.label_column} not in valid data") # make sure no reserved columns are in train_data or valid_data for column in RESERVED_COLUMNS: if column in self.train_data.columns: raise ValueError(f"{column} is a reserved column name") if self.valid_data is not None: if column in self.valid_data.columns: raise ValueError(f"{column} is a reserved column name") def split(self): if self.valid_data is not None: return self.train_data, self.valid_data else: train_df, valid_df = train_test_split( self.train_data, test_size=self.test_size, random_state=self.seed, stratify=self.train_data[self.label_column], ) train_df = train_df.reset_index(drop=True) valid_df = valid_df.reset_index(drop=True) return train_df, valid_df def prepare_columns(self, train_df, valid_df): train_df.loc[:, "autotrain_id"] = train_df[self.id_column] if self.id_column else list(range(len(train_df))) train_df.loc[:, "autotrain_label"] = train_df[self.label_column] valid_df.loc[:, "autotrain_id"] = valid_df[self.id_column] if self.id_column else list(range(len(valid_df))) valid_df.loc[:, "autotrain_label"] = valid_df[self.label_column] # drop id_column and label_column drop_cols = [self.id_column, self.label_column] if self.id_column else [self.label_column] train_df = train_df.drop(columns=drop_cols) valid_df = valid_df.drop(columns=drop_cols) return train_df, valid_df def prepare(self): train_df, valid_df = self.split() train_df, valid_df = self.prepare_columns(train_df, valid_df) train_df = Dataset.from_pandas(train_df) valid_df = Dataset.from_pandas(valid_df) train_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="train", private=True, token=self.token, ) valid_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="validation", private=True, token=self.token, ) return train_df, valid_df class TabularMultiClassClassificationPreprocessor(TabularBinaryClassificationPreprocessor): pass class TabularSingleColumnRegressionPreprocessor(TabularBinaryClassificationPreprocessor): def split(self): if self.valid_data is not None: return self.train_data, self.valid_data else: train_df, valid_df = train_test_split( self.train_data, test_size=self.test_size, random_state=self.seed, ) train_df = train_df.reset_index(drop=True) valid_df = valid_df.reset_index(drop=True) return train_df, valid_df @dataclass class TabularMultiLabelClassificationPreprocessor: train_data: pd.DataFrame label_column: List[str] username: str project_name: str id_column: Optional[str] = None valid_data: Optional[pd.DataFrame] = None test_size: Optional[float] = 0.2 seed: Optional[int] = 42 def __post_init__(self): # check if id_column and label_column are in train_data if self.id_column is not None: if self.id_column not in self.train_data.columns: raise ValueError(f"{self.id_column} not in train data") for label in self.label_column: if label not in self.train_data.columns: raise ValueError(f"{label} not in train data") # check if id_column and label_column are in valid_data if self.valid_data is not None: if self.id_column is not None: if self.id_column not in self.valid_data.columns: raise ValueError(f"{self.id_column} not in valid data") for label in self.label_column: if label not in self.valid_data.columns: raise ValueError(f"{label} not in valid data") # make sure no reserved columns are in train_data or valid_data for column in RESERVED_COLUMNS: if column in self.train_data.columns: raise ValueError(f"{column} is a reserved column name") if self.valid_data is not None: if column in self.valid_data.columns: raise ValueError(f"{column} is a reserved column name") def split(self): if self.valid_data is not None: return self.train_data, self.valid_data else: train_df, valid_df = train_test_split( self.train_data, test_size=self.test_size, random_state=self.seed, stratify=self.train_data[self.label_column], ) train_df = train_df.reset_index(drop=True) valid_df = valid_df.reset_index(drop=True) return train_df, valid_df def prepare_columns(self, train_df, valid_df): train_df.loc[:, "autotrain_id"] = train_df[self.id_column] if self.id_column else list(range(len(train_df))) for label in range(len(self.label_column)): train_df.loc[:, f"autotrain_label_{label}"] = train_df[self.label_column[label]] valid_df.loc[:, "autotrain_id"] = valid_df[self.id_column] if self.id_column else list(range(len(valid_df))) for label in range(len(self.label_column)): valid_df.loc[:, f"autotrain_label_{label}"] = valid_df[self.label_column[label]] # drop id_column and label_column drop_cols = [self.id_column] + self.label_column if self.id_column else self.label_column train_df = train_df.drop(columns=drop_cols) valid_df = valid_df.drop(columns=drop_cols) return train_df, valid_df def prepare(self): train_df, valid_df = self.split() train_df, valid_df = self.prepare_columns(train_df, valid_df) train_df = Dataset.from_pandas(train_df) valid_df = Dataset.from_pandas(valid_df) train_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="train", private=True, token=self.token, ) valid_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="validation", private=True, token=self.token, ) return train_df, valid_df class TabularMultiColumnRegressionPreprocessor(TabularMultiLabelClassificationPreprocessor): pass
autotrain-advanced-main
src/autotrain/preprocessor/tabular.py
autotrain-advanced-main
src/autotrain/preprocessor/__init__.py
from dataclasses import dataclass from typing import Optional import pandas as pd from datasets import ClassLabel, Dataset from sklearn.model_selection import train_test_split RESERVED_COLUMNS = ["autotrain_text", "autotrain_label"] LLM_RESERVED_COLUMNS = ["autotrain_prompt", "autotrain_context", "autotrain_response", "autotrain_prompt_start"] @dataclass class TextBinaryClassificationPreprocessor: train_data: pd.DataFrame text_column: str label_column: str username: str project_name: str token: str valid_data: Optional[pd.DataFrame] = None test_size: Optional[float] = 0.2 seed: Optional[int] = 42 convert_to_class_label: Optional[bool] = False def __post_init__(self): # check if text_column and label_column are in train_data if self.text_column not in self.train_data.columns: raise ValueError(f"{self.text_column} not in train data") if self.label_column not in self.train_data.columns: raise ValueError(f"{self.label_column} not in train data") # check if text_column and label_column are in valid_data if self.valid_data is not None: if self.text_column not in self.valid_data.columns: raise ValueError(f"{self.text_column} not in valid data") if self.label_column not in self.valid_data.columns: raise ValueError(f"{self.label_column} not in valid data") # make sure no reserved columns are in train_data or valid_data for column in RESERVED_COLUMNS: if column in self.train_data.columns: raise ValueError(f"{column} is a reserved column name") if self.valid_data is not None: if column in self.valid_data.columns: raise ValueError(f"{column} is a reserved column name") def split(self): if self.valid_data is not None: return self.train_data, self.valid_data else: train_df, valid_df = train_test_split( self.train_data, test_size=self.test_size, random_state=self.seed, stratify=self.train_data[self.label_column], ) train_df = train_df.reset_index(drop=True) valid_df = valid_df.reset_index(drop=True) return train_df, valid_df def prepare_columns(self, train_df, valid_df): train_df.loc[:, "autotrain_text"] = train_df[self.text_column] train_df.loc[:, "autotrain_label"] = train_df[self.label_column] valid_df.loc[:, "autotrain_text"] = valid_df[self.text_column] valid_df.loc[:, "autotrain_label"] = valid_df[self.label_column] # drop text_column and label_column train_df = train_df.drop(columns=[self.text_column, self.label_column]) valid_df = valid_df.drop(columns=[self.text_column, self.label_column]) return train_df, valid_df def prepare(self): train_df, valid_df = self.split() train_df, valid_df = self.prepare_columns(train_df, valid_df) label_names = sorted(set(train_df["autotrain_label"].unique().tolist())) train_df = Dataset.from_pandas(train_df) valid_df = Dataset.from_pandas(valid_df) if self.convert_to_class_label: train_df = train_df.cast_column("autotrain_label", ClassLabel(names=label_names)) valid_df = valid_df.cast_column("autotrain_label", ClassLabel(names=label_names)) train_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="train", private=True, token=self.token, ) valid_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="validation", private=True, token=self.token, ) return train_df, valid_df class TextMultiClassClassificationPreprocessor(TextBinaryClassificationPreprocessor): pass class TextSingleColumnRegressionPreprocessor(TextBinaryClassificationPreprocessor): def split(self): if self.valid_data is not None: return self.train_data, self.valid_data else: train_df, valid_df = train_test_split( self.train_data, test_size=self.test_size, random_state=self.seed, ) train_df = train_df.reset_index(drop=True) valid_df = valid_df.reset_index(drop=True) return train_df, valid_df @dataclass class LLMPreprocessor: train_data: pd.DataFrame username: str project_name: str token: str valid_data: Optional[pd.DataFrame] = None test_size: Optional[float] = 0.2 seed: Optional[int] = 42 context_column: Optional[str] = None prompt_start_column: Optional[str] = None text_column: Optional[str] = None prompt_column: Optional[str] = None response_column: Optional[str] = None def __post_init__(self): # user can either provide text_column or prompt_column and response_column if self.text_column is not None and (self.prompt_column is not None or self.response_column is not None): raise ValueError("Please provide either text_column or prompt_column and response_column") if self.text_column is not None: # if text_column is provided, use it for prompt_column and response_column self.prompt_column = self.text_column self.response_column = self.text_column # check if text_column and response_column are in train_data if self.prompt_column not in self.train_data.columns: raise ValueError(f"{self.prompt_column} not in train data") if self.response_column not in self.train_data.columns: raise ValueError(f"{self.response_column} not in train data") # check if text_column and response_column are in valid_data if self.valid_data is not None: if self.prompt_column not in self.valid_data.columns: raise ValueError(f"{self.prompt_column} not in valid data") if self.response_column not in self.valid_data.columns: raise ValueError(f"{self.response_column} not in valid data") # make sure no reserved columns are in train_data or valid_data for column in RESERVED_COLUMNS + LLM_RESERVED_COLUMNS: if column in self.train_data.columns: raise ValueError(f"{column} is a reserved column name") if self.valid_data is not None: if column in self.valid_data.columns: raise ValueError(f"{column} is a reserved column name") def split(self): if self.valid_data is not None: return self.train_data, self.valid_data # no validation is done in llm training if validation data is not provided return self.train_data, self.train_data # else: # train_df, valid_df = train_test_split( # self.train_data, # test_size=self.test_size, # random_state=self.seed, # ) # train_df = train_df.reset_index(drop=True) # valid_df = valid_df.reset_index(drop=True) # return train_df, valid_df def prepare_columns(self, train_df, valid_df): if self.text_column is not None: train_df.loc[:, "autotrain_text"] = train_df[self.text_column] valid_df.loc[:, "autotrain_text"] = valid_df[self.text_column] # drop text_column and label_column train_df = train_df.drop(columns=[self.text_column]) valid_df = valid_df.drop(columns=[self.text_column]) return train_df, valid_df else: train_df.loc[:, "autotrain_prompt"] = train_df[self.prompt_column] valid_df.loc[:, "autotrain_prompt"] = valid_df[self.prompt_column] train_df.loc[:, "autotrain_response"] = train_df[self.response_column] valid_df.loc[:, "autotrain_response"] = valid_df[self.response_column] train_df = train_df.drop(columns=[self.prompt_column, self.response_column]) valid_df = valid_df.drop(columns=[self.prompt_column, self.response_column]) if self.context_column is not None: train_df.loc[:, "autotrain_context"] = train_df[self.context_column] valid_df.loc[:, "autotrain_context"] = valid_df[self.context_column] train_df = train_df.drop(columns=[self.context_column]) valid_df = valid_df.drop(columns=[self.context_column]) if self.prompt_start_column is not None: train_df.loc[:, "autotrain_prompt_start"] = train_df[self.prompt_start_column] valid_df.loc[:, "autotrain_prompt_start"] = valid_df[self.prompt_start_column] train_df = train_df.drop(columns=[self.prompt_start_column]) valid_df = valid_df.drop(columns=[self.prompt_start_column]) return train_df, valid_df def prepare(self): train_df, valid_df = self.split() train_df, valid_df = self.prepare_columns(train_df, valid_df) train_df = Dataset.from_pandas(train_df) valid_df = Dataset.from_pandas(valid_df) train_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="train", private=True, token=self.token, ) valid_df.push_to_hub( f"{self.username}/autotrain-data-{self.project_name}", split="validation", private=True, token=self.token, ) return train_df, valid_df
autotrain-advanced-main
src/autotrain/preprocessor/text.py
import io import json from dataclasses import dataclass from typing import Any, List from huggingface_hub import HfApi, create_repo from autotrain import logger @dataclass class DreamboothPreprocessor: concept_images: List[Any] concept_name: str username: str project_name: str token: str def __post_init__(self): self.repo_name = f"{self.username}/autotrain-data-{self.project_name}" try: create_repo( repo_id=self.repo_name, repo_type="dataset", token=self.token, private=True, exist_ok=False, ) except Exception: logger.error("Error creating repo") raise ValueError("Error creating repo") def _upload_concept_images(self, file, api): logger.info(f"Uploading {file} to concept1") api.upload_file( path_or_fileobj=file.name, path_in_repo=f"concept1/{file.name.split('/')[-1]}", repo_id=self.repo_name, repo_type="dataset", token=self.token, ) def _upload_concept_prompts(self, api): _prompts = {} _prompts["concept1"] = self.concept_name prompts = json.dumps(_prompts) prompts = prompts.encode("utf-8") prompts = io.BytesIO(prompts) api.upload_file( path_or_fileobj=prompts, path_in_repo="prompts.json", repo_id=self.repo_name, repo_type="dataset", token=self.token, ) def prepare(self): api = HfApi(token=self.token) for _file in self.concept_images: self._upload_concept_images(_file, api) self._upload_concept_prompts(api)
autotrain-advanced-main
src/autotrain/preprocessor/dreambooth.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset without using HuggingFace Trainer. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from itertools import chain from pathlib import Path import datasets import torch from datasets import load_dataset from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from accelerate import Accelerator, DistributedType from accelerate.utils import set_seed from huggingface_hub import Repository from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AdamW, AutoConfig, AutoModelForCausalLM, AutoTokenizer, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import get_full_repo_name from transformers.utils.versions import require_version logger = logging.getLogger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--validation_split_percentage", default=5, help="The percentage of the train set used as validation set in case there's no validation split", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--block_size", type=int, default=None, help="Optional input sequence length after tokenization. The training dataset will be truncated in block of this size for training. Default to the model max input length for single sentence inputs (take into account special tokens).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--n_train", type=int, default=2000, help="Number of train samples.", ) parser.add_argument( "--n_val", type=int, default=500, help="Number of validation samples.", ) args = parser.parse_args() # Sanity checks if args.dataset_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment accelerator = Accelerator(log_with="all", logging_dir=args.output_dir) if args.with_tracking else Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = datasets.DatasetDict( { "train": datasets.Dataset.from_dict( load_dataset(args.dataset_name, args.dataset_config_name)["train"][: args.n_train + args.n_val] ) } ) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[:{args.validation_split_percentage}%]", ) raw_datasets["train"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[{args.validation_split_percentage}%:]", ) else: data_files = {} dataset_args = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.train_file.split(".")[-1] if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{args.validation_split_percentage}%]", **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{args.validation_split_percentage}%:]", **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.config_name) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = AutoModelForCausalLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name]) with accelerator.main_process_first(): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on dataset", ) if args.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --block_size xxx." ) block_size = 1024 else: if args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({args.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map with accelerator.main_process_first(): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=args.preprocessing_num_workers, load_from_cache_file=not args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) train_dataset = lm_datasets["train"] eval_dataset = lm_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # On TPU, the tie weights in our model have been disconnected, so we need to restore the ties. if accelerator.distributed_type == DistributedType.TPU: model.tie_weights() # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Figure out how many steps we should save the Accelerator states if hasattr(args.checkpointing_steps, "isdigit"): checkpointing_steps = args.checkpointing_steps if args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("clm_no_trainer", experiment_config) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {int(args.max_train_steps/accelerator.num_processes)}") # Only show the progress bar once on each machine. progress_bar = tqdm( range(int(args.max_train_steps / accelerator.num_processes)), disable=not accelerator.is_local_main_process ) completed_steps = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) resume_step = None path = args.resume_from_checkpoint else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last if "epoch" in path: args.num_train_epochs -= int(path.replace("epoch_", "")) else: resume_step = int(path.replace("step_", "")) args.num_train_epochs -= resume_step // len(train_dataloader) resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step for epoch in range(args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 for step, batch in enumerate(train_dataloader): # We need to skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == 0 and step < resume_step: continue outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) loss = outputs.loss losses.append(accelerator.gather(loss.repeat(args.per_device_eval_batch_size))) losses = torch.cat(losses) losses = losses[: len(eval_dataset)] try: perplexity = math.exp(torch.mean(losses)) except OverflowError: perplexity = float("inf") logger.info(f"epoch {epoch}: perplexity: {perplexity}") if args.with_tracking: accelerator.log( {"perplexity": perplexity, "train_loss": total_loss, "epoch": epoch, "step": completed_steps}, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump({"perplexity": perplexity}, f) if __name__ == "__main__": main()
blog-main
assets/62_pytorch_fsdp/run_clm_no_trainer.py
import torch import torch.nn as nn from bitsandbytes.nn import Linear8bitLt # Utility function def get_model_memory_footprint(model): r""" Partially copied and inspired from: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2 """ return sum([param.nelement() * param.element_size() for param in model.parameters()]) # Main script fp16_model = nn.Sequential( nn.Linear(64, 64), nn.Linear(64, 64) ).to(torch.float16) # Train and save your model! torch.save(fp16_model.state_dict(), "model.pt") # Define your int8 model! int8_model = nn.Sequential( Linear8bitLt(64, 64, has_fp16_weights=False), Linear8bitLt(64, 64, has_fp16_weights=False) ) int8_model.load_state_dict(torch.load("model.pt")) int8_model = int8_model.to(0) # Quantization happens here input_ = torch.randn(8, 64, dtype=torch.float16) hidden_states = int8_model(input_.to(0)) mem_int8 = get_model_memory_footprint(int8_model) mem_fp16 = get_model_memory_footprint(fp16_model) print(f"Relative difference: {mem_fp16/mem_int8}")
blog-main
assets/96_hf_bitsandbytes_integration/example.py
import functools import time from multiprocessing import pool import ray from ray_tpu import get_connection, start_ray from bloom_inference.tpu_manager import TPUManager tpu_name="bloom-tpu-v4-64" region="us-central2-b" ckpt = "bigscience/bloom" t5x_path = "gs://bloom-jax-us-central2-b/bloom-176B-scan-t5x/checkpoint_0" max_len = 128 max_input_len = 64 model_parallel_submesh = (1, 2, 4, 1) # for v4-64 def setup(): # get Python list of TPU hosts conns = get_connection(tpu_name, region) print(len(conns)) address='10.130.0.10:8080' head_info = ray.init(include_dashboard=False, address="auto") # object_store_memory=10**9, # start ray CPU<->TPU on all hosts with pool.ThreadPool(processes=len(conns)) as p: p.map(functools.partial(start_ray, address=address), conns) def init_manager(): # initialise TPU manager t = TPUManager( 8, ckpt=ckpt, t5x_path=t5x_path, max_len=max_len, max_input_len=max_input_len, model_parallel_submesh=model_parallel_submesh, ) return t # # benchmark compile step # start = time.time() # print(t.generate(4*['Recipe for coconut pasta:'])) # print(f"Generations completed in {time.time() - start:.06}s") # # benchmark generate # start = time.time() # print(t.generate(4*['Recipe for coconut pasta:'])) # print(f"Generations completed in {time.time() - start:.06}s") # # shutdown ray rpc # ray.shutdown()
bloom-jax-inference-main
run.py
import numpy as np import jax import jax.numpy as jnp from flax.core.frozen_dict import freeze from jax.experimental import PartitionSpec as P from t5x.partitioning import PjitPartitioner from t5x.train_state import InferenceState from bloom_inference.modeling_bloom import FlaxBloomForCausalLM, BloomConfig from transformers import AutoTokenizer ckpt = "sanchit-gandhi/bloom-350m-scan-t5x" config = BloomConfig(n_layer=1) model, params = FlaxBloomForCausalLM.from_pretrained(ckpt, _do_init=False, dtype=jnp.bfloat16, use_scan=True) tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-350m", use_fast=False) # 1D parameter partitioning with 2D activation partitioning logical_axis_rules = [ ('batch', 'data'), ('mlp', 'model'), ('heads', 'model'), ('vocab', 'model'), # shard remaining activations; weight matrices already have axes mapped to 'model' ('embed', 'model'), ('kv', None), ('joined_kv', None), ('relpos_buckets', None), ('abspos_buckets', None), ('length', None), ('layers', None), ('stack', None), ('mlp_activations', None), ] # 2D parameter and activation partitioning logical_axis_rules_full = [ ('batch', 'data'), ('mlp', 'model'), ('heads', 'model'), ('vocab', 'model'), # shard both activations and weight matrices on the remaining available axis ('embed', 'model'), ('embed', 'data'), ('kv', None), ('joined_kv', None), ('relpos_buckets', None), ('abspos_buckets', None), ('length', None), ('layers', None), ('stack', None), ('mlp_activations', None), ] # TODO: Add this in model init def init_fn(): input_shape = (1,1) input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) rng = jax.random.PRNGKey(0) return model.module.init(rng, input_ids, attention_mask, return_dict=False) param_axes = jax.eval_shape(init_fn)["params_axes"] # Axis names metadata # create InferenceState, since the partitioner expects it. state = InferenceState( step=jnp.array(0), params=freeze(model.params_shape_tree), params_axes=freeze(param_axes), flax_mutables=None, flax_mutables_axes=param_axes, ) num_mp_partitions = 8 partitioner = PjitPartitioner(num_mp_partitions, logical_axis_rules=logical_axis_rules_full) mesh_axes = partitioner.get_mesh_axes(state) params_spec = mesh_axes.params shard_params = partitioner.partition(model.to_bf16, (params_spec,), params_spec) # This will auto-magically run in mesh context params = shard_params(freeze(params)) def generate(params, input_ids, attention_mask): output_ids = model.generate(input_ids, attention_mask=attention_mask, params=params).sequences return output_ids p_generate = partitioner.partition( generate, in_axis_resources=(params_spec, P("data"), P("data")), out_axis_resources=P("data") ) tokenizer.padding_side = "left" model.config.max_length = 256 model.config.num_beams = 1 model.config.do_sample = True model.config.pad_token_id = tokenizer.pad_token_id prompt = "Reciepe for pasta with coconut:" inputs = tokenizer([prompt] * 8, return_tensors="jax", padding="max_length", truncation=True, max_length=64) # BS = 8 gen_ids = p_generate(freeze(params), inputs["input_ids"], inputs["attention_mask"]) generated_text = tokenizer.batch_decode(np.asarray(gen_ids), skip_special_tokens=True)
bloom-jax-inference-main
sharding_example.py
from setuptools import setup, find_packages setup( name='bloom_inference', version='0.0.0', packages=find_packages() )
bloom-jax-inference-main
setup.py
import argparse import time import numpy as np import jax import jax.numpy as jnp from jax.experimental import PartitionSpec as P from t5x.partitioning import PjitPartitioner from t5x.train_state import InferenceState from t5x.checkpoints import Checkpointer from bloom_inference.modeling_bloom import FlaxBloomForCausalLM, BloomConfig from transformers import AutoTokenizer # create a parser to get ckpt, path, max_len, input_len parser = argparse.ArgumentParser() parser.add_argument("--ckpt", type=str, default="bigscience/bloom") parser.add_argument("--t5x_path", type=str, default="gs://bloom-jax-us-central2-b/bloom-176B-scan-t5x/checkpoint_0") parser.add_argument("--max_len", type=int, default=100) parser.add_argument("--input_len", type=int, default=10) args = parser.parse_args() ckpt = args.ckpt path = args.t5x_path max_len = args.max_len input_len = args.input_len config = BloomConfig.from_pretrained(ckpt) model = FlaxBloomForCausalLM(config, _do_init=False, dtype=jnp.bfloat16, use_scan=True) tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-350m", use_fast=False) # 2D parameter and activation partitioning logical_axis_rules_full = [ ('batch', 'data'), ('mlp', 'model'), ('heads', 'model'), ('vocab', 'model'), # shard both activations and weight matrices on the remaining available axis ('embed', 'model'), ('embed', 'data'), ('kv', None), ('joined_kv', None), ('relpos_buckets', None), ('abspos_buckets', None), ('length', None), ('layers', None), ('stack', None), ('mlp_activations', None), ] def init_state(): input_shape = (1,1) input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) rng = jax.random.PRNGKey(0) initial_vars = model.module.init(rng, input_ids, attention_mask, return_dict=False) return InferenceState.create(initial_vars) state_shapes = jax.eval_shape(init_state) # model_parallel_submesh = (2, 2, 2, 1), (2, 4, 1, 1), (2, 1, 4, 1) (1, 4, 2, 1) (1, 2, 4, 1) model_parallel_submesh = (1, 2, 4, 1) partitioner = PjitPartitioner( model_parallel_submesh=model_parallel_submesh, logical_axis_rules=logical_axis_rules_full ) mesh_axes = partitioner.get_mesh_axes(state_shapes) params_spec = mesh_axes.params # Instantiate checkpointer checkpointer = Checkpointer(state_shapes, partitioner, path, use_gda=True, restore_dtype=jnp.bfloat16, save_dtype=jnp.bfloat16) # load state loaded_state = checkpointer.restore(path=path) def generate(params, input_ids, attention_mask): output_ids = model.generate(input_ids, attention_mask=attention_mask, params=params).sequences return output_ids p_generate = partitioner.partition( generate, in_axis_resources=(params_spec, P("data"), P("data")), out_axis_resources=P("data") ) # setup for generation tokenizer.padding_side = "left" model.config.max_length = max_len model.config.num_beams = 1 model.config.do_sample = True model.config.top_p = 0.9 prompts = ["This is cool "] * 4 inputs = tokenizer(prompts, return_tensors="jax", padding="max_length", truncation=True, max_length=input_len) # This will auto-magically run in mesh context start = time.time() gen_ids = p_generate(loaded_state.params, inputs["input_ids"], inputs["attention_mask"]) generated_text = tokenizer.batch_decode(gen_ids, skip_special_tokens=False) if jax.process_index() == 0: print("Compilation time:", time.time() - start) start = time.time() gen_ids = p_generate(loaded_state.params, inputs["input_ids"], inputs["attention_mask"]) generated_text = tokenizer.batch_decode(gen_ids.local_shards[0].data, skip_special_tokens=False) if jax.process_index() == 0: print("Generation time:", time.time() - start) if jax.process_index() == 0: print(generated_text)
bloom-jax-inference-main
run_speed.py
import functools import os import subprocess import time import glob import requests from fabric import Connection @functools.lru_cache() def get_bearer(): return subprocess.check_output("gcloud auth print-access-token", shell=True).decode("utf-8").strip() @functools.lru_cache() def get_project(): return subprocess.check_output('gcloud config list --format "value(core.project)"', shell=True).decode( "utf-8").strip() def check_tpu(name, zone): headers = { "Authorization": f"Bearer {get_bearer()}", } response = requests.get( f"https://tpu.googleapis.com/v2alpha1/projects/{get_project()}/locations/{zone}/nodes/{name}", headers=headers) return response.json() def get_connection( name, zone, ): info = check_tpu(name, zone) outputs = [] for i in info["networkEndpoints"]: outputs.append(Connection(i["ipAddress"], connect_kwargs={ "key_filename": os.path.expanduser("~/.ssh/google_compute_engine"), })) return outputs def start_ray(conn, address): # start afresh each launch (temporarily) conn.run("sudo rm -rf *.py bloom-jax-inference") # make directory of structure: bloom_inference/bloom_inference/modeling_bloom conn.run("mkdir bloom-jax-inference bloom-jax-inference/bloom_inference bloom-jax-inference/bloom_inference/modeling_bloom -p") # copy run files into bloom_inference for i in glob.glob("*.py"): conn.put(i, "bloom-jax-inference/") # copy CPU/TPU manager files into bloom_inference/bloom_inference for i in glob.glob("bloom_inference/*.py"): conn.put(i, "bloom-jax-inference/bloom_inference/") # copy CPU/TPU manager files into bloom_inference/bloom_inference for i in glob.glob("scripts/*.sh"): conn.put(i, "bloom_inference/scripts/") # copy modeling files into bloom_inference/bloom_inference/modeling_bloom for i in glob.glob("bloom_inference/modeling_bloom/*.py"): conn.put(i, "bloom-jax-inference/bloom_inference/modeling_bloom/") # copy modeling files into bloom_inference/bloom_inference/modeling_bloom for i in glob.glob("*.sh"): conn.put(i, "bloom-jax-inference/") # copy key files into bloom_inference conn.put("key.json", "bloom-jax-inference/") # transfer start-up script from CPU -> hosts and give permissions conn.sudo("chmod +x bloom_inference/scripts/ray_tpu.sh", hide=True) try: conn.run("ray stop -f", hide=True) except: pass time.sleep(1) # run start-up script out = conn.run(f"bash /tmp/ray-tpu.sh {address}", hide=False) # display result print(out)
bloom-jax-inference-main
ray_tpu.py
import numpy as np import jax import jax.numpy as jnp from jax.experimental import PartitionSpec as P from flax.core.frozen_dict import freeze from t5x.partitioning import PjitPartitioner from t5x.train_state import InferenceState from t5x.checkpoints import Checkpointer from bloom_inference.modeling_bloom import FlaxBloomForCausalLM, BloomConfig from transformers import AutoTokenizer jax.config.update('jax_parallel_functions_output_gda', True) ckpt = "sanchit-gandhi/bloom-350m-scan-t5x" config = BloomConfig(n_layer=1) model, params = FlaxBloomForCausalLM.from_pretrained(ckpt, _do_init=False, dtype=jnp.bfloat16, use_scan=True) tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-350m", use_fast=False) # 2D parameter and activation partitioning logical_axis_rules_full = [ ('batch', 'data'), ('mlp', 'model'), ('heads', 'model'), ('vocab', 'model'), # shard both activations and weight matrices on the remaining available axis ('embed', 'model'), ('embed', 'data'), ('kv', None), ('joined_kv', None), ('relpos_buckets', None), ('abspos_buckets', None), ('length', None), ('layers', None), ('stack', None), ('mlp_activations', None), ] def init_state(): input_shape = (1,1) input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) rng = jax.random.PRNGKey(0) initial_vars = model.module.init(rng, input_ids, attention_mask, return_dict=False) return InferenceState.create(initial_vars) state_shapes = jax.eval_shape(init_state) num_mp_partitions = 4 partitioner = PjitPartitioner(num_mp_partitions, logical_axis_rules=logical_axis_rules_full) mesh_axes = partitioner.get_mesh_axes(state_shapes) params_spec = mesh_axes.params p_shard_params = partitioner.partition(model.to_bf16, (params_spec,), params_spec) # This will auto-magically run in mesh context params = p_shard_params(freeze(params)) # create frozen dict of model variables (params, params_axes), expected format of the .create method of InferenceState model_variables = freeze({'params': params, 'params_axes': state_shapes.params_axes}) # create InferenceState in .create method format (takes care of all attributes) # TODO: flax_mutables & flax_mutables_axes required? state = InferenceState.create(model_variables) # Instantiate checkpointer path = "gs://suraj-tpu-bucket/bloom-6b3-scan-t5x-v3-8-pretrained" checkpointer = Checkpointer(state_shapes, partitioner, path, use_gda=True, restore_dtype=jnp.bfloat16, save_dtype=jnp.bfloat16) # save state -> save at step 0 will save to dir /checkpoint_0 checkpointer.save(state) # load state path = "gs://suraj-tpu-bucket/bloom-6b3-scan-t5x-v3-8-pretrained/checkpoint_0" loaded_state = checkpointer.restore(path=path) # Sanity checks # 1. check params shapes equal # chex.assert_trees_all_equal_shapes(state.params, loaded_state.params), "params shapes not equal" # 2. check params all equal # chex.assert_trees_all_equal(state.params, loaded_state.params), "params values not equal" # 3. check params axes all equal # chex.assert_trees_all_equal(state.params_axes, loaded_state.params_axes), "params axes not equal" def generate(params, input_ids, attention_mask): output_ids = model.generate(input_ids, attention_mask=attention_mask, params=params).sequences return output_ids p_generate = partitioner.partition( generate, in_axis_resources=(params_spec, P("data"), P("data")), out_axis_resources=P("data") ) # setup for generation tokenizer.padding_side = "left" model.config.max_length = 64 model.config.num_beams = 1 model.config.do_sample = False prompts = ["This is cool "] * 4 inputs = tokenizer(prompts, return_tensors="jax", padding="max_length", truncation=True, max_length=16) # This will auto-magically run in mesh context gen_ids = p_generate(loaded_state.params, inputs["input_ids"], inputs["attention_mask"]) generated_text = tokenizer.batch_decode(gen_ids.local_shards[0].data, skip_special_tokens=False) if jax.process_index() == 0: print(generated_text)
bloom-jax-inference-main
checkpointer_example.py
import os import ray import time from queue import Queue @ray.remote(resources={"tpu": 1}) # @ray.remote class TPUHostWorker(object): def __init__( self, ckpt="bigscience/bloom", t5x_path="gs://bloom-jax-us-central2-b/bloom-176B-scan-t5x/checkpoint_0", max_len=256, max_input_len=64, model_parallel_submesh=(1, 2, 4, 1), # for v4-64 ): self.ckpt = ckpt self.path = t5x_path self.max_len = max_len self.max_input_len = max_input_len self.model_parallel_submesh = model_parallel_submesh self.input_q = Queue(maxsize=1) self.output_q = Queue(maxsize=1) self._is_cpu = os.path.exists("/home/suraj_huggingface_co/bloom-jax-inference/is_cpu.txt") def is_cpu(self): return self._is_cpu def run(self): # we import packages here to import JAX and Generator only on the Host worker and not the CPU manager import jax from bloom_inference.generator import Generator, head_print print(f"jax runtime initialization starting") start = time.time() device_count = jax.device_count() if device_count == 1: head_print("TPU not found. Returning") ray.shutdown() return head_print(f"jax devices: {device_count}") head_print(f"jax runtime initialized in {time.time() - start:.06}s") # load model and params head_print("Loading model") generator = Generator( model_parallel_submesh=self.model_parallel_submesh, ckpt=self.ckpt, t5x_path=self.path, max_len=self.max_len, max_input_len=self.max_input_len ) generator.load_model_and_params() head_print("Loading complete") while True: operation, prompts = self.input_q.get() if operation == "generate": generated_text = generator.generate(prompts) self.output_q.put(generated_text) else: raise Exception("Not implemented") def generate(self, input): self.input_q.put(("generate", input)) return self.output_q.get()
bloom-jax-inference-main
bloom_inference/host_worker.py
bloom-jax-inference-main
bloom_inference/__init__.py
import warnings import jax import jax.numpy as jnp from jax.experimental import PartitionSpec as P from jax.experimental.compilation_cache import compilation_cache as cc from t5x.partitioning import PjitPartitioner from t5x.train_state import InferenceState from t5x.checkpoints import Checkpointer from transformers import AutoTokenizer from bloom_inference.modeling_bloom import FlaxBloomForCausalLM, BloomConfig cc.initialize_cache("~/jax_cache") warnings.filterwarnings("ignore") warnings.filterwarnings("ignore", category=ResourceWarning) if jax.process_index() == 0: warnings.filterwarnings("default") # print but only on the first node def head_print(*args, **kwargs): if jax.process_index() == 0: print(*args, **kwargs) # 2D parameter and activation partitioning logical_axis_rules_full = [ ('batch', 'data'), ('mlp', 'model'), ('heads', 'model'), ('vocab', 'model'), # shard both activations and weight matrices on the remaining available axis ('embed', 'model'), ('embed', 'data'), ('kv', None), ('joined_kv', None), ('relpos_buckets', None), ('abspos_buckets', None), ('length', None), ('layers', None), ('stack', None), ('mlp_activations', None), ] class Generator: def __init__( self, model_parallel_submesh=(1, 2, 4, 1), # for v4-64 ckpt="bigscience/bloom", t5x_path="gs://bloom-jax-us-central2-b/bloom-176B-scan-t5x/checkpoint_0", max_len=256, max_input_len=64, ): self.ckpt = ckpt self.path = t5x_path self.max_len = max_len self.max_input_len = max_input_len self.model_parallel_submesh = model_parallel_submesh config = BloomConfig.from_pretrained(ckpt, max_length=max_len, do_sample=True, num_beams=1, top_p=0.9) self.model = FlaxBloomForCausalLM(config, _do_init=False, dtype=jnp.bfloat16, use_scan=True) def init_state(): input_shape = (1, 1) input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) rng = jax.random.PRNGKey(0) initial_vars = self.model.module.init(rng, input_ids, attention_mask, return_dict=False) return InferenceState.create(initial_vars) state_shapes = jax.eval_shape(init_state) self.partitioner = PjitPartitioner( model_parallel_submesh=self.model_parallel_submesh, logical_axis_rules=logical_axis_rules_full ) self.params_spec = self.partitioner.get_mesh_axes(state_shapes).params # Instantiate checkpointer self.checkpointer = Checkpointer( state_shapes, self.partitioner, self.path, use_gda=True, restore_dtype=jnp.bfloat16, save_dtype=jnp.bfloat16 ) def load_model_and_params(self): # load state self.loaded_state = self.checkpointer.restore(path=self.path) self.tokenizer = AutoTokenizer.from_pretrained(self.ckpt) self.tokenizer.padding_side = "left" def generate(params, input_ids, attention_mask): output_ids = self.model.generate(input_ids, attention_mask=attention_mask, params=params).sequences return output_ids self.p_generate = self.partitioner.partition( generate, in_axis_resources=(self.params_spec, P("data"), P("data")), out_axis_resources=P("data") ) def generate(self, prompts): inputs = self.tokenizer(prompts, return_tensors="jax", padding="max_length", truncation=True, max_length=self.max_input_len) # This will auto-magically run in mesh context gen_ids = self.p_generate(self.loaded_state.params, inputs["input_ids"], inputs["attention_mask"]) generated_text = self.tokenizer.batch_decode(gen_ids, skip_special_tokens=True) return generated_text
bloom-jax-inference-main
bloom_inference/generator.py
import time import ray import numpy as np class TPUManager: # @func_set_timeout(1200) def __init__( self, node_count=8, ckpt="bigscience/bloom", t5x_path="gs://bloom-jax-us-central2-b/bloom-176B-scan-t5x/checkpoint_0", max_len=256, max_input_len=64, model_parallel_submesh=(1, 2, 4, 1), # for v4-64 ): # needs a valid ray cluster to start # assert ray.is_initialized(), "ray not initialised" from bloom_inference.host_worker import TPUHostWorker self.ckpt = ckpt self.path = t5x_path self.max_len = max_len self.max_input_len = max_input_len self.model_parallel_submesh = model_parallel_submesh self.nodes = [] self.node_count = node_count start = time.time() # for i in range(node_count): # worker = TPUHostWorker.options(max_concurrency=2).remote( # ckpt, # t5x_path, # max_len, # max_input_len, # model_parallel_submesh, # ) # is_cpu = ray.get(worker.is_cpu.remote()) # print(is_cpu) # if not is_cpu: # self.nodes.append(worker) while (len(self.nodes) < node_count): worker = TPUHostWorker.options(max_concurrency=2).remote( ckpt, t5x_path, max_len, max_input_len, model_parallel_submesh, ) is_cpu = ray.get(worker.is_cpu.remote()) print(is_cpu) if not is_cpu: self.nodes.append(worker) assert len(self.nodes) == node_count for node in self.nodes: node.run.remote() print(f"TPU workers created in {time.time() - start:.06}s") # @func_set_timeout(600) def generate(self, context): # TODO: split context (prompts) if len(context) != 4 #context = np.array_split(context, len(self.nodes), axis=0) res = [] for n, ctx in zip(self.nodes, context): res.append(n.generate.remote(ctx)) return [i for i in ray.get(res)]
bloom-jax-inference-main
bloom_inference/tpu_manager.py
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import json import os import re from functools import partial from pickle import UnpicklingError from typing import Any, Dict, Set, Tuple, Union import numpy as np import flax.linen as nn import jax import jax.numpy as jnp import msgpack.exceptions from flax.core.frozen_dict import FrozenDict, unfreeze from flax.serialization import from_bytes, to_bytes from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from requests import HTTPError from transformers.configuration_utils import PretrainedConfig from transformers.dynamic_module_utils import custom_object_save from transformers.modeling_flax_pytorch_utils import load_pytorch_checkpoint_in_flax_state_dict from transformers.utils import ( FLAX_WEIGHTS_INDEX_NAME, FLAX_WEIGHTS_NAME, HUGGINGFACE_CO_RESOLVE_ENDPOINT, WEIGHTS_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, add_code_sample_docstrings, add_start_docstrings_to_model_forward, cached_path, copy_func, has_file, hf_bucket_url, is_offline_mode, is_remote_url, logging, replace_return_docstrings, ) from transformers.utils.hub import convert_file_size_to_int, get_checkpoint_shard_files from .generation_flax_utils import FlaxGenerationMixin logger = logging.get_logger(__name__) def quick_gelu(x): return x * jax.nn.sigmoid(1.702 * x) ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } def dtype_byte_size(dtype): """ Returns the size (in bytes) occupied by one parameter of type `dtype`. Example: ```py >>> dtype_byte_size(np.float32) 4 ``` """ if dtype == np.bool: return 1 / 8 bit_search = re.search("[^\d](\d+)$", dtype.name) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") bit_size = int(bit_search.groups()[0]) return bit_size // 8 def flax_shard_checkpoint(params, max_shard_size="10GB"): """ Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. <Tip warning={true}> If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will have a size greater than `max_shard_size`. </Tip> Args: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). """ max_shard_size = convert_file_size_to_int(max_shard_size) sharded_state_dicts = [] current_block = {} current_block_size = 0 total_size = 0 # flatten the weights to chunk weights = flatten_dict(params, sep="/") for item in weights: weight_size = weights[item].size * dtype_byte_size(weights[item].dtype) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: sharded_state_dicts.append(current_block) current_block = {} current_block_size = 0 current_block[item] = weights[item] current_block_size += weight_size total_size += weight_size # Add the last block sharded_state_dicts.append(current_block) # If we only have one shard, we return it if len(sharded_state_dicts) == 1: return {FLAX_WEIGHTS_NAME: sharded_state_dicts[0]}, None # Otherwise, let's build the index weight_map = {} shards = {} for idx, shard in enumerate(sharded_state_dicts): shard_file = FLAX_WEIGHTS_NAME.replace(".msgpack", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.msgpack") shards[shard_file] = shard for weight_name in shard.keys(): weight_map[weight_name] = shard_file # Add the metadata metadata = {"total_size": total_size} index = {"metadata": metadata, "weight_map": weight_map} return shards, index class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): r""" Base class for all models. [`FlaxPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading, downloading and saving models. Class attributes (overridden by derived classes): - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class for this model architecture. - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP models, `pixel_values` for vision models and `input_values` for speech models). """ config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() def __init__( self, config: PretrainedConfig, module: nn.Module, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, ): if config is None: raise ValueError("config cannot be None") if module is None: raise ValueError("module cannot be None") # Those are private to be exposed as typed property on derived classes. self._config = config self._module = module # Those are public as their type is generic to every derived classes. self.key = PRNGKey(seed) self.dtype = dtype self.input_shape = input_shape # To check if the model was intialized automatically. self._is_initialized = _do_init if _do_init: # randomly initialized parameters random_params = self.init_weights(self.key, input_shape) params_shape_tree = jax.eval_shape(lambda params: params, random_params) else: init_fn = partial(self.init_weights, input_shape=input_shape) params_shape_tree = jax.eval_shape(init_fn, self.key) logger.info( "Model weights are not initialized as `_do_init` is set to `False`. " f"Make sure to call `{self.__class__.__name__}.init_weights` manually to initialize the weights." ) # get the shape of the parameters self._params_shape_tree = params_shape_tree # save required_params as set self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) # initialize the parameters if _do_init: self.params = random_params def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> Dict: raise NotImplementedError(f"init method has to be implemented for {self}") def enable_gradient_checkpointing(self): raise NotImplementedError(f"gradient checkpointing method has to be implemented for {self}") @classmethod def _from_config(cls, config, **kwargs): """ All context managers that the model should be initialized under go here. """ return cls(config, **kwargs) @property def framework(self) -> str: """ :str: Identifies that this is a Flax model. """ return "flax" @property def config(self) -> PretrainedConfig: return self._config @property def module(self) -> nn.Module: return self._module @property def params(self) -> Union[Dict, FrozenDict]: if not self._is_initialized: raise ValueError( "`params` cannot be accessed from model when the model is created with `_do_init=False`. " "You must call `init_weights` manually and store the params outside of the model and " "pass it explicitly where needed." ) return self._params @property def required_params(self) -> Set: return self._required_params @property def params_shape_tree(self) -> Dict: return self._params_shape_tree @params.setter def params(self, params: Union[Dict, FrozenDict]): # don't set params if the model is not initialized if not self._is_initialized: raise ValueError( "`params` cannot be set from model when the model is created with `_do_init=False`. " "You store the params outside of the model." ) if isinstance(params, FrozenDict): params = unfreeze(params) param_keys = set(flatten_dict(params).keys()) if len(self.required_params - param_keys) > 0: raise ValueError( "Some parameters are missing. Make sure that `params` include the following " f"parameters {self.required_params - param_keys}" ) self._params = params def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any: """ Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`. """ # taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27 def conditional_cast(param): if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating): param = param.astype(dtype) return param if mask is None: return jax.tree_map(conditional_cast, params) flat_params = flatten_dict(params) flat_mask, _ = jax.tree_flatten(mask) for masked, key in zip(flat_mask, flat_params.keys()): if masked: param = flat_params[key] flat_params[key] = conditional_cast(param) return unflatten_dict(flat_params) def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast the `params` in place. This method can be used on TPU to explicitly convert the model parameters to bfloat16 precision to do full half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params you want to cast, and should be `False` for those you want to skip. Examples: ```python >>> from transformers import FlaxBertModel >>> # load model >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision >>> model.params = model.to_bf16(model.params) >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) >>> # then pass the mask as follows >>> from flax import traverse_util >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> flat_params = traverse_util.flatten_dict(model.params) >>> mask = { ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) ... for path in flat_params ... } >>> mask = traverse_util.unflatten_dict(mask) >>> model.params = model.to_bf16(model.params, mask) ```""" return self._cast_floating_to(params, jnp.bfloat16, mask) def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `parmas` to `jax.numpy.float32`. This method can be used to explicitly convert the model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params you want to cast, and should be `False` for those you want to skip Examples: ```python >>> from transformers import FlaxBertModel >>> # Download model and configuration from huggingface.co >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # By default, the model params will be in fp32, to illustrate the use of this method, >>> # we'll first cast to fp16 and back to fp32 >>> model.params = model.to_f16(model.params) >>> # now cast back to fp32 >>> model.params = model.to_fp32(model.params) ```""" return self._cast_floating_to(params, jnp.float32, mask) def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `parmas` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the `params` in place. This method can be used on GPU to explicitly convert the model parameters to float16 precision to do full half-precision training or to save weights in float16 for inference in order to save memory and improve speed. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params you want to cast, and should be `False` for those you want to skip Examples: ```python >>> from transformers import FlaxBertModel >>> # load model >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # By default, the model params will be in fp32, to cast these to float16 >>> model.params = model.to_fp16(model.params) >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) >>> # then pass the mask as follows >>> from flax import traverse_util >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> flat_params = traverse_util.flatten_dict(model.params) >>> mask = { ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) ... for path in flat_params ... } >>> mask = traverse_util.unflatten_dict(mask) >>> model.params = model.to_fp16(model.params, mask) ```""" return self._cast_floating_to(params, jnp.float16, mask) @classmethod def load_flax_sharded_weights(cls, shard_files): """ This is the same as [`flax.serialization.from_bytes`] (https:lax.readthedocs.io/en/latest/_modules/flax/serialization.html#from_bytes) but for a sharded checkpoint. This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being loaded in the model. Args: shard_files (`List[str]`: The list of shard files to load. Returns: `Dict`: A nested dictionary of the model parameters, in the expected format for flax models : `{'model': {'params': {'...'}}}`. """ # Load the index state_sharded_dict = dict() for shard_file in shard_files: # load using msgpack utils try: with open(shard_file, "rb") as state_f: state = from_bytes(cls, state_f.read()) except (UnpicklingError, msgpack.exceptions.ExtraData) as e: with open(shard_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {shard_file} to Flax deserializable object. ") state = flatten_dict(state, sep="/") state_sharded_dict.update(state) del state gc.collect() # the state dict is unflattened to the match the format of model.params return unflatten_dict(state_sharded_dict, sep="/") @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype = jnp.float32, *model_args, **kwargs ): r""" Instantiate a pretrained flax model from a pre-trained model configuration. The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pt index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_pt` should be set to `True`. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. model_args (sequence of positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*): Can be either: - an instance of a class derived from [`PretrainedConfig`], - a string or path valid as input to [`~PretrainedConfig.from_pretrained`]. Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the *model id* string of a pretrained model). - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a configuration JSON file named *config.json* is found in the directory. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_pt (`bool`, *optional*, defaults to `False`): Load the model weights from a PyTorch checkpoint save file (see docstring of `pretrained_model_name_or_path` argument). ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether or not to raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model (if for instance, you are instantiating a model with 10 labels from a checkpoint with 3 labels). force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (i.e., do not try to download the model). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `**kwargs` will be directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, `kwargs` will be first passed to the configuration class initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that corresponds to a configuration attribute will be used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's `__init__` function. Examples: ```python >>> from transformers import BertConfig, FlaxBertModel >>> # Download model and configuration from huggingface.co and cache. >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> model = FlaxBertModel.from_pretrained("./test/saved_model/") >>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> config = BertConfig.from_json_file("./pt_model/config.json") >>> model = FlaxBertModel.from_pretrained("./pt_model/pytorch_model.bin", from_pt=True, config=config) ```""" config = kwargs.pop("config", None) cache_dir = kwargs.pop("cache_dir", None) from_pt = kwargs.pop("from_pt", False) ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) _do_init = kwargs.pop("_do_init", True) user_agent = {"file_type": "model", "framework": "flax", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, _from_auto=from_auto_class, _from_pipeline=from_pipeline, **kwargs, ) else: model_kwargs = kwargs # Add the dtype to model_kwargs model_kwargs["dtype"] = dtype # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the # index of the files. is_sharded = False # Load model if pretrained_model_name_or_path is not None: if os.path.isdir(pretrained_model_name_or_path): if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)): # Load from a Flax checkpoint archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_INDEX_NAME)): # Load from a sharded Flax checkpoint archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_INDEX_NAME) is_sharded = True # At this stage we don't have a weight file so we will raise an error. elif os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME): raise EnvironmentError( f"Error no file named {FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} " "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those " "weights." ) else: raise EnvironmentError( f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory " f"{pretrained_model_name_or_path}." ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path else: filename = WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=filename, revision=revision, ) # redirect to the cache, if necessary try: resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, ) except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login` and pass `use_auth_token=True`." ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " "this model name. Check the model page at " f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: if filename == FLAX_WEIGHTS_NAME: try: # Maybe the checkpoint is sharded, we try to grab the index name in this case. archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=FLAX_WEIGHTS_INDEX_NAME, revision=revision, ) resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, ) is_sharded = True except EntryNotFoundError: has_file_kwargs = {"revision": revision, "proxies": proxies, "use_auth_token": use_auth_token} if has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs): raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {FLAX_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to" " load this model from those weights." ) else: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}." ) else: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {filename}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n" f"{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.\nCheckout your" " internet connection or see how to run the library in offline mode at" " 'https://huggingface.co/docs/transformers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}." ) if resolved_archive_file == archive_file: logger.info(f"loading weights file {archive_file}") else: logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}") else: resolved_archive_file = None # We'll need to download and cache each checkpoint shard if the checkpoint is sharded. if is_sharded: # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case. resolved_archive_file, _ = get_checkpoint_shard_files( pretrained_model_name_or_path, resolved_archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision, ) # init random models model = cls(config, *model_args, _do_init=_do_init, **model_kwargs) if from_pt: state = load_pytorch_checkpoint_in_flax_state_dict(model, resolved_archive_file) else: if is_sharded: state = cls.load_flax_sharded_weights(resolved_archive_file) else: try: with open(resolved_archive_file, "rb") as state_f: state = from_bytes(cls, state_f.read()) except (UnpicklingError, msgpack.exceptions.ExtraData) as e: try: with open(resolved_archive_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {archive_file} to Flax deserializable object. ") # make sure all arrays are stored as jnp.arrays # NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4: # https://github.com/google/flax/issues/1261 if _do_init: state = jax.tree_util.tree_map(jnp.array, state) else: # keep the params on CPU if we don't want to initialize state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.devices("cpu")[0]), state) # if model is base model only use model_prefix key if cls.base_model_prefix not in dict(model.params_shape_tree) and cls.base_model_prefix in state: state = state[cls.base_model_prefix] # if model is head model and we are loading weights from base model # we initialize new params dict with base_model_prefix if cls.base_model_prefix in dict(model.params_shape_tree) and cls.base_model_prefix not in state: state = {cls.base_model_prefix: state} # flatten dicts state = flatten_dict(state) random_state = flatten_dict(unfreeze(model.params if _do_init else model.params_shape_tree)) missing_keys = model.required_params - set(state.keys()) unexpected_keys = set(state.keys()) - model.required_params if missing_keys and not _do_init: logger.warning( f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. " "Make sure to call model.init_weights to initialize the missing weights." ) cls._missing_keys = missing_keys # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not # matching the weights in the model. mismatched_keys = [] for key in state.keys(): if key in random_state and state[key].shape != random_state[key].shape: if ignore_mismatched_sizes: mismatched_keys.append((key, state[key].shape, random_state[key].shape)) state[key] = random_state[key] else: raise ValueError( f"Trying to load the pretrained weight for {key} failed: checkpoint has shape " f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. " "Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this " "model." ) # add missing keys as random parameters if we are initializing if missing_keys and _do_init: for missing_key in missing_keys: state[missing_key] = random_state[missing_key] # remove unexpected keys to not be saved again for unexpected_key in unexpected_keys: del state[unexpected_key] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" " with another architecture (e.g. initializing a BertForSequenceClassification model from a" " BertForPreTraining model).\n- This IS NOT expected if you are initializing" f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" " TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) elif len(mismatched_keys) == 0: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" f" was trained on, you can already use {model.__class__.__name__} for predictions without further" " training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" " to use it for predictions and inference." ) # dictionary of key: dtypes for the model params param_dtypes = jax.tree_map(lambda x: x.dtype, state) # extract keys of parameters not in jnp.float32 fp16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.float16] bf16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.bfloat16] # raise a warning if any of the parameters are not in jnp.float32 if len(fp16_params) > 0: logger.warning( f"Some of the weights of {model.__class__.__name__} were initialized in float16 precision from " f"the model checkpoint at {pretrained_model_name_or_path}:\n{fp16_params}\n" "You should probably UPCAST the model weights to float32 if this was not intended. " "See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this." ) if len(bf16_params) > 0: logger.warning( f"Some of the weights of {model.__class__.__name__} were initialized in bfloat16 precision from " f"the model checkpoint at {pretrained_model_name_or_path}:\n{bf16_params}\n" "You should probably UPCAST the model weights to float32 if this was not intended. " "See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this." ) if _do_init: # set correct parameters model.params = unflatten_dict(state) return model else: return model, unflatten_dict(state) def save_pretrained( self, save_directory: Union[str, os.PathLike], params=None, push_to_hub=False, max_shard_size="10GB", **kwargs ): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the `[`~FlaxPreTrainedModel.from_pretrained`]` class method Arguments: save_directory (`str` or `os.PathLike`): Directory to which to save. Will be created if it doesn't exist. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. <Tip warning={true}> Using `push_to_hub=True` will synchronize the repository you are pushing to with `save_directory`, which requires `save_directory` to be a local clone of the repo you are pushing to if it's an existing folder. Pass along `temp_dir=True` to use a temporary directory instead. </Tip> max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). <Tip warning={true}> If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard which will be bigger than `max_shard_size`. </Tip> kwargs: Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo = self._create_or_get_repo(save_directory, **kwargs) os.makedirs(save_directory, exist_ok=True) # get abs dir save_directory = os.path.abspath(save_directory) # save config as well self.config.architectures = [self.__class__.__name__[4:]] # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=self.config) self.config.save_pretrained(save_directory) # save model output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME) shards, index = flax_shard_checkpoint(params if params is not None else self.params, max_shard_size) # Clean the folder from a previous save for filename in os.listdir(save_directory): full_filename = os.path.join(save_directory, filename) if ( filename.startswith(FLAX_WEIGHTS_NAME[:-4]) and os.path.isfile(full_filename) and filename not in shards.keys() ): os.remove(full_filename) if index is None: with open(output_model_file, "wb") as f: params = params if params is not None else self.params model_bytes = to_bytes(params) f.write(model_bytes) else: save_index_file = os.path.join(save_directory, FLAX_WEIGHTS_INDEX_NAME) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) for shard_file, shard in shards.items(): # the shard item are unflattened, to save them we need to flatten them again with open(os.path.join(save_directory, shard_file), mode="wb") as f: params = unflatten_dict(shard, sep="/") shard_bytes = to_bytes(params) f.write(shard_bytes) logger.info(f"Model weights saved in {output_model_file}") if push_to_hub: url = self._push_to_hub(repo, commit_message=commit_message) logger.info(f"Model pushed to the hub in this commit: {url}") @classmethod def register_for_auto_class(cls, auto_class="FlaxAutoModel"): """ Register this class with a given auto class. This should only be used for custom models as the ones in the library are already mapped with an auto class. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"FlaxAutoModel"`): The auto class to register this new model with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class # To update the docstring, we need to copy the method, otherwise we change the original docstring. FlaxPreTrainedModel.push_to_hub = copy_func(FlaxPreTrainedModel.push_to_hub) FlaxPreTrainedModel.push_to_hub.__doc__ = FlaxPreTrainedModel.push_to_hub.__doc__.format( object="model", object_class="FlaxAutoModel", object_files="model checkpoint" ) def overwrite_call_docstring(model_class, docstring): # copy __call__ function to be sure docstring is changed only for this function model_class.__call__ = copy_func(model_class.__call__) # delete existing docstring model_class.__call__.__doc__ = None # set correct docstring model_class.__call__ = add_start_docstrings_to_model_forward(docstring)(model_class.__call__) def append_call_sample_docstring(model_class, tokenizer_class, checkpoint, output_type, config_class, mask=None): model_class.__call__ = copy_func(model_class.__call__) model_class.__call__ = add_code_sample_docstrings( processor_class=tokenizer_class, checkpoint=checkpoint, output_type=output_type, config_class=config_class, model_cls=model_class.__name__, )(model_class.__call__) def append_replace_return_docstrings(model_class, output_type, config_class): model_class.__call__ = copy_func(model_class.__call__) model_class.__call__ = replace_return_docstrings( output_type=output_type, config_class=config_class, )(model_class.__call__)
bloom-jax-inference-main
bloom_inference/modeling_bloom/modeling_flax_utils.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import jax import jax.lax as lax import jax.numpy as jnp from transformers.utils import add_start_docstrings from transformers.utils.logging import get_logger logger = get_logger(__name__) LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs: Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class FlaxLogitsProcessor: """Abstract base class for all logit processors that can be applied during generation.""" @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray: """Flax method for processing logits.""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class FlaxLogitsWarper: """Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.""" @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray: """Flax method for warping logits.""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class FlaxLogitsProcessorList(list): """ This class can be used to create a list of [`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to subsequently process a `scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each [`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to the inputs. """ @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int, **kwargs) -> jnp.ndarray: for processor in self: function_args = inspect.signature(processor.__call__).parameters if len(function_args) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys())} for " f"{processor.__class__} are passed to the logits processor." ) scores = processor(input_ids, scores, cur_len, **kwargs) else: scores = processor(input_ids, scores, cur_len) return scores class FlaxTemperatureLogitsWarper(FlaxLogitsWarper): r""" [`FlaxLogitsWarper`] for temperature (exponential scaling output probability distribution). Args: temperature (`float`): The value used to module the logits distribution. """ def __init__(self, temperature: float): if not isinstance(temperature, float) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}") self.temperature = temperature def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: scores = scores / self.temperature return scores class FlaxTopPLogitsWarper(FlaxLogitsWarper): """ [`FlaxLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. Args: top_p (`float`): If set to < 1, only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}") self.top_p = top_p self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: topk_scores, topk_indices = lax.top_k(scores, scores.shape[-1]) mask_scores = jnp.full_like(scores, self.filter_value) cumulative_probs = jax.nn.softmax(topk_scores, axis=-1).cumsum(axis=-1) score_mask = cumulative_probs < self.top_p # include the token that is higher than top_p as well score_mask = jnp.roll(score_mask, 1) score_mask |= score_mask.at[:, 0].set(True) # min tokens to keep score_mask = score_mask.at[:, : self.min_tokens_to_keep].set(True) topk_next_scores = jnp.where(score_mask, topk_scores, mask_scores) next_scores = jax.lax.sort_key_val(topk_indices, topk_next_scores)[-1] return next_scores class FlaxTopKLogitsWarper(FlaxLogitsWarper): r""" [`FlaxLogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. Args: top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if not isinstance(top_k, int) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}") self.top_k = top_k self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: batch_size, vocab_size = scores.shape next_scores_flat = jnp.full(batch_size * vocab_size, self.filter_value) topk = min(max(self.top_k, self.min_tokens_to_keep), scores.shape[-1]) # Safety check topk_scores, topk_indices = lax.top_k(scores, topk) shift = jnp.broadcast_to((jnp.arange(batch_size) * vocab_size)[:, None], (batch_size, topk)).flatten() topk_scores_flat = topk_scores.flatten() topk_indices_flat = topk_indices.flatten() + shift next_scores_flat = next_scores_flat.at[topk_indices_flat].set(topk_scores_flat) next_scores = next_scores_flat.reshape(batch_size, vocab_size) return next_scores class FlaxForcedBOSTokenLogitsProcessor(FlaxLogitsProcessor): r""" [`FlaxLogitsProcessor`] that enforces the specified token as the first generated token. Args: bos_token_id (`int`): The id of the token to force as the first generated token. """ def __init__(self, bos_token_id: int): self.bos_token_id = bos_token_id def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: new_scores = jnp.full(scores.shape, -float("inf")) apply_penalty = 1 - jnp.bool_(cur_len - 1) scores = jnp.where(apply_penalty, new_scores.at[:, self.bos_token_id].set(0), scores) return scores class FlaxForcedEOSTokenLogitsProcessor(FlaxLogitsProcessor): r""" [`FlaxLogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached. Args: max_length (`int`): The maximum length of the sequence to be generated. eos_token_id (`int`): The id of the token to force as the last generated token when `max_length` is reached. """ def __init__(self, max_length: int, eos_token_id: int): self.max_length = max_length self.eos_token_id = eos_token_id def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: new_scores = jnp.full(scores.shape, -float("inf")) apply_penalty = 1 - jnp.bool_(cur_len - self.max_length + 1) scores = jnp.where(apply_penalty, new_scores.at[:, self.eos_token_id].set(0), scores) return scores class FlaxMinLengthLogitsProcessor(FlaxLogitsProcessor): r""" [`FlaxLogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Args: min_length (`int`): The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`. eos_token_id (`int`): The id of the *end-of-sequence* token. """ def __init__(self, min_length: int, eos_token_id: int): if not isinstance(min_length, int) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") self.min_length = min_length self.eos_token_id = eos_token_id def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied apply_penalty = 1 - jnp.clip(cur_len - self.min_length, 0, 1) scores = jnp.where(apply_penalty, scores.at[:, self.eos_token_id].set(-float("inf")), scores) return scores
bloom-jax-inference-main
bloom_inference/modeling_bloom/generation_flax_logits_process.py
from .modeling_bloom import FlaxBloomForCausalLM from .configuration_bloom import BloomConfig
bloom-jax-inference-main
bloom_inference/modeling_bloom/__init__.py
# coding=utf-8 # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Bloom configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-350m": "https://huggingface.co/bigscience/bloom-350m/blob/main/config.json", "bigscience/bloom-760m": "https://huggingface.co/bigscience/bloom-760m/blob/main/config.json", "bigscience/bloom-1b3": "https://huggingface.co/bigscience/bloom-1b3/blob/main/config.json", "bigscience/bloom-2b5": "https://huggingface.co/bigscience/bloom-2b5/blob/main/config.json", "bigscience/bloom-6b3": "https://huggingface.co/bigscience/bloom-6b3/blob/main/config.json", } class BloomConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to the Bloom architecture [bigscience/bloom](https://huggingface.co/bigscience/bloom). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the Bloom model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BloomModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks skip_bias_add (`bool`, *optional*, defaults to `True`): If set to `True`, it will skip bias add for each linear layer in the transformer blocks attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`): If set to `True` and the `dtype` is set to `float16` it will scale the input of the Softmax function to `fp32` hidden_dropout (`float`, *optional*, defaults to 0.1): Dropout rate of the dropout function on the bias dropout. attention_dropout (`float`, *optional*, defaults to 0.1): Dropout rate applied to the attention probs use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). dtype (`str`, *optional*, defaults to `"bfloat16"`): Precision that has been used for the model's training in Megatron. Please load the model in the correct precision by doing `model = BloomModel.from_pretrained(model_name, torch_dtype="auto")`.` pretraining_tp (`int`, *optional*, defaults to `1`): Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when `slow_but_exact=True`. slow_but_exact (`bool`, *optional*, defaults to `False`): Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While merging the TP rank tensors, due to slicing operations the results may be slightly different between the model trained on Megatron and our model. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to enable this feature. Enabling this will hurt the computational time of the inference. Will be probably resolved in the future once the main model has been fine-tuned with TP_rank=1. Example: ```python >>> from transformers import BloomModel, BloomConfig >>> # Initializing a Bloom configuration >>> configuration = BloomConfig() >>> # Initializing a model from the configuration >>> model = BloomModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bloom" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_hidden_layers": "n_layer", "n_head": "num_attention_heads", "hidden_size": "n_embed", "dtype": "torch_dtype", } def __init__( self, vocab_size=250880, hidden_size=64, n_layer=2, n_head=8, masked_softmax_fusion=True, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=False, bos_token_id=1, eos_token_id=2, apply_residual_connection_post_layernorm=False, hidden_dropout=0.0, attention_dropout=0.0, attention_softmax_in_fp32=True, pretraining_tp=1, # TP rank used when training with megatron dtype="bfloat16", slow_but_exact=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.n_layer = n_layer self.n_head = n_head self.masked_softmax_fusion = masked_softmax_fusion self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.pretraining_tp = pretraining_tp self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.attention_softmax_in_fp32 = attention_softmax_in_fp32 self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.dtype = dtype self.slow_but_exact = slow_but_exact super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
bloom-jax-inference-main
bloom_inference/modeling_bloom/configuration_bloom.py
# coding=utf-8 # Copyright 2021 The Google AI Flax Team Authors, and The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Dict, Optional import numpy as np import flax import jax import jax.numpy as jnp from jax import lax from .generation_flax_logits_process import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) from transformers.utils import ModelOutput, logging logger = logging.get_logger(__name__) @flax.struct.dataclass class FlaxGreedySearchOutput(ModelOutput): """ Flax Base class for outputs of decoder-only generation models using greedy search. Args: sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): The generated sequences. """ sequences: jnp.ndarray = None @flax.struct.dataclass class FlaxSampleOutput(ModelOutput): """ Flax Base class for outputs of decoder-only generation models using sampling. Args: sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): The generated sequences. """ sequences: jnp.ndarray = None @flax.struct.dataclass class FlaxBeamSearchOutput(ModelOutput): """ Flax Base class for outputs of decoder-only generation models using greedy search. Args: sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): The generated sequences. scores (`jnp.ndarray` of shape `(batch_size,)`): The scores (log probabilites) of the generated sequences. """ sequences: jnp.ndarray = None scores: jnp.ndarray = None @flax.struct.dataclass class GreedyState: cur_len: jnp.ndarray sequences: jnp.ndarray running_token: jnp.ndarray is_sent_finished: jnp.ndarray model_kwargs: Dict[str, jnp.ndarray] @flax.struct.dataclass class SampleState: cur_len: jnp.ndarray sequences: jnp.ndarray running_token: jnp.ndarray is_sent_finished: jnp.ndarray prng_key: jnp.ndarray model_kwargs: Dict[str, jnp.ndarray] @flax.struct.dataclass class BeamSearchState: cur_len: jnp.ndarray running_sequences: jnp.ndarray running_scores: jnp.ndarray sequences: jnp.ndarray scores: jnp.ndarray is_sent_finished: jnp.ndarray model_kwargs: Dict[str, jnp.ndarray] class FlaxGenerationMixin: """ A class containing all functions for auto-regressive text generation, to be used as a mixin in [`FlaxPreTrainedModel`]. The class exposes [`~generation_flax_utils.FlaxGenerationMixin.generate`], which can be used for: - *greedy decoding* by calling [`~generation_flax_utils.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and `do_sample=False`. - *multinomial sampling* by calling [`~generation_flax_utils.FlaxGenerationMixin._sample`] if `num_beams=1` and `do_sample=True`. - *beam-search decoding* by calling [`~generation_utils.FlaxGenerationMixin._beam_search`] if `num_beams>1` and `do_sample=False`. """ @staticmethod def _run_loop_in_debug(cond_fn, body_fn, init_state): """ Run generation in untraced mode. This should only be used for debugging purposes. """ state = init_state while cond_fn(state): state = body_fn(state) return state def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs): encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not (argument.startswith("decoder_") or argument.startswith("cross_attn")) } model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs) return model_kwargs @staticmethod def _expand_to_num_beams(tensor, num_beams): return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:]) def _adapt_logits_for_beam_search(self, logits): """ This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`]. """ return logits def generate( self, input_ids: jnp.ndarray, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, bos_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, decoder_start_token_id: Optional[int] = None, do_sample: Optional[bool] = None, prng_key: Optional[jnp.ndarray] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None, num_beams: Optional[int] = None, no_repeat_ngram_size: Optional[int] = None, min_length: Optional[int] = None, forced_bos_token_id: Optional[int] = None, forced_eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, early_stopping: Optional[bool] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, **model_kwargs, ): r""" Generates sequences of token ids for models with a language modeling head. The method supports the following generation methods for text-decoder, text-to-text, speech-to-text, and vision-to-text models: - *greedy decoding* by calling [`~generation_flax_utils.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and `do_sample=False`. - *multinomial sampling* by calling [`~generation_flax_utils.FlaxGenerationMixin._sample`] if `num_beams=1` and `do_sample=True`. - *beam-search decoding* by calling [`~generation_utils.FlaxGenerationMixin._beam_search`] if `num_beams>1` and `do_sample=False`. <Tip warning={true}> Apart from `inputs`, all the arguments below will default to the value of the attribute of the same name as defined in the model's config (`config.json`) which in turn defaults to the [`~modeling_utils.PretrainedConfig`] of the model. </Tip> Most of these parameters are explained in more detail in [this blog post](https://huggingface.co/blog/how-to-generate). Parameters: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. do_sample (`bool`, *optional*, defaults to `False`): Whether or not to use sampling ; use greedy decoding otherwise. temperature (`float`, *optional*, defaults to 1.0): The value used to module the next token probabilities. top_k (`int`, *optional*, defaults to 50): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (`float`, *optional*, defaults to 1.0): If set to float < 1, only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. pad_token_id (`int`, *optional*): The id of the *padding* token. bos_token_id (`int`, *optional*): The id of the *beginning-of-sequence* token. eos_token_id (`int`, *optional*): The id of the *end-of-sequence* token. num_beams (`int`, *optional*, defaults to 1): Number of beams for beam search. 1 means no beam search. decoder_start_token_id (`int`, *optional*): If an encoder-decoder model starts decoding with a different token than *bos*, the id of that token. trace (`bool`, *optional*, defaults to `True`): Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a considerably slower runtime. params (`Dict[str, jnp.ndarray]`, *optional*): Optionally the model parameters can be passed. Can be useful for parallelized generation. model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Also accepts `encoder_outputs` to skip encoder part. Return: [`~utils.ModelOutput`]. Examples: ```python >>> from transformers import AutoTokenizer, FlaxAutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> model = FlaxAutoModelForCausalLM.from_pretrained("distilgpt2") >>> input_context = "The dog" >>> # encode input context >>> input_ids = tokenizer(input_context, return_tensors="np").input_ids >>> # generate candidates using sampling >>> outputs = model.generate(input_ids=input_ids, max_length=20, top_k=30, do_sample=True) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ```""" # set init values max_length = max_length if max_length is not None else self.config.max_length min_length = min_length if min_length is not None else self.config.min_length bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id ) prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) if decoder_start_token_id is None and self.config.is_encoder_decoder: raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.") if min_length is not None and min_length > max_length: raise ValueError( f"Unfeasable length constraints: the minimum length ({min_length}) is larger than the maximum " f"length ({max_length})" ) if self.config.is_encoder_decoder: # add encoder_outputs to model_kwargs if model_kwargs.get("encoder_outputs") is None: model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs) # prepare decoder_input_ids for generation input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id do_sample = do_sample if do_sample is not None else self.config.do_sample num_beams = num_beams if num_beams is not None else self.config.num_beams if not do_sample and num_beams == 1: logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id ) return self._greedy_search( input_ids, max_length, pad_token_id, eos_token_id, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) elif do_sample and num_beams == 1: logits_warper = self._get_logits_warper(top_k=top_k, top_p=top_p, temperature=temperature) logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id ) return self._sample( input_ids, max_length, pad_token_id, eos_token_id, prng_key, logits_warper=logits_warper, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) elif not do_sample and num_beams > 1: # broadcast input_ids & encoder_outputs input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams) if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams( model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=num_beams ) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = self._expand_to_num_beams( model_kwargs["attention_mask"], num_beams=num_beams ) logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id ) return self._beam_search( input_ids, max_length, pad_token_id, eos_token_id, length_penalty=length_penalty, early_stopping=early_stopping, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) else: raise NotImplementedError("`Beam sampling is currently not implemented.") def _get_logits_warper( self, top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None ) -> FlaxLogitsProcessorList: """ This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`] instances used for multinomial sampling. """ # init warp parameters top_k = top_k if top_k is not None else self.config.top_k top_p = top_p if top_p is not None else self.config.top_p temperature = temperature if temperature is not None else self.config.temperature # instantiate warpers list warpers = FlaxLogitsProcessorList() # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files # all samplers can be found in `generation_utils_samplers.py` if temperature is not None and temperature != 1.0: warpers.append(FlaxTemperatureLogitsWarper(temperature)) if top_k is not None and top_k != 0: warpers.append(FlaxTopKLogitsWarper(top_k=top_k, min_tokens_to_keep=1)) if top_p is not None and top_p < 1.0: warpers.append(FlaxTopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1)) return warpers def _get_logits_processor( self, no_repeat_ngram_size: int, min_length: int, max_length: int, eos_token_id: int, forced_bos_token_id: int, forced_eos_token_id: int, ) -> FlaxLogitsProcessorList: """ This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`] instances used to modify the scores of the language model head. """ processors = FlaxLogitsProcessorList() # init warp parameters no_repeat_ngram_size = ( no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size ) eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id forced_bos_token_id = ( forced_bos_token_id if forced_bos_token_id is not None else self.config.forced_bos_token_id ) forced_eos_token_id = ( forced_eos_token_id if forced_eos_token_id is not None else self.config.forced_eos_token_id ) # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files # all samplers can be found in `generation_utils_samplers.py` if min_length is not None and eos_token_id is not None and min_length > -1: processors.append(FlaxMinLengthLogitsProcessor(min_length, eos_token_id)) if forced_bos_token_id is not None: processors.append(FlaxForcedBOSTokenLogitsProcessor(forced_bos_token_id)) if forced_eos_token_id is not None: processors.append(FlaxForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)) return processors def _greedy_search( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, logits_processor: Optional[FlaxLogitsProcessorList] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, ): # init values max_length = max_length if max_length is not None else self.config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id batch_size, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id) pad_token_id = jnp.array(pad_token_id) cur_len = jnp.array(cur_len) # per batch-item holding current token in loop. sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) # per batch-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) # initialize state state = GreedyState( cur_len=cur_len, sequences=sequences, running_token=input_ids, is_sent_finished=is_sent_finished, model_kwargs=model_kwargs, ) def greedy_search_cond_fn(state): """state termination condition fn.""" has_reached_max_length = state.cur_len == max_length all_sequence_finished = jnp.all(state.is_sent_finished) finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) return ~finish_generation def greedy_search_body_fn(state): """state update fn.""" model_outputs = model(state.running_token, params=params, **state.model_kwargs) logits = model_outputs.logits[:, -1] # apply min_length, ... logits = logits_processor(state.sequences, logits, state.cur_len) next_token = jnp.argmax(logits, axis=-1) next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) next_token = next_token[:, None] next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) return GreedyState( cur_len=state.cur_len + 1, sequences=next_sequences, running_token=next_token, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, ) # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU if input_ids.shape[1] > 1: state = greedy_search_body_fn(state) if not trace: state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state) else: state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state) return FlaxGreedySearchOutput(sequences=state.sequences) def _sample( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, prng_key: Optional[jnp.ndarray] = None, logits_processor: Optional[FlaxLogitsProcessorList] = None, logits_warper: Optional[FlaxLogitsProcessorList] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, ): # init values max_length = max_length if max_length is not None else self.config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) batch_size, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id) pad_token_id = jnp.array(pad_token_id) cur_len = jnp.array(cur_len) # per batch-item holding current token in loop. sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) # per batch-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) # initialize state state = SampleState( cur_len=cur_len, sequences=sequences, running_token=input_ids, is_sent_finished=is_sent_finished, prng_key=prng_key, model_kwargs=model_kwargs, ) def sample_search_cond_fn(state): """state termination condition fn.""" has_reached_max_length = state.cur_len == max_length all_sequence_finished = jnp.all(state.is_sent_finished) finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) return ~finish_generation def sample_search_body_fn(state): """state update fn.""" prng_key, prng_key_next = jax.random.split(state.prng_key) model_outputs = model(state.running_token, params=params, **state.model_kwargs) logits = model_outputs.logits[:, -1] # apply min_length, ... logits = logits_processor(state.sequences, logits, state.cur_len) # apply top_p, top_k, temperature logits = logits_warper(logits, logits, state.cur_len) next_token = jax.random.categorical(prng_key, logits, axis=-1) next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) next_token = next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished next_token = next_token[:, None] next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) return SampleState( cur_len=state.cur_len + 1, sequences=next_sequences, running_token=next_token, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, prng_key=prng_key_next, ) # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU if input_ids.shape[1] > 1: state = sample_search_body_fn(state) if not trace: state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state) else: state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state) return FlaxSampleOutput(sequences=state.sequences) def _beam_search( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, early_stopping: Optional[bool] = None, logits_processor: Optional[FlaxLogitsProcessorList] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, ): """ This beam search function is heavily inspired by Flax's official example: https://github.com/google/flax/blob/master/examples/wmt/train.py#L254 """ def flatten_beam_dim(tensor): """Flattens the first two dimensions of a non-scalar array.""" # ignore scalars (e.g. cache index) if tensor.ndim == 0: return tensor return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) def unflatten_beam_dim(tensor, batch_size, num_beams): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" # ignore scalars (e.g. cache index) if tensor.ndim == 0: return tensor return tensor.reshape((batch_size, num_beams) + tensor.shape[1:]) def gather_beams(nested, beam_indices, batch_size, new_num_beams): """ Gathers the beam slices indexed by beam_indices into new beam array. """ batch_indices = jnp.reshape( jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams) ) def gather_fn(tensor): # ignore scalars (e.g. cache index) if tensor.ndim == 0: return tensor else: return tensor[batch_indices, beam_indices] return jax.tree_map(gather_fn, nested) # init values max_length = max_length if max_length is not None else self.config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping batch_size, num_beams, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id) pad_token_id = jnp.array(pad_token_id) cur_len = jnp.array(cur_len) # per batch,beam-item holding current token in loop. sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0)) # per batch,beam-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_) # per batch,beam-item score, logprobs running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1]) scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # flatten beam dim if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = flatten_beam_dim(model_kwargs["attention_mask"]) # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs) # initialize state state = BeamSearchState( cur_len=cur_len, running_sequences=running_sequences, running_scores=running_scores, sequences=sequences, scores=scores, is_sent_finished=is_sent_finished, model_kwargs=model_kwargs, ) def beam_search_cond_fn(state): """beam search state termination condition fn.""" # 1. is less than max length? not_max_length_yet = state.cur_len < max_length # 2. can the new beams still improve? best_running_score = state.running_scores[:, -1:] / (max_length**length_penalty) worst_finished_score = jnp.where( state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7) ) improvement_still_possible = jnp.all(worst_finished_score < best_running_score) # 3. is there still a beam that has not finished? still_open_beam = ~(jnp.all(state.is_sent_finished) & early_stopping) return not_max_length_yet & still_open_beam & improvement_still_possible def beam_search_body_fn(state, input_ids_length=1): """beam search state update fn.""" # 1. Forward current tokens # Collect the current position slice along length to feed the fast # autoregressive decoder model. Flatten the beam dimension into batch # dimension for feeding into the model. # unflatten beam dimension # Unflatten beam dimension in attention cache arrays input_token = flatten_beam_dim( lax.dynamic_slice( state.running_sequences, (0, 0, state.cur_len - input_ids_length), (batch_size, num_beams, input_ids_length), ) ) model_outputs = model(input_token, params=params, **state.model_kwargs) logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams) cache = jax.tree_map( lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values ) # adapt logits for FlaxMarianMTModel logits = self._adapt_logits_for_beam_search(logits) # 2. Compute log probs # get log probabilities from logits, # process logits with processors (*e.g.* min_length, ...), and # add new logprobs to existing running logprobs scores. log_probs = jax.nn.log_softmax(logits) log_probs = logits_processor( flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), state.cur_len ) log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams) log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2) vocab_size = log_probs.shape[2] log_probs = log_probs.reshape((batch_size, num_beams * vocab_size)) # 3. Retrieve top-K # Each item in batch has num_beams * vocab_size candidate sequences. # For each item, get the top 2*k candidates with the highest log- # probabilities. We gather the top 2*K beams here so that even if the best # K sequences reach EOS simultaneously, we have another K sequences # remaining to continue the live beam search. # Gather the top 2*K scores from _all_ beams. # Gather 2*k top beams. # Recover the beam index by floor division. # Recover token id by modulo division and expand Id array for broadcasting. # Update sequences for the 2*K top-k new sequences. beams_to_keep = 2 * num_beams topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep) topk_beam_indices = topk_indices // vocab_size topk_running_sequences = gather_beams( state.running_sequences, topk_beam_indices, batch_size, beams_to_keep ) topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2) topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len)) # 4. Check which sequences have ended # Update current sequences: # Did any of these sequences reach an end marker? # To prevent these just finished sequences from being added to the current sequences # set of active beam search sequences, set their log probs to a very large # negative value. did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7) # 5. Get running sequences scores for next # Determine the top k beam indices (from top 2*k beams) from log probs # and gather top k beams (from top 2*k beams). next_topk_indices = jnp.flip(lax.top_k(running_topk_log_probs, k=num_beams)[1], axis=1) next_running_sequences, next_running_scores = gather_beams( [topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams ) # 6. Process topk logits # Further process log probs: # - add length penalty # - make sure no scores can be added anymore if beam is full # - make sure still running sequences cannot be chosen as finalized beam topk_log_probs = topk_log_probs / (state.cur_len**length_penalty) beams_in_batch_are_full = ( jnp.broadcast_to(state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape) & early_stopping ) add_penalty = ~did_topk_just_finished | beams_in_batch_are_full topk_log_probs += add_penalty * np.array(-1.0e7) # 7. Get scores, sequences, is sentence finished for next. # Combine sequences, scores, and flags along the beam dimension and compare # new finished sequence scores to existing finished scores and select the # best from the new set of beams merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1) merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1) merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1) topk_merged_indices = jnp.flip(lax.top_k(merged_scores, k=num_beams)[1], axis=1) next_sequences, next_scores, next_is_sent_finished = gather_beams( [merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams ) # 8. Update model kwargs. # Determine the top k beam indices from the original set of all beams. # With these, gather the top k beam-associated caches. next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams) next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams) model_outputs["past_key_values"] = jax.tree_map(lambda x: flatten_beam_dim(x), next_cache) next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) return BeamSearchState( cur_len=state.cur_len + 1, running_scores=next_running_scores, running_sequences=next_running_sequences, scores=next_scores, sequences=next_sequences, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, ) # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU if input_ids.shape[-1] > 1: state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state) if not trace: state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state) else: state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state) # Account for the edge-case where there are no finished sequences for a # particular batch item. If so, return running sequences for that batch item. none_finished = jnp.any(state.is_sent_finished, axis=1) sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences) scores = jnp.where(none_finished[:, None], state.scores, state.running_scores) # take best beam for each batch sequences = sequences[:, -1] scores = scores[:, -1] return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
bloom-jax-inference-main
bloom_inference/modeling_bloom/generation_flax_utils.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team and Bigscience Workshop. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax BLOOM model.""" # TODO: see todos throughout this file # TODO: check correctness against pytorch implementation # TODO: add unit tests # TODO: add documentation / check that documentation is correct # TODO: BLOOM_INPUTS_DOCSTRING might be wrong still (position_ids) # TODO: check that code is jit-able import math from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, dot_product_attention_weights, make_causal_mask from flax.linen.activation import tanh from flax.linen.partitioning import scan_with_axes from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from transformers.modeling_flax_outputs import FlaxCausalLMOutput, FlaxBaseModelOutputWithPast from transformers.utils import logging from .configuration_bloom import BloomConfig from .modeling_flax_utils import FlaxPreTrainedModel from . import layers from .layers import with_sharding_constraint logger = logging.get_logger(__name__) def build_alibi_tensor_flax(attention_mask, n_head, dtype): def get_slopes(n): def get_slopes_power_of_2(n): start = 2 ** (-(2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio**i for i in range(n)] if math.log2(n).is_integer(): return get_slopes_power_of_2(n) else: closest_power_of_2 = 2 ** math.floor(math.log2(n)) return ( get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] ) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=n_head, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_flax_t5.py#L426 # batch_size = 1, n_head = n_head, query_length batch_size, key_length = attention_mask.shape num_heads = n_head query_length = 1 slopes = jnp.array(get_slopes(n_head))[None, :, None, None].astype(dtype) arange_tensor = attention_mask.cumsum(-1, dtype=dtype)[:, None, None, :] - 1 slopes_broadcasted = jnp.broadcast_to(slopes, (batch_size, num_heads, query_length, key_length)) arange_broadcasted = jnp.broadcast_to(arange_tensor, (batch_size, num_heads, query_length, key_length)) alibi = slopes_broadcasted * arange_broadcasted return alibi class FlaxBloomAttention(nn.Module): config: BloomConfig dtype: jnp.dtype = jnp.float32 params_dtype: jnp.dtype = jnp.float32 def setup(self): self.hidden_size = self.config.hidden_size self.num_heads = self.config.n_head self.head_dim = self.hidden_size // self.num_heads self.attention_softmax_in_fp32 = self.config.attention_softmax_in_fp32 if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by `num_heads` (got `hidden_size`: {self.hidden_size} and " f"`num_heads`: {self.num_heads})." ) self.query_key_value = layers.DenseGeneral( axis=-1, features=(self.num_heads, self.head_dim * 3), kernel_axes=('embed', 'heads', 'kv'), dtype=self.dtype, params_dtype=self.params_dtype, ) self.dense = layers.DenseGeneral( features=self.hidden_size, axis=(-2, -1), kernel_axes=('heads', 'kv', 'embed'), dtype=self.dtype, params_dtype=self.params_dtype, ) self.resid_dropout = nn.Dropout(rate=self.config.hidden_dropout) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): # The following code is largely copied from: # https://github.com/google-research/t5x/blob/63d9addf628c6d8c547a407a32095fcb527bb20b/t5x/examples/scalable_t5/layers.py#L280-L284 is_initialized = self.has_variable('cache', 'cached_key') # The key and value have dimension [batch_size, seq_length, num_heads, head_dim], # but we cache them as [batch_size, num_heads, head_dim, seq_length] as a TPU # fusion optimization. This also enables the "scatter via one-hot # broadcast" trick, which means we do a one-hot broadcast instead of a # scatter/gather operations, resulting in a 3-4x speedup in practice. swap_dims = lambda x: x[:-3] + tuple(x[i] for i in [-2, -1, -3]) # noqa: E731 cached_key = self.variable('cache', 'cached_key', jnp.zeros, swap_dims(key.shape), key.dtype) cached_value = self.variable('cache', 'cached_value', jnp.zeros, swap_dims(value.shape), value.dtype) cache_index = self.variable('cache', 'cache_index', lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: batch_size, num_heads, head_dim, seq_length = (cached_key.value.shape) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. # Sanity shape check of cached key against input query. num_updated_cache_vectors = query.shape[1] expected_shape = (batch_size, 1, num_heads, head_dim) if num_updated_cache_vectors == 1 and expected_shape != query.shape: raise ValueError(f"Autoregressive cache shape error, expected query shape {expected_shape} instead got {query.shape}") # Create a OHE of the current index. NOTE: the index is increased below. cur_index = cache_index.value # In order to update the key, value caches with the current key and # value, we move the seq_length axis to the back, similar to what we did for # the cached ones above. # Note these are currently the key and value of a single position, since # we feed one position at a time. one_token_key = jnp.moveaxis(key, -3, -1) one_token_value = jnp.moveaxis(value, -3, -1) # Update key, value caches with our new 1d spatial slices. # We implement an efficient scatter into the cache via one-hot # broadcast and addition. if num_updated_cache_vectors > 1: indices = jnp.eye(num_updated_cache_vectors, seq_length)[None, None] key = cached_key.value + jnp.matmul(one_token_key, indices) value = cached_value.value + jnp.matmul(one_token_value, indices) else: one_hot_indices = jax.nn.one_hot(cur_index, seq_length, dtype=key.dtype) key = cached_key.value + one_token_key * one_hot_indices value = cached_value.value + one_token_value * one_hot_indices cached_key.value = key cached_value.value = value cache_index.value = cache_index.value + num_updated_cache_vectors # Move the keys and values back to their original shapes. key = jnp.moveaxis(key, -1, -3) value = jnp.moveaxis(value, -1, -3) # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(seq_length) < cur_index + num_updated_cache_vectors, (batch_size,) + (1, num_updated_cache_vectors, seq_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, alibi, attention_mask=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, layer_number: int = None, ): batch_size, seq_length = hidden_states.shape[:2] # proj q, k, v fused_qkv = self.query_key_value(hidden_states) query, key, value = jnp.split(fused_qkv, 3, axis=-1) query = with_sharding_constraint(query, ('batch', 'length', 'heads', 'kv')) key = with_sharding_constraint(key, ('batch', 'length', 'heads', 'kv')) value = with_sharding_constraint(value, ('batch', 'length', 'heads', 'kv')) causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") # for fast decoding causal attention mask should be shifted causal_attention_mask_shift = ( self.variables["cache"]["cache_index"] if self.has_variable("cache", "cached_key") else 0 ) # fast decoding for generate requires special attention_mask if self.has_variable("cache", "cached_key"): # sequence_length of cached_key is last dim # TODO(PVP) - uncomment other three max_decoder_length = self.variables["cache"]["cached_key"].shape[-1] causal_attention_mask = jax.lax.dynamic_slice( causal_attention_mask, (0, 0, causal_attention_mask_shift, 0), (1, 1, seq_length, max_decoder_length), ) # broadcast causal attention mask & attention mask to fit for merge causal_attention_mask = jnp.broadcast_to( causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] ) attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape) attention_mask = combine_masks(attention_mask, causal_attention_mask) dropout_rng = None deterministic = True if not deterministic and self.config.attention_dropout > 0.0: dropout_rng = self.make_rng("dropout") # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) # transform boolean mask into float mask mask_value = jnp.finfo(self.dtype).min attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, mask_value).astype(self.dtype), ) attention_bias = attention_bias + alibi # TODO: override softmax precision to fp32 if self.attention_softmax_in_fp32=True and self.dtype != fp32 # usual dot product attention attn_weights = dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_dropout, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self.dense(attn_output) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class BloomGELU(nn.Module): def setup(self): self.dtype = jnp.float32 def __call__(self, x): return x * 0.5 * (1.0 + tanh(0.79788456 * x * (1 + 0.044715 * x * x))) class FlaxBloomMLP(nn.Module): config: BloomConfig dtype: jnp.dtype = jnp.float32 params_dtype: jnp.dtype = jnp.float32 def setup(self): self.hidden_size = self.config.hidden_size self.pretraining_tp = self.config.pretraining_tp self.slow_but_exact = self.config.slow_but_exact self.dense_h_to_4h = layers.DenseGeneral( features=self.hidden_size * 4, dtype=self.dtype, params_dtype=self.params_dtype, kernel_axes=('embed', 'mlp'), ) self.dense_4h_to_h = layers.DenseGeneral( features=self.hidden_size, dtype=self.dtype, params_dtype=self.params_dtype, kernel_axes=('mlp', 'embed'), ) self.hidden_dropout = nn.Dropout(self.config.hidden_dropout) self.act = BloomGELU() def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) # TODO: this code block is from the pytorch implementation. needs changing to work. # if self.pretraining_tp > 1 and self.slow_but_exact: # if False: # intermediate_output = jnp.zeros_like(residual) # slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp # for i in range(self.pretraining_tp): # intermediate_output = intermediate_output + nn.functional.linear( # hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], # self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], # ) # else: # intermediate_output = self.dense_4h_to_h(hidden_states) hidden_states = self.dense_4h_to_h(hidden_states) return hidden_states class FlaxBloomBlock(nn.Module): config: BloomConfig dtype: jnp.dtype = jnp.float32 params_dtype: jnp.dtype = jnp.float32 use_scan: bool = False def setup(self): self.input_layernorm = layers.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype, params_dtype=self.params_dtype) self.self_attention = FlaxBloomAttention(self.config, dtype=self.dtype, params_dtype=self.params_dtype) self.post_attention_layernorm = layers.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype, params_dtype=self.params_dtype) self.mlp = FlaxBloomMLP(self.config, dtype=self.dtype, params_dtype=self.params_dtype) self.apply_residual_connection_post_layernorm = self.config.apply_residual_connection_post_layernorm self.hidden_dropout = self.config.hidden_dropout def __call__( self, hidden_states, alibi, attention_mask=None, layer_number: int = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): if self.use_scan: hidden_states = hidden_states[0] hidden_states = with_sharding_constraint(hidden_states, ('batch', 'length', 'embed')) layernorm_output = self.input_layernorm(hidden_states) layernorm_output = with_sharding_constraint(layernorm_output, ('batch', 'length', 'embed')) # layer norm before saving residual if config calls for it if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states # self-attention attn_outputs = self.self_attention( layernorm_output, alibi=alibi, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, layer_number=layer_number, ) attention_output = attn_outputs[0] # apply residual connection attention_output = attention_output + residual attention_output = with_sharding_constraint(attention_output, ('batch', 'length', 'embed')) outputs = attn_outputs[1:] post_layernorm = self.post_attention_layernorm(attention_output) post_layernorm = with_sharding_constraint(post_layernorm, ('batch', 'length', 'embed')) # set residual based on config if self.apply_residual_connection_post_layernorm: residual = post_layernorm else: residual = attention_output output = self.mlp(post_layernorm, deterministic=deterministic) output = output + residual output = with_sharding_constraint(output, ('batch', 'length', 'embed')) outputs = (output,) + outputs[1:] if self.use_scan: outputs = (outputs, None) return outputs # TODO: does this still require position_ids? # TODO: gradient checkpointing # TODO: _no_split_modules? # TODO: check initialization class FlaxBloomPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BloomConfig base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: BloomConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, params_dtype: jnp.dtype = jnp.float32, _do_init: bool = True, use_scan: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, use_scan=use_scan, params_dtype=params_dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) def __call__( self, input_ids, attention_mask=None, past_key_values: dict = None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, sequence_length = input_ids.shape if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxBloomAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxBloomBlockCollection(nn.Module): config: BloomConfig dtype: jnp.dtype = jnp.float32 params_dtype: jnp.dtype = jnp.float32 use_scan: bool = False # TODO (SG): re-write as a `setup` to conform to Transformers JAX/Flax conventions -> awaiting CG response on G Chat @nn.compact def __call__( self, hidden_states, alibi, attention_mask=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if self.use_scan: # since all decoder layers are the same, we use nn.scan directly # assert not output_attentions, "cannot use `scan` with `output_attentions` set to `True`" # assert not output_hidden_states, "cannot use `scan` with `output_hidden_states` set to `True`" hidden_states = (hidden_states,) layer_number = jnp.arange(self.config.num_hidden_layers) hidden_states, _ = scan_with_axes( FlaxBloomBlock, variable_axes={"params": 0, "cache": 0}, split_rngs={"params": True, "dropout": True}, in_axes=(nn.broadcast, nn.broadcast, 0, nn.broadcast, nn.broadcast), length=self.config.num_hidden_layers, )(self.config, dtype=self.dtype, params_dtype=self.params_dtype, use_scan=True, name="FlaxBloomBlockLayers")( hidden_states, alibi, attention_mask, # kwargs not supported by scan layer_number, deterministic, init_cache, ) hidden_states = hidden_states[0] else: for layer_number in range(self.config.num_hidden_layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = FlaxBloomBlock(self.config, name=str(layer_number), dtype=self.dtype, params_dtype=self.params_dtype, use_scan=False)( hidden_states, alibi=alibi, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, layer_number=layer_number, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) # this contains possible `None` values - `FlaxBloomModule` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions) return outputs class FlaxBloomModule(nn.Module): config: BloomConfig dtype: jnp.dtype = jnp.float32 params_dtype: jnp.dtype = jnp.float32 use_scan: bool = False def setup(self): # TODO: check initialization correctness self.embed_dim = self.config.hidden_size self.embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range, dtype=self.params_dtype) self.word_embeddings = layers.Embed( self.config.vocab_size, self.embed_dim, embedding_init=nn.initializers.zeros, params_dtype=self.params_dtype, ) # post-embedding layernorm self.word_embeddings_layernorm = layers.LayerNorm(epsilon=self.config.layer_norm_epsilon, params_dtype=self.params_dtype) # transformer layers self.h = FlaxBloomBlockCollection(self.config, dtype=self.dtype, params_dtype=self.params_dtype, use_scan=self.use_scan) # final layernorm self.ln_f = layers.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype, params_dtype=self.params_dtype) # TODO: change how gradient checkpointing is done self.gradient_checkpointing = False def __call__( self, input_ids=None, attention_mask=None, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): inputs_embeds = self.word_embeddings(input_ids.astype("i4")) # do post-embedding layernorm hidden_states = self.word_embeddings_layernorm(inputs_embeds) # build alibi depending on `attention_mask` alibi = build_alibi_tensor_flax(attention_mask, self.config.n_head, hidden_states.dtype) # TODO: gradient checkpointing outputs = self.h( hidden_states, alibi=alibi, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) hidden_states = outputs[0] hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: # TODO: don't think this return value / ordering is correct return tuple(v for v in [outputs[0], outputs[-1]] if v is not None) return FlaxBaseModelOutputWithPast( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[-1], ) class FlaxBloomModel(FlaxBloomPreTrainedModel): module_class = FlaxBloomModule class FlaxBloomForCausalLMModule(nn.Module): config: BloomConfig dtype: jnp.dtype = jnp.float32 params_dtype: jnp.dtype = jnp.float32 use_scan: bool = False def setup(self): self.transformer = FlaxBloomModule(self.config, dtype=self.dtype, params_dtype=self.params_dtype, use_scan=self.use_scan) self.lm_head = layers.DenseGeneral( self.config.vocab_size, dtype=jnp.float32, # Use float32 for stabiliity. params_dtype=self.params_dtype, use_bias=False, kernel_axes=('embed', 'vocab'), ) def __call__( self, input_ids, attention_mask, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.transformer( input_ids, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_kernel = self.transformer.variables["params"]["word_embeddings"]["embedding"].T lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) class FlaxBloomForCausalLM(FlaxBloomPreTrainedModel): module_class = FlaxBloomForCausalLMModule # TODO: check if this class is correct / take out position ids def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since Bloom uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values return model_kwargs
bloom-jax-inference-main
bloom_inference/modeling_bloom/modeling_bloom.py
# Copyright 2022 The T5X Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dense attention classes and mask/weighting functions.""" # pylint: disable=attribute-defined-outside-init,g-bare-generic import dataclasses import functools import operator from typing import Any, Callable, Iterable, Optional, Sequence, Tuple, Union from flax import linen as nn from flax.linen import partitioning as nn_partitioning from flax.linen.normalization import _compute_stats, _canonicalize_axes import jax from jax import lax from jax import random import jax.numpy as jnp import numpy as np # from flax.linen.partitioning import param_with_axes, with_sharding_constraint param_with_axes = nn_partitioning.param_with_axes with_sharding_constraint = nn_partitioning.with_sharding_constraint # Type annotations Array = jnp.ndarray DType = jnp.dtype PRNGKey = jnp.ndarray Shape = Iterable[int] Activation = Callable[..., Array] # Parameter initializers. Initializer = Callable[[PRNGKey, Shape, DType], Array] InitializerAxis = Union[int, Tuple[int, ...]] NdInitializer = Callable[ [PRNGKey, Shape, DType, InitializerAxis, InitializerAxis], Array] default_embed_init = nn.initializers.variance_scaling( 1.0, 'fan_in', 'normal', out_axis=0) # ------------------------------------------------------------------------------ # Temporary inlined JAX N-d initializer code # TODO(levskaya): remove once new JAX release is out. # ------------------------------------------------------------------------------ def _compute_fans(shape: jax.core.NamedShape, in_axis=-2, out_axis=-1): """Inlined JAX `nn.initializer._compute_fans`.""" if isinstance(in_axis, int): in_size = shape[in_axis] else: in_size = int(np.prod([shape[i] for i in in_axis])) if isinstance(out_axis, int): out_size = shape[out_axis] else: out_size = int(np.prod([shape[i] for i in out_axis])) receptive_field_size = shape.total / in_size / out_size fan_in = in_size * receptive_field_size fan_out = out_size * receptive_field_size return fan_in, fan_out def variance_scaling(scale, mode, distribution, in_axis=-2, out_axis=-1, dtype=jnp.float_): """Inlined JAX `nn.initializer.variance_scaling`.""" def init(key, shape, dtype=dtype): return jnp.zeros(shape, dtype=dtype) dtype = jax.dtypes.canonicalize_dtype(dtype) shape = jax.core.as_named_shape(shape) fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) if mode == 'fan_in': denominator = fan_in elif mode == 'fan_out': denominator = fan_out elif mode == 'fan_avg': denominator = (fan_in + fan_out) / 2 else: raise ValueError( 'invalid mode for variance scaling initializer: {}'.format(mode)) variance = jnp.array(scale / denominator, dtype=dtype) if distribution == 'truncated_normal': # constant is stddev of standard normal truncated to (-2, 2) stddev = jnp.sqrt(variance) / jnp.array(.87962566103423978, dtype) return random.truncated_normal(key, -2, 2, shape, dtype) * stddev elif distribution == 'normal': return random.normal(key, shape, dtype) * jnp.sqrt(variance) elif distribution == 'uniform': return random.uniform(key, shape, dtype, -1) * jnp.sqrt(3 * variance) else: raise ValueError('invalid distribution for variance scaling ' 'initializer: {}'.format(distribution)) return init # ------------------------------------------------------------------------------ def nd_dense_init(scale, mode, distribution): """Initializer with in_axis, out_axis set at call time.""" def init_fn(key, shape, dtype, in_axis, out_axis): fn = variance_scaling( scale, mode, distribution, in_axis, out_axis) return fn(key, shape, dtype) return init_fn def dot_product_attention(query: Array, key: Array, value: Array, bias: Optional[Array] = None, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0., deterministic: bool = False, dtype: DType = jnp.float32, float32_logits: bool = False): """Computes dot-product attention given query, key, and value. This is the core function for applying attention based on https://arxiv.org/abs/1706.03762. It calculates the attention weights given query and key and combines the values using the attention weights. Args: query: queries for calculating attention with shape of `[batch, q_length, num_heads, qk_depth_per_head]`. key: keys for calculating attention with shape of `[batch, kv_length, num_heads, qk_depth_per_head]`. value: values to be used in attention with shape of `[batch, kv_length, num_heads, v_depth_per_head]`. bias: bias for the attention weights. This should be broadcastable to the shape `[batch, num_heads, q_length, kv_length]` This can be used for incorporating causal masks, padding masks, proximity bias, etc. dropout_rng: JAX PRNGKey: to be used for dropout dropout_rate: dropout rate deterministic: bool, deterministic or not (to apply dropout) dtype: the dtype of the computation (default: float32) float32_logits: bool, if True then compute logits in float32 to avoid numerical issues with bfloat16. Returns: Output of shape `[batch, length, num_heads, v_depth_per_head]`. """ assert key.ndim == query.ndim == value.ndim, 'q, k, v must have same rank.' assert query.shape[:-3] == key.shape[:-3] == value.shape[:-3], ( 'q, k, v batch dims must match.') assert query.shape[-2] == key.shape[-2] == value.shape[-2], ( 'q, k, v num_heads must match.') assert key.shape[-3] == value.shape[-3], 'k, v lengths must match.' assert query.shape[-1] == key.shape[-1], 'q, k depths must match.' # Casting logits and softmax computation for float32 for model stability. if float32_logits: query = query.astype(jnp.float32) key = key.astype(jnp.float32) # `attn_weights`: [batch, num_heads, q_length, kv_length] attn_weights = jnp.einsum('bqhd,bkhd->bhqk', query, key) # Apply attention bias: masking, dropout, proximity bias, etc. if bias is not None: attn_weights = attn_weights + bias.astype(attn_weights.dtype) # Normalize the attention weights across `kv_length` dimension. attn_weights = jax.nn.softmax(attn_weights).astype(dtype) # Apply attention dropout. if not deterministic and dropout_rate > 0.: keep_prob = 1.0 - dropout_rate # T5 broadcasts along the "length" dim, but unclear which one that # corresponds to in positional dimensions here, assuming query dim. dropout_shape = list(attn_weights.shape) dropout_shape[-2] = 1 keep = random.bernoulli(dropout_rng, keep_prob, dropout_shape) keep = jnp.broadcast_to(keep, attn_weights.shape) multiplier = ( keep.astype(attn_weights.dtype) / jnp.asarray(keep_prob, dtype=dtype)) attn_weights = attn_weights * multiplier # Take the linear combination of `value`. return jnp.einsum('bhqk,bkhd->bqhd', attn_weights, value) dynamic_vector_slice_in_dim = jax.vmap( lax.dynamic_slice_in_dim, in_axes=(None, 0, None, None)) class MultiHeadDotProductAttention(nn.Module): """Multi-head dot-product attention. Attributes: num_heads: number of attention heads. Features (i.e. inputs_q.shape[-1]) should be divisible by the number of heads. head_dim: dimension of each head. dtype: the dtype of the computation. dropout_rate: dropout rate kernel_init: initializer for the kernel of the Dense layers. float32_logits: bool, if True then compute logits in float32 to avoid numerical issues with bfloat16. """ num_heads: int head_dim: int dtype: DType = jnp.float32 dropout_rate: float = 0. kernel_init: NdInitializer = nd_dense_init(1.0, 'fan_in', 'normal') float32_logits: bool = False # computes logits in float32 for stability. @nn.compact def __call__(self, inputs_q: Array, inputs_kv: Array, mask: Optional[Array] = None, bias: Optional[Array] = None, *, decode: bool = False, deterministic: bool = False) -> Array: """Applies multi-head dot product attention on the input data. Projects the inputs into multi-headed query, key, and value vectors, applies dot-product attention and project the results to an output vector. There are two modes: decoding and non-decoding (e.g., training). The mode is determined by `decode` argument. For decoding, this method is called twice, first to initialize the cache and then for an actual decoding process. The two calls are differentiated by the presence of 'cached_key' in the variable dict. In the cache initialization stage, the cache variables are initialized as zeros and will be filled in the subsequent decoding process. In the cache initialization call, `inputs_q` has a shape [batch, length, q_features] and `inputs_kv`: [batch, length, kv_features]. During the incremental decoding stage, query, key and value all have the shape [batch, 1, qkv_features] corresponding to a single step. Args: inputs_q: input queries of shape `[batch, q_length, q_features]`. inputs_kv: key/values of shape `[batch, kv_length, kv_features]`. mask: attention mask of shape `[batch, num_heads, q_length, kv_length]`. bias: attention bias of shape `[batch, num_heads, q_length, kv_length]`. decode: Whether to prepare and use an autoregressive cache. deterministic: Disables dropout if set to True. Returns: output of shape `[batch, length, q_features]`. """ projection = functools.partial( DenseGeneral, axis=-1, features=(self.num_heads, self.head_dim), kernel_axes=('embed', 'heads', 'kv'), dtype=self.dtype) # NOTE: T5 does not explicitly rescale the attention logits by # 1/sqrt(depth_kq)! This is folded into the initializers of the # linear transformations, which is equivalent under Adafactor. depth_scaling = jnp.sqrt(self.head_dim).astype(self.dtype) query_init = lambda *args: self.kernel_init(*args) / depth_scaling # Project inputs_q to multi-headed q/k/v # dimensions are then [batch, length, num_heads, head_dim] query = projection(kernel_init=query_init, name='query')(inputs_q) key = projection(kernel_init=self.kernel_init, name='key')(inputs_kv) value = projection(kernel_init=self.kernel_init, name='value')(inputs_kv) query = with_sharding_constraint(query, ('batch', 'length', 'heads', 'kv')) key = with_sharding_constraint(key, ('batch', 'length', 'heads', 'kv')) value = with_sharding_constraint(value, ('batch', 'length', 'heads', 'kv')) if decode: # Detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable('cache', 'cached_key') # The key and value have dimension [batch, length, num_heads, head_dim], # but we cache them as [batch, num_heads, head_dim, length] as a TPU # fusion optimization. This also enables the "scatter via one-hot # broadcast" trick, which means we do a one-hot broadcast instead of a # scatter/gather operations, resulting in a 3-4x speedup in practice. swap_dims = lambda x: x[:-3] + tuple(x[i] for i in [-2, -1, -3]) cached_key = self.variable('cache', 'cached_key', jnp.zeros, swap_dims(key.shape), key.dtype) cached_value = self.variable('cache', 'cached_value', jnp.zeros, swap_dims(value.shape), value.dtype) cache_index = self.variable('cache', 'cache_index', lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: batch, num_heads, head_dim, length = (cached_key.value.shape) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. # Sanity shape check of cached key against input query. expected_shape = (batch, 1, num_heads, head_dim) if expected_shape != query.shape: raise ValueError('Autoregressive cache shape error, ' 'expected query shape %s instead got %s.' % (expected_shape, query.shape)) # Create a OHE of the current index. NOTE: the index is increased below. cur_index = cache_index.value one_hot_indices = jax.nn.one_hot(cur_index, length, dtype=key.dtype) # In order to update the key, value caches with the current key and # value, we move the length axis to the back, similar to what we did for # the cached ones above. # Note these are currently the key and value of a single position, since # we feed one position at a time. one_token_key = jnp.moveaxis(key, -3, -1) one_token_value = jnp.moveaxis(value, -3, -1) # Update key, value caches with our new 1d spatial slices. # We implement an efficient scatter into the cache via one-hot # broadcast and addition. key = cached_key.value + one_token_key * one_hot_indices value = cached_value.value + one_token_value * one_hot_indices cached_key.value = key cached_value.value = value cache_index.value = cache_index.value + 1 # Move the keys and values back to their original shapes. key = jnp.moveaxis(key, -1, -3) value = jnp.moveaxis(value, -1, -3) # Causal mask for cached decoder self-attention: our single query # position should only attend to those key positions that have already # been generated and cached, not the remaining zero elements. mask = combine_masks( mask, jnp.broadcast_to( jnp.arange(length) <= cur_index, # (1, 1, length) represent (head dim, query length, key length) # query length is 1 because during decoding we deal with one # index. # The same mask is applied to all batch elements and heads. (batch, 1, 1, length))) # Grab the correct relative attention bias during decoding. This is # only required during single step decoding. if bias is not None: # The bias is a full attention matrix, but during decoding we only # have to take a slice of it. # This is equivalent to bias[..., cur_index:cur_index+1, :]. bias = dynamic_vector_slice_in_dim( jnp.squeeze(bias, axis=0), jnp.reshape(cur_index, (-1)), 1, -2) # Convert the boolean attention mask to an attention bias. if mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( mask > 0, jnp.full(mask.shape, 0.).astype(self.dtype), jnp.full(mask.shape, -1e10).astype(self.dtype)) else: attention_bias = None # Add provided bias term (e.g. relative position embedding). if bias is not None: attention_bias = combine_biases(attention_bias, bias) dropout_rng = None if not deterministic and self.dropout_rate > 0.: dropout_rng = self.make_rng('dropout') # Apply attention. x = dot_product_attention( query, key, value, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout_rate, deterministic=deterministic, dtype=self.dtype, float32_logits=self.float32_logits) # Back to the original inputs dimensions. out = DenseGeneral( features=inputs_q.shape[-1], # output dim is set to the input dim. axis=(-2, -1), kernel_init=self.kernel_init, kernel_axes=('heads', 'kv', 'embed'), dtype=self.dtype, name='out')( x) return out def _normalize_axes(axes: Iterable[int], ndim: int) -> Tuple[int]: # A tuple by convention. len(axes_tuple) then also gives the rank efficiently. return tuple([ax if ax >= 0 else ndim + ax for ax in axes]) def _canonicalize_tuple(x): if isinstance(x, Iterable): return tuple(x) else: return (x,) #------------------------------------------------------------------------------ # DenseGeneral for attention layers. #------------------------------------------------------------------------------ class DenseGeneral(nn.Module): """A linear transformation (without bias) with flexible axes. Attributes: features: tuple with numbers of output features. axis: tuple with axes to apply the transformation on. dtype: the dtype of the computation (default: float32). kernel_init: initializer function for the weight matrix. """ features: Union[Iterable[int], int] axis: Union[Iterable[int], int] = -1 dtype: DType = jnp.float32 params_dtype: DType = jnp.float32 kernel_init: NdInitializer = nd_dense_init(1.0, 'fan_in', 'normal') kernel_axes: Tuple[str, ...] = () use_bias: bool = True bias_init: Any = nn.initializers.zeros @nn.compact def __call__(self, inputs: Array) -> Array: """Applies a linear transformation to the inputs along multiple dimensions. Args: inputs: The nd-array to be transformed. Returns: The transformed input. """ features = _canonicalize_tuple(self.features) axis = _canonicalize_tuple(self.axis) inputs = jnp.asarray(inputs, self.dtype) axis = _normalize_axes(axis, inputs.ndim) kernel_shape = tuple([inputs.shape[ax] for ax in axis]) + features kernel_in_axis = np.arange(len(axis)) kernel_out_axis = np.arange(len(axis), len(axis) + len(features)) kernel = param_with_axes( 'kernel', self.kernel_init, kernel_shape, self.params_dtype, kernel_in_axis, kernel_out_axis, axes=self.kernel_axes) if self.use_bias: bias = param_with_axes('bias', self.bias_init, features, self.params_dtype, axes=(self.kernel_axes[-1],)) kernel = jnp.asarray(kernel, self.dtype) contract_ind = tuple(range(0, len(axis))) y = lax.dot_general(inputs, kernel, ((axis, contract_ind), ((), ()))) if self.use_bias: bias = jnp.asarray(bias, self.dtype) # y += jnp.reshape(bias, (1,) * (y.ndim - 1) + (-1,)) y += jnp.reshape(bias, (1,) * (len(features) - y.ndim) + bias.shape[:]) return y def _convert_to_activation_function( fn_or_string: Union[str, Callable]) -> Callable: """Convert a string to an activation function.""" if fn_or_string == 'linear': return lambda x: x elif isinstance(fn_or_string, str): return getattr(nn, fn_or_string) elif callable(fn_or_string): return fn_or_string else: raise ValueError("don't know how to convert %s to an activation function" % (fn_or_string,)) class MlpBlock(nn.Module): """Transformer MLP / feed-forward block. Attributes: intermediate_dim: Shared dimension of hidden layers. activations: Type of activations for each layer. Each element is either 'linear', a string function name in flax.linen, or a function. kernel_init: Kernel function, passed to the dense layers. deterministic: Whether the dropout layers should be deterministic. intermediate_dropout_rate: Dropout rate used after the intermediate layers. dtype: Type for the dense layer. """ intermediate_dim: int = 2048 activations: Sequence[Union[str, Callable]] = ('relu',) kernel_init: NdInitializer = nd_dense_init(1.0, 'fan_in', 'truncated_normal') intermediate_dropout_rate: float = 0.1 dtype: Any = jnp.float32 @nn.compact def __call__(self, inputs, decode: bool = False, deterministic: bool = False): """Applies Transformer MlpBlock module.""" # Iterate over specified MLP input activation functions. # e.g. ('relu',) or ('gelu', 'linear') for gated-gelu. activations = [] for idx, act_fn in enumerate(self.activations): dense_name = 'wi' if len(self.activations) == 1 else f'wi_{idx}' x = DenseGeneral( self.intermediate_dim, dtype=self.dtype, kernel_init=self.kernel_init, kernel_axes=('embed', 'mlp'), name=dense_name)( inputs) x = _convert_to_activation_function(act_fn)(x) activations.append(x) # Take elementwise product of above intermediate activations. x = functools.reduce(operator.mul, activations) # Apply dropout and final dense output projection. x = nn.Dropout( rate=self.intermediate_dropout_rate, broadcast_dims=(-2,))( x, deterministic=deterministic) # Broadcast along length. x = with_sharding_constraint(x, ('batch', 'length', 'mlp')) output = DenseGeneral( inputs.shape[-1], dtype=self.dtype, kernel_init=self.kernel_init, kernel_axes=('mlp', 'embed'), name='wo')( x) return output class Embed(nn.Module): """A parameterized function from integers [0, n) to d-dimensional vectors. Attributes: num_embeddings: number of embeddings. features: number of feature dimensions for each embedding. dtype: the dtype of the embedding vectors (default: float32). embedding_init: embedding initializer. one_hot: performs the gather with a one-hot contraction rather than a true gather. This is currently needed for SPMD partitioning. """ num_embeddings: int features: int cast_input_dtype: Optional[DType] = None dtype: DType = jnp.float32 params_dtype: DType = jnp.float32 attend_dtype: Optional[DType] = None embedding_init: Initializer = default_embed_init one_hot: bool = True embedding: Array = dataclasses.field(init=False) def setup(self): self.embedding = param_with_axes( 'embedding', self.embedding_init, (self.num_embeddings, self.features), self.params_dtype, axes=('vocab', 'embed')) def __call__(self, inputs: Array) -> Array: """Embeds the inputs along the last dimension. Args: inputs: input data, all dimensions are considered batch dimensions. Returns: Output which is embedded input data. The output shape follows the input, with an additional `features` dimension appended. """ if self.cast_input_dtype: inputs = inputs.astype(self.cast_input_dtype) if not jnp.issubdtype(inputs.dtype, jnp.integer): raise ValueError('Input type must be an integer or unsigned integer.') if self.one_hot: iota = lax.iota(jnp.int32, self.num_embeddings) one_hot = jnp.array(inputs[..., jnp.newaxis] == iota, dtype=self.dtype) output = jnp.dot(one_hot, jnp.asarray(self.embedding, self.dtype)) else: output = jnp.asarray(self.embedding, self.dtype)[inputs] output = with_sharding_constraint(output, ('batch', 'length', 'embed')) return output def attend(self, query: Array) -> Array: """Attend over the embedding using a query array. Args: query: array with last dimension equal the feature depth `features` of the embedding. Returns: An array with final dim `num_embeddings` corresponding to the batched inner-product of the array of query vectors against each embedding. Commonly used for weight-sharing between embeddings and logit transform in NLP models. """ dtype = self.attend_dtype if self.attend_dtype is not None else self.dtype return jnp.dot(query, jnp.asarray(self.embedding, dtype).T) class RelativePositionBiases(nn.Module): """Adds T5-style relative positional embeddings to the attention logits. Attributes: num_buckets: Number of buckets to bucket distances between key and query positions into. max_distance: Maximum distance before everything is lumped into the last distance bucket. num_heads: Number of heads in the attention layer. Each head will get a different relative position weighting. dtype: Type of arrays through this module. embedding_init: initializer for relative embedding table. """ num_buckets: int max_distance: int num_heads: int dtype: Any embedding_init: Callable[..., Array] = nn.linear.default_embed_init @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on. Args: relative_position: an int32 array bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ ret = 0 n = -relative_position if bidirectional: num_buckets //= 2 ret += (n < 0).astype(np.int32) * num_buckets n = np.abs(n) else: n = np.maximum(n, 0) # now n is in the range [0, inf) max_exact = num_buckets // 2 is_small = (n < max_exact) val_if_large = max_exact + ( np.log(n.astype(np.float32) / max_exact + np.finfo(np.float32).eps) / np.log(max_distance / max_exact) * (num_buckets - max_exact)).astype(np.int32) val_if_large = np.minimum(val_if_large, num_buckets - 1) ret += np.where(is_small, n, val_if_large) return ret @nn.compact def __call__(self, qlen, klen, bidirectional=True): """Produce relative position embedding attention biases. Args: qlen: attention query length. klen: attention key length. bidirectional: whether to allow positive memory-query relative position embeddings. Returns: output: `(1, len, q_len, k_len)` attention bias """ # TODO(levskaya): should we be computing this w. numpy as a program # constant? context_position = np.arange(qlen, dtype=jnp.int32)[:, None] memory_position = np.arange(klen, dtype=jnp.int32)[None, :] relative_position = memory_position - context_position # shape (qlen, klen) rp_bucket = self._relative_position_bucket( relative_position, bidirectional=bidirectional, num_buckets=self.num_buckets, max_distance=self.max_distance) relative_attention_bias = param_with_axes( 'rel_embedding', self.embedding_init, (self.num_heads, self.num_buckets), jnp.float32, axes=('heads', 'relpos_buckets')) relative_attention_bias = jnp.asarray(relative_attention_bias, self.dtype) # Instead of using a slow gather, we create a leading-dimension one-hot # array from rp_bucket and use it to perform the gather-equivalent via a # contraction, i.e.: # (num_head, num_buckets) x (num_buckets one-hot, qlen, klen). # This is equivalent to relative_attention_bias[:, rp_bucket] bcast_iota = lax.broadcasted_iota(jnp.int32, (self.num_buckets, 1, 1), 0) rp_bucket_one_hot = jnp.array( rp_bucket[jnp.newaxis, ...] == bcast_iota, dtype=self.dtype) # --> shape (qlen, klen, num_heads) values = lax.dot_general( relative_attention_bias, rp_bucket_one_hot, ( ((1,), (0,)), # rhs, lhs contracting dims ((), ()))) # no batched dims # Add a singleton batch dimension. # --> shape (1, num_heads, qlen, klen) return values[jnp.newaxis, ...] #------------------------------------------------------------------------------ # T5 Layernorm - no subtraction of mean or bias. #------------------------------------------------------------------------------ # class LayerNorm(nn.Module): # """T5 Layer normalization operating on the last axis of the input data.""" # epsilon: float = 1e-6 # dtype: Any = jnp.float32 # scale_init: Initializer = nn.initializers.ones # @nn.compact # def __call__(self, x: jnp.ndarray) -> jnp.ndarray: # """Applies layer normalization on the input.""" # x = jnp.asarray(x, jnp.float32) # features = x.shape[-1] # mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True) # y = jnp.asarray(x * lax.rsqrt(mean2 + self.epsilon), self.dtype) # scale = param_with_axes( # 'scale', self.scale_init, (features,), jnp.float32, axes=('embed',)) # scale = jnp.asarray(scale, self.dtype) # return y * scale class LayerNorm(nn.Module): """Layer normalization (https://arxiv.org/abs/1607.06450). Operates on the last axis of the input data. It normalizes the activations of the layer for each given example in a batch independently, rather than across a batch like Batch Normalization. i.e. applies a transformation that maintains the mean activation within each example close to 0 and the activation standard deviation close to 1. Attributes: epsilon: A small float added to variance to avoid dividing by zero. dtype: the dtype of the computation (default: float32). use_bias: If True, bias (beta) is added. use_scale: If True, multiply by scale (gamma). When the next layer is linear (also e.g. nn.relu), this can be disabled since the scaling will be done by the next layer. bias_init: Initializer for bias, by default, zero. scale_init: Initializer for scale, by default, one. """ epsilon: float = 1e-6 dtype: Any = jnp.float32 params_dtype: DType = jnp.float32 use_bias: bool = True use_scale: bool = True bias_init: Callable[[PRNGKey, Shape, Any], Array] = nn.initializers.zeros scale_init: Callable[[PRNGKey, Shape, Any], Array] = nn.initializers.ones @nn.compact def __call__(self, x): """Applies layer normalization on the input. Args: x: the inputs Returns: Normalized inputs (the same shape as inputs). """ x = jnp.asarray(x, jnp.float32) features = x.shape[-1] mean = jnp.mean(x, axis=-1, keepdims=True) mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True) var = mean2 - lax.square(mean) mul = lax.rsqrt(var + self.epsilon) if self.use_scale: scale = param_with_axes('scale', self.scale_init, (features,), self.params_dtype, axes=('embed',)) mul = mul * jnp.asarray(scale, self.dtype) y = (x - mean) * mul if self.use_bias: bias = param_with_axes('bias', self.bias_init, (features,), self.params_dtype, axes=('embed',)) y = y + jnp.asarray(bias, self.dtype) return jnp.asarray(y, self.dtype) #------------------------------------------------------------------------------ # Mask-making utility functions. #------------------------------------------------------------------------------ def make_attention_mask(query_input: Array, key_input: Array, pairwise_fn: Callable = jnp.multiply, extra_batch_dims: int = 0, dtype: DType = jnp.float32) -> Array: """Mask-making helper for attention weights. In case of 1d inputs (i.e., `[batch, len_q]`, `[batch, len_kv]`, the attention weights will be `[batch, heads, len_q, len_kv]` and this function will produce `[batch, 1, len_q, len_kv]`. Args: query_input: a batched, flat input of query_length size key_input: a batched, flat input of key_length size pairwise_fn: broadcasting elementwise comparison function extra_batch_dims: number of extra batch dims to add singleton axes for, none by default dtype: mask return dtype Returns: A `[batch, 1, len_q, len_kv]` shaped mask for 1d attention. """ # [batch, len_q, len_kv] mask = pairwise_fn( # [batch, len_q] -> [batch, len_q, 1] jnp.expand_dims(query_input, axis=-1), # [batch, len_q] -> [batch, 1, len_kv] jnp.expand_dims(key_input, axis=-2)) # [batch, 1, len_q, len_kv]. This creates the head dim. mask = jnp.expand_dims(mask, axis=-3) mask = jnp.expand_dims(mask, axis=tuple(range(extra_batch_dims))) return mask.astype(dtype) def make_causal_mask(x: Array, extra_batch_dims: int = 0, dtype: DType = jnp.float32) -> Array: """Make a causal mask for self-attention. In case of 1d inputs (i.e., `[batch, len]`, the self-attention weights will be `[batch, heads, len, len]` and this function will produce a causal mask of shape `[batch, 1, len, len]`. Note that a causal mask does not depend on the values of x; it only depends on the shape. If x has padding elements, they will not be treated in a special manner. Args: x: input array of shape `[batch, len]` extra_batch_dims: number of batch dims to add singleton axes for, none by default dtype: mask return dtype Returns: A `[batch, 1, len, len]` shaped causal mask for 1d attention. """ idxs = jnp.broadcast_to(jnp.arange(x.shape[-1], dtype=jnp.int32), x.shape) return make_attention_mask( idxs, idxs, jnp.greater_equal, extra_batch_dims=extra_batch_dims, dtype=dtype) def combine_masks(*masks: Optional[Array], dtype: DType = jnp.float32): """Combine attention masks. Args: *masks: set of attention mask arguments to combine, some can be None. dtype: final mask dtype Returns: Combined mask, reduced by logical and, returns None if no masks given. """ masks = [m for m in masks if m is not None] if not masks: return None assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), ( f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}') mask, *other_masks = masks for other_mask in other_masks: mask = jnp.logical_and(mask, other_mask) return mask.astype(dtype) def combine_biases(*masks: Optional[Array]): """Combine attention biases. Args: *masks: set of attention bias arguments to combine, some can be None. Returns: Combined mask, reduced by summation, returns None if no masks given. """ masks = [m for m in masks if m is not None] if not masks: return None assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), ( f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}') mask, *other_masks = masks for other_mask in other_masks: mask = mask + other_mask return mask def make_decoder_mask(decoder_target_tokens: Array, dtype: DType, decoder_causal_attention: Optional[Array] = None, decoder_segment_ids: Optional[Array] = None) -> Array: """Compute the self-attention mask for a decoder. Decoder mask is formed by combining a causal mask, a padding mask and an optional packing mask. If decoder_causal_attention is passed, it makes the masking non-causal for positions that have value of 1. A prefix LM is applied to a dataset which has a notion of "inputs" and "targets", e.g., a machine translation task. The inputs and targets are concatenated to form a new target. `decoder_target_tokens` is the concatenated decoder output tokens. The "inputs" portion of the concatenated sequence can attend to other "inputs" tokens even for those at a later time steps. In order to control this behavior, `decoder_causal_attention` is necessary. This is a binary mask with a value of 1 indicating that the position belonged to "inputs" portion of the original dataset. Example: Suppose we have a dataset with two examples. ds = [{"inputs": [6, 7], "targets": [8]}, {"inputs": [3, 4], "targets": [5]}] After the data preprocessing with packing, the two examples are packed into one example with the following three fields (some fields are skipped for simplicity). decoder_target_tokens = [[6, 7, 8, 3, 4, 5, 0]] decoder_segment_ids = [[1, 1, 1, 2, 2, 2, 0]] decoder_causal_attention = [[1, 1, 0, 1, 1, 0, 0]] where each array has [batch, length] shape with batch size being 1. Then, this function computes the following mask. mask = [[[[1, 1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0]]]] mask[b, 1, :, :] represents the mask for the example `b` in the batch. Because mask is for a self-attention layer, the mask's shape is a square of shape [query length, key length]. mask[b, 1, i, j] = 1 means that the query token at position i can attend to the key token at position j. Args: decoder_target_tokens: decoder output tokens. [batch, length] dtype: dtype of the output mask. decoder_causal_attention: a binary mask indicating which position should only attend to earlier positions in the sequence. Others will attend bidirectionally. [batch, length] decoder_segment_ids: decoder segmentation info for packed examples. [batch, length] Returns: the combined decoder mask. """ masks = [] # The same mask is applied to all attention heads. So the head dimension is 1, # i.e., the mask will be broadcast along the heads dim. # [batch, 1, length, length] causal_mask = make_causal_mask(decoder_target_tokens, dtype=dtype) # Positions with value 1 in `decoder_causal_attneition` can attend # bidirectionally. if decoder_causal_attention is not None: # [batch, 1, length, length] inputs_mask = make_attention_mask( decoder_causal_attention, decoder_causal_attention, jnp.logical_and, dtype=dtype) masks.append(jnp.logical_or(causal_mask, inputs_mask).astype(dtype)) else: masks.append(causal_mask) # Padding mask. masks.append( make_attention_mask( decoder_target_tokens > 0, decoder_target_tokens > 0, dtype=dtype)) # Packing mask if decoder_segment_ids is not None: masks.append( make_attention_mask( decoder_segment_ids, decoder_segment_ids, jnp.equal, dtype=dtype)) return combine_masks(*masks, dtype=dtype)
bloom-jax-inference-main
bloom_inference/modeling_bloom/layers.py
# Lint as: python3 """ HuggingFace/Datasets is an open library of datasets. Note: VERSION needs to be formatted following the MAJOR.MINOR.PATCH convention (we need to follow this convention to be able to retrieve versioned scripts) Simple check list for release from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py Steps to make a release: 0. Prerequisites: - Dependencies: - twine: `pip install twine` - Create an account in (and join the 'datasets' project): - PyPI: https://pypi.org/ - Test PyPI: https://test.pypi.org/ - Don't break `transformers`: run the `transformers` CI using the `main` branch and make sure it's green. - In `transformers`, use `datasets @ git+https://github.com/huggingface/datasets@main#egg=datasets` in both: - setup.py and - src/transformers/dependency_versions_table.py - and then run the CI 1. Create the release branch from main branch: ``` git checkout main git pull upstream main git checkout -b release-VERSION ``` 2. Change the version to the release VERSION in: - __init__.py - setup.py 3. Commit these changes, push and create a Pull Request: ``` git add -u git commit -m "Release: VERSION" git push upstream release-VERSION ``` - Go to: https://github.com/huggingface/datasets/pull/new/release - Create pull request 4. From your local release branch, build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). - First, delete any building directories that may exist from previous builds: - build - dist - From the top level directory, build the wheel and the sources: ``` python setup.py bdist_wheel python setup.py sdist ``` - You should now have a /dist directory with both .whl and .tar.gz source versions. 5. Check that everything looks correct by uploading the package to the test PyPI server: ``` twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/ ``` Check that you can install it in a virtualenv/notebook by running: ``` pip install huggingface_hub fsspec aiohttp pip install -U tqdm pip install -i https://testpypi.python.org/pypi datasets ``` 6. Upload the final version to the actual PyPI: ``` twine upload dist/* -r pypi ``` 7. Make the release on GitHub once everything is looking hunky-dory: - Merge the release Pull Request - Create a new release: https://github.com/huggingface/datasets/releases/new - Choose a tag: Introduce the new VERSION as tag, that will be created when you publish the release - Create new tag VERSION on publish - Release title: Introduce the new VERSION as well - Describe the release - Use "Generate release notes" button for automatic generation - Publish release 8. Set the dev version - Create the dev-version branch from the main branch: ``` git checkout main git pull upstream main git branch -D dev-version git checkout -b dev-version ``` - Change the version to X.X.X+1.dev0 (e.g. VERSION=1.18.3 -> 1.18.4.dev0) in: - __init__.py - setup.py - Commit these changes, push and create a Pull Request: ``` git add -u git commit -m "Set dev version" git push upstream dev-version ``` - Go to: https://github.com/huggingface/datasets/pull/new/dev-version - Create pull request - Merge the dev version Pull Request """ from setuptools import find_packages, setup REQUIRED_PKGS = [ # We use numpy>=1.17 to have np.random.Generator (Dataset shuffling) "numpy>=1.17", # Backend and serialization. # Minimum 8.0.0 to be able to use .to_reader() "pyarrow>=8.0.0", # For smart caching dataset processing "dill>=0.3.0,<0.3.8", # tmp pin until dill has official support for determinism see https://github.com/uqfoundation/dill/issues/19 # For performance gains with apache arrow "pandas", # for downloading datasets over HTTPS "requests>=2.19.0", # progress bars in download and scripts "tqdm>=4.62.1", # for fast hashing "xxhash", # for better multiprocessing "multiprocess", # to save datasets locally or on any filesystem # minimum 2023.1.0 to support protocol=kwargs in fsspec's `open`, `get_fs_token_paths`, etc.: see https://github.com/fsspec/filesystem_spec/pull/1143 "fsspec[http]>=2023.1.0,<2023.9.0", # Temporary pin # for data streaming via http "aiohttp", # To get datasets from the Datasets Hub on huggingface.co # minimum 0.14.0 to support HfFileSystem "huggingface-hub>=0.14.0,<1.0.0", # Utilities from PyPA to e.g., compare versions "packaging", # To parse YAML metadata from dataset cards "pyyaml>=5.1", ] AUDIO_REQUIRE = [ "soundfile>=0.12.1", "librosa", ] VISION_REQUIRE = [ "Pillow>=6.2.1", ] BENCHMARKS_REQUIRE = [ "tensorflow==2.12.0", "torch==2.0.1", "transformers==4.30.1", ] TESTS_REQUIRE = [ # test dependencies "absl-py", "joblib<1.3.0", # joblibspark doesn't support recent joblib versions "joblibspark", "pytest", "pytest-datadir", "pytest-xdist", # optional dependencies "apache-beam>=2.26.0,<2.44.0;python_version<'3.10'", # doesn't support recent dill versions for recent python versions "elasticsearch<8.0.0", # 8.0 asks users to provide hosts or cloud_id when instantiating ElasticSearch() "faiss-cpu>=1.6.4", "lz4", "pyspark>=3.4", # https://issues.apache.org/jira/browse/SPARK-40991 fixed in 3.4.0 "py7zr", "rarfile>=4.0", "sqlalchemy<2.0.0", "s3fs>=2021.11.1", # aligned with fsspec[http]>=2021.11.1; test only on python 3.7 for now "tensorflow>=2.3,!=2.6.0,!=2.6.1; sys_platform != 'darwin' or platform_machine != 'arm64'", "tensorflow-macos; sys_platform == 'darwin' and platform_machine == 'arm64'", "tiktoken", "torch", "soundfile>=0.12.1", "transformers", "zstandard", ] METRICS_TESTS_REQUIRE = [ # metrics dependencies "accelerate", # for frugalscore (calls transformers' Trainer) "bert_score>=0.3.6", "jiwer", "langdetect", "mauve-text", "nltk", "rouge_score", "sacrebleu", "sacremoses", "scikit-learn", "scipy", "sentencepiece", # for bleurt "seqeval", "spacy>=3.0.0", "tldextract", # to speed up pip backtracking "toml>=0.10.1", "typer<0.5.0", # pinned to work with Spacy==3.4.3 on Windows: see https://github.com/tiangolo/typer/issues/427 "requests_file>=1.5.1", "tldextract>=3.1.0", "texttable>=1.6.3", "Werkzeug>=1.0.1", "six~=1.15.0", ] TESTS_REQUIRE.extend(VISION_REQUIRE) TESTS_REQUIRE.extend(AUDIO_REQUIRE) QUALITY_REQUIRE = ["black~=23.1", "ruff>=0.0.241", "pyyaml>=5.3.1"] DOCS_REQUIRE = [ # Might need to add doc-builder and some specific deps in the future "s3fs", # Following dependencies are required for the Python reference to be built properly "transformers", "torch", "tensorflow>=2.2.0,!=2.6.0,!=2.6.1; sys_platform != 'darwin' or platform_machine != 'arm64'", "tensorflow-macos; sys_platform == 'darwin' and platform_machine == 'arm64'", ] EXTRAS_REQUIRE = { "audio": AUDIO_REQUIRE, "vision": VISION_REQUIRE, "apache-beam": ["apache-beam>=2.26.0,<2.44.0"], "tensorflow": [ "tensorflow>=2.2.0,!=2.6.0,!=2.6.1; sys_platform != 'darwin' or platform_machine != 'arm64'", "tensorflow-macos; sys_platform == 'darwin' and platform_machine == 'arm64'", ], "tensorflow_gpu": ["tensorflow-gpu>=2.2.0,!=2.6.0,!=2.6.1"], "torch": ["torch"], "jax": ["jax>=0.2.8,!=0.3.2,<=0.3.25", "jaxlib>=0.1.65,<=0.3.25"], "s3": ["s3fs"], "streaming": [], # for backward compatibility "dev": TESTS_REQUIRE + QUALITY_REQUIRE + DOCS_REQUIRE, "tests": TESTS_REQUIRE, "metrics-tests": METRICS_TESTS_REQUIRE, "quality": QUALITY_REQUIRE, "benchmarks": BENCHMARKS_REQUIRE, "docs": DOCS_REQUIRE, } setup( name="datasets", version="2.14.6.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) description="HuggingFace community-driven open-source library of datasets", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", author="HuggingFace Inc.", author_email="[email protected]", url="https://github.com/huggingface/datasets", download_url="https://github.com/huggingface/datasets/tags", license="Apache 2.0", package_dir={"": "src"}, packages=find_packages("src"), package_data={ "datasets": ["py.typed"], "datasets.utils.resources": ["*.json", "*.yaml", "*.tsv"], }, entry_points={"console_scripts": ["datasets-cli=datasets.commands.datasets_cli:main"]}, python_requires=">=3.8.0", install_requires=REQUIRED_PKGS, extras_require=EXTRAS_REQUIRE, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="datasets machine learning datasets metrics", zip_safe=False, # Required for mypy to find the py.typed file )
datasets-main
setup.py
""" Official evaluation script for ReCoRD v1.0. (Some functions are adopted from the SQuAD evaluation script.) """ import argparse import json import re import string import sys from collections import Counter def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 correct_ids = [] for passage in dataset: for qa in passage["qas"]: total += 1 if qa["id"] not in predictions: message = f'Unanswered question {qa["id"]} will receive score 0.' print(message, file=sys.stderr) continue ground_truths = [x["text"] for x in qa["answers"]] prediction = predictions[qa["id"]] _exact_match = metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) if int(_exact_match) == 1: correct_ids.append(qa["id"]) exact_match += _exact_match f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = exact_match / total f1 = f1 / total return {"exact_match": exact_match, "f1": f1}, correct_ids if __name__ == "__main__": expected_version = "1.0" parser = argparse.ArgumentParser("Official evaluation script for ReCoRD v1.0.") parser.add_argument("data_file", help="The dataset file in JSON format.") parser.add_argument("pred_file", help="The model prediction file in JSON format.") parser.add_argument("--output_correct_ids", action="store_true", help="Output the correctly answered query IDs.") args = parser.parse_args() with open(args.data_file) as data_file: dataset_json = json.load(data_file) if dataset_json["version"] != expected_version: print( f'Evaluation expects v-{expected_version}, but got dataset with v-{dataset_json["version"]}', file=sys.stderr, ) dataset = dataset_json["data"] with open(args.pred_file) as pred_file: predictions = json.load(pred_file) metrics, correct_ids = evaluate(dataset, predictions) if args.output_correct_ids: print(f"Output {len(correct_ids)} correctly answered question IDs.") with open("correct_ids.json", "w") as f: json.dump(correct_ids, f)
datasets-main
metrics/super_glue/record_evaluation.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The SuperGLUE benchmark metric.""" from sklearn.metrics import f1_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _CITATION = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ _DESCRIPTION = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ _KWARGS_DESCRIPTION = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def simple_accuracy(preds, labels): return float((preds == labels).mean()) def acc_and_f1(preds, labels, f1_avg="binary"): acc = simple_accuracy(preds, labels) f1 = float(f1_score(y_true=labels, y_pred=preds, average=f1_avg)) return { "accuracy": acc, "f1": f1, } def evaluate_multirc(ids_preds, labels): """ Computes F1 score and Exact Match for MultiRC predictions. """ question_map = {} for id_pred, label in zip(ids_preds, labels): question_id = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' pred = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label)) else: question_map[question_id] = [(pred, label)] f1s, ems = [], [] for question, preds_labels in question_map.items(): question_preds, question_labels = zip(*preds_labels) f1 = f1_score(y_true=question_labels, y_pred=question_preds, average="macro") f1s.append(f1) em = int(sum(pred == label for pred, label in preds_labels) == len(preds_labels)) ems.append(em) f1_m = float(sum(f1s) / len(f1s)) em = sum(ems) / len(ems) f1_a = float(f1_score(y_true=labels, y_pred=[id_pred["prediction"] for id_pred in ids_preds])) return {"exact_match": em, "f1_m": f1_m, "f1_a": f1_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class SuperGlue(datasets.Metric): def _info(self): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), codebase_urls=[], reference_urls=[], format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None, ) def _get_feature_types(self): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64"), "query": datasets.Value("int64"), }, "prediction_text": datasets.Value("string"), }, "references": { "idx": { "passage": datasets.Value("int64"), "query": datasets.Value("int64"), }, "answers": datasets.Sequence(datasets.Value("string")), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64"), "paragraph": datasets.Value("int64"), "question": datasets.Value("int64"), }, "prediction": datasets.Value("int64"), }, "references": datasets.Value("int64"), } else: return { "predictions": datasets.Value("int64"), "references": datasets.Value("int64"), } def _compute(self, predictions, references): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(references, predictions)} elif self.config_name == "cb": return acc_and_f1(predictions, references, f1_avg="macro") elif self.config_name == "record": dataset = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] predictions = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(dataset, predictions)[0] elif self.config_name == "multirc": return evaluate_multirc(predictions, references) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(predictions, references)} else: raise KeyError( "You should supply a configuration name selected in " '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
datasets-main
metrics/super_glue/super_glue.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ IndicGLUE benchmark metric. """ import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import f1_score import datasets _CITATION = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ _DESCRIPTION = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ _KWARGS_DESCRIPTION = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def simple_accuracy(preds, labels): return float((preds == labels).mean()) def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = float(f1_score(y_true=labels, y_pred=preds)) return { "accuracy": acc, "f1": f1, } def precision_at_10(en_sentvecs, in_sentvecs): en_sentvecs = np.array(en_sentvecs) in_sentvecs = np.array(in_sentvecs) n = en_sentvecs.shape[0] # mean centering en_sentvecs = en_sentvecs - np.mean(en_sentvecs, axis=0) in_sentvecs = in_sentvecs - np.mean(in_sentvecs, axis=0) sim = cdist(en_sentvecs, in_sentvecs, "cosine") actual = np.array(range(n)) preds = sim.argsort(axis=1)[:, :10] matches = np.any(preds == actual[:, None], axis=1) return float(matches.mean()) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class IndicGlue(datasets.Metric): def _info(self): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), "references": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), } ), codebase_urls=[], reference_urls=[], format="numpy" if self.config_name != "cvit-mkb-clsr" else None, ) def _compute(self, predictions, references): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_10(predictions, references)} elif self.config_name in ["wiki-ner"]: return acc_and_f1(predictions, references) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(predictions, references)} else: raise KeyError( "You should supply a configuration name selected in " '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
datasets-main
metrics/indic_glue/indic_glue.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BERTScore metric. """ import functools from contextlib import contextmanager import bert_score from packaging import version import datasets @contextmanager def filter_logging_context(): def filter_log(record): return False if "This IS expected if you are initializing" in record.msg else True logger = datasets.utils.logging.get_logger("transformers.modeling_utils") logger.addFilter(filter_log) try: yield finally: logger.removeFilter(filter_log) _CITATION = """\ @inproceedings{bert-score, title={BERTScore: Evaluating Text Generation with BERT}, author={Tianyi Zhang* and Varsha Kishore* and Felix Wu* and Kilian Q. Weinberger and Yoav Artzi}, booktitle={International Conference on Learning Representations}, year={2020}, url={https://openreview.net/forum?id=SkeHuCVFDr} } """ _DESCRIPTION = """\ BERTScore leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity. It has been shown to correlate with human judgment on sentence-level and system-level evaluation. Moreover, BERTScore computes precision, recall, and F1 measure, which can be useful for evaluating different language generation tasks. See the project's README at https://github.com/Tiiiger/bert_score#readme for more information. """ _KWARGS_DESCRIPTION = """ BERTScore Metrics with the hashcode from a source against one or more references. Args: predictions (list of str): Prediction/candidate sentences. references (list of str or list of list of str): Reference sentences. lang (str): Language of the sentences; required (e.g. 'en'). model_type (str): Bert specification, default using the suggested model for the target language; has to specify at least one of `model_type` or `lang`. num_layers (int): The layer of representation to use, default using the number of layers tuned on WMT16 correlation data. verbose (bool): Turn on intermediate status update. idf (bool or dict): Use idf weighting; can also be a precomputed idf_dict. device (str): On which the contextual embedding model will be allocated on. If this argument is None, the model lives on cuda:0 if cuda is available. nthreads (int): Number of threads. batch_size (int): Bert score processing batch size, at least one of `model_type` or `lang`. `lang` needs to be specified when `rescale_with_baseline` is True. rescale_with_baseline (bool): Rescale bertscore with pre-computed baseline. baseline_path (str): Customized baseline file. use_fast_tokenizer (bool): `use_fast` parameter passed to HF tokenizer. New in version 0.3.10. Returns: precision: Precision. recall: Recall. f1: F1 score. hashcode: Hashcode of the library. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bertscore = datasets.load_metric("bertscore") >>> results = bertscore.compute(predictions=predictions, references=references, lang="en") >>> print([round(v, 2) for v in results["f1"]]) [1.0, 1.0] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class BERTScore(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/Tiiiger/bert_score", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=["https://github.com/Tiiiger/bert_score"], reference_urls=[ "https://github.com/Tiiiger/bert_score", "https://arxiv.org/abs/1904.09675", ], ) def _compute( self, predictions, references, lang=None, model_type=None, num_layers=None, verbose=False, idf=False, device=None, batch_size=64, nthreads=4, all_layers=False, rescale_with_baseline=False, baseline_path=None, use_fast_tokenizer=False, ): get_hash = bert_score.utils.get_hash scorer = bert_score.BERTScorer if version.parse(bert_score.__version__) >= version.parse("0.3.10"): get_hash = functools.partial(get_hash, use_fast_tokenizer=use_fast_tokenizer) scorer = functools.partial(scorer, use_fast_tokenizer=use_fast_tokenizer) elif use_fast_tokenizer: raise ImportWarning( "To use a fast tokenizer, the module `bert-score>=0.3.10` is required, and the current version of `bert-score` doesn't match this condition.\n" 'You can install it with `pip install "bert-score>=0.3.10"`.' ) if model_type is None: assert lang is not None, "either lang or model_type should be specified" model_type = bert_score.utils.lang2model[lang.lower()] if num_layers is None: num_layers = bert_score.utils.model2layers[model_type] hashcode = get_hash( model=model_type, num_layers=num_layers, idf=idf, rescale_with_baseline=rescale_with_baseline, use_custom_baseline=baseline_path is not None, ) with filter_logging_context(): if not hasattr(self, "cached_bertscorer") or self.cached_bertscorer.hash != hashcode: self.cached_bertscorer = scorer( model_type=model_type, num_layers=num_layers, batch_size=batch_size, nthreads=nthreads, all_layers=all_layers, idf=idf, device=device, lang=lang, rescale_with_baseline=rescale_with_baseline, baseline_path=baseline_path, ) (P, R, F) = self.cached_bertscorer.score( cands=predictions, refs=references, verbose=verbose, batch_size=batch_size, ) output_dict = { "precision": P.tolist(), "recall": R.tolist(), "f1": F.tolist(), "hashcode": hashcode, } return output_dict def add_batch(self, predictions=None, references=None, **kwargs): """Add a batch of predictions and references for the metric's stack.""" # References can be strings or lists of strings # Let's change strings to lists of strings with one element if references is not None: references = [[ref] if isinstance(ref, str) else ref for ref in references] super().add_batch(predictions=predictions, references=references, **kwargs) def add(self, prediction=None, reference=None, **kwargs): """Add one prediction and reference for the metric's stack.""" # References can be strings or lists of strings # Let's change strings to lists of strings with one element if isinstance(reference, str): reference = [reference] super().add(prediction=prediction, reference=reference, **kwargs)
datasets-main
metrics/bertscore/bertscore.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE benchmark metric. """ from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef import datasets _CITATION = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ _DESCRIPTION = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ _KWARGS_DESCRIPTION = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def simple_accuracy(preds, labels): return float((preds == labels).mean()) def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = float(f1_score(y_true=labels, y_pred=preds)) return { "accuracy": acc, "f1": f1, } def pearson_and_spearman(preds, labels): pearson_corr = float(pearsonr(preds, labels)[0]) spearman_corr = float(spearmanr(preds, labels)[0]) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Glue(datasets.Metric): def _info(self): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32"), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32"), } ), codebase_urls=[], reference_urls=[], format="numpy", ) def _compute(self, predictions, references): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(references, predictions)} elif self.config_name == "stsb": return pearson_and_spearman(predictions, references) elif self.config_name in ["mrpc", "qqp"]: return acc_and_f1(predictions, references) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(predictions, references)} else: raise KeyError( "You should supply a configuration name selected in " '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
datasets-main
metrics/glue/glue.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def check_correctness(check_program, timeout, task_id, completion_id): """ Evaluates the functional correctness of a completion by running the test suite provided in the problem. :param completion_id: an optional completion ID so we can match the results later even if execution finishes asynchronously. """ manager = multiprocessing.Manager() result = manager.list() p = multiprocessing.Process(target=unsafe_execute, args=(check_program, result, timeout)) p.start() p.join(timeout=timeout + 1) if p.is_alive(): p.kill() if not result: result.append("timed out") return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def unsafe_execute(check_program, result, timeout): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil rmtree = shutil.rmtree rmdir = os.rmdir chdir = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: exec_globals = {} with swallow_io(): with time_limit(timeout): exec(check_program, exec_globals) result.append("passed") except TimeoutException: result.append("timed out") except BaseException as e: result.append(f"failed: {e}") # Needed for cleaning up. shutil.rmtree = rmtree os.rmdir = rmdir os.chdir = chdir @contextlib.contextmanager def time_limit(seconds): def signal_handler(signum, frame): raise TimeoutException("Timed out!") signal.setitimer(signal.ITIMER_REAL, seconds) signal.signal(signal.SIGALRM, signal_handler) try: yield finally: signal.setitimer(signal.ITIMER_REAL, 0) @contextlib.contextmanager def swallow_io(): stream = WriteOnlyStringIO() with contextlib.redirect_stdout(stream): with contextlib.redirect_stderr(stream): with redirect_stdin(stream): yield @contextlib.contextmanager def create_tempdir(): with tempfile.TemporaryDirectory() as dirname: with chdir(dirname): yield dirname class TimeoutException(Exception): pass class WriteOnlyStringIO(io.StringIO): """StringIO that throws an exception when it's read from""" def read(self, *args, **kwargs): raise OSError def readline(self, *args, **kwargs): raise OSError def readlines(self, *args, **kwargs): raise OSError def readable(self, *args, **kwargs): """Returns True if the IO object can be read.""" return False class redirect_stdin(contextlib._RedirectStream): # type: ignore _stream = "stdin" @contextlib.contextmanager def chdir(root): if root == ".": yield return cwd = os.getcwd() os.chdir(root) try: yield except BaseException as exc: raise exc finally: os.chdir(cwd) def reliability_guard(maximum_memory_bytes=None): """ This disables various destructive functions and prevents the generated code from interfering with the test (e.g. fork bomb, killing other processes, removing filesystem files, etc.) WARNING This function is NOT a security sandbox. Untrusted code, including, model- generated code, should not be blindly executed outside of one. See the Codex paper for more information about OpenAI's code sandbox, and proceed with caution. """ if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes)) resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes)) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes)) faulthandler.disable() import builtins builtins.exit = None builtins.quit = None import os os.environ["OMP_NUM_THREADS"] = "1" os.kill = None os.system = None os.putenv = None os.remove = None os.removedirs = None os.rmdir = None os.fchdir = None os.setuid = None os.fork = None os.forkpty = None os.killpg = None os.rename = None os.renames = None os.truncate = None os.replace = None os.unlink = None os.fchmod = None os.fchown = None os.chmod = None os.chown = None os.chroot = None os.fchdir = None os.lchflags = None os.lchmod = None os.lchown = None os.getcwd = None os.chdir = None import shutil shutil.rmtree = None shutil.move = None shutil.chown = None import subprocess subprocess.Popen = None # type: ignore __builtins__["help"] = None import sys sys.modules["ipdb"] = None sys.modules["joblib"] = None sys.modules["resource"] = None sys.modules["psutil"] = None sys.modules["tkinter"] = None
datasets-main
metrics/code_eval/execute.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The CodeEval metric estimates the pass@k metric for code synthesis. This is an evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _CITATION = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _DESCRIPTION = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). """ _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ _WARNING = """ ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ """ _LICENSE = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class CodeEval(datasets.Metric): def _info(self): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string")), "references": datasets.Value("string"), } ), homepage="https://github.com/openai/human-eval", codebase_urls=["https://github.com/openai/human-eval"], reference_urls=["https://github.com/openai/human-eval"], license=_LICENSE, ) def _compute(self, predictions, references, k=[1, 10, 100], num_workers=4, timeout=3.0): """Returns the scores""" if os.getenv("HF_ALLOW_CODE_EVAL", 0) != "1": raise ValueError(_WARNING) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows.") with ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [] completion_id = Counter() n_samples = 0 results = defaultdict(list) for task_id, (candidates, test_case) in enumerate(zip(predictions, references)): for candidate in candidates: test_program = candidate + "\n" + test_case args = (test_program, timeout, task_id, completion_id[task_id]) future = executor.submit(check_correctness, *args) futures.append(future) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(futures): result = future.result() results[result["task_id"]].append((result["completion_id"], result)) total, correct = [], [] for result in results.values(): result.sort() passed = [r[1]["passed"] for r in result] total.append(len(passed)) correct.append(sum(passed)) total = np.array(total) correct = np.array(correct) ks = k pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()} return pass_at_k, results def estimate_pass_at_k(num_samples, num_correct, k): """Estimates pass@k of each problem and returns them in an array.""" def estimator(n: int, c: int, k: int) -> float: """Calculates 1 - comb(n - c, k) / comb(n, k).""" if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) if isinstance(num_samples, int): num_samples_it = itertools.repeat(num_samples, len(num_correct)) else: assert len(num_samples) == len(num_correct) num_samples_it = iter(num_samples) return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
datasets-main
metrics/code_eval/code_eval.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CoVal metric. """ import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } """ _DESCRIPTION = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ _KWARGS_DESCRIPTION = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def get_coref_infos( key_lines, sys_lines, NP_only=False, remove_nested=False, keep_singletons=True, min_span=False, doc="dummy_doc" ): key_doc_lines = {doc: key_lines} sys_doc_lines = {doc: sys_lines} doc_coref_infos = {} key_nested_coref_num = 0 sys_nested_coref_num = 0 key_removed_nested_clusters = 0 sys_removed_nested_clusters = 0 key_singletons_num = 0 sys_singletons_num = 0 key_clusters, singletons_num = reader.get_doc_mentions(doc, key_doc_lines[doc], keep_singletons) key_singletons_num += singletons_num if NP_only or min_span: key_clusters = reader.set_annotated_parse_trees(key_clusters, key_doc_lines[doc], NP_only, min_span) sys_clusters, singletons_num = reader.get_doc_mentions(doc, sys_doc_lines[doc], keep_singletons) sys_singletons_num += singletons_num if NP_only or min_span: sys_clusters = reader.set_annotated_parse_trees(sys_clusters, key_doc_lines[doc], NP_only, min_span) if remove_nested: nested_mentions, removed_clusters = reader.remove_nested_coref_mentions(key_clusters, keep_singletons) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters nested_mentions, removed_clusters = reader.remove_nested_coref_mentions(sys_clusters, keep_singletons) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters sys_mention_key_cluster = reader.get_mention_assignments(sys_clusters, key_clusters) key_mention_sys_cluster = reader.get_mention_assignments(key_clusters, sys_clusters) doc_coref_infos[doc] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( "Number of resulting singleton clusters in the key " f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " "files, respectively" ) return doc_coref_infos def evaluate(key_lines, sys_lines, metrics, NP_only, remove_nested, keep_singletons, min_span): doc_coref_infos = get_coref_infos(key_lines, sys_lines, NP_only, remove_nested, keep_singletons, min_span) output_scores = {} conll = 0 conll_subparts_num = 0 for name, metric in metrics: recall, precision, f1 = evaluator.evaluate_documents(doc_coref_infos, metric, beta=1) if name in ["muc", "bcub", "ceafe"]: conll += f1 conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": f1}) logger.info( name.ljust(10), f"Recall: {recall * 100:.2f}", f" Precision: {precision * 100:.2f}", f" F1: {f1 * 100:.2f}", ) if conll_subparts_num == 3: conll = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}") output_scores.update({"conll_score": conll}) return output_scores def check_gold_parse_annotation(key_lines): has_gold_parse = False for line in key_lines: if not line.startswith("#"): if len(line.split()) > 6: parse_col = line.split()[5] if not parse_col == "-": has_gold_parse = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Coval(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string")), "references": datasets.Sequence(datasets.Value("string")), } ), codebase_urls=["https://github.com/ns-moosavi/coval"], reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ], ) def _compute( self, predictions, references, keep_singletons=True, NP_only=False, min_span=False, remove_nested=False ): allmetrics = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: has_gold_parse = util.check_gold_parse_annotation(references) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'.") # util.parse_key_file(key_file) # key_file = key_file + ".parsed" score = evaluate( key_lines=references, sys_lines=predictions, metrics=allmetrics, NP_only=NP_only, remove_nested=remove_nested, keep_singletons=keep_singletons, min_span=min_span, ) return score
datasets-main
metrics/coval/coval.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ seqeval metric. """ import importlib from typing import List, Optional, Union from seqeval.metrics import accuracy_score, classification_report import datasets _CITATION = """\ @inproceedings{ramshaw-marcus-1995-text, title = "Text Chunking using Transformation-Based Learning", author = "Ramshaw, Lance and Marcus, Mitch", booktitle = "Third Workshop on Very Large Corpora", year = "1995", url = "https://www.aclweb.org/anthology/W95-0107", } @misc{seqeval, title={{seqeval}: A Python framework for sequence labeling evaluation}, url={https://github.com/chakki-works/seqeval}, note={Software available from https://github.com/chakki-works/seqeval}, author={Hiroki Nakayama}, year={2018}, } """ _DESCRIPTION = """\ seqeval is a Python framework for sequence labeling evaluation. seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on. This is well-tested by using the Perl script conlleval, which can be used for measuring the performance of a system that has processed the CoNLL-2000 shared task data. seqeval supports following formats: IOB1 IOB2 IOE1 IOE2 IOBES See the [README.md] file at https://github.com/chakki-works/seqeval for more information. """ _KWARGS_DESCRIPTION = """ Produces labelling scores along with its sufficient statistics from a source against one or more references. Args: predictions: List of List of predicted labels (Estimated targets as returned by a tagger) references: List of List of reference labels (Ground truth (correct) target values) suffix: True if the IOB prefix is after type, False otherwise. default: False scheme: Specify target tagging scheme. Should be one of ["IOB1", "IOB2", "IOE1", "IOE2", "IOBES", "BILOU"]. default: None mode: Whether to count correct entity labels with incorrect I/B tags as true positives or not. If you want to only count exact matches, pass mode="strict". default: None. sample_weight: Array-like of shape (n_samples,), weights for individual samples. default: None zero_division: Which value to substitute as a metric value when encountering zero division. Should be on of 0, 1, "warn". "warn" acts as 0, but the warning is raised. Returns: 'scores': dict. Summary of the scores for overall and per type Overall: 'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': F1 score, also known as balanced F-score or F-measure, Per type: 'precision': precision, 'recall': recall, 'f1': F1 score, also known as balanced F-score or F-measure Examples: >>> predictions = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> references = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> seqeval = datasets.load_metric("seqeval") >>> results = seqeval.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['MISC', 'PER', 'overall_precision', 'overall_recall', 'overall_f1', 'overall_accuracy'] >>> print(results["overall_f1"]) 0.5 >>> print(results["PER"]["f1"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Seqeval(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/chakki-works/seqeval", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"), } ), codebase_urls=["https://github.com/chakki-works/seqeval"], reference_urls=["https://github.com/chakki-works/seqeval"], ) def _compute( self, predictions, references, suffix: bool = False, scheme: Optional[str] = None, mode: Optional[str] = None, sample_weight: Optional[List[int]] = None, zero_division: Union[str, int] = "warn", ): if scheme is not None: try: scheme_module = importlib.import_module("seqeval.scheme") scheme = getattr(scheme_module, scheme) except AttributeError: raise ValueError(f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {scheme}") report = classification_report( y_true=references, y_pred=predictions, suffix=suffix, output_dict=True, scheme=scheme, mode=mode, sample_weight=sample_weight, zero_division=zero_division, ) report.pop("macro avg") report.pop("weighted avg") overall_score = report.pop("micro avg") scores = { type_name: { "precision": score["precision"], "recall": score["recall"], "f1": score["f1-score"], "number": score["support"], } for type_name, score in report.items() } scores["overall_precision"] = overall_score["precision"] scores["overall_recall"] = overall_score["recall"] scores["overall_f1"] = overall_score["f1-score"] scores["overall_accuracy"] = accuracy_score(y_true=references, y_pred=predictions) return scores
datasets-main
metrics/seqeval/seqeval.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SARI metric.""" from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _CITATION = """\ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415}, } """ _DESCRIPTION = """\ SARI is a metric used for evaluating automatic text simplification systems. The metric compares the predicted simplified sentences against the reference and the source sentences. It explicitly measures the goodness of words that are added, deleted and kept by the system. Sari = (F1_add + F1_keep + P_del) / 3 where F1_add: n-gram F1 score for add operation F1_keep: n-gram F1 score for keep operation P_del: n-gram precision score for delete operation n = 4, as in the original paper. This implementation is adapted from Tensorflow's tensor2tensor implementation [3]. It has two differences with the original GitHub [1] implementation: (1) Defines 0/0=1 instead of 0 to give higher scores for predictions that match a target exactly. (2) Fixes an alleged bug [2] in the keep score computation. [1] https://github.com/cocoxu/simplification/blob/master/SARI.py (commit 0210f15) [2] https://github.com/cocoxu/simplification/issues/6 [3] https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py """ _KWARGS_DESCRIPTION = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known .","About 95 species are now accepted .","95 species are now accepted ."]] >>> sari = datasets.load_metric("sari") >>> results = sari.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 26.953601953601954} """ def SARIngram(sgrams, cgrams, rgramslist, numref): rgramsall = [rgram for rgrams in rgramslist for rgram in rgrams] rgramcounter = Counter(rgramsall) sgramcounter = Counter(sgrams) sgramcounter_rep = Counter() for sgram, scount in sgramcounter.items(): sgramcounter_rep[sgram] = scount * numref cgramcounter = Counter(cgrams) cgramcounter_rep = Counter() for cgram, ccount in cgramcounter.items(): cgramcounter_rep[cgram] = ccount * numref # KEEP keepgramcounter_rep = sgramcounter_rep & cgramcounter_rep keepgramcountergood_rep = keepgramcounter_rep & rgramcounter keepgramcounterall_rep = sgramcounter_rep & rgramcounter keeptmpscore1 = 0 keeptmpscore2 = 0 for keepgram in keepgramcountergood_rep: keeptmpscore1 += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscore2 += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. keepscore_precision = 1 keepscore_recall = 1 if len(keepgramcounter_rep) > 0: keepscore_precision = keeptmpscore1 / len(keepgramcounter_rep) if len(keepgramcounterall_rep) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) keepscore_recall = keeptmpscore2 / sum(keepgramcounterall_rep.values()) keepscore = 0 if keepscore_precision > 0 or keepscore_recall > 0: keepscore = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION delgramcounter_rep = sgramcounter_rep - cgramcounter_rep delgramcountergood_rep = delgramcounter_rep - rgramcounter delgramcounterall_rep = sgramcounter_rep - rgramcounter deltmpscore1 = 0 deltmpscore2 = 0 for delgram in delgramcountergood_rep: deltmpscore1 += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscore2 += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. delscore_precision = 1 if len(delgramcounter_rep) > 0: delscore_precision = deltmpscore1 / len(delgramcounter_rep) # ADDITION addgramcounter = set(cgramcounter) - set(sgramcounter) addgramcountergood = set(addgramcounter) & set(rgramcounter) addgramcounterall = set(rgramcounter) - set(sgramcounter) addtmpscore = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. addscore_precision = 1 addscore_recall = 1 if len(addgramcounter) > 0: addscore_precision = addtmpscore / len(addgramcounter) if len(addgramcounterall) > 0: addscore_recall = addtmpscore / len(addgramcounterall) addscore = 0 if addscore_precision > 0 or addscore_recall > 0: addscore = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def SARIsent(ssent, csent, rsents): numref = len(rsents) s1grams = ssent.split(" ") c1grams = csent.split(" ") s2grams = [] c2grams = [] s3grams = [] c3grams = [] s4grams = [] c4grams = [] r1gramslist = [] r2gramslist = [] r3gramslist = [] r4gramslist = [] for rsent in rsents: r1grams = rsent.split(" ") r2grams = [] r3grams = [] r4grams = [] r1gramslist.append(r1grams) for i in range(0, len(r1grams) - 1): if i < len(r1grams) - 1: r2gram = r1grams[i] + " " + r1grams[i + 1] r2grams.append(r2gram) if i < len(r1grams) - 2: r3gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2] r3grams.append(r3gram) if i < len(r1grams) - 3: r4gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2] + " " + r1grams[i + 3] r4grams.append(r4gram) r2gramslist.append(r2grams) r3gramslist.append(r3grams) r4gramslist.append(r4grams) for i in range(0, len(s1grams) - 1): if i < len(s1grams) - 1: s2gram = s1grams[i] + " " + s1grams[i + 1] s2grams.append(s2gram) if i < len(s1grams) - 2: s3gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2] s3grams.append(s3gram) if i < len(s1grams) - 3: s4gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2] + " " + s1grams[i + 3] s4grams.append(s4gram) for i in range(0, len(c1grams) - 1): if i < len(c1grams) - 1: c2gram = c1grams[i] + " " + c1grams[i + 1] c2grams.append(c2gram) if i < len(c1grams) - 2: c3gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2] c3grams.append(c3gram) if i < len(c1grams) - 3: c4gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2] + " " + c1grams[i + 3] c4grams.append(c4gram) (keep1score, del1score, add1score) = SARIngram(s1grams, c1grams, r1gramslist, numref) (keep2score, del2score, add2score) = SARIngram(s2grams, c2grams, r2gramslist, numref) (keep3score, del3score, add3score) = SARIngram(s3grams, c3grams, r3gramslist, numref) (keep4score, del4score, add4score) = SARIngram(s4grams, c4grams, r4gramslist, numref) avgkeepscore = sum([keep1score, keep2score, keep3score, keep4score]) / 4 avgdelscore = sum([del1score, del2score, del3score, del4score]) / 4 avgaddscore = sum([add1score, add2score, add3score, add4score]) / 4 finalscore = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def normalize(sentence, lowercase: bool = True, tokenizer: str = "13a", return_str: bool = True): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: sentence = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__).major >= 2: normalized_sent = sacrebleu.metrics.bleu._get_tokenizer(tokenizer)()(sentence) else: normalized_sent = sacrebleu.TOKENIZERS[tokenizer]()(sentence) elif tokenizer == "moses": normalized_sent = sacremoses.MosesTokenizer().tokenize(sentence, return_str=True, escape=False) elif tokenizer == "penn": normalized_sent = sacremoses.MosesTokenizer().penn_tokenize(sentence, return_str=True) else: normalized_sent = sentence if not return_str: normalized_sent = normalized_sent.split() return normalized_sent @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Sari(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "sources": datasets.Value("string", id="sequence"), "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=[ "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", ], reference_urls=["https://www.aclweb.org/anthology/Q16-1029.pdf"], ) def _compute(self, sources, predictions, references): if not (len(sources) == len(predictions) == len(references)): raise ValueError("Sources length must match predictions and references lengths.") sari_score = 0 for src, pred, refs in zip(sources, predictions, references): sari_score += SARIsent(normalize(src), normalize(pred), [normalize(sent) for sent in refs]) sari_score = sari_score / len(predictions) return {"sari": 100 * sari_score}
datasets-main
metrics/sari/sari.py
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Spearman correlation coefficient metric.""" from scipy.stats import spearmanr import datasets _DESCRIPTION = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _KWARGS_DESCRIPTION = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _CITATION = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Spearmanr(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _compute(self, predictions, references, return_pvalue=False): results = spearmanr(references, predictions) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
datasets-main
metrics/spearmanr/spearmanr.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XNLI benchmark metric. """ import datasets _CITATION = """\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } """ _DESCRIPTION = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ _KWARGS_DESCRIPTION = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def simple_accuracy(preds, labels): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Xnli(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), } ), codebase_urls=[], reference_urls=[], format="numpy", ) def _compute(self, predictions, references): return {"accuracy": simple_accuracy(predictions, references)}
datasets-main
metrics/xnli/xnli.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ METEOR metric. """ import importlib.metadata import numpy as np from nltk.translate import meteor_score from packaging import version import datasets NLTK_VERSION = version.parse(importlib.metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize _CITATION = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ _DESCRIPTION = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ _KWARGS_DESCRIPTION = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Meteor(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"], reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ], ) def _download_and_prepare(self, dl_manager): import nltk nltk.download("wordnet") if NLTK_VERSION >= version.Version("3.6.5"): nltk.download("punkt") if NLTK_VERSION >= version.Version("3.6.6"): nltk.download("omw-1.4") def _compute(self, predictions, references, alpha=0.9, beta=3, gamma=0.5): if NLTK_VERSION >= version.Version("3.6.5"): scores = [ meteor_score.single_meteor_score( word_tokenize(ref), word_tokenize(pred), alpha=alpha, beta=beta, gamma=gamma ) for ref, pred in zip(references, predictions) ] else: scores = [ meteor_score.single_meteor_score(ref, pred, alpha=alpha, beta=beta, gamma=gamma) for ref, pred in zip(references, predictions) ] return {"meteor": np.mean(scores)}
datasets-main
metrics/meteor/meteor.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accuracy metric for the Mathematics Aptitude Test of Heuristics (MATH) dataset.""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _CITATION = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ _DESCRIPTION = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. """ _KWARGS_DESCRIPTION = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class CompetitionMathMetric(datasets.Metric): """Accuracy metric for the MATH dataset.""" def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string"), "references": datasets.Value("string"), } ), # Homepage of the metric for documentation homepage="https://github.com/hendrycks/math", # Additional links to the codebase or references codebase_urls=["https://github.com/hendrycks/math"], ) def _compute(self, predictions, references): """Returns the scores""" n_correct = 0.0 for i, j in zip(predictions, references): n_correct += 1.0 if math_equivalence.is_equiv(i, j) else 0.0 accuracy = n_correct / len(predictions) return { "accuracy": accuracy, }
datasets-main
metrics/competition_math/competition_math.py
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Matthews Correlation metric.""" from sklearn.metrics import matthews_corrcoef import datasets _DESCRIPTION = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ _KWARGS_DESCRIPTION = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ _CITATION = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class MatthewsCorrelation(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ], ) def _compute(self, predictions, references, sample_weight=None): return { "matthews_correlation": float(matthews_corrcoef(references, predictions, sample_weight=sample_weight)), }
datasets-main
metrics/matthews_correlation/matthews_correlation.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MAUVE metric from https://github.com/krishnap25/mauve. """ import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _CITATION = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ _DESCRIPTION = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ _KWARGS_DESCRIPTION = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mauve(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/krishnap25/mauve", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/krishnap25/mauve"], reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ], ) def _compute( self, predictions, references, p_features=None, q_features=None, p_tokens=None, q_tokens=None, num_buckets="auto", pca_max_data=-1, kmeans_explained_var=0.9, kmeans_num_redo=5, kmeans_max_iter=500, featurize_model_name="gpt2-large", device_id=-1, max_text_length=1024, divergence_curve_discretization_size=25, mauve_scaling_factor=5, verbose=True, seed=25, ): out = compute_mauve( p_text=predictions, q_text=references, p_features=p_features, q_features=q_features, p_tokens=p_tokens, q_tokens=q_tokens, num_buckets=num_buckets, pca_max_data=pca_max_data, kmeans_explained_var=kmeans_explained_var, kmeans_num_redo=kmeans_num_redo, kmeans_max_iter=kmeans_max_iter, featurize_model_name=featurize_model_name, device_id=device_id, max_text_length=max_text_length, divergence_curve_discretization_size=divergence_curve_discretization_size, mauve_scaling_factor=mauve_scaling_factor, verbose=verbose, seed=seed, ) return out
datasets-main
metrics/mauve/mauve.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CUAD metric. """ import datasets from .evaluate import evaluate _CITATION = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ _DESCRIPTION = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ _KWARGS_DESCRIPTION = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class CUAD(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.features.Sequence(datasets.Value("string")), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), }, } ), codebase_urls=["https://www.atticusprojectai.org/cuad"], reference_urls=["https://www.atticusprojectai.org/cuad"], ) def _compute(self, predictions, references): pred_dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} dataset = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] score = evaluate(dataset=dataset, predictions=pred_dict) return score
datasets-main
metrics/cuad/cuad.py
""" Official evaluation script for CUAD dataset. """ import argparse import json import re import string import sys import numpy as np IOU_THRESH = 0.5 def get_jaccard(prediction, ground_truth): remove_tokens = [".", ",", ";", ":"] for token in remove_tokens: ground_truth = ground_truth.replace(token, "") prediction = prediction.replace(token, "") ground_truth, prediction = ground_truth.lower(), prediction.lower() ground_truth, prediction = ground_truth.replace("/", " "), prediction.replace("/", " ") ground_truth, prediction = set(ground_truth.split(" ")), set(prediction.split(" ")) intersection = ground_truth.intersection(prediction) union = ground_truth.union(prediction) jaccard = len(intersection) / len(union) return jaccard def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def compute_precision_recall(predictions, ground_truths, qa_id): tp, fp, fn = 0, 0, 0 substr_ok = "Parties" in qa_id # first check if ground truth is empty if len(ground_truths) == 0: if len(predictions) > 0: fp += len(predictions) # false positive for each one else: for ground_truth in ground_truths: assert len(ground_truth) > 0 # check if there is a match match_found = False for pred in predictions: if substr_ok: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH or ground_truth in pred else: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH if is_match: match_found = True if match_found: tp += 1 else: fn += 1 # now also get any fps by looping through preds for pred in predictions: # Check if there's a match. if so, don't count (don't want to double count based on the above) # but if there's no match, then this is a false positive. # (Note: we get the true positives in the above loop instead of this loop so that we don't double count # multiple predictions that are matched with the same answer.) match_found = False for ground_truth in ground_truths: assert len(ground_truth) > 0 if substr_ok: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH or ground_truth in pred else: is_match = get_jaccard(pred, ground_truth) >= IOU_THRESH if is_match: match_found = True if not match_found: fp += 1 precision = tp / (tp + fp) if tp + fp > 0 else np.nan recall = tp / (tp + fn) if tp + fn > 0 else np.nan return precision, recall def process_precisions(precisions): """ Processes precisions to ensure that precision and recall don't both get worse. Assumes the list precision is sorted in order of recalls """ precision_best = precisions[::-1] for i in range(1, len(precision_best)): precision_best[i] = max(precision_best[i - 1], precision_best[i]) precisions = precision_best[::-1] return precisions def get_aupr(precisions, recalls): processed_precisions = process_precisions(precisions) aupr = np.trapz(processed_precisions, recalls) if np.isnan(aupr): return 0 return aupr def get_prec_at_recall(precisions, recalls, recall_thresh): """Assumes recalls are sorted in increasing order""" processed_precisions = process_precisions(precisions) prec_at_recall = 0 for prec, recall in zip(processed_precisions, recalls): if recall >= recall_thresh: prec_at_recall = prec break return prec_at_recall def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, predictions, ground_truths): score = 0 for pred in predictions: for ground_truth in ground_truths: score = metric_fn(pred, ground_truth) if score == 1: # break the loop when one prediction matches the ground truth break if score == 1: break return score def evaluate(dataset, predictions): f1 = exact_match = total = 0 precisions = [] recalls = [] for article in dataset: for paragraph in article["paragraphs"]: for qa in paragraph["qas"]: total += 1 if qa["id"] not in predictions: message = "Unanswered question " + qa["id"] + " will receive score 0." print(message, file=sys.stderr) continue ground_truths = [x["text"] for x in qa["answers"]] prediction = predictions[qa["id"]] precision, recall = compute_precision_recall(prediction, ground_truths, qa["id"]) precisions.append(precision) recalls.append(recall) if precision == 0 and recall == 0: f1 += 0 else: f1 += 2 * (precision * recall) / (precision + recall) exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) precisions = [x for _, x in sorted(zip(recalls, precisions))] recalls.sort() f1 = 100.0 * f1 / total exact_match = 100.0 * exact_match / total aupr = get_aupr(precisions, recalls) prec_at_90_recall = get_prec_at_recall(precisions, recalls, recall_thresh=0.9) prec_at_80_recall = get_prec_at_recall(precisions, recalls, recall_thresh=0.8) return { "exact_match": exact_match, "f1": f1, "aupr": aupr, "prec_at_80_recall": prec_at_80_recall, "prec_at_90_recall": prec_at_90_recall, } if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluation for CUAD") parser.add_argument("dataset_file", help="Dataset file") parser.add_argument("prediction_file", help="Prediction File") args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json["data"] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
datasets-main
metrics/cuad/evaluate.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ WIKI_SPLIT metric.""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _CITATION = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } """ _DESCRIPTION = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ _KWARGS_DESCRIPTION = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_em(predictions, references): scores = [any(compute_exact(ref, pred) for ref in refs) for pred, refs in zip(predictions, references)] return (sum(scores) / len(scores)) * 100 def SARIngram(sgrams, cgrams, rgramslist, numref): rgramsall = [rgram for rgrams in rgramslist for rgram in rgrams] rgramcounter = Counter(rgramsall) sgramcounter = Counter(sgrams) sgramcounter_rep = Counter() for sgram, scount in sgramcounter.items(): sgramcounter_rep[sgram] = scount * numref cgramcounter = Counter(cgrams) cgramcounter_rep = Counter() for cgram, ccount in cgramcounter.items(): cgramcounter_rep[cgram] = ccount * numref # KEEP keepgramcounter_rep = sgramcounter_rep & cgramcounter_rep keepgramcountergood_rep = keepgramcounter_rep & rgramcounter keepgramcounterall_rep = sgramcounter_rep & rgramcounter keeptmpscore1 = 0 keeptmpscore2 = 0 for keepgram in keepgramcountergood_rep: keeptmpscore1 += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscore2 += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. keepscore_precision = 1 keepscore_recall = 1 if len(keepgramcounter_rep) > 0: keepscore_precision = keeptmpscore1 / len(keepgramcounter_rep) if len(keepgramcounterall_rep) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) keepscore_recall = keeptmpscore2 / sum(keepgramcounterall_rep.values()) keepscore = 0 if keepscore_precision > 0 or keepscore_recall > 0: keepscore = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION delgramcounter_rep = sgramcounter_rep - cgramcounter_rep delgramcountergood_rep = delgramcounter_rep - rgramcounter delgramcounterall_rep = sgramcounter_rep - rgramcounter deltmpscore1 = 0 deltmpscore2 = 0 for delgram in delgramcountergood_rep: deltmpscore1 += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscore2 += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. delscore_precision = 1 if len(delgramcounter_rep) > 0: delscore_precision = deltmpscore1 / len(delgramcounter_rep) # ADDITION addgramcounter = set(cgramcounter) - set(sgramcounter) addgramcountergood = set(addgramcounter) & set(rgramcounter) addgramcounterall = set(rgramcounter) - set(sgramcounter) addtmpscore = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. addscore_precision = 1 addscore_recall = 1 if len(addgramcounter) > 0: addscore_precision = addtmpscore / len(addgramcounter) if len(addgramcounterall) > 0: addscore_recall = addtmpscore / len(addgramcounterall) addscore = 0 if addscore_precision > 0 or addscore_recall > 0: addscore = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def SARIsent(ssent, csent, rsents): numref = len(rsents) s1grams = ssent.split(" ") c1grams = csent.split(" ") s2grams = [] c2grams = [] s3grams = [] c3grams = [] s4grams = [] c4grams = [] r1gramslist = [] r2gramslist = [] r3gramslist = [] r4gramslist = [] for rsent in rsents: r1grams = rsent.split(" ") r2grams = [] r3grams = [] r4grams = [] r1gramslist.append(r1grams) for i in range(0, len(r1grams) - 1): if i < len(r1grams) - 1: r2gram = r1grams[i] + " " + r1grams[i + 1] r2grams.append(r2gram) if i < len(r1grams) - 2: r3gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2] r3grams.append(r3gram) if i < len(r1grams) - 3: r4gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2] + " " + r1grams[i + 3] r4grams.append(r4gram) r2gramslist.append(r2grams) r3gramslist.append(r3grams) r4gramslist.append(r4grams) for i in range(0, len(s1grams) - 1): if i < len(s1grams) - 1: s2gram = s1grams[i] + " " + s1grams[i + 1] s2grams.append(s2gram) if i < len(s1grams) - 2: s3gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2] s3grams.append(s3gram) if i < len(s1grams) - 3: s4gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2] + " " + s1grams[i + 3] s4grams.append(s4gram) for i in range(0, len(c1grams) - 1): if i < len(c1grams) - 1: c2gram = c1grams[i] + " " + c1grams[i + 1] c2grams.append(c2gram) if i < len(c1grams) - 2: c3gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2] c3grams.append(c3gram) if i < len(c1grams) - 3: c4gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2] + " " + c1grams[i + 3] c4grams.append(c4gram) (keep1score, del1score, add1score) = SARIngram(s1grams, c1grams, r1gramslist, numref) (keep2score, del2score, add2score) = SARIngram(s2grams, c2grams, r2gramslist, numref) (keep3score, del3score, add3score) = SARIngram(s3grams, c3grams, r3gramslist, numref) (keep4score, del4score, add4score) = SARIngram(s4grams, c4grams, r4gramslist, numref) avgkeepscore = sum([keep1score, keep2score, keep3score, keep4score]) / 4 avgdelscore = sum([del1score, del2score, del3score, del4score]) / 4 avgaddscore = sum([add1score, add2score, add3score, add4score]) / 4 finalscore = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def normalize(sentence, lowercase: bool = True, tokenizer: str = "13a", return_str: bool = True): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: sentence = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__).major >= 2: normalized_sent = sacrebleu.metrics.bleu._get_tokenizer(tokenizer)()(sentence) else: normalized_sent = sacrebleu.TOKENIZERS[tokenizer]()(sentence) elif tokenizer == "moses": normalized_sent = sacremoses.MosesTokenizer().tokenize(sentence, return_str=True, escape=False) elif tokenizer == "penn": normalized_sent = sacremoses.MosesTokenizer().penn_tokenize(sentence, return_str=True) else: normalized_sent = sentence if not return_str: normalized_sent = normalized_sent.split() return normalized_sent def compute_sari(sources, predictions, references): if not (len(sources) == len(predictions) == len(references)): raise ValueError("Sources length must match predictions and references lengths.") sari_score = 0 for src, pred, refs in zip(sources, predictions, references): sari_score += SARIsent(normalize(src), normalize(pred), [normalize(sent) for sent in refs]) sari_score = sari_score / len(predictions) return 100 * sari_score def compute_sacrebleu( predictions, references, smooth_method="exp", smooth_value=None, force=False, lowercase=False, use_effective_order=False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] output = sacrebleu.corpus_bleu( predictions, transformed_references, smooth_method=smooth_method, smooth_value=smooth_value, force=force, lowercase=lowercase, use_effective_order=use_effective_order, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class WikiSplit(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ], reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def _compute(self, sources, predictions, references): result = {} result.update({"sari": compute_sari(sources=sources, predictions=predictions, references=references)}) result.update({"sacrebleu": compute_sacrebleu(predictions=predictions, references=references)}) result.update({"exact": compute_em(predictions=predictions, references=references)}) return result
datasets-main
metrics/wiki_split/wiki_split.py
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Character Error Ratio (CER) metric. """ from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata SENTENCE_DELIMITER = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class SentencesToListOfCharacters(tr.AbstractTransform): def __init__(self, sentence_delimiter: str = " "): self.sentence_delimiter = sentence_delimiter def process_string(self, s: str): return list(s) def process_list(self, inp: List[str]): chars = [] for sent_idx, sentence in enumerate(inp): chars.extend(self.process_string(sentence)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(inp) - 1: chars.append(self.sentence_delimiter) return chars cer_transform = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: cer_transform = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _CITATION = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _DESCRIPTION = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ _KWARGS_DESCRIPTION = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class CER(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ], ) def _compute(self, predictions, references, concatenate_texts=False): if concatenate_texts: return jiwer.compute_measures( references, predictions, truth_transform=cer_transform, hypothesis_transform=cer_transform, )["wer"] incorrect = 0 total = 0 for prediction, reference in zip(predictions, references): measures = jiwer.compute_measures( reference, prediction, truth_transform=cer_transform, hypothesis_transform=cer_transform, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
datasets-main
metrics/cer/cer.py
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from cer import CER cer = CER() class TestCER(unittest.TestCase): def test_cer_case_senstive(self): refs = ["White House"] preds = ["white house"] # S = 2, D = 0, I = 0, N = 11, CER = 2 / 11 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.1818181818) < 1e-6) def test_cer_whitespace(self): refs = ["were wolf"] preds = ["werewolf"] # S = 0, D = 0, I = 1, N = 9, CER = 1 / 9 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.1111111) < 1e-6) refs = ["werewolf"] preds = ["weae wolf"] # S = 1, D = 1, I = 0, N = 8, CER = 0.25 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.25) < 1e-6) # consecutive whitespaces case 1 refs = ["were wolf"] preds = ["were wolf"] # S = 0, D = 0, I = 0, N = 9, CER = 0 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.0) < 1e-6) # consecutive whitespaces case 2 refs = ["were wolf"] preds = ["were wolf"] # S = 0, D = 0, I = 0, N = 9, CER = 0 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.0) < 1e-6) def test_cer_sub(self): refs = ["werewolf"] preds = ["weaewolf"] # S = 1, D = 0, I = 0, N = 8, CER = 0.125 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) def test_cer_del(self): refs = ["werewolf"] preds = ["wereawolf"] # S = 0, D = 1, I = 0, N = 8, CER = 0.125 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) def test_cer_insert(self): refs = ["werewolf"] preds = ["wereolf"] # S = 0, D = 0, I = 1, N = 8, CER = 0.125 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) def test_cer_equal(self): refs = ["werewolf"] char_error_rate = cer.compute(predictions=refs, references=refs) self.assertEqual(char_error_rate, 0.0) def test_cer_list_of_seqs(self): refs = ["werewolf", "I am your father"] char_error_rate = cer.compute(predictions=refs, references=refs) self.assertEqual(char_error_rate, 0.0) refs = ["werewolf", "I am your father", "doge"] preds = ["werxwolf", "I am your father", "doge"] # S = 1, D = 0, I = 0, N = 28, CER = 1 / 28 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.03571428) < 1e-6) def test_correlated_sentences(self): refs = ["My hovercraft", "is full of eels"] preds = ["My hovercraft is full", " of eels"] # S = 0, D = 0, I = 2, N = 28, CER = 2 / 28 # whitespace at the front of " of eels" will be strip during preporcessing # so need to insert 2 whitespaces char_error_rate = cer.compute(predictions=preds, references=refs, concatenate_texts=True) self.assertTrue(abs(char_error_rate - 0.071428) < 1e-6) def test_cer_unicode(self): refs = ["我能吞下玻璃而不伤身体"] preds = [" 能吞虾玻璃而 不霜身体啦"] # S = 3, D = 2, I = 0, N = 11, CER = 5 / 11 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.4545454545) < 1e-6) refs = ["我能吞下玻璃", "而不伤身体"] preds = ["我 能 吞 下 玻 璃", "而不伤身体"] # S = 0, D = 5, I = 0, N = 11, CER = 5 / 11 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.454545454545) < 1e-6) refs = ["我能吞下玻璃而不伤身体"] char_error_rate = cer.compute(predictions=refs, references=refs) self.assertFalse(char_error_rate, 0.0) def test_cer_empty(self): refs = [""] preds = ["Hypothesis"] with self.assertRaises(ValueError): cer.compute(predictions=preds, references=refs) if __name__ == "__main__": unittest.main()
datasets-main
metrics/cer/test_cer.py
# Copyright 2022 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mean IoU (Intersection-over-Union) metric.""" from typing import Dict, Optional import numpy as np import datasets _DESCRIPTION = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _KWARGS_DESCRIPTION = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _CITATION = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def intersect_and_union( pred_label, label, num_labels, ignore_index: bool, label_map: Optional[Dict[int, int]] = None, reduce_labels: bool = False, ): """Calculate intersection and Union. Args: pred_label (`ndarray`): Prediction segmentation map of shape (height, width). label (`ndarray`): Ground truth segmentation map of shape (height, width). num_labels (`int`): Number of categories. ignore_index (`int`): Index that will be ignored during evaluation. label_map (`dict`, *optional*): Mapping old labels to new labels. The parameter will work only when label is str. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: area_intersect (`ndarray`): The intersection of prediction and ground truth histogram on all classes. area_union (`ndarray`): The union of prediction and ground truth histogram on all classes. area_pred_label (`ndarray`): The prediction histogram on all classes. area_label (`ndarray`): The ground truth histogram on all classes. """ if label_map is not None: for old_id, new_id in label_map.items(): label[label == old_id] = new_id # turn into Numpy arrays pred_label = np.array(pred_label) label = np.array(label) if reduce_labels: label[label == 0] = 255 label = label - 1 label[label == 254] = 255 mask = label != ignore_index mask = np.not_equal(label, ignore_index) pred_label = pred_label[mask] label = np.array(label)[mask] intersect = pred_label[pred_label == label] area_intersect = np.histogram(intersect, bins=num_labels, range=(0, num_labels - 1))[0] area_pred_label = np.histogram(pred_label, bins=num_labels, range=(0, num_labels - 1))[0] area_label = np.histogram(label, bins=num_labels, range=(0, num_labels - 1))[0] area_union = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def total_intersect_and_union( results, gt_seg_maps, num_labels, ignore_index: bool, label_map: Optional[Dict[int, int]] = None, reduce_labels: bool = False, ): """Calculate Total Intersection and Union, by calculating `intersect_and_union` for each (predicted, ground truth) pair. Args: results (`ndarray`): List of prediction segmentation maps, each of shape (height, width). gt_seg_maps (`ndarray`): List of ground truth segmentation maps, each of shape (height, width). num_labels (`int`): Number of categories. ignore_index (`int`): Index that will be ignored during evaluation. label_map (`dict`, *optional*): Mapping old labels to new labels. The parameter will work only when label is str. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: total_area_intersect (`ndarray`): The intersection of prediction and ground truth histogram on all classes. total_area_union (`ndarray`): The union of prediction and ground truth histogram on all classes. total_area_pred_label (`ndarray`): The prediction histogram on all classes. total_area_label (`ndarray`): The ground truth histogram on all classes. """ total_area_intersect = np.zeros((num_labels,), dtype=np.float64) total_area_union = np.zeros((num_labels,), dtype=np.float64) total_area_pred_label = np.zeros((num_labels,), dtype=np.float64) total_area_label = np.zeros((num_labels,), dtype=np.float64) for result, gt_seg_map in zip(results, gt_seg_maps): area_intersect, area_union, area_pred_label, area_label = intersect_and_union( result, gt_seg_map, num_labels, ignore_index, label_map, reduce_labels ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def mean_iou( results, gt_seg_maps, num_labels, ignore_index: bool, nan_to_num: Optional[int] = None, label_map: Optional[Dict[int, int]] = None, reduce_labels: bool = False, ): """Calculate Mean Intersection and Union (mIoU). Args: results (`ndarray`): List of prediction segmentation maps, each of shape (height, width). gt_seg_maps (`ndarray`): List of ground truth segmentation maps, each of shape (height, width). num_labels (`int`): Number of categories. ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): Mapping old labels to new labels. The parameter will work only when label is str. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. """ total_area_intersect, total_area_union, total_area_pred_label, total_area_label = total_intersect_and_union( results, gt_seg_maps, num_labels, ignore_index, label_map, reduce_labels ) # compute metrics metrics = {} all_acc = total_area_intersect.sum() / total_area_label.sum() iou = total_area_intersect / total_area_union acc = total_area_intersect / total_area_label metrics["mean_iou"] = np.nanmean(iou) metrics["mean_accuracy"] = np.nanmean(acc) metrics["overall_accuracy"] = all_acc metrics["per_category_iou"] = iou metrics["per_category_accuracy"] = acc if nan_to_num is not None: metrics = {metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class MeanIoU(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), } ), reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ], ) def _compute( self, predictions, references, num_labels: int, ignore_index: bool, nan_to_num: Optional[int] = None, label_map: Optional[Dict[int, int]] = None, reduce_labels: bool = False, ): iou_result = mean_iou( results=predictions, gt_seg_maps=references, num_labels=num_labels, ignore_index=ignore_index, nan_to_num=nan_to_num, label_map=label_map, reduce_labels=reduce_labels, ) return iou_result
datasets-main
metrics/mean_iou/mean_iou.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SACREBLEU metric. """ import sacrebleu as scb from packaging import version import datasets _CITATION = """\ @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } """ _DESCRIPTION = """\ SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official WMT scores but works with plain text. It also knows all the standard test sets and handles downloading, processing, and tokenization for you. See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information. """ _KWARGS_DESCRIPTION = """ Produces BLEU scores along with its sufficient statistics from a source against one or more references. Args: predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens. references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length). smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are: - `'none'`: no smoothing - `'floor'`: increment zero counts - `'add-k'`: increment num/denom by k for n>1 - `'exp'`: exponential decay smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`). tokenize (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are: - `'none'`: No tokenization. - `'zh'`: Chinese tokenization. - `'13a'`: mimics the `mteval-v13a` script from Moses. - `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses - `'char'`: Language-agnostic character-level tokenization. - `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3). lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`. force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`. use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`. Returns: 'score': BLEU score, 'counts': Counts, 'totals': Totals, 'precisions': Precisions, 'bp': Brevity penalty, 'sys_len': predictions length, 'ref_len': reference length, Examples: Example 1: >>> predictions = ["hello there general kenobi", "foo bar foobar"] >>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]] >>> sacrebleu = datasets.load_metric("sacrebleu") >>> results = sacrebleu.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] >>> print(round(results["score"], 1)) 100.0 Example 2: >>> predictions = ["hello there general kenobi", ... "on our way to ankh morpork"] >>> references = [["hello there general kenobi", "hello there !"], ... ["goodbye ankh morpork", "ankh morpork"]] >>> sacrebleu = datasets.load_metric("sacrebleu") >>> results = sacrebleu.compute(predictions=predictions, ... references=references) >>> print(list(results.keys())) ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] >>> print(round(results["score"], 1)) 39.8 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Sacrebleu(datasets.Metric): def _info(self): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/mjpost/sacreBLEU", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=["https://github.com/mjpost/sacreBLEU"], reference_urls=[ "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def _compute( self, predictions, references, smooth_method="exp", smooth_value=None, force=False, lowercase=False, tokenize=None, use_effective_order=False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] output = scb.corpus_bleu( predictions, transformed_references, smooth_method=smooth_method, smooth_value=smooth_value, force=force, lowercase=lowercase, use_effective_order=use_effective_order, **({"tokenize": tokenize} if tokenize else {}), ) output_dict = { "score": output.score, "counts": output.counts, "totals": output.totals, "precisions": output.precisions, "bp": output.bp, "sys_len": output.sys_len, "ref_len": output.ref_len, } return output_dict
datasets-main
metrics/sacrebleu/sacrebleu.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Google BLEU (aka GLEU) metric. """ from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _CITATION = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _KWARGS_DESCRIPTION = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class GoogleBleu(datasets.Metric): def _info(self) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references" ), } ), ) def _compute( self, predictions: List[List[List[str]]], references: List[List[str]], min_len: int = 1, max_len: int = 4, ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=references, hypotheses=predictions, min_len=min_len, max_len=max_len ) }
datasets-main
metrics/google_bleu/google_bleu.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BLEU metric. """ import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _CITATION = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } """ _DESCRIPTION = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ _KWARGS_DESCRIPTION = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Bleu(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references" ), } ), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def _compute(self, predictions, references, max_order=4, smooth=False): score = compute_bleu( reference_corpus=references, translation_corpus=predictions, max_order=max_order, smooth=smooth ) (bleu, precisions, bp, ratio, translation_length, reference_length) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
datasets-main
metrics/bleu/bleu.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accuracy metric.""" from sklearn.metrics import accuracy_score import datasets _DESCRIPTION = """ Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with: Accuracy = (TP + TN) / (TP + TN + FP + FN) Where: TP: True positive TN: True negative FP: False positive FN: False negative """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. normalize (`boolean`): If set to False, returns the number of correctly classified samples. Otherwise, returns the fraction of correctly classified samples. Defaults to True. sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: accuracy (`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy. Examples: Example 1-A simple example >>> accuracy_metric = datasets.load_metric("accuracy") >>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0]) >>> print(results) {'accuracy': 0.5} Example 2-The same as Example 1, except with `normalize` set to `False`. >>> accuracy_metric = datasets.load_metric("accuracy") >>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], normalize=False) >>> print(results) {'accuracy': 3.0} Example 3-The same as Example 1, except with `sample_weight` set. >>> accuracy_metric = datasets.load_metric("accuracy") >>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4]) >>> print(results) {'accuracy': 0.8778625954198473} """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Accuracy(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html"], ) def _compute(self, predictions, references, normalize=True, sample_weight=None): return { "accuracy": float( accuracy_score(references, predictions, normalize=normalize, sample_weight=sample_weight) ) }
datasets-main
metrics/accuracy/accuracy.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Recall metric.""" from sklearn.metrics import recall_score import datasets _DESCRIPTION = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _KWARGS_DESCRIPTION = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Recall(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"], ) def _compute( self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None, zero_division="warn", ): score = recall_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight, zero_division=zero_division, ) return {"recall": float(score) if score.size == 1 else score}
datasets-main
metrics/recall/recall.py
# Copyright 2022 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XTREME-S benchmark metric. """ from typing import List from packaging import version from sklearn.metrics import f1_score import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata # TODO(Patrick/Anton) _CITATION = """\ """ _DESCRIPTION = """\ XTREME-S is a benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, speech-to-text translation and retrieval. """ _KWARGS_DESCRIPTION = """ Compute XTREME-S evaluation metric associated to each XTREME-S dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. bleu_kwargs: optional dict of keywords to be passed when computing 'bleu'. Keywords include Dict can be one of 'smooth_method', 'smooth_value', 'force', 'lowercase', 'tokenize', 'use_effective_order'. wer_kwargs: optional dict of keywords to be passed when computing 'wer' and 'cer'. Keywords include 'concatenate_texts'. Returns: depending on the XTREME-S task, one or several of: "accuracy": Accuracy - for 'fleurs-lang_id', 'minds14' "f1": F1 score - for 'minds14' "wer": Word error rate - for 'mls', 'fleurs-asr', 'voxpopuli', 'babel' "cer": Character error rate - for 'mls', 'fleurs-asr', 'voxpopuli', 'babel' "bleu": BLEU score according to the `sacrebleu` metric - for 'covost2' Examples: >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'mls') # 'mls', 'voxpopuli', 'fleurs-asr' or 'babel' >>> references = ["it is sunny here", "paper and pen are essentials"] >>> predictions = ["it's sunny", "paper pen are essential"] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'wer': 0.56, 'cer': 0.27} >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'covost2') >>> references = ["bonjour paris", "il est necessaire de faire du sport de temps en temp"] >>> predictions = ["bonjour paris", "il est important de faire du sport souvent"] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'bleu': 31.65} >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'fleurs-lang_id') >>> references = [0, 1, 0, 0, 1] >>> predictions = [0, 1, 1, 0, 0] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'accuracy': 0.6} >>> xtreme_s_metric = datasets.load_metric('xtreme_s', 'minds14') >>> references = [0, 1, 0, 0, 1] >>> predictions = [0, 1, 1, 0, 0] >>> results = xtreme_s_metric.compute(predictions=predictions, references=references) >>> print({k: round(v, 2) for k, v in results.items()}) {'f1': 0.58, 'accuracy': 0.6} """ _CONFIG_NAMES = ["fleurs-asr", "mls", "voxpopuli", "babel", "covost2", "fleurs-lang_id", "minds14"] SENTENCE_DELIMITER = "" try: from jiwer import transforms as tr _jiwer_available = True except ImportError: _jiwer_available = False if _jiwer_available and version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class SentencesToListOfCharacters(tr.AbstractTransform): def __init__(self, sentence_delimiter: str = " "): self.sentence_delimiter = sentence_delimiter def process_string(self, s: str): return list(s) def process_list(self, inp: List[str]): chars = [] for sent_idx, sentence in enumerate(inp): chars.extend(self.process_string(sentence)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(inp) - 1: chars.append(self.sentence_delimiter) return chars cer_transform = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) elif _jiwer_available: cer_transform = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) else: cer_transform = None def simple_accuracy(preds, labels): return float((preds == labels).mean()) def f1_and_simple_accuracy(preds, labels): return { "f1": float(f1_score(y_true=labels, y_pred=preds, average="macro")), "accuracy": simple_accuracy(preds, labels), } def bleu( preds, labels, smooth_method="exp", smooth_value=None, force=False, lowercase=False, tokenize=None, use_effective_order=False, ): # xtreme-s can only have one label labels = [[label] for label in labels] preds = list(preds) try: import sacrebleu as scb except ImportError: raise ValueError( "sacrebleu has to be installed in order to apply the bleu metric for covost2." "You can install it via `pip install sacrebleu`." ) if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) references_per_prediction = len(labels[0]) if any(len(refs) != references_per_prediction for refs in labels): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in labels] for i in range(references_per_prediction)] output = scb.corpus_bleu( preds, transformed_references, smooth_method=smooth_method, smooth_value=smooth_value, force=force, lowercase=lowercase, use_effective_order=use_effective_order, **({"tokenize": tokenize} if tokenize else {}), ) return {"bleu": output.score} def wer_and_cer(preds, labels, concatenate_texts, config_name): try: from jiwer import compute_measures except ImportError: raise ValueError( f"jiwer has to be installed in order to apply the wer metric for {config_name}." "You can install it via `pip install jiwer`." ) if concatenate_texts: wer = compute_measures(labels, preds)["wer"] cer = compute_measures(labels, preds, truth_transform=cer_transform, hypothesis_transform=cer_transform)["wer"] return {"wer": wer, "cer": cer} else: def compute_score(preds, labels, score_type="wer"): incorrect = 0 total = 0 for prediction, reference in zip(preds, labels): if score_type == "wer": measures = compute_measures(reference, prediction) elif score_type == "cer": measures = compute_measures( reference, prediction, truth_transform=cer_transform, hypothesis_transform=cer_transform ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total return {"wer": compute_score(preds, labels, "wer"), "cer": compute_score(preds, labels, "cer")} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class XtremeS(datasets.Metric): def _info(self): if self.config_name not in _CONFIG_NAMES: raise KeyError(f"You should supply a configuration name selected in {_CONFIG_NAMES}") pred_type = "int64" if self.config_name in ["fleurs-lang_id", "minds14"] else "string" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( {"predictions": datasets.Value(pred_type), "references": datasets.Value(pred_type)} ), codebase_urls=[], reference_urls=[], format="numpy", ) def _compute(self, predictions, references, bleu_kwargs=None, wer_kwargs=None): bleu_kwargs = bleu_kwargs if bleu_kwargs is not None else {} wer_kwargs = wer_kwargs if wer_kwargs is not None else {} if self.config_name == "fleurs-lang_id": return {"accuracy": simple_accuracy(predictions, references)} elif self.config_name == "minds14": return f1_and_simple_accuracy(predictions, references) elif self.config_name == "covost2": smooth_method = bleu_kwargs.pop("smooth_method", "exp") smooth_value = bleu_kwargs.pop("smooth_value", None) force = bleu_kwargs.pop("force", False) lowercase = bleu_kwargs.pop("lowercase", False) tokenize = bleu_kwargs.pop("tokenize", None) use_effective_order = bleu_kwargs.pop("use_effective_order", False) return bleu( preds=predictions, labels=references, smooth_method=smooth_method, smooth_value=smooth_value, force=force, lowercase=lowercase, tokenize=tokenize, use_effective_order=use_effective_order, ) elif self.config_name in ["fleurs-asr", "mls", "voxpopuli", "babel"]: concatenate_texts = wer_kwargs.pop("concatenate_texts", False) return wer_and_cer(predictions, references, concatenate_texts, self.config_name) else: raise KeyError(f"You should supply a configuration name selected in {_CONFIG_NAMES}")
datasets-main
metrics/xtreme_s/xtreme_s.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ COMET metric. Requirements: pip install unbabel-comet Usage: ```python from datasets import load_metric comet_metric = load_metric('metrics/comet/comet.py') #comet_metric = load_metric('comet') #comet_metric = load_metric('comet', 'wmt-large-hter-estimator') source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] reference = ["They were able to control the fire.", "Schools and kindergartens opened"] predictions = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) predictions['scores'] ``` """ import comet # From: unbabel-comet import torch import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } """ _DESCRIPTION = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ _KWARGS_DESCRIPTION = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class COMET(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://unbabel.github.io/COMET/html/index.html", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "sources": datasets.Value("string", id="sequence"), "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/Unbabel/COMET"], reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ], ) def _download_and_prepare(self, dl_manager): if self.config_name == "default": self.scorer = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da")) else: self.scorer = comet.load_from_checkpoint(comet.download_model(self.config_name)) def _compute(self, sources, predictions, references, gpus=None, progress_bar=False): if gpus is None: gpus = 1 if torch.cuda.is_available() else 0 data = {"src": sources, "mt": predictions, "ref": references} data = [dict(zip(data, t)) for t in zip(*data.values())] scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar) return {"mean_score": mean_score, "scores": scores}
datasets-main
metrics/comet/comet.py
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TER metric as available in sacrebleu. """ import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _CITATION = """\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } """ _DESCRIPTION = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ _KWARGS_DESCRIPTION = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Ter(datasets.Metric): def _info(self): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="http://www.cs.umd.edu/~snover/tercom/", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"], reference_urls=[ "https://github.com/jhclark/tercom", ], ) def _compute( self, predictions, references, normalized: bool = False, ignore_punct: bool = False, support_zh_ja_chars: bool = False, case_sensitive: bool = False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] sb_ter = TER( normalized=normalized, no_punct=ignore_punct, asian_support=support_zh_ja_chars, case_sensitive=case_sensitive, ) output = sb_ter.corpus_score(predictions, transformed_references) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
datasets-main
metrics/ter/ter.py
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Perplexity Metric.""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _CITATION = """\ """ _DESCRIPTION = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _KWARGS_DESCRIPTION = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Perplexity(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "input_texts": datasets.Value("string"), } ), reference_urls=["https://huggingface.co/docs/transformers/perplexity"], ) def _compute(self, input_texts, model_id, batch_size: int = 16, add_start_token: bool = True, device=None): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": device = "cuda" else: device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForCausalLM.from_pretrained(model_id) model = model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_id) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: existing_special_tokens = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(existing_special_tokens) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" max_tokenized_len = model.config.max_length - 1 else: max_tokenized_len = model.config.max_length encodings = tokenizer( input_texts, add_special_tokens=False, padding=True, truncation=True, max_length=max_tokenized_len, return_tensors="pt", return_attention_mask=True, ).to(device) encoded_texts = encodings["input_ids"] attn_masks = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1), 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1), 2) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." ppls = [] loss_fct = CrossEntropyLoss(reduction="none") for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)): end_index = min(start_index + batch_size, len(encoded_texts)) encoded_batch = encoded_texts[start_index:end_index] attn_mask = attn_masks[start_index:end_index] if add_start_token: bos_tokens_tensor = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(device) encoded_batch = torch.cat([bos_tokens_tensor, encoded_batch], dim=1) attn_mask = torch.cat( [torch.ones(bos_tokens_tensor.size(), dtype=torch.int64).to(device), attn_mask], dim=1 ) labels = encoded_batch with torch.no_grad(): out_logits = model(encoded_batch, attention_mask=attn_mask).logits shift_logits = out_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() shift_attention_mask_batch = attn_mask[..., 1:].contiguous() perplexity_batch = torch.exp2( (loss_fct(shift_logits.transpose(1, 2), shift_labels) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(ppls)}
datasets-main
metrics/perplexity/perplexity.py
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pearson correlation coefficient metric.""" from scipy.stats import pearsonr import datasets _DESCRIPTION = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ _CITATION = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Pearsonr(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"], ) def _compute(self, predictions, references, return_pvalue=False): if return_pvalue: results = pearsonr(references, predictions) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(references, predictions)[0])}
datasets-main
metrics/pearsonr/pearsonr.py
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAE - Mean Absolute Error Metric""" from sklearn.metrics import mean_absolute_error import datasets _CITATION = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _DESCRIPTION = """\ Mean Absolute Error (MAE) is the mean of the magnitude of difference between the predicted and actual values. """ _KWARGS_DESCRIPTION = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. Returns: mae : mean absolute error. If multioutput is "raw_values", then mean absolute error is returned for each output separately. If multioutput is "uniform_average" or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples: >>> mae_metric = datasets.load_metric("mae") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mae_metric.compute(predictions=predictions, references=references) >>> print(results) {'mae': 0.5} If you're using multi-dimensional lists, then set the config as follows : >>> mae_metric = datasets.load_metric("mae", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mae_metric.compute(predictions=predictions, references=references) >>> print(results) {'mae': 0.75} >>> results = mae_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) {'mae': array([0.5, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mae(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html" ], ) def _get_feature_types(self): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float")), "references": datasets.Sequence(datasets.Value("float")), } else: return { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average"): mae_score = mean_absolute_error(references, predictions, sample_weight=sample_weight, multioutput=multioutput) return {"mae": mae_score}
datasets-main
metrics/mae/mae.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accuracy metric.""" from sklearn.metrics import roc_auc_score import datasets _DESCRIPTION = """ This metric computes the area under the curve (AUC) for the Receiver Operating Characteristic Curve (ROC). The return values represent how well the model used is predicting the correct classes, based on the input data. A score of `0.5` means that the model is predicting exactly at chance, i.e. the model's predictions are correct at the same rate as if the predictions were being decided by the flip of a fair coin or the roll of a fair die. A score above `0.5` indicates that the model is doing better than chance, while a score below `0.5` indicates that the model is doing worse than chance. This metric has three separate use cases: - binary: The case in which there are only two different label classes, and each example gets only one label. This is the default implementation. - multiclass: The case in which there can be more than two different label classes, but each example still gets only one label. - multilabel: The case in which there can be more than two different label classes, and each example can have more than one label. """ _KWARGS_DESCRIPTION = """ Args: - references (array-like of shape (n_samples,) or (n_samples, n_classes)): Ground truth labels. Expects different input based on use case: - binary: expects an array-like of shape (n_samples,) - multiclass: expects an array-like of shape (n_samples,) - multilabel: expects an array-like of shape (n_samples, n_classes) - prediction_scores (array-like of shape (n_samples,) or (n_samples, n_classes)): Model predictions. Expects different inputs based on use case: - binary: expects an array-like of shape (n_samples,) - multiclass: expects an array-like of shape (n_samples, n_classes) - multilabel: expects an array-like of shape (n_samples, n_classes) - average (`str`): Type of average, and is ignored in the binary use case. Defaults to 'macro'. Options are: - `'micro'`: Calculates metrics globally by considering each element of the label indicator matrix as a label. Only works with the multilabel use case. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average, weighted by support (i.e. the number of true instances for each label). - `'samples'`: Calculate metrics for each instance, and find their average. Only works with the multilabel use case. - `None`: No average is calculated, and scores for each class are returned. Only works with the multilabels use case. - sample_weight (array-like of shape (n_samples,)): Sample weights. Defaults to None. - max_fpr (`float`): If not None, the standardized partial AUC over the range [0, `max_fpr`] is returned. Must be greater than `0` and less than or equal to `1`. Defaults to `None`. Note: For the multiclass use case, `max_fpr` should be either `None` or `1.0` as ROC AUC partial computation is not currently supported for `multiclass`. - multi_class (`str`): Only used for multiclass targets, where it is required. Determines the type of configuration to use. Options are: - `'ovr'`: Stands for One-vs-rest. Computes the AUC of each class against the rest. This treats the multiclass case in the same way as the multilabel case. Sensitive to class imbalance even when `average == 'macro'`, because class imbalance affects the composition of each of the 'rest' groupings. - `'ovo'`: Stands for One-vs-one. Computes the average AUC of all possible pairwise combinations of classes. Insensitive to class imbalance when `average == 'macro'`. - labels (array-like of shape (n_classes,)): Only used for multiclass targets. List of labels that index the classes in `prediction_scores`. If `None`, the numerical or lexicographical order of the labels in `prediction_scores` is used. Defaults to `None`. Returns: roc_auc (`float` or array-like of shape (n_classes,)): Returns array if in multilabel use case and `average='None'`. Otherwise, returns `float`. Examples: Example 1: >>> roc_auc_score = datasets.load_metric("roc_auc") >>> refs = [1, 0, 1, 1, 0, 0] >>> pred_scores = [0.5, 0.2, 0.99, 0.3, 0.1, 0.7] >>> results = roc_auc_score.compute(references=refs, prediction_scores=pred_scores) >>> print(round(results['roc_auc'], 2)) 0.78 Example 2: >>> roc_auc_score = datasets.load_metric("roc_auc", "multiclass") >>> refs = [1, 0, 1, 2, 2, 0] >>> pred_scores = [[0.3, 0.5, 0.2], ... [0.7, 0.2, 0.1], ... [0.005, 0.99, 0.005], ... [0.2, 0.3, 0.5], ... [0.1, 0.1, 0.8], ... [0.1, 0.7, 0.2]] >>> results = roc_auc_score.compute(references=refs, prediction_scores=pred_scores, multi_class='ovr') >>> print(round(results['roc_auc'], 2)) 0.85 Example 3: >>> roc_auc_score = datasets.load_metric("roc_auc", "multilabel") >>> refs = [[1, 1, 0], ... [1, 1, 0], ... [0, 1, 0], ... [0, 0, 1], ... [0, 1, 1], ... [1, 0, 1]] >>> pred_scores = [[0.3, 0.5, 0.2], ... [0.7, 0.2, 0.1], ... [0.005, 0.99, 0.005], ... [0.2, 0.3, 0.5], ... [0.1, 0.1, 0.8], ... [0.1, 0.7, 0.2]] >>> results = roc_auc_score.compute(references=refs, prediction_scores=pred_scores, average=None) >>> print([round(res, 2) for res in results['roc_auc']]) [0.83, 0.38, 0.94] """ _CITATION = """\ @article{doi:10.1177/0272989X8900900307, author = {Donna Katzman McClish}, title ={Analyzing a Portion of the ROC Curve}, journal = {Medical Decision Making}, volume = {9}, number = {3}, pages = {190-195}, year = {1989}, doi = {10.1177/0272989X8900900307}, note ={PMID: 2668680}, URL = {https://doi.org/10.1177/0272989X8900900307}, eprint = {https://doi.org/10.1177/0272989X8900900307} } @article{10.1023/A:1010920819831, author = {Hand, David J. and Till, Robert J.}, title = {A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems}, year = {2001}, issue_date = {November 2001}, publisher = {Kluwer Academic Publishers}, address = {USA}, volume = {45}, number = {2}, issn = {0885-6125}, url = {https://doi.org/10.1023/A:1010920819831}, doi = {10.1023/A:1010920819831}, journal = {Mach. Learn.}, month = {oct}, pages = {171–186}, numpages = {16}, keywords = {Gini index, AUC, error rate, ROC curve, receiver operating characteristic} } @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ROCAUC(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "prediction_scores": datasets.Sequence(datasets.Value("float")), "references": datasets.Value("int32"), } if self.config_name == "multiclass" else { "references": datasets.Sequence(datasets.Value("int32")), "prediction_scores": datasets.Sequence(datasets.Value("float")), } if self.config_name == "multilabel" else { "references": datasets.Value("int32"), "prediction_scores": datasets.Value("float"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html"], ) def _compute( self, references, prediction_scores, average="macro", sample_weight=None, max_fpr=None, multi_class="raise", labels=None, ): return { "roc_auc": roc_auc_score( references, prediction_scores, average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class, labels=labels, ) }
datasets-main
metrics/roc_auc/roc_auc.py
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MSE - Mean Squared Error Metric""" from sklearn.metrics import mean_squared_error import datasets _CITATION = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _DESCRIPTION = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _KWARGS_DESCRIPTION = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mse(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ], ) def _get_feature_types(self): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float")), "references": datasets.Sequence(datasets.Value("float")), } else: return { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average", squared=True): mse = mean_squared_error( references, predictions, sample_weight=sample_weight, multioutput=multioutput, squared=squared ) return {"mse": mse}
datasets-main
metrics/mse/mse.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SQuAD v2 metric. """ import datasets from .evaluate import ( apply_no_ans_threshold, find_all_best_thresh, get_raw_scores, make_eval_dict, make_qid_to_has_ans, merge_eval, ) _CITATION = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _DESCRIPTION = """ This metric wrap the official scoring script for version 2 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. """ _KWARGS_DESCRIPTION = """ Computes SQuAD v2 scores (F1 and EM). Args: predictions: List of triple for question-answers to score with the following elements: - the question-answer 'id' field as given in the references (see below) - the text of the answer - the probability that the question has no answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a list of Dict {'text': text of the answer as a string} no_answer_threshold: float Probability threshold to decide that a question has no answer. Returns: 'exact': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'total': Number of score considered 'HasAns_exact': Exact match (the normalized answer exactly match the gold answer) 'HasAns_f1': The F-score of predicted tokens versus the gold answer 'HasAns_total': Number of score considered 'NoAns_exact': Exact match (the normalized answer exactly match the gold answer) 'NoAns_f1': The F-score of predicted tokens versus the gold answer 'NoAns_total': Number of score considered 'best_exact': Best exact match (with varying threshold) 'best_exact_thresh': No-answer probability threshold associated to the best exact match 'best_f1': Best F1 (with varying threshold) 'best_f1_thresh': No-answer probability threshold associated to the best F1 Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22', 'no_answer_probability': 0.}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_v2_metric = datasets.load_metric("squad_v2") >>> results = squad_v2_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact': 100.0, 'f1': 100.0, 'total': 1, 'HasAns_exact': 100.0, 'HasAns_f1': 100.0, 'HasAns_total': 1, 'best_exact': 100.0, 'best_exact_thresh': 0.0, 'best_f1': 100.0, 'best_f1_thresh': 0.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class SquadV2(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.Value("string"), "no_answer_probability": datasets.Value("float32"), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( {"text": datasets.Value("string"), "answer_start": datasets.Value("int32")} ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) def _compute(self, predictions, references, no_answer_threshold=1.0): no_answer_probabilities = {p["id"]: p["no_answer_probability"] for p in predictions} dataset = [{"paragraphs": [{"qas": references}]}] predictions = {p["id"]: p["prediction_text"] for p in predictions} qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, predictions) exact_thresh = apply_no_ans_threshold(exact_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) f1_thresh = apply_no_ans_threshold(f1_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) out_eval = make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, "HasAns") if no_ans_qids: no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, "NoAns") find_all_best_thresh(out_eval, predictions, exact_raw, f1_raw, no_answer_probabilities, qid_to_has_ans) return dict(out_eval)
datasets-main
metrics/squad_v2/squad_v2.py
"""Official evaluation script for SQuAD version 2.0. In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted probability that a question is unanswerable. """ import argparse import collections import json import os import re import string import sys import numpy as np ARTICLES_REGEX = re.compile(r"\b(a|an|the)\b", re.UNICODE) OPTS = None def parse_args(): parser = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file", metavar="data.json", help="Input data JSON file.") parser.add_argument("pred_file", metavar="pred.json", help="Model predictions.") parser.add_argument( "--out-file", "-o", metavar="eval.json", help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file", "-n", metavar="na_prob.json", help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh", "-t", type=float, default=1.0, help='Predict "" if no-answer probability exceeds this (default = 1.0).', ) parser.add_argument( "--out-image-dir", "-p", metavar="out_images", default=None, help="Save precision-recall curves to directory." ) parser.add_argument("--verbose", "-v", action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def make_qid_to_has_ans(dataset): qid_to_has_ans = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: qid_to_has_ans[qa["id"]] = bool(qa["answers"]["text"]) return qid_to_has_ans def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return ARTICLES_REGEX.sub(" ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def get_raw_scores(dataset, preds): exact_scores = {} f1_scores = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: qid = qa["id"] gold_answers = [t for t in qa["answers"]["text"] if normalize_answer(t)] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [""] if qid not in preds: print(f"Missing prediction for {qid}") continue a_pred = preds[qid] # Take max over all gold answers exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) return exact_scores, f1_scores def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): if not qid_list: total = len(exact_scores) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(f1_scores.values()) / total), ("total", total), ] ) else: total = len(qid_list) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), ("total", total), ] ) def merge_eval(main_eval, new_eval, prefix): for k in new_eval: main_eval[f"{prefix}_{k}"] = new_eval[k] def plot_pr_curve(precisions, recalls, out_image, title): plt.step(recalls, precisions, color="b", alpha=0.2, where="post") plt.fill_between(recalls, precisions, step="post", alpha=0.2, color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(title) plt.savefig(out_image) plt.clf() def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans, out_image=None, title=None): qid_list = sorted(na_probs, key=lambda k: na_probs[k]) true_pos = 0.0 cur_p = 1.0 cur_r = 0.0 precisions = [1.0] recalls = [0.0] avg_prec = 0.0 for i, qid in enumerate(qid_list): if qid_to_has_ans[qid]: true_pos += scores[qid] cur_p = true_pos / float(i + 1) cur_r = true_pos / float(num_true_pos) if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(cur_p) recalls.append(cur_r) if out_image: plot_pr_curve(precisions, recalls, out_image, title) return {"ap": 100.0 * avg_prec} def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, out_image_dir): if out_image_dir and not os.path.exists(out_image_dir): os.makedirs(out_image_dir) num_true_pos = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return pr_exact = make_precision_recall_eval( exact_raw, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, "pr_exact.png"), title="Precision-Recall curve for Exact Match score", ) pr_f1 = make_precision_recall_eval( f1_raw, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, "pr_f1.png"), title="Precision-Recall curve for F1 score", ) oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()} pr_oracle = make_precision_recall_eval( oracle_scores, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, "pr_oracle.png"), title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)", ) merge_eval(main_eval, pr_exact, "pr_exact") merge_eval(main_eval, pr_f1, "pr_f1") merge_eval(main_eval, pr_oracle, "pr_oracle") def histogram_na_prob(na_probs, qid_list, image_dir, name): if not qid_list: return x = [na_probs[k] for k in qid_list] weights = np.ones_like(x) / float(len(x)) plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(f"Histogram of no-answer probability: {name}") plt.savefig(os.path.join(image_dir, f"na_prob_hist_{name}.png")) plt.clf() def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh def main(): with open(OPTS.data_file) as f: dataset_json = json.load(f) dataset = dataset_json["data"] with open(OPTS.pred_file) as f: preds = json.load(f) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: na_probs = json.load(f) else: na_probs = {k: 0.0 for k in preds} qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, preds) exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh) f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh) out_eval = make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, "HasAns") if no_ans_qids: no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, "NoAns") if OPTS.na_prob_file: find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, OPTS.out_image_dir) histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, "hasAns") histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, "noAns") if OPTS.out_file: with open(OPTS.out_file, "w") as f: json.dump(out_eval, f) else: print(json.dumps(out_eval, indent=2)) if __name__ == "__main__": OPTS = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
datasets-main
metrics/squad_v2/evaluate.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SQuAD metric. """ import datasets from .evaluate import evaluate _CITATION = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _DESCRIPTION = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ _KWARGS_DESCRIPTION = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Squad(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": {"id": datasets.Value("string"), "prediction_text": datasets.Value("string")}, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) def _compute(self, predictions, references): pred_dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} dataset = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] score = evaluate(dataset=dataset, predictions=pred_dict) return score
datasets-main
metrics/squad/squad.py
""" Official evaluation script for v1.1 of the SQuAD dataset. """ import argparse import json import re import string import sys from collections import Counter def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article["paragraphs"]: for qa in paragraph["qas"]: total += 1 if qa["id"] not in predictions: message = "Unanswered question " + qa["id"] + " will receive score 0." print(message, file=sys.stderr) continue ground_truths = [x["text"] for x in qa["answers"]] prediction = predictions[qa["id"]] exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {"exact_match": exact_match, "f1": f1} if __name__ == "__main__": expected_version = "1.1" parser = argparse.ArgumentParser(description="Evaluation for SQuAD " + expected_version) parser.add_argument("dataset_file", help="Dataset file") parser.add_argument("prediction_file", help="Prediction File") args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if dataset_json["version"] != expected_version: print( "Evaluation expects v-" + expected_version + ", but got dataset with v-" + dataset_json["version"], file=sys.stderr, ) dataset = dataset_json["data"] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
datasets-main
metrics/squad/evaluate.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BLEURT metric. """ import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ _DESCRIPTION = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ _KWARGS_DESCRIPTION = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] """ CHECKPOINT_URLS = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class BLEURT(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/google-research/bleurt", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/google-research/bleurt"], reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"], ) def _download_and_prepare(self, dl_manager): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) self.config_name = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: checkpoint_name = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: checkpoint_name = self.config_name.upper() else: raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer model_path = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) self.scorer = score.BleurtScorer(os.path.join(model_path, checkpoint_name)) def _compute(self, predictions, references): scores = self.scorer.score(references=references, candidates=predictions) return {"scores": scores}
datasets-main
metrics/bleurt/bleurt.py
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mahalanobis metric.""" import numpy as np import datasets _DESCRIPTION = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _CITATION = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _KWARGS_DESCRIPTION = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mahalanobis(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float", id="sequence"), id="X"), } ), ) def _compute(self, X, reference_distribution): # convert to numpy arrays X = np.array(X) reference_distribution = np.array(reference_distribution) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction X_minus_mu = X - np.mean(reference_distribution) cov = np.cov(reference_distribution.T) try: inv_covmat = np.linalg.inv(cov) except np.linalg.LinAlgError: inv_covmat = np.linalg.pinv(cov) left_term = np.dot(X_minus_mu, inv_covmat) mahal_dist = np.dot(left_term, X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
datasets-main
metrics/mahalanobis/mahalanobis.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Precision metric.""" from sklearn.metrics import precision_score import datasets _DESCRIPTION = """ Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation: Precision = TP / (TP + FP) where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive). """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted class labels. references (`list` of `int`): Actual class labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`. If `average` is `None`, it should be the label order. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. zero_division (`int` or `string`): Sets the value to return when there is a zero division. Defaults to 'warn'. - 0: Returns 0 when there is a zero division. - 1: Returns 1 when there is a zero division. - 'warn': Raises warnings and then returns 0 when there is a zero division. Returns: precision (`float` or `array` of `float`): Precision score or list of precision scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate that fewer negative examples were incorrectly labeled as positive, which means that, generally, higher scores are better. Examples: Example 1-A simple binary example >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'precision': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['precision'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(results) {'precision': 0.23529411764705882} Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = precision_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'precision': 0.3333333333333333} >>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average=None) >>> print([round(res, 2) for res in results['precision']]) [0.67, 0.0, 0.0] """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Precision(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html"], ) def _compute( self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None, zero_division="warn", ): score = precision_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight, zero_division=zero_division, ) return {"precision": float(score) if score.size == 1 else score}
datasets-main
metrics/precision/precision.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """F1 metric.""" from sklearn.metrics import f1_score import datasets _DESCRIPTION = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class F1(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"], ) def _compute(self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None): score = f1_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight ) return {"f1": float(score) if score.size == 1 else score}
datasets-main
metrics/f1/f1.py
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Word Error Ratio (WER) metric. """ from jiwer import compute_measures import datasets _CITATION = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _DESCRIPTION = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ _KWARGS_DESCRIPTION = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class WER(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ], ) def _compute(self, predictions=None, references=None, concatenate_texts=False): if concatenate_texts: return compute_measures(references, predictions)["wer"] else: incorrect = 0 total = 0 for prediction, reference in zip(predictions, references): measures = compute_measures(reference, prediction) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
datasets-main
metrics/wer/wer.py