python_code
stringlengths 0
290k
| repo_name
stringclasses 30
values | file_path
stringlengths 6
125
|
---|---|---|
#
# Copyright 2023 The HuggingFace Inc. team.
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
from collections import OrderedDict
from copy import copy
from typing import List, Optional, Union
import numpy as np
import onnx
import onnx_graphsurgeon as gs
import PIL
import tensorrt as trt
import torch
from huggingface_hub import snapshot_download
from onnx import shape_inference
from polygraphy import cuda
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.onnx.loader import fold_constants
from polygraphy.backend.trt import (
CreateConfig,
Profile,
engine_from_bytes,
engine_from_network,
network_from_onnx_path,
save_engine,
)
from polygraphy.backend.trt import util as trt_util
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import (
StableDiffusionInpaintPipeline,
StableDiffusionPipelineOutput,
StableDiffusionSafetyChecker,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import DIFFUSERS_CACHE, logging
"""
Installation instructions
python3 -m pip install --upgrade transformers diffusers>=0.16.0
python3 -m pip install --upgrade tensorrt>=8.6.1
python3 -m pip install --upgrade polygraphy>=0.47.0 onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
python3 -m pip install onnxruntime
"""
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Map of numpy dtype -> torch dtype
numpy_to_torch_dtype_dict = {
np.uint8: torch.uint8,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
np.complex64: torch.complex64,
np.complex128: torch.complex128,
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
# Map of torch dtype -> numpy dtype
torch_to_numpy_dtype_dict = {value: key for (key, value) in numpy_to_torch_dtype_dict.items()}
def device_view(t):
return cuda.DeviceView(ptr=t.data_ptr(), shape=t.shape, dtype=torch_to_numpy_dtype_dict[t.dtype])
def preprocess_image(image):
"""
image: torch.Tensor
"""
w, h = image.size
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
image = image.resize((w, h))
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).contiguous()
return 2.0 * image - 1.0
class Engine:
def __init__(self, engine_path):
self.engine_path = engine_path
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
def __del__(self):
[buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)]
del self.engine
del self.context
del self.buffers
del self.tensors
def build(
self,
onnx_path,
fp16,
input_profile=None,
enable_preview=False,
enable_all_tactics=False,
timing_cache=None,
workspace_size=0,
):
logger.warning(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = Profile()
if input_profile:
for name, dims in input_profile.items():
assert len(dims) == 3
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
config_kwargs = {}
config_kwargs["preview_features"] = [trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805]
if enable_preview:
# Faster dynamic shapes made optional since it increases engine build time.
config_kwargs["preview_features"].append(trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805)
if workspace_size > 0:
config_kwargs["memory_pool_limits"] = {trt.MemoryPoolType.WORKSPACE: workspace_size}
if not enable_all_tactics:
config_kwargs["tactic_sources"] = []
engine = engine_from_network(
network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]),
config=CreateConfig(fp16=fp16, profiles=[p], load_timing_cache=timing_cache, **config_kwargs),
save_timing_cache=timing_cache,
)
save_engine(engine, path=self.engine_path)
def load(self):
logger.warning(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
def activate(self):
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device="cuda"):
for idx in range(trt_util.get_bindings_per_profile(self.engine)):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding]
else:
shape = self.engine.get_binding_shape(binding)
dtype = trt.nptype(self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device)
self.tensors[binding] = tensor
self.buffers[binding] = cuda.DeviceView(ptr=tensor.data_ptr(), shape=shape, dtype=dtype)
def infer(self, feed_dict, stream):
start_binding, end_binding = trt_util.get_active_profile_bindings(self.context)
# shallow copy of ordered dict
device_buffers = copy(self.buffers)
for name, buf in feed_dict.items():
assert isinstance(buf, cuda.DeviceView)
device_buffers[name] = buf
bindings = [0] * start_binding + [buf.ptr for buf in device_buffers.values()]
noerror = self.context.execute_async_v2(bindings=bindings, stream_handle=stream.ptr)
if not noerror:
raise ValueError("ERROR: inference failed.")
return self.tensors
class Optimizer:
def __init__(self, onnx_graph):
self.graph = gs.import_onnx(onnx_graph)
def cleanup(self, return_onnx=False):
self.graph.cleanup().toposort()
if return_onnx:
return gs.export_onnx(self.graph)
def select_outputs(self, keep, names=None):
self.graph.outputs = [self.graph.outputs[o] for o in keep]
if names:
for i, name in enumerate(names):
self.graph.outputs[i].name = name
def fold_constants(self, return_onnx=False):
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
def infer_shapes(self, return_onnx=False):
onnx_graph = gs.export_onnx(self.graph)
if onnx_graph.ByteSize() > 2147483648:
raise TypeError("ERROR: model size exceeds supported 2GB limit")
else:
onnx_graph = shape_inference.infer_shapes(onnx_graph)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
class BaseModel:
def __init__(self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77):
self.model = model
self.name = "SD Model"
self.fp16 = fp16
self.device = device
self.min_batch = 1
self.max_batch = max_batch_size
self.min_image_shape = 256 # min image resolution: 256x256
self.max_image_shape = 1024 # max image resolution: 1024x1024
self.min_latent_shape = self.min_image_shape // 8
self.max_latent_shape = self.max_image_shape // 8
self.embedding_dim = embedding_dim
self.text_maxlen = text_maxlen
def get_model(self):
return self.model
def get_input_names(self):
pass
def get_output_names(self):
pass
def get_dynamic_axes(self):
return None
def get_sample_input(self, batch_size, image_height, image_width):
pass
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
return None
def get_shape_dict(self, batch_size, image_height, image_width):
return None
def optimize(self, onnx_graph):
opt = Optimizer(onnx_graph)
opt.cleanup()
opt.fold_constants()
opt.infer_shapes()
onnx_opt_graph = opt.cleanup(return_onnx=True)
return onnx_opt_graph
def check_dims(self, batch_size, image_height, image_width):
assert batch_size >= self.min_batch and batch_size <= self.max_batch
assert image_height % 8 == 0 or image_width % 8 == 0
latent_height = image_height // 8
latent_width = image_width // 8
assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape
assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape
return (latent_height, latent_width)
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
min_batch = batch_size if static_batch else self.min_batch
max_batch = batch_size if static_batch else self.max_batch
latent_height = image_height // 8
latent_width = image_width // 8
min_image_height = image_height if static_shape else self.min_image_shape
max_image_height = image_height if static_shape else self.max_image_shape
min_image_width = image_width if static_shape else self.min_image_shape
max_image_width = image_width if static_shape else self.max_image_shape
min_latent_height = latent_height if static_shape else self.min_latent_shape
max_latent_height = latent_height if static_shape else self.max_latent_shape
min_latent_width = latent_width if static_shape else self.min_latent_shape
max_latent_width = latent_width if static_shape else self.max_latent_shape
return (
min_batch,
max_batch,
min_image_height,
max_image_height,
min_image_width,
max_image_width,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
)
def getOnnxPath(model_name, onnx_dir, opt=True):
return os.path.join(onnx_dir, model_name + (".opt" if opt else "") + ".onnx")
def getEnginePath(model_name, engine_dir):
return os.path.join(engine_dir, model_name + ".plan")
def build_engines(
models: dict,
engine_dir,
onnx_dir,
onnx_opset,
opt_image_height,
opt_image_width,
opt_batch_size=1,
force_engine_rebuild=False,
static_batch=False,
static_shape=True,
enable_preview=False,
enable_all_tactics=False,
timing_cache=None,
max_workspace_size=0,
):
built_engines = {}
if not os.path.isdir(onnx_dir):
os.makedirs(onnx_dir)
if not os.path.isdir(engine_dir):
os.makedirs(engine_dir)
# Export models to ONNX
for model_name, model_obj in models.items():
engine_path = getEnginePath(model_name, engine_dir)
if force_engine_rebuild or not os.path.exists(engine_path):
logger.warning("Building Engines...")
logger.warning("Engine build can take a while to complete")
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False)
onnx_opt_path = getOnnxPath(model_name, onnx_dir)
if force_engine_rebuild or not os.path.exists(onnx_opt_path):
if force_engine_rebuild or not os.path.exists(onnx_path):
logger.warning(f"Exporting model: {onnx_path}")
model = model_obj.get_model()
with torch.inference_mode(), torch.autocast("cuda"):
inputs = model_obj.get_sample_input(opt_batch_size, opt_image_height, opt_image_width)
torch.onnx.export(
model,
inputs,
onnx_path,
export_params=True,
opset_version=onnx_opset,
do_constant_folding=True,
input_names=model_obj.get_input_names(),
output_names=model_obj.get_output_names(),
dynamic_axes=model_obj.get_dynamic_axes(),
)
del model
torch.cuda.empty_cache()
gc.collect()
else:
logger.warning(f"Found cached model: {onnx_path}")
# Optimize onnx
if force_engine_rebuild or not os.path.exists(onnx_opt_path):
logger.warning(f"Generating optimizing model: {onnx_opt_path}")
onnx_opt_graph = model_obj.optimize(onnx.load(onnx_path))
onnx.save(onnx_opt_graph, onnx_opt_path)
else:
logger.warning(f"Found cached optimized model: {onnx_opt_path} ")
# Build TensorRT engines
for model_name, model_obj in models.items():
engine_path = getEnginePath(model_name, engine_dir)
engine = Engine(engine_path)
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False)
onnx_opt_path = getOnnxPath(model_name, onnx_dir)
if force_engine_rebuild or not os.path.exists(engine.engine_path):
engine.build(
onnx_opt_path,
fp16=True,
input_profile=model_obj.get_input_profile(
opt_batch_size,
opt_image_height,
opt_image_width,
static_batch=static_batch,
static_shape=static_shape,
),
enable_preview=enable_preview,
timing_cache=timing_cache,
workspace_size=max_workspace_size,
)
built_engines[model_name] = engine
# Load and activate TensorRT engines
for model_name, model_obj in models.items():
engine = built_engines[model_name]
engine.load()
engine.activate()
return built_engines
def runEngine(engine, feed_dict, stream):
return engine.infer(feed_dict, stream)
class CLIP(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(CLIP, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "CLIP"
def get_input_names(self):
return ["input_ids"]
def get_output_names(self):
return ["text_embeddings", "pooler_output"]
def get_dynamic_axes(self):
return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
self.check_dims(batch_size, image_height, image_width)
min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims(
batch_size, image_height, image_width, static_batch, static_shape
)
return {
"input_ids": [(min_batch, self.text_maxlen), (batch_size, self.text_maxlen), (max_batch, self.text_maxlen)]
}
def get_shape_dict(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return {
"input_ids": (batch_size, self.text_maxlen),
"text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim),
}
def get_sample_input(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device)
def optimize(self, onnx_graph):
opt = Optimizer(onnx_graph)
opt.select_outputs([0]) # delete graph output#1
opt.cleanup()
opt.fold_constants()
opt.infer_shapes()
opt.select_outputs([0], names=["text_embeddings"]) # rename network output
opt_onnx_graph = opt.cleanup(return_onnx=True)
return opt_onnx_graph
def make_CLIP(model, device, max_batch_size, embedding_dim, inpaint=False):
return CLIP(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class UNet(BaseModel):
def __init__(
self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77, unet_dim=4
):
super(UNet, self).__init__(
model=model,
fp16=fp16,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
text_maxlen=text_maxlen,
)
self.unet_dim = unet_dim
self.name = "UNet"
def get_input_names(self):
return ["sample", "timestep", "encoder_hidden_states"]
def get_output_names(self):
return ["latent"]
def get_dynamic_axes(self):
return {
"sample": {0: "2B", 2: "H", 3: "W"},
"encoder_hidden_states": {0: "2B"},
"latent": {0: "2B", 2: "H", 3: "W"},
}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"sample": [
(2 * min_batch, self.unet_dim, min_latent_height, min_latent_width),
(2 * batch_size, self.unet_dim, latent_height, latent_width),
(2 * max_batch, self.unet_dim, max_latent_height, max_latent_width),
],
"encoder_hidden_states": [
(2 * min_batch, self.text_maxlen, self.embedding_dim),
(2 * batch_size, self.text_maxlen, self.embedding_dim),
(2 * max_batch, self.text_maxlen, self.embedding_dim),
],
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"sample": (2 * batch_size, self.unet_dim, latent_height, latent_width),
"encoder_hidden_states": (2 * batch_size, self.text_maxlen, self.embedding_dim),
"latent": (2 * batch_size, 4, latent_height, latent_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
dtype = torch.float16 if self.fp16 else torch.float32
return (
torch.randn(
2 * batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device
),
torch.tensor([1.0], dtype=torch.float32, device=self.device),
torch.randn(2 * batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device),
)
def make_UNet(model, device, max_batch_size, embedding_dim, inpaint=False, unet_dim=4):
return UNet(
model,
fp16=True,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
unet_dim=unet_dim,
)
class VAE(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(VAE, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "VAE decoder"
def get_input_names(self):
return ["latent"]
def get_output_names(self):
return ["images"]
def get_dynamic_axes(self):
return {"latent": {0: "B", 2: "H", 3: "W"}, "images": {0: "B", 2: "8H", 3: "8W"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"latent": [
(min_batch, 4, min_latent_height, min_latent_width),
(batch_size, 4, latent_height, latent_width),
(max_batch, 4, max_latent_height, max_latent_width),
]
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"latent": (batch_size, 4, latent_height, latent_width),
"images": (batch_size, 3, image_height, image_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
def make_VAE(model, device, max_batch_size, embedding_dim, inpaint=False):
return VAE(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class TorchVAEEncoder(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.vae_encoder = model
def forward(self, x):
return self.vae_encoder.encode(x).latent_dist.sample()
class VAEEncoder(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(VAEEncoder, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "VAE encoder"
def get_model(self):
vae_encoder = TorchVAEEncoder(self.model)
return vae_encoder
def get_input_names(self):
return ["images"]
def get_output_names(self):
return ["latent"]
def get_dynamic_axes(self):
return {"images": {0: "B", 2: "8H", 3: "8W"}, "latent": {0: "B", 2: "H", 3: "W"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
assert batch_size >= self.min_batch and batch_size <= self.max_batch
min_batch = batch_size if static_batch else self.min_batch
max_batch = batch_size if static_batch else self.max_batch
self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
min_image_height,
max_image_height,
min_image_width,
max_image_width,
_,
_,
_,
_,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"images": [
(min_batch, 3, min_image_height, min_image_width),
(batch_size, 3, image_height, image_width),
(max_batch, 3, max_image_height, max_image_width),
]
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"images": (batch_size, 3, image_height, image_width),
"latent": (batch_size, 4, latent_height, latent_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device)
def make_VAEEncoder(model, device, max_batch_size, embedding_dim, inpaint=False):
return VAEEncoder(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
r"""
Pipeline for inpainting using TensorRT accelerated Stable Diffusion.
This model inherits from [`StableDiffusionInpaintPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
stages=["clip", "unet", "vae", "vae_encoder"],
image_height: int = 512,
image_width: int = 512,
max_batch_size: int = 16,
# ONNX export parameters
onnx_opset: int = 17,
onnx_dir: str = "onnx",
# TensorRT engine build parameters
engine_dir: str = "engine",
build_preview_features: bool = True,
force_engine_rebuild: bool = False,
timing_cache: str = "timing_cache",
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
)
self.vae.forward = self.vae.decode
self.stages = stages
self.image_height, self.image_width = image_height, image_width
self.inpaint = True
self.onnx_opset = onnx_opset
self.onnx_dir = onnx_dir
self.engine_dir = engine_dir
self.force_engine_rebuild = force_engine_rebuild
self.timing_cache = timing_cache
self.build_static_batch = False
self.build_dynamic_shape = False
self.build_preview_features = build_preview_features
self.max_batch_size = max_batch_size
# TODO: Restrict batch size to 4 for larger image dimensions as a WAR for TensorRT limitation.
if self.build_dynamic_shape or self.image_height > 512 or self.image_width > 512:
self.max_batch_size = 4
self.stream = None # loaded in loadResources()
self.models = {} # loaded in __loadModels()
self.engine = {} # loaded in build_engines()
def __loadModels(self):
# Load pipeline models
self.embedding_dim = self.text_encoder.config.hidden_size
models_args = {
"device": self.torch_device,
"max_batch_size": self.max_batch_size,
"embedding_dim": self.embedding_dim,
"inpaint": self.inpaint,
}
if "clip" in self.stages:
self.models["clip"] = make_CLIP(self.text_encoder, **models_args)
if "unet" in self.stages:
self.models["unet"] = make_UNet(self.unet, **models_args, unet_dim=self.unet.config.in_channels)
if "vae" in self.stages:
self.models["vae"] = make_VAE(self.vae, **models_args)
if "vae_encoder" in self.stages:
self.models["vae_encoder"] = make_VAEEncoder(self.vae, **models_args)
@classmethod
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
cls.cached_folder = (
pretrained_model_name_or_path
if os.path.isdir(pretrained_model_name_or_path)
else snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
)
)
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings: bool = False):
super().to(torch_device, silence_dtype_warnings=silence_dtype_warnings)
self.onnx_dir = os.path.join(self.cached_folder, self.onnx_dir)
self.engine_dir = os.path.join(self.cached_folder, self.engine_dir)
self.timing_cache = os.path.join(self.cached_folder, self.timing_cache)
# set device
self.torch_device = self._execution_device
logger.warning(f"Running inference on device: {self.torch_device}")
# load models
self.__loadModels()
# build engines
self.engine = build_engines(
self.models,
self.engine_dir,
self.onnx_dir,
self.onnx_opset,
opt_image_height=self.image_height,
opt_image_width=self.image_width,
force_engine_rebuild=self.force_engine_rebuild,
static_batch=self.build_static_batch,
static_shape=not self.build_dynamic_shape,
enable_preview=self.build_preview_features,
timing_cache=self.timing_cache,
)
return self
def __initialize_timesteps(self, num_inference_steps, strength):
self.scheduler.set_timesteps(num_inference_steps)
offset = self.scheduler.config.steps_offset if hasattr(self.scheduler, "steps_offset") else 0
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
t_start = max(num_inference_steps - init_timestep + offset, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :].to(self.torch_device)
return timesteps, num_inference_steps - t_start
def __preprocess_images(self, batch_size, images=()):
init_images = []
for image in images:
image = image.to(self.torch_device).float()
image = image.repeat(batch_size, 1, 1, 1)
init_images.append(image)
return tuple(init_images)
def __encode_image(self, init_image):
init_latents = runEngine(self.engine["vae_encoder"], {"images": device_view(init_image)}, self.stream)[
"latent"
]
init_latents = 0.18215 * init_latents
return init_latents
def __encode_prompt(self, prompt, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
"""
# Tokenize prompt
text_input_ids = (
self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
.input_ids.type(torch.int32)
.to(self.torch_device)
)
text_input_ids_inp = device_view(text_input_ids)
# NOTE: output tensor for CLIP must be cloned because it will be overwritten when called again for negative prompt
text_embeddings = runEngine(self.engine["clip"], {"input_ids": text_input_ids_inp}, self.stream)[
"text_embeddings"
].clone()
# Tokenize negative prompt
uncond_input_ids = (
self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
.input_ids.type(torch.int32)
.to(self.torch_device)
)
uncond_input_ids_inp = device_view(uncond_input_ids)
uncond_embeddings = runEngine(self.engine["clip"], {"input_ids": uncond_input_ids_inp}, self.stream)[
"text_embeddings"
]
# Concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes for classifier free guidance
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).to(dtype=torch.float16)
return text_embeddings
def __denoise_latent(
self, latents, text_embeddings, timesteps=None, step_offset=0, mask=None, masked_image_latents=None
):
if not isinstance(timesteps, torch.Tensor):
timesteps = self.scheduler.timesteps
for step_index, timestep in enumerate(timesteps):
# Expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
if isinstance(mask, torch.Tensor):
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
# Predict the noise residual
timestep_float = timestep.float() if timestep.dtype != torch.float32 else timestep
sample_inp = device_view(latent_model_input)
timestep_inp = device_view(timestep_float)
embeddings_inp = device_view(text_embeddings)
noise_pred = runEngine(
self.engine["unet"],
{"sample": sample_inp, "timestep": timestep_inp, "encoder_hidden_states": embeddings_inp},
self.stream,
)["latent"]
# Perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, timestep, latents).prev_sample
latents = 1.0 / 0.18215 * latents
return latents
def __decode_latent(self, latents):
images = runEngine(self.engine["vae"], {"latent": device_view(latents)}, self.stream)["images"]
images = (images / 2 + 0.5).clamp(0, 1)
return images.cpu().permute(0, 2, 3, 1).float().numpy()
def __loadResources(self, image_height, image_width, batch_size):
self.stream = cuda.Stream()
# Allocate buffers for TensorRT engine bindings
for model_name, obj in self.models.items():
self.engine[model_name].allocate_buffers(
shape_dict=obj.get_shape_dict(batch_size, image_height, image_width), device=self.torch_device
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
strength: float = 1.0,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
mask_image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
instead of 3, so the expected shape would be `(B, H, W, 1)`.
strength (`float`, *optional*, defaults to 0.8):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
"""
self.generator = generator
self.denoising_steps = num_inference_steps
self.guidance_scale = guidance_scale
# Pre-compute latent input scales and linear multistep coefficients
self.scheduler.set_timesteps(self.denoising_steps, device=self.torch_device)
# Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
prompt = [prompt]
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"Expected prompt to be of type list or str but got {type(prompt)}")
if negative_prompt is None:
negative_prompt = [""] * batch_size
if negative_prompt is not None and isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
assert len(prompt) == len(negative_prompt)
if batch_size > self.max_batch_size:
raise ValueError(
f"Batch size {len(prompt)} is larger than allowed {self.max_batch_size}. If dynamic shape is used, then maximum batch size is 4"
)
# Validate image dimensions
mask_width, mask_height = mask_image.size
if mask_height != self.image_height or mask_width != self.image_width:
raise ValueError(
f"Input image height and width {self.image_height} and {self.image_width} are not equal to "
f"the respective dimensions of the mask image {mask_height} and {mask_width}"
)
# load resources
self.__loadResources(self.image_height, self.image_width, batch_size)
with torch.inference_mode(), torch.autocast("cuda"), trt.Runtime(TRT_LOGGER):
# Spatial dimensions of latent tensor
latent_height = self.image_height // 8
latent_width = self.image_width // 8
# Pre-process input images
mask, masked_image, init_image = self.__preprocess_images(
batch_size,
prepare_mask_and_masked_image(
image,
mask_image,
self.image_height,
self.image_width,
return_image=True,
),
)
mask = torch.nn.functional.interpolate(mask, size=(latent_height, latent_width))
mask = torch.cat([mask] * 2)
# Initialize timesteps
timesteps, t_start = self.__initialize_timesteps(self.denoising_steps, strength)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
is_strength_max = strength == 1.0
# Pre-initialize latents
num_channels_latents = self.vae.config.latent_channels
latents_outputs = self.prepare_latents(
batch_size,
num_channels_latents,
self.image_height,
self.image_width,
torch.float32,
self.torch_device,
generator,
image=init_image,
timestep=latent_timestep,
is_strength_max=is_strength_max,
)
latents = latents_outputs[0]
# VAE encode masked image
masked_latents = self.__encode_image(masked_image)
masked_latents = torch.cat([masked_latents] * 2)
# CLIP text encoder
text_embeddings = self.__encode_prompt(prompt, negative_prompt)
# UNet denoiser
latents = self.__denoise_latent(
latents,
text_embeddings,
timesteps=timesteps,
step_offset=t_start,
mask=mask,
masked_image_latents=masked_latents,
)
# VAE decode latent
images = self.__decode_latent(latents)
images = self.numpy_to_pil(images)
return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=None)
| diffusers-main | examples/community/stable_diffusion_tensorrt_inpaint.py |
import argparse
import atexit
import inspect
import os
import time
import warnings
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import pycuda.driver as cuda
import tensorrt as trt
import torch
from diffusers.utils.torch_utils import randn_tensor
from PIL import Image
from pycuda.tools import make_default_context
from transformers import CLIPTokenizer
from diffusers import OnnxRuntimeModel, StableDiffusionImg2ImgPipeline, UniPCMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
logging,
replace_example_docstring,
)
# Initialize CUDA
cuda.init()
context = make_default_context()
device = context.get_device()
atexit.register(context.pop)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def load_engine(trt_runtime, engine_path):
with open(engine_path, "rb") as f:
engine_data = f.read()
engine = trt_runtime.deserialize_cuda_engine(engine_data)
return engine
class TensorRTModel:
def __init__(
self,
trt_engine_path,
**kwargs,
):
cuda.init()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE)
trt.init_libnvinfer_plugins(TRT_LOGGER, "")
trt_runtime = trt.Runtime(TRT_LOGGER)
engine = load_engine(trt_runtime, trt_engine_path)
context = engine.create_execution_context()
# allocates memory for network inputs/outputs on both CPU and GPU
host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []
input_names = []
output_names = []
for binding in engine:
datatype = engine.get_binding_dtype(binding)
if datatype == trt.DataType.HALF:
dtype = np.float16
else:
dtype = np.float32
shape = tuple(engine.get_binding_shape(binding))
host_mem = cuda.pagelocked_empty(shape, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
bindings.append(int(cuda_mem))
if engine.binding_is_input(binding):
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
input_names.append(binding)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)
output_names.append(binding)
self.stream = stream
self.context = context
self.engine = engine
self.host_inputs = host_inputs
self.cuda_inputs = cuda_inputs
self.host_outputs = host_outputs
self.cuda_outputs = cuda_outputs
self.bindings = bindings
self.batch_size = engine.max_batch_size
self.input_names = input_names
self.output_names = output_names
def __call__(self, **kwargs):
context = self.context
stream = self.stream
bindings = self.bindings
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
for idx, input_name in enumerate(self.input_names):
_input = kwargs[input_name]
np.copyto(host_inputs[idx], _input)
# transfer input data to the GPU
cuda.memcpy_htod_async(cuda_inputs[idx], host_inputs[idx], stream)
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
result = {}
for idx, output_name in enumerate(self.output_names):
# transfer predictions back from the GPU
cuda.memcpy_dtoh_async(host_outputs[idx], cuda_outputs[idx], stream)
result[output_name] = host_outputs[idx]
stream.synchronize()
return result
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
... )
>>> np_image = np.array(image)
>>> # get canny image
>>> np_image = cv2.Canny(np_image, 100, 200)
>>> np_image = np_image[:, :, None]
>>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)
>>> canny_image = Image.fromarray(np_image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking woman",
... num_inference_steps=20,
... generator=generator,
... image=image,
... control_image=canny_image,
... ).images[0]
```
"""
def prepare_image(image):
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
image = image.unsqueeze(0)
image = image.to(dtype=torch.float32)
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
class TensorRTStableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline):
vae_encoder: OnnxRuntimeModel
vae_decoder: OnnxRuntimeModel
text_encoder: OnnxRuntimeModel
tokenizer: CLIPTokenizer
unet: TensorRTModel
scheduler: KarrasDiffusionSchedulers
def __init__(
self,
vae_encoder: OnnxRuntimeModel,
vae_decoder: OnnxRuntimeModel,
text_encoder: OnnxRuntimeModel,
tokenizer: CLIPTokenizer,
unet: TensorRTModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__()
self.register_modules(
vae_encoder=vae_encoder,
vae_decoder=vae_decoder,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (4 - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
def _encode_prompt(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: Optional[int],
do_classifier_free_guidance: bool,
negative_prompt: Optional[str],
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`):
prompt to be encoded
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
prompt_embeds (`np.ndarray`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`np.ndarray`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt] * batch_size
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np",
)
negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
if do_classifier_free_guidance:
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
warnings.warn(
"The decode_latents method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor instead",
FutureWarning,
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
num_controlnet,
prompt,
image,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Check `image`
if num_controlnet == 1:
self.check_image(image, prompt, prompt_embeds)
elif num_controlnet > 1:
if not isinstance(image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != num_controlnet:
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {num_controlnet} ControlNets."
)
for image_ in image:
self.check_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if num_controlnet == 1:
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif num_controlnet > 1:
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif (
isinstance(controlnet_conditioning_scale, list)
and len(controlnet_conditioning_scale) != num_controlnet
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if num_controlnet > 1:
if len(control_guidance_start) != num_controlnet:
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {num_controlnet} controlnets available. Make sure to provide {num_controlnet}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
def prepare_control_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == 4:
init_latents = image
else:
_image = image.cpu().detach().numpy()
init_latents = self.vae_encoder(sample=_image)[0]
init_latents = torch.from_numpy(init_latents).to(device=device, dtype=dtype)
init_latents = 0.18215 * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
num_controlnet: int,
fp16: bool = True,
prompt: Union[str, List[str]] = None,
image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
control_image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The initial image will be used as the starting point for the image generation process. Can also accpet
image latents as `image`, if passing latents directly, it will not be encoded again.
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
specified in init, images must be passed as a list such that each element of the list can be correctly
batched for input to a single controlnet.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
than for [`~StableDiffusionControlNetPipeline.__call__`].
guess_mode (`bool`, *optional*, defaults to `False`):
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the controlnet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the controlnet stops applying.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if fp16:
torch_dtype = torch.float16
np_dtype = np.float16
else:
torch_dtype = torch.float32
np_dtype = np.float32
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = num_controlnet
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
num_controlnet,
prompt,
control_image,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if num_controlnet > 1 and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * num_controlnet
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare image
image = self.image_processor.preprocess(image).to(dtype=torch.float32)
# 5. Prepare controlnet_conditioning_image
if num_controlnet == 1:
control_image = self.prepare_control_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=torch_dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
elif num_controlnet > 1:
control_images = []
for control_image_ in control_image:
control_image_ = self.prepare_control_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=torch_dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
control_images.append(control_image_)
control_image = control_images
else:
assert False
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 6. Prepare latent variables
latents = self.prepare_latents(
image,
latent_timestep,
batch_size,
num_images_per_prompt,
torch_dtype,
device,
generator,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if num_controlnet == 1 else keeps)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
# predict the noise residual
_latent_model_input = latent_model_input.cpu().detach().numpy()
_prompt_embeds = np.array(prompt_embeds, dtype=np_dtype)
_t = np.array([t.cpu().detach().numpy()], dtype=np_dtype)
if num_controlnet == 1:
control_images = np.array([control_image], dtype=np_dtype)
else:
control_images = []
for _control_img in control_image:
_control_img = _control_img.cpu().detach().numpy()
control_images.append(_control_img)
control_images = np.array(control_images, dtype=np_dtype)
control_scales = np.array(cond_scale, dtype=np_dtype)
control_scales = np.resize(control_scales, (num_controlnet, 1))
noise_pred = self.unet(
sample=_latent_model_input,
timestep=_t,
encoder_hidden_states=_prompt_embeds,
controlnet_conds=control_images,
conditioning_scales=control_scales,
)["noise_pred"]
noise_pred = torch.from_numpy(noise_pred).to(device)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
_latents = latents.cpu().detach().numpy() / 0.18215
_latents = np.array(_latents, dtype=np_dtype)
image = self.vae_decoder(latent_sample=_latents)[0]
image = torch.from_numpy(image).to(device, dtype=torch.float32)
has_nsfw_concept = None
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--sd_model",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument(
"--onnx_model_dir",
type=str,
required=True,
help="Path to the ONNX directory",
)
parser.add_argument(
"--unet_engine_path",
type=str,
required=True,
help="Path to the unet + controlnet tensorrt model",
)
parser.add_argument("--qr_img_path", type=str, required=True, help="Path to the qr code image")
args = parser.parse_args()
qr_image = Image.open(args.qr_img_path)
qr_image = qr_image.resize((512, 512))
# init stable diffusion pipeline
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained(args.sd_model)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
provider = ["CUDAExecutionProvider", "CPUExecutionProvider"]
onnx_pipeline = TensorRTStableDiffusionControlNetImg2ImgPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "vae_encoder"), provider=provider
),
vae_decoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "vae_decoder"), provider=provider
),
text_encoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "text_encoder"), provider=provider
),
tokenizer=pipeline.tokenizer,
unet=TensorRTModel(args.unet_engine_path),
scheduler=pipeline.scheduler,
)
onnx_pipeline = onnx_pipeline.to("cuda")
prompt = "a cute cat fly to the moon"
negative_prompt = "paintings, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, age spot, glans, nsfw, nipples, necklace, worst quality, low quality, watermark, username, signature, multiple breasts, lowres, bad anatomy, bad hands, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet, single color, ugly, duplicate, morbid, mutilated, tranny, trans, trannsexual, hermaphrodite, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, disfigured, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, bad body perspect"
for i in range(10):
start_time = time.time()
image = onnx_pipeline(
num_controlnet=2,
prompt=prompt,
negative_prompt=negative_prompt,
image=qr_image,
control_image=[qr_image, qr_image],
width=512,
height=512,
strength=0.75,
num_inference_steps=20,
num_images_per_prompt=1,
controlnet_conditioning_scale=[0.8, 0.8],
control_guidance_start=[0.3, 0.3],
control_guidance_end=[0.9, 0.9],
).images[0]
print(time.time() - start_time)
image.save("output_qr_code.png")
| diffusers-main | examples/community/run_tensorrt_controlnet.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor
trans = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess(image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
image = [trans(img.convert("RGB")) for img in image]
image = torch.stack(image)
return image
class DDIMNoiseComparativeAnalysisPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
# make sure scheduler can always be converted to DDIM
scheduler = DDIMScheduler.from_config(scheduler.config)
self.register_modules(unet=unet, scheduler=scheduler)
def check_inputs(self, strength):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
init_latents = image.to(device=device, dtype=dtype)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
print("add noise to latents at timestep", timestep)
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
@torch.no_grad()
def __call__(
self,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
strength: float = 0.8,
batch_size: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
eta: float = 0.0,
num_inference_steps: int = 50,
use_clipped_model_output: Optional[bool] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
image (`torch.FloatTensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
strength (`float`, *optional*, defaults to 0.8):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
eta (`float`, *optional*, defaults to 0.0):
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
use_clipped_model_output (`bool`, *optional*, defaults to `None`):
if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
downstream to the scheduler. So use `None` for schedulers which don't support this argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
"""
# 1. Check inputs. Raise error if not correct
self.check_inputs(strength)
# 2. Preprocess image
image = preprocess(image)
# 3. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device)
latent_timestep = timesteps[:1].repeat(batch_size)
# 4. Prepare latent variables
latents = self.prepare_latents(image, latent_timestep, batch_size, self.unet.dtype, self.device, generator)
image = latents
# 5. Denoising loop
for t in self.progress_bar(timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
image = self.scheduler.step(
model_output,
t,
image,
eta=eta,
use_clipped_model_output=use_clipped_model_output,
generator=generator,
).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=image)
| diffusers-main | examples/community/ddim_noise_comparative_analysis.py |
#
# Copyright 2023 The HuggingFace Inc. team.
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
from collections import OrderedDict
from copy import copy
from typing import List, Optional, Union
import numpy as np
import onnx
import onnx_graphsurgeon as gs
import tensorrt as trt
import torch
from huggingface_hub import snapshot_download
from onnx import shape_inference
from polygraphy import cuda
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.onnx.loader import fold_constants
from polygraphy.backend.trt import (
CreateConfig,
Profile,
engine_from_bytes,
engine_from_network,
network_from_onnx_path,
save_engine,
)
from polygraphy.backend.trt import util as trt_util
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import (
StableDiffusionPipeline,
StableDiffusionPipelineOutput,
StableDiffusionSafetyChecker,
)
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import DIFFUSERS_CACHE, logging
"""
Installation instructions
python3 -m pip install --upgrade transformers diffusers>=0.16.0
python3 -m pip install --upgrade tensorrt>=8.6.1
python3 -m pip install --upgrade polygraphy>=0.47.0 onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
python3 -m pip install onnxruntime
"""
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Map of numpy dtype -> torch dtype
numpy_to_torch_dtype_dict = {
np.uint8: torch.uint8,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
np.complex64: torch.complex64,
np.complex128: torch.complex128,
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
# Map of torch dtype -> numpy dtype
torch_to_numpy_dtype_dict = {value: key for (key, value) in numpy_to_torch_dtype_dict.items()}
def device_view(t):
return cuda.DeviceView(ptr=t.data_ptr(), shape=t.shape, dtype=torch_to_numpy_dtype_dict[t.dtype])
class Engine:
def __init__(self, engine_path):
self.engine_path = engine_path
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
def __del__(self):
[buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)]
del self.engine
del self.context
del self.buffers
del self.tensors
def build(
self,
onnx_path,
fp16,
input_profile=None,
enable_preview=False,
enable_all_tactics=False,
timing_cache=None,
workspace_size=0,
):
logger.warning(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = Profile()
if input_profile:
for name, dims in input_profile.items():
assert len(dims) == 3
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
config_kwargs = {}
config_kwargs["preview_features"] = [trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805]
if enable_preview:
# Faster dynamic shapes made optional since it increases engine build time.
config_kwargs["preview_features"].append(trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805)
if workspace_size > 0:
config_kwargs["memory_pool_limits"] = {trt.MemoryPoolType.WORKSPACE: workspace_size}
if not enable_all_tactics:
config_kwargs["tactic_sources"] = []
engine = engine_from_network(
network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]),
config=CreateConfig(fp16=fp16, profiles=[p], load_timing_cache=timing_cache, **config_kwargs),
save_timing_cache=timing_cache,
)
save_engine(engine, path=self.engine_path)
def load(self):
logger.warning(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
def activate(self):
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device="cuda"):
for idx in range(trt_util.get_bindings_per_profile(self.engine)):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding]
else:
shape = self.engine.get_binding_shape(binding)
dtype = trt.nptype(self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device)
self.tensors[binding] = tensor
self.buffers[binding] = cuda.DeviceView(ptr=tensor.data_ptr(), shape=shape, dtype=dtype)
def infer(self, feed_dict, stream):
start_binding, end_binding = trt_util.get_active_profile_bindings(self.context)
# shallow copy of ordered dict
device_buffers = copy(self.buffers)
for name, buf in feed_dict.items():
assert isinstance(buf, cuda.DeviceView)
device_buffers[name] = buf
bindings = [0] * start_binding + [buf.ptr for buf in device_buffers.values()]
noerror = self.context.execute_async_v2(bindings=bindings, stream_handle=stream.ptr)
if not noerror:
raise ValueError("ERROR: inference failed.")
return self.tensors
class Optimizer:
def __init__(self, onnx_graph):
self.graph = gs.import_onnx(onnx_graph)
def cleanup(self, return_onnx=False):
self.graph.cleanup().toposort()
if return_onnx:
return gs.export_onnx(self.graph)
def select_outputs(self, keep, names=None):
self.graph.outputs = [self.graph.outputs[o] for o in keep]
if names:
for i, name in enumerate(names):
self.graph.outputs[i].name = name
def fold_constants(self, return_onnx=False):
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
def infer_shapes(self, return_onnx=False):
onnx_graph = gs.export_onnx(self.graph)
if onnx_graph.ByteSize() > 2147483648:
raise TypeError("ERROR: model size exceeds supported 2GB limit")
else:
onnx_graph = shape_inference.infer_shapes(onnx_graph)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
class BaseModel:
def __init__(self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77):
self.model = model
self.name = "SD Model"
self.fp16 = fp16
self.device = device
self.min_batch = 1
self.max_batch = max_batch_size
self.min_image_shape = 256 # min image resolution: 256x256
self.max_image_shape = 1024 # max image resolution: 1024x1024
self.min_latent_shape = self.min_image_shape // 8
self.max_latent_shape = self.max_image_shape // 8
self.embedding_dim = embedding_dim
self.text_maxlen = text_maxlen
def get_model(self):
return self.model
def get_input_names(self):
pass
def get_output_names(self):
pass
def get_dynamic_axes(self):
return None
def get_sample_input(self, batch_size, image_height, image_width):
pass
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
return None
def get_shape_dict(self, batch_size, image_height, image_width):
return None
def optimize(self, onnx_graph):
opt = Optimizer(onnx_graph)
opt.cleanup()
opt.fold_constants()
opt.infer_shapes()
onnx_opt_graph = opt.cleanup(return_onnx=True)
return onnx_opt_graph
def check_dims(self, batch_size, image_height, image_width):
assert batch_size >= self.min_batch and batch_size <= self.max_batch
assert image_height % 8 == 0 or image_width % 8 == 0
latent_height = image_height // 8
latent_width = image_width // 8
assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape
assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape
return (latent_height, latent_width)
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
min_batch = batch_size if static_batch else self.min_batch
max_batch = batch_size if static_batch else self.max_batch
latent_height = image_height // 8
latent_width = image_width // 8
min_image_height = image_height if static_shape else self.min_image_shape
max_image_height = image_height if static_shape else self.max_image_shape
min_image_width = image_width if static_shape else self.min_image_shape
max_image_width = image_width if static_shape else self.max_image_shape
min_latent_height = latent_height if static_shape else self.min_latent_shape
max_latent_height = latent_height if static_shape else self.max_latent_shape
min_latent_width = latent_width if static_shape else self.min_latent_shape
max_latent_width = latent_width if static_shape else self.max_latent_shape
return (
min_batch,
max_batch,
min_image_height,
max_image_height,
min_image_width,
max_image_width,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
)
def getOnnxPath(model_name, onnx_dir, opt=True):
return os.path.join(onnx_dir, model_name + (".opt" if opt else "") + ".onnx")
def getEnginePath(model_name, engine_dir):
return os.path.join(engine_dir, model_name + ".plan")
def build_engines(
models: dict,
engine_dir,
onnx_dir,
onnx_opset,
opt_image_height,
opt_image_width,
opt_batch_size=1,
force_engine_rebuild=False,
static_batch=False,
static_shape=True,
enable_preview=False,
enable_all_tactics=False,
timing_cache=None,
max_workspace_size=0,
):
built_engines = {}
if not os.path.isdir(onnx_dir):
os.makedirs(onnx_dir)
if not os.path.isdir(engine_dir):
os.makedirs(engine_dir)
# Export models to ONNX
for model_name, model_obj in models.items():
engine_path = getEnginePath(model_name, engine_dir)
if force_engine_rebuild or not os.path.exists(engine_path):
logger.warning("Building Engines...")
logger.warning("Engine build can take a while to complete")
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False)
onnx_opt_path = getOnnxPath(model_name, onnx_dir)
if force_engine_rebuild or not os.path.exists(onnx_opt_path):
if force_engine_rebuild or not os.path.exists(onnx_path):
logger.warning(f"Exporting model: {onnx_path}")
model = model_obj.get_model()
with torch.inference_mode(), torch.autocast("cuda"):
inputs = model_obj.get_sample_input(opt_batch_size, opt_image_height, opt_image_width)
torch.onnx.export(
model,
inputs,
onnx_path,
export_params=True,
opset_version=onnx_opset,
do_constant_folding=True,
input_names=model_obj.get_input_names(),
output_names=model_obj.get_output_names(),
dynamic_axes=model_obj.get_dynamic_axes(),
)
del model
torch.cuda.empty_cache()
gc.collect()
else:
logger.warning(f"Found cached model: {onnx_path}")
# Optimize onnx
if force_engine_rebuild or not os.path.exists(onnx_opt_path):
logger.warning(f"Generating optimizing model: {onnx_opt_path}")
onnx_opt_graph = model_obj.optimize(onnx.load(onnx_path))
onnx.save(onnx_opt_graph, onnx_opt_path)
else:
logger.warning(f"Found cached optimized model: {onnx_opt_path} ")
# Build TensorRT engines
for model_name, model_obj in models.items():
engine_path = getEnginePath(model_name, engine_dir)
engine = Engine(engine_path)
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False)
onnx_opt_path = getOnnxPath(model_name, onnx_dir)
if force_engine_rebuild or not os.path.exists(engine.engine_path):
engine.build(
onnx_opt_path,
fp16=True,
input_profile=model_obj.get_input_profile(
opt_batch_size,
opt_image_height,
opt_image_width,
static_batch=static_batch,
static_shape=static_shape,
),
enable_preview=enable_preview,
timing_cache=timing_cache,
workspace_size=max_workspace_size,
)
built_engines[model_name] = engine
# Load and activate TensorRT engines
for model_name, model_obj in models.items():
engine = built_engines[model_name]
engine.load()
engine.activate()
return built_engines
def runEngine(engine, feed_dict, stream):
return engine.infer(feed_dict, stream)
class CLIP(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(CLIP, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "CLIP"
def get_input_names(self):
return ["input_ids"]
def get_output_names(self):
return ["text_embeddings", "pooler_output"]
def get_dynamic_axes(self):
return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
self.check_dims(batch_size, image_height, image_width)
min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims(
batch_size, image_height, image_width, static_batch, static_shape
)
return {
"input_ids": [(min_batch, self.text_maxlen), (batch_size, self.text_maxlen), (max_batch, self.text_maxlen)]
}
def get_shape_dict(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return {
"input_ids": (batch_size, self.text_maxlen),
"text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim),
}
def get_sample_input(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device)
def optimize(self, onnx_graph):
opt = Optimizer(onnx_graph)
opt.select_outputs([0]) # delete graph output#1
opt.cleanup()
opt.fold_constants()
opt.infer_shapes()
opt.select_outputs([0], names=["text_embeddings"]) # rename network output
opt_onnx_graph = opt.cleanup(return_onnx=True)
return opt_onnx_graph
def make_CLIP(model, device, max_batch_size, embedding_dim, inpaint=False):
return CLIP(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class UNet(BaseModel):
def __init__(
self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77, unet_dim=4
):
super(UNet, self).__init__(
model=model,
fp16=fp16,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
text_maxlen=text_maxlen,
)
self.unet_dim = unet_dim
self.name = "UNet"
def get_input_names(self):
return ["sample", "timestep", "encoder_hidden_states"]
def get_output_names(self):
return ["latent"]
def get_dynamic_axes(self):
return {
"sample": {0: "2B", 2: "H", 3: "W"},
"encoder_hidden_states": {0: "2B"},
"latent": {0: "2B", 2: "H", 3: "W"},
}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"sample": [
(2 * min_batch, self.unet_dim, min_latent_height, min_latent_width),
(2 * batch_size, self.unet_dim, latent_height, latent_width),
(2 * max_batch, self.unet_dim, max_latent_height, max_latent_width),
],
"encoder_hidden_states": [
(2 * min_batch, self.text_maxlen, self.embedding_dim),
(2 * batch_size, self.text_maxlen, self.embedding_dim),
(2 * max_batch, self.text_maxlen, self.embedding_dim),
],
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"sample": (2 * batch_size, self.unet_dim, latent_height, latent_width),
"encoder_hidden_states": (2 * batch_size, self.text_maxlen, self.embedding_dim),
"latent": (2 * batch_size, 4, latent_height, latent_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
dtype = torch.float16 if self.fp16 else torch.float32
return (
torch.randn(
2 * batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device
),
torch.tensor([1.0], dtype=torch.float32, device=self.device),
torch.randn(2 * batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device),
)
def make_UNet(model, device, max_batch_size, embedding_dim, inpaint=False):
return UNet(
model,
fp16=True,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
unet_dim=(9 if inpaint else 4),
)
class VAE(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(VAE, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "VAE decoder"
def get_input_names(self):
return ["latent"]
def get_output_names(self):
return ["images"]
def get_dynamic_axes(self):
return {"latent": {0: "B", 2: "H", 3: "W"}, "images": {0: "B", 2: "8H", 3: "8W"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"latent": [
(min_batch, 4, min_latent_height, min_latent_width),
(batch_size, 4, latent_height, latent_width),
(max_batch, 4, max_latent_height, max_latent_width),
]
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"latent": (batch_size, 4, latent_height, latent_width),
"images": (batch_size, 3, image_height, image_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
def make_VAE(model, device, max_batch_size, embedding_dim, inpaint=False):
return VAE(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
r"""
Pipeline for text-to-image generation using TensorRT accelerated Stable Diffusion.
This model inherits from [`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
stages=["clip", "unet", "vae"],
image_height: int = 768,
image_width: int = 768,
max_batch_size: int = 16,
# ONNX export parameters
onnx_opset: int = 17,
onnx_dir: str = "onnx",
# TensorRT engine build parameters
engine_dir: str = "engine",
build_preview_features: bool = True,
force_engine_rebuild: bool = False,
timing_cache: str = "timing_cache",
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
)
self.vae.forward = self.vae.decode
self.stages = stages
self.image_height, self.image_width = image_height, image_width
self.inpaint = False
self.onnx_opset = onnx_opset
self.onnx_dir = onnx_dir
self.engine_dir = engine_dir
self.force_engine_rebuild = force_engine_rebuild
self.timing_cache = timing_cache
self.build_static_batch = False
self.build_dynamic_shape = False
self.build_preview_features = build_preview_features
self.max_batch_size = max_batch_size
# TODO: Restrict batch size to 4 for larger image dimensions as a WAR for TensorRT limitation.
if self.build_dynamic_shape or self.image_height > 512 or self.image_width > 512:
self.max_batch_size = 4
self.stream = None # loaded in loadResources()
self.models = {} # loaded in __loadModels()
self.engine = {} # loaded in build_engines()
def __loadModels(self):
# Load pipeline models
self.embedding_dim = self.text_encoder.config.hidden_size
models_args = {
"device": self.torch_device,
"max_batch_size": self.max_batch_size,
"embedding_dim": self.embedding_dim,
"inpaint": self.inpaint,
}
if "clip" in self.stages:
self.models["clip"] = make_CLIP(self.text_encoder, **models_args)
if "unet" in self.stages:
self.models["unet"] = make_UNet(self.unet, **models_args)
if "vae" in self.stages:
self.models["vae"] = make_VAE(self.vae, **models_args)
@classmethod
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
cls.cached_folder = (
pretrained_model_name_or_path
if os.path.isdir(pretrained_model_name_or_path)
else snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
)
)
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings: bool = False):
super().to(torch_device, silence_dtype_warnings=silence_dtype_warnings)
self.onnx_dir = os.path.join(self.cached_folder, self.onnx_dir)
self.engine_dir = os.path.join(self.cached_folder, self.engine_dir)
self.timing_cache = os.path.join(self.cached_folder, self.timing_cache)
# set device
self.torch_device = self._execution_device
logger.warning(f"Running inference on device: {self.torch_device}")
# load models
self.__loadModels()
# build engines
self.engine = build_engines(
self.models,
self.engine_dir,
self.onnx_dir,
self.onnx_opset,
opt_image_height=self.image_height,
opt_image_width=self.image_width,
force_engine_rebuild=self.force_engine_rebuild,
static_batch=self.build_static_batch,
static_shape=not self.build_dynamic_shape,
enable_preview=self.build_preview_features,
timing_cache=self.timing_cache,
)
return self
def __encode_prompt(self, prompt, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
"""
# Tokenize prompt
text_input_ids = (
self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
.input_ids.type(torch.int32)
.to(self.torch_device)
)
text_input_ids_inp = device_view(text_input_ids)
# NOTE: output tensor for CLIP must be cloned because it will be overwritten when called again for negative prompt
text_embeddings = runEngine(self.engine["clip"], {"input_ids": text_input_ids_inp}, self.stream)[
"text_embeddings"
].clone()
# Tokenize negative prompt
uncond_input_ids = (
self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
.input_ids.type(torch.int32)
.to(self.torch_device)
)
uncond_input_ids_inp = device_view(uncond_input_ids)
uncond_embeddings = runEngine(self.engine["clip"], {"input_ids": uncond_input_ids_inp}, self.stream)[
"text_embeddings"
]
# Concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes for classifier free guidance
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).to(dtype=torch.float16)
return text_embeddings
def __denoise_latent(
self, latents, text_embeddings, timesteps=None, step_offset=0, mask=None, masked_image_latents=None
):
if not isinstance(timesteps, torch.Tensor):
timesteps = self.scheduler.timesteps
for step_index, timestep in enumerate(timesteps):
# Expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
if isinstance(mask, torch.Tensor):
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
# Predict the noise residual
timestep_float = timestep.float() if timestep.dtype != torch.float32 else timestep
sample_inp = device_view(latent_model_input)
timestep_inp = device_view(timestep_float)
embeddings_inp = device_view(text_embeddings)
noise_pred = runEngine(
self.engine["unet"],
{"sample": sample_inp, "timestep": timestep_inp, "encoder_hidden_states": embeddings_inp},
self.stream,
)["latent"]
# Perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, timestep, latents).prev_sample
latents = 1.0 / 0.18215 * latents
return latents
def __decode_latent(self, latents):
images = runEngine(self.engine["vae"], {"latent": device_view(latents)}, self.stream)["images"]
images = (images / 2 + 0.5).clamp(0, 1)
return images.cpu().permute(0, 2, 3, 1).float().numpy()
def __loadResources(self, image_height, image_width, batch_size):
self.stream = cuda.Stream()
# Allocate buffers for TensorRT engine bindings
for model_name, obj in self.models.items():
self.engine[model_name].allocate_buffers(
shape_dict=obj.get_shape_dict(batch_size, image_height, image_width), device=self.torch_device
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
"""
self.generator = generator
self.denoising_steps = num_inference_steps
self.guidance_scale = guidance_scale
# Pre-compute latent input scales and linear multistep coefficients
self.scheduler.set_timesteps(self.denoising_steps, device=self.torch_device)
# Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
prompt = [prompt]
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"Expected prompt to be of type list or str but got {type(prompt)}")
if negative_prompt is None:
negative_prompt = [""] * batch_size
if negative_prompt is not None and isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
assert len(prompt) == len(negative_prompt)
if batch_size > self.max_batch_size:
raise ValueError(
f"Batch size {len(prompt)} is larger than allowed {self.max_batch_size}. If dynamic shape is used, then maximum batch size is 4"
)
# load resources
self.__loadResources(self.image_height, self.image_width, batch_size)
with torch.inference_mode(), torch.autocast("cuda"), trt.Runtime(TRT_LOGGER):
# CLIP text encoder
text_embeddings = self.__encode_prompt(prompt, negative_prompt)
# Pre-initialize latents
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size,
num_channels_latents,
self.image_height,
self.image_width,
torch.float32,
self.torch_device,
generator,
)
# UNet denoiser
latents = self.__denoise_latent(latents, text_embeddings)
# VAE decode latent
images = self.__decode_latent(latents)
images, has_nsfw_concept = self.run_safety_checker(images, self.torch_device, text_embeddings.dtype)
images = self.numpy_to_pil(images)
return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/stable_diffusion_tensorrt_txt2img.py |
# Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
from diffusers import StableDiffusionPipeline
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg
from diffusers.utils import PIL_INTERPOLATION, logging
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
>>> pipe = StableDiffusionReferencePipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
safety_checker=None,
torch_dtype=torch.float16
).to('cuda:0')
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
>>> result_img = pipe(ref_image=input_image,
prompt="1girl",
num_inference_steps=20,
reference_attn=True,
reference_adain=True).images[0]
>>> result_img.show()
```
"""
def torch_dfs(model: torch.nn.Module):
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
class StableDiffusionReferencePipeline(StableDiffusionPipeline):
def _default_height_width(self, height, width, image):
# NOTE: It is possible that a list of images have different
# dimensions for each image, so just checking the first image
# is not _exactly_ correct, but it is simple.
while isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[2]
height = (height // 8) * 8 # round down to nearest multiple of 8
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[3]
width = (width // 8) * 8 # round down to nearest multiple of 8
return height, width
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if not isinstance(image, torch.Tensor):
if isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
images = []
for image_ in image:
image_ = image_.convert("RGB")
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
image_ = np.array(image_)
image_ = image_[None, :]
images.append(image_)
image = images
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = (image - 0.5) / 0.5
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
refimage = refimage.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
if isinstance(generator, list):
ref_image_latents = [
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
for i in range(batch_size)
]
ref_image_latents = torch.cat(ref_image_latents, dim=0)
else:
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
if ref_image_latents.shape[0] < batch_size:
if not batch_size % ref_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
# aligning device to prevent device errors when concating it with the latent model input
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
return ref_image_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
attention_auto_machine_weight: float = 1.0,
gn_auto_machine_weight: float = 1.0,
style_fidelity: float = 0.5,
reference_attn: bool = True,
reference_adain: bool = True,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
ref_image (`torch.FloatTensor`, `PIL.Image.Image`):
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
also be accepted as an image.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.7):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
attention_auto_machine_weight (`float`):
Weight of using reference query for self attention's context.
If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
gn_auto_machine_weight (`float`):
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
style_fidelity (`float`):
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
elif style_fidelity=0.0, prompt more important, else balanced.
reference_attn (`bool`):
Whether to use reference query for self attention's context.
reference_adain (`bool`):
Whether to use reference adain.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True."
# 0. Default height and width to unet
height, width = self._default_height_width(height, width, ref_image)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Preprocess reference image
ref_image = self.prepare_image(
image=ref_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=prompt_embeds.dtype,
)
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Prepare reference latent variables
ref_image_latents = self.prepare_ref_latents(
ref_image,
batch_size * num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
do_classifier_free_guidance,
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9. Modify self attention and group norm
MODE = "write"
uc_mask = (
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
.type_as(ref_image_latents)
.bool()
)
def hacked_basic_transformer_inner_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
):
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Self-Attention
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
if self.only_cross_attention:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
if MODE == "write":
self.bank.append(norm_hidden_states.detach().clone())
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if MODE == "read":
if attention_auto_machine_weight > self.attn_weight:
attn_output_uc = self.attn1(
norm_hidden_states,
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
# attention_mask=attention_mask,
**cross_attention_kwargs,
)
attn_output_c = attn_output_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
attn_output_c[uc_mask] = self.attn1(
norm_hidden_states[uc_mask],
encoder_hidden_states=norm_hidden_states[uc_mask],
**cross_attention_kwargs,
)
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
self.bank.clear()
else:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
# 2. Cross-Attention
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
def hacked_mid_forward(self, *args, **kwargs):
eps = 1e-6
x = self.original_forward(*args, **kwargs)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append(mean)
self.var_bank.append(var)
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
var_acc = sum(self.var_bank) / float(len(self.var_bank))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
x_uc = (((x - mean) / std) * std_acc) + mean_acc
x_c = x_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
x_c[uc_mask] = x[uc_mask]
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
self.mean_bank = []
self.var_bank = []
return x
def hack_CrossAttnDownBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
output_states = ()
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
output_states = output_states + (hidden_states,)
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
eps = 1e-6
output_states = ()
for i, resnet in enumerate(self.resnets):
hidden_states = resnet(hidden_states, temb)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
output_states = output_states + (hidden_states,)
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_CrossAttnUpBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
eps = 1e-6
for i, resnet in enumerate(self.resnets):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
if reference_attn:
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
for i, module in enumerate(attn_modules):
module._original_inner_forward = module.forward
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
module.bank = []
module.attn_weight = float(i) / float(len(attn_modules))
if reference_adain:
gn_modules = [self.unet.mid_block]
self.unet.mid_block.gn_weight = 0
down_blocks = self.unet.down_blocks
for w, module in enumerate(down_blocks):
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
gn_modules.append(module)
up_blocks = self.unet.up_blocks
for w, module in enumerate(up_blocks):
module.gn_weight = float(w) / float(len(up_blocks))
gn_modules.append(module)
for i, module in enumerate(gn_modules):
if getattr(module, "original_forward", None) is None:
module.original_forward = module.forward
if i == 0:
# mid_block
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
elif isinstance(module, CrossAttnDownBlock2D):
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
elif isinstance(module, DownBlock2D):
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
elif isinstance(module, CrossAttnUpBlock2D):
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
elif isinstance(module, UpBlock2D):
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
module.mean_bank = []
module.var_bank = []
module.gn_weight *= 2
# 10. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# ref only part
noise = randn_tensor(
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
)
ref_xt = self.scheduler.add_noise(
ref_image_latents,
noise,
t.reshape(
1,
),
)
ref_xt = torch.cat([ref_xt] * 2) if do_classifier_free_guidance else ref_xt
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
MODE = "write"
self.unet(
ref_xt,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)
# predict the noise residual
MODE = "read"
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/stable_diffusion_reference.py |
"""
modeled after the textual_inversion.py / train_dreambooth.py and the work
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb
"""
import inspect
import warnings
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
import torch.nn.functional as F
from accelerate import Accelerator
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def preprocess(image):
w, h = image.size
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
class ImagicStableDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for imagic image editing.
See paper here: https://arxiv.org/pdf/2210.09276.pdf
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def train(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
height: Optional[int] = 512,
width: Optional[int] = 512,
generator: Optional[torch.Generator] = None,
embedding_learning_rate: float = 0.001,
diffusion_model_learning_rate: float = 2e-6,
text_embedding_optimization_steps: int = 500,
model_fine_tuning_optimization_steps: int = 1000,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
accelerator = Accelerator(
gradient_accumulation_steps=1,
mixed_precision="fp16",
)
if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
warnings.warn(
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
" Consider using `pipe.to(torch_device)` instead."
)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.to(device)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# Freeze vae and unet
self.vae.requires_grad_(False)
self.unet.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.unet.eval()
self.vae.eval()
self.text_encoder.eval()
if accelerator.is_main_process:
accelerator.init_trackers(
"imagic",
config={
"embedding_learning_rate": embedding_learning_rate,
"text_embedding_optimization_steps": text_embedding_optimization_steps,
},
)
# get text embeddings for prompt
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = torch.nn.Parameter(
self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True
)
text_embeddings = text_embeddings.detach()
text_embeddings.requires_grad_()
text_embeddings_orig = text_embeddings.clone()
# Initialize the optimizer
optimizer = torch.optim.Adam(
[text_embeddings], # only optimize the embeddings
lr=embedding_learning_rate,
)
if isinstance(image, PIL.Image.Image):
image = preprocess(image)
latents_dtype = text_embeddings.dtype
image = image.to(device=self.device, dtype=latents_dtype)
init_latent_image_dist = self.vae.encode(image).latent_dist
image_latents = init_latent_image_dist.sample(generator=generator)
image_latents = 0.18215 * image_latents
progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
logger.info("First optimizing the text embedding to better reconstruct the init image")
for _ in range(text_embedding_optimization_steps):
with accelerator.accumulate(text_embeddings):
# Sample noise that we'll add to the latents
noise = torch.randn(image_latents.shape).to(image_latents.device)
timesteps = torch.randint(1000, (1,), device=image_latents.device)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
accelerator.wait_for_everyone()
text_embeddings.requires_grad_(False)
# Now we fine tune the unet to better reconstruct the image
self.unet.requires_grad_(True)
self.unet.train()
optimizer = torch.optim.Adam(
self.unet.parameters(), # only optimize unet
lr=diffusion_model_learning_rate,
)
progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process)
logger.info("Next fine tuning the entire model to better reconstruct the init image")
for _ in range(model_fine_tuning_optimization_steps):
with accelerator.accumulate(self.unet.parameters()):
# Sample noise that we'll add to the latents
noise = torch.randn(image_latents.shape).to(image_latents.device)
timesteps = torch.randint(1000, (1,), device=image_latents.device)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
accelerator.wait_for_everyone()
self.text_embeddings_orig = text_embeddings_orig
self.text_embeddings = text_embeddings
@torch.no_grad()
def __call__(
self,
alpha: float = 1.2,
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
guidance_scale: float = 7.5,
eta: float = 0.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if self.text_embeddings is None:
raise ValueError("Please run the pipe.train() before trying to generate an image.")
if self.text_embeddings_orig is None:
raise ValueError("Please run the pipe.train() before trying to generate an image.")
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens = [""]
max_length = self.tokenizer.model_max_length
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.view(1, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (1, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if self.device.type == "mps":
# randn does not exist on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
self.device
)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/imagic_stable_diffusion.py |
import inspect
from typing import List, Optional, Union
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cut_power=1.0):
super().__init__()
self.cut_size = cut_size
self.cut_power = cut_power
def forward(self, pixel_values, num_cutouts):
sideY, sideX = pixel_values.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(num_cutouts):
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
class CLIPGuidedStableDiffusion(DiffusionPipeline):
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
- https://github.com/Jack000/glid-3-xl
- https://github.dev/crowsonkb/k-diffusion
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
clip_model=clip_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
self.cut_out_size = (
feature_extractor.size
if isinstance(feature_extractor.size, int)
else feature_extractor.size["shortest_edge"]
)
self.make_cutouts = MakeCutouts(self.cut_out_size)
set_requires_grad(self.text_encoder, False)
set_requires_grad(self.clip_model, False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
self.enable_attention_slicing(None)
def freeze_vae(self):
set_requires_grad(self.vae, False)
def unfreeze_vae(self):
set_requires_grad(self.vae, True)
def freeze_unet(self):
set_requires_grad(self.unet, False)
def unfreeze_unet(self):
set_requires_grad(self.unet, True)
@torch.enable_grad()
def cond_fn(
self,
latents,
timestep,
index,
text_embeddings,
noise_pred_original,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts=True,
):
latents = latents.detach().requires_grad_()
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
fac = torch.sqrt(beta_prod_t)
sample = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
sample = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
sample = 1 / self.vae.config.scaling_factor * sample
image = self.vae.decode(sample).sample
image = (image / 2 + 0.5).clamp(0, 1)
if use_cutouts:
image = self.make_cutouts(image, num_cutouts)
else:
image = transforms.Resize(self.cut_out_size)(image)
image = self.normalize(image).to(latents.dtype)
image_embeddings_clip = self.clip_model.get_image_features(image)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
if use_cutouts:
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
dists = dists.view([num_cutouts, sample.shape[0], -1])
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
else:
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
grads = -torch.autograd.grad(loss, latents)[0]
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents.detach() + grads * (sigma**2)
noise_pred = noise_pred_original
else:
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
clip_guidance_scale: Optional[float] = 100,
clip_prompt: Optional[Union[str, List[str]]] = None,
num_cutouts: Optional[int] = 4,
use_cutouts: Optional[bool] = True,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# get prompt text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
if clip_guidance_scale > 0:
if clip_prompt is not None:
clip_text_input = self.tokenizer(
clip_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids.to(self.device)
else:
clip_text_input = text_input.input_ids.to(self.device)
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
# duplicate text embeddings clip for each generation per prompt
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
text_embeddings_for_guidance = (
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
noise_pred, latents = self.cond_fn(
latents,
t,
i,
text_embeddings_for_guidance,
noise_pred,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# scale and decode the image latents with vae
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
| diffusers-main | examples/community/clip_guided_stable_diffusion.py |
# Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
from diffusers import StableDiffusionControlNetPipeline
from diffusers.models import ControlNetModel
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import logging
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import cv2
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> from diffusers import UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
>>> # get canny image
>>> image = cv2.Canny(np.array(input_image), 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
).to('cuda:0')
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
>>> result_img = pipe(ref_image=input_image,
prompt="1girl",
image=canny_image,
num_inference_steps=20,
reference_attn=True,
reference_adain=True).images[0]
>>> result_img.show()
```
"""
def torch_dfs(model: torch.nn.Module):
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
class StableDiffusionControlNetReferencePipeline(StableDiffusionControlNetPipeline):
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
refimage = refimage.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
if isinstance(generator, list):
ref_image_latents = [
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
for i in range(batch_size)
]
ref_image_latents = torch.cat(ref_image_latents, dim=0)
else:
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
if ref_image_latents.shape[0] < batch_size:
if not batch_size % ref_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
# aligning device to prevent device errors when concating it with the latent model input
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
return ref_image_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
attention_auto_machine_weight: float = 1.0,
gn_auto_machine_weight: float = 1.0,
style_fidelity: float = 0.5,
reference_attn: bool = True,
reference_adain: bool = True,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
specified in init, images must be passed as a list such that each element of the list can be correctly
batched for input to a single controlnet.
ref_image (`torch.FloatTensor`, `PIL.Image.Image`):
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
also be accepted as an image.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
attention_auto_machine_weight (`float`):
Weight of using reference query for self attention's context.
If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
gn_auto_machine_weight (`float`):
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
style_fidelity (`float`):
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
elif style_fidelity=0.0, prompt more important, else balanced.
reference_attn (`bool`):
Whether to use reference query for self attention's context.
reference_adain (`bool`):
Whether to use reference adain.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True."
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
image,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
for image_ in image:
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 5. Preprocess reference image
ref_image = self.prepare_image(
image=ref_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=prompt_embeds.dtype,
)
# 6. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 7. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 8. Prepare reference latent variables
ref_image_latents = self.prepare_ref_latents(
ref_image,
batch_size * num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
do_classifier_free_guidance,
)
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9. Modify self attention and group norm
MODE = "write"
uc_mask = (
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
.type_as(ref_image_latents)
.bool()
)
def hacked_basic_transformer_inner_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
):
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Self-Attention
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
if self.only_cross_attention:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
if MODE == "write":
self.bank.append(norm_hidden_states.detach().clone())
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if MODE == "read":
if attention_auto_machine_weight > self.attn_weight:
attn_output_uc = self.attn1(
norm_hidden_states,
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
# attention_mask=attention_mask,
**cross_attention_kwargs,
)
attn_output_c = attn_output_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
attn_output_c[uc_mask] = self.attn1(
norm_hidden_states[uc_mask],
encoder_hidden_states=norm_hidden_states[uc_mask],
**cross_attention_kwargs,
)
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
self.bank.clear()
else:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
# 2. Cross-Attention
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
def hacked_mid_forward(self, *args, **kwargs):
eps = 1e-6
x = self.original_forward(*args, **kwargs)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append(mean)
self.var_bank.append(var)
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
var_acc = sum(self.var_bank) / float(len(self.var_bank))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
x_uc = (((x - mean) / std) * std_acc) + mean_acc
x_c = x_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
x_c[uc_mask] = x[uc_mask]
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
self.mean_bank = []
self.var_bank = []
return x
def hack_CrossAttnDownBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
output_states = ()
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
output_states = output_states + (hidden_states,)
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
eps = 1e-6
output_states = ()
for i, resnet in enumerate(self.resnets):
hidden_states = resnet(hidden_states, temb)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
output_states = output_states + (hidden_states,)
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_CrossAttnUpBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
eps = 1e-6
for i, resnet in enumerate(self.resnets):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
if reference_attn:
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
for i, module in enumerate(attn_modules):
module._original_inner_forward = module.forward
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
module.bank = []
module.attn_weight = float(i) / float(len(attn_modules))
if reference_adain:
gn_modules = [self.unet.mid_block]
self.unet.mid_block.gn_weight = 0
down_blocks = self.unet.down_blocks
for w, module in enumerate(down_blocks):
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
gn_modules.append(module)
up_blocks = self.unet.up_blocks
for w, module in enumerate(up_blocks):
module.gn_weight = float(w) / float(len(up_blocks))
gn_modules.append(module)
for i, module in enumerate(gn_modules):
if getattr(module, "original_forward", None) is None:
module.original_forward = module.forward
if i == 0:
# mid_block
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
elif isinstance(module, CrossAttnDownBlock2D):
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
elif isinstance(module, DownBlock2D):
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
elif isinstance(module, CrossAttnUpBlock2D):
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
elif isinstance(module, UpBlock2D):
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
module.mean_bank = []
module.var_bank = []
module.gn_weight *= 2
# 11. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# controlnet(s) inference
if guess_mode and do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=controlnet_conditioning_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# ref only part
noise = randn_tensor(
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
)
ref_xt = self.scheduler.add_noise(
ref_image_latents,
noise,
t.reshape(
1,
),
)
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
MODE = "write"
self.unet(
ref_xt,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)
# predict the noise residual
MODE = "read"
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/stable_diffusion_controlnet_reference.py |
# Based on stable_diffusion_reference.py
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
UpBlock2D,
)
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from diffusers.utils import PIL_INTERPOLATION, logging
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
>>> pipe = StableDiffusionXLReferencePipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16").to('cuda:0')
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> result_img = pipe(ref_image=input_image,
prompt="1girl",
num_inference_steps=20,
reference_attn=True,
reference_adain=True).images[0]
>>> result_img.show()
```
"""
def torch_dfs(model: torch.nn.Module):
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline):
def _default_height_width(self, height, width, image):
# NOTE: It is possible that a list of images have different
# dimensions for each image, so just checking the first image
# is not _exactly_ correct, but it is simple.
while isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[2]
height = (height // 8) * 8 # round down to nearest multiple of 8
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[3]
width = (width // 8) * 8
return height, width
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if not isinstance(image, torch.Tensor):
if isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
images = []
for image_ in image:
image_ = image_.convert("RGB")
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
image_ = np.array(image_)
image_ = image_[None, :]
images.append(image_)
image = images
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = (image - 0.5) / 0.5
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.stack(image, dim=0)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
refimage = refimage.to(device=device)
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
self.upcast_vae()
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
if refimage.dtype != self.vae.dtype:
refimage = refimage.to(dtype=self.vae.dtype)
# encode the mask image into latents space so we can concatenate it to the latents
if isinstance(generator, list):
ref_image_latents = [
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
for i in range(batch_size)
]
ref_image_latents = torch.cat(ref_image_latents, dim=0)
else:
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
if ref_image_latents.shape[0] < batch_size:
if not batch_size % ref_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
# aligning device to prevent device errors when concating it with the latent model input
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
return ref_image_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
attention_auto_machine_weight: float = 1.0,
gn_auto_machine_weight: float = 1.0,
style_fidelity: float = 0.5,
reference_attn: bool = True,
reference_adain: bool = True,
):
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True."
# 0. Default height and width to unet
# height, width = self._default_height_width(height, width, ref_image)
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Preprocess reference image
ref_image = self.prepare_image(
image=ref_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=prompt_embeds.dtype,
)
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Prepare reference latent variables
ref_image_latents = self.prepare_ref_latents(
ref_image,
batch_size * num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
do_classifier_free_guidance,
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9. Modify self attebtion and group norm
MODE = "write"
uc_mask = (
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
.type_as(ref_image_latents)
.bool()
)
def hacked_basic_transformer_inner_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
):
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Self-Attention
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
if self.only_cross_attention:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
if MODE == "write":
self.bank.append(norm_hidden_states.detach().clone())
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if MODE == "read":
if attention_auto_machine_weight > self.attn_weight:
attn_output_uc = self.attn1(
norm_hidden_states,
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
# attention_mask=attention_mask,
**cross_attention_kwargs,
)
attn_output_c = attn_output_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
attn_output_c[uc_mask] = self.attn1(
norm_hidden_states[uc_mask],
encoder_hidden_states=norm_hidden_states[uc_mask],
**cross_attention_kwargs,
)
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
self.bank.clear()
else:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
# 2. Cross-Attention
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
def hacked_mid_forward(self, *args, **kwargs):
eps = 1e-6
x = self.original_forward(*args, **kwargs)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append(mean)
self.var_bank.append(var)
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
var_acc = sum(self.var_bank) / float(len(self.var_bank))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
x_uc = (((x - mean) / std) * std_acc) + mean_acc
x_c = x_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
x_c[uc_mask] = x[uc_mask]
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
self.mean_bank = []
self.var_bank = []
return x
def hack_CrossAttnDownBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
output_states = ()
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
output_states = output_states + (hidden_states,)
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
eps = 1e-6
output_states = ()
for i, resnet in enumerate(self.resnets):
hidden_states = resnet(hidden_states, temb)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
output_states = output_states + (hidden_states,)
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_CrossAttnUpBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
eps = 1e-6
for i, resnet in enumerate(self.resnets):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
if MODE == "write":
if gn_auto_machine_weight >= self.gn_weight:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
self.mean_bank.append([mean])
self.var_bank.append([var])
if MODE == "read":
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
hidden_states_c = hidden_states_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
hidden_states_c[uc_mask] = hidden_states[uc_mask]
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
if MODE == "read":
self.mean_bank = []
self.var_bank = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
if reference_attn:
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
for i, module in enumerate(attn_modules):
module._original_inner_forward = module.forward
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
module.bank = []
module.attn_weight = float(i) / float(len(attn_modules))
if reference_adain:
gn_modules = [self.unet.mid_block]
self.unet.mid_block.gn_weight = 0
down_blocks = self.unet.down_blocks
for w, module in enumerate(down_blocks):
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
gn_modules.append(module)
up_blocks = self.unet.up_blocks
for w, module in enumerate(up_blocks):
module.gn_weight = float(w) / float(len(up_blocks))
gn_modules.append(module)
for i, module in enumerate(gn_modules):
if getattr(module, "original_forward", None) is None:
module.original_forward = module.forward
if i == 0:
# mid_block
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
elif isinstance(module, CrossAttnDownBlock2D):
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
elif isinstance(module, DownBlock2D):
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
elif isinstance(module, CrossAttnUpBlock2D):
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
elif isinstance(module, UpBlock2D):
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
module.mean_bank = []
module.var_bank = []
module.gn_weight *= 2
# 10. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 11. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 10.1 Apply denoising_end
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
# ref only part
noise = randn_tensor(
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
)
ref_xt = self.scheduler.add_noise(
ref_image_latents,
noise,
t.reshape(
1,
),
)
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
MODE = "write"
self.unet(
ref_xt,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)
# predict the noise residual
MODE = "read"
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
return StableDiffusionXLPipelineOutput(images=image)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
| diffusers-main | examples/community/stable_diffusion_xl_reference.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import abc
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from ...src.diffusers.models.attention import Attention
from ...src.diffusers.pipelines.stable_diffusion import StableDiffusionPipeline, StableDiffusionPipelineOutput
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class Prompt2PromptPipeline(StableDiffusionPipeline):
r"""
Args:
Prompt-to-Prompt-Pipeline for text-to-image generation using Stable Diffusion. This model inherits from
[`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for
all the pipelines (such as downloading or saving, running on a particular device, etc.)
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler
([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
The keyword arguments to configure the edit are:
- edit_type (`str`). The edit type to apply. Can be either of `replace`, `refine`, `reweight`.
- n_cross_replace (`int`): Number of diffusion steps in which cross attention should be replaced
- n_self_replace (`int`): Number of diffusion steps in which self attention should be replaced
- local_blend_words(`List[str]`, *optional*, default to `None`): Determines which area should be
changed. If None, then the whole image can be changed.
- equalizer_words(`List[str]`, *optional*, default to `None`): Required for edit type `reweight`.
Determines which words should be enhanced.
- equalizer_strengths (`List[float]`, *optional*, default to `None`) Required for edit type `reweight`.
Determines which how much the words in `equalizer_words` should be enhanced.
guidance_rescale (`float`, *optional*, defaults to 0.7):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
self.controller = create_controller(
prompt, cross_attention_kwargs, num_inference_steps, tokenizer=self.tokenizer, device=self.device
)
self.register_attention_control(self.controller) # add attention controller
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# step callback
latents = self.controller.step_callback(latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 8. Post-processing
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
# 9. Run safety checker
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def register_attention_control(self, controller):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
if name.startswith("mid_block"):
self.unet.config.block_out_channels[-1]
place_in_unet = "mid"
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
list(reversed(self.unet.config.block_out_channels))[block_id]
place_in_unet = "up"
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
self.unet.config.block_out_channels[block_id]
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet)
self.unet.set_attn_processor(attn_procs)
controller.num_att_layers = cross_att_count
class P2PCrossAttnProcessor:
def __init__(self, controller, place_in_unet):
super().__init__()
self.controller = controller
self.place_in_unet = place_in_unet
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# one line change
self.controller(attention_probs, is_cross, self.place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
def create_controller(
prompts: List[str], cross_attention_kwargs: Dict, num_inference_steps: int, tokenizer, device
) -> AttentionControl:
edit_type = cross_attention_kwargs.get("edit_type", None)
local_blend_words = cross_attention_kwargs.get("local_blend_words", None)
equalizer_words = cross_attention_kwargs.get("equalizer_words", None)
equalizer_strengths = cross_attention_kwargs.get("equalizer_strengths", None)
n_cross_replace = cross_attention_kwargs.get("n_cross_replace", 0.4)
n_self_replace = cross_attention_kwargs.get("n_self_replace", 0.4)
# only replace
if edit_type == "replace" and local_blend_words is None:
return AttentionReplace(
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device
)
# replace + localblend
if edit_type == "replace" and local_blend_words is not None:
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
return AttentionReplace(
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device
)
# only refine
if edit_type == "refine" and local_blend_words is None:
return AttentionRefine(
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device
)
# refine + localblend
if edit_type == "refine" and local_blend_words is not None:
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
return AttentionRefine(
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device
)
# reweight
if edit_type == "reweight":
assert (
equalizer_words is not None and equalizer_strengths is not None
), "To use reweight edit, please specify equalizer_words and equalizer_strengths."
assert len(equalizer_words) == len(
equalizer_strengths
), "equalizer_words and equalizer_strengths must be of same length."
equalizer = get_equalizer(prompts[1], equalizer_words, equalizer_strengths, tokenizer=tokenizer)
return AttentionReweight(
prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
equalizer=equalizer,
)
raise ValueError(f"Edit type {edit_type} not recognized. Use one of: replace, refine, reweight.")
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32**2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
class LocalBlend:
def __call__(self, x_t, attention_store):
k = 1
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
mask = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = (mask[:1] + mask[1:]).float()
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(
self, prompts: List[str], words: [List[List[str]]], tokenizer, device, threshold=0.3, max_num_words=77
):
self.max_num_words = 77
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device)
self.threshold = threshold
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= 16**2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
# FIXME not replace correctly
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = (
self.replace_cross_attention(attn_base, attn_repalce) * alpha_words
+ (1 - alpha_words) * attn_repalce
)
attn[1:] = attn_repalce_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend],
tokenizer,
device,
):
super(AttentionControlEdit, self).__init__()
# add tokenizer and device here
self.tokenizer = tokenizer
self.device = device
self.batch_size = len(prompts)
self.cross_replace_alpha = get_time_words_attention_alpha(
prompts, num_steps, cross_replace_steps, self.tokenizer
).to(self.device)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend # 在外面定义后传进来
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper)
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
):
super(AttentionReplace, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
)
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
):
super(AttentionRefine, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
)
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
class AttentionReweight(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
if self.prev_controller is not None:
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
equalizer,
local_blend: Optional[LocalBlend] = None,
controller: Optional[AttentionControlEdit] = None,
tokenizer=None,
device=None,
):
super(AttentionReweight, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
)
self.equalizer = equalizer.to(self.device)
self.prev_controller = controller
### util functions for all Edits
def update_alpha_time_word(
alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor] = None
):
if type(bounds) is float:
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[:start, prompt_ind, word_inds] = 0
alpha[start:end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(
prompts, num_steps, cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], tokenizer, max_num_words=77
):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0.0, 1.0)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
return alpha_time_words
### util functions for LocalBlend and ReplacementEdit
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
### util functions for ReplacementEdit
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
words_x = x.split(" ")
words_y = y.split(" ")
if len(words_x) != len(words_y):
raise ValueError(
f"attention replacement edit can only be applied on prompts with the same length"
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words."
)
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
mapper = np.zeros((max_len, max_len))
i = j = 0
cur_inds = 0
while i < max_len and j < max_len:
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
if len(inds_source_) == len(inds_target_):
mapper[inds_source_, inds_target_] = 1
else:
ratio = 1 / len(inds_target_)
for i_t in inds_target_:
mapper[inds_source_, i_t] = ratio
cur_inds += 1
i += len(inds_source_)
j += len(inds_target_)
elif cur_inds < len(inds_source):
mapper[i, j] = 1
i += 1
j += 1
else:
mapper[j, j] = 1
i += 1
j += 1
return torch.from_numpy(mapper).float()
def get_replacement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers = []
for i in range(1, len(prompts)):
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
return torch.stack(mappers)
### util functions for ReweightEdit
def get_equalizer(
text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer
):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch.float32)
for word in word_select:
inds = get_word_inds(text, word, tokenizer)
equalizer[:, inds] = values
return equalizer
### util functions for RefinementEdit
class ScoreParams:
def __init__(self, gap, match, mismatch):
self.gap = gap
self.match = match
self.mismatch = mismatch
def mis_match_char(self, x, y):
if x != y:
return self.mismatch
else:
return self.match
def get_matrix(size_x, size_y, gap):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
return matrix
def get_traceback_matrix(size_x, size_y):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = 1
matrix[1:, 0] = 2
matrix[0, 0] = 4
return matrix
def global_align(x, y, score):
matrix = get_matrix(len(x), len(y), score.gap)
trace_back = get_traceback_matrix(len(x), len(y))
for i in range(1, len(x) + 1):
for j in range(1, len(y) + 1):
left = matrix[i, j - 1] + score.gap
up = matrix[i - 1, j] + score.gap
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
matrix[i, j] = max(left, up, diag)
if matrix[i, j] == left:
trace_back[i, j] = 1
elif matrix[i, j] == up:
trace_back[i, j] = 2
else:
trace_back[i, j] = 3
return matrix, trace_back
def get_aligned_sequences(x, y, trace_back):
x_seq = []
y_seq = []
i = len(x)
j = len(y)
mapper_y_to_x = []
while i > 0 or j > 0:
if trace_back[i, j] == 3:
x_seq.append(x[i - 1])
y_seq.append(y[j - 1])
i = i - 1
j = j - 1
mapper_y_to_x.append((j, i))
elif trace_back[i][j] == 1:
x_seq.append("-")
y_seq.append(y[j - 1])
j = j - 1
mapper_y_to_x.append((j, -1))
elif trace_back[i][j] == 2:
x_seq.append(x[i - 1])
y_seq.append("-")
i = i - 1
elif trace_back[i][j] == 4:
break
mapper_y_to_x.reverse()
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
def get_mapper(x: str, y: str, tokenizer, max_len=77):
x_seq = tokenizer.encode(x)
y_seq = tokenizer.encode(y)
score = ScoreParams(0, 1, -1)
matrix, trace_back = global_align(x_seq, y_seq, score)
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
alphas = torch.ones(max_len)
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
mapper = torch.zeros(max_len, dtype=torch.int64)
mapper[: mapper_base.shape[0]] = mapper_base[:, 1]
mapper[mapper_base.shape[0] :] = len(y_seq) + torch.arange(max_len - len(y_seq))
return mapper, alphas
def get_refinement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers, alphas = [], []
for i in range(1, len(prompts)):
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
alphas.append(alpha)
return torch.stack(mappers), torch.stack(alphas)
| diffusers-main | examples/community/pipeline_prompt2prompt.py |
from typing import List, Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import ImagePipelineOutput
from diffusers.schedulers.scheduling_utils import SchedulerMixin
class IADBScheduler(SchedulerMixin, ConfigMixin):
"""
IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist.
For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html
"""
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
x_alpha: torch.FloatTensor,
) -> torch.FloatTensor:
"""
Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model. It is the direction from x0 to x1.
timestep (`float`): current timestep in the diffusion chain.
x_alpha (`torch.FloatTensor`): x_alpha sample for the current timestep
Returns:
`torch.FloatTensor`: the sample at the previous timestep
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
alpha = timestep / self.num_inference_steps
alpha_next = (timestep + 1) / self.num_inference_steps
d = model_output
x_alpha = x_alpha + (alpha_next - alpha) * d
return x_alpha
def set_timesteps(self, num_inference_steps: int):
self.num_inference_steps = num_inference_steps
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
alpha: torch.FloatTensor,
) -> torch.FloatTensor:
return original_samples * alpha + noise * (1 - alpha)
def __len__(self):
return self.config.num_train_timesteps
class IADBPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
"""
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size, int):
image_shape = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
x_alpha = image.clone()
for t in self.progress_bar(range(num_inference_steps)):
alpha = t / num_inference_steps
# 1. predict noise model_output
model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample
# 2. step
x_alpha = self.scheduler.step(model_output, t, x_alpha)
image = (x_alpha * 0.5 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| diffusers-main | examples/community/iadb.py |
"""
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class SeedResizeStableDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
text_embeddings: Optional[torch.FloatTensor] = None,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""]
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
latents_shape_reference = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
latents_reference = torch.randn(
latents_shape_reference, generator=generator, device="cpu", dtype=latents_dtype
).to(self.device)
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents_reference = torch.randn(
latents_shape_reference, generator=generator, device=self.device, dtype=latents_dtype
)
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents_reference.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents_reference = latents_reference.to(self.device)
latents = latents.to(self.device)
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
dx = (latents_shape[3] - latents_shape_reference[3]) // 2
dy = (latents_shape[2] - latents_shape_reference[2]) // 2
w = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
h = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
tx = 0 if dx < 0 else dx
ty = 0 if dy < 0 else dy
dx = max(-dx, 0)
dy = max(-dy, 0)
# import pdb
# pdb.set_trace()
latents[:, :, ty : ty + h, tx : tx + w] = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
self.device
)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/seed_resize_stable_diffusion.py |
# -*- coding: utf-8 -*-
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import PIL_INTERPOLATION
from diffusers.utils.torch_utils import randn_tensor
def preprocess(image, w, h):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
input_device = v0.device
v0 = v0.cpu().numpy()
v1 = v1.cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(input_device)
return v2
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
feature_extractor: CLIPFeatureExtractor,
coca_model=None,
coca_tokenizer=None,
coca_transform=None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
clip_model=clip_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
coca_model=coca_model,
coca_tokenizer=coca_tokenizer,
coca_transform=coca_transform,
)
self.feature_extractor_size = (
feature_extractor.size
if isinstance(feature_extractor.size, int)
else feature_extractor.size["shortest_edge"]
)
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
set_requires_grad(self.text_encoder, False)
set_requires_grad(self.clip_model, False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
self.enable_attention_slicing(None)
def freeze_vae(self):
set_requires_grad(self.vae, False)
def unfreeze_vae(self):
set_requires_grad(self.vae, True)
def freeze_unet(self):
set_requires_grad(self.unet, False)
def unfreeze_unet(self):
set_requires_grad(self.unet, True)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
if not isinstance(image, torch.Tensor):
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}")
image = image.to(device=device, dtype=dtype)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.sample(generator)
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
init_latents = 0.18215 * init_latents
init_latents = init_latents.repeat_interleave(batch_size, dim=0)
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
def get_image_description(self, image):
transformed_image = self.coca_transform(image).unsqueeze(0)
with torch.no_grad(), torch.cuda.amp.autocast():
generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype))
generated = self.coca_tokenizer.decode(generated[0].cpu().numpy())
return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,")
def get_clip_image_embeddings(self, image, batch_size):
clip_image_input = self.feature_extractor.preprocess(image)
clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half()
image_embeddings_clip = self.clip_model.get_image_features(clip_image_features)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0)
return image_embeddings_clip
@torch.enable_grad()
def cond_fn(
self,
latents,
timestep,
index,
text_embeddings,
noise_pred_original,
original_image_embeddings_clip,
clip_guidance_scale,
):
latents = latents.detach().requires_grad_()
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
fac = torch.sqrt(beta_prod_t)
sample = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
sample = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
sample = 1 / 0.18215 * sample
image = self.vae.decode(sample).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = transforms.Resize(self.feature_extractor_size)(image)
image = self.normalize(image).to(latents.dtype)
image_embeddings_clip = self.clip_model.get_image_features(image)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale
grads = -torch.autograd.grad(loss, latents)[0]
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents.detach() + grads * (sigma**2)
noise_pred = noise_pred_original
else:
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(
self,
style_image: Union[torch.FloatTensor, PIL.Image.Image],
content_image: Union[torch.FloatTensor, PIL.Image.Image],
style_prompt: Optional[str] = None,
content_prompt: Optional[str] = None,
height: Optional[int] = 512,
width: Optional[int] = 512,
noise_strength: float = 0.6,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
batch_size: Optional[int] = 1,
eta: float = 0.0,
clip_guidance_scale: Optional[float] = 100,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
slerp_latent_style_strength: float = 0.8,
slerp_prompt_style_strength: float = 0.1,
slerp_clip_image_style_strength: float = 0.1,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if isinstance(generator, torch.Generator) and batch_size > 1:
generator = [generator] + [None] * (batch_size - 1)
coca_is_none = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
coca_is_none = [x[0] for x in coca_is_none if x[1]]
coca_is_none_str = ", ".join(coca_is_none)
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(coca_is_none):
raise ValueError(
f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
)
content_prompt = self.get_image_description(content_image)
if style_prompt is None:
if len(coca_is_none):
raise ValueError(
f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
)
style_prompt = self.get_image_description(style_image)
# get prompt text embeddings for content and style
content_text_input = self.tokenizer(
content_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0]
style_text_input = self.tokenizer(
style_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0]
text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings)
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device)
latent_timestep = timesteps[:1].repeat(batch_size)
# Preprocess image
preprocessed_content_image = preprocess(content_image, width, height)
content_latents = self.prepare_latents(
preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
)
preprocessed_style_image = preprocess(style_image, width, height)
style_latents = self.prepare_latents(
preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
)
latents = slerp(slerp_latent_style_strength, content_latents, style_latents)
if clip_guidance_scale > 0:
content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size)
style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size)
clip_image_embeddings = slerp(
slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding
)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = content_text_input.input_ids.shape[-1]
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
text_embeddings_for_guidance = (
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
noise_pred, latents = self.cond_fn(
latents,
t,
i,
text_embeddings_for_guidance,
noise_pred,
clip_image_embeddings,
clip_guidance_scale,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
progress_bar.update()
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
| diffusers-main | examples/community/clip_guided_images_mixing_stable_diffusion.py |
## ----------------------------------------------------------
# A SDXL pipeline can take unlimited weighted prompt
#
# Author: Andrew Zhu
# Github: https://github.com/xhinker
# Medium: https://medium.com/@xhinker
## -----------------------------------------------------------
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
if is_invisible_watermark_available():
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\(literal\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
import re
re_attention = re.compile(
r"""
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
\)|]|[^\\()\[\]:]+|:
""",
re.X,
)
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
parts = re.split(re_break, text)
for i, part in enumerate(parts):
if i > 0:
res.append(["BREAK", -1])
res.append([part, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str):
"""
Get prompt token ids and weights, this function works for both prompt and negative prompt
Args:
pipe (CLIPTokenizer)
A CLIPTokenizer
prompt (str)
A prompt string with weights
Returns:
text_tokens (list)
A list contains token ids
text_weight (list)
A list contains the correspodent weight of token ids
Example:
import torch
from transformers import CLIPTokenizer
clip_tokenizer = CLIPTokenizer.from_pretrained(
"stablediffusionapi/deliberate-v2"
, subfolder = "tokenizer"
, dtype = torch.float16
)
token_id_list, token_weight_list = get_prompts_tokens_with_weights(
clip_tokenizer = clip_tokenizer
,prompt = "a (red:1.5) cat"*70
)
"""
texts_and_weights = parse_prompt_attention(prompt)
text_tokens, text_weights = [], []
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
# the returned token is a 1d list: [320, 1125, 539, 320]
# merge the new tokens to the all tokens holder: text_tokens
text_tokens = [*text_tokens, *token]
# each token chunk will come with one weight, like ['red cat', 2.0]
# need to expand weight for each token.
chunk_weights = [weight] * len(token)
# append the weight back to the weight holder: text_weights
text_weights = [*text_weights, *chunk_weights]
return text_tokens, text_weights
def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False):
"""
Produce tokens and weights in groups and pad the missing tokens
Args:
token_ids (list)
The token ids from tokenizer
weights (list)
The weights list from function get_prompts_tokens_with_weights
pad_last_block (bool)
Control if fill the last token list to 75 tokens with eos
Returns:
new_token_ids (2d list)
new_weights (2d list)
Example:
token_groups,weight_groups = group_tokens_and_weights(
token_ids = token_id_list
, weights = token_weight_list
)
"""
bos, eos = 49406, 49407
# this will be a 2d list
new_token_ids = []
new_weights = []
while len(token_ids) >= 75:
# get the first 75 tokens
head_75_tokens = [token_ids.pop(0) for _ in range(75)]
head_75_weights = [weights.pop(0) for _ in range(75)]
# extract token ids and weights
temp_77_token_ids = [bos] + head_75_tokens + [eos]
temp_77_weights = [1.0] + head_75_weights + [1.0]
# add 77 token and weights chunk to the holder list
new_token_ids.append(temp_77_token_ids)
new_weights.append(temp_77_weights)
# padding the left
if len(token_ids) > 0:
padding_len = 75 - len(token_ids) if pad_last_block else 0
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
new_token_ids.append(temp_77_token_ids)
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
new_weights.append(temp_77_weights)
return new_token_ids, new_weights
def get_weighted_text_embeddings_sdxl(
pipe: StableDiffusionXLPipeline,
prompt: str = "",
prompt_2: str = None,
neg_prompt: str = "",
neg_prompt_2: str = None,
):
"""
This function can process long prompt with weights, no length limitation
for Stable Diffusion XL
Args:
pipe (StableDiffusionPipeline)
prompt (str)
prompt_2 (str)
neg_prompt (str)
neg_prompt_2 (str)
Returns:
prompt_embeds (torch.Tensor)
neg_prompt_embeds (torch.Tensor)
"""
if prompt_2:
prompt = f"{prompt} {prompt_2}"
if neg_prompt_2:
neg_prompt = f"{neg_prompt} {neg_prompt_2}"
eos = pipe.tokenizer.eos_token_id
# tokenizer 1
prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
# tokenizer 2
prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
# padding the shorter one for prompt set 1
prompt_token_len = len(prompt_tokens)
neg_prompt_token_len = len(neg_prompt_tokens)
if prompt_token_len > neg_prompt_token_len:
# padding the neg_prompt with eos token
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
else:
# padding the prompt
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
# padding the shorter one for token set 2
prompt_token_len_2 = len(prompt_tokens_2)
neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
if prompt_token_len_2 > neg_prompt_token_len_2:
# padding the neg_prompt with eos token
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
else:
# padding the prompt
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
embeds = []
neg_embeds = []
prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights(
neg_prompt_tokens.copy(), neg_prompt_weights.copy()
)
prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights(
prompt_tokens_2.copy(), prompt_weights_2.copy()
)
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights(
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
)
# get prompt embeddings one by one is not working.
for i in range(len(prompt_token_groups)):
# get positive prompt embeddings with weights
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
# use first text encoder
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
# use second text encoder
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
pooled_prompt_embeds = prompt_embeds_2[0]
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
for j in range(len(weight_tensor)):
if weight_tensor[j] != 1.0:
token_embedding[j] = (
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
)
token_embedding = token_embedding.unsqueeze(0)
embeds.append(token_embedding)
# get negative prompt embeddings with weights
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
# use first text encoder
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
# use second text encoder
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
for z in range(len(neg_weight_tensor)):
if neg_weight_tensor[z] != 1.0:
neg_token_embedding[z] = (
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
)
neg_token_embedding = neg_token_embedding.unsqueeze(0)
neg_embeds.append(neg_token_embedding)
prompt_embeds = torch.cat(embeds, dim=1)
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# -------------------------------------------------------------------------------------------------------------------------------
# reuse the backbone code from StableDiffusionXLPipeline
# -------------------------------------------------------------------------------------------------------------------------------
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0"
, torch_dtype = torch.float16
, use_safetensors = True
, variant = "fp16"
, custom_pipeline = "lpw_stable_diffusion_xl",
)
prompt = "a white cat running on the grass"*20
prompt2 = "play a football"*20
prompt = f"{prompt},{prompt2}"
neg_prompt = "blur, low quality"
pipe.to("cuda")
images = pipe(
prompt = prompt
, negative_prompt = neg_prompt
).images[0]
pipe.to("cpu")
torch.cuda.empty_cache()
images
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class SDXLLongPromptWeightingPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
as well as the following saving methods:
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion XL uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
text_encoder_2 ([` CLIPTextModelWithProjection`]):
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
specifically the
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
tokenizer_2 (`CLIPTokenizer`):
Second Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: Optional[bool] = None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = self.unet.config.sample_size
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
if add_watermarker:
self.watermark = StableDiffusionXLWatermarker()
else:
self.watermark = None
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
model_sequence = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
model_sequence.extend([self.unet, self.vae])
hook = None
for cpu_offloaded_model in model_sequence:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
def encode_prompt(
self,
prompt: str,
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
# textual inversion: procecss multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, tokenizer)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(
text_input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
uncond_tokens: List[str]
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt, negative_prompt_2]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: str = None,
prompt_2: Optional[str] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str`):
The prompt to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str`):
The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
denoising_end (`float`, *optional*):
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
completed before it is intentionally prematurely terminated. As a result, the returned sample will
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str`):
The prompt not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str`):
The prompt not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.7):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
Examples:
Returns:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is a list with the generated images.
"""
# 0. Default height and width to unet
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
(cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None)
negative_prompt = negative_prompt if negative_prompt is not None else ""
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = get_weighted_text_embeddings_sdxl(pipe=self, prompt=prompt, neg_prompt=negative_prompt)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 7.1 Apply denoising_end
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
return StableDiffusionXLPipelineOutput(images=image)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
# Overrride to properly handle the loading and unloading of the additional text encoder.
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
@classmethod
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = False,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
| diffusers-main | examples/community/lpw_stable_diffusion_xl.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import intel_extension_for_pytorch as ipex
import torch
from packaging import version
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
>>> # For Float32
>>> pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
>>> # For BFloat16
>>> pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> # For Float32
>>> image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images[0] #value of image height/width should be consistent with 'prepare_for_ipex()'
>>> # For BFloat16
>>> with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
>>> image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images[0] #value of image height/width should be consistent with 'prepare_for_ipex()'
```
"""
class StableDiffusionIPEXPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion on IPEX.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def get_input_example(self, prompt, height=None, width=None, guidance_scale=7.5, num_images_per_prompt=1):
prompt_embeds = None
negative_prompt_embeds = None
negative_prompt = None
callback_steps = 1
generator = None
latents = None
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
device = "cpu"
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 5. Prepare latent variables
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
self.unet.in_channels,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
dummy = torch.ones(1, dtype=torch.int32)
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, dummy)
unet_input_example = (latent_model_input, dummy, prompt_embeds)
vae_decoder_input_example = latents
return unet_input_example, vae_decoder_input_example
def prepare_for_ipex(self, promt, dtype=torch.float32, height=None, width=None, guidance_scale=7.5):
self.unet = self.unet.to(memory_format=torch.channels_last)
self.vae.decoder = self.vae.decoder.to(memory_format=torch.channels_last)
self.text_encoder = self.text_encoder.to(memory_format=torch.channels_last)
if self.safety_checker is not None:
self.safety_checker = self.safety_checker.to(memory_format=torch.channels_last)
unet_input_example, vae_decoder_input_example = self.get_input_example(promt, height, width, guidance_scale)
# optimize with ipex
if dtype == torch.bfloat16:
self.unet = ipex.optimize(
self.unet.eval(), dtype=torch.bfloat16, inplace=True, sample_input=unet_input_example
)
self.vae.decoder = ipex.optimize(self.vae.decoder.eval(), dtype=torch.bfloat16, inplace=True)
self.text_encoder = ipex.optimize(self.text_encoder.eval(), dtype=torch.bfloat16, inplace=True)
if self.safety_checker is not None:
self.safety_checker = ipex.optimize(self.safety_checker.eval(), dtype=torch.bfloat16, inplace=True)
elif dtype == torch.float32:
self.unet = ipex.optimize(
self.unet.eval(),
dtype=torch.float32,
inplace=True,
sample_input=unet_input_example,
level="O1",
weights_prepack=True,
auto_kernel_selection=False,
)
self.vae.decoder = ipex.optimize(
self.vae.decoder.eval(),
dtype=torch.float32,
inplace=True,
level="O1",
weights_prepack=True,
auto_kernel_selection=False,
)
self.text_encoder = ipex.optimize(
self.text_encoder.eval(),
dtype=torch.float32,
inplace=True,
level="O1",
weights_prepack=True,
auto_kernel_selection=False,
)
if self.safety_checker is not None:
self.safety_checker = ipex.optimize(
self.safety_checker.eval(),
dtype=torch.float32,
inplace=True,
level="O1",
weights_prepack=True,
auto_kernel_selection=False,
)
else:
raise ValueError(" The value of 'dtype' should be 'torch.bfloat16' or 'torch.float32' !")
# trace unet model to get better performance on IPEX
with torch.cpu.amp.autocast(enabled=dtype == torch.bfloat16), torch.no_grad():
unet_trace_model = torch.jit.trace(self.unet, unet_input_example, check_trace=False, strict=False)
unet_trace_model = torch.jit.freeze(unet_trace_model)
self.unet.forward = unet_trace_model.forward
# trace vae.decoder model to get better performance on IPEX
with torch.cpu.amp.autocast(enabled=dtype == torch.bfloat16), torch.no_grad():
ave_decoder_trace_model = torch.jit.trace(
self.vae.decoder, vae_decoder_input_example, check_trace=False, strict=False
)
ave_decoder_trace_model = torch.jit.freeze(ave_decoder_trace_model)
self.vae.decoder.forward = ave_decoder_trace_model.forward
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding.
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
from accelerate import cpu_offload
else:
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds)["sample"]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/stable_diffusion_ipex.py |
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
PIL_INTERPOLATION,
is_accelerate_available,
is_accelerate_version,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import numpy as np
>>> import torch
>>> from PIL import Image
>>> from stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
>>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
>>> from diffusers import ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> def ade_palette():
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
[102, 255, 0], [92, 0, 255]]
>>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
>>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
)
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_xformers_memory_efficient_attention()
>>> pipe.enable_model_cpu_offload()
>>> def image_to_seg(image):
pixel_values = image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = image_segmentor(pixel_values)
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
seg_image = Image.fromarray(color_seg)
return seg_image
>>> image = load_image(
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
)
>>> mask_image = load_image(
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
)
>>> controlnet_conditioning_image = image_to_seg(image)
>>> image = pipe(
"Face of a yellow cat, high resolution, sitting on a park bench",
image,
mask_image,
controlnet_conditioning_image,
num_inference_steps=20,
).images[0]
>>> image.save("out.png")
```
"""
def prepare_image(image):
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
image = image.unsqueeze(0)
image = image.to(dtype=torch.float32)
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
def prepare_mask_image(mask_image):
if isinstance(mask_image, torch.Tensor):
if mask_image.ndim == 2:
# Batch and add channel dim for single mask
mask_image = mask_image.unsqueeze(0).unsqueeze(0)
elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
# Single mask, the 0'th dimension is considered to be
# the existing batch size of 1
mask_image = mask_image.unsqueeze(0)
elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
# Batch of mask, the 0'th dimension is considered to be
# the batching dimension
mask_image = mask_image.unsqueeze(1)
# Binarize mask
mask_image[mask_image < 0.5] = 0
mask_image[mask_image >= 0.5] = 1
else:
# preprocess mask
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
mask_image = [mask_image]
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0)
mask_image = mask_image.astype(np.float32) / 255.0
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)
mask_image[mask_image < 0.5] = 0
mask_image[mask_image >= 0.5] = 1
mask_image = torch.from_numpy(mask_image)
return mask_image
def prepare_controlnet_conditioning_image(
controlnet_conditioning_image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance,
):
if not isinstance(controlnet_conditioning_image, torch.Tensor):
if isinstance(controlnet_conditioning_image, PIL.Image.Image):
controlnet_conditioning_image = [controlnet_conditioning_image]
if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
controlnet_conditioning_image = [
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
for i in controlnet_conditioning_image
]
controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)
image_batch_size = controlnet_conditioning_image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)
if do_classifier_free_guidance:
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
return controlnet_conditioning_image
class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
"""
Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
# the safety checker can offload the vae again
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
# control net hook has be manually offloaded as it alternates with unet
cpu_offload_with_hook(self.controlnet, device)
# We'll offload the last model manually.
self.final_offload_hook = hook
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_controlnet_conditioning_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
raise TypeError(
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
)
if image_is_pil:
image_batch_size = 1
elif image_is_tensor:
image_batch_size = image.shape[0]
elif image_is_pil_list:
image_batch_size = len(image)
elif image_is_tensor_list:
image_batch_size = len(image)
else:
raise ValueError("controlnet condition image is not valid")
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
else:
raise ValueError("prompt or prompt_embeds are not valid")
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
def check_inputs(
self,
prompt,
image,
mask_image,
controlnet_conditioning_image,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
controlnet_conditioning_scale=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# check controlnet condition image
if isinstance(self.controlnet, ControlNetModel):
self.check_controlnet_conditioning_image(controlnet_conditioning_image, prompt, prompt_embeds)
elif isinstance(self.controlnet, MultiControlNetModel):
if not isinstance(controlnet_conditioning_image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
if len(controlnet_conditioning_image) != len(self.controlnet.nets):
raise ValueError(
"For multiple controlnets: `image` must have the same length as the number of controlnets."
)
for image_ in controlnet_conditioning_image:
self.check_controlnet_conditioning_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if isinstance(self.controlnet, ControlNetModel):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif isinstance(self.controlnet, MultiControlNetModel):
if isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor):
raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor")
if isinstance(image, PIL.Image.Image) and not isinstance(mask_image, PIL.Image.Image):
raise TypeError("if `image` is a PIL image, `mask_image` must also be a PIL image")
if isinstance(image, torch.Tensor):
if image.ndim != 3 and image.ndim != 4:
raise ValueError("`image` must have 3 or 4 dimensions")
if mask_image.ndim != 2 and mask_image.ndim != 3 and mask_image.ndim != 4:
raise ValueError("`mask_image` must have 2, 3, or 4 dimensions")
if image.ndim == 3:
image_batch_size = 1
image_channels, image_height, image_width = image.shape
elif image.ndim == 4:
image_batch_size, image_channels, image_height, image_width = image.shape
else:
assert False
if mask_image.ndim == 2:
mask_image_batch_size = 1
mask_image_channels = 1
mask_image_height, mask_image_width = mask_image.shape
elif mask_image.ndim == 3:
mask_image_channels = 1
mask_image_batch_size, mask_image_height, mask_image_width = mask_image.shape
elif mask_image.ndim == 4:
mask_image_batch_size, mask_image_channels, mask_image_height, mask_image_width = mask_image.shape
if image_channels != 3:
raise ValueError("`image` must have 3 channels")
if mask_image_channels != 1:
raise ValueError("`mask_image` must have 1 channel")
if image_batch_size != mask_image_batch_size:
raise ValueError("`image` and `mask_image` mush have the same batch sizes")
if image_height != mask_image_height or image_width != mask_image_width:
raise ValueError("`image` and `mask_image` must have the same height and width dimensions")
if image.min() < -1 or image.max() > 1:
raise ValueError("`image` should be in range [-1, 1]")
if mask_image.min() < 0 or mask_image.max() > 1:
raise ValueError("`mask_image` should be in range [0, 1]")
else:
mask_image_channels = 1
image_channels = 3
single_image_latent_channels = self.vae.config.latent_channels
total_latent_channels = single_image_latent_channels * 2 + mask_image_channels
if total_latent_channels != self.unet.config.in_channels:
raise ValueError(
f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received"
f" non inpainting latent channels: {single_image_latent_channels},"
f" mask channels: {mask_image_channels}, and masked image channels: {single_image_latent_channels}."
f" Please verify the config of `pipeline.unet` and the `mask_image` and `image` inputs."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_latents(self, mask_image, batch_size, height, width, dtype, device, do_classifier_free_guidance):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask_image = F.interpolate(mask_image, size=(height // self.vae_scale_factor, width // self.vae_scale_factor))
mask_image = mask_image.to(device=device, dtype=dtype)
# duplicate mask for each generation per prompt, using mps friendly method
if mask_image.shape[0] < batch_size:
if not batch_size % mask_image.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask_image.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1)
mask_image = torch.cat([mask_image] * 2) if do_classifier_free_guidance else mask_image
mask_image_latents = mask_image
return mask_image_latents
def prepare_masked_image_latents(
self, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
):
masked_image = masked_image.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
if isinstance(generator, list):
masked_image_latents = [
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
for i in range(batch_size)
]
masked_image_latents = torch.cat(masked_image_latents, dim=0)
else:
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
# duplicate masked_image_latents for each generation per prompt, using mps friendly method
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return masked_image_latents
def _default_height_width(self, height, width, image):
if isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[3]
height = (height // 8) * 8 # round down to nearest multiple of 8
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[2]
width = (width // 8) * 8 # round down to nearest multiple of 8
return height, width
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[torch.Tensor, PIL.Image.Image] = None,
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
controlnet_conditioning_image: Union[
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
mask_image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
instead of 3, so the expected shape would be `(B, H, W, 1)`.
controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
also be accepted as an image. The control image is automatically resized to fit the output image.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height, width = self._default_height_width(height, width, controlnet_conditioning_image)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
image,
mask_image,
controlnet_conditioning_image,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if isinstance(self.controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(self.controlnet.nets)
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare mask, image, and controlnet_conditioning_image
image = prepare_image(image)
mask_image = prepare_mask_image(mask_image)
# condition image(s)
if isinstance(self.controlnet, ControlNetModel):
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
controlnet_conditioning_image=controlnet_conditioning_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
)
elif isinstance(self.controlnet, MultiControlNetModel):
controlnet_conditioning_images = []
for image_ in controlnet_conditioning_image:
image_ = prepare_controlnet_conditioning_image(
controlnet_conditioning_image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
)
controlnet_conditioning_images.append(image_)
controlnet_conditioning_image = controlnet_conditioning_images
else:
assert False
masked_image = image * (mask_image < 0.5)
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
mask_image_latents = self.prepare_mask_latents(
mask_image,
batch_size * num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
do_classifier_free_guidance,
)
masked_image_latents = self.prepare_masked_image_latents(
masked_image,
batch_size * num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
do_classifier_free_guidance,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
non_inpainting_latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
non_inpainting_latent_model_input = self.scheduler.scale_model_input(
non_inpainting_latent_model_input, t
)
inpainting_latent_model_input = torch.cat(
[non_inpainting_latent_model_input, mask_image_latents, masked_image_latents], dim=1
)
down_block_res_samples, mid_block_res_sample = self.controlnet(
non_inpainting_latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
controlnet_cond=controlnet_conditioning_image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet(
inpainting_latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/stable_diffusion_controlnet_inpaint.py |
# Copyright 2023 FABRIC authors and the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import torch
from diffuser.utils.torch_utils import randn_tensor
from packaging import version
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import EulerAncestralDiscreteScheduler, KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
logging,
replace_example_docstring,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import DiffusionPipeline
>>> import torch
>>> model_id = "dreamlike-art/dreamlike-photoreal-2.0"
>>> pipe = DiffusionPipeline(model_id, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric")
>>> pipe = pipe.to("cuda")
>>> prompt = "a giant standing in a fantasy landscape best quality"
>>> liked = [] # list of images for positive feedback
>>> disliked = [] # list of images for negative feedback
>>> image = pipe(prompt, num_images=4, liked=liked, disliked=disliked).images[0]
```
"""
class FabricCrossAttnProcessor:
def __init__(self):
self.attntion_probs = None
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
weights=None,
lora_scale=1.0,
):
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if isinstance(attn.processor, LoRAAttnProcessor):
query = attn.to_q(hidden_states) + lora_scale * attn.processor.to_q_lora(hidden_states)
else:
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if isinstance(attn.processor, LoRAAttnProcessor):
key = attn.to_k(encoder_hidden_states) + lora_scale * attn.processor.to_k_lora(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states) + lora_scale * attn.processor.to_v_lora(encoder_hidden_states)
else:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
if weights is not None:
if weights.shape[0] != 1:
weights = weights.repeat_interleave(attn.heads, dim=0)
attention_probs = attention_probs * weights[:, None]
attention_probs = attention_probs / attention_probs.sum(dim=-1, keepdim=True)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
if isinstance(attn.processor, LoRAAttnProcessor):
hidden_states = attn.to_out[0](hidden_states) + lora_scale * attn.processor.to_out_lora(hidden_states)
else:
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class FabricPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion and conditioning the results using feedback images.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
scheduler ([`EulerAncestralDiscreteScheduler`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
requires_safety_checker: bool = True,
):
super().__init__()
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
unet=unet,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def get_unet_hidden_states(self, z_all, t, prompt_embd):
cached_hidden_states = []
for module in self.unet.modules():
if isinstance(module, BasicTransformerBlock):
def new_forward(self, hidden_states, *args, **kwargs):
cached_hidden_states.append(hidden_states.clone().detach().cpu())
return self.old_forward(hidden_states, *args, **kwargs)
module.attn1.old_forward = module.attn1.forward
module.attn1.forward = new_forward.__get__(module.attn1)
# run forward pass to cache hidden states, output can be discarded
_ = self.unet(z_all, t, encoder_hidden_states=prompt_embd)
# restore original forward pass
for module in self.unet.modules():
if isinstance(module, BasicTransformerBlock):
module.attn1.forward = module.attn1.old_forward
del module.attn1.old_forward
return cached_hidden_states
def unet_forward_with_cached_hidden_states(
self,
z_all,
t,
prompt_embd,
cached_pos_hiddens: Optional[List[torch.Tensor]] = None,
cached_neg_hiddens: Optional[List[torch.Tensor]] = None,
pos_weights=(0.8, 0.8),
neg_weights=(0.5, 0.5),
):
if cached_pos_hiddens is None and cached_neg_hiddens is None:
return self.unet(z_all, t, encoder_hidden_states=prompt_embd)
local_pos_weights = torch.linspace(*pos_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist()
local_neg_weights = torch.linspace(*neg_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist()
for block, pos_weight, neg_weight in zip(
self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks,
local_pos_weights + [pos_weights[1]] + local_pos_weights[::-1],
local_neg_weights + [neg_weights[1]] + local_neg_weights[::-1],
):
for module in block.modules():
if isinstance(module, BasicTransformerBlock):
def new_forward(
self,
hidden_states,
pos_weight=pos_weight,
neg_weight=neg_weight,
**kwargs,
):
cond_hiddens, uncond_hiddens = hidden_states.chunk(2, dim=0)
batch_size, d_model = cond_hiddens.shape[:2]
device, dtype = hidden_states.device, hidden_states.dtype
weights = torch.ones(batch_size, d_model, device=device, dtype=dtype)
out_pos = self.old_forward(hidden_states)
out_neg = self.old_forward(hidden_states)
if cached_pos_hiddens is not None:
cached_pos_hs = cached_pos_hiddens.pop(0).to(hidden_states.device)
cond_pos_hs = torch.cat([cond_hiddens, cached_pos_hs], dim=1)
pos_weights = weights.clone().repeat(1, 1 + cached_pos_hs.shape[1] // d_model)
pos_weights[:, d_model:] = pos_weight
attn_with_weights = FabricCrossAttnProcessor()
out_pos = attn_with_weights(
self,
cond_hiddens,
encoder_hidden_states=cond_pos_hs,
weights=pos_weights,
)
else:
out_pos = self.old_forward(cond_hiddens)
if cached_neg_hiddens is not None:
cached_neg_hs = cached_neg_hiddens.pop(0).to(hidden_states.device)
uncond_neg_hs = torch.cat([uncond_hiddens, cached_neg_hs], dim=1)
neg_weights = weights.clone().repeat(1, 1 + cached_neg_hs.shape[1] // d_model)
neg_weights[:, d_model:] = neg_weight
attn_with_weights = FabricCrossAttnProcessor()
out_neg = attn_with_weights(
self,
uncond_hiddens,
encoder_hidden_states=uncond_neg_hs,
weights=neg_weights,
)
else:
out_neg = self.old_forward(uncond_hiddens)
out = torch.cat([out_pos, out_neg], dim=0)
return out
module.attn1.old_forward = module.attn1.forward
module.attn1.forward = new_forward.__get__(module.attn1)
out = self.unet(z_all, t, encoder_hidden_states=prompt_embd)
# restore original forward pass
for module in self.unet.modules():
if isinstance(module, BasicTransformerBlock):
module.attn1.forward = module.attn1.old_forward
del module.attn1.old_forward
return out
def preprocess_feedback_images(self, images, vae, dim, device, dtype, generator) -> torch.tensor:
images_t = [self.image_to_tensor(img, dim, dtype) for img in images]
images_t = torch.stack(images_t).to(device)
latents = vae.config.scaling_factor * vae.encode(images_t).latent_dist.sample(generator)
return torch.cat([latents], dim=0)
def check_inputs(
self,
prompt,
negative_prompt=None,
liked=None,
disliked=None,
height=None,
width=None,
):
if prompt is None:
raise ValueError("Provide `prompt`. Cannot leave both `prompt` undefined.")
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and (
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
if liked is not None and not isinstance(liked, list):
raise ValueError(f"`liked` has to be of type `list` but is {type(liked)}")
if disliked is not None and not isinstance(disliked, list):
raise ValueError(f"`disliked` has to be of type `list` but is {type(disliked)}")
if height is not None and not isinstance(height, int):
raise ValueError(f"`height` has to be of type `int` but is {type(height)}")
if width is not None and not isinstance(width, int):
raise ValueError(f"`width` has to be of type `int` but is {type(width)}")
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = "",
negative_prompt: Optional[Union[str, List[str]]] = "lowres, bad anatomy, bad hands, cropped, worst quality",
liked: Optional[Union[List[str], List[Image.Image]]] = [],
disliked: Optional[Union[List[str], List[Image.Image]]] = [],
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
height: int = 512,
width: int = 512,
return_dict: bool = True,
num_images: int = 4,
guidance_scale: float = 7.0,
num_inference_steps: int = 20,
output_type: Optional[str] = "pil",
feedback_start_ratio: float = 0.33,
feedback_end_ratio: float = 0.66,
min_weight: float = 0.05,
max_weight: float = 0.8,
neg_scale: float = 0.5,
pos_bottleneck_scale: float = 1.0,
neg_bottleneck_scale: float = 1.0,
latents: Optional[torch.FloatTensor] = None,
):
r"""
The call function to the pipeline for generation. Generate a trajectory of images with binary feedback. The
feedback can be given as a list of liked and disliked images.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
liked (`List[Image.Image]` or `List[str]`, *optional*):
Encourages images with liked features.
disliked (`List[Image.Image]` or `List[str]`, *optional*):
Discourages images with disliked features.
generator (`torch.Generator` or `List[torch.Generator]` or `int`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) or an `int` to
make generation deterministic.
height (`int`, *optional*, defaults to 512):
Height of the generated image.
width (`int`, *optional*, defaults to 512):
Width of the generated image.
num_images (`int`, *optional*, defaults to 4):
The number of images to generate per prompt.
guidance_scale (`float`, *optional*, defaults to 7.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
num_inference_steps (`int`, *optional*, defaults to 20):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
feedback_start_ratio (`float`, *optional*, defaults to `.33`):
Start point for providing feedback (between 0 and 1).
feedback_end_ratio (`float`, *optional*, defaults to `.66`):
End point for providing feedback (between 0 and 1).
min_weight (`float`, *optional*, defaults to `.05`):
Minimum weight for feedback.
max_weight (`float`, *optional*, defults tp `1.0`):
Maximum weight for feedback.
neg_scale (`float`, *optional*, defaults to `.5`):
Scale factor for negative feedback.
Examples:
Returns:
[`~pipelines.fabric.FabricPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
self.check_inputs(prompt, negative_prompt, liked, disliked)
device = self._execution_device
dtype = self.unet.dtype
if isinstance(prompt, str) and prompt is not None:
batch_size = 1
elif isinstance(prompt, list) and prompt is not None:
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if isinstance(negative_prompt, str):
negative_prompt = negative_prompt
elif isinstance(negative_prompt, list):
negative_prompt = negative_prompt
else:
assert len(negative_prompt) == batch_size
shape = (
batch_size * num_images,
self.unet.config.in_channels,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
latent_noise = randn_tensor(
shape,
device=device,
dtype=dtype,
generator=generator,
)
positive_latents = (
self.preprocess_feedback_images(liked, self.vae, (height, width), device, dtype, generator)
if liked and len(liked) > 0
else torch.tensor(
[],
device=device,
dtype=dtype,
)
)
negative_latents = (
self.preprocess_feedback_images(disliked, self.vae, (height, width), device, dtype, generator)
if disliked and len(disliked) > 0
else torch.tensor(
[],
device=device,
dtype=dtype,
)
)
do_classifier_free_guidance = guidance_scale > 0.1
(prompt_neg_embs, prompt_pos_embs) = self._encode_prompt(
prompt,
device,
num_images,
do_classifier_free_guidance,
negative_prompt,
).split([num_images * batch_size, num_images * batch_size])
batched_prompt_embd = torch.cat([prompt_pos_embs, prompt_neg_embs], dim=0)
null_tokens = self.tokenizer(
[""],
return_tensors="pt",
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = null_tokens.attention_mask.to(device)
else:
attention_mask = None
null_prompt_emb = self.text_encoder(
input_ids=null_tokens.input_ids.to(device),
attention_mask=attention_mask,
).last_hidden_state
null_prompt_emb = null_prompt_emb.to(device=device, dtype=dtype)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
latent_noise = latent_noise * self.scheduler.init_noise_sigma
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
ref_start_idx = round(len(timesteps) * feedback_start_ratio)
ref_end_idx = round(len(timesteps) * feedback_end_ratio)
with self.progress_bar(total=num_inference_steps) as pbar:
for i, t in enumerate(timesteps):
sigma = self.scheduler.sigma_t[t] if hasattr(self.scheduler, "sigma_t") else 0
if hasattr(self.scheduler, "sigmas"):
sigma = self.scheduler.sigmas[i]
alpha_hat = 1 / (sigma**2 + 1)
z_single = self.scheduler.scale_model_input(latent_noise, t)
z_all = torch.cat([z_single] * 2, dim=0)
z_ref = torch.cat([positive_latents, negative_latents], dim=0)
if i >= ref_start_idx and i <= ref_end_idx:
weight_factor = max_weight
else:
weight_factor = min_weight
pos_ws = (weight_factor, weight_factor * pos_bottleneck_scale)
neg_ws = (weight_factor * neg_scale, weight_factor * neg_scale * neg_bottleneck_scale)
if z_ref.size(0) > 0 and weight_factor > 0:
noise = torch.randn_like(z_ref)
if isinstance(self.scheduler, EulerAncestralDiscreteScheduler):
z_ref_noised = (alpha_hat**0.5 * z_ref + (1 - alpha_hat) ** 0.5 * noise).type(dtype)
else:
z_ref_noised = self.scheduler.add_noise(z_ref, noise, t)
ref_prompt_embd = torch.cat(
[null_prompt_emb] * (len(positive_latents) + len(negative_latents)), dim=0
)
cached_hidden_states = self.get_unet_hidden_states(z_ref_noised, t, ref_prompt_embd)
n_pos, n_neg = positive_latents.shape[0], negative_latents.shape[0]
cached_pos_hs, cached_neg_hs = [], []
for hs in cached_hidden_states:
cached_pos, cached_neg = hs.split([n_pos, n_neg], dim=0)
cached_pos = cached_pos.view(1, -1, *cached_pos.shape[2:]).expand(num_images, -1, -1)
cached_neg = cached_neg.view(1, -1, *cached_neg.shape[2:]).expand(num_images, -1, -1)
cached_pos_hs.append(cached_pos)
cached_neg_hs.append(cached_neg)
if n_pos == 0:
cached_pos_hs = None
if n_neg == 0:
cached_neg_hs = None
else:
cached_pos_hs, cached_neg_hs = None, None
unet_out = self.unet_forward_with_cached_hidden_states(
z_all,
t,
prompt_embd=batched_prompt_embd,
cached_pos_hiddens=cached_pos_hs,
cached_neg_hiddens=cached_neg_hs,
pos_weights=pos_ws,
neg_weights=neg_ws,
)[0]
noise_cond, noise_uncond = unet_out.chunk(2)
guidance = noise_cond - noise_uncond
noise_pred = noise_uncond + guidance_scale * guidance
latent_noise = self.scheduler.step(noise_pred, t, latent_noise)[0]
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
pbar.update()
y = self.vae.decode(latent_noise / self.vae.config.scaling_factor, return_dict=False)[0]
imgs = self.image_processor.postprocess(
y,
output_type=output_type,
)
if not return_dict:
return imgs
return StableDiffusionPipelineOutput(imgs, False)
def image_to_tensor(self, image: Union[str, Image.Image], dim: tuple, dtype):
"""
Convert latent PIL image to a torch tensor for further processing.
"""
if isinstance(image, str):
image = Image.open(image)
if not image.mode == "RGB":
image = image.convert("RGB")
image = self.image_processor.preprocess(image, height=dim[0], width=dim[1])[0]
return image.type(dtype)
| diffusers-main | examples/community/pipeline_fabric.py |
# Copyright 2023 Peter Willemsen <[email protected]>. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def make_transparency_mask(size, overlap_pixels, remove_borders=[]):
size_x = size[0] - overlap_pixels * 2
size_y = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
mask = np.ones((size_y, size_x), dtype=np.uint8) * 255
mask = np.pad(mask, mode="linear_ramp", pad_width=overlap_pixels, end_values=0)
if "l" in remove_borders:
mask = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
mask = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
mask = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
mask = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def clamp(n, smallest, largest):
return max(smallest, min(n, largest))
def clamp_rect(rect: [int], min: [int], max: [int]):
return (
clamp(rect[0], min[0], max[0]),
clamp(rect[1], min[1], max[1]),
clamp(rect[2], min[0], max[0]),
clamp(rect[3], min[1], max[1]),
)
def add_overlap_rect(rect: [int], overlap: int, image_size: [int]):
rect = list(rect)
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
rect = clamp_rect(rect, [0, 0], [image_size[0], image_size[1]])
return rect
def squeeze_tile(tile, original_image, original_slice, slice_x):
result = Image.new("RGB", (tile.size[0] + original_slice, tile.size[1]))
result.paste(
original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1])
),
(0, 0),
)
result.paste(tile, (original_slice, 0))
return result
def unsqueeze_tile(tile, original_image_slice):
crop_rect = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
tile = tile.crop(crop_rect)
return tile
def next_divisible(n, d):
divisor = n % d
return n - divisor
class StableDiffusionTiledUpscalePipeline(StableDiffusionUpscalePipeline):
r"""
Pipeline for tile-based text-guided image super-resolution using Stable Diffusion 2, trading memory for compute
to create gigantic images.
This model inherits from [`StableDiffusionUpscalePipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
low_res_scheduler ([`SchedulerMixin`]):
A scheduler used to add initial noise to the low res conditioning image. It must be an instance of
[`DDPMScheduler`].
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
low_res_scheduler: DDPMScheduler,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
max_noise_level: int = 350,
):
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
max_noise_level=max_noise_level,
)
def _process_tile(self, original_image_slice, x, y, tile_size, tile_border, image, final_image, **kwargs):
torch.manual_seed(0)
crop_rect = (
min(image.size[0] - (tile_size + original_image_slice), x * tile_size),
min(image.size[1] - (tile_size + original_image_slice), y * tile_size),
min(image.size[0], (x + 1) * tile_size),
min(image.size[1], (y + 1) * tile_size),
)
crop_rect_with_overlap = add_overlap_rect(crop_rect, tile_border, image.size)
tile = image.crop(crop_rect_with_overlap)
translated_slice_x = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
translated_slice_x = translated_slice_x - (original_image_slice / 2)
translated_slice_x = max(0, translated_slice_x)
to_input = squeeze_tile(tile, image, original_image_slice, translated_slice_x)
orig_input_size = to_input.size
to_input = to_input.resize((tile_size, tile_size), Image.BICUBIC)
upscaled_tile = super(StableDiffusionTiledUpscalePipeline, self).__call__(image=to_input, **kwargs).images[0]
upscaled_tile = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC)
upscaled_tile = unsqueeze_tile(upscaled_tile, original_image_slice)
upscaled_tile = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC)
remove_borders = []
if x == 0:
remove_borders.append("l")
elif crop_rect[2] == image.size[0]:
remove_borders.append("r")
if y == 0:
remove_borders.append("t")
elif crop_rect[3] == image.size[1]:
remove_borders.append("b")
transparency_mask = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=remove_borders
),
mode="L",
)
final_image.paste(
upscaled_tile, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), transparency_mask
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[PIL.Image.Image, List[PIL.Image.Image]],
num_inference_steps: int = 75,
guidance_scale: float = 9.0,
noise_level: int = 50,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
tile_size: int = 128,
tile_border: int = 32,
original_image_slice: int = 32,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`):
`Image`, or tensor representing an image batch which will be upscaled. *
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
tile_size (`int`, *optional*):
The size of the tiles. Too big can result in an OOM-error.
tile_border (`int`, *optional*):
The number of pixels around a tile to consider (bigger means less seams, too big can lead to an OOM-error).
original_image_slice (`int`, *optional*):
The amount of pixels of the original image to calculate with the current tile (bigger means more depth
is preserved, less blur occurs in the final image, too big can lead to an OOM-error or loss in detail).
callback (`Callable`, *optional*):
A function that take a callback function with a single argument, a dict,
that contains the (partially) processed image under "image",
as well as the progress (0 to 1, where 1 is completed) under "progress".
Returns: A PIL.Image that is 4 times larger than the original input image.
"""
final_image = Image.new("RGB", (image.size[0] * 4, image.size[1] * 4))
tcx = math.ceil(image.size[0] / tile_size)
tcy = math.ceil(image.size[1] / tile_size)
total_tile_count = tcx * tcy
current_count = 0
for y in range(tcy):
for x in range(tcx):
self._process_tile(
original_image_slice,
x,
y,
tile_size,
tile_border,
image,
final_image,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
noise_level=noise_level,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
)
current_count += 1
if callback is not None:
callback({"progress": current_count / total_tile_count, "image": final_image})
return final_image
def main():
# Run a demo
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionTiledUpscalePipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = Image.open("../../docs/source/imgs/diffusers_library.jpg")
def callback(obj):
print(f"progress: {obj['progress']:.4f}")
obj["image"].save("diffusers_library_progress.jpg")
final_image = pipe(image=image, prompt="Black font, white background, vector", noise_level=40, callback=callback)
final_image.save("diffusers_library.jpg")
if __name__ == "__main__":
main()
| diffusers-main | examples/community/tiled_upscaling.py |
from typing import Any, Callable, Dict, List, Optional, Union
import PIL.Image
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.configuration_utils import FrozenDict
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import deprecate, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class StableDiffusionMegaPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
@property
def components(self) -> Dict[str, Any]:
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def inpaint(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
):
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
return StableDiffusionInpaintPipelineLegacy(**self.components)(
prompt=prompt,
image=image,
mask_image=mask_image,
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
output_type=output_type,
return_dict=return_dict,
callback=callback,
)
@torch.no_grad()
def img2img(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
return StableDiffusionImg2ImgPipeline(**self.components)(
prompt=prompt,
image=image,
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
@torch.no_grad()
def text2img(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
):
# For more information on how this function https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionPipeline
return StableDiffusionPipeline(**self.components)(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
| diffusers-main | examples/community/stable_diffusion_mega.py |
import types
from typing import List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
from diffusers.models import PriorTransformer
from diffusers.pipelines import DiffusionPipeline, StableDiffusionImageVariationPipeline
from diffusers.schedulers import UnCLIPScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
image = image.to(device=device)
image_embeddings = image # take image as image_embeddings
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
uncond_embeddings = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([uncond_embeddings, image_embeddings])
return image_embeddings
class StableUnCLIPPipeline(DiffusionPipeline):
def __init__(
self,
prior: PriorTransformer,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModelWithProjection,
prior_scheduler: UnCLIPScheduler,
decoder_pipe_kwargs: Optional[dict] = None,
):
super().__init__()
decoder_pipe_kwargs = {"image_encoder": None} if decoder_pipe_kwargs is None else decoder_pipe_kwargs
decoder_pipe_kwargs["torch_dtype"] = decoder_pipe_kwargs.get("torch_dtype", None) or prior.dtype
self.decoder_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", **decoder_pipe_kwargs
)
# replace `_encode_image` method
self.decoder_pipe._encode_image = types.MethodType(_encode_image, self.decoder_pipe)
self.register_modules(
prior=prior,
tokenizer=tokenizer,
text_encoder=text_encoder,
prior_scheduler=prior_scheduler,
)
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
text_attention_mask: Optional[torch.Tensor] = None,
):
if text_model_output is None:
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
text_mask = text_inputs.attention_mask.bool().to(device)
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_encoder_output = self.text_encoder(text_input_ids.to(device))
text_embeddings = text_encoder_output.text_embeds
text_encoder_hidden_states = text_encoder_output.last_hidden_state
else:
batch_size = text_model_output[0].shape[0]
text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
text_mask = text_attention_mask
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens = [""] * batch_size
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds
uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return text_embeddings, text_encoder_hidden_states, text_mask
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.prior, "_hf_hook"):
return self.device
for module in self.prior.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def to(self, torch_device: Optional[Union[str, torch.device]] = None):
self.decoder_pipe.to(torch_device)
super().to(torch_device)
@torch.no_grad()
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_images_per_prompt: int = 1,
prior_num_inference_steps: int = 25,
generator: Optional[torch.Generator] = None,
prior_latents: Optional[torch.FloatTensor] = None,
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
text_attention_mask: Optional[torch.Tensor] = None,
prior_guidance_scale: float = 4.0,
decoder_guidance_scale: float = 8.0,
decoder_num_inference_steps: int = 50,
decoder_num_images_per_prompt: Optional[int] = 1,
decoder_eta: float = 0.0,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
if prompt is not None:
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
else:
batch_size = text_model_output[0].shape[0]
device = self._execution_device
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0
text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask
)
# prior
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
prior_timesteps_tensor = self.prior_scheduler.timesteps
embedding_dim = self.prior.config.embedding_dim
prior_latents = self.prepare_latents(
(batch_size, embedding_dim),
text_embeddings.dtype,
device,
generator,
prior_latents,
self.prior_scheduler,
)
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents
predicted_image_embedding = self.prior(
latent_model_input,
timestep=t,
proj_embedding=text_embeddings,
encoder_hidden_states=text_encoder_hidden_states,
attention_mask=text_mask,
).predicted_image_embedding
if do_classifier_free_guidance:
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
predicted_image_embedding_text - predicted_image_embedding_uncond
)
if i + 1 == prior_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = prior_timesteps_tensor[i + 1]
prior_latents = self.prior_scheduler.step(
predicted_image_embedding,
timestep=t,
sample=prior_latents,
generator=generator,
prev_timestep=prev_timestep,
).prev_sample
prior_latents = self.prior.post_process_latents(prior_latents)
image_embeddings = prior_latents
output = self.decoder_pipe(
image=image_embeddings,
height=height,
width=width,
num_inference_steps=decoder_num_inference_steps,
guidance_scale=decoder_guidance_scale,
generator=generator,
output_type=output_type,
return_dict=return_dict,
num_images_per_prompt=decoder_num_images_per_prompt,
eta=decoder_eta,
)
return output
| diffusers-main | examples/community/stable_unclip.py |
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
class MaskedStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
debug_save = False
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
mask: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image` or tensor representing an image batch to be used as the starting point. Can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
strength (`float`, *optional*, defaults to 0.8):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`, *optional*):
A mask with non-zero elements for the area to be inpainted. If not specified, no mask is applied.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
# code adapted from parent class StableDiffusionImg2ImgPipeline
# 0. Check inputs. Raise error if not correct
self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
# 1. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 2. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 3. Preprocess image
image = self.image_processor.preprocess(image)
# 4. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 5. Prepare latent variables
# it is sampled from the latent distribution of the VAE
latents = self.prepare_latents(
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
)
# mean of the latent distribution
init_latents = [
self.vae.encode(image.to(device=device, dtype=prompt_embeds.dtype)[i : i + 1]).latent_dist.mean
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
# 6. create latent mask
latent_mask = self._make_latent_mask(latents, mask)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if latent_mask is not None:
latents = torch.lerp(init_latents * self.vae.config.scaling_factor, latents, latent_mask)
noise_pred = torch.lerp(torch.zeros_like(noise_pred), noise_pred, latent_mask)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
scaled = latents / self.vae.config.scaling_factor
if latent_mask is not None:
# scaled = latents / self.vae.config.scaling_factor * latent_mask + init_latents * (1 - latent_mask)
scaled = torch.lerp(init_latents, scaled, latent_mask)
image = self.vae.decode(scaled, return_dict=False)[0]
if self.debug_save:
image_gen = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image_gen = self.image_processor.postprocess(image_gen, output_type=output_type, do_denormalize=[True])
image_gen[0].save("from_latent.png")
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def _make_latent_mask(self, latents, mask):
if mask is not None:
latent_mask = []
if not isinstance(mask, list):
tmp_mask = [mask]
else:
tmp_mask = mask
_, l_channels, l_height, l_width = latents.shape
for m in tmp_mask:
if not isinstance(m, PIL.Image.Image):
if len(m.shape) == 2:
m = m[..., np.newaxis]
if m.max() > 1:
m = m / 255.0
m = self.image_processor.numpy_to_pil(m)[0]
if m.mode != "L":
m = m.convert("L")
resized = self.image_processor.resize(m, l_height, l_width)
if self.debug_save:
resized.save("latent_mask.png")
latent_mask.append(np.repeat(np.array(resized)[np.newaxis, :, :], l_channels, axis=0))
latent_mask = torch.as_tensor(np.stack(latent_mask)).to(latents)
latent_mask = latent_mask / latent_mask.max()
return latent_mask
| diffusers-main | examples/community/masked_stable_diffusion_img2img.py |
import inspect
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def prepare_mask_and_masked_image(image, mask):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
def check_size(image, height, width):
if isinstance(image, PIL.Image.Image):
w, h = image.size
elif isinstance(image, torch.Tensor):
*_, h, w = image.shape
if h != height or w != width:
raise ValueError(f"Image size should be {height}x{width}, but got {h}x{w}")
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int] = (0, 0)):
inner_image = inner_image.convert("RGBA")
image = image.convert("RGB")
image.paste(inner_image, paste_offset, inner_image)
image = image.convert("RGB")
return image
class ImageToImageInpaintingPipeline(DiffusionPipeline):
r"""
Pipeline for text-guided image-to-image inpainting using Stable Diffusion. *This is an experimental feature*.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
inner_image: Union[torch.FloatTensor, PIL.Image.Image],
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
inner_image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be overlayed onto `image`. Non-transparent
regions of `inner_image` must fit inside white pixels in `mask_image`. Expects four channels, with
the last channel representing the alpha channel, which will be used to blend `inner_image` with
`image`. If not provided, it will be forcibly cast to RGBA.
mask_image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
instead of 3, so the expected shape would be `(B, H, W, 1)`.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# check if input sizes are correct
check_size(image, height, width)
check_size(inner_image, height, width)
check_size(mask_image, height, width)
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""]
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
num_channels_latents = self.vae.config.latent_channels
latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# overlay the inner image
image = overlay_inner_image(image, inner_image)
# prepare mask and masked_image
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
mask = mask.to(device=self.device, dtype=text_embeddings.dtype)
masked_image = masked_image.to(device=self.device, dtype=text_embeddings.dtype)
# resize the mask to latents shape as we concatenate the mask to the latents
mask = torch.nn.functional.interpolate(mask, size=(height // 8, width // 8))
# encode the mask image into latents space so we can concatenate it to the latents
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
masked_image_latents = 0.18215 * masked_image_latents
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
mask = mask.repeat(batch_size * num_images_per_prompt, 1, 1, 1)
masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 1, 1, 1)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
self.device
)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/img2img_inpainting.py |
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
PIL_INTERPOLATION,
is_accelerate_available,
is_accelerate_version,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import numpy as np
>>> import torch
>>> from PIL import Image
>>> from diffusers import ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
>>> pipe_controlnet.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
>>> pipe_controlnet.enable_xformers_memory_efficient_attention()
>>> pipe_controlnet.enable_model_cpu_offload()
# using image with edges for our canny controlnet
>>> control_image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/vermeer_canny_edged.png")
>>> result_img = pipe_controlnet(controlnet_conditioning_image=control_image,
image=input_image,
prompt="an android robot, cyberpank, digitl art masterpiece",
num_inference_steps=20).images[0]
>>> result_img.show()
```
"""
def prepare_image(image):
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
image = image.unsqueeze(0)
image = image.to(dtype=torch.float32)
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
def prepare_controlnet_conditioning_image(
controlnet_conditioning_image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance,
):
if not isinstance(controlnet_conditioning_image, torch.Tensor):
if isinstance(controlnet_conditioning_image, PIL.Image.Image):
controlnet_conditioning_image = [controlnet_conditioning_image]
if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
controlnet_conditioning_image = [
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
for i in controlnet_conditioning_image
]
controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)
image_batch_size = controlnet_conditioning_image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)
if do_classifier_free_guidance:
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
return controlnet_conditioning_image
class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline):
"""
Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
# the safety checker can offload the vae again
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
# control net hook has be manually offloaded as it alternates with unet
cpu_offload_with_hook(self.controlnet, device)
# We'll offload the last model manually.
self.final_offload_hook = hook
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_controlnet_conditioning_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
raise TypeError(
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
)
if image_is_pil:
image_batch_size = 1
elif image_is_tensor:
image_batch_size = image.shape[0]
elif image_is_pil_list:
image_batch_size = len(image)
elif image_is_tensor_list:
image_batch_size = len(image)
else:
raise ValueError("controlnet condition image is not valid")
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
else:
raise ValueError("prompt or prompt_embeds are not valid")
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
def check_inputs(
self,
prompt,
image,
controlnet_conditioning_image,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
strength=None,
controlnet_guidance_start=None,
controlnet_guidance_end=None,
controlnet_conditioning_scale=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# check controlnet condition image
if isinstance(self.controlnet, ControlNetModel):
self.check_controlnet_conditioning_image(controlnet_conditioning_image, prompt, prompt_embeds)
elif isinstance(self.controlnet, MultiControlNetModel):
if not isinstance(controlnet_conditioning_image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
if len(controlnet_conditioning_image) != len(self.controlnet.nets):
raise ValueError(
"For multiple controlnets: `image` must have the same length as the number of controlnets."
)
for image_ in controlnet_conditioning_image:
self.check_controlnet_conditioning_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if isinstance(self.controlnet, ControlNetModel):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif isinstance(self.controlnet, MultiControlNetModel):
if isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if isinstance(image, torch.Tensor):
if image.ndim != 3 and image.ndim != 4:
raise ValueError("`image` must have 3 or 4 dimensions")
if image.ndim == 3:
image_batch_size = 1
image_channels, image_height, image_width = image.shape
elif image.ndim == 4:
image_batch_size, image_channels, image_height, image_width = image.shape
else:
assert False
if image_channels != 3:
raise ValueError("`image` must have 3 channels")
if image.min() < -1 or image.max() > 1:
raise ValueError("`image` should be in range [-1, 1]")
if self.vae.config.latent_channels != self.unet.config.in_channels:
raise ValueError(
f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received"
f" latent channels: {self.vae.config.latent_channels},"
f" Please verify the config of `pipeline.unet` and the `pipeline.vae`"
)
if strength < 0 or strength > 1:
raise ValueError(f"The value of `strength` should in [0.0, 1.0] but is {strength}")
if controlnet_guidance_start < 0 or controlnet_guidance_start > 1:
raise ValueError(
f"The value of `controlnet_guidance_start` should in [0.0, 1.0] but is {controlnet_guidance_start}"
)
if controlnet_guidance_end < 0 or controlnet_guidance_end > 1:
raise ValueError(
f"The value of `controlnet_guidance_end` should in [0.0, 1.0] but is {controlnet_guidance_end}"
)
if controlnet_guidance_start > controlnet_guidance_end:
raise ValueError(
"The value of `controlnet_guidance_start` should be less than `controlnet_guidance_end`, but got"
f" `controlnet_guidance_start` {controlnet_guidance_start} >= `controlnet_guidance_end` {controlnet_guidance_end}"
)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.sample(generator)
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
def _default_height_width(self, height, width, image):
if isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[3]
height = (height // 8) * 8 # round down to nearest multiple of 8
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[2]
width = (width // 8) * 8 # round down to nearest multiple of 8
return height, width
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[torch.Tensor, PIL.Image.Image] = None,
controlnet_conditioning_image: Union[
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
] = None,
strength: float = 0.8,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
controlnet_guidance_start: float = 0.0,
controlnet_guidance_end: float = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
also be accepted as an image. The control image is automatically resized to fit the output image.
strength (`float`, *optional*):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.
controlnet_guidance_start ('float', *optional*, defaults to 0.0):
The percentage of total steps the controlnet starts applying. Must be between 0 and 1.
controlnet_guidance_end ('float', *optional*, defaults to 1.0):
The percentage of total steps the controlnet ends applying. Must be between 0 and 1. Must be greater
than `controlnet_guidance_start`.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height, width = self._default_height_width(height, width, controlnet_conditioning_image)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
image,
controlnet_conditioning_image,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
strength,
controlnet_guidance_start,
controlnet_guidance_end,
controlnet_conditioning_scale,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if isinstance(self.controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(self.controlnet.nets)
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare image, and controlnet_conditioning_image
image = prepare_image(image)
# condition image(s)
if isinstance(self.controlnet, ControlNetModel):
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
controlnet_conditioning_image=controlnet_conditioning_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
)
elif isinstance(self.controlnet, MultiControlNetModel):
controlnet_conditioning_images = []
for image_ in controlnet_conditioning_image:
image_ = prepare_controlnet_conditioning_image(
controlnet_conditioning_image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
)
controlnet_conditioning_images.append(image_)
controlnet_conditioning_image = controlnet_conditioning_images
else:
assert False
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 6. Prepare latent variables
latents = self.prepare_latents(
image,
latent_timestep,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# compute the percentage of total steps we are at
current_sampling_percent = i / len(timesteps)
if (
current_sampling_percent < controlnet_guidance_start
or current_sampling_percent > controlnet_guidance_end
):
# do not apply the controlnet
down_block_res_samples = None
mid_block_res_sample = None
else:
# apply the controlnet
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
controlnet_cond=controlnet_conditioning_image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/stable_diffusion_controlnet_img2img.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, List, Optional, Union
import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import deprecate, is_accelerate_available, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class ComposableStableDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
# TODO(Patrick) - there is currently a bug with cpu offload of nn.Parameter in accelerate
# fix by only offloading self.safety_checker for now
cpu_offload(self.safety_checker.vision_model, device)
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
"""
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if latents is None:
if device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
else:
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
weights: Optional[str] = "",
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if "|" in prompt:
prompt = [x.strip() for x in prompt.split("|")]
print(f"composing {prompt}...")
if not weights:
# specify weights for prompts (excluding the unconditional score)
print("using equal positive weights (conjunction) for all prompts...")
weights = torch.tensor([guidance_scale] * len(prompt), device=self.device).reshape(-1, 1, 1, 1)
else:
# set prompt weight for each
num_prompts = len(prompt) if isinstance(prompt, list) else 1
weights = [float(w.strip()) for w in weights.split("|")]
# guidance scale as the default
if len(weights) < num_prompts:
weights.append(guidance_scale)
else:
weights = weights[:num_prompts]
assert len(weights) == len(prompt), "weights specified are not equal to the number of prompts"
weights = torch.tensor(weights, device=self.device).reshape(-1, 1, 1, 1)
else:
weights = guidance_scale
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
# composable diffusion
if isinstance(prompt, list) and batch_size == 1:
# remove extra unconditional embedding
# N = one unconditional embed + conditional embeds
text_embeddings = text_embeddings[len(prompt) - 1 :]
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = []
for j in range(text_embeddings.shape[0]):
noise_pred.append(
self.unet(latent_model_input[:1], t, encoder_hidden_states=text_embeddings[j : j + 1]).sample
)
noise_pred = torch.cat(noise_pred, dim=0)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[:1], noise_pred[1:]
noise_pred = noise_pred_uncond + (weights * (noise_pred_text - noise_pred_uncond)).sum(
dim=0, keepdims=True
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | examples/community/composable_stable_diffusion.py |
import inspect
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import PIL_INTERPOLATION, deprecate
from diffusers.utils.torch_utils import randn_tensor
EXAMPLE_DOC_STRING = """
Examples:
```
from io import BytesIO
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPModel
feature_extractor = CLIPFeatureExtractor.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
guided_pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
# custom_pipeline="clip_guided_stable_diffusion",
custom_pipeline="/home/njindal/diffusers/examples/community/clip_guided_stable_diffusion.py",
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
image = guided_pipeline(
prompt=prompt,
num_inference_steps=30,
image=init_image,
strength=0.75,
guidance_scale=7.5,
clip_guidance_scale=100,
num_cutouts=4,
use_cutouts=False,
).images[0]
display(image)
```
"""
def preprocess(image, w, h):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cut_power=1.0):
super().__init__()
self.cut_size = cut_size
self.cut_power = cut_power
def forward(self, pixel_values, num_cutouts):
sideY, sideX = pixel_values.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(num_cutouts):
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
class CLIPGuidedStableDiffusion(DiffusionPipeline):
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
- https://github.com/Jack000/glid-3-xl
- https://github.dev/crowsonkb/k-diffusion
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
clip_model=clip_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
self.cut_out_size = (
feature_extractor.size
if isinstance(feature_extractor.size, int)
else feature_extractor.size["shortest_edge"]
)
self.make_cutouts = MakeCutouts(self.cut_out_size)
set_requires_grad(self.text_encoder, False)
set_requires_grad(self.clip_model, False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
self.enable_attention_slicing(None)
def freeze_vae(self):
set_requires_grad(self.vae, False)
def unfreeze_vae(self):
set_requires_grad(self.vae, True)
def freeze_unet(self):
set_requires_grad(self.unet, False)
def unfreeze_unet(self):
set_requires_grad(self.unet, True)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.sample(generator)
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
@torch.enable_grad()
def cond_fn(
self,
latents,
timestep,
index,
text_embeddings,
noise_pred_original,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts=True,
):
latents = latents.detach().requires_grad_()
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
fac = torch.sqrt(beta_prod_t)
sample = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
sample = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
sample = 1 / self.vae.config.scaling_factor * sample
image = self.vae.decode(sample).sample
image = (image / 2 + 0.5).clamp(0, 1)
if use_cutouts:
image = self.make_cutouts(image, num_cutouts)
else:
image = transforms.Resize(self.cut_out_size)(image)
image = self.normalize(image).to(latents.dtype)
image_embeddings_clip = self.clip_model.get_image_features(image)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
if use_cutouts:
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
dists = dists.view([num_cutouts, sample.shape[0], -1])
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
else:
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
grads = -torch.autograd.grad(loss, latents)[0]
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents.detach() + grads * (sigma**2)
noise_pred = noise_pred_original
else:
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 512,
width: Optional[int] = 512,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
clip_guidance_scale: Optional[float] = 100,
clip_prompt: Optional[Union[str, List[str]]] = None,
num_cutouts: Optional[int] = 4,
use_cutouts: Optional[bool] = True,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# get prompt text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# Preprocess image
image = preprocess(image, width, height)
latents = self.prepare_latents(
image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, self.device, generator
)
if clip_guidance_scale > 0:
if clip_prompt is not None:
clip_text_input = self.tokenizer(
clip_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids.to(self.device)
else:
clip_text_input = text_input.input_ids.to(self.device)
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
# duplicate text embeddings clip for each generation per prompt
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
with self.progress_bar(total=num_inference_steps):
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
text_embeddings_for_guidance = (
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
noise_pred, latents = self.cond_fn(
latents,
t,
i,
text_embeddings_for_guidance,
noise_pred,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# scale and decode the image latents with vae
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
| diffusers-main | examples/community/clip_guided_stable_diffusion_img2img.py |
import argparse
import inspect
import os
import time
import warnings
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
from diffusers.utils.torch_utils import randn_tensor
from PIL import Image
from transformers import CLIPTokenizer
from diffusers import OnnxRuntimeModel, StableDiffusionImg2ImgPipeline, UniPCMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
logging,
replace_example_docstring,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
... )
>>> np_image = np.array(image)
>>> # get canny image
>>> np_image = cv2.Canny(np_image, 100, 200)
>>> np_image = np_image[:, :, None]
>>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)
>>> canny_image = Image.fromarray(np_image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking woman",
... num_inference_steps=20,
... generator=generator,
... image=image,
... control_image=canny_image,
... ).images[0]
```
"""
def prepare_image(image):
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
image = image.unsqueeze(0)
image = image.to(dtype=torch.float32)
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
class OnnxStableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline):
vae_encoder: OnnxRuntimeModel
vae_decoder: OnnxRuntimeModel
text_encoder: OnnxRuntimeModel
tokenizer: CLIPTokenizer
unet: OnnxRuntimeModel
scheduler: KarrasDiffusionSchedulers
def __init__(
self,
vae_encoder: OnnxRuntimeModel,
vae_decoder: OnnxRuntimeModel,
text_encoder: OnnxRuntimeModel,
tokenizer: CLIPTokenizer,
unet: OnnxRuntimeModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__()
self.register_modules(
vae_encoder=vae_encoder,
vae_decoder=vae_decoder,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (4 - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
def _encode_prompt(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: Optional[int],
do_classifier_free_guidance: bool,
negative_prompt: Optional[str],
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`):
prompt to be encoded
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
prompt_embeds (`np.ndarray`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`np.ndarray`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt] * batch_size
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np",
)
negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
if do_classifier_free_guidance:
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
warnings.warn(
"The decode_latents method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor instead",
FutureWarning,
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
num_controlnet,
prompt,
image,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Check `image`
if num_controlnet == 1:
self.check_image(image, prompt, prompt_embeds)
elif num_controlnet > 1:
if not isinstance(image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != num_controlnet:
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {num_controlnet} ControlNets."
)
for image_ in image:
self.check_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if num_controlnet == 1:
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif num_controlnet > 1:
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif (
isinstance(controlnet_conditioning_scale, list)
and len(controlnet_conditioning_scale) != num_controlnet
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if num_controlnet > 1:
if len(control_guidance_start) != num_controlnet:
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {num_controlnet} controlnets available. Make sure to provide {num_controlnet}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
def prepare_control_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == 4:
init_latents = image
else:
_image = image.cpu().detach().numpy()
init_latents = self.vae_encoder(sample=_image)[0]
init_latents = torch.from_numpy(init_latents).to(device=device, dtype=dtype)
init_latents = 0.18215 * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
num_controlnet: int,
fp16: bool = True,
prompt: Union[str, List[str]] = None,
image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
control_image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The initial image will be used as the starting point for the image generation process. Can also accpet
image latents as `image`, if passing latents directly, it will not be encoded again.
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
specified in init, images must be passed as a list such that each element of the list can be correctly
batched for input to a single controlnet.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
than for [`~StableDiffusionControlNetPipeline.__call__`].
guess_mode (`bool`, *optional*, defaults to `False`):
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the controlnet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the controlnet stops applying.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if fp16:
torch_dtype = torch.float16
np_dtype = np.float16
else:
torch_dtype = torch.float32
np_dtype = np.float32
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = num_controlnet
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
num_controlnet,
prompt,
control_image,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if num_controlnet > 1 and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * num_controlnet
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare image
image = self.image_processor.preprocess(image).to(dtype=torch.float32)
# 5. Prepare controlnet_conditioning_image
if num_controlnet == 1:
control_image = self.prepare_control_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=torch_dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
elif num_controlnet > 1:
control_images = []
for control_image_ in control_image:
control_image_ = self.prepare_control_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=torch_dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
control_images.append(control_image_)
control_image = control_images
else:
assert False
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 6. Prepare latent variables
latents = self.prepare_latents(
image,
latent_timestep,
batch_size,
num_images_per_prompt,
torch_dtype,
device,
generator,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if num_controlnet == 1 else keeps)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
# predict the noise residual
_latent_model_input = latent_model_input.cpu().detach().numpy()
_prompt_embeds = np.array(prompt_embeds, dtype=np_dtype)
_t = np.array([t.cpu().detach().numpy()], dtype=np_dtype)
if num_controlnet == 1:
control_images = np.array([control_image], dtype=np_dtype)
else:
control_images = []
for _control_img in control_image:
_control_img = _control_img.cpu().detach().numpy()
control_images.append(_control_img)
control_images = np.array(control_images, dtype=np_dtype)
control_scales = np.array(cond_scale, dtype=np_dtype)
control_scales = np.resize(control_scales, (num_controlnet, 1))
noise_pred = self.unet(
sample=_latent_model_input,
timestep=_t,
encoder_hidden_states=_prompt_embeds,
controlnet_conds=control_images,
conditioning_scales=control_scales,
)[0]
noise_pred = torch.from_numpy(noise_pred).to(device)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
_latents = latents.cpu().detach().numpy() / 0.18215
_latents = np.array(_latents, dtype=np_dtype)
image = self.vae_decoder(latent_sample=_latents)[0]
image = torch.from_numpy(image).to(device, dtype=torch.float32)
has_nsfw_concept = None
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--sd_model",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument(
"--onnx_model_dir",
type=str,
required=True,
help="Path to the ONNX directory",
)
parser.add_argument("--qr_img_path", type=str, required=True, help="Path to the qr code image")
args = parser.parse_args()
qr_image = Image.open(args.qr_img_path)
qr_image = qr_image.resize((512, 512))
# init stable diffusion pipeline
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained(args.sd_model)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
provider = ["CUDAExecutionProvider", "CPUExecutionProvider"]
onnx_pipeline = OnnxStableDiffusionControlNetImg2ImgPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "vae_encoder"), provider=provider
),
vae_decoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "vae_decoder"), provider=provider
),
text_encoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "text_encoder"), provider=provider
),
tokenizer=pipeline.tokenizer,
unet=OnnxRuntimeModel.from_pretrained(os.path.join(args.onnx_model_dir, "unet"), provider=provider),
scheduler=pipeline.scheduler,
)
onnx_pipeline = onnx_pipeline.to("cuda")
prompt = "a cute cat fly to the moon"
negative_prompt = "paintings, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, age spot, glans, nsfw, nipples, necklace, worst quality, low quality, watermark, username, signature, multiple breasts, lowres, bad anatomy, bad hands, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet, single color, ugly, duplicate, morbid, mutilated, tranny, trans, trannsexual, hermaphrodite, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, disfigured, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, bad body perspect"
for i in range(10):
start_time = time.time()
image = onnx_pipeline(
num_controlnet=2,
prompt=prompt,
negative_prompt=negative_prompt,
image=qr_image,
control_image=[qr_image, qr_image],
width=512,
height=512,
strength=0.75,
num_inference_steps=20,
num_images_per_prompt=1,
controlnet_conditioning_scale=[0.8, 0.8],
control_guidance_start=[0.3, 0.3],
control_guidance_end=[0.9, 0.9],
).images[0]
print(time.time() - start_time)
image.save("output_qr_code.png")
| diffusers-main | examples/community/run_onnx_controlnet.py |
from typing import Union
import torch
from PIL import Image
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
class MagicMixPipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
):
super().__init__()
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
# convert PIL image to latents
def encode(self, img):
with torch.no_grad():
latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1)
latent = 0.18215 * latent.latent_dist.sample()
return latent
# convert latents to PIL image
def decode(self, latent):
latent = (1 / 0.18215) * latent
with torch.no_grad():
img = self.vae.decode(latent).sample
img = (img / 2 + 0.5).clamp(0, 1)
img = img.detach().cpu().permute(0, 2, 3, 1).numpy()
img = (img * 255).round().astype("uint8")
return Image.fromarray(img[0])
# convert prompt into text embeddings, also unconditional embeddings
def prep_text(self, prompt):
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0]
uncond_input = self.tokenizer(
"",
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
return torch.cat([uncond_embedding, text_embedding])
def __call__(
self,
img: Image.Image,
prompt: str,
kmin: float = 0.3,
kmax: float = 0.6,
mix_factor: float = 0.5,
seed: int = 42,
steps: int = 50,
guidance_scale: float = 7.5,
) -> Image.Image:
tmin = steps - int(kmin * steps)
tmax = steps - int(kmax * steps)
text_embeddings = self.prep_text(prompt)
self.scheduler.set_timesteps(steps)
width, height = img.size
encoded = self.encode(img)
torch.manual_seed(seed)
noise = torch.randn(
(1, self.unet.config.in_channels, height // 8, width // 8),
).to(self.device)
latents = self.scheduler.add_noise(
encoded,
noise,
timesteps=self.scheduler.timesteps[tmax],
)
input = torch.cat([latents] * 2)
input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax])
with torch.no_grad():
pred = self.unet(
input,
self.scheduler.timesteps[tmax],
encoder_hidden_states=text_embeddings,
).sample
pred_uncond, pred_text = pred.chunk(2)
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)
latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample
for i, t in enumerate(tqdm(self.scheduler.timesteps)):
if i > tmax:
if i < tmin: # layout generation phase
orig_latents = self.scheduler.add_noise(
encoded,
noise,
timesteps=t,
)
input = (mix_factor * latents) + (
1 - mix_factor
) * orig_latents # interpolating between layout noise and conditionally generated noise to preserve layout sematics
input = torch.cat([input] * 2)
else: # content generation phase
input = torch.cat([latents] * 2)
input = self.scheduler.scale_model_input(input, t)
with torch.no_grad():
pred = self.unet(
input,
t,
encoder_hidden_states=text_embeddings,
).sample
pred_uncond, pred_text = pred.chunk(2)
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)
latents = self.scheduler.step(pred, t, latents).prev_sample
return self.decode(latents)
| diffusers-main | examples/community/magic_mix.py |
import inspect
import time
from pathlib import Path
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
"""helper function to spherically interpolate two arrays v1 v2"""
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
input_device = v0.device
v0 = v0.cpu().numpy()
v1 = v1.cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(input_device)
return v2
class StableDiffusionWalkPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
text_embeddings: Optional[torch.FloatTensor] = None,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*, defaults to `None`):
The prompt or prompts to guide the image generation. If not provided, `text_embeddings` is required.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
text_embeddings (`torch.FloatTensor`, *optional*, defaults to `None`):
Pre-generated text embeddings to be used as inputs for image generation. Can be used in place of
`prompt` to avoid re-computing the embeddings. If not provided, the embeddings will be generated from
the supplied `prompt`.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if text_embeddings is None:
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
print(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
else:
batch_size = text_embeddings.shape[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = self.tokenizer.model_max_length
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
self.device
)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def embed_text(self, text):
"""takes in text and turns it into text embeddings"""
text_input = self.tokenizer(
text,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
return embed
def get_noise(self, seed, dtype=torch.float32, height=512, width=512):
"""Takes in random seed and returns corresponding noise vector"""
return torch.randn(
(1, self.unet.config.in_channels, height // 8, width // 8),
generator=torch.Generator(device=self.device).manual_seed(seed),
device=self.device,
dtype=dtype,
)
def walk(
self,
prompts: List[str],
seeds: List[int],
num_interpolation_steps: Optional[int] = 6,
output_dir: Optional[str] = "./dreams",
name: Optional[str] = None,
batch_size: Optional[int] = 1,
height: Optional[int] = 512,
width: Optional[int] = 512,
guidance_scale: Optional[float] = 7.5,
num_inference_steps: Optional[int] = 50,
eta: Optional[float] = 0.0,
) -> List[str]:
"""
Walks through a series of prompts and seeds, interpolating between them and saving the results to disk.
Args:
prompts (`List[str]`):
List of prompts to generate images for.
seeds (`List[int]`):
List of seeds corresponding to provided prompts. Must be the same length as prompts.
num_interpolation_steps (`int`, *optional*, defaults to 6):
Number of interpolation steps to take between prompts.
output_dir (`str`, *optional*, defaults to `./dreams`):
Directory to save the generated images to.
name (`str`, *optional*, defaults to `None`):
Subdirectory of `output_dir` to save the generated images to. If `None`, the name will
be the current time.
batch_size (`int`, *optional*, defaults to 1):
Number of images to generate at once.
height (`int`, *optional*, defaults to 512):
Height of the generated images.
width (`int`, *optional*, defaults to 512):
Width of the generated images.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
Returns:
`List[str]`: List of paths to the generated images.
"""
if not len(prompts) == len(seeds):
raise ValueError(
f"Number of prompts and seeds must be equalGot {len(prompts)} prompts and {len(seeds)} seeds"
)
name = name or time.strftime("%Y%m%d-%H%M%S")
save_path = Path(output_dir) / name
save_path.mkdir(exist_ok=True, parents=True)
frame_idx = 0
frame_filepaths = []
for prompt_a, prompt_b, seed_a, seed_b in zip(prompts, prompts[1:], seeds, seeds[1:]):
# Embed Text
embed_a = self.embed_text(prompt_a)
embed_b = self.embed_text(prompt_b)
# Get Noise
noise_dtype = embed_a.dtype
noise_a = self.get_noise(seed_a, noise_dtype, height, width)
noise_b = self.get_noise(seed_b, noise_dtype, height, width)
noise_batch, embeds_batch = None, None
T = np.linspace(0.0, 1.0, num_interpolation_steps)
for i, t in enumerate(T):
noise = slerp(float(t), noise_a, noise_b)
embed = torch.lerp(embed_a, embed_b, t)
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise], dim=0)
embeds_batch = embed if embeds_batch is None else torch.cat([embeds_batch, embed], dim=0)
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == T.shape[0]
if batch_is_ready:
outputs = self(
latents=noise_batch,
text_embeddings=embeds_batch,
height=height,
width=width,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
)
noise_batch, embeds_batch = None, None
for image in outputs["images"]:
frame_filepath = str(save_path / f"frame_{frame_idx:06d}.png")
image.save(frame_filepath)
frame_filepaths.append(frame_filepath)
frame_idx += 1
return frame_filepaths
| diffusers-main | examples/community/interpolate_stable_diffusion.py |
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class TextInpainting(DiffusionPipeline):
r"""
Pipeline for text based inpainting using Stable Diffusion.
Uses CLIPSeg to get a mask from the given text, then calls the Inpainting pipeline with the generated mask
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
segmentation_model ([`CLIPSegForImageSegmentation`]):
CLIPSeg Model to generate mask from the given text. Please refer to the [model card]() for details.
segmentation_processor ([`CLIPSegProcessor`]):
CLIPSeg processor to get image, text features to translate prompt to English, if necessary. Please refer to the
[model card](https://huggingface.co/docs/transformers/model_doc/clipseg) for details.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
segmentation_model: CLIPSegForImageSegmentation,
segmentation_processor: CLIPSegProcessor,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
" Hub, it would be very nice if you could open a Pull request for the"
" `scheduler/scheduler_config.json` file"
)
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["skip_prk_steps"] = True
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
segmentation_model=segmentation_model,
segmentation_processor=segmentation_processor,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_sequential_cpu_offload(self):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device("cuda")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
text: str,
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
text (`str``):
The text to use to generate the mask.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# We use the input text to generate the mask
inputs = self.segmentation_processor(
text=[text], images=[image], padding="max_length", return_tensors="pt"
).to(self.device)
outputs = self.segmentation_model(**inputs)
mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
mask_pil = self.numpy_to_pil(mask)[0].resize(image.size)
# Run inpainting pipeline with the generated mask
inpainting_pipeline = StableDiffusionInpaintPipeline(
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet=self.unet,
scheduler=self.scheduler,
safety_checker=self.safety_checker,
feature_extractor=self.feature_extractor,
)
return inpainting_pipeline(
prompt=prompt,
image=image,
mask_image=mask_pil,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
| diffusers-main | examples/community/text_inpainting.py |
import inspect
from typing import List, Optional, Tuple, Union
import torch
from torch.nn import functional as F
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
from diffusers import (
DiffusionPipeline,
ImagePipelineOutput,
PriorTransformer,
UnCLIPScheduler,
UNet2DConditionModel,
UNet2DModel,
)
from diffusers.pipelines.unclip import UnCLIPTextProjModel
from diffusers.utils import is_accelerate_available, logging
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def slerp(val, low, high):
"""
Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic.
"""
low_norm = low / torch.norm(low)
high_norm = high / torch.norm(high)
omega = torch.acos((low_norm * high_norm))
so = torch.sin(omega)
res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high
return res
class UnCLIPTextInterpolationPipeline(DiffusionPipeline):
"""
Pipeline for prompt-to-prompt interpolation on CLIP text embeddings and using the UnCLIP / Dall-E to decode them to images.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
text_proj ([`UnCLIPTextProjModel`]):
Utility class to prepare and combine the embeddings before they are passed to the decoder.
decoder ([`UNet2DConditionModel`]):
The decoder to invert the image embedding into an image.
super_res_first ([`UNet2DModel`]):
Super resolution unet. Used in all but the last step of the super resolution diffusion process.
super_res_last ([`UNet2DModel`]):
Super resolution unet. Used in the last step of the super resolution diffusion process.
prior_scheduler ([`UnCLIPScheduler`]):
Scheduler used in the prior denoising process. Just a modified DDPMScheduler.
decoder_scheduler ([`UnCLIPScheduler`]):
Scheduler used in the decoder denoising process. Just a modified DDPMScheduler.
super_res_scheduler ([`UnCLIPScheduler`]):
Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler.
"""
prior: PriorTransformer
decoder: UNet2DConditionModel
text_proj: UnCLIPTextProjModel
text_encoder: CLIPTextModelWithProjection
tokenizer: CLIPTokenizer
super_res_first: UNet2DModel
super_res_last: UNet2DModel
prior_scheduler: UnCLIPScheduler
decoder_scheduler: UnCLIPScheduler
super_res_scheduler: UnCLIPScheduler
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.__init__
def __init__(
self,
prior: PriorTransformer,
decoder: UNet2DConditionModel,
text_encoder: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
text_proj: UnCLIPTextProjModel,
super_res_first: UNet2DModel,
super_res_last: UNet2DModel,
prior_scheduler: UnCLIPScheduler,
decoder_scheduler: UnCLIPScheduler,
super_res_scheduler: UnCLIPScheduler,
):
super().__init__()
self.register_modules(
prior=prior,
decoder=decoder,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_proj=text_proj,
super_res_first=super_res_first,
super_res_last=super_res_last,
prior_scheduler=prior_scheduler,
decoder_scheduler=decoder_scheduler,
super_res_scheduler=super_res_scheduler,
)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
text_attention_mask: Optional[torch.Tensor] = None,
):
if text_model_output is None:
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
text_mask = text_inputs.attention_mask.bool().to(device)
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_encoder_output = self.text_encoder(text_input_ids.to(device))
prompt_embeds = text_encoder_output.text_embeds
text_encoder_hidden_states = text_encoder_output.last_hidden_state
else:
batch_size = text_model_output[0].shape[0]
prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
text_mask = text_attention_mask
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens = [""] * batch_size
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
# TODO: self.prior.post_process_latents is not covered by the offload hooks, so it fails if added to the list
models = [
self.decoder,
self.text_proj,
self.text_encoder,
self.super_res_first,
self.super_res_last,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"):
return self.device
for module in self.decoder.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def __call__(
self,
start_prompt: str,
end_prompt: str,
steps: int = 5,
prior_num_inference_steps: int = 25,
decoder_num_inference_steps: int = 25,
super_res_num_inference_steps: int = 7,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prior_guidance_scale: float = 4.0,
decoder_guidance_scale: float = 8.0,
enable_sequential_cpu_offload=True,
gpu_id=0,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
start_prompt (`str`):
The prompt to start the image generation interpolation from.
end_prompt (`str`):
The prompt to end the image generation interpolation at.
steps (`int`, *optional*, defaults to 5):
The number of steps over which to interpolate from start_prompt to end_prompt. The pipeline returns
the same number of images as this value.
prior_num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps for the prior. More denoising steps usually lead to a higher quality
image at the expense of slower inference.
decoder_num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
image at the expense of slower inference.
super_res_num_inference_steps (`int`, *optional*, defaults to 7):
The number of denoising steps for super resolution. More denoising steps usually lead to a higher
quality image at the expense of slower inference.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
enable_sequential_cpu_offload (`bool`, *optional*, defaults to `True`):
If True, offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
when their specific submodule has its `forward` method called.
gpu_id (`int`, *optional*, defaults to `0`):
The gpu_id to be passed to enable_sequential_cpu_offload. Only works when enable_sequential_cpu_offload is set to True.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
"""
if not isinstance(start_prompt, str) or not isinstance(end_prompt, str):
raise ValueError(
f"`start_prompt` and `end_prompt` should be of type `str` but got {type(start_prompt)} and"
f" {type(end_prompt)} instead"
)
if enable_sequential_cpu_offload:
self.enable_sequential_cpu_offload(gpu_id=gpu_id)
device = self._execution_device
# Turn the prompts into embeddings.
inputs = self.tokenizer(
[start_prompt, end_prompt],
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
inputs.to(device)
text_model_output = self.text_encoder(**inputs)
text_attention_mask = torch.max(inputs.attention_mask[0], inputs.attention_mask[1])
text_attention_mask = torch.cat([text_attention_mask.unsqueeze(0)] * steps).to(device)
# Interpolate from the start to end prompt using slerp and add the generated images to an image output pipeline
batch_text_embeds = []
batch_last_hidden_state = []
for interp_val in torch.linspace(0, 1, steps):
text_embeds = slerp(interp_val, text_model_output.text_embeds[0], text_model_output.text_embeds[1])
last_hidden_state = slerp(
interp_val, text_model_output.last_hidden_state[0], text_model_output.last_hidden_state[1]
)
batch_text_embeds.append(text_embeds.unsqueeze(0))
batch_last_hidden_state.append(last_hidden_state.unsqueeze(0))
batch_text_embeds = torch.cat(batch_text_embeds)
batch_last_hidden_state = torch.cat(batch_last_hidden_state)
text_model_output = CLIPTextModelOutput(
text_embeds=batch_text_embeds, last_hidden_state=batch_last_hidden_state
)
batch_size = text_model_output[0].shape[0]
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
prompt=None,
device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
text_model_output=text_model_output,
text_attention_mask=text_attention_mask,
)
# prior
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
prior_timesteps_tensor = self.prior_scheduler.timesteps
embedding_dim = self.prior.config.embedding_dim
prior_latents = self.prepare_latents(
(batch_size, embedding_dim),
prompt_embeds.dtype,
device,
generator,
None,
self.prior_scheduler,
)
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents
predicted_image_embedding = self.prior(
latent_model_input,
timestep=t,
proj_embedding=prompt_embeds,
encoder_hidden_states=text_encoder_hidden_states,
attention_mask=text_mask,
).predicted_image_embedding
if do_classifier_free_guidance:
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
predicted_image_embedding_text - predicted_image_embedding_uncond
)
if i + 1 == prior_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = prior_timesteps_tensor[i + 1]
prior_latents = self.prior_scheduler.step(
predicted_image_embedding,
timestep=t,
sample=prior_latents,
generator=generator,
prev_timestep=prev_timestep,
).prev_sample
prior_latents = self.prior.post_process_latents(prior_latents)
image_embeddings = prior_latents
# done prior
# decoder
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
image_embeddings=image_embeddings,
prompt_embeds=prompt_embeds,
text_encoder_hidden_states=text_encoder_hidden_states,
do_classifier_free_guidance=do_classifier_free_guidance,
)
if device.type == "mps":
# HACK: MPS: There is a panic when padding bool tensors,
# so cast to int tensor for the pad and back to bool afterwards
text_mask = text_mask.type(torch.int)
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
decoder_text_mask = decoder_text_mask.type(torch.bool)
else:
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True)
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
decoder_timesteps_tensor = self.decoder_scheduler.timesteps
num_channels_latents = self.decoder.config.in_channels
height = self.decoder.config.sample_size
width = self.decoder.config.sample_size
decoder_latents = self.prepare_latents(
(batch_size, num_channels_latents, height, width),
text_encoder_hidden_states.dtype,
device,
generator,
None,
self.decoder_scheduler,
)
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents
noise_pred = self.decoder(
sample=latent_model_input,
timestep=t,
encoder_hidden_states=text_encoder_hidden_states,
class_labels=additive_clip_time_embeddings,
attention_mask=decoder_text_mask,
).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
if i + 1 == decoder_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = decoder_timesteps_tensor[i + 1]
# compute the previous noisy sample x_t -> x_t-1
decoder_latents = self.decoder_scheduler.step(
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
).prev_sample
decoder_latents = decoder_latents.clamp(-1, 1)
image_small = decoder_latents
# done decoder
# super res
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
super_res_timesteps_tensor = self.super_res_scheduler.timesteps
channels = self.super_res_first.config.in_channels // 2
height = self.super_res_first.config.sample_size
width = self.super_res_first.config.sample_size
super_res_latents = self.prepare_latents(
(batch_size, channels, height, width),
image_small.dtype,
device,
generator,
None,
self.super_res_scheduler,
)
if device.type == "mps":
# MPS does not support many interpolations
image_upscaled = F.interpolate(image_small, size=[height, width])
else:
interpolate_antialias = {}
if "antialias" in inspect.signature(F.interpolate).parameters:
interpolate_antialias["antialias"] = True
image_upscaled = F.interpolate(
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
)
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
# no classifier free guidance
if i == super_res_timesteps_tensor.shape[0] - 1:
unet = self.super_res_last
else:
unet = self.super_res_first
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)
noise_pred = unet(
sample=latent_model_input,
timestep=t,
).sample
if i + 1 == super_res_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = super_res_timesteps_tensor[i + 1]
# compute the previous noisy sample x_t -> x_t-1
super_res_latents = self.super_res_scheduler.step(
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
).prev_sample
image = super_res_latents
# done super res
# post processing
image = image * 0.5 + 0.5
image = image.clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| diffusers-main | examples/community/unclip_text_interpolation.py |
from typing import Optional
import torch
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import (
deprecate,
)
class EDICTPipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: DDIMScheduler,
mixing_coeff: float = 0.93,
leapfrog_steps: bool = True,
):
self.mixing_coeff = mixing_coeff
self.leapfrog_steps = leapfrog_steps
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_prompt(
self, prompt: str, negative_prompt: Optional[str] = None, do_classifier_free_guidance: bool = False
):
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
prompt_embeds = self.text_encoder(text_inputs.input_ids.to(self.device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=self.device)
if do_classifier_free_guidance:
uncond_tokens = "" if negative_prompt is None else negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device)).last_hidden_state
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def denoise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor):
x = self.mixing_coeff * x + (1 - self.mixing_coeff) * y
y = self.mixing_coeff * y + (1 - self.mixing_coeff) * x
return [x, y]
def noise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor):
y = (y - (1 - self.mixing_coeff) * x) / self.mixing_coeff
x = (x - (1 - self.mixing_coeff) * y) / self.mixing_coeff
return [x, y]
def _get_alpha_and_beta(self, t: torch.Tensor):
# as self.alphas_cumprod is always in cpu
t = int(t)
alpha_prod = self.scheduler.alphas_cumprod[t] if t >= 0 else self.scheduler.final_alpha_cumprod
return alpha_prod, 1 - alpha_prod
def noise_step(
self,
base: torch.Tensor,
model_input: torch.Tensor,
model_output: torch.Tensor,
timestep: torch.Tensor,
):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps
alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)
a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5
b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5
next_model_input = (base - b_t * model_output) / a_t
return model_input, next_model_input.to(base.dtype)
def denoise_step(
self,
base: torch.Tensor,
model_input: torch.Tensor,
model_output: torch.Tensor,
timestep: torch.Tensor,
):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps
alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)
a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5
b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5
next_model_input = a_t * base + b_t * model_output
return model_input, next_model_input.to(base.dtype)
@torch.no_grad()
def decode_latents(self, latents: torch.Tensor):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
return image
@torch.no_grad()
def prepare_latents(
self,
image: Image.Image,
text_embeds: torch.Tensor,
timesteps: torch.Tensor,
guidance_scale: float,
generator: Optional[torch.Generator] = None,
):
do_classifier_free_guidance = guidance_scale > 1.0
image = image.to(device=self.device, dtype=text_embeds.dtype)
latent = self.vae.encode(image).latent_dist.sample(generator)
latent = self.vae.config.scaling_factor * latent
coupled_latents = [latent.clone(), latent.clone()]
for i, t in tqdm(enumerate(timesteps), total=len(timesteps)):
coupled_latents = self.noise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1])
# j - model_input index, k - base index
for j in range(2):
k = j ^ 1
if self.leapfrog_steps:
if i % 2 == 0:
k, j = j, k
model_input = coupled_latents[j]
base = coupled_latents[k]
latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
base, model_input = self.noise_step(
base=base,
model_input=model_input,
model_output=noise_pred,
timestep=t,
)
coupled_latents[k] = model_input
return coupled_latents
@torch.no_grad()
def __call__(
self,
base_prompt: str,
target_prompt: str,
image: Image.Image,
guidance_scale: float = 3.0,
num_inference_steps: int = 50,
strength: float = 0.8,
negative_prompt: Optional[str] = None,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
):
do_classifier_free_guidance = guidance_scale > 1.0
image = self.image_processor.preprocess(image)
base_embeds = self._encode_prompt(base_prompt, negative_prompt, do_classifier_free_guidance)
target_embeds = self._encode_prompt(target_prompt, negative_prompt, do_classifier_free_guidance)
self.scheduler.set_timesteps(num_inference_steps, self.device)
t_limit = num_inference_steps - int(num_inference_steps * strength)
fwd_timesteps = self.scheduler.timesteps[t_limit:]
bwd_timesteps = fwd_timesteps.flip(0)
coupled_latents = self.prepare_latents(image, base_embeds, bwd_timesteps, guidance_scale, generator)
for i, t in tqdm(enumerate(fwd_timesteps), total=len(fwd_timesteps)):
# j - model_input index, k - base index
for k in range(2):
j = k ^ 1
if self.leapfrog_steps:
if i % 2 == 1:
k, j = j, k
model_input = coupled_latents[j]
base = coupled_latents[k]
latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=target_embeds).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
base, model_input = self.denoise_step(
base=base,
model_input=model_input,
model_output=noise_pred,
timestep=t,
)
coupled_latents[k] = model_input
coupled_latents = self.denoise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1])
# either one is fine
final_latent = coupled_latents[0]
if output_type not in ["latent", "pt", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"
if output_type == "latent":
image = final_latent
else:
image = self.decode_latents(final_latent)
image = self.image_processor.postprocess(image, output_type=output_type)
return image
| diffusers-main | examples/community/edict_pipeline.py |
import glob
import os
from typing import Dict, List, Union
import safetensors.torch
import torch
from huggingface_hub import snapshot_download
from diffusers import DiffusionPipeline, __version__
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME
class CheckpointMergerPipeline(DiffusionPipeline):
"""
A class that that supports merging diffusion models based on the discussion here:
https://github.com/huggingface/diffusers/issues/877
Example usage:-
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)
merged_pipe.to('cuda')
prompt = "An astronaut riding a unicycle on Mars"
results = merged_pipe(prompt)
## For more details, see the docstring for the merge method.
"""
def __init__(self):
self.register_to_config()
super().__init__()
def _compare_model_configs(self, dict0, dict1):
if dict0 == dict1:
return True
else:
config0, meta_keys0 = self._remove_meta_keys(dict0)
config1, meta_keys1 = self._remove_meta_keys(dict1)
if config0 == config1:
print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
return True
return False
def _remove_meta_keys(self, config_dict: Dict):
meta_keys = []
temp_dict = config_dict.copy()
for key in config_dict.keys():
if key.startswith("_"):
temp_dict.pop(key)
meta_keys.append(key)
return (temp_dict, meta_keys)
@torch.no_grad()
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
"""
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
in the argument 'pretrained_model_name_or_path_list' as a list.
Parameters:
-----------
pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.
**kwargs:
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map.
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported.
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
"""
# Default kwargs from DiffusionPipeline
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
device_map = kwargs.pop("device_map", None)
alpha = kwargs.pop("alpha", 0.5)
interp = kwargs.pop("interp", None)
print("Received list", pretrained_model_name_or_path_list)
print(f"Combining with alpha={alpha}, interpolation mode={interp}")
checkpoint_count = len(pretrained_model_name_or_path_list)
# Ignore result from model_index_json comparision of the two checkpoints
force = kwargs.pop("force", False)
# If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
if checkpoint_count > 3 or checkpoint_count < 2:
raise ValueError(
"Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
" passed."
)
print("Received the right number of checkpoints")
# chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
# chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None
# Validate that the checkpoints can be merged
# Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
config_dicts = []
for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
config_dict = DiffusionPipeline.load_config(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
)
config_dicts.append(config_dict)
comparison_result = True
for idx in range(1, len(config_dicts)):
comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
if not force and comparison_result is False:
raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
print(config_dicts[0], config_dicts[1])
print("Compatible model_index.json files found")
# Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
cached_folders = []
for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
allow_patterns = [os.path.join(k, "*") for k in folder_names]
allow_patterns += [
WEIGHTS_NAME,
SCHEDULER_CONFIG_NAME,
CONFIG_NAME,
ONNX_WEIGHTS_NAME,
DiffusionPipeline.config_name,
]
requested_pipeline_class = config_dict.get("_class_name")
user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}
cached_folder = (
pretrained_model_name_or_path
if os.path.isdir(pretrained_model_name_or_path)
else snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
allow_patterns=allow_patterns,
user_agent=user_agent,
)
)
print("Cached Folder", cached_folder)
cached_folders.append(cached_folder)
# Step 3:-
# Load the first checkpoint as a diffusion pipeline and modify its module state_dict in place
final_pipe = DiffusionPipeline.from_pretrained(
cached_folders[0], torch_dtype=torch_dtype, device_map=device_map
)
final_pipe.to(self.device)
checkpoint_path_2 = None
if len(cached_folders) > 2:
checkpoint_path_2 = os.path.join(cached_folders[2])
if interp == "sigmoid":
theta_func = CheckpointMergerPipeline.sigmoid
elif interp == "inv_sigmoid":
theta_func = CheckpointMergerPipeline.inv_sigmoid
elif interp == "add_diff":
theta_func = CheckpointMergerPipeline.add_difference
else:
theta_func = CheckpointMergerPipeline.weighted_sum
# Find each module's state dict.
for attr in final_pipe.config.keys():
if not attr.startswith("_"):
checkpoint_path_1 = os.path.join(cached_folders[1], attr)
if os.path.exists(checkpoint_path_1):
files = [
*glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_1, "*.bin")),
]
checkpoint_path_1 = files[0] if len(files) > 0 else None
if len(cached_folders) < 3:
checkpoint_path_2 = None
else:
checkpoint_path_2 = os.path.join(cached_folders[2], attr)
if os.path.exists(checkpoint_path_2):
files = [
*glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_2, "*.bin")),
]
checkpoint_path_2 = files[0] if len(files) > 0 else None
# For an attr if both checkpoint_path_1 and 2 are None, ignore.
# If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
if checkpoint_path_1 is None and checkpoint_path_2 is None:
print(f"Skipping {attr}: not present in 2nd or 3d model")
continue
try:
module = getattr(final_pipe, attr)
if isinstance(module, bool): # ignore requires_safety_checker boolean
continue
theta_0 = getattr(module, "state_dict")
theta_0 = theta_0()
update_theta_0 = getattr(module, "load_state_dict")
theta_1 = (
safetensors.torch.load_file(checkpoint_path_1)
if (checkpoint_path_1.endswith(".safetensors"))
else torch.load(checkpoint_path_1, map_location="cpu")
)
theta_2 = None
if checkpoint_path_2:
theta_2 = (
safetensors.torch.load_file(checkpoint_path_2)
if (checkpoint_path_2.endswith(".safetensors"))
else torch.load(checkpoint_path_2, map_location="cpu")
)
if not theta_0.keys() == theta_1.keys():
print(f"Skipping {attr}: key mismatch")
continue
if theta_2 and not theta_1.keys() == theta_2.keys():
print(f"Skipping {attr}:y mismatch")
except Exception as e:
print(f"Skipping {attr} do to an unexpected error: {str(e)}")
continue
print(f"MERGING {attr}")
for key in theta_0.keys():
if theta_2:
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
else:
theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)
del theta_1
del theta_2
update_theta_0(theta_0)
del theta_0
return final_pipe
@staticmethod
def weighted_sum(theta0, theta1, theta2, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
@staticmethod
def sigmoid(theta0, theta1, theta2, alpha):
alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha)
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
@staticmethod
def inv_sigmoid(theta0, theta1, theta2, alpha):
import math
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
return theta0 + ((theta1 - theta0) * alpha)
@staticmethod
def add_difference(theta0, theta1, theta2, alpha):
return theta0 + (theta1 - theta2) * (1.0 - alpha)
| diffusers-main | examples/community/checkpoint_merger.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the AudioLDM2 checkpoints."""
import argparse
import re
from typing import List, Union
import torch
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
ClapConfig,
ClapModel,
GPT2Config,
GPT2Model,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
T5Config,
T5EncoderModel,
)
from diffusers import (
AudioLDM2Pipeline,
AudioLDM2ProjectionModel,
AudioLDM2UNet2DConditionModel,
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import is_omegaconf_available, is_safetensors_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths
def renew_attention_paths(old_list):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"]
proj_key = "to_out.0.weight"
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys or ".".join(key.split(".")[-3:]) == proj_key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key].squeeze()
def create_unet_diffusers_config(original_config, image_size: int):
"""
Creates a UNet config for diffusers based on the config of the original AudioLDM2 model.
"""
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
cross_attention_dim = list(unet_params.context_dim) if "context_dim" in unet_params else block_out_channels
if len(cross_attention_dim) > 1:
# require two or more cross-attention layers per-block, each of different dimension
cross_attention_dim = [cross_attention_dim for _ in range(len(block_out_channels))]
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"transformer_layers_per_block": unet_params.transformer_depth,
"cross_attention_dim": tuple(cross_attention_dim),
}
return config
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config
def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
"""
Creates a VAE config for diffusers based on the config of the original AudioLDM2 model. Compared to the original
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"scaling_factor": float(scaling_factor),
}
return config
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted UNet checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
# strip the unet prefix from the weight names
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
for layer_id in range(num_output_blocks)
}
# Check how many Transformer blocks we have per layer
if isinstance(config.get("cross_attention_dim"), (list, tuple)):
if isinstance(config["cross_attention_dim"][0], (list, tuple)):
# in this case we have multiple cross-attention layers per-block
num_attention_layers = len(config.get("cross_attention_dim")[0])
else:
num_attention_layers = 1
if config.get("extra_self_attn_layer"):
num_attention_layers += 1
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.0" not in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = [
{
"old": f"input_blocks.{i}.{1 + layer_id}",
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id * num_attention_layers + layer_id}",
}
for layer_id in range(num_attention_layers)
]
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=meta_path, config=config
)
resnet_0 = middle_blocks[0]
resnet_1 = middle_blocks[num_middle_blocks - 1]
resnet_0_paths = renew_resnet_paths(resnet_0)
meta_path = {"old": "middle_block.0", "new": "mid_block.resnets.0"}
assign_to_checkpoint(
resnet_0_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_1_paths = renew_resnet_paths(resnet_1)
meta_path = {"old": f"middle_block.{len(middle_blocks) - 1}", "new": "mid_block.resnets.1"}
assign_to_checkpoint(
resnet_1_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(1, num_middle_blocks - 1):
attentions = middle_blocks[i]
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": f"middle_block.{i}", "new": f"mid_block.attentions.{i - 1}"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.0" not in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
attentions.remove(f"output_blocks.{i}.{index}.conv.bias")
attentions.remove(f"output_blocks.{i}.{index}.conv.weight")
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = [
{
"old": f"output_blocks.{i}.{1 + layer_id}",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id * num_attention_layers + layer_id}",
}
for layer_id in range(num_attention_layers)
]
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=meta_path, config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
CLAP_KEYS_TO_MODIFY_MAPPING = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
CLAP_KEYS_TO_IGNORE = [
"text_transform",
"audio_transform",
"stft",
"logmel_extractor",
"tscam_conv",
"head",
"attn_mask",
]
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"]
def convert_open_clap_checkpoint(checkpoint):
"""
Takes a state dict and returns a converted CLAP checkpoint.
"""
# extract state dict for CLAP text embedding model, discarding the audio component
model_state_dict = {}
model_key = "clap.model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(model_key):
model_state_dict[key.replace(model_key, "")] = checkpoint.get(key)
new_checkpoint = {}
sequential_layers_pattern = r".*sequential.(\d+).*"
text_projection_pattern = r".*_projection.(\d+).*"
for key, value in model_state_dict.items():
# check if key should be ignored in mapping - if so map it to a key name that we'll filter out at the end
for key_to_ignore in CLAP_KEYS_TO_IGNORE:
if key_to_ignore in key:
key = "spectrogram"
# check if any key needs to be modified
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
if re.match(sequential_layers_pattern, key):
# replace sequential layers with list
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.")
elif re.match(text_projection_pattern, key):
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
# Because in CLAP they use `nn.Sequential`...
transformers_projection_layer = 1 if projecton_layer == 0 else 2
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
if "audio" and "qkv" in key:
# split qkv into query key and value
mixed_qkv = value
qkv_dim = mixed_qkv.size(0) // 3
query_layer = mixed_qkv[:qkv_dim]
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
value_layer = mixed_qkv[qkv_dim * 2 :]
new_checkpoint[key.replace("qkv", "query")] = query_layer
new_checkpoint[key.replace("qkv", "key")] = key_layer
new_checkpoint[key.replace("qkv", "value")] = value_layer
elif key != "spectrogram":
new_checkpoint[key] = value
return new_checkpoint
def create_transformers_vocoder_config(original_config):
"""
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
"""
vocoder_params = original_config.model.params.vocoder_config.params
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
],
"normalize_before": False,
}
return config
def extract_sub_model(checkpoint, key_prefix):
"""
Takes a state dict and returns the state dict for a particular sub-model.
"""
sub_model_state_dict = {}
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(key_prefix):
sub_model_state_dict[key.replace(key_prefix, "")] = checkpoint.get(key)
return sub_model_state_dict
def convert_hifigan_checkpoint(checkpoint, config):
"""
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint.
"""
# extract state dict for vocoder
vocoder_state_dict = extract_sub_model(checkpoint, key_prefix="first_stage_model.vocoder.")
# fix upsampler keys, everything else is correct already
for i in range(len(config.upsample_rates)):
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight")
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias")
if not config.normalize_before:
# if we don't set normalize_before then these variables are unused, so we set them to their initialised values
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim)
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim)
return vocoder_state_dict
def convert_projection_checkpoint(checkpoint):
projection_state_dict = {}
conditioner_state_dict = extract_sub_model(checkpoint, key_prefix="cond_stage_models.0.")
projection_state_dict["sos_embed"] = conditioner_state_dict["start_of_sequence_tokens.weight"][0]
projection_state_dict["sos_embed_1"] = conditioner_state_dict["start_of_sequence_tokens.weight"][1]
projection_state_dict["eos_embed"] = conditioner_state_dict["end_of_sequence_tokens.weight"][0]
projection_state_dict["eos_embed_1"] = conditioner_state_dict["end_of_sequence_tokens.weight"][1]
projection_state_dict["projection.weight"] = conditioner_state_dict["input_sequence_embed_linear.0.weight"]
projection_state_dict["projection.bias"] = conditioner_state_dict["input_sequence_embed_linear.0.bias"]
projection_state_dict["projection_1.weight"] = conditioner_state_dict["input_sequence_embed_linear.1.weight"]
projection_state_dict["projection_1.bias"] = conditioner_state_dict["input_sequence_embed_linear.1.bias"]
return projection_state_dict
# Adapted from https://github.com/haoheliu/AudioLDM2/blob/81ad2c6ce015c1310387695e2dae975a7d2ed6fd/audioldm2/utils.py#L143
DEFAULT_CONFIG = {
"model": {
"params": {
"linear_start": 0.0015,
"linear_end": 0.0195,
"timesteps": 1000,
"channels": 8,
"scale_by_std": True,
"unet_config": {
"target": "audioldm2.latent_diffusion.openaimodel.UNetModel",
"params": {
"context_dim": [None, 768, 1024],
"in_channels": 8,
"out_channels": 8,
"model_channels": 128,
"attention_resolutions": [8, 4, 2],
"num_res_blocks": 2,
"channel_mult": [1, 2, 3, 5],
"num_head_channels": 32,
"transformer_depth": 1,
},
},
"first_stage_config": {
"target": "audioldm2.variational_autoencoder.autoencoder.AutoencoderKL",
"params": {
"embed_dim": 8,
"ddconfig": {
"z_channels": 8,
"resolution": 256,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4],
"num_res_blocks": 2,
},
},
},
"cond_stage_config": {
"crossattn_audiomae_generated": {
"target": "audioldm2.latent_diffusion.modules.encoders.modules.SequenceGenAudioMAECond",
"params": {
"sequence_gen_length": 8,
"sequence_input_embed_dim": [512, 1024],
},
}
},
"vocoder_config": {
"target": "audioldm2.first_stage_model.vocoder",
"params": {
"upsample_rates": [5, 4, 2, 2, 2],
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
"upsample_initial_channel": 1024,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"num_mels": 64,
"sampling_rate": 16000,
},
},
},
},
}
def load_pipeline_from_original_AudioLDM2_ckpt(
checkpoint_path: str,
original_config_file: str = None,
image_size: int = 1024,
prediction_type: str = None,
extract_ema: bool = False,
scheduler_type: str = "ddim",
cross_attention_dim: Union[List, List[List]] = None,
transformer_layers_per_block: int = None,
device: str = None,
from_safetensors: bool = False,
) -> AudioLDM2Pipeline:
"""
Load an AudioLDM2 pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file.
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
Args:
checkpoint_path (`str`): Path to `.ckpt` file.
original_config_file (`str`):
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically
set to the AudioLDM2 base config.
image_size (`int`, *optional*, defaults to 1024):
The image size that the model was trained on.
prediction_type (`str`, *optional*):
The prediction type that the model was trained on. If `None`, will be automatically
inferred by looking for a key in the config. For the default config, the prediction type is `'epsilon'`.
scheduler_type (`str`, *optional*, defaults to 'ddim'):
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
"ddim"]`.
cross_attention_dim (`list`, *optional*, defaults to `None`):
The dimension of the cross-attention layers. If `None`, the cross-attention dimension will be
automatically inferred. Set to `[768, 1024]` for the base model, or `[768, 1024, None]` for the large model.
transformer_layers_per_block (`int`, *optional*, defaults to `None`):
The number of transformer layers in each transformer block. If `None`, number of layers will be "
"automatically inferred. Set to `1` for the base model, or `2` for the large model.
extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to
`False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for
inference. Non-EMA weights are usually better to continue fine-tuning.
device (`str`, *optional*, defaults to `None`):
The device to use. Pass `None` to determine automatically.
from_safetensors (`str`, *optional*, defaults to `False`):
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
return: An AudioLDM2Pipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
from safetensors import safe_open
checkpoint = {}
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if original_config_file is None:
original_config = DEFAULT_CONFIG
original_config = OmegaConf.create(original_config)
else:
original_config = OmegaConf.load(original_config_file)
if image_size is not None:
original_config["model"]["params"]["unet_config"]["params"]["image_size"] = image_size
if cross_attention_dim is not None:
original_config["model"]["params"]["unet_config"]["params"]["context_dim"] = cross_attention_dim
if transformer_layers_per_block is not None:
original_config["model"]["params"]["unet_config"]["params"]["transformer_depth"] = transformer_layers_per_block
if (
"parameterization" in original_config["model"]["params"]
and original_config["model"]["params"]["parameterization"] == "v"
):
if prediction_type is None:
prediction_type = "v_prediction"
else:
if prediction_type is None:
prediction_type = "epsilon"
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
# make sure scheduler works correctly with DDIM
scheduler.register_to_config(clip_sample=False)
if scheduler_type == "pndm":
config = dict(scheduler.config)
config["skip_prk_steps"] = True
scheduler = PNDMScheduler.from_config(config)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "heun":
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler":
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
# Convert the UNet2DModel
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet = AudioLDM2UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# Convert the joint audio-text encoding model
clap_config = ClapConfig.from_pretrained("laion/clap-htsat-unfused")
clap_config.audio_config.update(
{
"patch_embeds_hidden_size": 128,
"hidden_size": 1024,
"depths": [2, 2, 12, 2],
}
)
# AudioLDM2 uses the same tokenizer and feature extractor as the original CLAP model
clap_tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
clap_feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused")
converted_clap_model = convert_open_clap_checkpoint(checkpoint)
clap_model = ClapModel(clap_config)
missing_keys, unexpected_keys = clap_model.load_state_dict(converted_clap_model, strict=False)
# we expect not to have token_type_ids in our original state dict so let's ignore them
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS))
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}")
if len(missing_keys) > 0:
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}")
# Convert the vocoder model
vocoder_config = create_transformers_vocoder_config(original_config)
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config)
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config)
vocoder = SpeechT5HifiGan(vocoder_config)
vocoder.load_state_dict(converted_vocoder_checkpoint)
# Convert the Flan-T5 encoder model: AudioLDM2 uses the same configuration and tokenizer as the original Flan-T5 large model
t5_config = T5Config.from_pretrained("google/flan-t5-large")
converted_t5_checkpoint = extract_sub_model(checkpoint, key_prefix="cond_stage_models.1.model.")
t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
# hard-coded in the original implementation (i.e. not retrievable from the config)
t5_tokenizer.model_max_length = 128
t5_model = T5EncoderModel(t5_config)
t5_model.load_state_dict(converted_t5_checkpoint)
# Convert the GPT2 encoder model: AudioLDM2 uses the same configuration as the original GPT2 base model
gpt2_config = GPT2Config.from_pretrained("gpt2")
gpt2_model = GPT2Model(gpt2_config)
gpt2_model.config.max_new_tokens = (
original_config.model.params.cond_stage_config.crossattn_audiomae_generated.params.sequence_gen_length
)
converted_gpt2_checkpoint = extract_sub_model(checkpoint, key_prefix="cond_stage_models.0.model.")
gpt2_model.load_state_dict(converted_gpt2_checkpoint)
# Convert the extra embedding / projection layers
projection_model = AudioLDM2ProjectionModel(clap_config.projection_dim, t5_config.d_model, gpt2_config.n_embd)
converted_projection_checkpoint = convert_projection_checkpoint(checkpoint)
projection_model.load_state_dict(converted_projection_checkpoint)
# Instantiate the diffusers pipeline
pipe = AudioLDM2Pipeline(
vae=vae,
text_encoder=clap_model,
text_encoder_2=t5_model,
projection_model=projection_model,
language_model=gpt2_model,
tokenizer=clap_tokenizer,
tokenizer_2=t5_tokenizer,
feature_extractor=clap_feature_extractor,
unet=unet,
scheduler=scheduler,
vocoder=vocoder,
)
return pipe
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--cross_attention_dim",
default=None,
type=int,
nargs="+",
help="The dimension of the cross-attention layers. If `None`, the cross-attention dimension will be "
"automatically inferred. Set to `768+1024` for the base model, or `768+1024+640` for the large model",
)
parser.add_argument(
"--transformer_layers_per_block",
default=None,
type=int,
help="The number of transformer layers in each transformer block. If `None`, number of layers will be "
"automatically inferred. Set to `1` for the base model, or `2` for the large model.",
)
parser.add_argument(
"--scheduler_type",
default="ddim",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--image_size",
default=1048,
type=int,
help="The image size that the model was trained on.",
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=("The prediction type that the model was trained on."),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
args = parser.parse_args()
pipe = load_pipeline_from_original_AudioLDM2_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
cross_attention_dim=args.cross_attention_dim,
transformer_layers_per_block=args.transformer_layers_per_block,
from_safetensors=args.from_safetensors,
device=args.device,
)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| diffusers-main | scripts/convert_original_audioldm2_to_diffusers.py |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def convert_ldm_original(checkpoint_path, config_path, output_path):
config = OmegaConf.load(config_path)
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
keys = list(state_dict.keys())
# extract state_dict for VQVAE
first_stage_dict = {}
first_stage_key = "first_stage_model."
for key in keys:
if key.startswith(first_stage_key):
first_stage_dict[key.replace(first_stage_key, "")] = state_dict[key]
# extract state_dict for UNetLDM
unet_state_dict = {}
unet_key = "model.diffusion_model."
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = state_dict[key]
vqvae_init_args = config.model.params.first_stage_config.params
unet_init_args = config.model.params.unet_config.params
vqvae = VQModel(**vqvae_init_args).eval()
vqvae.load_state_dict(first_stage_dict)
unet = UNetLDMModel(**unet_init_args).eval()
unet.load_state_dict(unet_state_dict)
noise_scheduler = DDIMScheduler(
timesteps=config.model.params.timesteps,
beta_schedule="scaled_linear",
beta_start=config.model.params.linear_start,
beta_end=config.model.params.linear_end,
clip_sample=False,
)
pipeline = LDMPipeline(vqvae, unet, noise_scheduler)
pipeline.save_pretrained(output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str, required=True)
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
args = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| diffusers-main | scripts/conversion_ldm_uncond.py |
import argparse
import time
from pathlib import Path
from typing import Any, Dict, Literal
import torch
from diffusers import AsymmetricAutoencoderKL
ASYMMETRIC_AUTOENCODER_KL_x_1_5_CONFIG = {
"in_channels": 3,
"out_channels": 3,
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
"down_block_out_channels": [128, 256, 512, 512],
"layers_per_down_block": 2,
"up_block_types": [
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
],
"up_block_out_channels": [192, 384, 768, 768],
"layers_per_up_block": 3,
"act_fn": "silu",
"latent_channels": 4,
"norm_num_groups": 32,
"sample_size": 256,
"scaling_factor": 0.18215,
}
ASYMMETRIC_AUTOENCODER_KL_x_2_CONFIG = {
"in_channels": 3,
"out_channels": 3,
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
"down_block_out_channels": [128, 256, 512, 512],
"layers_per_down_block": 2,
"up_block_types": [
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
],
"up_block_out_channels": [256, 512, 1024, 1024],
"layers_per_up_block": 5,
"act_fn": "silu",
"latent_channels": 4,
"norm_num_groups": 32,
"sample_size": 256,
"scaling_factor": 0.18215,
}
def convert_asymmetric_autoencoder_kl_state_dict(original_state_dict: Dict[str, Any]) -> Dict[str, Any]:
converted_state_dict = {}
for k, v in original_state_dict.items():
if k.startswith("encoder."):
converted_state_dict[
k.replace("encoder.down.", "encoder.down_blocks.")
.replace("encoder.mid.", "encoder.mid_block.")
.replace("encoder.norm_out.", "encoder.conv_norm_out.")
.replace(".downsample.", ".downsamplers.0.")
.replace(".nin_shortcut.", ".conv_shortcut.")
.replace(".block.", ".resnets.")
.replace(".block_1.", ".resnets.0.")
.replace(".block_2.", ".resnets.1.")
.replace(".attn_1.k.", ".attentions.0.to_k.")
.replace(".attn_1.q.", ".attentions.0.to_q.")
.replace(".attn_1.v.", ".attentions.0.to_v.")
.replace(".attn_1.proj_out.", ".attentions.0.to_out.0.")
.replace(".attn_1.norm.", ".attentions.0.group_norm.")
] = v
elif k.startswith("decoder.") and "up_layers" not in k:
converted_state_dict[
k.replace("decoder.encoder.", "decoder.condition_encoder.")
.replace(".norm_out.", ".conv_norm_out.")
.replace(".up.0.", ".up_blocks.3.")
.replace(".up.1.", ".up_blocks.2.")
.replace(".up.2.", ".up_blocks.1.")
.replace(".up.3.", ".up_blocks.0.")
.replace(".block.", ".resnets.")
.replace("mid", "mid_block")
.replace(".0.upsample.", ".0.upsamplers.0.")
.replace(".1.upsample.", ".1.upsamplers.0.")
.replace(".2.upsample.", ".2.upsamplers.0.")
.replace(".nin_shortcut.", ".conv_shortcut.")
.replace(".block_1.", ".resnets.0.")
.replace(".block_2.", ".resnets.1.")
.replace(".attn_1.k.", ".attentions.0.to_k.")
.replace(".attn_1.q.", ".attentions.0.to_q.")
.replace(".attn_1.v.", ".attentions.0.to_v.")
.replace(".attn_1.proj_out.", ".attentions.0.to_out.0.")
.replace(".attn_1.norm.", ".attentions.0.group_norm.")
] = v
elif k.startswith("quant_conv."):
converted_state_dict[k] = v
elif k.startswith("post_quant_conv."):
converted_state_dict[k] = v
else:
print(f" skipping key `{k}`")
# fix weights shape
for k, v in converted_state_dict.items():
if (
(k.startswith("encoder.mid_block.attentions.0") or k.startswith("decoder.mid_block.attentions.0"))
and k.endswith("weight")
and ("to_q" in k or "to_k" in k or "to_v" in k or "to_out" in k)
):
converted_state_dict[k] = converted_state_dict[k][:, :, 0, 0]
return converted_state_dict
def get_asymmetric_autoencoder_kl_from_original_checkpoint(
scale: Literal["1.5", "2"], original_checkpoint_path: str, map_location: torch.device
) -> AsymmetricAutoencoderKL:
print("Loading original state_dict")
original_state_dict = torch.load(original_checkpoint_path, map_location=map_location)
original_state_dict = original_state_dict["state_dict"]
print("Converting state_dict")
converted_state_dict = convert_asymmetric_autoencoder_kl_state_dict(original_state_dict)
kwargs = ASYMMETRIC_AUTOENCODER_KL_x_1_5_CONFIG if scale == "1.5" else ASYMMETRIC_AUTOENCODER_KL_x_2_CONFIG
print("Initializing AsymmetricAutoencoderKL model")
asymmetric_autoencoder_kl = AsymmetricAutoencoderKL(**kwargs)
print("Loading weight from converted state_dict")
asymmetric_autoencoder_kl.load_state_dict(converted_state_dict)
asymmetric_autoencoder_kl.eval()
print("AsymmetricAutoencoderKL successfully initialized")
return asymmetric_autoencoder_kl
if __name__ == "__main__":
start = time.time()
parser = argparse.ArgumentParser()
parser.add_argument(
"--scale",
default=None,
type=str,
required=True,
help="Asymmetric VQGAN scale: `1.5` or `2`",
)
parser.add_argument(
"--original_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the original Asymmetric VQGAN checkpoint",
)
parser.add_argument(
"--output_path",
default=None,
type=str,
required=True,
help="Path to save pretrained AsymmetricAutoencoderKL model",
)
parser.add_argument(
"--map_location",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading the checkpoint",
)
args = parser.parse_args()
assert args.scale in ["1.5", "2"], f"{args.scale} should be `1.5` of `2`"
assert Path(args.original_checkpoint_path).is_file()
asymmetric_autoencoder_kl = get_asymmetric_autoencoder_kl_from_original_checkpoint(
scale=args.scale,
original_checkpoint_path=args.original_checkpoint_path,
map_location=torch.device(args.map_location),
)
print("Saving pretrained AsymmetricAutoencoderKL")
asymmetric_autoencoder_kl.save_pretrained(args.output_path)
print(f"Done in {time.time() - start:.2f} seconds")
| diffusers-main | scripts/convert_asymmetric_vqgan_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for stable diffusion checkpoints which _only_ contain a controlnet. """
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
type=str,
required=True,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--image_size",
default=512,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
# small workaround to get argparser to parse a boolean input as either true _or_ false
def parse_bool(string):
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(f"could not parse string as bool {string}")
parser.add_argument(
"--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool
)
parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int)
args = parser.parse_args()
controlnet = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| diffusers-main | scripts/convert_original_controlnet_to_diffusers.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def onnx_export(
model,
model_args: tuple,
output_path: Path,
ordered_input_names,
output_names,
dynamic_axes,
opset,
use_external_data_format=False,
):
output_path.parent.mkdir(parents=True, exist_ok=True)
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
model,
model_args,
f=output_path.as_posix(),
input_names=ordered_input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
use_external_data_format=use_external_data_format,
enable_onnx_checker=True,
opset_version=opset,
)
else:
export(
model,
model_args,
f=output_path.as_posix(),
input_names=ordered_input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
opset_version=opset,
)
@torch.no_grad()
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False):
dtype = torch.float16 if fp16 else torch.float32
if fp16 and torch.cuda.is_available():
device = "cuda"
elif fp16 and not torch.cuda.is_available():
raise ValueError("`float16` model export is only supported on GPUs with CUDA")
else:
device = "cpu"
output_path = Path(output_path)
# VAE DECODER
vae_decoder = AutoencoderKL.from_pretrained(model_path + "/vae")
vae_latent_channels = vae_decoder.config.latent_channels
# forward only through the decoder part
vae_decoder.forward = vae_decoder.decode
onnx_export(
vae_decoder,
model_args=(
torch.randn(1, vae_latent_channels, 25, 25).to(device=device, dtype=dtype),
False,
),
output_path=output_path / "vae_decoder" / "model.onnx",
ordered_input_names=["latent_sample", "return_dict"],
output_names=["sample"],
dynamic_axes={
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
},
opset=opset,
)
del vae_decoder
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
args = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fp16)
print("SD: Done: ONNX")
| diffusers-main | scripts/convert_vae_diff_to_onnx.py |
import argparse
import os
import torch
from torchvision.datasets.utils import download_url
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, Transformer2DModel
pretrained_models = {512: "DiT-XL-2-512x512.pt", 256: "DiT-XL-2-256x256.pt"}
def download_model(model_name):
"""
Downloads a pre-trained DiT model from the web.
"""
local_path = f"pretrained_models/{model_name}"
if not os.path.isfile(local_path):
os.makedirs("pretrained_models", exist_ok=True)
web_path = f"https://dl.fbaipublicfiles.com/DiT/models/{model_name}"
download_url(web_path, "pretrained_models")
model = torch.load(local_path, map_location=lambda storage, loc: storage)
return model
def main(args):
state_dict = download_model(pretrained_models[args.image_size])
state_dict["pos_embed.proj.weight"] = state_dict["x_embedder.proj.weight"]
state_dict["pos_embed.proj.bias"] = state_dict["x_embedder.proj.bias"]
state_dict.pop("x_embedder.proj.weight")
state_dict.pop("x_embedder.proj.bias")
for depth in range(28):
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.weight"] = state_dict[
"t_embedder.mlp.0.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.bias"] = state_dict[
"t_embedder.mlp.0.bias"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.weight"] = state_dict[
"t_embedder.mlp.2.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.bias"] = state_dict[
"t_embedder.mlp.2.bias"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.class_embedder.embedding_table.weight"] = state_dict[
"y_embedder.embedding_table.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.linear.weight"] = state_dict[
f"blocks.{depth}.adaLN_modulation.1.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.linear.bias"] = state_dict[
f"blocks.{depth}.adaLN_modulation.1.bias"
]
q, k, v = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.weight"], 3, dim=0)
q_bias, k_bias, v_bias = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.bias"], 3, dim=0)
state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict[
f"blocks.{depth}.attn.proj.weight"
]
state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict[f"blocks.{depth}.attn.proj.bias"]
state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict[f"blocks.{depth}.mlp.fc1.weight"]
state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict[f"blocks.{depth}.mlp.fc1.bias"]
state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict[f"blocks.{depth}.mlp.fc2.weight"]
state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict[f"blocks.{depth}.mlp.fc2.bias"]
state_dict.pop(f"blocks.{depth}.attn.qkv.weight")
state_dict.pop(f"blocks.{depth}.attn.qkv.bias")
state_dict.pop(f"blocks.{depth}.attn.proj.weight")
state_dict.pop(f"blocks.{depth}.attn.proj.bias")
state_dict.pop(f"blocks.{depth}.mlp.fc1.weight")
state_dict.pop(f"blocks.{depth}.mlp.fc1.bias")
state_dict.pop(f"blocks.{depth}.mlp.fc2.weight")
state_dict.pop(f"blocks.{depth}.mlp.fc2.bias")
state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.weight")
state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.bias")
state_dict.pop("t_embedder.mlp.0.weight")
state_dict.pop("t_embedder.mlp.0.bias")
state_dict.pop("t_embedder.mlp.2.weight")
state_dict.pop("t_embedder.mlp.2.bias")
state_dict.pop("y_embedder.embedding_table.weight")
state_dict["proj_out_1.weight"] = state_dict["final_layer.adaLN_modulation.1.weight"]
state_dict["proj_out_1.bias"] = state_dict["final_layer.adaLN_modulation.1.bias"]
state_dict["proj_out_2.weight"] = state_dict["final_layer.linear.weight"]
state_dict["proj_out_2.bias"] = state_dict["final_layer.linear.bias"]
state_dict.pop("final_layer.linear.weight")
state_dict.pop("final_layer.linear.bias")
state_dict.pop("final_layer.adaLN_modulation.1.weight")
state_dict.pop("final_layer.adaLN_modulation.1.bias")
# DiT XL/2
transformer = Transformer2DModel(
sample_size=args.image_size // 8,
num_layers=28,
attention_head_dim=72,
in_channels=4,
out_channels=8,
patch_size=2,
attention_bias=True,
num_attention_heads=16,
activation_fn="gelu-approximate",
num_embeds_ada_norm=1000,
norm_type="ada_norm_zero",
norm_elementwise_affine=False,
)
transformer.load_state_dict(state_dict, strict=True)
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
prediction_type="epsilon",
clip_sample=False,
)
vae = AutoencoderKL.from_pretrained(args.vae_model)
pipeline = DiTPipeline(transformer=transformer, vae=vae, scheduler=scheduler)
if args.save:
pipeline.save_pretrained(args.checkpoint_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--image_size",
default=256,
type=int,
required=False,
help="Image size of pretrained model, either 256 or 512.",
)
parser.add_argument(
"--vae_model",
default="stabilityai/sd-vae-ft-ema",
type=str,
required=False,
help="Path to pretrained VAE model, either stabilityai/sd-vae-ft-mse or stabilityai/sd-vae-ft-ema.",
)
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted pipeline or not."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the output pipeline."
)
args = parser.parse_args()
main(args)
| diffusers-main | scripts/convert_dit_to_diffusers.py |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
# *Only* converts the UNet, VAE, and Text Encoder.
# Does not convert optimizer state or any other thing.
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def convert_unet_state_dict(unet_state_dict):
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
vae_conversion_map = [
# (stable-diffusion, HF Diffusers)
("nin_shortcut", "conv_shortcut"),
("norm_out", "conv_norm_out"),
("mid.attn_1.", "mid_block.attentions.0."),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
sd_down_prefix = f"encoder.down.{i}.block.{j}."
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
sd_downsample_prefix = f"down.{i}.downsample."
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"up.{3-i}.upsample."
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{i}."
sd_mid_res_prefix = f"mid.block_{i+1}."
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
vae_conversion_map_attn = [
# (stable-diffusion, HF Diffusers)
("norm.", "group_norm."),
("q.", "query."),
("k.", "key."),
("v.", "value."),
("proj_out.", "proj_attn."),
]
def reshape_weight_for_sd(w):
# convert HF linear weights to SD conv2d weights
return w.reshape(*w.shape, 1, 1)
def convert_vae_state_dict(vae_state_dict):
mapping = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
weights_to_convert = ["q", "k", "v", "proj_out"]
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
print(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v)
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
textenc_conversion_lst = [
# (stable-diffusion, HF Diffusers)
("resblocks.", "text_model.encoder.layers."),
("ln_1", "layer_norm1"),
("ln_2", "layer_norm2"),
(".c_fc.", ".fc1."),
(".c_proj.", ".fc2."),
(".attn", ".self_attn"),
("ln_final.", "transformer.text_model.final_layer_norm."),
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
code2idx = {"q": 0, "k": 1, "v": 2}
def convert_text_enc_state_dict_v20(text_enc_dict):
new_state_dict = {}
capture_qkv_weight = {}
capture_qkv_bias = {}
for k, v in text_enc_dict.items():
if (
k.endswith(".self_attn.q_proj.weight")
or k.endswith(".self_attn.k_proj.weight")
or k.endswith(".self_attn.v_proj.weight")
):
k_pre = k[: -len(".q_proj.weight")]
k_code = k[-len("q_proj.weight")]
if k_pre not in capture_qkv_weight:
capture_qkv_weight[k_pre] = [None, None, None]
capture_qkv_weight[k_pre][code2idx[k_code]] = v
continue
if (
k.endswith(".self_attn.q_proj.bias")
or k.endswith(".self_attn.k_proj.bias")
or k.endswith(".self_attn.v_proj.bias")
):
k_pre = k[: -len(".q_proj.bias")]
k_code = k[-len("q_proj.bias")]
if k_pre not in capture_qkv_bias:
capture_qkv_bias[k_pre] = [None, None, None]
capture_qkv_bias[k_pre][code2idx[k_code]] = v
continue
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
new_state_dict[relabelled_key] = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
return new_state_dict
def convert_text_enc_state_dict(text_enc_dict):
return text_enc_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
)
args = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
unet_state_dict = load_file(unet_path, device="cpu")
else:
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
unet_state_dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
vae_state_dict = load_file(vae_path, device="cpu")
else:
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
vae_state_dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
text_enc_dict = load_file(text_enc_path, device="cpu")
else:
text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(unet_state_dict)
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
vae_state_dict = convert_vae_state_dict(vae_state_dict)
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_v20_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
state_dict = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
state_dict = {"state_dict": state_dict}
torch.save(state_dict, args.checkpoint_path)
| diffusers-main | scripts/convert_diffusers_to_original_stable_diffusion.py |
# Run inside root directory of official source code: https://github.com/dome272/wuerstchen/
import os
import torch
from transformers import AutoTokenizer, CLIPTextModel
from vqgan import VQModel
from diffusers import (
DDPMWuerstchenScheduler,
WuerstchenCombinedPipeline,
WuerstchenDecoderPipeline,
WuerstchenPriorPipeline,
)
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt, WuerstchenPrior
model_path = "models/"
device = "cpu"
paella_vqmodel = VQModel()
state_dict = torch.load(os.path.join(model_path, "vqgan_f4_v1_500k.pt"), map_location=device)["state_dict"]
paella_vqmodel.load_state_dict(state_dict)
state_dict["vquantizer.embedding.weight"] = state_dict["vquantizer.codebook.weight"]
state_dict.pop("vquantizer.codebook.weight")
vqmodel = PaellaVQModel(num_vq_embeddings=paella_vqmodel.codebook_size, latent_channels=paella_vqmodel.c_latent)
vqmodel.load_state_dict(state_dict)
# Clip Text encoder and tokenizer
text_encoder = CLIPTextModel.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
# Generator
gen_text_encoder = CLIPTextModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K").to("cpu")
gen_tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
orig_state_dict = torch.load(os.path.join(model_path, "model_v2_stage_b.pt"), map_location=device)["state_dict"]
state_dict = {}
for key in orig_state_dict.keys():
if key.endswith("in_proj_weight"):
weights = orig_state_dict[key].chunk(3, 0)
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
elif key.endswith("in_proj_bias"):
weights = orig_state_dict[key].chunk(3, 0)
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
elif key.endswith("out_proj.weight"):
weights = orig_state_dict[key]
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
elif key.endswith("out_proj.bias"):
weights = orig_state_dict[key]
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
else:
state_dict[key] = orig_state_dict[key]
deocder = WuerstchenDiffNeXt()
deocder.load_state_dict(state_dict)
# Prior
orig_state_dict = torch.load(os.path.join(model_path, "model_v3_stage_c.pt"), map_location=device)["ema_state_dict"]
state_dict = {}
for key in orig_state_dict.keys():
if key.endswith("in_proj_weight"):
weights = orig_state_dict[key].chunk(3, 0)
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
elif key.endswith("in_proj_bias"):
weights = orig_state_dict[key].chunk(3, 0)
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
elif key.endswith("out_proj.weight"):
weights = orig_state_dict[key]
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
elif key.endswith("out_proj.bias"):
weights = orig_state_dict[key]
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
else:
state_dict[key] = orig_state_dict[key]
prior_model = WuerstchenPrior(c_in=16, c=1536, c_cond=1280, c_r=64, depth=32, nhead=24).to(device)
prior_model.load_state_dict(state_dict)
# scheduler
scheduler = DDPMWuerstchenScheduler()
# Prior pipeline
prior_pipeline = WuerstchenPriorPipeline(
prior=prior_model, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler
)
prior_pipeline.save_pretrained("warp-ai/wuerstchen-prior")
decoder_pipeline = WuerstchenDecoderPipeline(
text_encoder=gen_text_encoder, tokenizer=gen_tokenizer, vqgan=vqmodel, decoder=deocder, scheduler=scheduler
)
decoder_pipeline.save_pretrained("warp-ai/wuerstchen")
# Wuerstchen pipeline
wuerstchen_pipeline = WuerstchenCombinedPipeline(
# Decoder
text_encoder=gen_text_encoder,
tokenizer=gen_tokenizer,
decoder=deocder,
scheduler=scheduler,
vqgan=vqmodel,
# Prior
prior_tokenizer=tokenizer,
prior_text_encoder=text_encoder,
prior=prior_model,
prior_scheduler=scheduler,
)
wuerstchen_pipeline.save_pretrained("warp-ai/WuerstchenCombinedPipeline")
| diffusers-main | scripts/convert_wuerstchen.py |
import argparse
import tempfile
import torch
from accelerate import load_checkpoint_and_dispatch
from diffusers.models.prior_transformer import PriorTransformer
from diffusers.pipelines.shap_e import ShapERenderer
"""
Example - From the diffusers root directory:
Download weights:
```sh
$ wget "https://openaipublic.azureedge.net/main/shap-e/text_cond.pt"
```
Convert the model:
```sh
$ python scripts/convert_shap_e_to_diffusers.py \
--prior_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/text_cond.pt \
--prior_image_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/image_cond.pt \
--transmitter_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/transmitter.pt\
--dump_path /home/yiyi_huggingface_co/model_repo/shap-e-img2img/shap_e_renderer\
--debug renderer
```
"""
# prior
PRIOR_ORIGINAL_PREFIX = "wrapped"
PRIOR_CONFIG = {
"num_attention_heads": 16,
"attention_head_dim": 1024 // 16,
"num_layers": 24,
"embedding_dim": 1024,
"num_embeddings": 1024,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
"time_embed_dim": 1024 * 4,
"embedding_proj_dim": 768,
"clip_embed_dim": 1024 * 2,
}
def prior_model_from_original_config():
model = PriorTransformer(**PRIOR_CONFIG)
return model
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.c_fc -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.bias"],
}
)
# <original>.time_embed.c_proj -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.bias"],
}
)
# <original>.input_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.bias"],
}
)
# <original>.clip_emb -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.bias"],
}
)
# <original>.pos_emb -> <diffusers>.positional_embedding
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.pos_emb"][None, :]})
# <original>.ln_pre -> <diffusers>.norm_in
diffusers_checkpoint.update(
{
"norm_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.weight"],
"norm_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.bias"],
}
)
# <original>.backbone.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.backbone.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.ln_post -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.bias"],
}
)
# <original>.output_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.bias"],
}
)
return diffusers_checkpoint
def prior_attention_to_diffusers(
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim
):
diffusers_checkpoint = {}
# <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"],
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"],
split=3,
chunk_size=attention_head_dim,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.c_proj -> <diffusers>.to_out.0
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"],
}
)
return diffusers_checkpoint
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix):
diffusers_checkpoint = {
# <original>.c_fc -> <diffusers>.net.0.proj
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"],
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"],
# <original>.c_proj -> <diffusers>.net.2
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"],
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"],
}
return diffusers_checkpoint
# done prior
# prior_image (only slightly different from prior)
PRIOR_IMAGE_ORIGINAL_PREFIX = "wrapped"
# Uses default arguments
PRIOR_IMAGE_CONFIG = {
"num_attention_heads": 8,
"attention_head_dim": 1024 // 8,
"num_layers": 24,
"embedding_dim": 1024,
"num_embeddings": 1024,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
"time_embed_dim": 1024 * 4,
"embedding_proj_dim": 1024,
"clip_embed_dim": 1024 * 2,
}
def prior_image_model_from_original_config():
model = PriorTransformer(**PRIOR_IMAGE_CONFIG)
return model
def prior_image_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.c_fc -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.bias"],
}
)
# <original>.time_embed.c_proj -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.bias"],
}
)
# <original>.input_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.bias"],
}
)
# <original>.clip_embed.0 -> <diffusers>.embedding_proj_norm
diffusers_checkpoint.update(
{
"embedding_proj_norm.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.weight"],
"embedding_proj_norm.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.bias"],
}
)
# <original>..clip_embed.1 -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.bias"],
}
)
# <original>.pos_emb -> <diffusers>.positional_embedding
diffusers_checkpoint.update(
{"positional_embedding": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.pos_emb"][None, :]}
)
# <original>.ln_pre -> <diffusers>.norm_in
diffusers_checkpoint.update(
{
"norm_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.weight"],
"norm_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.bias"],
}
)
# <original>.backbone.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.backbone.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.ln_post -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.bias"],
}
)
# <original>.output_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.bias"],
}
)
return diffusers_checkpoint
# done prior_image
# renderer
## create the lookup table for marching cubes method used in MeshDecoder
MC_TABLE = [
[],
[[0, 1, 0, 2, 0, 4]],
[[1, 0, 1, 5, 1, 3]],
[[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2]],
[[2, 0, 2, 3, 2, 6]],
[[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4]],
[[1, 0, 1, 5, 1, 3], [2, 6, 0, 2, 3, 2]],
[[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4]],
[[3, 1, 3, 7, 3, 2]],
[[0, 2, 0, 4, 0, 1], [3, 7, 2, 3, 1, 3]],
[[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0]],
[[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5]],
[[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6]],
[[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6]],
[[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7]],
[[0, 4, 1, 5, 3, 7], [0, 4, 3, 7, 2, 6]],
[[4, 0, 4, 6, 4, 5]],
[[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1]],
[[1, 5, 1, 3, 1, 0], [4, 6, 5, 4, 0, 4]],
[[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2]],
[[2, 0, 2, 3, 2, 6], [4, 5, 0, 4, 6, 4]],
[[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1]],
[[2, 6, 2, 0, 3, 2], [1, 0, 1, 5, 3, 1], [6, 4, 5, 4, 0, 4]],
[[1, 3, 5, 4, 1, 5], [1, 3, 4, 6, 5, 4], [1, 3, 3, 2, 4, 6], [3, 2, 2, 6, 4, 6]],
[[3, 1, 3, 7, 3, 2], [6, 4, 5, 4, 0, 4]],
[[4, 5, 0, 1, 4, 6], [0, 1, 0, 2, 4, 6], [7, 3, 2, 3, 1, 3]],
[[3, 2, 1, 0, 3, 7], [1, 0, 1, 5, 3, 7], [6, 4, 5, 4, 0, 4]],
[[3, 7, 3, 2, 1, 5], [3, 2, 6, 4, 1, 5], [1, 5, 6, 4, 5, 4], [3, 2, 2, 0, 6, 4]],
[[3, 7, 2, 6, 3, 1], [2, 6, 2, 0, 3, 1], [5, 4, 0, 4, 6, 4]],
[[1, 0, 1, 3, 5, 4], [1, 3, 2, 6, 5, 4], [1, 3, 3, 7, 2, 6], [5, 4, 2, 6, 4, 6]],
[[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7], [4, 5, 0, 4, 4, 6]],
[[6, 2, 4, 6, 4, 5], [4, 5, 5, 1, 6, 2], [6, 2, 5, 1, 7, 3]],
[[5, 1, 5, 4, 5, 7]],
[[0, 1, 0, 2, 0, 4], [5, 7, 1, 5, 4, 5]],
[[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3]],
[[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3]],
[[2, 0, 2, 3, 2, 6], [7, 5, 1, 5, 4, 5]],
[[2, 6, 0, 4, 2, 3], [0, 4, 0, 1, 2, 3], [7, 5, 1, 5, 4, 5]],
[[5, 7, 1, 3, 5, 4], [1, 3, 1, 0, 5, 4], [6, 2, 0, 2, 3, 2]],
[[3, 1, 3, 2, 7, 5], [3, 2, 0, 4, 7, 5], [3, 2, 2, 6, 0, 4], [7, 5, 0, 4, 5, 4]],
[[3, 7, 3, 2, 3, 1], [5, 4, 7, 5, 1, 5]],
[[0, 4, 0, 1, 2, 0], [3, 1, 3, 7, 2, 3], [4, 5, 7, 5, 1, 5]],
[[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0]],
[[0, 4, 2, 3, 0, 2], [0, 4, 3, 7, 2, 3], [0, 4, 4, 5, 3, 7], [4, 5, 5, 7, 3, 7]],
[[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6], [4, 5, 7, 5, 1, 5]],
[[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6], [5, 7, 1, 5, 5, 4]],
[[2, 6, 2, 0, 3, 7], [2, 0, 4, 5, 3, 7], [3, 7, 4, 5, 7, 5], [2, 0, 0, 1, 4, 5]],
[[4, 0, 5, 4, 5, 7], [5, 7, 7, 3, 4, 0], [4, 0, 7, 3, 6, 2]],
[[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0]],
[[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6]],
[[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7]],
[[0, 2, 4, 6, 5, 7], [0, 2, 5, 7, 1, 3]],
[[5, 1, 4, 0, 5, 7], [4, 0, 4, 6, 5, 7], [3, 2, 6, 2, 0, 2]],
[[2, 3, 2, 6, 0, 1], [2, 6, 7, 5, 0, 1], [0, 1, 7, 5, 1, 5], [2, 6, 6, 4, 7, 5]],
[[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7], [2, 6, 0, 2, 2, 3]],
[[3, 1, 2, 3, 2, 6], [2, 6, 6, 4, 3, 1], [3, 1, 6, 4, 7, 5]],
[[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0], [2, 3, 1, 3, 7, 3]],
[[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6], [3, 2, 1, 3, 3, 7]],
[[0, 1, 0, 4, 2, 3], [0, 4, 5, 7, 2, 3], [0, 4, 4, 6, 5, 7], [2, 3, 5, 7, 3, 7]],
[[7, 5, 3, 7, 3, 2], [3, 2, 2, 0, 7, 5], [7, 5, 2, 0, 6, 4]],
[[0, 4, 4, 6, 5, 7], [0, 4, 5, 7, 1, 5], [0, 2, 1, 3, 3, 7], [3, 7, 2, 6, 0, 2]],
[
[3, 1, 7, 3, 6, 2],
[6, 2, 0, 1, 3, 1],
[6, 4, 0, 1, 6, 2],
[6, 4, 5, 1, 0, 1],
[6, 4, 7, 5, 5, 1],
],
[
[4, 0, 6, 4, 7, 5],
[7, 5, 1, 0, 4, 0],
[7, 3, 1, 0, 7, 5],
[7, 3, 2, 0, 1, 0],
[7, 3, 6, 2, 2, 0],
],
[[7, 3, 6, 2, 6, 4], [7, 5, 7, 3, 6, 4]],
[[6, 2, 6, 7, 6, 4]],
[[0, 4, 0, 1, 0, 2], [6, 7, 4, 6, 2, 6]],
[[1, 0, 1, 5, 1, 3], [7, 6, 4, 6, 2, 6]],
[[1, 3, 0, 2, 1, 5], [0, 2, 0, 4, 1, 5], [7, 6, 4, 6, 2, 6]],
[[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0]],
[[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3]],
[[6, 4, 2, 0, 6, 7], [2, 0, 2, 3, 6, 7], [5, 1, 3, 1, 0, 1]],
[[1, 5, 1, 3, 0, 4], [1, 3, 7, 6, 0, 4], [0, 4, 7, 6, 4, 6], [1, 3, 3, 2, 7, 6]],
[[3, 2, 3, 1, 3, 7], [6, 4, 2, 6, 7, 6]],
[[3, 7, 3, 2, 1, 3], [0, 2, 0, 4, 1, 0], [7, 6, 4, 6, 2, 6]],
[[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0], [4, 6, 2, 6, 7, 6]],
[[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5], [6, 4, 2, 6, 6, 7]],
[[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0]],
[[0, 1, 4, 6, 0, 4], [0, 1, 6, 7, 4, 6], [0, 1, 1, 3, 6, 7], [1, 3, 3, 7, 6, 7]],
[[0, 2, 0, 1, 4, 6], [0, 1, 3, 7, 4, 6], [0, 1, 1, 5, 3, 7], [4, 6, 3, 7, 6, 7]],
[[7, 3, 6, 7, 6, 4], [6, 4, 4, 0, 7, 3], [7, 3, 4, 0, 5, 1]],
[[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5]],
[[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5]],
[[6, 7, 4, 5, 6, 2], [4, 5, 4, 0, 6, 2], [3, 1, 0, 1, 5, 1]],
[[2, 0, 2, 6, 3, 1], [2, 6, 4, 5, 3, 1], [2, 6, 6, 7, 4, 5], [3, 1, 4, 5, 1, 5]],
[[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7]],
[[0, 1, 2, 3, 6, 7], [0, 1, 6, 7, 4, 5]],
[[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7], [1, 3, 0, 1, 1, 5]],
[[5, 4, 1, 5, 1, 3], [1, 3, 3, 2, 5, 4], [5, 4, 3, 2, 7, 6]],
[[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5], [1, 3, 7, 3, 2, 3]],
[[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5], [3, 7, 2, 3, 3, 1]],
[[0, 1, 1, 5, 3, 7], [0, 1, 3, 7, 2, 3], [0, 4, 2, 6, 6, 7], [6, 7, 4, 5, 0, 4]],
[
[6, 2, 7, 6, 5, 4],
[5, 4, 0, 2, 6, 2],
[5, 1, 0, 2, 5, 4],
[5, 1, 3, 2, 0, 2],
[5, 1, 7, 3, 3, 2],
],
[[3, 1, 3, 7, 2, 0], [3, 7, 5, 4, 2, 0], [2, 0, 5, 4, 0, 4], [3, 7, 7, 6, 5, 4]],
[[1, 0, 3, 1, 3, 7], [3, 7, 7, 6, 1, 0], [1, 0, 7, 6, 5, 4]],
[
[1, 0, 5, 1, 7, 3],
[7, 3, 2, 0, 1, 0],
[7, 6, 2, 0, 7, 3],
[7, 6, 4, 0, 2, 0],
[7, 6, 5, 4, 4, 0],
],
[[7, 6, 5, 4, 5, 1], [7, 3, 7, 6, 5, 1]],
[[5, 7, 5, 1, 5, 4], [6, 2, 7, 6, 4, 6]],
[[0, 2, 0, 4, 1, 0], [5, 4, 5, 7, 1, 5], [2, 6, 7, 6, 4, 6]],
[[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3], [2, 6, 7, 6, 4, 6]],
[[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3], [6, 7, 4, 6, 6, 2]],
[[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0], [1, 5, 4, 5, 7, 5]],
[[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3], [5, 1, 4, 5, 5, 7]],
[[0, 2, 2, 3, 6, 7], [0, 2, 6, 7, 4, 6], [0, 1, 4, 5, 5, 7], [5, 7, 1, 3, 0, 1]],
[
[5, 4, 7, 5, 3, 1],
[3, 1, 0, 4, 5, 4],
[3, 2, 0, 4, 3, 1],
[3, 2, 6, 4, 0, 4],
[3, 2, 7, 6, 6, 4],
],
[[5, 4, 5, 7, 1, 5], [3, 7, 3, 2, 1, 3], [4, 6, 2, 6, 7, 6]],
[[1, 0, 0, 2, 0, 4], [1, 5, 5, 4, 5, 7], [3, 2, 1, 3, 3, 7], [2, 6, 7, 6, 4, 6]],
[[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0], [6, 2, 7, 6, 6, 4]],
[
[0, 4, 2, 3, 0, 2],
[0, 4, 3, 7, 2, 3],
[0, 4, 4, 5, 3, 7],
[4, 5, 5, 7, 3, 7],
[6, 7, 4, 6, 2, 6],
],
[[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0], [5, 4, 7, 5, 5, 1]],
[
[0, 1, 4, 6, 0, 4],
[0, 1, 6, 7, 4, 6],
[0, 1, 1, 3, 6, 7],
[1, 3, 3, 7, 6, 7],
[5, 7, 1, 5, 4, 5],
],
[
[6, 7, 4, 6, 0, 2],
[0, 2, 3, 7, 6, 7],
[0, 1, 3, 7, 0, 2],
[0, 1, 5, 7, 3, 7],
[0, 1, 4, 5, 5, 7],
],
[[4, 0, 6, 7, 4, 6], [4, 0, 7, 3, 6, 7], [4, 0, 5, 7, 7, 3], [4, 5, 5, 7, 4, 0]],
[[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0]],
[[0, 2, 1, 5, 0, 1], [0, 2, 5, 7, 1, 5], [0, 2, 2, 6, 5, 7], [2, 6, 6, 7, 5, 7]],
[[1, 3, 1, 0, 5, 7], [1, 0, 2, 6, 5, 7], [5, 7, 2, 6, 7, 6], [1, 0, 0, 4, 2, 6]],
[[2, 0, 6, 2, 6, 7], [6, 7, 7, 5, 2, 0], [2, 0, 7, 5, 3, 1]],
[[0, 4, 0, 2, 1, 5], [0, 2, 6, 7, 1, 5], [0, 2, 2, 3, 6, 7], [1, 5, 6, 7, 5, 7]],
[[7, 6, 5, 7, 5, 1], [5, 1, 1, 0, 7, 6], [7, 6, 1, 0, 3, 2]],
[
[2, 0, 3, 2, 7, 6],
[7, 6, 4, 0, 2, 0],
[7, 5, 4, 0, 7, 6],
[7, 5, 1, 0, 4, 0],
[7, 5, 3, 1, 1, 0],
],
[[7, 5, 3, 1, 3, 2], [7, 6, 7, 5, 3, 2]],
[[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0], [3, 1, 7, 3, 3, 2]],
[
[0, 2, 1, 5, 0, 1],
[0, 2, 5, 7, 1, 5],
[0, 2, 2, 6, 5, 7],
[2, 6, 6, 7, 5, 7],
[3, 7, 2, 3, 1, 3],
],
[
[3, 7, 2, 3, 0, 1],
[0, 1, 5, 7, 3, 7],
[0, 4, 5, 7, 0, 1],
[0, 4, 6, 7, 5, 7],
[0, 4, 2, 6, 6, 7],
],
[[2, 0, 3, 7, 2, 3], [2, 0, 7, 5, 3, 7], [2, 0, 6, 7, 7, 5], [2, 6, 6, 7, 2, 0]],
[
[5, 7, 1, 5, 0, 4],
[0, 4, 6, 7, 5, 7],
[0, 2, 6, 7, 0, 4],
[0, 2, 3, 7, 6, 7],
[0, 2, 1, 3, 3, 7],
],
[[1, 0, 5, 7, 1, 5], [1, 0, 7, 6, 5, 7], [1, 0, 3, 7, 7, 6], [1, 3, 3, 7, 1, 0]],
[[0, 2, 0, 1, 0, 4], [3, 7, 6, 7, 5, 7]],
[[7, 5, 7, 3, 7, 6]],
[[7, 3, 7, 5, 7, 6]],
[[0, 1, 0, 2, 0, 4], [6, 7, 3, 7, 5, 7]],
[[1, 3, 1, 0, 1, 5], [7, 6, 3, 7, 5, 7]],
[[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2], [6, 7, 3, 7, 5, 7]],
[[2, 6, 2, 0, 2, 3], [7, 5, 6, 7, 3, 7]],
[[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4], [5, 7, 6, 7, 3, 7]],
[[1, 5, 1, 3, 0, 1], [2, 3, 2, 6, 0, 2], [5, 7, 6, 7, 3, 7]],
[[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4], [7, 6, 3, 7, 7, 5]],
[[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2]],
[[7, 6, 3, 2, 7, 5], [3, 2, 3, 1, 7, 5], [4, 0, 1, 0, 2, 0]],
[[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2]],
[[2, 3, 2, 0, 6, 7], [2, 0, 1, 5, 6, 7], [2, 0, 0, 4, 1, 5], [6, 7, 1, 5, 7, 5]],
[[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1]],
[[0, 4, 0, 1, 2, 6], [0, 1, 5, 7, 2, 6], [2, 6, 5, 7, 6, 7], [0, 1, 1, 3, 5, 7]],
[[1, 5, 0, 2, 1, 0], [1, 5, 2, 6, 0, 2], [1, 5, 5, 7, 2, 6], [5, 7, 7, 6, 2, 6]],
[[5, 1, 7, 5, 7, 6], [7, 6, 6, 2, 5, 1], [5, 1, 6, 2, 4, 0]],
[[4, 5, 4, 0, 4, 6], [7, 3, 5, 7, 6, 7]],
[[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1], [3, 7, 5, 7, 6, 7]],
[[4, 6, 4, 5, 0, 4], [1, 5, 1, 3, 0, 1], [6, 7, 3, 7, 5, 7]],
[[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2], [7, 3, 5, 7, 7, 6]],
[[2, 3, 2, 6, 0, 2], [4, 6, 4, 5, 0, 4], [3, 7, 5, 7, 6, 7]],
[[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1], [7, 5, 6, 7, 7, 3]],
[[0, 1, 1, 5, 1, 3], [0, 2, 2, 3, 2, 6], [4, 5, 0, 4, 4, 6], [5, 7, 6, 7, 3, 7]],
[
[1, 3, 5, 4, 1, 5],
[1, 3, 4, 6, 5, 4],
[1, 3, 3, 2, 4, 6],
[3, 2, 2, 6, 4, 6],
[7, 6, 3, 7, 5, 7],
],
[[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2], [0, 4, 6, 4, 5, 4]],
[[1, 0, 0, 2, 4, 6], [1, 0, 4, 6, 5, 4], [1, 3, 5, 7, 7, 6], [7, 6, 3, 2, 1, 3]],
[[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2], [4, 6, 5, 4, 4, 0]],
[
[7, 5, 6, 7, 2, 3],
[2, 3, 1, 5, 7, 5],
[2, 0, 1, 5, 2, 3],
[2, 0, 4, 5, 1, 5],
[2, 0, 6, 4, 4, 5],
],
[[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1], [4, 0, 6, 4, 4, 5]],
[
[4, 6, 5, 4, 1, 0],
[1, 0, 2, 6, 4, 6],
[1, 3, 2, 6, 1, 0],
[1, 3, 7, 6, 2, 6],
[1, 3, 5, 7, 7, 6],
],
[
[1, 5, 0, 2, 1, 0],
[1, 5, 2, 6, 0, 2],
[1, 5, 5, 7, 2, 6],
[5, 7, 7, 6, 2, 6],
[4, 6, 5, 4, 0, 4],
],
[[5, 1, 4, 6, 5, 4], [5, 1, 6, 2, 4, 6], [5, 1, 7, 6, 6, 2], [5, 7, 7, 6, 5, 1]],
[[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1]],
[[7, 3, 5, 1, 7, 6], [5, 1, 5, 4, 7, 6], [2, 0, 4, 0, 1, 0]],
[[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4]],
[[0, 2, 0, 4, 1, 3], [0, 4, 6, 7, 1, 3], [1, 3, 6, 7, 3, 7], [0, 4, 4, 5, 6, 7]],
[[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1], [0, 2, 3, 2, 6, 2]],
[[1, 5, 5, 4, 7, 6], [1, 5, 7, 6, 3, 7], [1, 0, 3, 2, 2, 6], [2, 6, 0, 4, 1, 0]],
[[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4], [2, 0, 3, 2, 2, 6]],
[
[2, 3, 6, 2, 4, 0],
[4, 0, 1, 3, 2, 3],
[4, 5, 1, 3, 4, 0],
[4, 5, 7, 3, 1, 3],
[4, 5, 6, 7, 7, 3],
],
[[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6]],
[[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6], [0, 4, 1, 0, 0, 2]],
[[1, 0, 5, 4, 7, 6], [1, 0, 7, 6, 3, 2]],
[[2, 3, 0, 2, 0, 4], [0, 4, 4, 5, 2, 3], [2, 3, 4, 5, 6, 7]],
[[1, 3, 1, 5, 0, 2], [1, 5, 7, 6, 0, 2], [1, 5, 5, 4, 7, 6], [0, 2, 7, 6, 2, 6]],
[
[5, 1, 4, 5, 6, 7],
[6, 7, 3, 1, 5, 1],
[6, 2, 3, 1, 6, 7],
[6, 2, 0, 1, 3, 1],
[6, 2, 4, 0, 0, 1],
],
[[6, 7, 2, 6, 2, 0], [2, 0, 0, 1, 6, 7], [6, 7, 0, 1, 4, 5]],
[[6, 2, 4, 0, 4, 5], [6, 7, 6, 2, 4, 5]],
[[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1]],
[[1, 5, 1, 0, 3, 7], [1, 0, 4, 6, 3, 7], [1, 0, 0, 2, 4, 6], [3, 7, 4, 6, 7, 6]],
[[1, 0, 3, 7, 1, 3], [1, 0, 7, 6, 3, 7], [1, 0, 0, 4, 7, 6], [0, 4, 4, 6, 7, 6]],
[[6, 4, 7, 6, 7, 3], [7, 3, 3, 1, 6, 4], [6, 4, 3, 1, 2, 0]],
[[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1], [2, 3, 6, 2, 2, 0]],
[
[7, 6, 3, 7, 1, 5],
[1, 5, 4, 6, 7, 6],
[1, 0, 4, 6, 1, 5],
[1, 0, 2, 6, 4, 6],
[1, 0, 3, 2, 2, 6],
],
[
[1, 0, 3, 7, 1, 3],
[1, 0, 7, 6, 3, 7],
[1, 0, 0, 4, 7, 6],
[0, 4, 4, 6, 7, 6],
[2, 6, 0, 2, 3, 2],
],
[[3, 1, 7, 6, 3, 7], [3, 1, 6, 4, 7, 6], [3, 1, 2, 6, 6, 4], [3, 2, 2, 6, 3, 1]],
[[3, 2, 3, 1, 7, 6], [3, 1, 0, 4, 7, 6], [7, 6, 0, 4, 6, 4], [3, 1, 1, 5, 0, 4]],
[
[0, 1, 2, 0, 6, 4],
[6, 4, 5, 1, 0, 1],
[6, 7, 5, 1, 6, 4],
[6, 7, 3, 1, 5, 1],
[6, 7, 2, 3, 3, 1],
],
[[0, 1, 4, 0, 4, 6], [4, 6, 6, 7, 0, 1], [0, 1, 6, 7, 2, 3]],
[[6, 7, 2, 3, 2, 0], [6, 4, 6, 7, 2, 0]],
[
[2, 6, 0, 2, 1, 3],
[1, 3, 7, 6, 2, 6],
[1, 5, 7, 6, 1, 3],
[1, 5, 4, 6, 7, 6],
[1, 5, 0, 4, 4, 6],
],
[[1, 5, 1, 0, 1, 3], [4, 6, 7, 6, 2, 6]],
[[0, 1, 2, 6, 0, 2], [0, 1, 6, 7, 2, 6], [0, 1, 4, 6, 6, 7], [0, 4, 4, 6, 0, 1]],
[[6, 7, 6, 2, 6, 4]],
[[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4]],
[[7, 5, 6, 4, 7, 3], [6, 4, 6, 2, 7, 3], [1, 0, 2, 0, 4, 0]],
[[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4], [0, 1, 5, 1, 3, 1]],
[[2, 0, 0, 4, 1, 5], [2, 0, 1, 5, 3, 1], [2, 6, 3, 7, 7, 5], [7, 5, 6, 4, 2, 6]],
[[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4]],
[[3, 2, 3, 7, 1, 0], [3, 7, 6, 4, 1, 0], [3, 7, 7, 5, 6, 4], [1, 0, 6, 4, 0, 4]],
[[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4], [1, 5, 3, 1, 1, 0]],
[
[7, 3, 5, 7, 4, 6],
[4, 6, 2, 3, 7, 3],
[4, 0, 2, 3, 4, 6],
[4, 0, 1, 3, 2, 3],
[4, 0, 5, 1, 1, 3],
],
[[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5]],
[[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5], [0, 1, 2, 0, 0, 4]],
[[1, 0, 1, 5, 3, 2], [1, 5, 4, 6, 3, 2], [3, 2, 4, 6, 2, 6], [1, 5, 5, 7, 4, 6]],
[
[0, 2, 4, 0, 5, 1],
[5, 1, 3, 2, 0, 2],
[5, 7, 3, 2, 5, 1],
[5, 7, 6, 2, 3, 2],
[5, 7, 4, 6, 6, 2],
],
[[2, 0, 3, 1, 7, 5], [2, 0, 7, 5, 6, 4]],
[[4, 6, 0, 4, 0, 1], [0, 1, 1, 3, 4, 6], [4, 6, 1, 3, 5, 7]],
[[0, 2, 1, 0, 1, 5], [1, 5, 5, 7, 0, 2], [0, 2, 5, 7, 4, 6]],
[[5, 7, 4, 6, 4, 0], [5, 1, 5, 7, 4, 0]],
[[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2]],
[[0, 1, 0, 2, 4, 5], [0, 2, 3, 7, 4, 5], [4, 5, 3, 7, 5, 7], [0, 2, 2, 6, 3, 7]],
[[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2], [1, 0, 5, 1, 1, 3]],
[
[1, 5, 3, 1, 2, 0],
[2, 0, 4, 5, 1, 5],
[2, 6, 4, 5, 2, 0],
[2, 6, 7, 5, 4, 5],
[2, 6, 3, 7, 7, 5],
],
[[2, 3, 0, 4, 2, 0], [2, 3, 4, 5, 0, 4], [2, 3, 3, 7, 4, 5], [3, 7, 7, 5, 4, 5]],
[[3, 2, 7, 3, 7, 5], [7, 5, 5, 4, 3, 2], [3, 2, 5, 4, 1, 0]],
[
[2, 3, 0, 4, 2, 0],
[2, 3, 4, 5, 0, 4],
[2, 3, 3, 7, 4, 5],
[3, 7, 7, 5, 4, 5],
[1, 5, 3, 1, 0, 1],
],
[[3, 2, 1, 5, 3, 1], [3, 2, 5, 4, 1, 5], [3, 2, 7, 5, 5, 4], [3, 7, 7, 5, 3, 2]],
[[2, 6, 2, 3, 0, 4], [2, 3, 7, 5, 0, 4], [2, 3, 3, 1, 7, 5], [0, 4, 7, 5, 4, 5]],
[
[3, 2, 1, 3, 5, 7],
[5, 7, 6, 2, 3, 2],
[5, 4, 6, 2, 5, 7],
[5, 4, 0, 2, 6, 2],
[5, 4, 1, 0, 0, 2],
],
[
[4, 5, 0, 4, 2, 6],
[2, 6, 7, 5, 4, 5],
[2, 3, 7, 5, 2, 6],
[2, 3, 1, 5, 7, 5],
[2, 3, 0, 1, 1, 5],
],
[[2, 3, 2, 0, 2, 6], [1, 5, 7, 5, 4, 5]],
[[5, 7, 4, 5, 4, 0], [4, 0, 0, 2, 5, 7], [5, 7, 0, 2, 1, 3]],
[[5, 4, 1, 0, 1, 3], [5, 7, 5, 4, 1, 3]],
[[0, 2, 4, 5, 0, 4], [0, 2, 5, 7, 4, 5], [0, 2, 1, 5, 5, 7], [0, 1, 1, 5, 0, 2]],
[[5, 4, 5, 1, 5, 7]],
[[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3]],
[[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3], [0, 2, 4, 0, 0, 1]],
[[3, 7, 3, 1, 2, 6], [3, 1, 5, 4, 2, 6], [3, 1, 1, 0, 5, 4], [2, 6, 5, 4, 6, 4]],
[
[6, 4, 2, 6, 3, 7],
[3, 7, 5, 4, 6, 4],
[3, 1, 5, 4, 3, 7],
[3, 1, 0, 4, 5, 4],
[3, 1, 2, 0, 0, 4],
],
[[2, 0, 2, 3, 6, 4], [2, 3, 1, 5, 6, 4], [6, 4, 1, 5, 4, 5], [2, 3, 3, 7, 1, 5]],
[
[0, 4, 1, 0, 3, 2],
[3, 2, 6, 4, 0, 4],
[3, 7, 6, 4, 3, 2],
[3, 7, 5, 4, 6, 4],
[3, 7, 1, 5, 5, 4],
],
[
[1, 3, 0, 1, 4, 5],
[4, 5, 7, 3, 1, 3],
[4, 6, 7, 3, 4, 5],
[4, 6, 2, 3, 7, 3],
[4, 6, 0, 2, 2, 3],
],
[[3, 7, 3, 1, 3, 2], [5, 4, 6, 4, 0, 4]],
[[3, 1, 2, 6, 3, 2], [3, 1, 6, 4, 2, 6], [3, 1, 1, 5, 6, 4], [1, 5, 5, 4, 6, 4]],
[
[3, 1, 2, 6, 3, 2],
[3, 1, 6, 4, 2, 6],
[3, 1, 1, 5, 6, 4],
[1, 5, 5, 4, 6, 4],
[0, 4, 1, 0, 2, 0],
],
[[4, 5, 6, 4, 6, 2], [6, 2, 2, 3, 4, 5], [4, 5, 2, 3, 0, 1]],
[[2, 3, 6, 4, 2, 6], [2, 3, 4, 5, 6, 4], [2, 3, 0, 4, 4, 5], [2, 0, 0, 4, 2, 3]],
[[1, 3, 5, 1, 5, 4], [5, 4, 4, 6, 1, 3], [1, 3, 4, 6, 0, 2]],
[[1, 3, 0, 4, 1, 0], [1, 3, 4, 6, 0, 4], [1, 3, 5, 4, 4, 6], [1, 5, 5, 4, 1, 3]],
[[4, 6, 0, 2, 0, 1], [4, 5, 4, 6, 0, 1]],
[[4, 6, 4, 0, 4, 5]],
[[4, 0, 6, 2, 7, 3], [4, 0, 7, 3, 5, 1]],
[[1, 5, 0, 1, 0, 2], [0, 2, 2, 6, 1, 5], [1, 5, 2, 6, 3, 7]],
[[3, 7, 1, 3, 1, 0], [1, 0, 0, 4, 3, 7], [3, 7, 0, 4, 2, 6]],
[[3, 1, 2, 0, 2, 6], [3, 7, 3, 1, 2, 6]],
[[0, 4, 2, 0, 2, 3], [2, 3, 3, 7, 0, 4], [0, 4, 3, 7, 1, 5]],
[[3, 7, 1, 5, 1, 0], [3, 2, 3, 7, 1, 0]],
[[0, 4, 1, 3, 0, 1], [0, 4, 3, 7, 1, 3], [0, 4, 2, 3, 3, 7], [0, 2, 2, 3, 0, 4]],
[[3, 7, 3, 1, 3, 2]],
[[2, 6, 3, 2, 3, 1], [3, 1, 1, 5, 2, 6], [2, 6, 1, 5, 0, 4]],
[[1, 5, 3, 2, 1, 3], [1, 5, 2, 6, 3, 2], [1, 5, 0, 2, 2, 6], [1, 0, 0, 2, 1, 5]],
[[2, 3, 0, 1, 0, 4], [2, 6, 2, 3, 0, 4]],
[[2, 3, 2, 0, 2, 6]],
[[1, 5, 0, 4, 0, 2], [1, 3, 1, 5, 0, 2]],
[[1, 5, 1, 0, 1, 3]],
[[0, 2, 0, 1, 0, 4]],
[],
]
def create_mc_lookup_table():
cases = torch.zeros(256, 5, 3, dtype=torch.long)
masks = torch.zeros(256, 5, dtype=torch.bool)
edge_to_index = {
(0, 1): 0,
(2, 3): 1,
(4, 5): 2,
(6, 7): 3,
(0, 2): 4,
(1, 3): 5,
(4, 6): 6,
(5, 7): 7,
(0, 4): 8,
(1, 5): 9,
(2, 6): 10,
(3, 7): 11,
}
for i, case in enumerate(MC_TABLE):
for j, tri in enumerate(case):
for k, (c1, c2) in enumerate(zip(tri[::2], tri[1::2])):
cases[i, j, k] = edge_to_index[(c1, c2) if c1 < c2 else (c2, c1)]
masks[i, j] = True
return cases, masks
RENDERER_CONFIG = {}
def renderer_model_from_original_config():
model = ShapERenderer(**RENDERER_CONFIG)
return model
RENDERER_MLP_ORIGINAL_PREFIX = "renderer.nerstf"
RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX = "encoder.params_proj"
def renderer_model_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{f"mlp.{k}": checkpoint[f"{RENDERER_MLP_ORIGINAL_PREFIX}.{k}"] for k in model.mlp.state_dict().keys()}
)
diffusers_checkpoint.update(
{
f"params_proj.{k}": checkpoint[f"{RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX}.{k}"]
for k in model.params_proj.state_dict().keys()
}
)
diffusers_checkpoint.update({"void.background": model.state_dict()["void.background"]})
cases, masks = create_mc_lookup_table()
diffusers_checkpoint.update({"mesh_decoder.cases": cases})
diffusers_checkpoint.update({"mesh_decoder.masks": masks})
return diffusers_checkpoint
# done renderer
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
assert weights[weights_biases_idx] is None
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
# done unet utils
# Driver functions
def prior(*, args, checkpoint_map_location):
print("loading prior")
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location)
prior_model = prior_model_from_original_config()
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint)
del prior_checkpoint
load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model)
print("done loading prior")
return prior_model
def prior_image(*, args, checkpoint_map_location):
print("loading prior_image")
print(f"load checkpoint from {args.prior_image_checkpoint_path}")
prior_checkpoint = torch.load(args.prior_image_checkpoint_path, map_location=checkpoint_map_location)
prior_model = prior_image_model_from_original_config()
prior_diffusers_checkpoint = prior_image_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint)
del prior_checkpoint
load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model)
print("done loading prior_image")
return prior_model
def renderer(*, args, checkpoint_map_location):
print(" loading renderer")
renderer_checkpoint = torch.load(args.transmitter_checkpoint_path, map_location=checkpoint_map_location)
renderer_model = renderer_model_from_original_config()
renderer_diffusers_checkpoint = renderer_model_original_checkpoint_to_diffusers_checkpoint(
renderer_model, renderer_checkpoint
)
del renderer_checkpoint
load_checkpoint_to_model(renderer_diffusers_checkpoint, renderer_model, strict=True)
print("done loading renderer")
return renderer_model
# prior model will expect clip_mean and clip_std, whic are missing from the state_dict
PRIOR_EXPECTED_MISSING_KEYS = ["clip_mean", "clip_std"]
def load_prior_checkpoint_to_model(checkpoint, model):
with tempfile.NamedTemporaryFile() as file:
torch.save(checkpoint, file.name)
del checkpoint
missing_keys, unexpected_keys = model.load_state_dict(torch.load(file.name), strict=False)
missing_keys = list(set(missing_keys) - set(PRIOR_EXPECTED_MISSING_KEYS))
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected keys when loading prior model: {unexpected_keys}")
if len(missing_keys) > 0:
raise ValueError(f"Missing keys when loading prior model: {missing_keys}")
def load_checkpoint_to_model(checkpoint, model, strict=False):
with tempfile.NamedTemporaryFile() as file:
torch.save(checkpoint, file.name)
del checkpoint
if strict:
model.load_state_dict(torch.load(file.name), strict=True)
else:
load_checkpoint_and_dispatch(model, file.name, device_map="auto")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--prior_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the prior checkpoint to convert.",
)
parser.add_argument(
"--prior_image_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the prior_image checkpoint to convert.",
)
parser.add_argument(
"--transmitter_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the transmitter checkpoint to convert.",
)
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
parser.add_argument(
"--debug",
default=None,
type=str,
required=False,
help="Only run a specific stage of the convert script. Used for debugging",
)
args = parser.parse_args()
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
if args.debug is not None:
print(f"debug: only executing {args.debug}")
if args.debug is None:
print("YiYi TO-DO")
elif args.debug == "prior":
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
prior_model.save_pretrained(args.dump_path)
elif args.debug == "prior_image":
prior_model = prior_image(args=args, checkpoint_map_location=checkpoint_map_location)
prior_model.save_pretrained(args.dump_path)
elif args.debug == "renderer":
renderer_model = renderer(args=args, checkpoint_map_location=checkpoint_map_location)
renderer_model.save_pretrained(args.dump_path)
else:
raise ValueError(f"unknown debug value : {args.debug}")
| diffusers-main | scripts/convert_shap_e_to_diffusers.py |
import argparse
import sys
import tensorrt as trt
def convert_models(onnx_path: str, num_controlnet: int, output_path: str, fp16: bool = False, sd_xl: bool = False):
"""
Function to convert models in stable diffusion controlnet pipeline into TensorRT format
Example:
python convert_stable_diffusion_controlnet_to_tensorrt.py
--onnx_path path-to-models-stable_diffusion/RevAnimated-v1-2-2/unet/model.onnx
--output_path path-to-models-stable_diffusion/RevAnimated-v1-2-2/unet/model.engine
--fp16
--num_controlnet 2
Example for SD XL:
python convert_stable_diffusion_controlnet_to_tensorrt.py
--onnx_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.onnx
--output_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.engine
--fp16
--num_controlnet 1
--sd_xl
Returns:
unet/model.engine
run test script in diffusers/examples/community
python test_onnx_controlnet.py
--sd_model danbrown/RevAnimated-v1-2-2
--onnx_model_dir path-to-models-stable_diffusion/RevAnimated-v1-2-2
--unet_engine_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.engine
--qr_img_path path-to-qr-code-image
"""
# UNET
if sd_xl:
batch_size = 1
unet_in_channels = 4
unet_sample_size = 64
num_tokens = 77
text_hidden_size = 2048
img_size = 512
text_embeds_shape = (2 * batch_size, 1280)
time_ids_shape = (2 * batch_size, 6)
else:
batch_size = 1
unet_in_channels = 4
unet_sample_size = 64
num_tokens = 77
text_hidden_size = 768
img_size = 512
batch_size = 1
latents_shape = (2 * batch_size, unet_in_channels, unet_sample_size, unet_sample_size)
embed_shape = (2 * batch_size, num_tokens, text_hidden_size)
controlnet_conds_shape = (num_controlnet, 2 * batch_size, 3, img_size, img_size)
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE)
TRT_BUILDER = trt.Builder(TRT_LOGGER)
TRT_RUNTIME = trt.Runtime(TRT_LOGGER)
network = TRT_BUILDER.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
onnx_parser = trt.OnnxParser(network, TRT_LOGGER)
parse_success = onnx_parser.parse_from_file(onnx_path)
for idx in range(onnx_parser.num_errors):
print(onnx_parser.get_error(idx))
if not parse_success:
sys.exit("ONNX model parsing failed")
print("Load Onnx model done")
profile = TRT_BUILDER.create_optimization_profile()
profile.set_shape("sample", latents_shape, latents_shape, latents_shape)
profile.set_shape("encoder_hidden_states", embed_shape, embed_shape, embed_shape)
profile.set_shape("controlnet_conds", controlnet_conds_shape, controlnet_conds_shape, controlnet_conds_shape)
if sd_xl:
profile.set_shape("text_embeds", text_embeds_shape, text_embeds_shape, text_embeds_shape)
profile.set_shape("time_ids", time_ids_shape, time_ids_shape, time_ids_shape)
config = TRT_BUILDER.create_builder_config()
config.add_optimization_profile(profile)
config.set_preview_feature(trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805, True)
if fp16:
config.set_flag(trt.BuilderFlag.FP16)
plan = TRT_BUILDER.build_serialized_network(network, config)
if plan is None:
sys.exit("Failed building engine")
print("Succeeded building engine")
engine = TRT_RUNTIME.deserialize_cuda_engine(plan)
## save TRT engine
with open(output_path, "wb") as f:
f.write(engine.serialize())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sd_xl", action="store_true", default=False, help="SD XL pipeline")
parser.add_argument(
"--onnx_path",
type=str,
required=True,
help="Path to the onnx checkpoint to convert",
)
parser.add_argument("--num_controlnet", type=int)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
args = parser.parse_args()
convert_models(args.onnx_path, args.num_controlnet, args.output_path, args.fp16, args.sd_xl)
| diffusers-main | scripts/convert_stable_diffusion_controlnet_to_tensorrt.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Conversion script for the T2I-Adapter checkpoints.
"""
import argparse
import torch
from diffusers import T2IAdapter
def convert_adapter(src_state, in_channels):
original_body_length = max([int(x.split(".")[1]) for x in src_state.keys() if "body." in x]) + 1
assert original_body_length == 8
# (0, 1) -> channels 1
assert src_state["body.0.block1.weight"].shape == (320, 320, 3, 3)
# (2, 3) -> channels 2
assert src_state["body.2.in_conv.weight"].shape == (640, 320, 1, 1)
# (4, 5) -> channels 3
assert src_state["body.4.in_conv.weight"].shape == (1280, 640, 1, 1)
# (6, 7) -> channels 4
assert src_state["body.6.block1.weight"].shape == (1280, 1280, 3, 3)
res_state = {
"adapter.conv_in.weight": src_state.pop("conv_in.weight"),
"adapter.conv_in.bias": src_state.pop("conv_in.bias"),
# 0.resnets.0
"adapter.body.0.resnets.0.block1.weight": src_state.pop("body.0.block1.weight"),
"adapter.body.0.resnets.0.block1.bias": src_state.pop("body.0.block1.bias"),
"adapter.body.0.resnets.0.block2.weight": src_state.pop("body.0.block2.weight"),
"adapter.body.0.resnets.0.block2.bias": src_state.pop("body.0.block2.bias"),
# 0.resnets.1
"adapter.body.0.resnets.1.block1.weight": src_state.pop("body.1.block1.weight"),
"adapter.body.0.resnets.1.block1.bias": src_state.pop("body.1.block1.bias"),
"adapter.body.0.resnets.1.block2.weight": src_state.pop("body.1.block2.weight"),
"adapter.body.0.resnets.1.block2.bias": src_state.pop("body.1.block2.bias"),
# 1
"adapter.body.1.in_conv.weight": src_state.pop("body.2.in_conv.weight"),
"adapter.body.1.in_conv.bias": src_state.pop("body.2.in_conv.bias"),
# 1.resnets.0
"adapter.body.1.resnets.0.block1.weight": src_state.pop("body.2.block1.weight"),
"adapter.body.1.resnets.0.block1.bias": src_state.pop("body.2.block1.bias"),
"adapter.body.1.resnets.0.block2.weight": src_state.pop("body.2.block2.weight"),
"adapter.body.1.resnets.0.block2.bias": src_state.pop("body.2.block2.bias"),
# 1.resnets.1
"adapter.body.1.resnets.1.block1.weight": src_state.pop("body.3.block1.weight"),
"adapter.body.1.resnets.1.block1.bias": src_state.pop("body.3.block1.bias"),
"adapter.body.1.resnets.1.block2.weight": src_state.pop("body.3.block2.weight"),
"adapter.body.1.resnets.1.block2.bias": src_state.pop("body.3.block2.bias"),
# 2
"adapter.body.2.in_conv.weight": src_state.pop("body.4.in_conv.weight"),
"adapter.body.2.in_conv.bias": src_state.pop("body.4.in_conv.bias"),
# 2.resnets.0
"adapter.body.2.resnets.0.block1.weight": src_state.pop("body.4.block1.weight"),
"adapter.body.2.resnets.0.block1.bias": src_state.pop("body.4.block1.bias"),
"adapter.body.2.resnets.0.block2.weight": src_state.pop("body.4.block2.weight"),
"adapter.body.2.resnets.0.block2.bias": src_state.pop("body.4.block2.bias"),
# 2.resnets.1
"adapter.body.2.resnets.1.block1.weight": src_state.pop("body.5.block1.weight"),
"adapter.body.2.resnets.1.block1.bias": src_state.pop("body.5.block1.bias"),
"adapter.body.2.resnets.1.block2.weight": src_state.pop("body.5.block2.weight"),
"adapter.body.2.resnets.1.block2.bias": src_state.pop("body.5.block2.bias"),
# 3.resnets.0
"adapter.body.3.resnets.0.block1.weight": src_state.pop("body.6.block1.weight"),
"adapter.body.3.resnets.0.block1.bias": src_state.pop("body.6.block1.bias"),
"adapter.body.3.resnets.0.block2.weight": src_state.pop("body.6.block2.weight"),
"adapter.body.3.resnets.0.block2.bias": src_state.pop("body.6.block2.bias"),
# 3.resnets.1
"adapter.body.3.resnets.1.block1.weight": src_state.pop("body.7.block1.weight"),
"adapter.body.3.resnets.1.block1.bias": src_state.pop("body.7.block1.bias"),
"adapter.body.3.resnets.1.block2.weight": src_state.pop("body.7.block2.weight"),
"adapter.body.3.resnets.1.block2.bias": src_state.pop("body.7.block2.bias"),
}
assert len(src_state) == 0
adapter = T2IAdapter(in_channels=in_channels, adapter_type="full_adapter")
adapter.load_state_dict(res_state)
return adapter
def convert_light_adapter(src_state):
original_body_length = max([int(x.split(".")[1]) for x in src_state.keys() if "body." in x]) + 1
assert original_body_length == 4
res_state = {
# body.0.in_conv
"adapter.body.0.in_conv.weight": src_state.pop("body.0.in_conv.weight"),
"adapter.body.0.in_conv.bias": src_state.pop("body.0.in_conv.bias"),
# body.0.resnets.0
"adapter.body.0.resnets.0.block1.weight": src_state.pop("body.0.body.0.block1.weight"),
"adapter.body.0.resnets.0.block1.bias": src_state.pop("body.0.body.0.block1.bias"),
"adapter.body.0.resnets.0.block2.weight": src_state.pop("body.0.body.0.block2.weight"),
"adapter.body.0.resnets.0.block2.bias": src_state.pop("body.0.body.0.block2.bias"),
# body.0.resnets.1
"adapter.body.0.resnets.1.block1.weight": src_state.pop("body.0.body.1.block1.weight"),
"adapter.body.0.resnets.1.block1.bias": src_state.pop("body.0.body.1.block1.bias"),
"adapter.body.0.resnets.1.block2.weight": src_state.pop("body.0.body.1.block2.weight"),
"adapter.body.0.resnets.1.block2.bias": src_state.pop("body.0.body.1.block2.bias"),
# body.0.resnets.2
"adapter.body.0.resnets.2.block1.weight": src_state.pop("body.0.body.2.block1.weight"),
"adapter.body.0.resnets.2.block1.bias": src_state.pop("body.0.body.2.block1.bias"),
"adapter.body.0.resnets.2.block2.weight": src_state.pop("body.0.body.2.block2.weight"),
"adapter.body.0.resnets.2.block2.bias": src_state.pop("body.0.body.2.block2.bias"),
# body.0.resnets.3
"adapter.body.0.resnets.3.block1.weight": src_state.pop("body.0.body.3.block1.weight"),
"adapter.body.0.resnets.3.block1.bias": src_state.pop("body.0.body.3.block1.bias"),
"adapter.body.0.resnets.3.block2.weight": src_state.pop("body.0.body.3.block2.weight"),
"adapter.body.0.resnets.3.block2.bias": src_state.pop("body.0.body.3.block2.bias"),
# body.0.out_conv
"adapter.body.0.out_conv.weight": src_state.pop("body.0.out_conv.weight"),
"adapter.body.0.out_conv.bias": src_state.pop("body.0.out_conv.bias"),
# body.1.in_conv
"adapter.body.1.in_conv.weight": src_state.pop("body.1.in_conv.weight"),
"adapter.body.1.in_conv.bias": src_state.pop("body.1.in_conv.bias"),
# body.1.resnets.0
"adapter.body.1.resnets.0.block1.weight": src_state.pop("body.1.body.0.block1.weight"),
"adapter.body.1.resnets.0.block1.bias": src_state.pop("body.1.body.0.block1.bias"),
"adapter.body.1.resnets.0.block2.weight": src_state.pop("body.1.body.0.block2.weight"),
"adapter.body.1.resnets.0.block2.bias": src_state.pop("body.1.body.0.block2.bias"),
# body.1.resnets.1
"adapter.body.1.resnets.1.block1.weight": src_state.pop("body.1.body.1.block1.weight"),
"adapter.body.1.resnets.1.block1.bias": src_state.pop("body.1.body.1.block1.bias"),
"adapter.body.1.resnets.1.block2.weight": src_state.pop("body.1.body.1.block2.weight"),
"adapter.body.1.resnets.1.block2.bias": src_state.pop("body.1.body.1.block2.bias"),
# body.1.body.2
"adapter.body.1.resnets.2.block1.weight": src_state.pop("body.1.body.2.block1.weight"),
"adapter.body.1.resnets.2.block1.bias": src_state.pop("body.1.body.2.block1.bias"),
"adapter.body.1.resnets.2.block2.weight": src_state.pop("body.1.body.2.block2.weight"),
"adapter.body.1.resnets.2.block2.bias": src_state.pop("body.1.body.2.block2.bias"),
# body.1.body.3
"adapter.body.1.resnets.3.block1.weight": src_state.pop("body.1.body.3.block1.weight"),
"adapter.body.1.resnets.3.block1.bias": src_state.pop("body.1.body.3.block1.bias"),
"adapter.body.1.resnets.3.block2.weight": src_state.pop("body.1.body.3.block2.weight"),
"adapter.body.1.resnets.3.block2.bias": src_state.pop("body.1.body.3.block2.bias"),
# body.1.out_conv
"adapter.body.1.out_conv.weight": src_state.pop("body.1.out_conv.weight"),
"adapter.body.1.out_conv.bias": src_state.pop("body.1.out_conv.bias"),
# body.2.in_conv
"adapter.body.2.in_conv.weight": src_state.pop("body.2.in_conv.weight"),
"adapter.body.2.in_conv.bias": src_state.pop("body.2.in_conv.bias"),
# body.2.body.0
"adapter.body.2.resnets.0.block1.weight": src_state.pop("body.2.body.0.block1.weight"),
"adapter.body.2.resnets.0.block1.bias": src_state.pop("body.2.body.0.block1.bias"),
"adapter.body.2.resnets.0.block2.weight": src_state.pop("body.2.body.0.block2.weight"),
"adapter.body.2.resnets.0.block2.bias": src_state.pop("body.2.body.0.block2.bias"),
# body.2.body.1
"adapter.body.2.resnets.1.block1.weight": src_state.pop("body.2.body.1.block1.weight"),
"adapter.body.2.resnets.1.block1.bias": src_state.pop("body.2.body.1.block1.bias"),
"adapter.body.2.resnets.1.block2.weight": src_state.pop("body.2.body.1.block2.weight"),
"adapter.body.2.resnets.1.block2.bias": src_state.pop("body.2.body.1.block2.bias"),
# body.2.body.2
"adapter.body.2.resnets.2.block1.weight": src_state.pop("body.2.body.2.block1.weight"),
"adapter.body.2.resnets.2.block1.bias": src_state.pop("body.2.body.2.block1.bias"),
"adapter.body.2.resnets.2.block2.weight": src_state.pop("body.2.body.2.block2.weight"),
"adapter.body.2.resnets.2.block2.bias": src_state.pop("body.2.body.2.block2.bias"),
# body.2.body.3
"adapter.body.2.resnets.3.block1.weight": src_state.pop("body.2.body.3.block1.weight"),
"adapter.body.2.resnets.3.block1.bias": src_state.pop("body.2.body.3.block1.bias"),
"adapter.body.2.resnets.3.block2.weight": src_state.pop("body.2.body.3.block2.weight"),
"adapter.body.2.resnets.3.block2.bias": src_state.pop("body.2.body.3.block2.bias"),
# body.2.out_conv
"adapter.body.2.out_conv.weight": src_state.pop("body.2.out_conv.weight"),
"adapter.body.2.out_conv.bias": src_state.pop("body.2.out_conv.bias"),
# body.3.in_conv
"adapter.body.3.in_conv.weight": src_state.pop("body.3.in_conv.weight"),
"adapter.body.3.in_conv.bias": src_state.pop("body.3.in_conv.bias"),
# body.3.body.0
"adapter.body.3.resnets.0.block1.weight": src_state.pop("body.3.body.0.block1.weight"),
"adapter.body.3.resnets.0.block1.bias": src_state.pop("body.3.body.0.block1.bias"),
"adapter.body.3.resnets.0.block2.weight": src_state.pop("body.3.body.0.block2.weight"),
"adapter.body.3.resnets.0.block2.bias": src_state.pop("body.3.body.0.block2.bias"),
# body.3.body.1
"adapter.body.3.resnets.1.block1.weight": src_state.pop("body.3.body.1.block1.weight"),
"adapter.body.3.resnets.1.block1.bias": src_state.pop("body.3.body.1.block1.bias"),
"adapter.body.3.resnets.1.block2.weight": src_state.pop("body.3.body.1.block2.weight"),
"adapter.body.3.resnets.1.block2.bias": src_state.pop("body.3.body.1.block2.bias"),
# body.3.body.2
"adapter.body.3.resnets.2.block1.weight": src_state.pop("body.3.body.2.block1.weight"),
"adapter.body.3.resnets.2.block1.bias": src_state.pop("body.3.body.2.block1.bias"),
"adapter.body.3.resnets.2.block2.weight": src_state.pop("body.3.body.2.block2.weight"),
"adapter.body.3.resnets.2.block2.bias": src_state.pop("body.3.body.2.block2.bias"),
# body.3.body.3
"adapter.body.3.resnets.3.block1.weight": src_state.pop("body.3.body.3.block1.weight"),
"adapter.body.3.resnets.3.block1.bias": src_state.pop("body.3.body.3.block1.bias"),
"adapter.body.3.resnets.3.block2.weight": src_state.pop("body.3.body.3.block2.weight"),
"adapter.body.3.resnets.3.block2.bias": src_state.pop("body.3.body.3.block2.bias"),
# body.3.out_conv
"adapter.body.3.out_conv.weight": src_state.pop("body.3.out_conv.weight"),
"adapter.body.3.out_conv.bias": src_state.pop("body.3.out_conv.bias"),
}
assert len(src_state) == 0
adapter = T2IAdapter(in_channels=3, channels=[320, 640, 1280], num_res_blocks=4, adapter_type="light_adapter")
adapter.load_state_dict(res_state)
return adapter
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--output_path", default=None, type=str, required=True, help="Path to the store the result checkpoint."
)
parser.add_argument(
"--is_adapter_light",
action="store_true",
help="Is checkpoint come from Adapter-Light architecture. ex: color-adapter",
)
parser.add_argument("--in_channels", required=False, type=int, help="Input channels for non-light adapter")
args = parser.parse_args()
src_state = torch.load(args.checkpoint_path)
if args.is_adapter_light:
adapter = convert_light_adapter(src_state)
else:
if args.in_channels is None:
raise ValueError("set `--in_channels=<n>`")
adapter = convert_adapter(src_state, args.in_channels)
adapter.save_pretrained(args.output_path)
| diffusers-main | scripts/convert_original_t2i_adapter.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """
import argparse
import torch
from diffusers import UNet3DConditionModel
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
weight = old_checkpoint[path["old"]]
names = ["proj_attn.weight"]
names_2 = ["proj_out.weight", "proj_in.weight"]
if any(k in new_path for k in names):
checkpoint[new_path] = weight[:, :, 0]
elif any(k in new_path for k in names_2) and len(weight.shape) > 2 and ".attentions." not in new_path:
checkpoint[new_path] = weight[:, :, 0]
else:
checkpoint[new_path] = weight
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_temp_conv_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
mapping.append({"old": old_item, "new": old_item})
return mapping
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
if "temopral_conv" not in old_item:
mapping.append({"old": old_item, "new": new_item})
return mapping
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
if config["class_embed_type"] is None:
# No parameters to port
...
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
else:
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
first_temp_attention = [v for v in unet_state_dict if v.startswith("input_blocks.0.1")]
paths = renew_attention_paths(first_temp_attention)
meta_path = {"old": "input_blocks.0.1", "new": "transformer_in"}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
temp_attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.2" in key]
if f"input_blocks.{i}.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
temporal_convs = [key for key in resnets if "temopral_conv" in key]
paths = renew_temp_conv_paths(temporal_convs)
meta_path = {
"old": f"input_blocks.{i}.0.temopral_conv",
"new": f"down_blocks.{block_id}.temp_convs.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(temp_attentions):
paths = renew_attention_paths(temp_attentions)
meta_path = {
"old": f"input_blocks.{i}.2",
"new": f"down_blocks.{block_id}.temp_attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
temporal_convs_0 = [key for key in resnet_0 if "temopral_conv" in key]
attentions = middle_blocks[1]
temp_attentions = middle_blocks[2]
resnet_1 = middle_blocks[3]
temporal_convs_1 = [key for key in resnet_1 if "temopral_conv" in key]
resnet_0_paths = renew_resnet_paths(resnet_0)
meta_path = {"old": "middle_block.0", "new": "mid_block.resnets.0"}
assign_to_checkpoint(
resnet_0_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
)
temp_conv_0_paths = renew_temp_conv_paths(temporal_convs_0)
meta_path = {"old": "middle_block.0.temopral_conv", "new": "mid_block.temp_convs.0"}
assign_to_checkpoint(
temp_conv_0_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
)
resnet_1_paths = renew_resnet_paths(resnet_1)
meta_path = {"old": "middle_block.3", "new": "mid_block.resnets.1"}
assign_to_checkpoint(
resnet_1_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
)
temp_conv_1_paths = renew_temp_conv_paths(temporal_convs_1)
meta_path = {"old": "middle_block.3.temopral_conv", "new": "mid_block.temp_convs.1"}
assign_to_checkpoint(
temp_conv_1_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path]
)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
temp_attentions_paths = renew_attention_paths(temp_attentions)
meta_path = {"old": "middle_block.2", "new": "mid_block.temp_attentions.0"}
assign_to_checkpoint(
temp_attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
temp_attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.2" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
temporal_convs = [key for key in resnets if "temopral_conv" in key]
paths = renew_temp_conv_paths(temporal_convs)
meta_path = {
"old": f"output_blocks.{i}.0.temopral_conv",
"new": f"up_blocks.{block_id}.temp_convs.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(temp_attentions):
paths = renew_attention_paths(temp_attentions)
meta_path = {
"old": f"output_blocks.{i}.2",
"new": f"up_blocks.{block_id}.temp_attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
temopral_conv_paths = [l for l in output_block_layers if "temopral_conv" in l]
for path in temopral_conv_paths:
pruned_path = path.split("temopral_conv.")[-1]
old_path = ".".join(["output_blocks", str(i), str(block_id), "temopral_conv", pruned_path])
new_path = ".".join(["up_blocks", str(block_id), "temp_convs", str(layer_in_block_id), pruned_path])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
unet_checkpoint = torch.load(args.checkpoint_path, map_location="cpu")
unet = UNet3DConditionModel()
converted_ckpt = convert_ldm_unet_checkpoint(unet_checkpoint, unet.config)
diff_0 = set(unet.state_dict().keys()) - set(converted_ckpt.keys())
diff_1 = set(converted_ckpt.keys()) - set(unet.state_dict().keys())
assert len(diff_0) == len(diff_1) == 0, "Converted weights don't match"
# load state_dict
unet.load_state_dict(converted_ckpt)
unet.save_pretrained(args.dump_path)
# -- finish converting the unet --
| diffusers-main | scripts/convert_ms_text_to_video_to_diffusers.py |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--txt2img_unclip",
default="kakaobrain/karlo-v1-alpha",
type=str,
required=False,
help="The pretrained txt2img unclip.",
)
args = parser.parse_args()
txt2img = UnCLIPPipeline.from_pretrained(args.txt2img_unclip)
feature_extractor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
img2img = UnCLIPImageVariationPipeline(
decoder=txt2img.decoder,
text_encoder=txt2img.text_encoder,
tokenizer=txt2img.tokenizer,
text_proj=txt2img.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txt2img.super_res_first,
super_res_last=txt2img.super_res_last,
decoder_scheduler=txt2img.decoder_scheduler,
super_res_scheduler=txt2img.super_res_scheduler,
)
img2img.save_pretrained(args.dump_path)
| diffusers-main | scripts/convert_unclip_txt2img_to_image_variation.py |
diffusers-main | scripts/__init__.py |
|
import argparse
import safetensors.torch
from diffusers import AutoencoderTiny
"""
Example - From the diffusers root directory:
Download the weights:
```sh
$ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_encoder.safetensors
$ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_decoder.safetensors
```
Convert the model:
```sh
$ python scripts/convert_tiny_autoencoder_to_diffusers.py \
--encoder_ckpt_path taesd_encoder.safetensors \
--decoder_ckpt_path taesd_decoder.safetensors \
--dump_path taesd-diffusers
```
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--encoder_ckpt_path",
default=None,
type=str,
required=True,
help="Path to the encoder ckpt.",
)
parser.add_argument(
"--decoder_ckpt_path",
default=None,
type=str,
required=True,
help="Path to the decoder ckpt.",
)
parser.add_argument(
"--use_safetensors", action="store_true", help="Whether to serialize in the safetensors format."
)
args = parser.parse_args()
print("Loading the original state_dicts of the encoder and the decoder...")
encoder_state_dict = safetensors.torch.load_file(args.encoder_ckpt_path)
decoder_state_dict = safetensors.torch.load_file(args.decoder_ckpt_path)
print("Populating the state_dicts in the diffusers format...")
tiny_autoencoder = AutoencoderTiny()
new_state_dict = {}
# Modify the encoder state dict.
for k in encoder_state_dict:
new_state_dict.update({f"encoder.layers.{k}": encoder_state_dict[k]})
# Modify the decoder state dict.
for k in decoder_state_dict:
layer_id = int(k.split(".")[0]) - 1
new_k = str(layer_id) + "." + ".".join(k.split(".")[1:])
new_state_dict.update({f"decoder.layers.{new_k}": decoder_state_dict[k]})
# Assertion tests with the original implementation can be found here:
# https://gist.github.com/sayakpaul/337b0988f08bd2cf2b248206f760e28f
tiny_autoencoder.load_state_dict(new_state_dict)
print("Population successful, serializing...")
tiny_autoencoder.save_pretrained(args.dump_path, safe_serialization=args.use_safetensors)
| diffusers-main | scripts/convert_tiny_autoencoder_to_diffusers.py |
import argparse
import json
import torch
from diffusers import AutoencoderKL, DDPMPipeline, DDPMScheduler, UNet2DModel, VQModel
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("block.", "resnets.")
new_item = new_item.replace("conv_shorcut", "conv1")
new_item = new_item.replace("in_shortcut", "conv_shortcut")
new_item = new_item.replace("temb_proj", "time_emb_proj")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False):
mapping = []
for old_item in old_list:
new_item = old_item
# In `model.mid`, the layer is called `attn`.
if not in_mid:
new_item = new_item.replace("attn", "attentions")
new_item = new_item.replace(".k.", ".key.")
new_item = new_item.replace(".v.", ".value.")
new_item = new_item.replace(".q.", ".query.")
new_item = new_item.replace("proj_out", "proj_attn")
new_item = new_item.replace("norm", "group_norm")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
if attention_paths_to_split is not None:
if config is None:
raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.")
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape).squeeze()
checkpoint[path_map["key"]] = key.reshape(target_shape).squeeze()
checkpoint[path_map["value"]] = value.reshape(target_shape).squeeze()
for path in paths:
new_path = path["new"]
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
new_path = new_path.replace("down.", "down_blocks.")
new_path = new_path.replace("up.", "up_blocks.")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
if "attentions" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]].squeeze()
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def convert_ddpm_checkpoint(checkpoint, config):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["temb.dense.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["temb.dense.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["temb.dense.1.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["temb.dense.1.bias"]
new_checkpoint["conv_norm_out.weight"] = checkpoint["norm_out.weight"]
new_checkpoint["conv_norm_out.bias"] = checkpoint["norm_out.bias"]
new_checkpoint["conv_in.weight"] = checkpoint["conv_in.weight"]
new_checkpoint["conv_in.bias"] = checkpoint["conv_in.bias"]
new_checkpoint["conv_out.weight"] = checkpoint["conv_out.weight"]
new_checkpoint["conv_out.bias"] = checkpoint["conv_out.bias"]
num_down_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "down" in layer})
down_blocks = {
layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
num_up_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "up" in layer})
up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)}
for i in range(num_down_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
if any("downsample" in layer for layer in down_blocks[i]):
new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[
f"down.{i}.downsample.op.weight"
]
new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[f"down.{i}.downsample.op.bias"]
# new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight']
# new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias']
if any("block" in layer for layer in down_blocks[i]):
num_blocks = len(
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "block" in layer}
)
blocks = {
layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key]
for layer_id in range(num_blocks)
}
if num_blocks > 0:
for j in range(config["layers_per_block"]):
paths = renew_resnet_paths(blocks[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint)
if any("attn" in layer for layer in down_blocks[i]):
num_attn = len(
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "attn" in layer}
)
attns = {
layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key]
for layer_id in range(num_blocks)
}
if num_attn > 0:
for j in range(config["layers_per_block"]):
paths = renew_attention_paths(attns[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config)
mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key]
mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key]
mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key]
# Mid new 2
paths = renew_resnet_paths(mid_block_1_layers)
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}],
)
paths = renew_resnet_paths(mid_block_2_layers)
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}],
)
paths = renew_attention_paths(mid_attn_1_layers, in_mid=True)
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}],
)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
if any("upsample" in layer for layer in up_blocks[i]):
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[
f"up.{i}.upsample.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[f"up.{i}.upsample.conv.bias"]
if any("block" in layer for layer in up_blocks[i]):
num_blocks = len(
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "block" in layer}
)
blocks = {
layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks)
}
if num_blocks > 0:
for j in range(config["layers_per_block"] + 1):
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
paths = renew_resnet_paths(blocks[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])
if any("attn" in layer for layer in up_blocks[i]):
num_attn = len(
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "attn" in layer}
)
attns = {
layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks)
}
if num_attn > 0:
for j in range(config["layers_per_block"] + 1):
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
paths = renew_attention_paths(attns[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])
new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()}
return new_checkpoint
def convert_vq_autoenc_checkpoint(checkpoint, config):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
new_checkpoint = {}
new_checkpoint["encoder.conv_norm_out.weight"] = checkpoint["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = checkpoint["encoder.norm_out.bias"]
new_checkpoint["encoder.conv_in.weight"] = checkpoint["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = checkpoint["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = checkpoint["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = checkpoint["encoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = checkpoint["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = checkpoint["decoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = checkpoint["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = checkpoint["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = checkpoint["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = checkpoint["decoder.conv_out.bias"]
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "down" in layer})
down_blocks = {
layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "up" in layer})
up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)}
for i in range(num_down_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
if any("downsample" in layer for layer in down_blocks[i]):
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[
f"encoder.down.{i}.downsample.conv.weight"
]
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[
f"encoder.down.{i}.downsample.conv.bias"
]
if any("block" in layer for layer in down_blocks[i]):
num_blocks = len(
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "block" in layer}
)
blocks = {
layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key]
for layer_id in range(num_blocks)
}
if num_blocks > 0:
for j in range(config["layers_per_block"]):
paths = renew_resnet_paths(blocks[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint)
if any("attn" in layer for layer in down_blocks[i]):
num_attn = len(
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "attn" in layer}
)
attns = {
layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key]
for layer_id in range(num_blocks)
}
if num_attn > 0:
for j in range(config["layers_per_block"]):
paths = renew_attention_paths(attns[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config)
mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key]
mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key]
mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key]
# Mid new 2
paths = renew_resnet_paths(mid_block_1_layers)
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}],
)
paths = renew_resnet_paths(mid_block_2_layers)
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}],
)
paths = renew_attention_paths(mid_attn_1_layers, in_mid=True)
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}],
)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
if any("upsample" in layer for layer in up_blocks[i]):
new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[
f"decoder.up.{i}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[
f"decoder.up.{i}.upsample.conv.bias"
]
if any("block" in layer for layer in up_blocks[i]):
num_blocks = len(
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "block" in layer}
)
blocks = {
layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks)
}
if num_blocks > 0:
for j in range(config["layers_per_block"] + 1):
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
paths = renew_resnet_paths(blocks[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])
if any("attn" in layer for layer in up_blocks[i]):
num_attn = len(
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "attn" in layer}
)
attns = {
layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks)
}
if num_attn > 0:
for j in range(config["layers_per_block"] + 1):
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
paths = renew_attention_paths(attns[j])
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])
new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()}
new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"]
if "quantize.embedding.weight" in checkpoint:
new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"]
new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"]
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
checkpoint = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
config = json.loads(f.read())
# unet case
key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()}
if "encoder" in key_prefix_set and "decoder" in key_prefix_set:
converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config)
else:
converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config)
if "ddpm" in config:
del config["ddpm"]
if config["_class_name"] == "VQModel":
model = VQModel(**config)
model.load_state_dict(converted_checkpoint)
model.save_pretrained(args.dump_path)
elif config["_class_name"] == "AutoencoderKL":
model = AutoencoderKL(**config)
model.load_state_dict(converted_checkpoint)
model.save_pretrained(args.dump_path)
else:
model = UNet2DModel(**config)
model.load_state_dict(converted_checkpoint)
scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
pipe = DDPMPipeline(unet=model, scheduler=scheduler)
pipe.save_pretrained(args.dump_path)
| diffusers-main | scripts/convert_ddpm_original_checkpoint_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNet2DModel, VQModel
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def convert_ldm_checkpoint(checkpoint, config):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = checkpoint["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = checkpoint["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = checkpoint["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = checkpoint["out.0.bias"]
new_checkpoint["conv_out.weight"] = checkpoint["out.2.weight"]
new_checkpoint["conv_out.bias"] = checkpoint["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["num_res_blocks"] + 1)
layer_in_block_id = (i - 1) % (config["num_res_blocks"] + 1)
resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in checkpoint:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = checkpoint[
f"input_blocks.{i}.0.op.weight"
]
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = checkpoint[
f"input_blocks.{i}.0.op.bias"
]
continue
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
resnet_op = {"old": "resnets.2.op", "new": "downsamplers.0.op"}
assign_to_checkpoint(
paths, new_checkpoint, checkpoint, additional_replacements=[meta_path, resnet_op], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"input_blocks.{i}.1",
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
to_split = {
f"input_blocks.{i}.1.qkv.bias": {
"key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
f"input_blocks.{i}.1.qkv.weight": {
"key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[meta_path],
attention_paths_to_split=to_split,
config=config,
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, checkpoint, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, checkpoint, config=config)
attentions_paths = renew_attention_paths(attentions)
to_split = {
"middle_block.1.qkv.bias": {
"key": "mid_block.attentions.0.key.bias",
"query": "mid_block.attentions.0.query.bias",
"value": "mid_block.attentions.0.value.bias",
},
"middle_block.1.qkv.weight": {
"key": "mid_block.attentions.0.key.weight",
"query": "mid_block.attentions.0.query.weight",
"value": "mid_block.attentions.0.value.weight",
},
}
assign_to_checkpoint(
attentions_paths, new_checkpoint, checkpoint, attention_paths_to_split=to_split, config=config
)
for i in range(num_output_blocks):
block_id = i // (config["num_res_blocks"] + 1)
layer_in_block_id = i % (config["num_res_blocks"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[meta_path], config=config)
if ["conv.weight", "conv.bias"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
to_split = {
f"output_blocks.{i}.1.qkv.bias": {
"key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
f"output_blocks.{i}.1.qkv.weight": {
"key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
paths,
new_checkpoint,
checkpoint,
additional_replacements=[meta_path],
attention_paths_to_split=to_split if any("qkv" in key for key in attentions) else None,
config=config,
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
checkpoint = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
config = json.loads(f.read())
converted_checkpoint = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
model = UNet2DModel(**config)
model.load_state_dict(converted_checkpoint)
try:
scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
vqvae = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1]))
pipe = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| diffusers-main | scripts/convert_ldm_original_checkpoint_to_diffusers.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import shutil
from pathlib import Path
import onnx
import torch
from packaging import version
from torch.onnx import export
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def onnx_export(
model,
model_args: tuple,
output_path: Path,
ordered_input_names,
output_names,
dynamic_axes,
opset,
use_external_data_format=False,
):
output_path.parent.mkdir(parents=True, exist_ok=True)
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
model,
model_args,
f=output_path.as_posix(),
input_names=ordered_input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
use_external_data_format=use_external_data_format,
enable_onnx_checker=True,
opset_version=opset,
)
else:
export(
model,
model_args,
f=output_path.as_posix(),
input_names=ordered_input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
opset_version=opset,
)
@torch.no_grad()
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False):
dtype = torch.float16 if fp16 else torch.float32
if fp16 and torch.cuda.is_available():
device = "cuda"
elif fp16 and not torch.cuda.is_available():
raise ValueError("`float16` model export is only supported on GPUs with CUDA")
else:
device = "cpu"
pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
output_path = Path(output_path)
# TEXT ENCODER
num_tokens = pipeline.text_encoder.config.max_position_embeddings
text_hidden_size = pipeline.text_encoder.config.hidden_size
text_input = pipeline.tokenizer(
"A sample prompt",
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
onnx_export(
pipeline.text_encoder,
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
output_path=output_path / "text_encoder" / "model.onnx",
ordered_input_names=["input_ids"],
output_names=["last_hidden_state", "pooler_output"],
dynamic_axes={
"input_ids": {0: "batch", 1: "sequence"},
},
opset=opset,
)
del pipeline.text_encoder
# UNET
unet_in_channels = pipeline.unet.config.in_channels
unet_sample_size = pipeline.unet.config.sample_size
unet_path = output_path / "unet" / "model.onnx"
onnx_export(
pipeline.unet,
model_args=(
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
torch.randn(2).to(device=device, dtype=dtype),
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
False,
),
output_path=unet_path,
ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"],
output_names=["out_sample"], # has to be different from "sample" for correct tracing
dynamic_axes={
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
"timestep": {0: "batch"},
"encoder_hidden_states": {0: "batch", 1: "sequence"},
},
opset=opset,
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split
)
unet_model_path = str(unet_path.absolute().as_posix())
unet_dir = os.path.dirname(unet_model_path)
unet = onnx.load(unet_model_path)
# clean up existing tensor files
shutil.rmtree(unet_dir)
os.mkdir(unet_dir)
# collate external tensor files into one
onnx.save_model(
unet,
unet_model_path,
save_as_external_data=True,
all_tensors_to_one_file=True,
location="weights.pb",
convert_attribute=False,
)
del pipeline.unet
# VAE ENCODER
vae_encoder = pipeline.vae
vae_in_channels = vae_encoder.config.in_channels
vae_sample_size = vae_encoder.config.sample_size
# need to get the raw tensor output (sample) from the encoder
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample()
onnx_export(
vae_encoder,
model_args=(
torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),
False,
),
output_path=output_path / "vae_encoder" / "model.onnx",
ordered_input_names=["sample", "return_dict"],
output_names=["latent_sample"],
dynamic_axes={
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
},
opset=opset,
)
# VAE DECODER
vae_decoder = pipeline.vae
vae_latent_channels = vae_decoder.config.latent_channels
vae_out_channels = vae_decoder.config.out_channels
# forward only through the decoder part
vae_decoder.forward = vae_encoder.decode
onnx_export(
vae_decoder,
model_args=(
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
False,
),
output_path=output_path / "vae_decoder" / "model.onnx",
ordered_input_names=["latent_sample", "return_dict"],
output_names=["sample"],
dynamic_axes={
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
},
opset=opset,
)
del pipeline.vae
# SAFETY CHECKER
if pipeline.safety_checker is not None:
safety_checker = pipeline.safety_checker
clip_num_channels = safety_checker.config.vision_config.num_channels
clip_image_size = safety_checker.config.vision_config.image_size
safety_checker.forward = safety_checker.forward_onnx
onnx_export(
pipeline.safety_checker,
model_args=(
torch.randn(
1,
clip_num_channels,
clip_image_size,
clip_image_size,
).to(device=device, dtype=dtype),
torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype),
),
output_path=output_path / "safety_checker" / "model.onnx",
ordered_input_names=["clip_input", "images"],
output_names=["out_images", "has_nsfw_concepts"],
dynamic_axes={
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"},
"images": {0: "batch", 1: "height", 2: "width", 3: "channels"},
},
opset=opset,
)
del pipeline.safety_checker
safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker")
feature_extractor = pipeline.feature_extractor
else:
safety_checker = None
feature_extractor = None
onnx_pipeline = OnnxStableDiffusionPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"),
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"),
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"),
tokenizer=pipeline.tokenizer,
unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"),
scheduler=pipeline.scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=safety_checker is not None,
)
onnx_pipeline.save_pretrained(output_path)
print("ONNX pipeline saved to", output_path)
del pipeline
del onnx_pipeline
_ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider")
print("ONNX pipeline is loadable")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
args = parser.parse_args()
convert_models(args.model_path, args.output_path, args.opset, args.fp16)
| diffusers-main | scripts/convert_stable_diffusion_checkpoint_to_onnx.py |
import argparse
import inspect
import os
import numpy as np
import torch
from torch.nn import functional as F
from transformers import CLIPConfig, CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5Tokenizer
from diffusers import DDPMScheduler, IFPipeline, IFSuperResolutionPipeline, UNet2DConditionModel
from diffusers.pipelines.deepfloyd_if.safety_checker import IFSafetyChecker
try:
from omegaconf import OmegaConf
except ImportError:
raise ImportError(
"OmegaConf is required to convert the IF checkpoints. Please install it with `pip install" " OmegaConf`."
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", required=False, default=None, type=str)
parser.add_argument("--dump_path_stage_2", required=False, default=None, type=str)
parser.add_argument("--dump_path_stage_3", required=False, default=None, type=str)
parser.add_argument("--unet_config", required=False, default=None, type=str, help="Path to unet config file")
parser.add_argument(
"--unet_checkpoint_path", required=False, default=None, type=str, help="Path to unet checkpoint file"
)
parser.add_argument(
"--unet_checkpoint_path_stage_2",
required=False,
default=None,
type=str,
help="Path to stage 2 unet checkpoint file",
)
parser.add_argument(
"--unet_checkpoint_path_stage_3",
required=False,
default=None,
type=str,
help="Path to stage 3 unet checkpoint file",
)
parser.add_argument("--p_head_path", type=str, required=True)
parser.add_argument("--w_head_path", type=str, required=True)
args = parser.parse_args()
return args
def main(args):
tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-xxl")
text_encoder = T5EncoderModel.from_pretrained("google/t5-v1_1-xxl")
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
safety_checker = convert_safety_checker(p_head_path=args.p_head_path, w_head_path=args.w_head_path)
if args.unet_config is not None and args.unet_checkpoint_path is not None and args.dump_path is not None:
convert_stage_1_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args)
if args.unet_checkpoint_path_stage_2 is not None and args.dump_path_stage_2 is not None:
convert_super_res_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args, stage=2)
if args.unet_checkpoint_path_stage_3 is not None and args.dump_path_stage_3 is not None:
convert_super_res_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args, stage=3)
def convert_stage_1_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args):
unet = get_stage_1_unet(args.unet_config, args.unet_checkpoint_path)
scheduler = DDPMScheduler(
variance_type="learned_range",
beta_schedule="squaredcos_cap_v2",
prediction_type="epsilon",
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.5,
)
pipe = IFPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=True,
)
pipe.save_pretrained(args.dump_path)
def convert_super_res_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args, stage):
if stage == 2:
unet_checkpoint_path = args.unet_checkpoint_path_stage_2
sample_size = None
dump_path = args.dump_path_stage_2
elif stage == 3:
unet_checkpoint_path = args.unet_checkpoint_path_stage_3
sample_size = 1024
dump_path = args.dump_path_stage_3
else:
assert False
unet = get_super_res_unet(unet_checkpoint_path, verify_param_count=False, sample_size=sample_size)
image_noising_scheduler = DDPMScheduler(
beta_schedule="squaredcos_cap_v2",
)
scheduler = DDPMScheduler(
variance_type="learned_range",
beta_schedule="squaredcos_cap_v2",
prediction_type="epsilon",
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
)
pipe = IFSuperResolutionPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
scheduler=scheduler,
image_noising_scheduler=image_noising_scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=True,
)
pipe.save_pretrained(dump_path)
def get_stage_1_unet(unet_config, unet_checkpoint_path):
original_unet_config = OmegaConf.load(unet_config)
original_unet_config = original_unet_config.params
unet_diffusers_config = create_unet_diffusers_config(original_unet_config)
unet = UNet2DConditionModel(**unet_diffusers_config)
device = "cuda" if torch.cuda.is_available() else "cpu"
unet_checkpoint = torch.load(unet_checkpoint_path, map_location=device)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
unet_checkpoint, unet_diffusers_config, path=unet_checkpoint_path
)
unet.load_state_dict(converted_unet_checkpoint)
return unet
def convert_safety_checker(p_head_path, w_head_path):
state_dict = {}
# p head
p_head = np.load(p_head_path)
p_head_weights = p_head["weights"]
p_head_weights = torch.from_numpy(p_head_weights)
p_head_weights = p_head_weights.unsqueeze(0)
p_head_biases = p_head["biases"]
p_head_biases = torch.from_numpy(p_head_biases)
p_head_biases = p_head_biases.unsqueeze(0)
state_dict["p_head.weight"] = p_head_weights
state_dict["p_head.bias"] = p_head_biases
# w head
w_head = np.load(w_head_path)
w_head_weights = w_head["weights"]
w_head_weights = torch.from_numpy(w_head_weights)
w_head_weights = w_head_weights.unsqueeze(0)
w_head_biases = w_head["biases"]
w_head_biases = torch.from_numpy(w_head_biases)
w_head_biases = w_head_biases.unsqueeze(0)
state_dict["w_head.weight"] = w_head_weights
state_dict["w_head.bias"] = w_head_biases
# vision model
vision_model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
vision_model_state_dict = vision_model.state_dict()
for key, value in vision_model_state_dict.items():
key = f"vision_model.{key}"
state_dict[key] = value
# full model
config = CLIPConfig.from_pretrained("openai/clip-vit-large-patch14")
safety_checker = IFSafetyChecker(config)
safety_checker.load_state_dict(state_dict)
return safety_checker
def create_unet_diffusers_config(original_unet_config, class_embed_type=None):
attention_resolutions = parse_list(original_unet_config.attention_resolutions)
attention_resolutions = [original_unet_config.image_size // int(res) for res in attention_resolutions]
channel_mult = parse_list(original_unet_config.channel_mult)
block_out_channels = [original_unet_config.model_channels * mult for mult in channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnDownBlock2D"
elif original_unet_config.resblock_updown:
block_type = "ResnetDownsampleBlock2D"
else:
block_type = "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnUpBlock2D"
elif original_unet_config.resblock_updown:
block_type = "ResnetUpsampleBlock2D"
else:
block_type = "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
head_dim = original_unet_config.num_head_channels
use_linear_projection = (
original_unet_config.use_linear_in_transformer
if "use_linear_in_transformer" in original_unet_config
else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim = [5, 10, 20, 20]
projection_class_embeddings_input_dim = None
if class_embed_type is None:
if "num_classes" in original_unet_config:
if original_unet_config.num_classes == "sequential":
class_embed_type = "projection"
assert "adm_in_channels" in original_unet_config
projection_class_embeddings_input_dim = original_unet_config.adm_in_channels
else:
raise NotImplementedError(
f"Unknown conditional unet num_classes config: {original_unet_config.num_classes}"
)
config = {
"sample_size": original_unet_config.image_size,
"in_channels": original_unet_config.in_channels,
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": original_unet_config.num_res_blocks,
"cross_attention_dim": original_unet_config.encoder_channels,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"out_channels": original_unet_config.out_channels,
"up_block_types": tuple(up_block_types),
"upcast_attention": False, # TODO: guessing
"cross_attention_norm": "group_norm",
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"addition_embed_type": "text",
"act_fn": "gelu",
}
if original_unet_config.use_scale_shift_norm:
config["resnet_time_scale_shift"] = "scale_shift"
if "encoder_dim" in original_unet_config:
config["encoder_hid_dim"] = original_unet_config.encoder_dim
return config
def convert_ldm_unet_checkpoint(unet_state_dict, config, path=None):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
if config["class_embed_type"] in [None, "identity"]:
# No parameters to port
...
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
else:
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
# TODO need better check than i in [4, 8, 12, 16]
block_type = config["down_block_types"][block_id]
if (block_type == "ResnetDownsampleBlock2D" or block_type == "SimpleCrossAttnDownBlock2D") and i in [
4,
8,
12,
16,
]:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.downsamplers.0"}
else:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
old_path = f"input_blocks.{i}.1"
new_path = f"down_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(attentions)
meta_path = {"old": old_path, "new": new_path}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
old_path = "middle_block.1"
new_path = "mid_block.attentions.0"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
# len(output_block_list) == 1 -> resnet
# len(output_block_list) == 2 -> resnet, attention
# len(output_block_list) == 3 -> resnet, attention, upscale resnet
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
old_path = f"output_blocks.{i}.1"
new_path = f"up_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(attentions)
meta_path = {
"old": old_path,
"new": new_path,
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(output_block_list) == 3:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.2" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.2", "new": f"up_blocks.{block_id}.upsamplers.0"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
if "encoder_proj.weight" in unet_state_dict:
new_checkpoint["encoder_hid_proj.weight"] = unet_state_dict.pop("encoder_proj.weight")
new_checkpoint["encoder_hid_proj.bias"] = unet_state_dict.pop("encoder_proj.bias")
if "encoder_pooling.0.weight" in unet_state_dict:
new_checkpoint["add_embedding.norm1.weight"] = unet_state_dict.pop("encoder_pooling.0.weight")
new_checkpoint["add_embedding.norm1.bias"] = unet_state_dict.pop("encoder_pooling.0.bias")
new_checkpoint["add_embedding.pool.positional_embedding"] = unet_state_dict.pop(
"encoder_pooling.1.positional_embedding"
)
new_checkpoint["add_embedding.pool.k_proj.weight"] = unet_state_dict.pop("encoder_pooling.1.k_proj.weight")
new_checkpoint["add_embedding.pool.k_proj.bias"] = unet_state_dict.pop("encoder_pooling.1.k_proj.bias")
new_checkpoint["add_embedding.pool.q_proj.weight"] = unet_state_dict.pop("encoder_pooling.1.q_proj.weight")
new_checkpoint["add_embedding.pool.q_proj.bias"] = unet_state_dict.pop("encoder_pooling.1.q_proj.bias")
new_checkpoint["add_embedding.pool.v_proj.weight"] = unet_state_dict.pop("encoder_pooling.1.v_proj.weight")
new_checkpoint["add_embedding.pool.v_proj.bias"] = unet_state_dict.pop("encoder_pooling.1.v_proj.bias")
new_checkpoint["add_embedding.proj.weight"] = unet_state_dict.pop("encoder_pooling.2.weight")
new_checkpoint["add_embedding.proj.bias"] = unet_state_dict.pop("encoder_pooling.2.bias")
new_checkpoint["add_embedding.norm2.weight"] = unet_state_dict.pop("encoder_pooling.3.weight")
new_checkpoint["add_embedding.norm2.bias"] = unet_state_dict.pop("encoder_pooling.3.bias")
return new_checkpoint
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
if "qkv" in new_item:
continue
if "encoder_kv" in new_item:
continue
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = new_item.replace("norm_encoder.weight", "norm_cross.weight")
new_item = new_item.replace("norm_encoder.bias", "norm_cross.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_attention_to_checkpoint(new_checkpoint, unet_state_dict, old_path, new_path, config):
qkv_weight = unet_state_dict.pop(f"{old_path}.qkv.weight")
qkv_weight = qkv_weight[:, :, 0]
qkv_bias = unet_state_dict.pop(f"{old_path}.qkv.bias")
is_cross_attn_only = "only_cross_attention" in config and config["only_cross_attention"]
split = 1 if is_cross_attn_only else 3
weights, bias = split_attentions(
weight=qkv_weight,
bias=qkv_bias,
split=split,
chunk_size=config["attention_head_dim"],
)
if is_cross_attn_only:
query_weight, q_bias = weights, bias
new_checkpoint[f"{new_path}.to_q.weight"] = query_weight[0]
new_checkpoint[f"{new_path}.to_q.bias"] = q_bias[0]
else:
[query_weight, key_weight, value_weight], [q_bias, k_bias, v_bias] = weights, bias
new_checkpoint[f"{new_path}.to_q.weight"] = query_weight
new_checkpoint[f"{new_path}.to_q.bias"] = q_bias
new_checkpoint[f"{new_path}.to_k.weight"] = key_weight
new_checkpoint[f"{new_path}.to_k.bias"] = k_bias
new_checkpoint[f"{new_path}.to_v.weight"] = value_weight
new_checkpoint[f"{new_path}.to_v.bias"] = v_bias
encoder_kv_weight = unet_state_dict.pop(f"{old_path}.encoder_kv.weight")
encoder_kv_weight = encoder_kv_weight[:, :, 0]
encoder_kv_bias = unet_state_dict.pop(f"{old_path}.encoder_kv.bias")
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions(
weight=encoder_kv_weight,
bias=encoder_kv_bias,
split=2,
chunk_size=config["attention_head_dim"],
)
new_checkpoint[f"{new_path}.add_k_proj.weight"] = encoder_k_weight
new_checkpoint[f"{new_path}.add_k_proj.bias"] = encoder_k_bias
new_checkpoint[f"{new_path}.add_v_proj.weight"] = encoder_v_weight
new_checkpoint[f"{new_path}.add_v_proj.bias"] = encoder_v_bias
def assign_to_checkpoint(paths, checkpoint, old_checkpoint, additional_replacements=None, config=None):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
for path in paths:
new_path = path["new"]
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path or "to_out.0.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
def parse_list(value):
if isinstance(value, str):
value = value.split(",")
value = [int(v) for v in value]
elif isinstance(value, list):
pass
else:
raise ValueError(f"Can't parse list for type: {type(value)}")
return value
# below is copy and pasted from original convert_if_stage_2.py script
def get_super_res_unet(unet_checkpoint_path, verify_param_count=True, sample_size=None):
orig_path = unet_checkpoint_path
original_unet_config = OmegaConf.load(os.path.join(orig_path, "config.yml"))
original_unet_config = original_unet_config.params
unet_diffusers_config = superres_create_unet_diffusers_config(original_unet_config)
unet_diffusers_config["time_embedding_dim"] = original_unet_config.model_channels * int(
original_unet_config.channel_mult.split(",")[-1]
)
if original_unet_config.encoder_dim != original_unet_config.encoder_channels:
unet_diffusers_config["encoder_hid_dim"] = original_unet_config.encoder_dim
unet_diffusers_config["class_embed_type"] = "timestep"
unet_diffusers_config["addition_embed_type"] = "text"
unet_diffusers_config["time_embedding_act_fn"] = "gelu"
unet_diffusers_config["resnet_skip_time_act"] = True
unet_diffusers_config["resnet_out_scale_factor"] = 1 / 0.7071
unet_diffusers_config["mid_block_scale_factor"] = 1 / 0.7071
unet_diffusers_config["only_cross_attention"] = (
bool(original_unet_config.disable_self_attentions)
if (
"disable_self_attentions" in original_unet_config
and isinstance(original_unet_config.disable_self_attentions, int)
)
else True
)
if sample_size is None:
unet_diffusers_config["sample_size"] = original_unet_config.image_size
else:
# The second upscaler unet's sample size is incorrectly specified
# in the config and is instead hardcoded in source
unet_diffusers_config["sample_size"] = sample_size
unet_checkpoint = torch.load(os.path.join(unet_checkpoint_path, "pytorch_model.bin"), map_location="cpu")
if verify_param_count:
# check that architecture matches - is a bit slow
verify_param_count(orig_path, unet_diffusers_config)
converted_unet_checkpoint = superres_convert_ldm_unet_checkpoint(
unet_checkpoint, unet_diffusers_config, path=unet_checkpoint_path
)
converted_keys = converted_unet_checkpoint.keys()
model = UNet2DConditionModel(**unet_diffusers_config)
expected_weights = model.state_dict().keys()
diff_c_e = set(converted_keys) - set(expected_weights)
diff_e_c = set(expected_weights) - set(converted_keys)
assert len(diff_e_c) == 0, f"Expected, but not converted: {diff_e_c}"
assert len(diff_c_e) == 0, f"Converted, but not expected: {diff_c_e}"
model.load_state_dict(converted_unet_checkpoint)
return model
def superres_create_unet_diffusers_config(original_unet_config):
attention_resolutions = parse_list(original_unet_config.attention_resolutions)
attention_resolutions = [original_unet_config.image_size // int(res) for res in attention_resolutions]
channel_mult = parse_list(original_unet_config.channel_mult)
block_out_channels = [original_unet_config.model_channels * mult for mult in channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnDownBlock2D"
elif original_unet_config.resblock_updown:
block_type = "ResnetDownsampleBlock2D"
else:
block_type = "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnUpBlock2D"
elif original_unet_config.resblock_updown:
block_type = "ResnetUpsampleBlock2D"
else:
block_type = "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
head_dim = original_unet_config.num_head_channels
use_linear_projection = (
original_unet_config.use_linear_in_transformer
if "use_linear_in_transformer" in original_unet_config
else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim = [5, 10, 20, 20]
class_embed_type = None
projection_class_embeddings_input_dim = None
if "num_classes" in original_unet_config:
if original_unet_config.num_classes == "sequential":
class_embed_type = "projection"
assert "adm_in_channels" in original_unet_config
projection_class_embeddings_input_dim = original_unet_config.adm_in_channels
else:
raise NotImplementedError(
f"Unknown conditional unet num_classes config: {original_unet_config.num_classes}"
)
config = {
"in_channels": original_unet_config.in_channels,
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": tuple(original_unet_config.num_res_blocks),
"cross_attention_dim": original_unet_config.encoder_channels,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"out_channels": original_unet_config.out_channels,
"up_block_types": tuple(up_block_types),
"upcast_attention": False, # TODO: guessing
"cross_attention_norm": "group_norm",
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"act_fn": "gelu",
}
if original_unet_config.use_scale_shift_norm:
config["resnet_time_scale_shift"] = "scale_shift"
return config
def superres_convert_ldm_unet_checkpoint(unet_state_dict, config, path=None, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
if config["class_embed_type"] is None:
# No parameters to port
...
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["aug_proj.0.weight"]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["aug_proj.0.bias"]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["aug_proj.2.weight"]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["aug_proj.2.bias"]
else:
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
if "encoder_proj.weight" in unet_state_dict:
new_checkpoint["encoder_hid_proj.weight"] = unet_state_dict["encoder_proj.weight"]
new_checkpoint["encoder_hid_proj.bias"] = unet_state_dict["encoder_proj.bias"]
if "encoder_pooling.0.weight" in unet_state_dict:
mapping = {
"encoder_pooling.0": "add_embedding.norm1",
"encoder_pooling.1": "add_embedding.pool",
"encoder_pooling.2": "add_embedding.proj",
"encoder_pooling.3": "add_embedding.norm2",
}
for key in unet_state_dict.keys():
if key.startswith("encoder_pooling"):
prefix = key[: len("encoder_pooling.0")]
new_key = key.replace(prefix, mapping[prefix])
new_checkpoint[new_key] = unet_state_dict[key]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
for layer_id in range(num_output_blocks)
}
if not isinstance(config["layers_per_block"], int):
layers_per_block_list = [e + 1 for e in config["layers_per_block"]]
layers_per_block_cumsum = list(np.cumsum(layers_per_block_list))
downsampler_ids = layers_per_block_cumsum
else:
# TODO need better check than i in [4, 8, 12, 16]
downsampler_ids = [4, 8, 12, 16]
for i in range(1, num_input_blocks):
if isinstance(config["layers_per_block"], int):
layers_per_block = config["layers_per_block"]
block_id = (i - 1) // (layers_per_block + 1)
layer_in_block_id = (i - 1) % (layers_per_block + 1)
else:
block_id = next(k for k, n in enumerate(layers_per_block_cumsum) if (i - 1) < n)
passed_blocks = layers_per_block_cumsum[block_id - 1] if block_id > 0 else 0
layer_in_block_id = (i - 1) - passed_blocks
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
block_type = config["down_block_types"][block_id]
if (
block_type == "ResnetDownsampleBlock2D" or block_type == "SimpleCrossAttnDownBlock2D"
) and i in downsampler_ids:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.downsamplers.0"}
else:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
old_path = f"input_blocks.{i}.1"
new_path = f"down_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(attentions)
meta_path = {"old": old_path, "new": new_path}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
old_path = "middle_block.1"
new_path = "mid_block.attentions.0"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if not isinstance(config["layers_per_block"], int):
layers_per_block_list = list(reversed([e + 1 for e in config["layers_per_block"]]))
layers_per_block_cumsum = list(np.cumsum(layers_per_block_list))
for i in range(num_output_blocks):
if isinstance(config["layers_per_block"], int):
layers_per_block = config["layers_per_block"]
block_id = i // (layers_per_block + 1)
layer_in_block_id = i % (layers_per_block + 1)
else:
block_id = next(k for k, n in enumerate(layers_per_block_cumsum) if i < n)
passed_blocks = layers_per_block_cumsum[block_id - 1] if block_id > 0 else 0
layer_in_block_id = i - passed_blocks
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
# len(output_block_list) == 1 -> resnet
# len(output_block_list) == 2 -> resnet, attention or resnet, upscale resnet
# len(output_block_list) == 3 -> resnet, attention, upscale resnet
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
has_attention = True
if len(output_block_list) == 2 and any("in_layers" in k for k in output_block_list["1"]):
has_attention = False
maybe_attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# this layer was no attention
has_attention = False
maybe_attentions = []
if has_attention:
old_path = f"output_blocks.{i}.1"
new_path = f"up_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(maybe_attentions)
meta_path = {
"old": old_path,
"new": new_path,
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(output_block_list) == 3 or (not has_attention and len(maybe_attentions) > 0):
layer_id = len(output_block_list) - 1
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.{layer_id}" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.{layer_id}", "new": f"up_blocks.{block_id}.upsamplers.0"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def verify_param_count(orig_path, unet_diffusers_config):
if "-II-" in orig_path:
from deepfloyd_if.modules import IFStageII
if_II = IFStageII(device="cpu", dir_or_name=orig_path)
elif "-III-" in orig_path:
from deepfloyd_if.modules import IFStageIII
if_II = IFStageIII(device="cpu", dir_or_name=orig_path)
else:
assert f"Weird name. Should have -II- or -III- in path: {orig_path}"
unet = UNet2DConditionModel(**unet_diffusers_config)
# in params
assert_param_count(unet.time_embedding, if_II.model.time_embed)
assert_param_count(unet.conv_in, if_II.model.input_blocks[:1])
# downblocks
assert_param_count(unet.down_blocks[0], if_II.model.input_blocks[1:4])
assert_param_count(unet.down_blocks[1], if_II.model.input_blocks[4:7])
assert_param_count(unet.down_blocks[2], if_II.model.input_blocks[7:11])
if "-II-" in orig_path:
assert_param_count(unet.down_blocks[3], if_II.model.input_blocks[11:17])
assert_param_count(unet.down_blocks[4], if_II.model.input_blocks[17:])
if "-III-" in orig_path:
assert_param_count(unet.down_blocks[3], if_II.model.input_blocks[11:15])
assert_param_count(unet.down_blocks[4], if_II.model.input_blocks[15:20])
assert_param_count(unet.down_blocks[5], if_II.model.input_blocks[20:])
# mid block
assert_param_count(unet.mid_block, if_II.model.middle_block)
# up block
if "-II-" in orig_path:
assert_param_count(unet.up_blocks[0], if_II.model.output_blocks[:6])
assert_param_count(unet.up_blocks[1], if_II.model.output_blocks[6:12])
assert_param_count(unet.up_blocks[2], if_II.model.output_blocks[12:16])
assert_param_count(unet.up_blocks[3], if_II.model.output_blocks[16:19])
assert_param_count(unet.up_blocks[4], if_II.model.output_blocks[19:])
if "-III-" in orig_path:
assert_param_count(unet.up_blocks[0], if_II.model.output_blocks[:5])
assert_param_count(unet.up_blocks[1], if_II.model.output_blocks[5:10])
assert_param_count(unet.up_blocks[2], if_II.model.output_blocks[10:14])
assert_param_count(unet.up_blocks[3], if_II.model.output_blocks[14:18])
assert_param_count(unet.up_blocks[4], if_II.model.output_blocks[18:21])
assert_param_count(unet.up_blocks[5], if_II.model.output_blocks[21:24])
# out params
assert_param_count(unet.conv_norm_out, if_II.model.out[0])
assert_param_count(unet.conv_out, if_II.model.out[2])
# make sure all model architecture has same param count
assert_param_count(unet, if_II.model)
def assert_param_count(model_1, model_2):
count_1 = sum(p.numel() for p in model_1.parameters())
count_2 = sum(p.numel() for p in model_2.parameters())
assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
def superres_check_against_original(dump_path, unet_checkpoint_path):
model_path = dump_path
model = UNet2DConditionModel.from_pretrained(model_path)
model.to("cuda")
orig_path = unet_checkpoint_path
if "-II-" in orig_path:
from deepfloyd_if.modules import IFStageII
if_II_model = IFStageII(device="cuda", dir_or_name=orig_path, model_kwargs={"precision": "fp32"}).model
elif "-III-" in orig_path:
from deepfloyd_if.modules import IFStageIII
if_II_model = IFStageIII(device="cuda", dir_or_name=orig_path, model_kwargs={"precision": "fp32"}).model
batch_size = 1
channels = model.in_channels // 2
height = model.sample_size
width = model.sample_size
height = 1024
width = 1024
torch.manual_seed(0)
latents = torch.randn((batch_size, channels, height, width), device=model.device)
image_small = torch.randn((batch_size, channels, height // 4, width // 4), device=model.device)
interpolate_antialias = {}
if "antialias" in inspect.signature(F.interpolate).parameters:
interpolate_antialias["antialias"] = True
image_upscaled = F.interpolate(
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
)
latent_model_input = torch.cat([latents, image_upscaled], dim=1).to(model.dtype)
t = torch.tensor([5], device=model.device).to(model.dtype)
seq_len = 64
encoder_hidden_states = torch.randn((batch_size, seq_len, model.config.encoder_hid_dim), device=model.device).to(
model.dtype
)
fake_class_labels = torch.tensor([t], device=model.device).to(model.dtype)
with torch.no_grad():
out = if_II_model(latent_model_input, t, aug_steps=fake_class_labels, text_emb=encoder_hidden_states)
if_II_model.to("cpu")
del if_II_model
import gc
torch.cuda.empty_cache()
gc.collect()
print(50 * "=")
with torch.no_grad():
noise_pred = model(
sample=latent_model_input,
encoder_hidden_states=encoder_hidden_states,
class_labels=fake_class_labels,
timestep=t,
).sample
print("Out shape", noise_pred.shape)
print("Diff", (out - noise_pred).abs().sum())
if __name__ == "__main__":
main(parse_args())
| diffusers-main | scripts/convert_if.py |
import argparse
import os
import shutil
from pathlib import Path
import onnx
import onnx_graphsurgeon as gs
import torch
from onnx import shape_inference
from packaging import version
from polygraphy.backend.onnx.loader import fold_constants
from torch.onnx import export
from diffusers import (
ControlNetModel,
StableDiffusionControlNetImg2ImgPipeline,
)
from diffusers.models.attention_processor import AttnProcessor
from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
is_torch_2_0_1 = version.parse(version.parse(torch.__version__).base_version) == version.parse("2.0.1")
class Optimizer:
def __init__(self, onnx_graph, verbose=False):
self.graph = gs.import_onnx(onnx_graph)
self.verbose = verbose
def info(self, prefix):
if self.verbose:
print(
f"{prefix} .. {len(self.graph.nodes)} nodes, {len(self.graph.tensors().keys())} tensors, {len(self.graph.inputs)} inputs, {len(self.graph.outputs)} outputs"
)
def cleanup(self, return_onnx=False):
self.graph.cleanup().toposort()
if return_onnx:
return gs.export_onnx(self.graph)
def select_outputs(self, keep, names=None):
self.graph.outputs = [self.graph.outputs[o] for o in keep]
if names:
for i, name in enumerate(names):
self.graph.outputs[i].name = name
def fold_constants(self, return_onnx=False):
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
def infer_shapes(self, return_onnx=False):
onnx_graph = gs.export_onnx(self.graph)
if onnx_graph.ByteSize() > 2147483648:
raise TypeError("ERROR: model size exceeds supported 2GB limit")
else:
onnx_graph = shape_inference.infer_shapes(onnx_graph)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
def optimize(onnx_graph, name, verbose):
opt = Optimizer(onnx_graph, verbose=verbose)
opt.info(name + ": original")
opt.cleanup()
opt.info(name + ": cleanup")
opt.fold_constants()
opt.info(name + ": fold constants")
# opt.infer_shapes()
# opt.info(name + ': shape inference')
onnx_opt_graph = opt.cleanup(return_onnx=True)
opt.info(name + ": finished")
return onnx_opt_graph
class UNet2DConditionControlNetModel(torch.nn.Module):
def __init__(
self,
unet,
controlnets: ControlNetModel,
):
super().__init__()
self.unet = unet
self.controlnets = controlnets
def forward(
self,
sample,
timestep,
encoder_hidden_states,
controlnet_conds,
controlnet_scales,
):
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate(
zip(controlnet_conds, controlnet_scales, self.controlnets)
):
down_samples, mid_sample = controlnet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=controlnet_cond,
conditioning_scale=conditioning_scale,
return_dict=False,
)
# merge samples
if i == 0:
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
else:
down_block_res_samples = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
]
mid_block_res_sample += mid_sample
noise_pred = self.unet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
return noise_pred
class UNet2DConditionXLControlNetModel(torch.nn.Module):
def __init__(
self,
unet,
controlnets: ControlNetModel,
):
super().__init__()
self.unet = unet
self.controlnets = controlnets
def forward(
self,
sample,
timestep,
encoder_hidden_states,
controlnet_conds,
controlnet_scales,
text_embeds,
time_ids,
):
added_cond_kwargs = {"text_embeds": text_embeds, "time_ids": time_ids}
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate(
zip(controlnet_conds, controlnet_scales, self.controlnets)
):
down_samples, mid_sample = controlnet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=controlnet_cond,
conditioning_scale=conditioning_scale,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)
# merge samples
if i == 0:
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
else:
down_block_res_samples = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
]
mid_block_res_sample += mid_sample
noise_pred = self.unet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
return noise_pred
def onnx_export(
model,
model_args: tuple,
output_path: Path,
ordered_input_names,
output_names,
dynamic_axes,
opset,
use_external_data_format=False,
):
output_path.parent.mkdir(parents=True, exist_ok=True)
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
with torch.inference_mode(), torch.autocast("cuda"):
if is_torch_less_than_1_11:
export(
model,
model_args,
f=output_path.as_posix(),
input_names=ordered_input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
use_external_data_format=use_external_data_format,
enable_onnx_checker=True,
opset_version=opset,
)
else:
export(
model,
model_args,
f=output_path.as_posix(),
input_names=ordered_input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
opset_version=opset,
)
@torch.no_grad()
def convert_models(
model_path: str, controlnet_path: list, output_path: str, opset: int, fp16: bool = False, sd_xl: bool = False
):
"""
Function to convert models in stable diffusion controlnet pipeline into ONNX format
Example:
python convert_stable_diffusion_controlnet_to_onnx.py
--model_path danbrown/RevAnimated-v1-2-2
--controlnet_path lllyasviel/control_v11f1e_sd15_tile ioclab/brightness-controlnet
--output_path path-to-models-stable_diffusion/RevAnimated-v1-2-2
--fp16
Example for SD XL:
python convert_stable_diffusion_controlnet_to_onnx.py
--model_path stabilityai/stable-diffusion-xl-base-1.0
--controlnet_path SargeZT/sdxl-controlnet-seg
--output_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0
--fp16
--sd_xl
Returns:
create 4 onnx models in output path
text_encoder/model.onnx
unet/model.onnx + unet/weights.pb
vae_encoder/model.onnx
vae_decoder/model.onnx
run test script in diffusers/examples/community
python test_onnx_controlnet.py
--sd_model danbrown/RevAnimated-v1-2-2
--onnx_model_dir path-to-models-stable_diffusion/RevAnimated-v1-2-2
--qr_img_path path-to-qr-code-image
"""
dtype = torch.float16 if fp16 else torch.float32
if fp16 and torch.cuda.is_available():
device = "cuda"
elif fp16 and not torch.cuda.is_available():
raise ValueError("`float16` model export is only supported on GPUs with CUDA")
else:
device = "cpu"
# init controlnet
controlnets = []
for path in controlnet_path:
controlnet = ControlNetModel.from_pretrained(path, torch_dtype=dtype).to(device)
if is_torch_2_0_1:
controlnet.set_attn_processor(AttnProcessor())
controlnets.append(controlnet)
if sd_xl:
if len(controlnets) == 1:
controlnet = controlnets[0]
else:
raise ValueError("MultiControlNet is not yet supported.")
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
model_path, controlnet=controlnet, torch_dtype=dtype, variant="fp16", use_safetensors=True
).to(device)
else:
pipeline = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_path, controlnet=controlnets, torch_dtype=dtype
).to(device)
output_path = Path(output_path)
if is_torch_2_0_1:
pipeline.unet.set_attn_processor(AttnProcessor())
pipeline.vae.set_attn_processor(AttnProcessor())
# # TEXT ENCODER
num_tokens = pipeline.text_encoder.config.max_position_embeddings
text_hidden_size = pipeline.text_encoder.config.hidden_size
text_input = pipeline.tokenizer(
"A sample prompt",
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
onnx_export(
pipeline.text_encoder,
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
output_path=output_path / "text_encoder" / "model.onnx",
ordered_input_names=["input_ids"],
output_names=["last_hidden_state", "pooler_output"],
dynamic_axes={
"input_ids": {0: "batch", 1: "sequence"},
},
opset=opset,
)
del pipeline.text_encoder
# # UNET
if sd_xl:
controlnets = torch.nn.ModuleList(controlnets)
unet_controlnet = UNet2DConditionXLControlNetModel(pipeline.unet, controlnets)
unet_in_channels = pipeline.unet.config.in_channels
unet_sample_size = pipeline.unet.config.sample_size
text_hidden_size = 2048
img_size = 8 * unet_sample_size
unet_path = output_path / "unet" / "model.onnx"
onnx_export(
unet_controlnet,
model_args=(
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
torch.tensor([1.0]).to(device=device, dtype=dtype),
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype),
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype),
torch.randn(2, 1280).to(device=device, dtype=dtype),
torch.rand(2, 6).to(device=device, dtype=dtype),
),
output_path=unet_path,
ordered_input_names=[
"sample",
"timestep",
"encoder_hidden_states",
"controlnet_conds",
"conditioning_scales",
"text_embeds",
"time_ids",
],
output_names=["noise_pred"], # has to be different from "sample" for correct tracing
dynamic_axes={
"sample": {0: "2B", 2: "H", 3: "W"},
"encoder_hidden_states": {0: "2B"},
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"},
"text_embeds": {0: "2B"},
"time_ids": {0: "2B"},
},
opset=opset,
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split
)
unet_model_path = str(unet_path.absolute().as_posix())
unet_dir = os.path.dirname(unet_model_path)
# optimize onnx
shape_inference.infer_shapes_path(unet_model_path, unet_model_path)
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True)
# clean up existing tensor files
shutil.rmtree(unet_dir)
os.mkdir(unet_dir)
# collate external tensor files into one
onnx.save_model(
unet_opt_graph,
unet_model_path,
save_as_external_data=True,
all_tensors_to_one_file=True,
location="weights.pb",
convert_attribute=False,
)
del pipeline.unet
else:
controlnets = torch.nn.ModuleList(controlnets)
unet_controlnet = UNet2DConditionControlNetModel(pipeline.unet, controlnets)
unet_in_channels = pipeline.unet.config.in_channels
unet_sample_size = pipeline.unet.config.sample_size
img_size = 8 * unet_sample_size
unet_path = output_path / "unet" / "model.onnx"
onnx_export(
unet_controlnet,
model_args=(
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
torch.tensor([1.0]).to(device=device, dtype=dtype),
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype),
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype),
),
output_path=unet_path,
ordered_input_names=[
"sample",
"timestep",
"encoder_hidden_states",
"controlnet_conds",
"conditioning_scales",
],
output_names=["noise_pred"], # has to be different from "sample" for correct tracing
dynamic_axes={
"sample": {0: "2B", 2: "H", 3: "W"},
"encoder_hidden_states": {0: "2B"},
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"},
},
opset=opset,
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split
)
unet_model_path = str(unet_path.absolute().as_posix())
unet_dir = os.path.dirname(unet_model_path)
# optimize onnx
shape_inference.infer_shapes_path(unet_model_path, unet_model_path)
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True)
# clean up existing tensor files
shutil.rmtree(unet_dir)
os.mkdir(unet_dir)
# collate external tensor files into one
onnx.save_model(
unet_opt_graph,
unet_model_path,
save_as_external_data=True,
all_tensors_to_one_file=True,
location="weights.pb",
convert_attribute=False,
)
del pipeline.unet
# VAE ENCODER
vae_encoder = pipeline.vae
vae_in_channels = vae_encoder.config.in_channels
vae_sample_size = vae_encoder.config.sample_size
# need to get the raw tensor output (sample) from the encoder
vae_encoder.forward = lambda sample: vae_encoder.encode(sample).latent_dist.sample()
onnx_export(
vae_encoder,
model_args=(torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),),
output_path=output_path / "vae_encoder" / "model.onnx",
ordered_input_names=["sample"],
output_names=["latent_sample"],
dynamic_axes={
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
},
opset=opset,
)
# VAE DECODER
vae_decoder = pipeline.vae
vae_latent_channels = vae_decoder.config.latent_channels
# forward only through the decoder part
vae_decoder.forward = vae_encoder.decode
onnx_export(
vae_decoder,
model_args=(
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
),
output_path=output_path / "vae_decoder" / "model.onnx",
ordered_input_names=["latent_sample"],
output_names=["sample"],
dynamic_axes={
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
},
opset=opset,
)
del pipeline.vae
del pipeline
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sd_xl", action="store_true", default=False, help="SD XL pipeline")
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument(
"--controlnet_path",
nargs="+",
required=True,
help="Path to the `controlnet` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
args = parser.parse_args()
convert_models(args.model_path, args.controlnet_path, args.output_path, args.opset, args.fp16, args.sd_xl)
| diffusers-main | scripts/convert_stable_diffusion_controlnet_to_onnx.py |
import argparse
import tempfile
import torch
from accelerate import load_checkpoint_and_dispatch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import UnCLIPPipeline, UNet2DConditionModel, UNet2DModel
from diffusers.models.prior_transformer import PriorTransformer
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.schedulers.scheduling_unclip import UnCLIPScheduler
"""
Example - From the diffusers root directory:
Download weights:
```sh
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/efdf6206d8ed593961593dc029a8affa/decoder-ckpt-step%3D01000000-of-01000000.ckpt
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/4226b831ae0279020d134281f3c31590/improved-sr-ckpt-step%3D1.2M.ckpt
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/85626483eaca9f581e2a78d31ff905ca/prior-ckpt-step%3D01000000-of-01000000.ckpt
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/0b62380a75e56f073e2844ab5199153d/ViT-L-14_stats.th
```
Convert the model:
```sh
$ python scripts/convert_kakao_brain_unclip_to_diffusers.py \
--decoder_checkpoint_path ./decoder-ckpt-step\=01000000-of-01000000.ckpt \
--super_res_unet_checkpoint_path ./improved-sr-ckpt-step\=1.2M.ckpt \
--prior_checkpoint_path ./prior-ckpt-step\=01000000-of-01000000.ckpt \
--clip_stat_path ./ViT-L-14_stats.th \
--dump_path <path where to save model>
```
"""
# prior
PRIOR_ORIGINAL_PREFIX = "model"
# Uses default arguments
PRIOR_CONFIG = {}
def prior_model_from_original_config():
model = PriorTransformer(**PRIOR_CONFIG)
return model
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint, clip_stats_checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.0 -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.bias"],
}
)
# <original>.clip_img_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.bias"],
}
)
# <original>.text_emb_proj -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.bias"],
}
)
# <original>.text_enc_proj -> <diffusers>.encoder_hidden_states_proj
diffusers_checkpoint.update(
{
"encoder_hidden_states_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.weight"],
"encoder_hidden_states_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.bias"],
}
)
# <original>.positional_embedding -> <diffusers>.positional_embedding
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.positional_embedding"]})
# <original>.prd_emb -> <diffusers>.prd_embedding
diffusers_checkpoint.update({"prd_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.prd_emb"]})
# <original>.time_embed.2 -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.bias"],
}
)
# <original>.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.transformer.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.final_ln -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.bias"],
}
)
# <original>.out_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.bias"],
}
)
# clip stats
clip_mean, clip_std = clip_stats_checkpoint
clip_mean = clip_mean[None, :]
clip_std = clip_std[None, :]
diffusers_checkpoint.update({"clip_mean": clip_mean, "clip_std": clip_std})
return diffusers_checkpoint
def prior_attention_to_diffusers(
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim
):
diffusers_checkpoint = {}
# <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"],
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"],
split=3,
chunk_size=attention_head_dim,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.c_proj -> <diffusers>.to_out.0
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"],
}
)
return diffusers_checkpoint
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix):
diffusers_checkpoint = {
# <original>.c_fc -> <diffusers>.net.0.proj
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"],
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"],
# <original>.c_proj -> <diffusers>.net.2
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"],
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"],
}
return diffusers_checkpoint
# done prior
# decoder
DECODER_ORIGINAL_PREFIX = "model"
# We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can
# update then.
DECODER_CONFIG = {
"sample_size": 64,
"layers_per_block": 3,
"down_block_types": (
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
),
"up_block_types": (
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"ResnetUpsampleBlock2D",
),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (320, 640, 960, 1280),
"in_channels": 3,
"out_channels": 6,
"cross_attention_dim": 1536,
"class_embed_type": "identity",
"attention_head_dim": 64,
"resnet_time_scale_shift": "scale_shift",
}
def decoder_model_from_original_config():
model = UNet2DConditionModel(**DECODER_CONFIG)
return model
def decoder_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
original_unet_prefix = DECODER_ORIGINAL_PREFIX
num_head_channels = DECODER_CONFIG["attention_head_dim"]
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=num_head_channels,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.input_blocks -> <diffusers>.down_blocks
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
original_unet_prefix=original_unet_prefix,
num_head_channels=num_head_channels,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=num_head_channels,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix))
return diffusers_checkpoint
# done decoder
# text proj
def text_proj_from_original_config():
# From the conditional unet constructor where the dimension of the projected time embeddings is
# constructed
time_embed_dim = DECODER_CONFIG["block_out_channels"][0] * 4
cross_attention_dim = DECODER_CONFIG["cross_attention_dim"]
model = UnCLIPTextProjModel(time_embed_dim=time_embed_dim, cross_attention_dim=cross_attention_dim)
return model
# Note that the input checkpoint is the original decoder checkpoint
def text_proj_original_checkpoint_to_diffusers_checkpoint(checkpoint):
diffusers_checkpoint = {
# <original>.text_seq_proj.0 -> <diffusers>.encoder_hidden_states_proj
"encoder_hidden_states_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.weight"],
"encoder_hidden_states_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.bias"],
# <original>.text_seq_proj.1 -> <diffusers>.text_encoder_hidden_states_norm
"text_encoder_hidden_states_norm.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.weight"],
"text_encoder_hidden_states_norm.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.bias"],
# <original>.clip_tok_proj -> <diffusers>.clip_extra_context_tokens_proj
"clip_extra_context_tokens_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.weight"],
"clip_extra_context_tokens_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.bias"],
# <original>.text_feat_proj -> <diffusers>.embedding_proj
"embedding_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.weight"],
"embedding_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.bias"],
# <original>.cf_param -> <diffusers>.learned_classifier_free_guidance_embeddings
"learned_classifier_free_guidance_embeddings": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.cf_param"],
# <original>.clip_emb -> <diffusers>.clip_image_embeddings_project_to_time_embeddings
"clip_image_embeddings_project_to_time_embeddings.weight": checkpoint[
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.weight"
],
"clip_image_embeddings_project_to_time_embeddings.bias": checkpoint[
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.bias"
],
}
return diffusers_checkpoint
# done text proj
# super res unet first steps
SUPER_RES_UNET_FIRST_STEPS_PREFIX = "model_first_steps"
SUPER_RES_UNET_FIRST_STEPS_CONFIG = {
"sample_size": 256,
"layers_per_block": 3,
"down_block_types": (
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
),
"up_block_types": (
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
),
"block_out_channels": (320, 640, 960, 1280),
"in_channels": 6,
"out_channels": 3,
"add_attention": False,
}
def super_res_unet_first_steps_model_from_original_config():
model = UNet2DModel(**SUPER_RES_UNET_FIRST_STEPS_CONFIG)
return model
def super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
original_unet_prefix = SUPER_RES_UNET_FIRST_STEPS_PREFIX
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix))
return diffusers_checkpoint
# done super res unet first steps
# super res unet last step
SUPER_RES_UNET_LAST_STEP_PREFIX = "model_last_step"
SUPER_RES_UNET_LAST_STEP_CONFIG = {
"sample_size": 256,
"layers_per_block": 3,
"down_block_types": (
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
),
"up_block_types": (
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
),
"block_out_channels": (320, 640, 960, 1280),
"in_channels": 6,
"out_channels": 3,
"add_attention": False,
}
def super_res_unet_last_step_model_from_original_config():
model = UNet2DModel(**SUPER_RES_UNET_LAST_STEP_CONFIG)
return model
def super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
original_unet_prefix = SUPER_RES_UNET_LAST_STEP_PREFIX
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix))
return diffusers_checkpoint
# done super res unet last step
# unet utils
# <original>.time_embed -> <diffusers>.time_embedding
def unet_time_embeddings(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{original_unet_prefix}.time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{original_unet_prefix}.time_embed.0.bias"],
"time_embedding.linear_2.weight": checkpoint[f"{original_unet_prefix}.time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{original_unet_prefix}.time_embed.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks.0 -> <diffusers>.conv_in
def unet_conv_in(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_in.weight": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.weight"],
"conv_in.bias": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.bias"],
}
)
return diffusers_checkpoint
# <original>.out.0 -> <diffusers>.conv_norm_out
def unet_conv_norm_out(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_norm_out.weight": checkpoint[f"{original_unet_prefix}.out.0.weight"],
"conv_norm_out.bias": checkpoint[f"{original_unet_prefix}.out.0.bias"],
}
)
return diffusers_checkpoint
# <original>.out.2 -> <diffusers>.conv_out
def unet_conv_out(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_out.weight": checkpoint[f"{original_unet_prefix}.out.2.weight"],
"conv_out.bias": checkpoint[f"{original_unet_prefix}.out.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks -> <diffusers>.down_blocks
def unet_downblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_down_block_idx, original_down_block_idx, original_unet_prefix, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.resnets"
original_down_block_prefix = f"{original_unet_prefix}.input_blocks"
down_block = model.down_blocks[diffusers_down_block_idx]
num_resnets = len(down_block.resnets)
if down_block.downsamplers is None:
downsampler = False
else:
assert len(down_block.downsamplers) == 1
downsampler = True
# The downsample block is also a resnet
num_resnets += 1
for resnet_idx_inc in range(num_resnets):
full_resnet_prefix = f"{original_down_block_prefix}.{original_down_block_idx + resnet_idx_inc}.0"
if downsampler and resnet_idx_inc == num_resnets - 1:
# this is a downsample block
full_diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.downsamplers.0"
else:
# this is a regular resnet block
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if hasattr(down_block, "attentions"):
num_attentions = len(down_block.attentions)
diffusers_attention_prefix = f"down_blocks.{diffusers_down_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_down_block_prefix}.{original_down_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets
return diffusers_checkpoint, num_original_down_blocks
# <original>.middle_block -> <diffusers>.mid_block
def unet_midblock_to_diffusers_checkpoint(model, checkpoint, *, original_unet_prefix, num_head_channels):
diffusers_checkpoint = {}
# block 0
original_block_idx = 0
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.0",
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}",
)
)
original_block_idx += 1
# optional block 1
if hasattr(model.mid_block, "attentions") and model.mid_block.attentions[0] is not None:
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix="mid_block.attentions.0",
attention_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}",
num_head_channels=num_head_channels,
)
)
original_block_idx += 1
# block 1 or block 2
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.1",
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}",
)
)
return diffusers_checkpoint
# <original>.output_blocks -> <diffusers>.up_blocks
def unet_upblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_up_block_idx, original_up_block_idx, original_unet_prefix, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.resnets"
original_up_block_prefix = f"{original_unet_prefix}.output_blocks"
up_block = model.up_blocks[diffusers_up_block_idx]
num_resnets = len(up_block.resnets)
if up_block.upsamplers is None:
upsampler = False
else:
assert len(up_block.upsamplers) == 1
upsampler = True
# The upsample block is also a resnet
num_resnets += 1
has_attentions = hasattr(up_block, "attentions")
for resnet_idx_inc in range(num_resnets):
if upsampler and resnet_idx_inc == num_resnets - 1:
# this is an upsample block
if has_attentions:
# There is a middle attention block that we skip
original_resnet_block_idx = 2
else:
original_resnet_block_idx = 1
# we add the `minus 1` because the last two resnets are stuck together in the same output block
full_resnet_prefix = (
f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc - 1}.{original_resnet_block_idx}"
)
full_diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.upsamplers.0"
else:
# this is a regular resnet block
full_resnet_prefix = f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc}.0"
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if has_attentions:
num_attentions = len(up_block.attentions)
diffusers_attention_prefix = f"up_blocks.{diffusers_up_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_up_block_prefix}.{original_up_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets - 1 if upsampler else num_resnets
return diffusers_checkpoint, num_original_down_blocks
def resnet_to_diffusers_checkpoint(checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
diffusers_checkpoint = {
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.in_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.in_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.in_layers.2.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.in_layers.2.bias"],
f"{diffusers_resnet_prefix}.time_emb_proj.weight": checkpoint[f"{resnet_prefix}.emb_layers.1.weight"],
f"{diffusers_resnet_prefix}.time_emb_proj.bias": checkpoint[f"{resnet_prefix}.emb_layers.1.bias"],
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.out_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.out_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.out_layers.3.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.out_layers.3.bias"],
}
skip_connection_prefix = f"{resnet_prefix}.skip_connection"
if f"{skip_connection_prefix}.weight" in checkpoint:
diffusers_checkpoint.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{skip_connection_prefix}.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{skip_connection_prefix}.bias"],
}
)
return diffusers_checkpoint
def attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix, num_head_channels):
diffusers_checkpoint = {}
# <original>.norm -> <diffusers>.group_norm
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
}
)
# <original>.qkv -> <diffusers>.{query, key, value}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.qkv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.qkv.bias"],
split=3,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.encoder_kv -> <diffusers>.{context_key, context_value}
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.encoder_kv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.encoder_kv.bias"],
split=2,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.add_k_proj.weight": encoder_k_weight,
f"{diffusers_attention_prefix}.add_k_proj.bias": encoder_k_bias,
f"{diffusers_attention_prefix}.add_v_proj.weight": encoder_v_weight,
f"{diffusers_attention_prefix}.add_v_proj.bias": encoder_v_bias,
}
)
# <original>.proj_out (1d conv) -> <diffusers>.proj_attn (linear)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][
:, :, 0
],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
)
return diffusers_checkpoint
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
assert weights[weights_biases_idx] is None
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
# done unet utils
# Driver functions
def text_encoder():
print("loading CLIP text encoder")
clip_name = "openai/clip-vit-large-patch14"
# sets pad_value to 0
pad_token = "!"
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto")
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0
text_encoder_model = CLIPTextModelWithProjection.from_pretrained(
clip_name,
# `CLIPTextModel` does not support device_map="auto"
# device_map="auto"
)
print("done loading CLIP text encoder")
return text_encoder_model, tokenizer_model
def prior(*, args, checkpoint_map_location):
print("loading prior")
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location)
prior_checkpoint = prior_checkpoint["state_dict"]
clip_stats_checkpoint = torch.load(args.clip_stat_path, map_location=checkpoint_map_location)
prior_model = prior_model_from_original_config()
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(
prior_model, prior_checkpoint, clip_stats_checkpoint
)
del prior_checkpoint
del clip_stats_checkpoint
load_checkpoint_to_model(prior_diffusers_checkpoint, prior_model, strict=True)
print("done loading prior")
return prior_model
def decoder(*, args, checkpoint_map_location):
print("loading decoder")
decoder_checkpoint = torch.load(args.decoder_checkpoint_path, map_location=checkpoint_map_location)
decoder_checkpoint = decoder_checkpoint["state_dict"]
decoder_model = decoder_model_from_original_config()
decoder_diffusers_checkpoint = decoder_original_checkpoint_to_diffusers_checkpoint(
decoder_model, decoder_checkpoint
)
# text proj interlude
# The original decoder implementation includes a set of parameters that are used
# for creating the `encoder_hidden_states` which are what the U-net is conditioned
# on. The diffusers conditional unet directly takes the encoder_hidden_states. We pull
# the parameters into the UnCLIPTextProjModel class
text_proj_model = text_proj_from_original_config()
text_proj_checkpoint = text_proj_original_checkpoint_to_diffusers_checkpoint(decoder_checkpoint)
load_checkpoint_to_model(text_proj_checkpoint, text_proj_model, strict=True)
# done text proj interlude
del decoder_checkpoint
load_checkpoint_to_model(decoder_diffusers_checkpoint, decoder_model, strict=True)
print("done loading decoder")
return decoder_model, text_proj_model
def super_res_unet(*, args, checkpoint_map_location):
print("loading super resolution unet")
super_res_checkpoint = torch.load(args.super_res_unet_checkpoint_path, map_location=checkpoint_map_location)
super_res_checkpoint = super_res_checkpoint["state_dict"]
# model_first_steps
super_res_first_model = super_res_unet_first_steps_model_from_original_config()
super_res_first_steps_checkpoint = super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint(
super_res_first_model, super_res_checkpoint
)
# model_last_step
super_res_last_model = super_res_unet_last_step_model_from_original_config()
super_res_last_step_checkpoint = super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint(
super_res_last_model, super_res_checkpoint
)
del super_res_checkpoint
load_checkpoint_to_model(super_res_first_steps_checkpoint, super_res_first_model, strict=True)
load_checkpoint_to_model(super_res_last_step_checkpoint, super_res_last_model, strict=True)
print("done loading super resolution unet")
return super_res_first_model, super_res_last_model
def load_checkpoint_to_model(checkpoint, model, strict=False):
with tempfile.NamedTemporaryFile() as file:
torch.save(checkpoint, file.name)
del checkpoint
if strict:
model.load_state_dict(torch.load(file.name), strict=True)
else:
load_checkpoint_and_dispatch(model, file.name, device_map="auto")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--prior_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the prior checkpoint to convert.",
)
parser.add_argument(
"--decoder_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the decoder checkpoint to convert.",
)
parser.add_argument(
"--super_res_unet_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the super resolution checkpoint to convert.",
)
parser.add_argument(
"--clip_stat_path", default=None, type=str, required=True, help="Path to the clip stats checkpoint to convert."
)
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
parser.add_argument(
"--debug",
default=None,
type=str,
required=False,
help="Only run a specific stage of the convert script. Used for debugging",
)
args = parser.parse_args()
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
if args.debug is not None:
print(f"debug: only executing {args.debug}")
if args.debug is None:
text_encoder_model, tokenizer_model = text_encoder()
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location)
super_res_first_model, super_res_last_model = super_res_unet(
args=args, checkpoint_map_location=checkpoint_map_location
)
prior_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="sample",
num_train_timesteps=1000,
clip_sample_range=5.0,
)
decoder_scheduler = UnCLIPScheduler(
variance_type="learned_range",
prediction_type="epsilon",
num_train_timesteps=1000,
)
super_res_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="epsilon",
num_train_timesteps=1000,
)
print(f"saving Kakao Brain unCLIP to {args.dump_path}")
pipe = UnCLIPPipeline(
prior=prior_model,
decoder=decoder_model,
text_proj=text_proj_model,
tokenizer=tokenizer_model,
text_encoder=text_encoder_model,
super_res_first=super_res_first_model,
super_res_last=super_res_last_model,
prior_scheduler=prior_scheduler,
decoder_scheduler=decoder_scheduler,
super_res_scheduler=super_res_scheduler,
)
pipe.save_pretrained(args.dump_path)
print("done writing Kakao Brain unCLIP")
elif args.debug == "text_encoder":
text_encoder_model, tokenizer_model = text_encoder()
elif args.debug == "prior":
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
elif args.debug == "decoder":
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location)
elif args.debug == "super_res_unet":
super_res_first_model, super_res_last_model = super_res_unet(
args=args, checkpoint_map_location=checkpoint_map_location
)
else:
raise ValueError(f"unknown debug value : {args.debug}")
| diffusers-main | scripts/convert_kakao_brain_unclip_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the AudioLDM checkpoints."""
import argparse
import re
import torch
from transformers import (
AutoTokenizer,
ClapTextConfig,
ClapTextModelWithProjection,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths
def renew_attention_paths(old_list):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_attention_paths
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_unet_diffusers_config(original_config, image_size: int):
"""
Creates a UNet config for diffusers based on the config of the original AudioLDM model.
"""
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
cross_attention_dim = (
unet_params.cross_attention_dim if "cross_attention_dim" in unet_params else block_out_channels
)
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None
projection_class_embeddings_input_dim = (
unet_params.extra_film_condition_dim if "extra_film_condition_dim" in unet_params else None
)
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": cross_attention_dim,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"class_embeddings_concat": class_embeddings_concat,
}
return config
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config
def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
"""
Creates a VAE config for diffusers based on the config of the original AudioLDM model. Compared to the original
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"scaling_factor": float(scaling_factor),
}
return config
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_unet_checkpoint
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint. Compared to the original Stable Diffusion
conversion, this function additionally converts the learnt film embedding linear layer.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["class_embedding.weight"] = unet_state_dict["film_emb.weight"]
new_checkpoint["class_embedding.bias"] = unet_state_dict["film_emb.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_vae_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
CLAP_KEYS_TO_MODIFY_MAPPING = {
"text_branch": "text_model",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
CLAP_KEYS_TO_IGNORE = ["text_transform"]
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"]
def convert_open_clap_checkpoint(checkpoint):
"""
Takes a state dict and returns a converted CLAP checkpoint.
"""
# extract state dict for CLAP text embedding model, discarding the audio component
model_state_dict = {}
model_key = "cond_stage_model.model.text_"
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(model_key):
model_state_dict[key.replace(model_key, "text_")] = checkpoint.get(key)
new_checkpoint = {}
sequential_layers_pattern = r".*sequential.(\d+).*"
text_projection_pattern = r".*_projection.(\d+).*"
for key, value in model_state_dict.items():
# check if key should be ignored in mapping
if key.split(".")[0] in CLAP_KEYS_TO_IGNORE:
continue
# check if any key needs to be modified
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
if re.match(sequential_layers_pattern, key):
# replace sequential layers with list
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.")
elif re.match(text_projection_pattern, key):
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
# Because in CLAP they use `nn.Sequential`...
transformers_projection_layer = 1 if projecton_layer == 0 else 2
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
if "audio" and "qkv" in key:
# split qkv into query key and value
mixed_qkv = value
qkv_dim = mixed_qkv.size(0) // 3
query_layer = mixed_qkv[:qkv_dim]
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
value_layer = mixed_qkv[qkv_dim * 2 :]
new_checkpoint[key.replace("qkv", "query")] = query_layer
new_checkpoint[key.replace("qkv", "key")] = key_layer
new_checkpoint[key.replace("qkv", "value")] = value_layer
else:
new_checkpoint[key] = value
return new_checkpoint
def create_transformers_vocoder_config(original_config):
"""
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
"""
vocoder_params = original_config.model.params.vocoder_config.params
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
],
"normalize_before": False,
}
return config
def convert_hifigan_checkpoint(checkpoint, config):
"""
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint.
"""
# extract state dict for vocoder
vocoder_state_dict = {}
vocoder_key = "first_stage_model.vocoder."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vocoder_key):
vocoder_state_dict[key.replace(vocoder_key, "")] = checkpoint.get(key)
# fix upsampler keys, everything else is correct already
for i in range(len(config.upsample_rates)):
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight")
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias")
if not config.normalize_before:
# if we don't set normalize_before then these variables are unused, so we set them to their initialised values
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim)
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim)
return vocoder_state_dict
# Adapted from https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation/blob/84a0384742a22bd80c44e903e241f0623e874f1d/audioldm/utils.py#L72-L73
DEFAULT_CONFIG = {
"model": {
"params": {
"linear_start": 0.0015,
"linear_end": 0.0195,
"timesteps": 1000,
"channels": 8,
"scale_by_std": True,
"unet_config": {
"target": "audioldm.latent_diffusion.openaimodel.UNetModel",
"params": {
"extra_film_condition_dim": 512,
"extra_film_use_concat": True,
"in_channels": 8,
"out_channels": 8,
"model_channels": 128,
"attention_resolutions": [8, 4, 2],
"num_res_blocks": 2,
"channel_mult": [1, 2, 3, 5],
"num_head_channels": 32,
},
},
"first_stage_config": {
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
"params": {
"embed_dim": 8,
"ddconfig": {
"z_channels": 8,
"resolution": 256,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4],
"num_res_blocks": 2,
},
},
},
"vocoder_config": {
"target": "audioldm.first_stage_model.vocoder",
"params": {
"upsample_rates": [5, 4, 2, 2, 2],
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
"upsample_initial_channel": 1024,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"num_mels": 64,
"sampling_rate": 16000,
},
},
},
},
}
def load_pipeline_from_original_audioldm_ckpt(
checkpoint_path: str,
original_config_file: str = None,
image_size: int = 512,
prediction_type: str = None,
extract_ema: bool = False,
scheduler_type: str = "ddim",
num_in_channels: int = None,
model_channels: int = None,
num_head_channels: int = None,
device: str = None,
from_safetensors: bool = False,
) -> AudioLDMPipeline:
"""
Load an AudioLDM pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file.
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
Args:
checkpoint_path (`str`): Path to `.ckpt` file.
original_config_file (`str`):
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically
set to the audioldm-s-full-v2 config.
image_size (`int`, *optional*, defaults to 512):
The image size that the model was trained on.
prediction_type (`str`, *optional*):
The prediction type that the model was trained on. If `None`, will be automatically
inferred by looking for a key in the config. For the default config, the prediction type is `'epsilon'`.
num_in_channels (`int`, *optional*, defaults to None):
The number of UNet input channels. If `None`, it will be automatically inferred from the config.
model_channels (`int`, *optional*, defaults to None):
The number of UNet model channels. If `None`, it will be automatically inferred from the config. Override
to 128 for the small checkpoints, 192 for the medium checkpoints and 256 for the large.
num_head_channels (`int`, *optional*, defaults to None):
The number of UNet head channels. If `None`, it will be automatically inferred from the config. Override
to 32 for the small and medium checkpoints, and 64 for the large.
scheduler_type (`str`, *optional*, defaults to 'pndm'):
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
"ddim"]`.
extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to
`False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for
inference. Non-EMA weights are usually better to continue fine-tuning.
device (`str`, *optional*, defaults to `None`):
The device to use. Pass `None` to determine automatically.
from_safetensors (`str`, *optional*, defaults to `False`):
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
return: An AudioLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
from safetensors import safe_open
checkpoint = {}
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if original_config_file is None:
original_config = DEFAULT_CONFIG
original_config = OmegaConf.create(original_config)
else:
original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
if model_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["model_channels"] = model_channels
if num_head_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = num_head_channels
if (
"parameterization" in original_config["model"]["params"]
and original_config["model"]["params"]["parameterization"] == "v"
):
if prediction_type is None:
prediction_type = "v_prediction"
else:
if prediction_type is None:
prediction_type = "epsilon"
if image_size is None:
image_size = 512
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
# make sure scheduler works correctly with DDIM
scheduler.register_to_config(clip_sample=False)
if scheduler_type == "pndm":
config = dict(scheduler.config)
config["skip_prk_steps"] = True
scheduler = PNDMScheduler.from_config(config)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "heun":
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler":
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
# Convert the UNet2DModel
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# Convert the text model
# AudioLDM uses the same configuration and tokenizer as the original CLAP model
config = ClapTextConfig.from_pretrained("laion/clap-htsat-unfused")
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
converted_text_model = convert_open_clap_checkpoint(checkpoint)
text_model = ClapTextModelWithProjection(config)
missing_keys, unexpected_keys = text_model.load_state_dict(converted_text_model, strict=False)
# we expect not to have token_type_ids in our original state dict so let's ignore them
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS))
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}")
if len(missing_keys) > 0:
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}")
# Convert the vocoder model
vocoder_config = create_transformers_vocoder_config(original_config)
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config)
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config)
vocoder = SpeechT5HifiGan(vocoder_config)
vocoder.load_state_dict(converted_vocoder_checkpoint)
# Instantiate the diffusers pipeline
pipe = AudioLDMPipeline(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
vocoder=vocoder,
)
return pipe
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--model_channels",
default=None,
type=int,
help="The number of UNet model channels. If `None`, it will be automatically inferred from the config. Override"
" to 128 for the small checkpoints, 192 for the medium checkpoints and 256 for the large.",
)
parser.add_argument(
"--num_head_channels",
default=None,
type=int,
help="The number of UNet head channels. If `None`, it will be automatically inferred from the config. Override"
" to 32 for the small and medium checkpoints, and 64 for the large.",
)
parser.add_argument(
"--scheduler_type",
default="ddim",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--image_size",
default=None,
type=int,
help=("The image size that the model was trained on."),
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=("The prediction type that the model was trained on."),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
args = parser.parse_args()
pipe = load_pipeline_from_original_audioldm_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
model_channels=args.model_channels,
num_head_channels=args.num_head_channels,
from_safetensors=args.from_safetensors,
device=args.device,
)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| diffusers-main | scripts/convert_original_audioldm_to_diffusers.py |
import argparse
import re
import torch
from transformers import (
CLIPProcessor,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionGLIGENPipeline,
StableDiffusionGLIGENTextImagePipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
protected,
renew_attention_paths,
renew_resnet_paths,
renew_vae_attention_paths,
renew_vae_resnet_paths,
shave_segments,
textenc_conversion_map,
textenc_pattern,
)
from diffusers.utils import is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
def convert_open_clip_checkpoint(checkpoint):
checkpoint = checkpoint["text_encoder"]
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
keys = list(checkpoint.keys())
text_model_dict = {}
if "cond_stage_model.model.text_projection" in checkpoint:
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
else:
d_model = 1024
for key in keys:
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
continue
if key in textenc_conversion_map:
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
# if key.startswith("cond_stage_model.model.transformer."):
new_key = key[len("transformer.") :]
if new_key.endswith(".in_proj_weight"):
new_key = new_key[: -len(".in_proj_weight")]
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
elif new_key.endswith(".in_proj_bias"):
new_key = new_key[: -len(".in_proj_bias")]
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
else:
if key != "transformer.text_model.embeddings.position_ids":
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
text_model_dict[new_key] = checkpoint[key]
if key == "transformer.text_model.embeddings.token_embedding.weight":
text_model_dict["text_model.embeddings.token_embedding.weight"] = checkpoint[key]
text_model_dict.pop("text_model.embeddings.transformer.text_model.embeddings.token_embedding.weight")
text_model.load_state_dict(text_model_dict)
return text_model
def convert_gligen_vae_checkpoint(checkpoint, config):
checkpoint = checkpoint["autoencoder"]
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for key in new_checkpoint.keys():
if "encoder.mid_block.attentions.0" in key or "decoder.mid_block.attentions.0" in key:
if "query" in key:
new_checkpoint[key.replace("query", "to_q")] = new_checkpoint.pop(key)
if "value" in key:
new_checkpoint[key.replace("value", "to_v")] = new_checkpoint.pop(key)
if "key" in key:
new_checkpoint[key.replace("key", "to_k")] = new_checkpoint.pop(key)
if "proj_attn" in key:
new_checkpoint[key.replace("proj_attn", "to_out.0")] = new_checkpoint.pop(key)
return new_checkpoint
def convert_gligen_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
unet_state_dict = {}
checkpoint = checkpoint["model"]
keys = list(checkpoint.keys())
unet_key = "model.diffusion_model."
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has bot EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
for key in keys:
if "position_net" in key:
new_checkpoint[key] = unet_state_dict[key]
return new_checkpoint
def create_vae_config(original_config, image_size: int):
vae_params = original_config.autoencoder.params.ddconfig
_ = original_config.autoencoder.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
}
return config
def create_unet_config(original_config, image_size: int, attention_type):
unet_params = original_config.model.params
vae_params = original_config.autoencoder.params.ddconfig
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
use_linear_projection = (
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
)
if use_linear_projection:
if head_dim is None:
head_dim = [5, 10, 20, 20]
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": unet_params.context_dim,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"attention_type": attention_type,
}
return config
def convert_gligen_to_diffusers(
checkpoint_path: str,
original_config_file: str,
attention_type: str,
image_size: int = 512,
extract_ema: bool = False,
num_in_channels: int = None,
device: str = None,
):
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)
if "global_step" in checkpoint:
checkpoint["global_step"]
else:
print("global_step key not found in model")
original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["in_channels"] = num_in_channels
num_train_timesteps = original_config.diffusion.params.timesteps
beta_start = original_config.diffusion.params.linear_start
beta_end = original_config.diffusion.params.linear_end
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type="epsilon",
)
# Convert the UNet2DConditionalModel model
unet_config = create_unet_config(original_config, image_size, attention_type)
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_gligen_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model
vae_config = create_vae_config(original_config, image_size)
converted_vae_checkpoint = convert_gligen_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# Convert the text model
text_encoder = convert_open_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
if attention_type == "gated-text-image":
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
pipe = StableDiffusionGLIGENTextImagePipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
image_encoder=image_encoder,
processor=processor,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
)
elif attention_type == "gated":
pipe = StableDiffusionGLIGENPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
)
return pipe
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
required=True,
help="The YAML config file corresponding to the gligen architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--attention_type",
default=None,
type=str,
required=True,
help="Type of attention ex: gated or gated-text-image",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use.")
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
args = parser.parse_args()
pipe = convert_gligen_to_diffusers(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
attention_type=args.attention_type,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
device=args.device,
)
if args.half:
pipe.to(torch_dtype=torch.float16)
pipe.save_pretrained(args.dump_path)
| diffusers-main | scripts/convert_gligen_to_diffusers.py |
import json
import os
import torch
from diffusers import UNet1DModel
os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True)
def unet(hor):
if hor == 128:
down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
block_out_channels = (32, 128, 256)
up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D")
elif hor == 32:
down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
block_out_channels = (32, 64, 128, 256)
up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D")
model = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch")
state_dict = model.state_dict()
config = {
"down_block_types": down_block_types,
"block_out_channels": block_out_channels,
"up_block_types": up_block_types,
"layers_per_block": 1,
"use_timestep_embedding": True,
"out_block_type": "OutConv1DBlock",
"norm_num_groups": 8,
"downsample_each_block": False,
"in_channels": 14,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"flip_sin_to_cos": False,
"freq_shift": 1,
"sample_size": 65536,
"mid_block_type": "MidResTemporalBlock1D",
"act_fn": "mish",
}
hf_value_function = UNet1DModel(**config)
print(f"length of state dict: {len(state_dict.keys())}")
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")
mapping = dict(zip(model.state_dict().keys(), hf_value_function.state_dict().keys()))
for k, v in mapping.items():
state_dict[v] = state_dict.pop(k)
hf_value_function.load_state_dict(state_dict)
torch.save(hf_value_function.state_dict(), f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin")
with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json", "w") as f:
json.dump(config, f)
def value_function():
config = {
"in_channels": 14,
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
"up_block_types": (),
"out_block_type": "ValueFunction",
"mid_block_type": "ValueFunctionMidBlock1D",
"block_out_channels": (32, 64, 128, 256),
"layers_per_block": 1,
"downsample_each_block": True,
"sample_size": 65536,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"use_timestep_embedding": True,
"flip_sin_to_cos": False,
"freq_shift": 1,
"norm_num_groups": 8,
"act_fn": "mish",
}
model = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch")
state_dict = model
hf_value_function = UNet1DModel(**config)
print(f"length of state dict: {len(state_dict.keys())}")
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")
mapping = dict(zip(state_dict.keys(), hf_value_function.state_dict().keys()))
for k, v in mapping.items():
state_dict[v] = state_dict.pop(k)
hf_value_function.load_state_dict(state_dict)
torch.save(hf_value_function.state_dict(), "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin")
with open("hub/hopper-medium-v2/value_function/config.json", "w") as f:
json.dump(config, f)
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| diffusers-main | scripts/convert_models_diffuser_to_diffusers.py |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
# *Only* converts the UNet, VAE, and Text Encoder.
# Does not convert optimizer state or any other thing.
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
# the following are for sdxl
("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(3):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i > 0:
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(4):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i < 2:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
unet_conversion_map_layer.append(("output_blocks.2.2.conv.", "output_blocks.2.1.conv."))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def convert_unet_state_dict(unet_state_dict):
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {sd_name: unet_state_dict[hf_name] for hf_name, sd_name in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
vae_conversion_map = [
# (stable-diffusion, HF Diffusers)
("nin_shortcut", "conv_shortcut"),
("norm_out", "conv_norm_out"),
("mid.attn_1.", "mid_block.attentions.0."),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
sd_down_prefix = f"encoder.down.{i}.block.{j}."
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
sd_downsample_prefix = f"down.{i}.downsample."
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"up.{3-i}.upsample."
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{i}."
sd_mid_res_prefix = f"mid.block_{i+1}."
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
vae_conversion_map_attn = [
# (stable-diffusion, HF Diffusers)
("norm.", "group_norm."),
# the following are for SDXL
("q.", "to_q."),
("k.", "to_k."),
("v.", "to_v."),
("proj_out.", "to_out.0."),
]
def reshape_weight_for_sd(w):
# convert HF linear weights to SD conv2d weights
return w.reshape(*w.shape, 1, 1)
def convert_vae_state_dict(vae_state_dict):
mapping = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
weights_to_convert = ["q", "k", "v", "proj_out"]
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
print(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v)
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
textenc_conversion_lst = [
# (stable-diffusion, HF Diffusers)
("transformer.resblocks.", "text_model.encoder.layers."),
("ln_1", "layer_norm1"),
("ln_2", "layer_norm2"),
(".c_fc.", ".fc1."),
(".c_proj.", ".fc2."),
(".attn", ".self_attn"),
("ln_final.", "text_model.final_layer_norm."),
("token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
("positional_embedding", "text_model.embeddings.position_embedding.weight"),
]
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
code2idx = {"q": 0, "k": 1, "v": 2}
def convert_openclip_text_enc_state_dict(text_enc_dict):
new_state_dict = {}
capture_qkv_weight = {}
capture_qkv_bias = {}
for k, v in text_enc_dict.items():
if (
k.endswith(".self_attn.q_proj.weight")
or k.endswith(".self_attn.k_proj.weight")
or k.endswith(".self_attn.v_proj.weight")
):
k_pre = k[: -len(".q_proj.weight")]
k_code = k[-len("q_proj.weight")]
if k_pre not in capture_qkv_weight:
capture_qkv_weight[k_pre] = [None, None, None]
capture_qkv_weight[k_pre][code2idx[k_code]] = v
continue
if (
k.endswith(".self_attn.q_proj.bias")
or k.endswith(".self_attn.k_proj.bias")
or k.endswith(".self_attn.v_proj.bias")
):
k_pre = k[: -len(".q_proj.bias")]
k_code = k[-len("q_proj.bias")]
if k_pre not in capture_qkv_bias:
capture_qkv_bias[k_pre] = [None, None, None]
capture_qkv_bias[k_pre][code2idx[k_code]] = v
continue
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
new_state_dict[relabelled_key] = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
return new_state_dict
def convert_openai_text_enc_state_dict(text_enc_dict):
return text_enc_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
)
args = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors")
text_enc_2_path = osp.join(args.model_path, "text_encoder_2", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
unet_state_dict = load_file(unet_path, device="cpu")
else:
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
unet_state_dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
vae_state_dict = load_file(vae_path, device="cpu")
else:
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
vae_state_dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
text_enc_dict = load_file(text_enc_path, device="cpu")
else:
text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
if osp.exists(text_enc_2_path):
text_enc_2_dict = load_file(text_enc_2_path, device="cpu")
else:
text_enc_2_path = osp.join(args.model_path, "text_encoder_2", "pytorch_model.bin")
text_enc_2_dict = torch.load(text_enc_2_path, map_location="cpu")
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(unet_state_dict)
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
vae_state_dict = convert_vae_state_dict(vae_state_dict)
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
text_enc_dict = convert_openai_text_enc_state_dict(text_enc_dict)
text_enc_dict = {"conditioner.embedders.0.transformer." + k: v for k, v in text_enc_dict.items()}
text_enc_2_dict = convert_openclip_text_enc_state_dict(text_enc_2_dict)
text_enc_2_dict = {"conditioner.embedders.1.model." + k: v for k, v in text_enc_2_dict.items()}
# Put together new checkpoint
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
if args.half:
state_dict = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
state_dict = {"state_dict": state_dict}
torch.save(state_dict, args.checkpoint_path)
| diffusers-main | scripts/convert_diffusers_to_original_sdxl.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the NCSNPP checkpoints. """
import argparse
import json
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNet2DModel
def convert_ncsnpp_checkpoint(checkpoint, config):
"""
Takes a state dict and the path to
"""
new_model_architecture = UNet2DModel(**config)
new_model_architecture.time_proj.W.data = checkpoint["all_modules.0.W"].data
new_model_architecture.time_proj.weight.data = checkpoint["all_modules.0.W"].data
new_model_architecture.time_embedding.linear_1.weight.data = checkpoint["all_modules.1.weight"].data
new_model_architecture.time_embedding.linear_1.bias.data = checkpoint["all_modules.1.bias"].data
new_model_architecture.time_embedding.linear_2.weight.data = checkpoint["all_modules.2.weight"].data
new_model_architecture.time_embedding.linear_2.bias.data = checkpoint["all_modules.2.bias"].data
new_model_architecture.conv_in.weight.data = checkpoint["all_modules.3.weight"].data
new_model_architecture.conv_in.bias.data = checkpoint["all_modules.3.bias"].data
new_model_architecture.conv_norm_out.weight.data = checkpoint[list(checkpoint.keys())[-4]].data
new_model_architecture.conv_norm_out.bias.data = checkpoint[list(checkpoint.keys())[-3]].data
new_model_architecture.conv_out.weight.data = checkpoint[list(checkpoint.keys())[-2]].data
new_model_architecture.conv_out.bias.data = checkpoint[list(checkpoint.keys())[-1]].data
module_index = 4
def set_attention_weights(new_layer, old_checkpoint, index):
new_layer.query.weight.data = old_checkpoint[f"all_modules.{index}.NIN_0.W"].data.T
new_layer.key.weight.data = old_checkpoint[f"all_modules.{index}.NIN_1.W"].data.T
new_layer.value.weight.data = old_checkpoint[f"all_modules.{index}.NIN_2.W"].data.T
new_layer.query.bias.data = old_checkpoint[f"all_modules.{index}.NIN_0.b"].data
new_layer.key.bias.data = old_checkpoint[f"all_modules.{index}.NIN_1.b"].data
new_layer.value.bias.data = old_checkpoint[f"all_modules.{index}.NIN_2.b"].data
new_layer.proj_attn.weight.data = old_checkpoint[f"all_modules.{index}.NIN_3.W"].data.T
new_layer.proj_attn.bias.data = old_checkpoint[f"all_modules.{index}.NIN_3.b"].data
new_layer.group_norm.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data
new_layer.group_norm.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data
def set_resnet_weights(new_layer, old_checkpoint, index):
new_layer.conv1.weight.data = old_checkpoint[f"all_modules.{index}.Conv_0.weight"].data
new_layer.conv1.bias.data = old_checkpoint[f"all_modules.{index}.Conv_0.bias"].data
new_layer.norm1.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data
new_layer.norm1.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data
new_layer.conv2.weight.data = old_checkpoint[f"all_modules.{index}.Conv_1.weight"].data
new_layer.conv2.bias.data = old_checkpoint[f"all_modules.{index}.Conv_1.bias"].data
new_layer.norm2.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.weight"].data
new_layer.norm2.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.bias"].data
new_layer.time_emb_proj.weight.data = old_checkpoint[f"all_modules.{index}.Dense_0.weight"].data
new_layer.time_emb_proj.bias.data = old_checkpoint[f"all_modules.{index}.Dense_0.bias"].data
if new_layer.in_channels != new_layer.out_channels or new_layer.up or new_layer.down:
new_layer.conv_shortcut.weight.data = old_checkpoint[f"all_modules.{index}.Conv_2.weight"].data
new_layer.conv_shortcut.bias.data = old_checkpoint[f"all_modules.{index}.Conv_2.bias"].data
for i, block in enumerate(new_model_architecture.downsample_blocks):
has_attentions = hasattr(block, "attentions")
for j in range(len(block.resnets)):
set_resnet_weights(block.resnets[j], checkpoint, module_index)
module_index += 1
if has_attentions:
set_attention_weights(block.attentions[j], checkpoint, module_index)
module_index += 1
if hasattr(block, "downsamplers") and block.downsamplers is not None:
set_resnet_weights(block.resnet_down, checkpoint, module_index)
module_index += 1
block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.Conv_0.weight"].data
block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.Conv_0.bias"].data
module_index += 1
set_resnet_weights(new_model_architecture.mid_block.resnets[0], checkpoint, module_index)
module_index += 1
set_attention_weights(new_model_architecture.mid_block.attentions[0], checkpoint, module_index)
module_index += 1
set_resnet_weights(new_model_architecture.mid_block.resnets[1], checkpoint, module_index)
module_index += 1
for i, block in enumerate(new_model_architecture.up_blocks):
has_attentions = hasattr(block, "attentions")
for j in range(len(block.resnets)):
set_resnet_weights(block.resnets[j], checkpoint, module_index)
module_index += 1
if has_attentions:
set_attention_weights(
block.attentions[0], checkpoint, module_index
) # why can there only be a single attention layer for up?
module_index += 1
if hasattr(block, "resnet_up") and block.resnet_up is not None:
block.skip_norm.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
block.skip_norm.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
module_index += 1
block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
module_index += 1
set_resnet_weights(block.resnet_up, checkpoint, module_index)
module_index += 1
new_model_architecture.conv_norm_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
new_model_architecture.conv_norm_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
module_index += 1
new_model_architecture.conv_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
new_model_architecture.conv_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
return new_model_architecture.state_dict()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_pytorch_model.bin",
type=str,
required=False,
help="Path to the checkpoint to convert.",
)
parser.add_argument(
"--config_file",
default="/Users/arthurzucker/Work/diffusers/ArthurZ/config.json",
type=str,
required=False,
help="The config json file corresponding to the architecture.",
)
parser.add_argument(
"--dump_path",
default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_model_new.pt",
type=str,
required=False,
help="Path to the output model.",
)
args = parser.parse_args()
checkpoint = torch.load(args.checkpoint_path, map_location="cpu")
with open(args.config_file) as f:
config = json.loads(f.read())
converted_checkpoint = convert_ncsnpp_checkpoint(
checkpoint,
config,
)
if "sde" in config:
del config["sde"]
model = UNet2DModel(**config)
model.load_state_dict(converted_checkpoint)
try:
scheduler = ScoreSdeVeScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
pipe = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| diffusers-main | scripts/convert_ncsnpp_original_checkpoint_to_diffusers.py |
# Convert the original UniDiffuser checkpoints into diffusers equivalents.
import argparse
from argparse import Namespace
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
GPT2Tokenizer,
)
from diffusers import (
AutoencoderKL,
DPMSolverMultistepScheduler,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
)
SCHEDULER_CONFIG = Namespace(
**{
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"solver_order": 3,
}
)
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_attention_paths
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Modified from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint
# config.num_head_channels => num_head_channels
def assign_to_checkpoint(
paths,
checkpoint,
old_checkpoint,
attention_paths_to_split=None,
additional_replacements=None,
num_head_channels=1,
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise. Assigns the weights to the new
checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // num_head_channels // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_vae_diffusers_config(config_type):
# Hardcoded for now
if args.config_type == "test":
vae_config = create_vae_diffusers_config_test()
elif args.config_type == "big":
vae_config = create_vae_diffusers_config_big()
else:
raise NotImplementedError(
f"Config type {config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
return vae_config
def create_unidiffuser_unet_config(config_type, version):
# Hardcoded for now
if args.config_type == "test":
unet_config = create_unidiffuser_unet_config_test()
elif args.config_type == "big":
unet_config = create_unidiffuser_unet_config_big()
else:
raise NotImplementedError(
f"Config type {config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
# Unidiffuser-v1 uses data type embeddings
if version == 1:
unet_config["use_data_type_embedding"] = True
return unet_config
def create_text_decoder_config(config_type):
# Hardcoded for now
if args.config_type == "test":
text_decoder_config = create_text_decoder_config_test()
elif args.config_type == "big":
text_decoder_config = create_text_decoder_config_big()
else:
raise NotImplementedError(
f"Config type {config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
return text_decoder_config
# Hardcoded configs for test versions of the UniDiffuser models, corresponding to those in the fast default tests.
def create_vae_diffusers_config_test():
vae_config = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"block_out_channels": [32, 64],
"latent_channels": 4,
"layers_per_block": 1,
}
return vae_config
def create_unidiffuser_unet_config_test():
unet_config = {
"text_dim": 32,
"clip_img_dim": 32,
"num_text_tokens": 77,
"num_attention_heads": 2,
"attention_head_dim": 8,
"in_channels": 4,
"out_channels": 4,
"num_layers": 2,
"dropout": 0.0,
"norm_num_groups": 32,
"attention_bias": False,
"sample_size": 16,
"patch_size": 2,
"activation_fn": "gelu",
"num_embeds_ada_norm": 1000,
"norm_type": "layer_norm",
"block_type": "unidiffuser",
"pre_layer_norm": False,
"use_timestep_embedding": False,
"norm_elementwise_affine": True,
"use_patch_pos_embed": False,
"ff_final_dropout": True,
"use_data_type_embedding": False,
}
return unet_config
def create_text_decoder_config_test():
text_decoder_config = {
"prefix_length": 77,
"prefix_inner_dim": 32,
"prefix_hidden_dim": 32,
"vocab_size": 1025, # 1024 + 1 for new EOS token
"n_positions": 1024,
"n_embd": 32,
"n_layer": 5,
"n_head": 4,
"n_inner": 37,
"activation_function": "gelu",
"resid_pdrop": 0.1,
"embd_pdrop": 0.1,
"attn_pdrop": 0.1,
"layer_norm_epsilon": 1e-5,
"initializer_range": 0.02,
}
return text_decoder_config
# Hardcoded configs for the UniDiffuser V1 model at https://huggingface.co/thu-ml/unidiffuser-v1
# See also https://github.com/thu-ml/unidiffuser/blob/main/configs/sample_unidiffuser_v1.py
def create_vae_diffusers_config_big():
vae_config = {
"sample_size": 256,
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"block_out_channels": [128, 256, 512, 512],
"latent_channels": 4,
"layers_per_block": 2,
}
return vae_config
def create_unidiffuser_unet_config_big():
unet_config = {
"text_dim": 64,
"clip_img_dim": 512,
"num_text_tokens": 77,
"num_attention_heads": 24,
"attention_head_dim": 64,
"in_channels": 4,
"out_channels": 4,
"num_layers": 30,
"dropout": 0.0,
"norm_num_groups": 32,
"attention_bias": False,
"sample_size": 64,
"patch_size": 2,
"activation_fn": "gelu",
"num_embeds_ada_norm": 1000,
"norm_type": "layer_norm",
"block_type": "unidiffuser",
"pre_layer_norm": False,
"use_timestep_embedding": False,
"norm_elementwise_affine": True,
"use_patch_pos_embed": False,
"ff_final_dropout": True,
"use_data_type_embedding": False,
}
return unet_config
# From https://huggingface.co/gpt2/blob/main/config.json, the GPT2 checkpoint used by UniDiffuser
def create_text_decoder_config_big():
text_decoder_config = {
"prefix_length": 77,
"prefix_inner_dim": 768,
"prefix_hidden_dim": 64,
"vocab_size": 50258, # 50257 + 1 for new EOS token
"n_positions": 1024,
"n_embd": 768,
"n_layer": 12,
"n_head": 12,
"n_inner": 3072,
"activation_function": "gelu",
"resid_pdrop": 0.1,
"embd_pdrop": 0.1,
"attn_pdrop": 0.1,
"layer_norm_epsilon": 1e-5,
"initializer_range": 0.02,
}
return text_decoder_config
# Based on diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments.convert_ldm_vae_checkpoint
def convert_vae_to_diffusers(ckpt, diffusers_model, num_head_channels=1):
"""
Converts a UniDiffuser autoencoder_kl.pth checkpoint to a diffusers AutoencoderKL.
"""
# autoencoder_kl.pth ckpt is a torch state dict
vae_state_dict = torch.load(ckpt, map_location="cpu")
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
conv_attn_to_linear(new_checkpoint)
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_checkpoint)
for missing_key in missing_keys:
print(f"Missing key: {missing_key}")
for unexpected_key in unexpected_keys:
print(f"Unexpected key: {unexpected_key}")
return diffusers_model
def convert_uvit_block_to_diffusers_block(
uvit_state_dict,
new_state_dict,
block_prefix,
new_prefix="transformer.transformer_",
skip_connection=False,
):
"""
Maps the keys in a UniDiffuser transformer block (`Block`) to the keys in a diffusers transformer block
(`UTransformerBlock`/`UniDiffuserBlock`).
"""
prefix = new_prefix + block_prefix
if skip_connection:
new_state_dict[prefix + ".skip.skip_linear.weight"] = uvit_state_dict[block_prefix + ".skip_linear.weight"]
new_state_dict[prefix + ".skip.skip_linear.bias"] = uvit_state_dict[block_prefix + ".skip_linear.bias"]
new_state_dict[prefix + ".skip.norm.weight"] = uvit_state_dict[block_prefix + ".norm1.weight"]
new_state_dict[prefix + ".skip.norm.bias"] = uvit_state_dict[block_prefix + ".norm1.bias"]
# Create the prefix string for out_blocks.
prefix += ".block"
# Split up attention qkv.weight into to_q.weight, to_k.weight, to_v.weight
qkv = uvit_state_dict[block_prefix + ".attn.qkv.weight"]
new_attn_keys = [".attn1.to_q.weight", ".attn1.to_k.weight", ".attn1.to_v.weight"]
new_attn_keys = [prefix + key for key in new_attn_keys]
shape = qkv.shape[0] // len(new_attn_keys)
for i, attn_key in enumerate(new_attn_keys):
new_state_dict[attn_key] = qkv[i * shape : (i + 1) * shape]
new_state_dict[prefix + ".attn1.to_out.0.weight"] = uvit_state_dict[block_prefix + ".attn.proj.weight"]
new_state_dict[prefix + ".attn1.to_out.0.bias"] = uvit_state_dict[block_prefix + ".attn.proj.bias"]
new_state_dict[prefix + ".norm1.weight"] = uvit_state_dict[block_prefix + ".norm2.weight"]
new_state_dict[prefix + ".norm1.bias"] = uvit_state_dict[block_prefix + ".norm2.bias"]
new_state_dict[prefix + ".ff.net.0.proj.weight"] = uvit_state_dict[block_prefix + ".mlp.fc1.weight"]
new_state_dict[prefix + ".ff.net.0.proj.bias"] = uvit_state_dict[block_prefix + ".mlp.fc1.bias"]
new_state_dict[prefix + ".ff.net.2.weight"] = uvit_state_dict[block_prefix + ".mlp.fc2.weight"]
new_state_dict[prefix + ".ff.net.2.bias"] = uvit_state_dict[block_prefix + ".mlp.fc2.bias"]
new_state_dict[prefix + ".norm3.weight"] = uvit_state_dict[block_prefix + ".norm3.weight"]
new_state_dict[prefix + ".norm3.bias"] = uvit_state_dict[block_prefix + ".norm3.bias"]
return uvit_state_dict, new_state_dict
def convert_uvit_to_diffusers(ckpt, diffusers_model):
"""
Converts a UniDiffuser uvit_v*.pth checkpoint to a diffusers UniDiffusersModel.
"""
# uvit_v*.pth ckpt is a torch state dict
uvit_state_dict = torch.load(ckpt, map_location="cpu")
new_state_dict = {}
# Input layers
new_state_dict["vae_img_in.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"]
new_state_dict["vae_img_in.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"]
new_state_dict["clip_img_in.weight"] = uvit_state_dict["clip_img_embed.weight"]
new_state_dict["clip_img_in.bias"] = uvit_state_dict["clip_img_embed.bias"]
new_state_dict["text_in.weight"] = uvit_state_dict["text_embed.weight"]
new_state_dict["text_in.bias"] = uvit_state_dict["text_embed.bias"]
new_state_dict["pos_embed"] = uvit_state_dict["pos_embed"]
# Handle data type token embeddings for UniDiffuser-v1
if "token_embedding.weight" in uvit_state_dict and diffusers_model.use_data_type_embedding:
new_state_dict["data_type_pos_embed_token"] = uvit_state_dict["pos_embed_token"]
new_state_dict["data_type_token_embedding.weight"] = uvit_state_dict["token_embedding.weight"]
# Also initialize the PatchEmbedding in UTransformer2DModel with the PatchEmbedding from the checkpoint.
# This isn't used in the current implementation, so might want to remove.
new_state_dict["transformer.pos_embed.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"]
new_state_dict["transformer.pos_embed.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"]
# Output layers
new_state_dict["transformer.norm_out.weight"] = uvit_state_dict["norm.weight"]
new_state_dict["transformer.norm_out.bias"] = uvit_state_dict["norm.bias"]
new_state_dict["vae_img_out.weight"] = uvit_state_dict["decoder_pred.weight"]
new_state_dict["vae_img_out.bias"] = uvit_state_dict["decoder_pred.bias"]
new_state_dict["clip_img_out.weight"] = uvit_state_dict["clip_img_out.weight"]
new_state_dict["clip_img_out.bias"] = uvit_state_dict["clip_img_out.bias"]
new_state_dict["text_out.weight"] = uvit_state_dict["text_out.weight"]
new_state_dict["text_out.bias"] = uvit_state_dict["text_out.bias"]
# in_blocks
in_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "in_blocks" in layer}
for in_block_prefix in list(in_blocks_prefixes):
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, in_block_prefix)
# mid_block
# Assume there's only one mid block
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, "mid_block")
# out_blocks
out_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "out_blocks" in layer}
for out_block_prefix in list(out_blocks_prefixes):
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, out_block_prefix, skip_connection=True)
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict)
for missing_key in missing_keys:
print(f"Missing key: {missing_key}")
for unexpected_key in unexpected_keys:
print(f"Unexpected key: {unexpected_key}")
return diffusers_model
def convert_caption_decoder_to_diffusers(ckpt, diffusers_model):
"""
Converts a UniDiffuser caption_decoder.pth checkpoint to a diffusers UniDiffuserTextDecoder.
"""
# caption_decoder.pth ckpt is a torch state dict
checkpoint_state_dict = torch.load(ckpt, map_location="cpu")
decoder_state_dict = {}
# Remove the "module." prefix, if necessary
caption_decoder_key = "module."
for key in checkpoint_state_dict:
if key.startswith(caption_decoder_key):
decoder_state_dict[key.replace(caption_decoder_key, "")] = checkpoint_state_dict.get(key)
else:
decoder_state_dict[key] = checkpoint_state_dict.get(key)
new_state_dict = {}
# Encoder and Decoder
new_state_dict["encode_prefix.weight"] = decoder_state_dict["encode_prefix.weight"]
new_state_dict["encode_prefix.bias"] = decoder_state_dict["encode_prefix.bias"]
new_state_dict["decode_prefix.weight"] = decoder_state_dict["decode_prefix.weight"]
new_state_dict["decode_prefix.bias"] = decoder_state_dict["decode_prefix.bias"]
# Internal GPT2LMHeadModel transformer model
for key, val in decoder_state_dict.items():
if key.startswith("gpt"):
suffix = key[len("gpt") :]
new_state_dict["transformer" + suffix] = val
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict)
for missing_key in missing_keys:
print(f"Missing key: {missing_key}")
for unexpected_key in unexpected_keys:
print(f"Unexpected key: {unexpected_key}")
return diffusers_model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--caption_decoder_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to caption decoder checkpoint to convert.",
)
parser.add_argument(
"--uvit_checkpoint_path", default=None, type=str, required=False, help="Path to U-ViT checkpoint to convert."
)
parser.add_argument(
"--vae_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to VAE checkpoint to convert.",
)
parser.add_argument(
"--pipeline_output_path",
default=None,
type=str,
required=True,
help="Path to save the output pipeline to.",
)
parser.add_argument(
"--config_type",
default="test",
type=str,
help=(
"Config type to use. Should be 'test' to create small models for testing or 'big' to convert a full"
" checkpoint."
),
)
parser.add_argument(
"--version",
default=0,
type=int,
help="The UniDiffuser model type to convert to. Should be 0 for UniDiffuser-v0 and 1 for UniDiffuser-v1.",
)
args = parser.parse_args()
# Convert the VAE model.
if args.vae_checkpoint_path is not None:
vae_config = create_vae_diffusers_config(args.config_type)
vae = AutoencoderKL(**vae_config)
vae = convert_vae_to_diffusers(args.vae_checkpoint_path, vae)
# Convert the U-ViT ("unet") model.
if args.uvit_checkpoint_path is not None:
unet_config = create_unidiffuser_unet_config(args.config_type, args.version)
unet = UniDiffuserModel(**unet_config)
unet = convert_uvit_to_diffusers(args.uvit_checkpoint_path, unet)
# Convert the caption decoder ("text_decoder") model.
if args.caption_decoder_checkpoint_path is not None:
text_decoder_config = create_text_decoder_config(args.config_type)
text_decoder = UniDiffuserTextDecoder(**text_decoder_config)
text_decoder = convert_caption_decoder_to_diffusers(args.caption_decoder_checkpoint_path, text_decoder)
# Scheduler is the same for both the test and big models.
scheduler_config = SCHEDULER_CONFIG
scheduler = DPMSolverMultistepScheduler(
beta_start=scheduler_config.beta_start,
beta_end=scheduler_config.beta_end,
beta_schedule=scheduler_config.beta_schedule,
solver_order=scheduler_config.solver_order,
)
if args.config_type == "test":
# Make a small random CLIPTextModel
torch.manual_seed(0)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(clip_text_encoder_config)
clip_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# Make a small random CLIPVisionModel and accompanying CLIPImageProcessor
torch.manual_seed(0)
clip_image_encoder_config = CLIPVisionConfig(
image_size=32,
patch_size=2,
num_channels=3,
hidden_size=32,
projection_dim=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
)
image_encoder = CLIPVisionModelWithProjection(clip_image_encoder_config)
image_processor = CLIPImageProcessor(crop_size=32, size=32)
# Note that the text_decoder should already have its token embeddings resized.
text_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model")
eos = "<|EOS|>"
special_tokens_dict = {"eos_token": eos}
text_tokenizer.add_special_tokens(special_tokens_dict)
elif args.config_type == "big":
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Note that the text_decoder should already have its token embeddings resized.
text_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
eos = "<|EOS|>"
special_tokens_dict = {"eos_token": eos}
text_tokenizer.add_special_tokens(special_tokens_dict)
else:
raise NotImplementedError(
f"Config type {args.config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
pipeline = UniDiffuserPipeline(
vae=vae,
text_encoder=text_encoder,
image_encoder=image_encoder,
image_processor=image_processor,
clip_tokenizer=clip_tokenizer,
text_decoder=text_decoder,
text_tokenizer=text_tokenizer,
unet=unet,
scheduler=scheduler,
)
pipeline.save_pretrained(args.pipeline_output_path)
| diffusers-main | scripts/convert_unidiffuser_to_diffusers.py |
"""
This script modified from
https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py
Convert original Zero1to3 checkpoint to diffusers checkpoint.
# run the convert script
$ python convert_zero123_to_diffusers.py \
--checkpoint_path /path/zero123/105000.ckpt \
--dump_path ./zero1to3 \
--original_config_file /path/zero123/configs/sd-objaverse-finetune-c_concat-256.yaml
```
"""
import argparse
import torch
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from pipeline_zero1to3 import CCProjection, Zero1to3StableDiffusionPipeline
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
)
from diffusers.models import (
AutoencoderKL,
UNet2DConditionModel,
)
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import logging
logger = logging.get_logger(__name__)
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
if controlnet:
unet_params = original_config.model.params.control_stage_config.params
else:
if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None:
unet_params = original_config.model.params.unet_config.params
else:
unet_params = original_config.model.params.network_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
if unet_params.transformer_depth is not None:
transformer_layers_per_block = (
unet_params.transformer_depth
if isinstance(unet_params.transformer_depth, int)
else list(unet_params.transformer_depth)
)
else:
transformer_layers_per_block = 1
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
use_linear_projection = (
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)]
class_embed_type = None
addition_embed_type = None
addition_time_embed_dim = None
projection_class_embeddings_input_dim = None
context_dim = None
if unet_params.context_dim is not None:
context_dim = (
unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0]
)
if "num_classes" in unet_params:
if unet_params.num_classes == "sequential":
if context_dim in [2048, 1280]:
# SDXL
addition_embed_type = "text_time"
addition_time_embed_dim = 256
else:
class_embed_type = "projection"
assert "adm_in_channels" in unet_params
projection_class_embeddings_input_dim = unet_params.adm_in_channels
else:
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}")
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": context_dim,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"addition_embed_type": addition_embed_type,
"addition_time_embed_dim": addition_time_embed_dim,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"transformer_layers_per_block": transformer_layers_per_block,
}
if controlnet:
config["conditioning_channels"] = unet_params.hint_channels
else:
config["out_channels"] = unet_params.out_channels
config["up_block_types"] = tuple(up_block_types)
return config
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
shape = old_checkpoint[path["old"]].shape
if is_attn_weight and len(shape) == 3:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
elif is_attn_weight and len(shape) == 4:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def convert_ldm_unet_checkpoint(
checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False
):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
if skip_extract_state_dict:
unet_state_dict = checkpoint
else:
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
if controlnet:
unet_key = "control_model."
else:
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.")
logger.warning(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint[flat_ema_key]
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
logger.warning(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint[key]
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
if config["class_embed_type"] is None:
# No parameters to port
...
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
else:
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
if config["addition_embed_type"] == "text_time":
new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
if not controlnet:
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
if controlnet:
# conditioning embedding
orig_index = 0
new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.weight"
)
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
orig_index += 2
diffusers_index = 0
while diffusers_index < 6:
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.weight"
)
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
diffusers_index += 1
orig_index += 2
new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.weight"
)
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
# down blocks
for i in range(num_input_blocks):
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight")
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias")
# mid block
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight")
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias")
return new_checkpoint
def create_vae_diffusers_config(original_config, image_size: int):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
}
return config
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def convert_from_original_zero123_ckpt(checkpoint_path, original_config_file, extract_ema, device):
ckpt = torch.load(checkpoint_path, map_location=device)
ckpt["global_step"]
checkpoint = ckpt["state_dict"]
del ckpt
torch.cuda.empty_cache()
from omegaconf import OmegaConf
original_config = OmegaConf.load(original_config_file)
original_config.model.params.cond_stage_config.target.split(".")[-1]
num_in_channels = 8
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
prediction_type = "epsilon"
image_size = 256
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
scheduler.register_to_config(clip_sample=False)
# Convert the UNet2DConditionModel model.
upcast_attention = None
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet_config["upcast_attention"] = upcast_attention
with init_empty_weights():
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=None, extract_ema=extract_ema
)
for param_name, param in converted_unet_checkpoint.items():
set_module_tensor_to_device(unet, param_name, "cpu", value=param)
# Convert the VAE model.
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
):
vae_scaling_factor = original_config.model.params.scale_factor
else:
vae_scaling_factor = 0.18215 # default SD scaling factor
vae_config["scaling_factor"] = vae_scaling_factor
with init_empty_weights():
vae = AutoencoderKL(**vae_config)
for param_name, param in converted_vae_checkpoint.items():
set_module_tensor_to_device(vae, param_name, "cpu", value=param)
feature_extractor = CLIPImageProcessor.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", subfolder="feature_extractor"
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", subfolder="image_encoder"
)
cc_projection = CCProjection()
cc_projection.load_state_dict(
{
"projection.weight": checkpoint["cc_projection.weight"].cpu(),
"projection.bias": checkpoint["cc_projection.bias"].cpu(),
}
)
pipe = Zero1to3StableDiffusionPipeline(
vae, image_encoder, unet, scheduler, None, feature_extractor, cc_projection, requires_safety_checker=False
)
return pipe
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
args = parser.parse_args()
pipe = convert_from_original_zero123_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
extract_ema=args.extract_ema,
device=args.device,
)
if args.half:
pipe.to(torch_dtype=torch.float16)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| diffusers-main | scripts/convert_zero123_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the MusicLDM checkpoints."""
import argparse
import re
import torch
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
ClapConfig,
ClapModel,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
MusicLDMPipeline,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths
def renew_attention_paths(old_list):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"]
proj_key = "to_out.0.weight"
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys or ".".join(key.split(".")[-3:]) == proj_key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key].squeeze()
def create_unet_diffusers_config(original_config, image_size: int):
"""
Creates a UNet config for diffusers based on the config of the original MusicLDM model.
"""
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
cross_attention_dim = (
unet_params.cross_attention_dim if "cross_attention_dim" in unet_params else block_out_channels
)
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None
projection_class_embeddings_input_dim = (
unet_params.extra_film_condition_dim if "extra_film_condition_dim" in unet_params else None
)
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": cross_attention_dim,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"class_embeddings_concat": class_embeddings_concat,
}
return config
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config
def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
"""
Creates a VAE config for diffusers based on the config of the original MusicLDM model. Compared to the original
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"scaling_factor": float(scaling_factor),
}
return config
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint. Compared to the original Stable Diffusion
conversion, this function additionally converts the learnt film embedding linear layer.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["class_embedding.weight"] = unet_state_dict["film_emb.weight"]
new_checkpoint["class_embedding.bias"] = unet_state_dict["film_emb.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_vae_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
CLAP_KEYS_TO_MODIFY_MAPPING = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
CLAP_KEYS_TO_IGNORE = [
"text_transform",
"audio_transform",
"stft",
"logmel_extractor",
"tscam_conv",
"head",
"attn_mask",
]
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"]
def convert_open_clap_checkpoint(checkpoint):
"""
Takes a state dict and returns a converted CLAP checkpoint.
"""
# extract state dict for CLAP text embedding model, discarding the audio component
model_state_dict = {}
model_key = "cond_stage_model.model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(model_key):
model_state_dict[key.replace(model_key, "")] = checkpoint.get(key)
new_checkpoint = {}
sequential_layers_pattern = r".*sequential.(\d+).*"
text_projection_pattern = r".*_projection.(\d+).*"
for key, value in model_state_dict.items():
# check if key should be ignored in mapping - if so map it to a key name that we'll filter out at the end
for key_to_ignore in CLAP_KEYS_TO_IGNORE:
if key_to_ignore in key:
key = "spectrogram"
# check if any key needs to be modified
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
if re.match(sequential_layers_pattern, key):
# replace sequential layers with list
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.")
elif re.match(text_projection_pattern, key):
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
# Because in CLAP they use `nn.Sequential`...
transformers_projection_layer = 1 if projecton_layer == 0 else 2
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
if "audio" and "qkv" in key:
# split qkv into query key and value
mixed_qkv = value
qkv_dim = mixed_qkv.size(0) // 3
query_layer = mixed_qkv[:qkv_dim]
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
value_layer = mixed_qkv[qkv_dim * 2 :]
new_checkpoint[key.replace("qkv", "query")] = query_layer
new_checkpoint[key.replace("qkv", "key")] = key_layer
new_checkpoint[key.replace("qkv", "value")] = value_layer
elif key != "spectrogram":
new_checkpoint[key] = value
return new_checkpoint
def create_transformers_vocoder_config(original_config):
"""
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
"""
vocoder_params = original_config.model.params.vocoder_config.params
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
],
"normalize_before": False,
}
return config
def convert_hifigan_checkpoint(checkpoint, config):
"""
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint.
"""
# extract state dict for vocoder
vocoder_state_dict = {}
vocoder_key = "first_stage_model.vocoder."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vocoder_key):
vocoder_state_dict[key.replace(vocoder_key, "")] = checkpoint.get(key)
# fix upsampler keys, everything else is correct already
for i in range(len(config.upsample_rates)):
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight")
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias")
if not config.normalize_before:
# if we don't set normalize_before then these variables are unused, so we set them to their initialised values
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim)
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim)
return vocoder_state_dict
# Adapted from https://huggingface.co/spaces/haoheliu/MusicLDM-text-to-audio-generation/blob/84a0384742a22bd80c44e903e241f0623e874f1d/MusicLDM/utils.py#L72-L73
DEFAULT_CONFIG = {
"model": {
"params": {
"linear_start": 0.0015,
"linear_end": 0.0195,
"timesteps": 1000,
"channels": 8,
"scale_by_std": True,
"unet_config": {
"target": "MusicLDM.latent_diffusion.openaimodel.UNetModel",
"params": {
"extra_film_condition_dim": 512,
"extra_film_use_concat": True,
"in_channels": 8,
"out_channels": 8,
"model_channels": 128,
"attention_resolutions": [8, 4, 2],
"num_res_blocks": 2,
"channel_mult": [1, 2, 3, 5],
"num_head_channels": 32,
},
},
"first_stage_config": {
"target": "MusicLDM.variational_autoencoder.autoencoder.AutoencoderKL",
"params": {
"embed_dim": 8,
"ddconfig": {
"z_channels": 8,
"resolution": 256,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4],
"num_res_blocks": 2,
},
},
},
"vocoder_config": {
"target": "MusicLDM.first_stage_model.vocoder",
"params": {
"upsample_rates": [5, 4, 2, 2, 2],
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
"upsample_initial_channel": 1024,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"num_mels": 64,
"sampling_rate": 16000,
},
},
},
},
}
def load_pipeline_from_original_MusicLDM_ckpt(
checkpoint_path: str,
original_config_file: str = None,
image_size: int = 1024,
prediction_type: str = None,
extract_ema: bool = False,
scheduler_type: str = "ddim",
num_in_channels: int = None,
model_channels: int = None,
num_head_channels: int = None,
device: str = None,
from_safetensors: bool = False,
) -> MusicLDMPipeline:
"""
Load an MusicLDM pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file.
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
Args:
checkpoint_path (`str`): Path to `.ckpt` file.
original_config_file (`str`):
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically
set to the MusicLDM-s-full-v2 config.
image_size (`int`, *optional*, defaults to 1024):
The image size that the model was trained on.
prediction_type (`str`, *optional*):
The prediction type that the model was trained on. If `None`, will be automatically
inferred by looking for a key in the config. For the default config, the prediction type is `'epsilon'`.
num_in_channels (`int`, *optional*, defaults to None):
The number of UNet input channels. If `None`, it will be automatically inferred from the config.
model_channels (`int`, *optional*, defaults to None):
The number of UNet model channels. If `None`, it will be automatically inferred from the config. Override
to 128 for the small checkpoints, 192 for the medium checkpoints and 256 for the large.
num_head_channels (`int`, *optional*, defaults to None):
The number of UNet head channels. If `None`, it will be automatically inferred from the config. Override
to 32 for the small and medium checkpoints, and 64 for the large.
scheduler_type (`str`, *optional*, defaults to 'pndm'):
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
"ddim"]`.
extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to
`False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for
inference. Non-EMA weights are usually better to continue fine-tuning.
device (`str`, *optional*, defaults to `None`):
The device to use. Pass `None` to determine automatically.
from_safetensors (`str`, *optional*, defaults to `False`):
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
return: An MusicLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
from safetensors import safe_open
checkpoint = {}
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if original_config_file is None:
original_config = DEFAULT_CONFIG
original_config = OmegaConf.create(original_config)
else:
original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
if model_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["model_channels"] = model_channels
if num_head_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = num_head_channels
if (
"parameterization" in original_config["model"]["params"]
and original_config["model"]["params"]["parameterization"] == "v"
):
if prediction_type is None:
prediction_type = "v_prediction"
else:
if prediction_type is None:
prediction_type = "epsilon"
if image_size is None:
image_size = 512
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
# make sure scheduler works correctly with DDIM
scheduler.register_to_config(clip_sample=False)
if scheduler_type == "pndm":
config = dict(scheduler.config)
config["skip_prk_steps"] = True
scheduler = PNDMScheduler.from_config(config)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "heun":
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler":
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
# Convert the UNet2DModel
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# Convert the text model
# MusicLDM uses the same tokenizer as the original CLAP model, but a slightly different configuration
config = ClapConfig.from_pretrained("laion/clap-htsat-unfused")
config.audio_config.update(
{
"patch_embeds_hidden_size": 128,
"hidden_size": 1024,
"depths": [2, 2, 12, 2],
}
)
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused")
converted_text_model = convert_open_clap_checkpoint(checkpoint)
text_model = ClapModel(config)
missing_keys, unexpected_keys = text_model.load_state_dict(converted_text_model, strict=False)
# we expect not to have token_type_ids in our original state dict so let's ignore them
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS))
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}")
if len(missing_keys) > 0:
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}")
# Convert the vocoder model
vocoder_config = create_transformers_vocoder_config(original_config)
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config)
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config)
vocoder = SpeechT5HifiGan(vocoder_config)
vocoder.load_state_dict(converted_vocoder_checkpoint)
# Instantiate the diffusers pipeline
pipe = MusicLDMPipeline(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
vocoder=vocoder,
feature_extractor=feature_extractor,
)
return pipe
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--model_channels",
default=None,
type=int,
help="The number of UNet model channels. If `None`, it will be automatically inferred from the config. Override"
" to 128 for the small checkpoints, 192 for the medium checkpoints and 256 for the large.",
)
parser.add_argument(
"--num_head_channels",
default=None,
type=int,
help="The number of UNet head channels. If `None`, it will be automatically inferred from the config. Override"
" to 32 for the small and medium checkpoints, and 64 for the large.",
)
parser.add_argument(
"--scheduler_type",
default="ddim",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--image_size",
default=None,
type=int,
help=("The image size that the model was trained on."),
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=("The prediction type that the model was trained on."),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
args = parser.parse_args()
pipe = load_pipeline_from_original_MusicLDM_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
model_channels=args.model_channels,
num_head_channels=args.num_head_channels,
from_safetensors=args.from_safetensors,
device=args.device,
)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| diffusers-main | scripts/convert_original_musicldm_to_diffusers.py |
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNet2DModel
api = HfApi()
results = {}
# fmt: off
results["google_ddpm_cifar10_32"] = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
results["google_ddpm_ema_bedroom_256"] = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
results["CompVis_ldm_celebahq_256"] = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
results["google_ncsnpp_ffhq_1024"] = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
results["google_ncsnpp_bedroom_256"] = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
results["google_ncsnpp_celebahq_256"] = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
results["google_ncsnpp_church_256"] = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
results["google_ncsnpp_ffhq_256"] = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
results["google_ddpm_cat_256"] = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
results["google_ddpm_celebahq_256"] = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
results["google_ddpm_ema_celebahq_256"] = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
results["google_ddpm_church_256"] = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
results["google_ddpm_bedroom_256"] = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
results["google_ddpm_ema_church_256"] = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
results["google_ddpm_ema_cat_256"] = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
models = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
local_checkpoint = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f"Started running {mod.modelId}!!!")
if mod.modelId.startswith("CompVis"):
model = UNet2DModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
model = UNet2DModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
time_step = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
logits = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3
)
print(f"{mod.modelId} has passed successfully!!!")
| diffusers-main | scripts/generate_logits.py |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNet2DModel,
)
TEST_UNET_CONFIG = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": 1000,
"block_out_channels": [32, 64],
"attention_head_dim": 8,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"attn_norm_num_groups": 32,
"upsample_type": "resnet",
"downsample_type": "resnet",
}
IMAGENET_64_UNET_CONFIG = {
"sample_size": 64,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 3,
"num_class_embeds": 1000,
"block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"attn_norm_num_groups": 32,
"upsample_type": "resnet",
"downsample_type": "resnet",
}
LSUN_256_UNET_CONFIG = {
"sample_size": 256,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": None,
"block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "default",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
CD_SCHEDULER_CONFIG = {
"num_train_timesteps": 40,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
CT_IMAGENET_64_SCHEDULER_CONFIG = {
"num_train_timesteps": 201,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
CT_LSUN_256_SCHEDULER_CONFIG = {
"num_train_timesteps": 151,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")
def convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=False):
new_checkpoint[f"{new_prefix}.norm1.weight"] = checkpoint[f"{old_prefix}.in_layers.0.weight"]
new_checkpoint[f"{new_prefix}.norm1.bias"] = checkpoint[f"{old_prefix}.in_layers.0.bias"]
new_checkpoint[f"{new_prefix}.conv1.weight"] = checkpoint[f"{old_prefix}.in_layers.2.weight"]
new_checkpoint[f"{new_prefix}.conv1.bias"] = checkpoint[f"{old_prefix}.in_layers.2.bias"]
new_checkpoint[f"{new_prefix}.time_emb_proj.weight"] = checkpoint[f"{old_prefix}.emb_layers.1.weight"]
new_checkpoint[f"{new_prefix}.time_emb_proj.bias"] = checkpoint[f"{old_prefix}.emb_layers.1.bias"]
new_checkpoint[f"{new_prefix}.norm2.weight"] = checkpoint[f"{old_prefix}.out_layers.0.weight"]
new_checkpoint[f"{new_prefix}.norm2.bias"] = checkpoint[f"{old_prefix}.out_layers.0.bias"]
new_checkpoint[f"{new_prefix}.conv2.weight"] = checkpoint[f"{old_prefix}.out_layers.3.weight"]
new_checkpoint[f"{new_prefix}.conv2.bias"] = checkpoint[f"{old_prefix}.out_layers.3.bias"]
if has_skip:
new_checkpoint[f"{new_prefix}.conv_shortcut.weight"] = checkpoint[f"{old_prefix}.skip_connection.weight"]
new_checkpoint[f"{new_prefix}.conv_shortcut.bias"] = checkpoint[f"{old_prefix}.skip_connection.bias"]
return new_checkpoint
def convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_dim=None):
weight_q, weight_k, weight_v = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3, dim=0)
bias_q, bias_k, bias_v = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3, dim=0)
new_checkpoint[f"{new_prefix}.group_norm.weight"] = checkpoint[f"{old_prefix}.norm.weight"]
new_checkpoint[f"{new_prefix}.group_norm.bias"] = checkpoint[f"{old_prefix}.norm.bias"]
new_checkpoint[f"{new_prefix}.to_q.weight"] = weight_q.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_q.bias"] = bias_q.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_k.weight"] = weight_k.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_k.bias"] = bias_k.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_v.weight"] = weight_v.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_v.bias"] = bias_v.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_out.0.weight"] = (
checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1).squeeze(-1)
)
new_checkpoint[f"{new_prefix}.to_out.0.bias"] = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1).squeeze(-1)
return new_checkpoint
def con_pt_to_diffuser(checkpoint_path: str, unet_config):
checkpoint = torch.load(checkpoint_path, map_location="cpu")
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["time_embed.2.bias"]
if unet_config["num_class_embeds"] is not None:
new_checkpoint["class_embedding.weight"] = checkpoint["label_emb.weight"]
new_checkpoint["conv_in.weight"] = checkpoint["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = checkpoint["input_blocks.0.0.bias"]
down_block_types = unet_config["down_block_types"]
layers_per_block = unet_config["layers_per_block"]
attention_head_dim = unet_config["attention_head_dim"]
channels_list = unet_config["block_out_channels"]
current_layer = 1
prev_channels = channels_list[0]
for i, layer_type in enumerate(down_block_types):
current_channels = channels_list[i]
downsample_block_has_skip = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(layers_per_block):
new_prefix = f"down_blocks.{i}.resnets.{j}"
old_prefix = f"input_blocks.{current_layer}.0"
has_skip = True if j == 0 and downsample_block_has_skip else False
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip)
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(layers_per_block):
new_prefix = f"down_blocks.{i}.resnets.{j}"
old_prefix = f"input_blocks.{current_layer}.0"
has_skip = True if j == 0 and downsample_block_has_skip else False
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip)
new_prefix = f"down_blocks.{i}.attentions.{j}"
old_prefix = f"input_blocks.{current_layer}.1"
new_checkpoint = convert_attention(
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim
)
current_layer += 1
if i != len(down_block_types) - 1:
new_prefix = f"down_blocks.{i}.downsamplers.0"
old_prefix = f"input_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
current_layer += 1
prev_channels = current_channels
# hardcoded the mid-block for now
new_prefix = "mid_block.resnets.0"
old_prefix = "middle_block.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
new_prefix = "mid_block.attentions.0"
old_prefix = "middle_block.1"
new_checkpoint = convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim)
new_prefix = "mid_block.resnets.1"
old_prefix = "middle_block.2"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
current_layer = 0
up_block_types = unet_config["up_block_types"]
for i, layer_type in enumerate(up_block_types):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1):
new_prefix = f"up_blocks.{i}.resnets.{j}"
old_prefix = f"output_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True)
current_layer += 1
if i != len(up_block_types) - 1:
new_prefix = f"up_blocks.{i}.upsamplers.0"
old_prefix = f"output_blocks.{current_layer-1}.1"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1):
new_prefix = f"up_blocks.{i}.resnets.{j}"
old_prefix = f"output_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True)
new_prefix = f"up_blocks.{i}.attentions.{j}"
old_prefix = f"output_blocks.{current_layer}.1"
new_checkpoint = convert_attention(
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim
)
current_layer += 1
if i != len(up_block_types) - 1:
new_prefix = f"up_blocks.{i}.upsamplers.0"
old_prefix = f"output_blocks.{current_layer-1}.2"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
new_checkpoint["conv_norm_out.weight"] = checkpoint["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = checkpoint["out.0.bias"]
new_checkpoint["conv_out.weight"] = checkpoint["out.2.weight"]
new_checkpoint["conv_out.bias"] = checkpoint["out.2.bias"]
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.")
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model."
)
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.")
args = parser.parse_args()
args.class_cond = str2bool(args.class_cond)
ckpt_name = os.path.basename(args.unet_path)
print(f"Checkpoint: {ckpt_name}")
# Get U-Net config
if "imagenet64" in ckpt_name:
unet_config = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
unet_config = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
unet_config = TEST_UNET_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
if not args.class_cond:
unet_config["num_class_embeds"] = None
converted_unet_ckpt = con_pt_to_diffuser(args.unet_path, unet_config)
image_unet = UNet2DModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
scheduler_config = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
scheduler_config = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
scheduler_config = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
cm_scheduler = CMStochasticIterativeScheduler(**scheduler_config)
consistency_model = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| diffusers-main | scripts/convert_consistency_to_diffusers.py |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def custom_convert_ldm_vae_checkpoint(checkpoint, config):
vae_state_dict = checkpoint
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def vae_pt_to_vae_diffuser(
checkpoint_path: str,
output_path: str,
):
# Only support V1
r = requests.get(
" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
)
io_obj = io.BytesIO(r.content)
original_config = OmegaConf.load(io_obj)
image_size = 512
device = "cuda" if torch.cuda.is_available() else "cpu"
if checkpoint_path.endswith("safetensors"):
from safetensors import safe_open
checkpoint = {}
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)["state_dict"]
# Convert the VAE model.
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = custom_convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
vae.save_pretrained(output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
args = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| diffusers-main | scripts/convert_vae_pt_to_diffusers.py |
#!/usr/bin/env python3
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnet1D
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel
MODELS_MAP = {
"gwf-440k": {
"url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt",
"sample_rate": 48000,
"sample_size": 65536,
},
"jmann-small-190k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt",
"sample_rate": 48000,
"sample_size": 65536,
},
"jmann-large-580k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt",
"sample_rate": 48000,
"sample_size": 131072,
},
"maestro-uncond-150k": {
"url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt",
"sample_rate": 16000,
"sample_size": 65536,
},
"unlocked-uncond-250k": {
"url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt",
"sample_rate": 16000,
"sample_size": 65536,
},
"honk-140k": {
"url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt",
"sample_rate": 16000,
"sample_size": 65536,
},
}
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
def get_crash_schedule(t):
sigma = torch.sin(t * math.pi / 2) ** 2
alpha = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(alpha, sigma)
class Object(object):
pass
class DiffusionUncond(nn.Module):
def __init__(self, global_args):
super().__init__()
self.diffusion = DiffusionAttnUnet1D(global_args, n_attn_layers=4)
self.diffusion_ema = deepcopy(self.diffusion)
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
def download(model_name):
url = MODELS_MAP[model_name]["url"]
os.system(f"wget {url} ./")
return f"./{model_name}.ckpt"
DOWN_NUM_TO_LAYER = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
}
UP_NUM_TO_LAYER = {
"8": "resnets.0",
"9": "attentions.0",
"10": "resnets.1",
"11": "attentions.1",
"12": "resnets.2",
"13": "attentions.2",
}
MID_NUM_TO_LAYER = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
"8": "resnets.3",
"9": "attentions.3",
"10": "resnets.4",
"11": "attentions.4",
"12": "resnets.5",
"13": "attentions.5",
}
DEPTH_0_TO_LAYER = {
"0": "resnets.0",
"1": "resnets.1",
"2": "resnets.2",
"4": "resnets.0",
"5": "resnets.1",
"6": "resnets.2",
}
RES_CONV_MAP = {
"skip": "conv_skip",
"main.0": "conv_1",
"main.1": "group_norm_1",
"main.3": "conv_2",
"main.4": "group_norm_2",
}
ATTN_MAP = {
"norm": "group_norm",
"qkv_proj": ["query", "key", "value"],
"out_proj": ["proj_attn"],
}
def convert_resconv_naming(name):
if name.startswith("skip"):
return name.replace("skip", RES_CONV_MAP["skip"])
# name has to be of format main.{digit}
if not name.startswith("main."):
raise ValueError(f"ResConvBlock error with {name}")
return name.replace(name[:6], RES_CONV_MAP[name[:6]])
def convert_attn_naming(name):
for key, value in ATTN_MAP.items():
if name.startswith(key) and not isinstance(value, list):
return name.replace(key, value)
elif name.startswith(key):
return [name.replace(key, v) for v in value]
raise ValueError(f"Attn error with {name}")
def rename(input_string, max_depth=13):
string = input_string
if string.split(".")[0] == "timestep_embed":
return string.replace("timestep_embed", "time_proj")
depth = 0
if string.startswith("net.3."):
depth += 1
string = string[6:]
elif string.startswith("net."):
string = string[4:]
while string.startswith("main.7."):
depth += 1
string = string[7:]
if string.startswith("main."):
string = string[5:]
# mid block
if string[:2].isdigit():
layer_num = string[:2]
string_left = string[2:]
else:
layer_num = string[0]
string_left = string[1:]
if depth == max_depth:
new_layer = MID_NUM_TO_LAYER[layer_num]
prefix = "mid_block"
elif depth > 0 and int(layer_num) < 7:
new_layer = DOWN_NUM_TO_LAYER[layer_num]
prefix = f"down_blocks.{depth}"
elif depth > 0 and int(layer_num) > 7:
new_layer = UP_NUM_TO_LAYER[layer_num]
prefix = f"up_blocks.{max_depth - depth - 1}"
elif depth == 0:
new_layer = DEPTH_0_TO_LAYER[layer_num]
prefix = f"up_blocks.{max_depth - 1}" if int(layer_num) > 3 else "down_blocks.0"
if not string_left.startswith("."):
raise ValueError(f"Naming error with {input_string} and string_left: {string_left}.")
string_left = string_left[1:]
if "resnets" in new_layer:
string_left = convert_resconv_naming(string_left)
elif "attentions" in new_layer:
new_string_left = convert_attn_naming(string_left)
string_left = new_string_left
if not isinstance(string_left, list):
new_string = prefix + "." + new_layer + "." + string_left
else:
new_string = [prefix + "." + new_layer + "." + s for s in string_left]
return new_string
def rename_orig_weights(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if k.endswith("kernel"):
# up- and downsample layers, don't have trainable weights
continue
new_k = rename(k)
# check if we need to transform from Conv => Linear for attention
if isinstance(new_k, list):
new_state_dict = transform_conv_attns(new_state_dict, new_k, v)
else:
new_state_dict[new_k] = v
return new_state_dict
def transform_conv_attns(new_state_dict, new_k, v):
if len(new_k) == 1:
if len(v.shape) == 3:
# weight
new_state_dict[new_k[0]] = v[:, :, 0]
else:
# bias
new_state_dict[new_k[0]] = v
else:
# qkv matrices
trippled_shape = v.shape[0]
single_shape = trippled_shape // 3
for i in range(3):
if len(v.shape) == 3:
new_state_dict[new_k[i]] = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
new_state_dict[new_k[i]] = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def main(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = args.model_path.split("/")[-1].split(".")[0]
if not os.path.isfile(args.model_path):
assert (
model_name == args.model_path
), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}"
args.model_path = download(model_name)
sample_rate = MODELS_MAP[model_name]["sample_rate"]
sample_size = MODELS_MAP[model_name]["sample_size"]
config = Object()
config.sample_size = sample_size
config.sample_rate = sample_rate
config.latent_dim = 0
diffusers_model = UNet1DModel(sample_size=sample_size, sample_rate=sample_rate)
diffusers_state_dict = diffusers_model.state_dict()
orig_model = DiffusionUncond(config)
orig_model.load_state_dict(torch.load(args.model_path, map_location=device)["state_dict"])
orig_model = orig_model.diffusion_ema.eval()
orig_model_state_dict = orig_model.state_dict()
renamed_state_dict = rename_orig_weights(orig_model_state_dict)
renamed_minus_diffusers = set(renamed_state_dict.keys()) - set(diffusers_state_dict.keys())
diffusers_minus_renamed = set(diffusers_state_dict.keys()) - set(renamed_state_dict.keys())
assert len(renamed_minus_diffusers) == 0, f"Problem with {renamed_minus_diffusers}"
assert all(k.endswith("kernel") for k in list(diffusers_minus_renamed)), f"Problem with {diffusers_minus_renamed}"
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"
if key == "time_proj.weight":
value = value.squeeze()
diffusers_state_dict[key] = value
diffusers_model.load_state_dict(diffusers_state_dict)
steps = 100
seed = 33
diffusers_scheduler = IPNDMScheduler(num_train_timesteps=steps)
generator = torch.manual_seed(seed)
noise = torch.randn([1, 2, config.sample_size], generator=generator).to(device)
t = torch.linspace(1, 0, steps + 1, device=device)[:-1]
step_list = get_crash_schedule(t)
pipe = DanceDiffusionPipeline(unet=diffusers_model, scheduler=diffusers_scheduler)
generator = torch.manual_seed(33)
audio = pipe(num_inference_steps=steps, generator=generator).audios
generated = sampling.iplms_sample(orig_model, noise, step_list, {})
generated = generated.clamp(-1, 1)
diff_sum = (generated - audio).abs().sum()
diff_max = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path)
print("Diff sum", diff_sum)
print("Diff max", diff_max)
assert diff_max < 1e-3, f"Diff max: {diff_max} is too much :-/"
print(f"Conversion for {model_name} successful!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
main(args)
| diffusers-main | scripts/convert_dance_diffusion_to_diffusers.py |
"""
This script ports models from VQ-diffusion (https://github.com/microsoft/VQ-Diffusion) to diffusers.
It currently only supports porting the ITHQ dataset.
ITHQ dataset:
```sh
# From the root directory of diffusers.
# Download the VQVAE checkpoint
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_vqvae.pth?sv=2020-10-02&st=2022-05-30T15%3A17%3A18Z&se=2030-05-31T15%3A17%3A00Z&sr=b&sp=r&sig=1jVavHFPpUjDs%2FTO1V3PTezaNbPp2Nx8MxiWI7y6fEY%3D -O ithq_vqvae.pth
# Download the VQVAE config
# NOTE that in VQ-diffusion the documented file is `configs/ithq.yaml` but the target class
# `image_synthesis.modeling.codecs.image_codec.ema_vqvae.PatchVQVAE`
# loads `OUTPUT/pretrained_model/taming_dvae/config.yaml`
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/OUTPUT/pretrained_model/taming_dvae/config.yaml -O ithq_vqvae.yaml
# Download the main model checkpoint
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_learnable.pth?sv=2020-10-02&st=2022-05-30T10%3A22%3A06Z&se=2030-05-31T10%3A22%3A00Z&sr=b&sp=r&sig=GOE%2Bza02%2FPnGxYVOOPtwrTR4RA3%2F5NVgMxdW4kjaEZ8%3D -O ithq_learnable.pth
# Download the main model config
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/configs/ithq.yaml -O ithq.yaml
# run the convert script
$ python ./scripts/convert_vq_diffusion_to_diffusers.py \
--checkpoint_path ./ithq_learnable.pth \
--original_config_file ./ithq.yaml \
--vqvae_checkpoint_path ./ithq_vqvae.pth \
--vqvae_original_config_file ./ithq_vqvae.yaml \
--dump_path <path to save pre-trained `VQDiffusionPipeline`>
```
"""
import argparse
import tempfile
import torch
import yaml
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from transformers import CLIPTextModel, CLIPTokenizer
from yaml.loader import FullLoader
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
try:
from omegaconf import OmegaConf
except ImportError:
raise ImportError(
"OmegaConf is required to convert the VQ Diffusion checkpoints. Please install it with `pip install"
" OmegaConf`."
)
# vqvae model
PORTED_VQVAES = ["image_synthesis.modeling.codecs.image_codec.patch_vqgan.PatchVQGAN"]
def vqvae_model_from_original_config(original_config):
assert original_config.target in PORTED_VQVAES, f"{original_config.target} has not yet been ported to diffusers."
original_config = original_config.params
original_encoder_config = original_config.encoder_config.params
original_decoder_config = original_config.decoder_config.params
in_channels = original_encoder_config.in_channels
out_channels = original_decoder_config.out_ch
down_block_types = get_down_block_types(original_encoder_config)
up_block_types = get_up_block_types(original_decoder_config)
assert original_encoder_config.ch == original_decoder_config.ch
assert original_encoder_config.ch_mult == original_decoder_config.ch_mult
block_out_channels = tuple(
[original_encoder_config.ch * a_ch_mult for a_ch_mult in original_encoder_config.ch_mult]
)
assert original_encoder_config.num_res_blocks == original_decoder_config.num_res_blocks
layers_per_block = original_encoder_config.num_res_blocks
assert original_encoder_config.z_channels == original_decoder_config.z_channels
latent_channels = original_encoder_config.z_channels
num_vq_embeddings = original_config.n_embed
# Hard coded value for ResnetBlock.GoupNorm(num_groups) in VQ-diffusion
norm_num_groups = 32
e_dim = original_config.embed_dim
model = VQModel(
in_channels=in_channels,
out_channels=out_channels,
down_block_types=down_block_types,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
latent_channels=latent_channels,
num_vq_embeddings=num_vq_embeddings,
norm_num_groups=norm_num_groups,
vq_embed_dim=e_dim,
)
return model
def get_down_block_types(original_encoder_config):
attn_resolutions = coerce_attn_resolutions(original_encoder_config.attn_resolutions)
num_resolutions = len(original_encoder_config.ch_mult)
resolution = coerce_resolution(original_encoder_config.resolution)
curr_res = resolution
down_block_types = []
for _ in range(num_resolutions):
if curr_res in attn_resolutions:
down_block_type = "AttnDownEncoderBlock2D"
else:
down_block_type = "DownEncoderBlock2D"
down_block_types.append(down_block_type)
curr_res = [r // 2 for r in curr_res]
return down_block_types
def get_up_block_types(original_decoder_config):
attn_resolutions = coerce_attn_resolutions(original_decoder_config.attn_resolutions)
num_resolutions = len(original_decoder_config.ch_mult)
resolution = coerce_resolution(original_decoder_config.resolution)
curr_res = [r // 2 ** (num_resolutions - 1) for r in resolution]
up_block_types = []
for _ in reversed(range(num_resolutions)):
if curr_res in attn_resolutions:
up_block_type = "AttnUpDecoderBlock2D"
else:
up_block_type = "UpDecoderBlock2D"
up_block_types.append(up_block_type)
curr_res = [r * 2 for r in curr_res]
return up_block_types
def coerce_attn_resolutions(attn_resolutions):
attn_resolutions = OmegaConf.to_object(attn_resolutions)
attn_resolutions_ = []
for ar in attn_resolutions:
if isinstance(ar, (list, tuple)):
attn_resolutions_.append(list(ar))
else:
attn_resolutions_.append([ar, ar])
return attn_resolutions_
def coerce_resolution(resolution):
resolution = OmegaConf.to_object(resolution)
if isinstance(resolution, int):
resolution = [resolution, resolution] # H, W
elif isinstance(resolution, (tuple, list)):
resolution = list(resolution)
else:
raise ValueError("Unknown type of resolution:", resolution)
return resolution
# done vqvae model
# vqvae checkpoint
def vqvae_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(vqvae_encoder_to_diffusers_checkpoint(model, checkpoint))
# quant_conv
diffusers_checkpoint.update(
{
"quant_conv.weight": checkpoint["quant_conv.weight"],
"quant_conv.bias": checkpoint["quant_conv.bias"],
}
)
# quantize
diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding"]})
# post_quant_conv
diffusers_checkpoint.update(
{
"post_quant_conv.weight": checkpoint["post_quant_conv.weight"],
"post_quant_conv.bias": checkpoint["post_quant_conv.bias"],
}
)
# decoder
diffusers_checkpoint.update(vqvae_decoder_to_diffusers_checkpoint(model, checkpoint))
return diffusers_checkpoint
def vqvae_encoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv_in
diffusers_checkpoint.update(
{
"encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"],
"encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"],
}
)
# down_blocks
for down_block_idx, down_block in enumerate(model.encoder.down_blocks):
diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}"
down_block_prefix = f"encoder.down.{down_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(down_block.resnets):
diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# downsample
# do not include the downsample when on the last down block
# There is no downsample on the last down block
if down_block_idx != len(model.encoder.down_blocks) - 1:
# There's a single downsample in the original checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv"
downsample_prefix = f"{down_block_prefix}.downsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(down_block, "attentions"):
for attention_idx, _ in enumerate(down_block.attentions):
diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{down_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion encoder
diffusers_attention_prefix = "encoder.mid_block.attentions.0"
attention_prefix = "encoder.mid.attn_1"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion encoder
resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"],
"encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"],
# conv_out
"encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"],
"encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def vqvae_decoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv in
diffusers_checkpoint.update(
{
"decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"],
"decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"],
}
)
# up_blocks
for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks):
# up_blocks are stored in reverse order in the VQ-diffusion checkpoint
orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx
diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}"
up_block_prefix = f"decoder.up.{orig_up_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(up_block.resnets):
diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# upsample
# there is no up sample on the last up block
if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1:
# There's a single upsample in the VQ-diffusion checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv"
downsample_prefix = f"{up_block_prefix}.upsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(up_block, "attentions"):
for attention_idx, _ in enumerate(up_block.attentions):
diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{up_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion decoder
diffusers_attention_prefix = "decoder.mid_block.attentions.0"
attention_prefix = "decoder.mid.attn_1"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion decoder
resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"decoder.conv_norm_out.weight": checkpoint["decoder.norm_out.weight"],
"decoder.conv_norm_out.bias": checkpoint["decoder.norm_out.bias"],
# conv_out
"decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"],
"decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def vqvae_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
rv = {
# norm1
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"],
# conv1
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"],
# norm2
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"],
# conv2
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"],
}
if resnet.conv_shortcut is not None:
rv.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"],
}
)
return rv
def vqvae_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# group_norm
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
# query
f"{diffusers_attention_prefix}.query.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.query.bias": checkpoint[f"{attention_prefix}.q.bias"],
# key
f"{diffusers_attention_prefix}.key.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.key.bias": checkpoint[f"{attention_prefix}.k.bias"],
# value
f"{diffusers_attention_prefix}.value.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.value.bias": checkpoint[f"{attention_prefix}.v.bias"],
# proj_attn
f"{diffusers_attention_prefix}.proj_attn.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][
:, :, 0, 0
],
f"{diffusers_attention_prefix}.proj_attn.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
# done vqvae checkpoint
# transformer model
PORTED_DIFFUSIONS = ["image_synthesis.modeling.transformers.diffusion_transformer.DiffusionTransformer"]
PORTED_TRANSFORMERS = ["image_synthesis.modeling.transformers.transformer_utils.Text2ImageTransformer"]
PORTED_CONTENT_EMBEDDINGS = ["image_synthesis.modeling.embeddings.dalle_mask_image_embedding.DalleMaskImageEmbedding"]
def transformer_model_from_original_config(
original_diffusion_config, original_transformer_config, original_content_embedding_config
):
assert (
original_diffusion_config.target in PORTED_DIFFUSIONS
), f"{original_diffusion_config.target} has not yet been ported to diffusers."
assert (
original_transformer_config.target in PORTED_TRANSFORMERS
), f"{original_transformer_config.target} has not yet been ported to diffusers."
assert (
original_content_embedding_config.target in PORTED_CONTENT_EMBEDDINGS
), f"{original_content_embedding_config.target} has not yet been ported to diffusers."
original_diffusion_config = original_diffusion_config.params
original_transformer_config = original_transformer_config.params
original_content_embedding_config = original_content_embedding_config.params
inner_dim = original_transformer_config["n_embd"]
n_heads = original_transformer_config["n_head"]
# VQ-Diffusion gives dimension of the multi-headed attention layers as the
# number of attention heads times the sequence length (the dimension) of a
# single head. We want to specify our attention blocks with those values
# specified separately
assert inner_dim % n_heads == 0
d_head = inner_dim // n_heads
depth = original_transformer_config["n_layer"]
context_dim = original_transformer_config["condition_dim"]
num_embed = original_content_embedding_config["num_embed"]
# the number of embeddings in the transformer includes the mask embedding.
# the content embedding (the vqvae) does not include the mask embedding.
num_embed = num_embed + 1
height = original_transformer_config["content_spatial_size"][0]
width = original_transformer_config["content_spatial_size"][1]
assert width == height, "width has to be equal to height"
dropout = original_transformer_config["resid_pdrop"]
num_embeds_ada_norm = original_diffusion_config["diffusion_step"]
model_kwargs = {
"attention_bias": True,
"cross_attention_dim": context_dim,
"attention_head_dim": d_head,
"num_layers": depth,
"dropout": dropout,
"num_attention_heads": n_heads,
"num_vector_embeds": num_embed,
"num_embeds_ada_norm": num_embeds_ada_norm,
"norm_num_groups": 32,
"sample_size": width,
"activation_fn": "geglu-approximate",
}
model = Transformer2DModel(**model_kwargs)
return model
# done transformer model
# transformer checkpoint
def transformer_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
transformer_prefix = "transformer.transformer"
diffusers_latent_image_embedding_prefix = "latent_image_embedding"
latent_image_embedding_prefix = f"{transformer_prefix}.content_emb"
# DalleMaskImageEmbedding
diffusers_checkpoint.update(
{
f"{diffusers_latent_image_embedding_prefix}.emb.weight": checkpoint[
f"{latent_image_embedding_prefix}.emb.weight"
],
f"{diffusers_latent_image_embedding_prefix}.height_emb.weight": checkpoint[
f"{latent_image_embedding_prefix}.height_emb.weight"
],
f"{diffusers_latent_image_embedding_prefix}.width_emb.weight": checkpoint[
f"{latent_image_embedding_prefix}.width_emb.weight"
],
}
)
# transformer blocks
for transformer_block_idx, transformer_block in enumerate(model.transformer_blocks):
diffusers_transformer_block_prefix = f"transformer_blocks.{transformer_block_idx}"
transformer_block_prefix = f"{transformer_prefix}.blocks.{transformer_block_idx}"
# ada norm block
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm1"
ada_norm_prefix = f"{transformer_block_prefix}.ln1"
diffusers_checkpoint.update(
transformer_ada_norm_to_diffusers_checkpoint(
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix
)
)
# attention block
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn1"
attention_prefix = f"{transformer_block_prefix}.attn1"
diffusers_checkpoint.update(
transformer_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# ada norm block
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm2"
ada_norm_prefix = f"{transformer_block_prefix}.ln1_1"
diffusers_checkpoint.update(
transformer_ada_norm_to_diffusers_checkpoint(
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix
)
)
# attention block
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn2"
attention_prefix = f"{transformer_block_prefix}.attn2"
diffusers_checkpoint.update(
transformer_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# norm block
diffusers_norm_block_prefix = f"{diffusers_transformer_block_prefix}.norm3"
norm_block_prefix = f"{transformer_block_prefix}.ln2"
diffusers_checkpoint.update(
{
f"{diffusers_norm_block_prefix}.weight": checkpoint[f"{norm_block_prefix}.weight"],
f"{diffusers_norm_block_prefix}.bias": checkpoint[f"{norm_block_prefix}.bias"],
}
)
# feedforward block
diffusers_feedforward_prefix = f"{diffusers_transformer_block_prefix}.ff"
feedforward_prefix = f"{transformer_block_prefix}.mlp"
diffusers_checkpoint.update(
transformer_feedforward_to_diffusers_checkpoint(
checkpoint,
diffusers_feedforward_prefix=diffusers_feedforward_prefix,
feedforward_prefix=feedforward_prefix,
)
)
# to logits
diffusers_norm_out_prefix = "norm_out"
norm_out_prefix = f"{transformer_prefix}.to_logits.0"
diffusers_checkpoint.update(
{
f"{diffusers_norm_out_prefix}.weight": checkpoint[f"{norm_out_prefix}.weight"],
f"{diffusers_norm_out_prefix}.bias": checkpoint[f"{norm_out_prefix}.bias"],
}
)
diffusers_out_prefix = "out"
out_prefix = f"{transformer_prefix}.to_logits.1"
diffusers_checkpoint.update(
{
f"{diffusers_out_prefix}.weight": checkpoint[f"{out_prefix}.weight"],
f"{diffusers_out_prefix}.bias": checkpoint[f"{out_prefix}.bias"],
}
)
return diffusers_checkpoint
def transformer_ada_norm_to_diffusers_checkpoint(checkpoint, *, diffusers_ada_norm_prefix, ada_norm_prefix):
return {
f"{diffusers_ada_norm_prefix}.emb.weight": checkpoint[f"{ada_norm_prefix}.emb.weight"],
f"{diffusers_ada_norm_prefix}.linear.weight": checkpoint[f"{ada_norm_prefix}.linear.weight"],
f"{diffusers_ada_norm_prefix}.linear.bias": checkpoint[f"{ada_norm_prefix}.linear.bias"],
}
def transformer_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# key
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.key.weight"],
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.key.bias"],
# query
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.query.weight"],
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.query.bias"],
# value
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.value.weight"],
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.value.bias"],
# linear out
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj.bias"],
}
def transformer_feedforward_to_diffusers_checkpoint(checkpoint, *, diffusers_feedforward_prefix, feedforward_prefix):
return {
f"{diffusers_feedforward_prefix}.net.0.proj.weight": checkpoint[f"{feedforward_prefix}.0.weight"],
f"{diffusers_feedforward_prefix}.net.0.proj.bias": checkpoint[f"{feedforward_prefix}.0.bias"],
f"{diffusers_feedforward_prefix}.net.2.weight": checkpoint[f"{feedforward_prefix}.2.weight"],
f"{diffusers_feedforward_prefix}.net.2.bias": checkpoint[f"{feedforward_prefix}.2.bias"],
}
# done transformer checkpoint
def read_config_file(filename):
# The yaml file contains annotations that certain values should
# loaded as tuples. By default, OmegaConf will panic when reading
# these. Instead, we can manually read the yaml with the FullLoader and then
# construct the OmegaConf object.
with open(filename) as f:
original_config = yaml.load(f, FullLoader)
return OmegaConf.create(original_config)
# We take separate arguments for the vqvae because the ITHQ vqvae config file
# is separate from the config file for the rest of the model.
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--vqvae_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the vqvae checkpoint to convert.",
)
parser.add_argument(
"--vqvae_original_config_file",
default=None,
type=str,
required=True,
help="The YAML config file corresponding to the original architecture for the vqvae.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
required=True,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
# See link for how ema weights are always selected
# https://github.com/microsoft/VQ-Diffusion/blob/3c98e77f721db7c787b76304fa2c96a36c7b00af/inference_VQ_Diffusion.py#L65
parser.add_argument(
"--no_use_ema",
action="store_true",
required=False,
help=(
"Set to not use the ema weights from the original VQ-Diffusion checkpoint. You probably do not want to set"
" it as the original VQ-Diffusion always uses the ema weights when loading models."
),
)
args = parser.parse_args()
use_ema = not args.no_use_ema
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
# vqvae_model
print(f"loading vqvae, config: {args.vqvae_original_config_file}, checkpoint: {args.vqvae_checkpoint_path}")
vqvae_original_config = read_config_file(args.vqvae_original_config_file).model
vqvae_checkpoint = torch.load(args.vqvae_checkpoint_path, map_location=checkpoint_map_location)["model"]
with init_empty_weights():
vqvae_model = vqvae_model_from_original_config(vqvae_original_config)
vqvae_diffusers_checkpoint = vqvae_original_checkpoint_to_diffusers_checkpoint(vqvae_model, vqvae_checkpoint)
with tempfile.NamedTemporaryFile() as vqvae_diffusers_checkpoint_file:
torch.save(vqvae_diffusers_checkpoint, vqvae_diffusers_checkpoint_file.name)
del vqvae_diffusers_checkpoint
del vqvae_checkpoint
load_checkpoint_and_dispatch(vqvae_model, vqvae_diffusers_checkpoint_file.name, device_map="auto")
print("done loading vqvae")
# done vqvae_model
# transformer_model
print(
f"loading transformer, config: {args.original_config_file}, checkpoint: {args.checkpoint_path}, use ema:"
f" {use_ema}"
)
original_config = read_config_file(args.original_config_file).model
diffusion_config = original_config.params.diffusion_config
transformer_config = original_config.params.diffusion_config.params.transformer_config
content_embedding_config = original_config.params.diffusion_config.params.content_emb_config
pre_checkpoint = torch.load(args.checkpoint_path, map_location=checkpoint_map_location)
if use_ema:
if "ema" in pre_checkpoint:
checkpoint = {}
for k, v in pre_checkpoint["model"].items():
checkpoint[k] = v
for k, v in pre_checkpoint["ema"].items():
# The ema weights are only used on the transformer. To mimic their key as if they came
# from the state_dict for the top level model, we prefix with an additional "transformer."
# See the source linked in the args.use_ema config for more information.
checkpoint[f"transformer.{k}"] = v
else:
print("attempted to load ema weights but no ema weights are specified in the loaded checkpoint.")
checkpoint = pre_checkpoint["model"]
else:
checkpoint = pre_checkpoint["model"]
del pre_checkpoint
with init_empty_weights():
transformer_model = transformer_model_from_original_config(
diffusion_config, transformer_config, content_embedding_config
)
diffusers_transformer_checkpoint = transformer_original_checkpoint_to_diffusers_checkpoint(
transformer_model, checkpoint
)
# classifier free sampling embeddings interlude
# The learned embeddings are stored on the transformer in the original VQ-diffusion. We store them on a separate
# model, so we pull them off the checkpoint before the checkpoint is deleted.
learnable_classifier_free_sampling_embeddings = diffusion_config.params.learnable_cf
if learnable_classifier_free_sampling_embeddings:
learned_classifier_free_sampling_embeddings_embeddings = checkpoint["transformer.empty_text_embed"]
else:
learned_classifier_free_sampling_embeddings_embeddings = None
# done classifier free sampling embeddings interlude
with tempfile.NamedTemporaryFile() as diffusers_transformer_checkpoint_file:
torch.save(diffusers_transformer_checkpoint, diffusers_transformer_checkpoint_file.name)
del diffusers_transformer_checkpoint
del checkpoint
load_checkpoint_and_dispatch(transformer_model, diffusers_transformer_checkpoint_file.name, device_map="auto")
print("done loading transformer")
# done transformer_model
# text encoder
print("loading CLIP text encoder")
clip_name = "openai/clip-vit-base-patch32"
# The original VQ-Diffusion specifies the pad value by the int used in the
# returned tokens. Each model uses `0` as the pad value. The transformers clip api
# specifies the pad value via the token before it has been tokenized. The `!` pad
# token is the same as padding with the `0` pad value.
pad_token = "!"
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto")
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0
text_encoder_model = CLIPTextModel.from_pretrained(
clip_name,
# `CLIPTextModel` does not support device_map="auto"
# device_map="auto"
)
print("done loading CLIP text encoder")
# done text encoder
# scheduler
scheduler_model = VQDiffusionScheduler(
# the scheduler has the same number of embeddings as the transformer
num_vec_classes=transformer_model.num_vector_embeds
)
# done scheduler
# learned classifier free sampling embeddings
with init_empty_weights():
learned_classifier_free_sampling_embeddings_model = LearnedClassifierFreeSamplingEmbeddings(
learnable_classifier_free_sampling_embeddings,
hidden_size=text_encoder_model.config.hidden_size,
length=tokenizer_model.model_max_length,
)
learned_classifier_free_sampling_checkpoint = {
"embeddings": learned_classifier_free_sampling_embeddings_embeddings.float()
}
with tempfile.NamedTemporaryFile() as learned_classifier_free_sampling_checkpoint_file:
torch.save(learned_classifier_free_sampling_checkpoint, learned_classifier_free_sampling_checkpoint_file.name)
del learned_classifier_free_sampling_checkpoint
del learned_classifier_free_sampling_embeddings_embeddings
load_checkpoint_and_dispatch(
learned_classifier_free_sampling_embeddings_model,
learned_classifier_free_sampling_checkpoint_file.name,
device_map="auto",
)
# done learned classifier free sampling embeddings
print(f"saving VQ diffusion model, path: {args.dump_path}")
pipe = VQDiffusionPipeline(
vqvae=vqvae_model,
transformer=transformer_model,
tokenizer=tokenizer_model,
text_encoder=text_encoder_model,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings_model,
scheduler=scheduler_model,
)
pipe.save_pretrained(args.dump_path)
print("done writing VQ diffusion model")
| diffusers-main | scripts/convert_vq_diffusion_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the Versatile Stable Diffusion checkpoints. """
import argparse
from argparse import Namespace
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
VersatileDiffusionPipeline,
)
from diffusers.pipelines.versatile_diffusion.modeling_text_unet import UNetFlatConditionModel
SCHEDULER_CONFIG = Namespace(
**{
"beta_linear_start": 0.00085,
"beta_linear_end": 0.012,
"timesteps": 1000,
"scale_factor": 0.18215,
}
)
IMAGE_UNET_CONFIG = Namespace(
**{
"input_channels": 4,
"model_channels": 320,
"output_channels": 4,
"num_noattn_blocks": [2, 2, 2, 2],
"channel_mult": [1, 2, 4, 4],
"with_attn": [True, True, True, False],
"num_heads": 8,
"context_dim": 768,
"use_checkpoint": True,
}
)
TEXT_UNET_CONFIG = Namespace(
**{
"input_channels": 768,
"model_channels": 320,
"output_channels": 768,
"num_noattn_blocks": [2, 2, 2, 2],
"channel_mult": [1, 2, 4, 4],
"second_dim": [4, 4, 4, 4],
"with_attn": [True, True, True, False],
"num_heads": 8,
"context_dim": 768,
"use_checkpoint": True,
}
)
AUTOENCODER_CONFIG = Namespace(
**{
"double_z": True,
"z_channels": 4,
"resolution": 256,
"in_channels": 3,
"out_ch": 3,
"ch": 128,
"ch_mult": [1, 2, 4, 4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0,
}
)
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
elif path["old"] in old_checkpoint:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_image_unet_diffusers_config(unet_params):
"""
Creates a config for the diffusers based on the config of the VD model.
"""
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if unet_params.with_attn[i] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if unet_params.with_attn[-i - 1] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks):
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.")
config = {
"sample_size": None,
"in_channels": unet_params.input_channels,
"out_channels": unet_params.output_channels,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_noattn_blocks[0],
"cross_attention_dim": unet_params.context_dim,
"attention_head_dim": unet_params.num_heads,
}
return config
def create_text_unet_diffusers_config(unet_params):
"""
Creates a config for the diffusers based on the config of the VD model.
"""
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlockFlat" if unet_params.with_attn[i] else "DownBlockFlat"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlockFlat" if unet_params.with_attn[-i - 1] else "UpBlockFlat"
up_block_types.append(block_type)
resolution //= 2
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks):
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.")
config = {
"sample_size": None,
"in_channels": (unet_params.input_channels, 1, 1),
"out_channels": (unet_params.output_channels, 1, 1),
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_noattn_blocks[0],
"cross_attention_dim": unet_params.context_dim,
"attention_head_dim": unet_params.num_heads,
}
return config
def create_vae_diffusers_config(vae_params):
"""
Creates a config for the diffusers based on the config of the VD model.
"""
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": vae_params.resolution,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
}
return config
def create_diffusers_scheduler(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
def convert_vd_unet_checkpoint(checkpoint, config, unet_key, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100:
print("Checkpoint has both EMA and non-EMA weights.")
if extract_ema:
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["model.diffusion_model.time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["model.diffusion_model.time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["model.diffusion_model.time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["model.diffusion_model.time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
elif f"input_blocks.{i}.0.weight" in unet_state_dict:
# text_unet uses linear layers in place of downsamplers
shape = unet_state_dict[f"input_blocks.{i}.0.weight"].shape
if shape[0] != shape[1]:
continue
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if ["conv.weight", "conv.bias"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
elif f"output_blocks.{i}.1.weight" in unet_state_dict:
# text_unet uses linear layers in place of upsamplers
shape = unet_state_dict[f"output_blocks.{i}.1.weight"].shape
if shape[0] != shape[1]:
continue
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop(
f"output_blocks.{i}.1.weight"
)
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop(
f"output_blocks.{i}.1.bias"
)
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
elif f"output_blocks.{i}.2.weight" in unet_state_dict:
# text_unet uses linear layers in place of upsamplers
shape = unet_state_dict[f"output_blocks.{i}.2.weight"].shape
if shape[0] != shape[1]:
continue
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop(
f"output_blocks.{i}.2.weight"
)
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop(
f"output_blocks.{i}.2.bias"
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def convert_vd_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
keys = list(checkpoint.keys())
for key in keys:
vae_state_dict[key] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--unet_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--vae_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--optimus_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--scheduler_type",
default="pndm",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
scheduler_config = SCHEDULER_CONFIG
num_train_timesteps = scheduler_config.timesteps
beta_start = scheduler_config.beta_linear_start
beta_end = scheduler_config.beta_linear_end
if args.scheduler_type == "pndm":
scheduler = PNDMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
skip_prk_steps=True,
steps_offset=1,
)
elif args.scheduler_type == "lms":
scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
elif args.scheduler_type == "euler":
scheduler = EulerDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
elif args.scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif args.scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif args.scheduler_type == "ddim":
scheduler = DDIMScheduler(
beta_start=beta_start,
beta_end=beta_end,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
else:
raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!")
# Convert the UNet2DConditionModel models.
if args.unet_checkpoint_path is not None:
# image UNet
image_unet_config = create_image_unet_diffusers_config(IMAGE_UNET_CONFIG)
checkpoint = torch.load(args.unet_checkpoint_path)
converted_image_unet_checkpoint = convert_vd_unet_checkpoint(
checkpoint, image_unet_config, unet_key="model.diffusion_model.unet_image.", extract_ema=args.extract_ema
)
image_unet = UNet2DConditionModel(**image_unet_config)
image_unet.load_state_dict(converted_image_unet_checkpoint)
# text UNet
text_unet_config = create_text_unet_diffusers_config(TEXT_UNET_CONFIG)
converted_text_unet_checkpoint = convert_vd_unet_checkpoint(
checkpoint, text_unet_config, unet_key="model.diffusion_model.unet_text.", extract_ema=args.extract_ema
)
text_unet = UNetFlatConditionModel(**text_unet_config)
text_unet.load_state_dict(converted_text_unet_checkpoint)
# Convert the VAE model.
if args.vae_checkpoint_path is not None:
vae_config = create_vae_diffusers_config(AUTOENCODER_CONFIG)
checkpoint = torch.load(args.vae_checkpoint_path)
converted_vae_checkpoint = convert_vd_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
image_feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
pipe = VersatileDiffusionPipeline(
scheduler=scheduler,
tokenizer=tokenizer,
image_feature_extractor=image_feature_extractor,
text_encoder=text_encoder,
image_encoder=image_encoder,
image_unet=image_unet,
text_unet=text_unet,
vae=vae,
)
pipe.save_pretrained(args.dump_path)
| diffusers-main | scripts/convert_versatile_diffusion_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """
import argparse
import importlib
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--scheduler_type",
default="pndm",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--pipeline_type",
default=None,
type=str,
help=(
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"
". If `None` pipeline will be automatically inferred."
),
)
parser.add_argument(
"--image_size",
default=None,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=(
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
parser.add_argument(
"--stable_unclip",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.",
)
parser.add_argument(
"--stable_unclip_prior",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.",
)
parser.add_argument(
"--clip_stats_path",
type=str,
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.",
required=False,
)
parser.add_argument(
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint."
)
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--vae_path",
type=str,
default=None,
required=False,
help="Set to a path, hub id to an already converted vae to not convert it again.",
)
parser.add_argument(
"--pipeline_class_name",
type=str,
default=None,
required=False,
help="Specify the pipeline class name",
)
args = parser.parse_args()
if args.pipeline_class_name is not None:
library = importlib.import_module("diffusers")
class_obj = getattr(library, args.pipeline_class_name)
pipeline_class = class_obj
else:
pipeline_class = None
pipe = download_from_original_stable_diffusion_ckpt(
checkpoint_path_or_dict=args.checkpoint_path,
original_config_file=args.original_config_file,
config_files=args.config_files,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
pipeline_class=pipeline_class,
)
if args.half:
pipe.to(torch_dtype=torch.float16)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| diffusers-main | scripts/convert_original_stable_diffusion_to_diffusers.py |
import argparse
import huggingface_hub
import k_diffusion as K
import torch
from diffusers import UNet2DConditionModel
UPSCALER_REPO = "pcuenq/k-upscaler"
def resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
rv = {
# norm1
f"{diffusers_resnet_prefix}.norm1.linear.weight": checkpoint[f"{resnet_prefix}.main.0.mapper.weight"],
f"{diffusers_resnet_prefix}.norm1.linear.bias": checkpoint[f"{resnet_prefix}.main.0.mapper.bias"],
# conv1
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.main.2.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.main.2.bias"],
# norm2
f"{diffusers_resnet_prefix}.norm2.linear.weight": checkpoint[f"{resnet_prefix}.main.4.mapper.weight"],
f"{diffusers_resnet_prefix}.norm2.linear.bias": checkpoint[f"{resnet_prefix}.main.4.mapper.bias"],
# conv2
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.main.6.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.main.6.bias"],
}
if resnet.conv_shortcut is not None:
rv.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.skip.weight"],
}
)
return rv
def self_attn_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
weight_q, weight_k, weight_v = checkpoint[f"{attention_prefix}.qkv_proj.weight"].chunk(3, dim=0)
bias_q, bias_k, bias_v = checkpoint[f"{attention_prefix}.qkv_proj.bias"].chunk(3, dim=0)
rv = {
# norm
f"{diffusers_attention_prefix}.norm1.linear.weight": checkpoint[f"{attention_prefix}.norm_in.mapper.weight"],
f"{diffusers_attention_prefix}.norm1.linear.bias": checkpoint[f"{attention_prefix}.norm_in.mapper.bias"],
# to_q
f"{diffusers_attention_prefix}.attn1.to_q.weight": weight_q.squeeze(-1).squeeze(-1),
f"{diffusers_attention_prefix}.attn1.to_q.bias": bias_q,
# to_k
f"{diffusers_attention_prefix}.attn1.to_k.weight": weight_k.squeeze(-1).squeeze(-1),
f"{diffusers_attention_prefix}.attn1.to_k.bias": bias_k,
# to_v
f"{diffusers_attention_prefix}.attn1.to_v.weight": weight_v.squeeze(-1).squeeze(-1),
f"{diffusers_attention_prefix}.attn1.to_v.bias": bias_v,
# to_out
f"{diffusers_attention_prefix}.attn1.to_out.0.weight": checkpoint[f"{attention_prefix}.out_proj.weight"]
.squeeze(-1)
.squeeze(-1),
f"{diffusers_attention_prefix}.attn1.to_out.0.bias": checkpoint[f"{attention_prefix}.out_proj.bias"],
}
return rv
def cross_attn_to_diffusers_checkpoint(
checkpoint, *, diffusers_attention_prefix, diffusers_attention_index, attention_prefix
):
weight_k, weight_v = checkpoint[f"{attention_prefix}.kv_proj.weight"].chunk(2, dim=0)
bias_k, bias_v = checkpoint[f"{attention_prefix}.kv_proj.bias"].chunk(2, dim=0)
rv = {
# norm2 (ada groupnorm)
f"{diffusers_attention_prefix}.norm{diffusers_attention_index}.linear.weight": checkpoint[
f"{attention_prefix}.norm_dec.mapper.weight"
],
f"{diffusers_attention_prefix}.norm{diffusers_attention_index}.linear.bias": checkpoint[
f"{attention_prefix}.norm_dec.mapper.bias"
],
# layernorm on encoder_hidden_state
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.norm_cross.weight": checkpoint[
f"{attention_prefix}.norm_enc.weight"
],
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.norm_cross.bias": checkpoint[
f"{attention_prefix}.norm_enc.bias"
],
# to_q
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_q.weight": checkpoint[
f"{attention_prefix}.q_proj.weight"
]
.squeeze(-1)
.squeeze(-1),
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_q.bias": checkpoint[
f"{attention_prefix}.q_proj.bias"
],
# to_k
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_k.weight": weight_k.squeeze(-1).squeeze(-1),
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_k.bias": bias_k,
# to_v
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_v.weight": weight_v.squeeze(-1).squeeze(-1),
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_v.bias": bias_v,
# to_out
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_out.0.weight": checkpoint[
f"{attention_prefix}.out_proj.weight"
]
.squeeze(-1)
.squeeze(-1),
f"{diffusers_attention_prefix}.attn{diffusers_attention_index}.to_out.0.bias": checkpoint[
f"{attention_prefix}.out_proj.bias"
],
}
return rv
def block_to_diffusers_checkpoint(block, checkpoint, block_idx, block_type):
block_prefix = "inner_model.u_net.u_blocks" if block_type == "up" else "inner_model.u_net.d_blocks"
block_prefix = f"{block_prefix}.{block_idx}"
diffusers_checkpoint = {}
if not hasattr(block, "attentions"):
n = 1 # resnet only
elif not block.attentions[0].add_self_attention:
n = 2 # resnet -> cross-attention
else:
n = 3 # resnet -> self-attention -> cross-attention)
for resnet_idx, resnet in enumerate(block.resnets):
# diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}"
diffusers_resnet_prefix = f"{block_type}_blocks.{block_idx}.resnets.{resnet_idx}"
idx = n * resnet_idx if block_type == "up" else n * resnet_idx + 1
resnet_prefix = f"{block_prefix}.{idx}" if block_type == "up" else f"{block_prefix}.{idx}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
if hasattr(block, "attentions"):
for attention_idx, attention in enumerate(block.attentions):
diffusers_attention_prefix = f"{block_type}_blocks.{block_idx}.attentions.{attention_idx}"
idx = n * attention_idx + 1 if block_type == "up" else n * attention_idx + 2
self_attention_prefix = f"{block_prefix}.{idx}"
cross_attention_prefix = f"{block_prefix}.{idx }"
cross_attention_index = 1 if not attention.add_self_attention else 2
idx = (
n * attention_idx + cross_attention_index
if block_type == "up"
else n * attention_idx + cross_attention_index + 1
)
cross_attention_prefix = f"{block_prefix}.{idx }"
diffusers_checkpoint.update(
cross_attn_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
diffusers_attention_index=2,
attention_prefix=cross_attention_prefix,
)
)
if attention.add_self_attention is True:
diffusers_checkpoint.update(
self_attn_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=self_attention_prefix,
)
)
return diffusers_checkpoint
def unet_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# pre-processing
diffusers_checkpoint.update(
{
"conv_in.weight": checkpoint["inner_model.proj_in.weight"],
"conv_in.bias": checkpoint["inner_model.proj_in.bias"],
}
)
# timestep and class embedding
diffusers_checkpoint.update(
{
"time_proj.weight": checkpoint["inner_model.timestep_embed.weight"].squeeze(-1),
"time_embedding.linear_1.weight": checkpoint["inner_model.mapping.0.weight"],
"time_embedding.linear_1.bias": checkpoint["inner_model.mapping.0.bias"],
"time_embedding.linear_2.weight": checkpoint["inner_model.mapping.2.weight"],
"time_embedding.linear_2.bias": checkpoint["inner_model.mapping.2.bias"],
"time_embedding.cond_proj.weight": checkpoint["inner_model.mapping_cond.weight"],
}
)
# down_blocks
for down_block_idx, down_block in enumerate(model.down_blocks):
diffusers_checkpoint.update(block_to_diffusers_checkpoint(down_block, checkpoint, down_block_idx, "down"))
# up_blocks
for up_block_idx, up_block in enumerate(model.up_blocks):
diffusers_checkpoint.update(block_to_diffusers_checkpoint(up_block, checkpoint, up_block_idx, "up"))
# post-processing
diffusers_checkpoint.update(
{
"conv_out.weight": checkpoint["inner_model.proj_out.weight"],
"conv_out.bias": checkpoint["inner_model.proj_out.bias"],
}
)
return diffusers_checkpoint
def unet_model_from_original_config(original_config):
in_channels = original_config["input_channels"] + original_config["unet_cond_dim"]
out_channels = original_config["input_channels"] + (1 if original_config["has_variance"] else 0)
block_out_channels = original_config["channels"]
assert (
len(set(original_config["depths"])) == 1
), "UNet2DConditionModel currently do not support blocks with different number of layers"
layers_per_block = original_config["depths"][0]
class_labels_dim = original_config["mapping_cond_dim"]
cross_attention_dim = original_config["cross_cond_dim"]
attn1_types = []
attn2_types = []
for s, c in zip(original_config["self_attn_depths"], original_config["cross_attn_depths"]):
if s:
a1 = "self"
a2 = "cross" if c else None
elif c:
a1 = "cross"
a2 = None
else:
a1 = None
a2 = None
attn1_types.append(a1)
attn2_types.append(a2)
unet = UNet2DConditionModel(
in_channels=in_channels,
out_channels=out_channels,
down_block_types=("KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D"),
mid_block_type=None,
up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn="gelu",
norm_num_groups=None,
cross_attention_dim=cross_attention_dim,
attention_head_dim=64,
time_cond_proj_dim=class_labels_dim,
resnet_time_scale_shift="scale_shift",
time_embedding_type="fourier",
timestep_post_act="gelu",
conv_in_kernel=1,
conv_out_kernel=1,
)
return unet
def main(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
orig_config_path = huggingface_hub.hf_hub_download(UPSCALER_REPO, "config_laion_text_cond_latent_upscaler_2.json")
orig_weights_path = huggingface_hub.hf_hub_download(
UPSCALER_REPO, "laion_text_cond_latent_upscaler_2_1_00470000_slim.pth"
)
print(f"loading original model configuration from {orig_config_path}")
print(f"loading original model checkpoint from {orig_weights_path}")
print("converting to diffusers unet")
orig_config = K.config.load_config(open(orig_config_path))["model"]
model = unet_model_from_original_config(orig_config)
orig_checkpoint = torch.load(orig_weights_path, map_location=device)["model_ema"]
converted_checkpoint = unet_to_diffusers_checkpoint(model, orig_checkpoint)
model.load_state_dict(converted_checkpoint, strict=True)
model.save_pretrained(args.dump_path)
print(f"saving converted unet model in {args.dump_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
main(args)
| diffusers-main | scripts/convert_k_upscaler_to_diffusers.py |
# coding=utf-8
# Copyright 2023, Haofan Wang, Qixun Wang, All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LoRA's safetensors checkpoints. """
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def convert(base_model_path, checkpoint_path, LORA_PREFIX_UNET, LORA_PREFIX_TEXT_ENCODER, alpha):
# load base model
pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32)
# load LoRA weight from .safetensors
state_dict = load_file(checkpoint_path)
visited = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = pipeline.text_encoder
else:
layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return pipeline
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
args = parser.parse_args()
base_model_path = args.base_model_path
checkpoint_path = args.checkpoint_path
dump_path = args.dump_path
lora_prefix_unet = args.lora_prefix_unet
lora_prefix_text_encoder = args.lora_prefix_text_encoder
alpha = args.alpha
pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
pipe = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| diffusers-main | scripts/convert_lora_safetensor_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNet2DConditionModel, UNet2DModel
do_only_config = False
do_only_weights = True
do_only_renaming = False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--repo_path",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
config_parameters_to_change = {
"image_size": "sample_size",
"num_res_blocks": "layers_per_block",
"block_channels": "block_out_channels",
"down_blocks": "down_block_types",
"up_blocks": "up_block_types",
"downscale_freq_shift": "freq_shift",
"resnet_num_groups": "norm_num_groups",
"resnet_act_fn": "act_fn",
"resnet_eps": "norm_eps",
"num_head_channels": "attention_head_dim",
}
key_parameters_to_change = {
"time_steps": "time_proj",
"mid": "mid_block",
"downsample_blocks": "down_blocks",
"upsample_blocks": "up_blocks",
}
subfolder = "" if has_file(args.repo_path, "config.json") else "unet"
with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader:
text = reader.read()
config = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, "config.json"):
model = UNet2DModel(**config)
else:
class_name = UNet2DConditionModel if "ldm-text2im-large-256" in args.repo_path else UNet2DModel
model = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
config = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
config[value] = config[key]
del config[key]
config["down_block_types"] = [k.replace("UNetRes", "") for k in config["down_block_types"]]
config["up_block_types"] = [k.replace("UNetRes", "") for k in config["up_block_types"]]
if do_only_weights:
state_dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin"))
new_state_dict = {}
for param_key, param_value in state_dict.items():
if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"):
continue
has_changed = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split(".")[0] == key:
new_state_dict[".".join([new_key] + param_key.split(".")[1:])] = param_value
has_changed = True
if not has_changed:
new_state_dict[param_key] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| diffusers-main | scripts/change_naming_configs_and_checkpoints.py |
import argparse
import os
import tempfile
import torch
from accelerate import load_checkpoint_and_dispatch
from diffusers import UNet2DConditionModel
from diffusers.models.prior_transformer import PriorTransformer
from diffusers.models.vq_model import VQModel
"""
Example - From the diffusers root directory:
Download weights:
```sh
$ wget https://huggingface.co/ai-forever/Kandinsky_2.1/blob/main/prior_fp16.ckpt
```
Convert the model:
```sh
python scripts/convert_kandinsky_to_diffusers.py \
--prior_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/prior_fp16.ckpt \
--clip_stat_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/ViT-L-14_stats.th \
--text2img_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/decoder_fp16.ckpt \
--inpaint_text2img_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/inpainting_fp16.ckpt \
--movq_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/movq_final.ckpt \
--dump_path /home/yiyi_huggingface_co/dump \
--debug decoder
```
"""
# prior
PRIOR_ORIGINAL_PREFIX = "model"
# Uses default arguments
PRIOR_CONFIG = {}
def prior_model_from_original_config():
model = PriorTransformer(**PRIOR_CONFIG)
return model
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint, clip_stats_checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.0 -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.bias"],
}
)
# <original>.clip_img_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.bias"],
}
)
# <original>.text_emb_proj -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.bias"],
}
)
# <original>.text_enc_proj -> <diffusers>.encoder_hidden_states_proj
diffusers_checkpoint.update(
{
"encoder_hidden_states_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.weight"],
"encoder_hidden_states_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.bias"],
}
)
# <original>.positional_embedding -> <diffusers>.positional_embedding
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.positional_embedding"]})
# <original>.prd_emb -> <diffusers>.prd_embedding
diffusers_checkpoint.update({"prd_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.prd_emb"]})
# <original>.time_embed.2 -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.bias"],
}
)
# <original>.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.transformer.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.final_ln -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.bias"],
}
)
# <original>.out_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.bias"],
}
)
# clip stats
clip_mean, clip_std = clip_stats_checkpoint
clip_mean = clip_mean[None, :]
clip_std = clip_std[None, :]
diffusers_checkpoint.update({"clip_mean": clip_mean, "clip_std": clip_std})
return diffusers_checkpoint
def prior_attention_to_diffusers(
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim
):
diffusers_checkpoint = {}
# <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"],
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"],
split=3,
chunk_size=attention_head_dim,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.c_proj -> <diffusers>.to_out.0
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"],
}
)
return diffusers_checkpoint
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix):
diffusers_checkpoint = {
# <original>.c_fc -> <diffusers>.net.0.proj
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"],
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"],
# <original>.c_proj -> <diffusers>.net.2
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"],
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"],
}
return diffusers_checkpoint
# done prior
# unet
# We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can
# update then.
UNET_CONFIG = {
"act_fn": "silu",
"addition_embed_type": "text_image",
"addition_embed_type_num_heads": 64,
"attention_head_dim": 64,
"block_out_channels": [384, 768, 1152, 1536],
"center_input_sample": False,
"class_embed_type": None,
"class_embeddings_concat": False,
"conv_in_kernel": 3,
"conv_out_kernel": 3,
"cross_attention_dim": 768,
"cross_attention_norm": None,
"down_block_types": [
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
],
"downsample_padding": 1,
"dual_cross_attention": False,
"encoder_hid_dim": 1024,
"encoder_hid_dim_type": "text_image_proj",
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 3,
"mid_block_only_cross_attention": None,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 8,
"projection_class_embeddings_input_dim": None,
"resnet_out_scale_factor": 1.0,
"resnet_skip_time_act": False,
"resnet_time_scale_shift": "scale_shift",
"sample_size": 64,
"time_cond_proj_dim": None,
"time_embedding_act_fn": None,
"time_embedding_dim": None,
"time_embedding_type": "positional",
"timestep_post_act": None,
"up_block_types": [
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"upcast_attention": False,
"use_linear_projection": False,
}
def unet_model_from_original_config():
model = UNet2DConditionModel(**UNET_CONFIG)
return model
def unet_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
num_head_channels = UNET_CONFIG["attention_head_dim"]
diffusers_checkpoint.update(unet_time_embeddings(checkpoint))
diffusers_checkpoint.update(unet_conv_in(checkpoint))
diffusers_checkpoint.update(unet_add_embedding(checkpoint))
diffusers_checkpoint.update(unet_encoder_hid_proj(checkpoint))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
num_head_channels=num_head_channels,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.input_blocks -> <diffusers>.down_blocks
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
num_head_channels=num_head_channels,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
num_head_channels=num_head_channels,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint))
diffusers_checkpoint.update(unet_conv_out(checkpoint))
return diffusers_checkpoint
# done unet
# inpaint unet
# We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can
# update then.
INPAINT_UNET_CONFIG = {
"act_fn": "silu",
"addition_embed_type": "text_image",
"addition_embed_type_num_heads": 64,
"attention_head_dim": 64,
"block_out_channels": [384, 768, 1152, 1536],
"center_input_sample": False,
"class_embed_type": None,
"class_embeddings_concat": None,
"conv_in_kernel": 3,
"conv_out_kernel": 3,
"cross_attention_dim": 768,
"cross_attention_norm": None,
"down_block_types": [
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
],
"downsample_padding": 1,
"dual_cross_attention": False,
"encoder_hid_dim": 1024,
"encoder_hid_dim_type": "text_image_proj",
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 9,
"layers_per_block": 3,
"mid_block_only_cross_attention": None,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 8,
"projection_class_embeddings_input_dim": None,
"resnet_out_scale_factor": 1.0,
"resnet_skip_time_act": False,
"resnet_time_scale_shift": "scale_shift",
"sample_size": 64,
"time_cond_proj_dim": None,
"time_embedding_act_fn": None,
"time_embedding_dim": None,
"time_embedding_type": "positional",
"timestep_post_act": None,
"up_block_types": [
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"upcast_attention": False,
"use_linear_projection": False,
}
def inpaint_unet_model_from_original_config():
model = UNet2DConditionModel(**INPAINT_UNET_CONFIG)
return model
def inpaint_unet_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
num_head_channels = INPAINT_UNET_CONFIG["attention_head_dim"]
diffusers_checkpoint.update(unet_time_embeddings(checkpoint))
diffusers_checkpoint.update(unet_conv_in(checkpoint))
diffusers_checkpoint.update(unet_add_embedding(checkpoint))
diffusers_checkpoint.update(unet_encoder_hid_proj(checkpoint))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
num_head_channels=num_head_channels,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.input_blocks -> <diffusers>.down_blocks
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
num_head_channels=num_head_channels,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
num_head_channels=num_head_channels,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint))
diffusers_checkpoint.update(unet_conv_out(checkpoint))
return diffusers_checkpoint
# done inpaint unet
# unet utils
# <original>.time_embed -> <diffusers>.time_embedding
def unet_time_embeddings(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint["time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint["time_embed.0.bias"],
"time_embedding.linear_2.weight": checkpoint["time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint["time_embed.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks.0 -> <diffusers>.conv_in
def unet_conv_in(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_in.weight": checkpoint["input_blocks.0.0.weight"],
"conv_in.bias": checkpoint["input_blocks.0.0.bias"],
}
)
return diffusers_checkpoint
def unet_add_embedding(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"add_embedding.text_norm.weight": checkpoint["ln_model_n.weight"],
"add_embedding.text_norm.bias": checkpoint["ln_model_n.bias"],
"add_embedding.text_proj.weight": checkpoint["proj_n.weight"],
"add_embedding.text_proj.bias": checkpoint["proj_n.bias"],
"add_embedding.image_proj.weight": checkpoint["img_layer.weight"],
"add_embedding.image_proj.bias": checkpoint["img_layer.bias"],
}
)
return diffusers_checkpoint
def unet_encoder_hid_proj(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"encoder_hid_proj.image_embeds.weight": checkpoint["clip_to_seq.weight"],
"encoder_hid_proj.image_embeds.bias": checkpoint["clip_to_seq.bias"],
"encoder_hid_proj.text_proj.weight": checkpoint["to_model_dim_n.weight"],
"encoder_hid_proj.text_proj.bias": checkpoint["to_model_dim_n.bias"],
}
)
return diffusers_checkpoint
# <original>.out.0 -> <diffusers>.conv_norm_out
def unet_conv_norm_out(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_norm_out.weight": checkpoint["out.0.weight"],
"conv_norm_out.bias": checkpoint["out.0.bias"],
}
)
return diffusers_checkpoint
# <original>.out.2 -> <diffusers>.conv_out
def unet_conv_out(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_out.weight": checkpoint["out.2.weight"],
"conv_out.bias": checkpoint["out.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks -> <diffusers>.down_blocks
def unet_downblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_down_block_idx, original_down_block_idx, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.resnets"
original_down_block_prefix = "input_blocks"
down_block = model.down_blocks[diffusers_down_block_idx]
num_resnets = len(down_block.resnets)
if down_block.downsamplers is None:
downsampler = False
else:
assert len(down_block.downsamplers) == 1
downsampler = True
# The downsample block is also a resnet
num_resnets += 1
for resnet_idx_inc in range(num_resnets):
full_resnet_prefix = f"{original_down_block_prefix}.{original_down_block_idx + resnet_idx_inc}.0"
if downsampler and resnet_idx_inc == num_resnets - 1:
# this is a downsample block
full_diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.downsamplers.0"
else:
# this is a regular resnet block
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if hasattr(down_block, "attentions"):
num_attentions = len(down_block.attentions)
diffusers_attention_prefix = f"down_blocks.{diffusers_down_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_down_block_prefix}.{original_down_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets
return diffusers_checkpoint, num_original_down_blocks
# <original>.middle_block -> <diffusers>.mid_block
def unet_midblock_to_diffusers_checkpoint(model, checkpoint, *, num_head_channels):
diffusers_checkpoint = {}
# block 0
original_block_idx = 0
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.0",
resnet_prefix=f"middle_block.{original_block_idx}",
)
)
original_block_idx += 1
# optional block 1
if hasattr(model.mid_block, "attentions") and model.mid_block.attentions[0] is not None:
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix="mid_block.attentions.0",
attention_prefix=f"middle_block.{original_block_idx}",
num_head_channels=num_head_channels,
)
)
original_block_idx += 1
# block 1 or block 2
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.1",
resnet_prefix=f"middle_block.{original_block_idx}",
)
)
return diffusers_checkpoint
# <original>.output_blocks -> <diffusers>.up_blocks
def unet_upblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_up_block_idx, original_up_block_idx, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.resnets"
original_up_block_prefix = "output_blocks"
up_block = model.up_blocks[diffusers_up_block_idx]
num_resnets = len(up_block.resnets)
if up_block.upsamplers is None:
upsampler = False
else:
assert len(up_block.upsamplers) == 1
upsampler = True
# The upsample block is also a resnet
num_resnets += 1
has_attentions = hasattr(up_block, "attentions")
for resnet_idx_inc in range(num_resnets):
if upsampler and resnet_idx_inc == num_resnets - 1:
# this is an upsample block
if has_attentions:
# There is a middle attention block that we skip
original_resnet_block_idx = 2
else:
original_resnet_block_idx = 1
# we add the `minus 1` because the last two resnets are stuck together in the same output block
full_resnet_prefix = (
f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc - 1}.{original_resnet_block_idx}"
)
full_diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.upsamplers.0"
else:
# this is a regular resnet block
full_resnet_prefix = f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc}.0"
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if has_attentions:
num_attentions = len(up_block.attentions)
diffusers_attention_prefix = f"up_blocks.{diffusers_up_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_up_block_prefix}.{original_up_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets - 1 if upsampler else num_resnets
return diffusers_checkpoint, num_original_down_blocks
def resnet_to_diffusers_checkpoint(checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
diffusers_checkpoint = {
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.in_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.in_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.in_layers.2.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.in_layers.2.bias"],
f"{diffusers_resnet_prefix}.time_emb_proj.weight": checkpoint[f"{resnet_prefix}.emb_layers.1.weight"],
f"{diffusers_resnet_prefix}.time_emb_proj.bias": checkpoint[f"{resnet_prefix}.emb_layers.1.bias"],
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.out_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.out_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.out_layers.3.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.out_layers.3.bias"],
}
skip_connection_prefix = f"{resnet_prefix}.skip_connection"
if f"{skip_connection_prefix}.weight" in checkpoint:
diffusers_checkpoint.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{skip_connection_prefix}.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{skip_connection_prefix}.bias"],
}
)
return diffusers_checkpoint
def attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix, num_head_channels):
diffusers_checkpoint = {}
# <original>.norm -> <diffusers>.group_norm
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
}
)
# <original>.qkv -> <diffusers>.{query, key, value}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.qkv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.qkv.bias"],
split=3,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.encoder_kv -> <diffusers>.{context_key, context_value}
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.encoder_kv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.encoder_kv.bias"],
split=2,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.add_k_proj.weight": encoder_k_weight,
f"{diffusers_attention_prefix}.add_k_proj.bias": encoder_k_bias,
f"{diffusers_attention_prefix}.add_v_proj.weight": encoder_v_weight,
f"{diffusers_attention_prefix}.add_v_proj.bias": encoder_v_bias,
}
)
# <original>.proj_out (1d conv) -> <diffusers>.proj_attn (linear)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][
:, :, 0
],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
)
return diffusers_checkpoint
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
assert weights[weights_biases_idx] is None
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
# done unet utils
def prior(*, args, checkpoint_map_location):
print("loading prior")
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location)
clip_stats_checkpoint = torch.load(args.clip_stat_path, map_location=checkpoint_map_location)
prior_model = prior_model_from_original_config()
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(
prior_model, prior_checkpoint, clip_stats_checkpoint
)
del prior_checkpoint
del clip_stats_checkpoint
load_checkpoint_to_model(prior_diffusers_checkpoint, prior_model, strict=True)
print("done loading prior")
return prior_model
def text2img(*, args, checkpoint_map_location):
print("loading text2img")
text2img_checkpoint = torch.load(args.text2img_checkpoint_path, map_location=checkpoint_map_location)
unet_model = unet_model_from_original_config()
unet_diffusers_checkpoint = unet_original_checkpoint_to_diffusers_checkpoint(unet_model, text2img_checkpoint)
del text2img_checkpoint
load_checkpoint_to_model(unet_diffusers_checkpoint, unet_model, strict=True)
print("done loading text2img")
return unet_model
def inpaint_text2img(*, args, checkpoint_map_location):
print("loading inpaint text2img")
inpaint_text2img_checkpoint = torch.load(
args.inpaint_text2img_checkpoint_path, map_location=checkpoint_map_location
)
inpaint_unet_model = inpaint_unet_model_from_original_config()
inpaint_unet_diffusers_checkpoint = inpaint_unet_original_checkpoint_to_diffusers_checkpoint(
inpaint_unet_model, inpaint_text2img_checkpoint
)
del inpaint_text2img_checkpoint
load_checkpoint_to_model(inpaint_unet_diffusers_checkpoint, inpaint_unet_model, strict=True)
print("done loading inpaint text2img")
return inpaint_unet_model
# movq
MOVQ_CONFIG = {
"in_channels": 3,
"out_channels": 3,
"latent_channels": 4,
"down_block_types": ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D"),
"up_block_types": ("AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"),
"num_vq_embeddings": 16384,
"block_out_channels": (128, 256, 256, 512),
"vq_embed_dim": 4,
"layers_per_block": 2,
"norm_type": "spatial",
}
def movq_model_from_original_config():
movq = VQModel(**MOVQ_CONFIG)
return movq
def movq_encoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv_in
diffusers_checkpoint.update(
{
"encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"],
"encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"],
}
)
# down_blocks
for down_block_idx, down_block in enumerate(model.encoder.down_blocks):
diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}"
down_block_prefix = f"encoder.down.{down_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(down_block.resnets):
diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# downsample
# do not include the downsample when on the last down block
# There is no downsample on the last down block
if down_block_idx != len(model.encoder.down_blocks) - 1:
# There's a single downsample in the original checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv"
downsample_prefix = f"{down_block_prefix}.downsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(down_block, "attentions"):
for attention_idx, _ in enumerate(down_block.attentions):
diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{down_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion encoder
diffusers_attention_prefix = "encoder.mid_block.attentions.0"
attention_prefix = "encoder.mid.attn_1"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion encoder
resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"],
"encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"],
# conv_out
"encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"],
"encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def movq_decoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv in
diffusers_checkpoint.update(
{
"decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"],
"decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"],
}
)
# up_blocks
for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks):
# up_blocks are stored in reverse order in the VQ-diffusion checkpoint
orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx
diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}"
up_block_prefix = f"decoder.up.{orig_up_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(up_block.resnets):
diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint_spatial_norm(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# upsample
# there is no up sample on the last up block
if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1:
# There's a single upsample in the VQ-diffusion checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv"
downsample_prefix = f"{up_block_prefix}.upsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(up_block, "attentions"):
for attention_idx, _ in enumerate(up_block.attentions):
diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{up_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint_spatial_norm(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion decoder
diffusers_attention_prefix = "decoder.mid_block.attentions.0"
attention_prefix = "decoder.mid.attn_1"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint_spatial_norm(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion decoder
resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint_spatial_norm(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"decoder.conv_norm_out.norm_layer.weight": checkpoint["decoder.norm_out.norm_layer.weight"],
"decoder.conv_norm_out.norm_layer.bias": checkpoint["decoder.norm_out.norm_layer.bias"],
"decoder.conv_norm_out.conv_y.weight": checkpoint["decoder.norm_out.conv_y.weight"],
"decoder.conv_norm_out.conv_y.bias": checkpoint["decoder.norm_out.conv_y.bias"],
"decoder.conv_norm_out.conv_b.weight": checkpoint["decoder.norm_out.conv_b.weight"],
"decoder.conv_norm_out.conv_b.bias": checkpoint["decoder.norm_out.conv_b.bias"],
# conv_out
"decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"],
"decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def movq_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
rv = {
# norm1
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"],
# conv1
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"],
# norm2
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"],
# conv2
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"],
}
if resnet.conv_shortcut is not None:
rv.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"],
}
)
return rv
def movq_resnet_to_diffusers_checkpoint_spatial_norm(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
rv = {
# norm1
f"{diffusers_resnet_prefix}.norm1.norm_layer.weight": checkpoint[f"{resnet_prefix}.norm1.norm_layer.weight"],
f"{diffusers_resnet_prefix}.norm1.norm_layer.bias": checkpoint[f"{resnet_prefix}.norm1.norm_layer.bias"],
f"{diffusers_resnet_prefix}.norm1.conv_y.weight": checkpoint[f"{resnet_prefix}.norm1.conv_y.weight"],
f"{diffusers_resnet_prefix}.norm1.conv_y.bias": checkpoint[f"{resnet_prefix}.norm1.conv_y.bias"],
f"{diffusers_resnet_prefix}.norm1.conv_b.weight": checkpoint[f"{resnet_prefix}.norm1.conv_b.weight"],
f"{diffusers_resnet_prefix}.norm1.conv_b.bias": checkpoint[f"{resnet_prefix}.norm1.conv_b.bias"],
# conv1
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"],
# norm2
f"{diffusers_resnet_prefix}.norm2.norm_layer.weight": checkpoint[f"{resnet_prefix}.norm2.norm_layer.weight"],
f"{diffusers_resnet_prefix}.norm2.norm_layer.bias": checkpoint[f"{resnet_prefix}.norm2.norm_layer.bias"],
f"{diffusers_resnet_prefix}.norm2.conv_y.weight": checkpoint[f"{resnet_prefix}.norm2.conv_y.weight"],
f"{diffusers_resnet_prefix}.norm2.conv_y.bias": checkpoint[f"{resnet_prefix}.norm2.conv_y.bias"],
f"{diffusers_resnet_prefix}.norm2.conv_b.weight": checkpoint[f"{resnet_prefix}.norm2.conv_b.weight"],
f"{diffusers_resnet_prefix}.norm2.conv_b.bias": checkpoint[f"{resnet_prefix}.norm2.conv_b.bias"],
# conv2
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"],
}
if resnet.conv_shortcut is not None:
rv.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"],
}
)
return rv
def movq_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# norm
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
# query
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.q.bias"],
# key
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.k.bias"],
# value
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.v.bias"],
# proj_attn
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
def movq_attention_to_diffusers_checkpoint_spatial_norm(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# norm
f"{diffusers_attention_prefix}.spatial_norm.norm_layer.weight": checkpoint[
f"{attention_prefix}.norm.norm_layer.weight"
],
f"{diffusers_attention_prefix}.spatial_norm.norm_layer.bias": checkpoint[
f"{attention_prefix}.norm.norm_layer.bias"
],
f"{diffusers_attention_prefix}.spatial_norm.conv_y.weight": checkpoint[
f"{attention_prefix}.norm.conv_y.weight"
],
f"{diffusers_attention_prefix}.spatial_norm.conv_y.bias": checkpoint[f"{attention_prefix}.norm.conv_y.bias"],
f"{diffusers_attention_prefix}.spatial_norm.conv_b.weight": checkpoint[
f"{attention_prefix}.norm.conv_b.weight"
],
f"{diffusers_attention_prefix}.spatial_norm.conv_b.bias": checkpoint[f"{attention_prefix}.norm.conv_b.bias"],
# query
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.q.bias"],
# key
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.k.bias"],
# value
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.v.bias"],
# proj_attn
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
def movq_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(movq_encoder_to_diffusers_checkpoint(model, checkpoint))
# quant_conv
diffusers_checkpoint.update(
{
"quant_conv.weight": checkpoint["quant_conv.weight"],
"quant_conv.bias": checkpoint["quant_conv.bias"],
}
)
# quantize
diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding.weight"]})
# post_quant_conv
diffusers_checkpoint.update(
{
"post_quant_conv.weight": checkpoint["post_quant_conv.weight"],
"post_quant_conv.bias": checkpoint["post_quant_conv.bias"],
}
)
# decoder
diffusers_checkpoint.update(movq_decoder_to_diffusers_checkpoint(model, checkpoint))
return diffusers_checkpoint
def movq(*, args, checkpoint_map_location):
print("loading movq")
movq_checkpoint = torch.load(args.movq_checkpoint_path, map_location=checkpoint_map_location)
movq_model = movq_model_from_original_config()
movq_diffusers_checkpoint = movq_original_checkpoint_to_diffusers_checkpoint(movq_model, movq_checkpoint)
del movq_checkpoint
load_checkpoint_to_model(movq_diffusers_checkpoint, movq_model, strict=True)
print("done loading movq")
return movq_model
def load_checkpoint_to_model(checkpoint, model, strict=False):
with tempfile.NamedTemporaryFile(delete=False) as file:
torch.save(checkpoint, file.name)
del checkpoint
if strict:
model.load_state_dict(torch.load(file.name), strict=True)
else:
load_checkpoint_and_dispatch(model, file.name, device_map="auto")
os.remove(file.name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--prior_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the prior checkpoint to convert.",
)
parser.add_argument(
"--clip_stat_path",
default=None,
type=str,
required=False,
help="Path to the clip stats checkpoint to convert.",
)
parser.add_argument(
"--text2img_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the text2img checkpoint to convert.",
)
parser.add_argument(
"--movq_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the text2img checkpoint to convert.",
)
parser.add_argument(
"--inpaint_text2img_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the inpaint text2img checkpoint to convert.",
)
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
parser.add_argument(
"--debug",
default=None,
type=str,
required=False,
help="Only run a specific stage of the convert script. Used for debugging",
)
args = parser.parse_args()
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
if args.debug is not None:
print(f"debug: only executing {args.debug}")
if args.debug is None:
print("to-do")
elif args.debug == "prior":
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
prior_model.save_pretrained(args.dump_path)
elif args.debug == "text2img":
unet_model = text2img(args=args, checkpoint_map_location=checkpoint_map_location)
unet_model.save_pretrained(f"{args.dump_path}/unet")
elif args.debug == "inpaint_text2img":
inpaint_unet_model = inpaint_text2img(args=args, checkpoint_map_location=checkpoint_map_location)
inpaint_unet_model.save_pretrained(f"{args.dump_path}/inpaint_unet")
elif args.debug == "decoder":
decoder = movq(args=args, checkpoint_map_location=checkpoint_map_location)
decoder.save_pretrained(f"{args.dump_path}/decoder")
else:
raise ValueError(f"unknown debug value : {args.debug}")
| diffusers-main | scripts/convert_kandinsky_to_diffusers.py |
#!/usr/bin/env python3
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from t5x import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder
MODEL = "base_with_context"
def load_notes_encoder(weights, model):
model.token_embedder.weight = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"]))
model.position_encoding.weight = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False
)
for lyr_num, lyr in enumerate(model.encoders):
ly_weight = weights[f"layers_{lyr_num}"]
lyr.layer[0].layer_norm.weight = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"])
)
attention_weights = ly_weight["attention"]
lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T))
lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T))
lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T))
lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T))
lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"]))
lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T))
lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T))
lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T))
model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"]))
return model
def load_continuous_encoder(weights, model):
model.input_proj.weight = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T))
model.position_encoding.weight = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False
)
for lyr_num, lyr in enumerate(model.encoders):
ly_weight = weights[f"layers_{lyr_num}"]
attention_weights = ly_weight["attention"]
lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T))
lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T))
lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T))
lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T))
lyr.layer[0].layer_norm.weight = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"])
)
lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T))
lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T))
lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T))
lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"]))
model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"]))
return model
def load_decoder(weights, model):
model.conditioning_emb[0].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T))
model.conditioning_emb[2].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T))
model.position_encoding.weight = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False
)
model.continuous_inputs_projection.weight = nn.Parameter(
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T)
)
for lyr_num, lyr in enumerate(model.decoders):
ly_weight = weights[f"layers_{lyr_num}"]
lyr.layer[0].layer_norm.weight = nn.Parameter(
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"])
)
lyr.layer[0].FiLMLayer.scale_bias.weight = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T)
)
attention_weights = ly_weight["self_attention"]
lyr.layer[0].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T))
lyr.layer[0].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T))
lyr.layer[0].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T))
lyr.layer[0].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T))
attention_weights = ly_weight["MultiHeadDotProductAttention_0"]
lyr.layer[1].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T))
lyr.layer[1].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T))
lyr.layer[1].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T))
lyr.layer[1].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T))
lyr.layer[1].layer_norm.weight = nn.Parameter(
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"])
)
lyr.layer[2].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"]))
lyr.layer[2].film.scale_bias.weight = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T)
)
lyr.layer[2].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T))
lyr.layer[2].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T))
lyr.layer[2].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T))
model.decoder_norm.weight = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"]))
model.spec_out.weight = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T))
return model
def main(args):
t5_checkpoint = checkpoints.load_t5x_checkpoint(args.checkpoint_path)
t5_checkpoint = jnp.tree_util.tree_map(onp.array, t5_checkpoint)
gin_overrides = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
gin_file = os.path.join(args.checkpoint_path, "..", "config.gin")
gin_config = inference.parse_training_gin_file(gin_file, gin_overrides)
synth_model = inference.InferenceModel(args.checkpoint_path, gin_config)
scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2", variance_type="fixed_large")
notes_encoder = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"],
vocab_size=synth_model.model.module.config.vocab_size,
d_model=synth_model.model.module.config.emb_dim,
dropout_rate=synth_model.model.module.config.dropout_rate,
num_layers=synth_model.model.module.config.num_encoder_layers,
num_heads=synth_model.model.module.config.num_heads,
d_kv=synth_model.model.module.config.head_dim,
d_ff=synth_model.model.module.config.mlp_dim,
feed_forward_proj="gated-gelu",
)
continuous_encoder = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims,
targets_context_length=synth_model.sequence_length["targets_context"],
d_model=synth_model.model.module.config.emb_dim,
dropout_rate=synth_model.model.module.config.dropout_rate,
num_layers=synth_model.model.module.config.num_encoder_layers,
num_heads=synth_model.model.module.config.num_heads,
d_kv=synth_model.model.module.config.head_dim,
d_ff=synth_model.model.module.config.mlp_dim,
feed_forward_proj="gated-gelu",
)
decoder = T5FilmDecoder(
input_dims=synth_model.audio_codec.n_dims,
targets_length=synth_model.sequence_length["targets_context"],
max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time,
d_model=synth_model.model.module.config.emb_dim,
num_layers=synth_model.model.module.config.num_decoder_layers,
num_heads=synth_model.model.module.config.num_heads,
d_kv=synth_model.model.module.config.head_dim,
d_ff=synth_model.model.module.config.mlp_dim,
dropout_rate=synth_model.model.module.config.dropout_rate,
)
notes_encoder = load_notes_encoder(t5_checkpoint["target"]["token_encoder"], notes_encoder)
continuous_encoder = load_continuous_encoder(t5_checkpoint["target"]["continuous_encoder"], continuous_encoder)
decoder = load_decoder(t5_checkpoint["target"]["decoder"], decoder)
melgan = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder")
pipe = SpectrogramDiffusionPipeline(
notes_encoder=notes_encoder,
continuous_encoder=continuous_encoder,
decoder=decoder,
scheduler=scheduler,
melgan=melgan,
)
if args.save:
pipe.save_pretrained(args.output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument(
"--checkpoint_path",
default=f"{MODEL}/checkpoint_500000",
type=str,
required=False,
help="Path to the original jax model checkpoint.",
)
args = parser.parse_args()
main(args)
| diffusers-main | scripts/convert_music_spectrogram_to_diffusers.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ConfigMixin base class and utilities."""
import dataclasses
import functools
import importlib
import inspect
import json
import os
import re
from collections import OrderedDict
from pathlib import PosixPath
from typing import Any, Dict, Tuple, Union
import numpy as np
from huggingface_hub import create_repo, hf_hub_download
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
from requests import HTTPError
from . import __version__
from .utils import (
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
DummyObject,
deprecate,
extract_commit_hash,
http_user_agent,
logging,
)
logger = logging.get_logger(__name__)
_re_configuration_file = re.compile(r"config\.(.*)\.json")
class FrozenDict(OrderedDict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
for key, value in self.items():
setattr(self, key, value)
self.__frozen = True
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __setattr__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setattr__(name, value)
def __setitem__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setitem__(name, value)
class ConfigMixin:
r"""
Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
saving classes that inherit from [`ConfigMixin`].
Class attributes:
- **config_name** (`str`) -- A filename under which the config should stored when calling
[`~ConfigMixin.save_config`] (should be overridden by parent class).
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
overridden by subclass).
- **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
- **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
subclass).
"""
config_name = None
ignore_for_config = []
has_compatibles = False
_deprecated_kwargs = []
def register_to_config(self, **kwargs):
if self.config_name is None:
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
# Special case for `kwargs` used in deprecation warning added to schedulers
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
# or solve in a more general way.
kwargs.pop("kwargs", None)
if not hasattr(self, "_internal_dict"):
internal_dict = kwargs
else:
previous_dict = dict(self._internal_dict)
internal_dict = {**self._internal_dict, **kwargs}
logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
self._internal_dict = FrozenDict(internal_dict)
def __getattr__(self, name: str) -> Any:
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129
Tihs funtion is mostly copied from PyTorch's __getattr__ overwrite:
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
"""
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
is_attribute = name in self.__dict__
if is_in_config and not is_attribute:
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
return self._internal_dict[name]
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
"""
Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
[`~ConfigMixin.from_config`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the configuration JSON file is saved (will be created if it does not exist).
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
# If we save using the predefined names, we can load using `from_config`
output_config_file = os.path.join(save_directory, self.config_name)
self.to_json_file(output_config_file)
logger.info(f"Configuration saved in {output_config_file}")
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", False)
create_pr = kwargs.pop("create_pr", False)
token = kwargs.pop("token", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
self._upload_folder(
save_directory,
repo_id,
token=token,
commit_message=commit_message,
create_pr=create_pr,
)
@classmethod
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
r"""
Instantiate a Python class from a config dictionary.
Parameters:
config (`Dict[str, Any]`):
A config dictionary from which the Python class is instantiated. Make sure to only load configuration
files of compatible classes.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
Whether kwargs that are not consumed by the Python class should be returned or not.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it is loaded) and initiate the Python class.
`**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
overwrite the same named arguments in `config`.
Returns:
[`ModelMixin`] or [`SchedulerMixin`]:
A model or scheduler object instantiated from a config dictionary.
Examples:
```python
>>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
>>> # Download scheduler from huggingface.co and cache.
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
>>> # Instantiate DDIM scheduler class with same config as DDPM
>>> scheduler = DDIMScheduler.from_config(scheduler.config)
>>> # Instantiate PNDM scheduler class with same config as DDPM
>>> scheduler = PNDMScheduler.from_config(scheduler.config)
```
"""
# <===== TO BE REMOVED WITH DEPRECATION
# TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
if "pretrained_model_name_or_path" in kwargs:
config = kwargs.pop("pretrained_model_name_or_path")
if config is None:
raise ValueError("Please make sure to provide a config as the first positional argument.")
# ======>
if not isinstance(config, dict):
deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
if "Scheduler" in cls.__name__:
deprecation_message += (
f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
" Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
" be removed in v1.0.0."
)
elif "Model" in cls.__name__:
deprecation_message += (
f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
" instead. This functionality will be removed in v1.0.0."
)
deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)
init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)
# Allow dtype to be specified on initialization
if "dtype" in unused_kwargs:
init_dict["dtype"] = unused_kwargs.pop("dtype")
# add possible deprecated kwargs
for deprecated_kwarg in cls._deprecated_kwargs:
if deprecated_kwarg in unused_kwargs:
init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
# Return model and optionally state and/or unused_kwargs
model = cls(**init_dict)
# make sure to also save config parameters that might be used for compatible classes
model.register_to_config(**hidden_dict)
# add hidden kwargs of compatible classes to unused_kwargs
unused_kwargs = {**unused_kwargs, **hidden_dict}
if return_unused_kwargs:
return (model, unused_kwargs)
else:
return model
@classmethod
def get_config_dict(cls, *args, **kwargs):
deprecation_message = (
f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
" removed in version v1.0.0"
)
deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
return cls.load_config(*args, **kwargs)
@classmethod
def load_config(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
return_unused_kwargs=False,
return_commit_hash=False,
**kwargs,
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
r"""
Load a model or scheduler configuration.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
[`~ConfigMixin.save_config`].
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
return_unused_kwargs (`bool`, *optional*, defaults to `False):
Whether unused keyword arguments of the config are returned.
return_commit_hash (`bool`, *optional*, defaults to `False):
Whether the `commit_hash` of the loaded configuration are returned.
Returns:
`dict`:
A dictionary of all the parameters stored in a JSON configuration file.
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
_ = kwargs.pop("mirror", None)
subfolder = kwargs.pop("subfolder", None)
user_agent = kwargs.pop("user_agent", {})
user_agent = {**user_agent, "file_type": "config"}
user_agent = http_user_agent(user_agent)
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if cls.config_name is None:
raise ValueError(
"`self.config_name` is not defined. Note that one should not load a config from "
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
)
if os.path.isfile(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
elif os.path.isdir(pretrained_model_name_or_path):
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
# Load from a PyTorch checkpoint
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
elif subfolder is not None and os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
):
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
else:
raise EnvironmentError(
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
)
else:
try:
# Load from URL or cache if already cached
config_file = hf_hub_download(
pretrained_model_name_or_path,
filename=cls.config_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
subfolder=subfolder,
revision=revision,
)
except RepositoryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
" token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
" login`."
)
except RevisionNotFoundError:
raise EnvironmentError(
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
" this model name. Check the model page at"
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
)
except EntryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
)
except HTTPError as err:
raise EnvironmentError(
"There was a specific connection error when trying to load"
f" {pretrained_model_name_or_path}:\n{err}"
)
except ValueError:
raise EnvironmentError(
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
" run the library in offline mode at"
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
)
except EnvironmentError:
raise EnvironmentError(
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
f"containing a {cls.config_name} file"
)
try:
# Load config dict
config_dict = cls._dict_from_json_file(config_file)
commit_hash = extract_commit_hash(config_file)
except (json.JSONDecodeError, UnicodeDecodeError):
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
if not (return_unused_kwargs or return_commit_hash):
return config_dict
outputs = (config_dict,)
if return_unused_kwargs:
outputs += (kwargs,)
if return_commit_hash:
outputs += (commit_hash,)
return outputs
@staticmethod
def _get_init_keys(cls):
return set(dict(inspect.signature(cls.__init__).parameters).keys())
@classmethod
def extract_init_dict(cls, config_dict, **kwargs):
# Skip keys that were not present in the original config, so default __init__ values were used
used_defaults = config_dict.get("_use_default_values", [])
config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}
# 0. Copy origin config dict
original_dict = dict(config_dict.items())
# 1. Retrieve expected config attributes from __init__ signature
expected_keys = cls._get_init_keys(cls)
expected_keys.remove("self")
# remove general kwargs if present in dict
if "kwargs" in expected_keys:
expected_keys.remove("kwargs")
# remove flax internal keys
if hasattr(cls, "_flax_internal_args"):
for arg in cls._flax_internal_args:
expected_keys.remove(arg)
# 2. Remove attributes that cannot be expected from expected config attributes
# remove keys to be ignored
if len(cls.ignore_for_config) > 0:
expected_keys = expected_keys - set(cls.ignore_for_config)
# load diffusers library to import compatible and original scheduler
diffusers_library = importlib.import_module(__name__.split(".")[0])
if cls.has_compatibles:
compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
else:
compatible_classes = []
expected_keys_comp_cls = set()
for c in compatible_classes:
expected_keys_c = cls._get_init_keys(c)
expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}
# remove attributes from orig class that cannot be expected
orig_cls_name = config_dict.pop("_class_name", cls.__name__)
if orig_cls_name != cls.__name__ and hasattr(diffusers_library, orig_cls_name):
orig_cls = getattr(diffusers_library, orig_cls_name)
unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
# remove private attributes
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
# 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
init_dict = {}
for key in expected_keys:
# if config param is passed to kwarg and is present in config dict
# it should overwrite existing config dict key
if key in kwargs and key in config_dict:
config_dict[key] = kwargs.pop(key)
if key in kwargs:
# overwrite key
init_dict[key] = kwargs.pop(key)
elif key in config_dict:
# use value from config dict
init_dict[key] = config_dict.pop(key)
# 4. Give nice warning if unexpected values have been passed
if len(config_dict) > 0:
logger.warning(
f"The config attributes {config_dict} were passed to {cls.__name__}, "
"but are not expected and will be ignored. Please verify your "
f"{cls.config_name} configuration file."
)
# 5. Give nice info if config attributes are initiliazed to default because they have not been passed
passed_keys = set(init_dict.keys())
if len(expected_keys - passed_keys) > 0:
logger.info(
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
)
# 6. Define unused keyword arguments
unused_kwargs = {**config_dict, **kwargs}
# 7. Define "hidden" config parameters that were saved for compatible classes
hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
return init_dict, unused_kwargs, hidden_config_dict
@classmethod
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
@property
def config(self) -> Dict[str, Any]:
"""
Returns the config of the class as a frozen dictionary
Returns:
`Dict[str, Any]`: Config of the class.
"""
return self._internal_dict
def to_json_string(self) -> str:
"""
Serializes the configuration instance to a JSON string.
Returns:
`str`:
String containing all the attributes that make up the configuration instance in JSON format.
"""
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
config_dict["_class_name"] = self.__class__.__name__
config_dict["_diffusers_version"] = __version__
def to_json_saveable(value):
if isinstance(value, np.ndarray):
value = value.tolist()
elif isinstance(value, PosixPath):
value = str(value)
return value
config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
# Don't save "_ignore_files" or "_use_default_values"
config_dict.pop("_ignore_files", None)
config_dict.pop("_use_default_values", None)
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save the configuration instance's parameters to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file to save a configuration instance's parameters.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string())
def register_to_config(init):
r"""
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
shouldn't be registered in the config, use the `ignore_for_config` class variable
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
"""
@functools.wraps(init)
def inner_init(self, *args, **kwargs):
# Ignore private kwargs in the init.
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
if not isinstance(self, ConfigMixin):
raise RuntimeError(
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
"not inherit from `ConfigMixin`."
)
ignore = getattr(self, "ignore_for_config", [])
# Get positional arguments aligned with kwargs
new_kwargs = {}
signature = inspect.signature(init)
parameters = {
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
}
for arg, name in zip(args, parameters.keys()):
new_kwargs[name] = arg
# Then add all kwargs
new_kwargs.update(
{
k: init_kwargs.get(k, default)
for k, default in parameters.items()
if k not in ignore and k not in new_kwargs
}
)
# Take note of the parameters that were not present in the loaded config
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
new_kwargs = {**config_init_kwargs, **new_kwargs}
getattr(self, "register_to_config")(**new_kwargs)
init(self, *args, **init_kwargs)
return inner_init
def flax_register_to_config(cls):
original_init = cls.__init__
@functools.wraps(original_init)
def init(self, *args, **kwargs):
if not isinstance(self, ConfigMixin):
raise RuntimeError(
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
"not inherit from `ConfigMixin`."
)
# Ignore private kwargs in the init. Retrieve all passed attributes
init_kwargs = dict(kwargs.items())
# Retrieve default values
fields = dataclasses.fields(self)
default_kwargs = {}
for field in fields:
# ignore flax specific attributes
if field.name in self._flax_internal_args:
continue
if type(field.default) == dataclasses._MISSING_TYPE:
default_kwargs[field.name] = None
else:
default_kwargs[field.name] = getattr(self, field.name)
# Make sure init_kwargs override default kwargs
new_kwargs = {**default_kwargs, **init_kwargs}
# dtype should be part of `init_kwargs`, but not `new_kwargs`
if "dtype" in new_kwargs:
new_kwargs.pop("dtype")
# Get positional arguments aligned with kwargs
for i, arg in enumerate(args):
name = fields[i].name
new_kwargs[name] = arg
# Take note of the parameters that were not present in the loaded config
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
getattr(self, "register_to_config")(**new_kwargs)
original_init(self, *args, **kwargs)
cls.__init__ = init
return cls
| diffusers-main | src/diffusers/configuration_utils.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from .configuration_utils import ConfigMixin, register_to_config
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
PipelineImageInput = Union[
PIL.Image.Image,
np.ndarray,
torch.FloatTensor,
List[PIL.Image.Image],
List[np.ndarray],
List[torch.FloatTensor],
]
class VaeImageProcessor(ConfigMixin):
"""
Image processor for VAE.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
vae_scale_factor (`int`, *optional*, defaults to `8`):
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
resample (`str`, *optional*, defaults to `lanczos`):
Resampling filter to use when resizing the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image to [-1,1].
do_binarize (`bool`, *optional*, defaults to `True`):
Whether to binarize the image to 0/1.
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
Whether to convert the images to RGB format.
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
Whether to convert the images to grayscale format.
"""
config_name = CONFIG_NAME
@register_to_config
def __init__(
self,
do_resize: bool = True,
vae_scale_factor: int = 8,
resample: str = "lanczos",
do_normalize: bool = True,
do_binarize: bool = False,
do_convert_rgb: bool = False,
do_convert_grayscale: bool = False,
):
super().__init__()
if do_convert_rgb and do_convert_grayscale:
raise ValueError(
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
)
self.config.do_convert_rgb = False
@staticmethod
def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image:
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@staticmethod
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
"""
Convert a PIL image or a list of PIL images to NumPy arrays.
"""
if not isinstance(images, list):
images = [images]
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
images = np.stack(images, axis=0)
return images
@staticmethod
def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
"""
Convert a NumPy image to a PyTorch tensor.
"""
if images.ndim == 3:
images = images[..., None]
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
return images
@staticmethod
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
"""
Convert a PyTorch tensor to a NumPy image.
"""
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
return images
@staticmethod
def normalize(images):
"""
Normalize an image array to [-1,1].
"""
return 2.0 * images - 1.0
@staticmethod
def denormalize(images):
"""
Denormalize an image array to [0,1].
"""
return (images / 2 + 0.5).clamp(0, 1)
@staticmethod
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
"""
Converts a PIL image to RGB format.
"""
image = image.convert("RGB")
return image
@staticmethod
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
"""
Converts a PIL image to grayscale format.
"""
image = image.convert("L")
return image
def get_default_height_width(
self,
image: [PIL.Image.Image, np.ndarray, torch.Tensor],
height: Optional[int] = None,
width: Optional[int] = None,
):
"""
This function return the height and width that are downscaled to the next integer multiple of
`vae_scale_factor`.
Args:
image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
have shape `[batch, channel, height, width]`.
height (`int`, *optional*, defaults to `None`):
The height in preprocessed image. If `None`, will use the height of `image` input.
width (`int`, *optional*`, defaults to `None`):
The width in preprocessed. If `None`, will use the width of the `image` input.
"""
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[2]
else:
height = image.shape[1]
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[3]
else:
width = image.shape[2]
width, height = (
x - x % self.config.vae_scale_factor for x in (width, height)
) # resize to integer multiple of vae_scale_factor
return height, width
def resize(
self,
image: [PIL.Image.Image, np.ndarray, torch.Tensor],
height: Optional[int] = None,
width: Optional[int] = None,
) -> [PIL.Image.Image, np.ndarray, torch.Tensor]:
"""
Resize image.
"""
if isinstance(image, PIL.Image.Image):
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
elif isinstance(image, torch.Tensor):
image = torch.nn.functional.interpolate(
image,
size=(height, width),
)
elif isinstance(image, np.ndarray):
image = self.numpy_to_pt(image)
image = torch.nn.functional.interpolate(
image,
size=(height, width),
)
image = self.pt_to_numpy(image)
return image
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
"""
create a mask
"""
image[image < 0.5] = 0
image[image >= 0.5] = 1
return image
def preprocess(
self,
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
height: Optional[int] = None,
width: Optional[int] = None,
) -> torch.Tensor:
"""
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
"""
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
if isinstance(image, torch.Tensor):
# if image is a pytorch tensor could have 2 possible shapes:
# 1. batch x height x width: we should insert the channel dimension at position 1
# 2. channnel x height x width: we should insert batch dimension at position 0,
# however, since both channel and batch dimension has same size 1, it is same to insert at position 1
# for simplicity, we insert a dimension of size 1 at position 1 for both cases
image = image.unsqueeze(1)
else:
# if it is a numpy array, it could have 2 possible shapes:
# 1. batch x height x width: insert channel dimension on last position
# 2. height x width x channel: insert batch dimension on first position
if image.shape[-1] == 1:
image = np.expand_dims(image, axis=0)
else:
image = np.expand_dims(image, axis=-1)
if isinstance(image, supported_formats):
image = [image]
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
raise ValueError(
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
)
if isinstance(image[0], PIL.Image.Image):
if self.config.do_convert_rgb:
image = [self.convert_to_rgb(i) for i in image]
elif self.config.do_convert_grayscale:
image = [self.convert_to_grayscale(i) for i in image]
if self.config.do_resize:
height, width = self.get_default_height_width(image[0], height, width)
image = [self.resize(i, height, width) for i in image]
image = self.pil_to_numpy(image) # to np
image = self.numpy_to_pt(image) # to pt
elif isinstance(image[0], np.ndarray):
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
image = self.numpy_to_pt(image)
height, width = self.get_default_height_width(image, height, width)
if self.config.do_resize:
image = self.resize(image, height, width)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
if self.config.do_convert_grayscale and image.ndim == 3:
image = image.unsqueeze(1)
channel = image.shape[1]
# don't need any preprocess if the image is latents
if channel == 4:
return image
height, width = self.get_default_height_width(image, height, width)
if self.config.do_resize:
image = self.resize(image, height, width)
# expected range [0,1], normalize to [-1,1]
do_normalize = self.config.do_normalize
if image.min() < 0 and do_normalize:
warnings.warn(
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
FutureWarning,
)
do_normalize = False
if do_normalize:
image = self.normalize(image)
if self.config.do_binarize:
image = self.binarize(image)
return image
def postprocess(
self,
image: torch.FloatTensor,
output_type: str = "pil",
do_denormalize: Optional[List[bool]] = None,
):
if not isinstance(image, torch.Tensor):
raise ValueError(
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
)
if output_type not in ["latent", "pt", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"
if output_type == "latent":
return image
if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]
image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
if output_type == "pt":
return image
image = self.pt_to_numpy(image)
if output_type == "np":
return image
if output_type == "pil":
return self.numpy_to_pil(image)
class VaeImageProcessorLDM3D(VaeImageProcessor):
"""
Image processor for VAE LDM3D.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
vae_scale_factor (`int`, *optional*, defaults to `8`):
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
resample (`str`, *optional*, defaults to `lanczos`):
Resampling filter to use when resizing the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image to [-1,1].
"""
config_name = CONFIG_NAME
@register_to_config
def __init__(
self,
do_resize: bool = True,
vae_scale_factor: int = 8,
resample: str = "lanczos",
do_normalize: bool = True,
):
super().__init__()
@staticmethod
def numpy_to_pil(images):
"""
Convert a NumPy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
return pil_images
@staticmethod
def rgblike_to_depthmap(image):
"""
Args:
image: RGB-like depth image
Returns: depth map
"""
return image[:, :, 1] * 2**8 + image[:, :, 2]
def numpy_to_depth(self, images):
"""
Convert a NumPy depth image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images_depth = images[:, :, :, 3:]
if images.shape[-1] == 6:
images_depth = (images_depth * 255).round().astype("uint8")
pil_images = [
Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
]
elif images.shape[-1] == 4:
images_depth = (images_depth * 65535.0).astype(np.uint16)
pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
else:
raise Exception("Not supported")
return pil_images
def postprocess(
self,
image: torch.FloatTensor,
output_type: str = "pil",
do_denormalize: Optional[List[bool]] = None,
):
if not isinstance(image, torch.Tensor):
raise ValueError(
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
)
if output_type not in ["latent", "pt", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"
if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]
image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
image = self.pt_to_numpy(image)
if output_type == "np":
if image.shape[-1] == 6:
image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
else:
image_depth = image[:, :, :, 3:]
return image[:, :, :, :3], image_depth
if output_type == "pil":
return self.numpy_to_pil(image), self.numpy_to_depth(image)
else:
raise Exception(f"This type {output_type} is not supported")
| diffusers-main | src/diffusers/image_processor.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
pkgs_to_check_at_runtime = "python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def dep_version_check(pkg, hint=None):
require_version(deps[pkg], hint)
| diffusers-main | src/diffusers/dependency_versions_check.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import warnings
from collections import defaultdict
from contextlib import nullcontext
from io import BytesIO
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union
import requests
import safetensors
import torch
from huggingface_hub import hf_hub_download, model_info
from torch import nn
from .models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
from .utils import (
DIFFUSERS_CACHE,
HF_HUB_OFFLINE,
_get_model_file,
deprecate,
is_accelerate_available,
is_accelerate_version,
is_omegaconf_available,
is_transformers_available,
logging,
)
from .utils.import_utils import BACKENDS_MAPPING
if is_transformers_available():
from transformers import CLIPTextModel, CLIPTextModelWithProjection
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
logger = logging.get_logger(__name__)
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
class PatchedLoraProjection(nn.Module):
def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
super().__init__()
from .models.lora import LoRALinearLayer
self.regular_linear_layer = regular_linear_layer
device = self.regular_linear_layer.weight.device
if dtype is None:
dtype = self.regular_linear_layer.weight.dtype
self.lora_linear_layer = LoRALinearLayer(
self.regular_linear_layer.in_features,
self.regular_linear_layer.out_features,
network_alpha=network_alpha,
device=device,
dtype=dtype,
rank=rank,
)
self.lora_scale = lora_scale
# overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
# when saving the whole text encoder model and when LoRA is unloaded or fused
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
if self.lora_linear_layer is None:
return self.regular_linear_layer.state_dict(
*args, destination=destination, prefix=prefix, keep_vars=keep_vars
)
return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
def _fuse_lora(self, lora_scale=1.0):
if self.lora_linear_layer is None:
return
dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device
w_orig = self.regular_linear_layer.weight.data.float()
w_up = self.lora_linear_layer.up.weight.data.float()
w_down = self.lora_linear_layer.down.weight.data.float()
if self.lora_linear_layer.network_alpha is not None:
w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)
# we can drop the lora layer now
self.lora_linear_layer = None
# offload the up and down matrices to CPU to not blow the memory
self.w_up = w_up.cpu()
self.w_down = w_down.cpu()
self.lora_scale = lora_scale
def _unfuse_lora(self):
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
return
fused_weight = self.regular_linear_layer.weight.data
dtype, device = fused_weight.dtype, fused_weight.device
w_up = self.w_up.to(device=device).float()
w_down = self.w_down.to(device).float()
unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)
self.w_up = None
self.w_down = None
def forward(self, input):
if self.lora_scale is None:
self.lora_scale = 1.0
if self.lora_linear_layer is None:
return self.regular_linear_layer(input)
return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
def text_encoder_attn_modules(text_encoder):
attn_modules = []
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
name = f"text_model.encoder.layers.{i}.self_attn"
mod = layer.self_attn
attn_modules.append((name, mod))
else:
raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")
return attn_modules
def text_encoder_mlp_modules(text_encoder):
mlp_modules = []
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
mlp_mod = layer.mlp
name = f"text_model.encoder.layers.{i}.mlp"
mlp_modules.append((name, mlp_mod))
else:
raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")
return mlp_modules
def text_encoder_lora_state_dict(text_encoder):
state_dict = {}
for name, module in text_encoder_attn_modules(text_encoder):
for k, v in module.q_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v
for k, v in module.k_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v
for k, v in module.v_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v
for k, v in module.out_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v
return state_dict
class AttnProcsLayers(torch.nn.Module):
def __init__(self, state_dict: Dict[str, torch.Tensor]):
super().__init__()
self.layers = torch.nn.ModuleList(state_dict.values())
self.mapping = dict(enumerate(state_dict.keys()))
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
# .processor for unet, .self_attn for text encoder
self.split_keys = [".processor", ".self_attn"]
# we add a hook to state_dict() and load_state_dict() so that the
# naming fits with `unet.attn_processors`
def map_to(module, state_dict, *args, **kwargs):
new_state_dict = {}
for key, value in state_dict.items():
num = int(key.split(".")[1]) # 0 is always "layers"
new_key = key.replace(f"layers.{num}", module.mapping[num])
new_state_dict[new_key] = value
return new_state_dict
def remap_key(key, state_dict):
for k in self.split_keys:
if k in key:
return key.split(k)[0] + k
raise ValueError(
f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
)
def map_from(module, state_dict, *args, **kwargs):
all_keys = list(state_dict.keys())
for key in all_keys:
replace_key = remap_key(key, state_dict)
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
state_dict[new_key] = state_dict[key]
del state_dict[key]
self._register_state_dict_hook(map_to)
self._register_load_state_dict_pre_hook(map_from, with_module=True)
class UNet2DConditionLoadersMixin:
text_encoder_name = TEXT_ENCODER_NAME
unet_name = UNET_NAME
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
r"""
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
defined in
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
and be a `torch.nn.Module` class.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a directory (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
"""
from .models.attention_processor import (
CustomDiffusionAttnProcessor,
)
from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
network_alphas = kwargs.pop("network_alphas", None)
is_network_alphas_none = network_alphas is None
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
model_file = None
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
# Let's first try to load .safetensors weights
if (use_safetensors and weight_name is None) or (
weight_name is not None and weight_name.endswith(".safetensors")
):
try:
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = safetensors.torch.load_file(model_file, device="cpu")
except IOError as e:
if not allow_pickle:
raise e
# try loading non-safetensors weights
pass
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name or LORA_WEIGHT_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = torch.load(model_file, map_location="cpu")
else:
state_dict = pretrained_model_name_or_path_or_dict
# fill attn processors
lora_layers_list = []
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
if is_lora:
# correct keys
state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
if network_alphas is not None:
network_alphas_keys = list(network_alphas.keys())
used_network_alphas_keys = set()
lora_grouped_dict = defaultdict(dict)
mapped_network_alphas = {}
all_keys = list(state_dict.keys())
for key in all_keys:
value = state_dict.pop(key)
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
lora_grouped_dict[attn_processor_key][sub_key] = value
# Create another `mapped_network_alphas` dictionary so that we can properly map them.
if network_alphas is not None:
for k in network_alphas_keys:
if k.replace(".alpha", "") in key:
mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
used_network_alphas_keys.add(k)
if not is_network_alphas_none:
if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
raise ValueError(
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
)
if len(state_dict) > 0:
raise ValueError(
f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
)
for key, value_dict in lora_grouped_dict.items():
attn_processor = self
for sub_key in key.split("."):
attn_processor = getattr(attn_processor, sub_key)
# Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
# or add_{k,v,q,out_proj}_proj_lora layers.
rank = value_dict["lora.down.weight"].shape[0]
if isinstance(attn_processor, LoRACompatibleConv):
in_features = attn_processor.in_channels
out_features = attn_processor.out_channels
kernel_size = attn_processor.kernel_size
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
with ctx():
lora = LoRAConv2dLayer(
in_features=in_features,
out_features=out_features,
rank=rank,
kernel_size=kernel_size,
stride=attn_processor.stride,
padding=attn_processor.padding,
network_alpha=mapped_network_alphas.get(key),
)
elif isinstance(attn_processor, LoRACompatibleLinear):
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
with ctx():
lora = LoRALinearLayer(
attn_processor.in_features,
attn_processor.out_features,
rank,
mapped_network_alphas.get(key),
)
else:
raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
lora_layers_list.append((attn_processor, lora))
if low_cpu_mem_usage:
device = next(iter(value_dict.values())).device
dtype = next(iter(value_dict.values())).dtype
load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
else:
lora.load_state_dict(value_dict)
elif is_custom_diffusion:
attn_processors = {}
custom_diffusion_grouped_dict = defaultdict(dict)
for key, value in state_dict.items():
if len(value) == 0:
custom_diffusion_grouped_dict[key] = {}
else:
if "to_out" in key:
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
else:
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
for key, value_dict in custom_diffusion_grouped_dict.items():
if len(value_dict) == 0:
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
)
else:
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=True,
train_q_out=train_q_out,
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
)
attn_processors[key].load_state_dict(value_dict)
self.set_attn_processor(attn_processors)
else:
raise ValueError(
f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
)
# set lora layers
for target_module, lora_layer in lora_layers_list:
target_module.set_lora_layer(lora_layer)
self.to(dtype=self.dtype, device=self.device)
def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
is_new_lora_format = all(
key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
)
if is_new_lora_format:
# Strip the `"unet"` prefix.
is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
if is_text_encoder_present:
warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
logger.warn(warn_message)
unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
# change processor format to 'pure' LoRACompatibleLinear format
if any("processor" in k.split(".") for k in state_dict.keys()):
def format_to_lora_compatible(key):
if "processor" not in key.split("."):
return key
return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")
state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}
if network_alphas is not None:
network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
return state_dict, network_alphas
def save_attn_procs(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
**kwargs,
):
r"""
Save an attention processor to a directory so that it can be reloaded using the
[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save an attention processor to. Will be created if it doesn't exist.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
from .models.attention_processor import (
CustomDiffusionAttnProcessor,
CustomDiffusionXFormersAttnProcessor,
)
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
if save_function is None:
if safe_serialization:
def save_function(weights, filename):
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
else:
save_function = torch.save
os.makedirs(save_directory, exist_ok=True)
is_custom_diffusion = any(
isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
for (_, x) in self.attn_processors.items()
)
if is_custom_diffusion:
model_to_save = AttnProcsLayers(
{
y: x
for (y, x) in self.attn_processors.items()
if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
}
)
state_dict = model_to_save.state_dict()
for name, attn in self.attn_processors.items():
if len(attn.state_dict()) == 0:
state_dict[name] = {}
else:
model_to_save = AttnProcsLayers(self.attn_processors)
state_dict = model_to_save.state_dict()
if weight_name is None:
if safe_serialization:
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
else:
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
# Save the model
save_function(state_dict, os.path.join(save_directory, weight_name))
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
def fuse_lora(self, lora_scale=1.0):
self.lora_scale = lora_scale
self.apply(self._fuse_lora_apply)
def _fuse_lora_apply(self, module):
if hasattr(module, "_fuse_lora"):
module._fuse_lora(self.lora_scale)
def unfuse_lora(self):
self.apply(self._unfuse_lora_apply)
def _unfuse_lora_apply(self, module):
if hasattr(module, "_unfuse_lora"):
module._unfuse_lora()
class TextualInversionLoaderMixin:
r"""
Load textual inversion tokens and embeddings to the tokenizer and text encoder.
"""
def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
r"""
Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
inversion token or if the textual inversion token is a single vector, the input prompt is returned.
Parameters:
prompt (`str` or list of `str`):
The prompt or prompts to guide the image generation.
tokenizer (`PreTrainedTokenizer`):
The tokenizer responsible for encoding the prompt into input tokens.
Returns:
`str` or list of `str`: The converted prompt
"""
if not isinstance(prompt, List):
prompts = [prompt]
else:
prompts = prompt
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
if not isinstance(prompt, List):
return prompts[0]
return prompts
def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
r"""
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.
Parameters:
prompt (`str`):
The prompt to guide the image generation.
tokenizer (`PreTrainedTokenizer`):
The tokenizer responsible for encoding the prompt into input tokens.
Returns:
`str`: The converted prompt
"""
tokens = tokenizer.tokenize(prompt)
unique_tokens = set(tokens)
for token in unique_tokens:
if token in tokenizer.added_tokens_encoder:
replacement = token
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
replacement += f" {token}_{i}"
i += 1
prompt = prompt.replace(token, replacement)
return prompt
def load_textual_inversion(
self,
pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
token: Optional[Union[str, List[str]]] = None,
tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
**kwargs,
):
r"""
Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
Automatic1111 formats are supported).
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Can be either one of the following or a list of them:
- A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
pretrained model hosted on the Hub.
- A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
inversion weights.
- A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
token (`str` or `List[str]`, *optional*):
Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
list, then `token` must also be a list of equal length.
text_encoder ([`~transformers.CLIPTextModel`], *optional*):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
If not specified, function will take self.tokenizer.
tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
weight_name (`str`, *optional*):
Name of a custom weight file. This should be used when:
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as `text_inv.bin`.
- The saved textual inversion file is in the Automatic1111 format.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
Example:
To load a textual inversion embedding vector in 🤗 Diffusers format:
```py
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
```
To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
(for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
locally:
```py
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
```
"""
tokenizer = tokenizer or getattr(self, "tokenizer", None)
text_encoder = text_encoder or getattr(self, "text_encoder", None)
if tokenizer is None:
raise ValueError(
f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
f" `{self.load_textual_inversion.__name__}`"
)
if text_encoder is None:
raise ValueError(
f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
f" `{self.load_textual_inversion.__name__}`"
)
# Remove any existing hooks.
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "text_inversion",
"framework": "pytorch",
}
if not isinstance(pretrained_model_name_or_path, list):
pretrained_model_name_or_paths = [pretrained_model_name_or_path]
else:
pretrained_model_name_or_paths = pretrained_model_name_or_path
if isinstance(token, str):
tokens = [token]
elif token is None:
tokens = [None] * len(pretrained_model_name_or_paths)
else:
tokens = token
if len(pretrained_model_name_or_paths) != len(tokens):
raise ValueError(
f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
f"Make sure both lists have the same length."
)
valid_tokens = [t for t in tokens if t is not None]
if len(set(valid_tokens)) < len(valid_tokens):
raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")
token_ids_and_embeddings = []
for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
# 1. Load textual inversion file
model_file = None
# Let's first try to load .safetensors weights
if (use_safetensors and weight_name is None) or (
weight_name is not None and weight_name.endswith(".safetensors")
):
try:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = safetensors.torch.load_file(model_file, device="cpu")
except Exception as e:
if not allow_pickle:
raise e
model_file = None
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=weight_name or TEXT_INVERSION_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = torch.load(model_file, map_location="cpu")
else:
state_dict = pretrained_model_name_or_path
# 2. Load token and embedding correcly from file
loaded_token = None
if isinstance(state_dict, torch.Tensor):
if token is None:
raise ValueError(
"You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
)
embedding = state_dict
elif len(state_dict) == 1:
# diffusers
loaded_token, embedding = next(iter(state_dict.items()))
elif "string_to_param" in state_dict:
# A1111
loaded_token = state_dict["name"]
embedding = state_dict["string_to_param"]["*"]
if token is not None and loaded_token != token:
logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
else:
token = loaded_token
embedding = embedding.to(dtype=text_encoder.dtype, device=text_encoder.device)
# 3. Make sure we don't mess up the tokenizer or text encoder
vocab = tokenizer.get_vocab()
if token in vocab:
raise ValueError(
f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
)
elif f"{token}_1" in vocab:
multi_vector_tokens = [token]
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
multi_vector_tokens.append(f"{token}_{i}")
i += 1
raise ValueError(
f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
)
is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
if is_multi_vector:
tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
embeddings = [e for e in embedding] # noqa: C416
else:
tokens = [token]
embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
# add tokens and get ids
tokenizer.add_tokens(tokens)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
token_ids_and_embeddings += zip(token_ids, embeddings)
logger.info(f"Loaded textual inversion embedding for {token}.")
# resize token embeddings and set all new embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
for token_id, embedding in token_ids_and_embeddings:
text_encoder.get_input_embeddings().weight.data[token_id] = embedding
# offload back
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
class LoraLoaderMixin:
r"""
Load LoRA layers into [`UNet2DConditionModel`] and
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
"""
text_encoder_name = TEXT_ENCODER_NAME
unet_name = UNET_NAME
num_fused_loras = 0
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
`self.unet`.
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
into `self.text_encoder`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
kwargs (`dict`, *optional*):
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
"""
# Remove any existing hooks.
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recurive = False
for _, component in self.components.items():
if isinstance(component, nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recurive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recurive)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
self.load_lora_into_unet(
state_dict, network_alphas=network_alphas, unet=self.unet, low_cpu_mem_usage=low_cpu_mem_usage
)
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
lora_scale=self.lora_scale,
low_cpu_mem_usage=low_cpu_mem_usage,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
"""
# Load the main state dict first which has the LoRA layers for either of
# UNet and text encoder or both.
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
unet_config = kwargs.pop("unet_config", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
model_file = None
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
# Let's first try to load .safetensors weights
if (use_safetensors and weight_name is None) or (
weight_name is not None and weight_name.endswith(".safetensors")
):
try:
# Here we're relaxing the loading check to enable more Inference API
# friendliness where sometimes, it's not at all possible to automatically
# determine `weight_name`.
if weight_name is None:
weight_name = cls._best_guess_weight_name(
pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
)
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = safetensors.torch.load_file(model_file, device="cpu")
except (IOError, safetensors.SafetensorError) as e:
if not allow_pickle:
raise e
# try loading non-safetensors weights
model_file = None
pass
if model_file is None:
if weight_name is None:
weight_name = cls._best_guess_weight_name(
pretrained_model_name_or_path_or_dict, file_extension=".bin"
)
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name or LORA_WEIGHT_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = torch.load(model_file, map_location="cpu")
else:
state_dict = pretrained_model_name_or_path_or_dict
network_alphas = None
if all(
(
k.startswith("lora_te_")
or k.startswith("lora_unet_")
or k.startswith("lora_te1_")
or k.startswith("lora_te2_")
)
for k in state_dict.keys()
):
# Map SDXL blocks correctly.
if unet_config is not None:
# use unet config to remap block numbers
state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
return state_dict, network_alphas
@classmethod
def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
targeted_files = []
if os.path.isfile(pretrained_model_name_or_path_or_dict):
return
elif os.path.isdir(pretrained_model_name_or_path_or_dict):
targeted_files = [
f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
]
else:
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
if len(targeted_files) == 0:
return
# "scheduler" does not correspond to a LoRA checkpoint.
# "optimizer" does not correspond to a LoRA checkpoint
# only top-level checkpoints are considered and not the other ones, hence "checkpoint".
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
targeted_files = list(
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
)
if len(targeted_files) > 1:
raise ValueError(
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
)
weight_name = targeted_files[0]
return weight_name
@classmethod
def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
# 1. get all state_dict_keys
all_keys = list(state_dict.keys())
sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]
# 2. check if needs remapping, if not return original dict
is_in_sgm_format = False
for key in all_keys:
if any(p in key for p in sgm_patterns):
is_in_sgm_format = True
break
if not is_in_sgm_format:
return state_dict
# 3. Else remap from SGM patterns
new_state_dict = {}
inner_block_map = ["resnets", "attentions", "upsamplers"]
# Retrieves # of down, mid and up blocks
input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
for layer in all_keys:
if "text" in layer:
new_state_dict[layer] = state_dict.pop(layer)
else:
layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
if sgm_patterns[0] in layer:
input_block_ids.add(layer_id)
elif sgm_patterns[1] in layer:
middle_block_ids.add(layer_id)
elif sgm_patterns[2] in layer:
output_block_ids.add(layer_id)
else:
raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
input_blocks = {
layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
for layer_id in input_block_ids
}
middle_blocks = {
layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
for layer_id in middle_block_ids
}
output_blocks = {
layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
for layer_id in output_block_ids
}
# Rename keys accordingly
for i in input_block_ids:
block_id = (i - 1) // (unet_config.layers_per_block + 1)
layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)
for key in input_blocks[i]:
inner_block_id = int(key.split(delimiter)[block_slice_pos])
inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
new_key = delimiter.join(
key.split(delimiter)[: block_slice_pos - 1]
+ [str(block_id), inner_block_key, inner_layers_in_block]
+ key.split(delimiter)[block_slice_pos + 1 :]
)
new_state_dict[new_key] = state_dict.pop(key)
for i in middle_block_ids:
key_part = None
if i == 0:
key_part = [inner_block_map[0], "0"]
elif i == 1:
key_part = [inner_block_map[1], "0"]
elif i == 2:
key_part = [inner_block_map[0], "1"]
else:
raise ValueError(f"Invalid middle block id {i}.")
for key in middle_blocks[i]:
new_key = delimiter.join(
key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
)
new_state_dict[new_key] = state_dict.pop(key)
for i in output_block_ids:
block_id = i // (unet_config.layers_per_block + 1)
layer_in_block_id = i % (unet_config.layers_per_block + 1)
for key in output_blocks[i]:
inner_block_id = int(key.split(delimiter)[block_slice_pos])
inner_block_key = inner_block_map[inner_block_id]
inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
new_key = delimiter.join(
key.split(delimiter)[: block_slice_pos - 1]
+ [str(block_id), inner_block_key, inner_layers_in_block]
+ key.split(delimiter)[block_slice_pos + 1 :]
)
new_state_dict[new_key] = state_dict.pop(key)
if len(state_dict) > 0:
raise ValueError("At this point all state dict entries have to be converted.")
return new_state_dict
@classmethod
def load_lora_into_unet(cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None):
"""
This will load the LoRA layers specified in `state_dict` into `unet`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
See `LoRALinearLayer` for more details.
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
# their prefixes.
keys = list(state_dict.keys())
if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
# Load the layers corresponding to UNet.
logger.info(f"Loading {cls.unet_name}.")
unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
if network_alphas is not None:
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
network_alphas = {
k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
}
else:
# Otherwise, we're dealing with the old format. This means the `state_dict` should only
# contain the module names of the `unet` as its keys WITHOUT any prefix.
warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
warnings.warn(warn_message)
unet.load_attn_procs(state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage)
@classmethod
def load_lora_into_text_encoder(
cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, low_cpu_mem_usage=None
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
See `LoRALinearLayer` for more details.
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
# their prefixes.
keys = list(state_dict.keys())
prefix = cls.text_encoder_name if prefix is None else prefix
# Safe prefix to check with.
if any(cls.text_encoder_name in key for key in keys):
# Load the layers corresponding to text encoder and make necessary adjustments.
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
text_encoder_lora_state_dict = {
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
}
if len(text_encoder_lora_state_dict) > 0:
logger.info(f"Loading {prefix}.")
rank = {}
if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
# Convert from the old naming convention to the new naming convention.
#
# Previously, the old LoRA layers were stored on the state dict at the
# same level as the attention block i.e.
# `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
#
# This is no actual module at that point, they were monkey patched on to the
# existing module. We want to be able to load them via their actual state dict.
# They're in `PatchedLoraProjection.lora_linear_layer` now.
for name, _ in text_encoder_attn_modules(text_encoder):
text_encoder_lora_state_dict[
f"{name}.q_proj.lora_linear_layer.up.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
text_encoder_lora_state_dict[
f"{name}.k_proj.lora_linear_layer.up.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
text_encoder_lora_state_dict[
f"{name}.v_proj.lora_linear_layer.up.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
text_encoder_lora_state_dict[
f"{name}.out_proj.lora_linear_layer.up.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")
text_encoder_lora_state_dict[
f"{name}.q_proj.lora_linear_layer.down.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
text_encoder_lora_state_dict[
f"{name}.k_proj.lora_linear_layer.down.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
text_encoder_lora_state_dict[
f"{name}.v_proj.lora_linear_layer.down.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
text_encoder_lora_state_dict[
f"{name}.out_proj.lora_linear_layer.down.weight"
] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")
for name, _ in text_encoder_attn_modules(text_encoder):
rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})
patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
if patch_mlp:
for name, _ in text_encoder_mlp_modules(text_encoder):
rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
rank.update({rank_key_fc1: text_encoder_lora_state_dict[rank_key_fc1].shape[1]})
rank.update({rank_key_fc2: text_encoder_lora_state_dict[rank_key_fc2].shape[1]})
if network_alphas is not None:
alpha_keys = [
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
]
network_alphas = {
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
}
cls._modify_text_encoder(
text_encoder,
lora_scale,
network_alphas,
rank=rank,
patch_mlp=patch_mlp,
low_cpu_mem_usage=low_cpu_mem_usage,
)
# set correct dtype & device
text_encoder_lora_state_dict = {
k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
for k, v in text_encoder_lora_state_dict.items()
}
if low_cpu_mem_usage:
device = next(iter(text_encoder_lora_state_dict.values())).device
dtype = next(iter(text_encoder_lora_state_dict.values())).dtype
unexpected_keys = load_model_dict_into_meta(
text_encoder, text_encoder_lora_state_dict, device=device, dtype=dtype
)
else:
load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
unexpected_keys = load_state_dict_results.unexpected_keys
if len(unexpected_keys) != 0:
raise ValueError(
f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
)
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
@property
def lora_scale(self) -> float:
# property function that returns the lora scale which can be set at run time by the pipeline.
# if _lora_scale has not been set, return 1
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
@classmethod
def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
for _, attn_module in text_encoder_attn_modules(text_encoder):
if isinstance(attn_module.q_proj, PatchedLoraProjection):
attn_module.q_proj.lora_linear_layer = None
attn_module.k_proj.lora_linear_layer = None
attn_module.v_proj.lora_linear_layer = None
attn_module.out_proj.lora_linear_layer = None
for _, mlp_module in text_encoder_mlp_modules(text_encoder):
if isinstance(mlp_module.fc1, PatchedLoraProjection):
mlp_module.fc1.lora_linear_layer = None
mlp_module.fc2.lora_linear_layer = None
@classmethod
def _modify_text_encoder(
cls,
text_encoder,
lora_scale=1,
network_alphas=None,
rank: Union[Dict[str, int], int] = 4,
dtype=None,
patch_mlp=False,
low_cpu_mem_usage=False,
):
r"""
Monkey-patches the forward passes of attention modules of the text encoder.
"""
def create_patched_linear_lora(model, network_alpha, rank, dtype, lora_parameters):
linear_layer = model.regular_linear_layer if isinstance(model, PatchedLoraProjection) else model
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
with ctx():
model = PatchedLoraProjection(linear_layer, lora_scale, network_alpha, rank, dtype=dtype)
lora_parameters.extend(model.lora_linear_layer.parameters())
return model
# First, remove any monkey-patch that might have been applied before
cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
lora_parameters = []
network_alphas = {} if network_alphas is None else network_alphas
is_network_alphas_populated = len(network_alphas) > 0
for name, attn_module in text_encoder_attn_modules(text_encoder):
query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
if isinstance(rank, dict):
current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
else:
current_rank = rank
attn_module.q_proj = create_patched_linear_lora(
attn_module.q_proj, query_alpha, current_rank, dtype, lora_parameters
)
attn_module.k_proj = create_patched_linear_lora(
attn_module.k_proj, key_alpha, current_rank, dtype, lora_parameters
)
attn_module.v_proj = create_patched_linear_lora(
attn_module.v_proj, value_alpha, current_rank, dtype, lora_parameters
)
attn_module.out_proj = create_patched_linear_lora(
attn_module.out_proj, out_alpha, current_rank, dtype, lora_parameters
)
if patch_mlp:
for name, mlp_module in text_encoder_mlp_modules(text_encoder):
fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)
current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
mlp_module.fc1 = create_patched_linear_lora(
mlp_module.fc1, fc1_alpha, current_rank_fc1, dtype, lora_parameters
)
mlp_module.fc2 = create_patched_linear_lora(
mlp_module.fc2, fc2_alpha, current_rank_fc2, dtype, lora_parameters
)
if is_network_alphas_populated and len(network_alphas) > 0:
raise ValueError(
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
)
return lora_parameters
@classmethod
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
# Create a flat dictionary.
state_dict = {}
# Populate the dictionary.
if unet_lora_layers is not None:
weights = (
unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
)
unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
state_dict.update(unet_lora_state_dict)
if text_encoder_lora_layers is not None:
weights = (
text_encoder_lora_layers.state_dict()
if isinstance(text_encoder_lora_layers, torch.nn.Module)
else text_encoder_lora_layers
)
text_encoder_lora_state_dict = {
f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
}
state_dict.update(text_encoder_lora_state_dict)
# Save the model
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def write_lora_layers(
state_dict: Dict[str, torch.Tensor],
save_directory: str,
is_main_process: bool,
weight_name: str,
save_function: Callable,
safe_serialization: bool,
):
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
if save_function is None:
if safe_serialization:
def save_function(weights, filename):
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
else:
save_function = torch.save
os.makedirs(save_directory, exist_ok=True)
if weight_name is None:
if safe_serialization:
weight_name = LORA_WEIGHT_NAME_SAFE
else:
weight_name = LORA_WEIGHT_NAME
save_function(state_dict, os.path.join(save_directory, weight_name))
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
@classmethod
def _convert_kohya_lora_to_diffusers(cls, state_dict):
unet_state_dict = {}
te_state_dict = {}
te2_state_dict = {}
network_alphas = {}
# every down weight has a corresponding up weight and potentially an alpha weight
lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
for key in lora_keys:
lora_name = key.split(".")[0]
lora_name_up = lora_name + ".lora_up.weight"
lora_name_alpha = lora_name + ".alpha"
if lora_name.startswith("lora_unet_"):
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
if "input.blocks" in diffusers_name:
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
else:
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
if "middle.block" in diffusers_name:
diffusers_name = diffusers_name.replace("middle.block", "mid_block")
else:
diffusers_name = diffusers_name.replace("mid.block", "mid_block")
if "output.blocks" in diffusers_name:
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
else:
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
# SDXL specificity.
if "emb" in diffusers_name:
pattern = r"\.\d+(?=\D*$)"
diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
if ".in." in diffusers_name:
diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
if ".out." in diffusers_name:
diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
diffusers_name = diffusers_name.replace("op", "conv")
if "skip" in diffusers_name:
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
if "transformer_blocks" in diffusers_name:
if "attn1" in diffusers_name or "attn2" in diffusers_name:
diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif "ff" in diffusers_name:
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
else:
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif lora_name.startswith("lora_te_"):
diffusers_name = key.replace("lora_te_", "").replace("_", ".")
diffusers_name = diffusers_name.replace("text.model", "text_model")
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
if "self_attn" in diffusers_name:
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif "mlp" in diffusers_name:
# Be aware that this is the new diffusers convention and the rest of the code might
# not utilize it yet.
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
# (sayakpaul): Duplicate code. Needs to be cleaned.
elif lora_name.startswith("lora_te1_"):
diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
diffusers_name = diffusers_name.replace("text.model", "text_model")
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
if "self_attn" in diffusers_name:
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif "mlp" in diffusers_name:
# Be aware that this is the new diffusers convention and the rest of the code might
# not utilize it yet.
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
# (sayakpaul): Duplicate code. Needs to be cleaned.
elif lora_name.startswith("lora_te2_"):
diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
diffusers_name = diffusers_name.replace("text.model", "text_model")
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
if "self_attn" in diffusers_name:
te2_state_dict[diffusers_name] = state_dict.pop(key)
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif "mlp" in diffusers_name:
# Be aware that this is the new diffusers convention and the rest of the code might
# not utilize it yet.
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
te2_state_dict[diffusers_name] = state_dict.pop(key)
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
# Rename the alphas so that they can be mapped appropriately.
if lora_name_alpha in state_dict:
alpha = state_dict.pop(lora_name_alpha).item()
if lora_name_alpha.startswith("lora_unet_"):
prefix = "unet."
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
prefix = "text_encoder."
else:
prefix = "text_encoder_2."
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
network_alphas.update({new_name: alpha})
if len(state_dict) > 0:
raise ValueError(
f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
)
logger.info("Kohya-style checkpoint detected.")
unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
te_state_dict = {
f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
}
te2_state_dict = (
{f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
if len(te2_state_dict) > 0
else None
)
if te2_state_dict is not None:
te_state_dict.update(te2_state_dict)
new_state_dict = {**unet_state_dict, **te_state_dict}
return new_state_dict, network_alphas
def unload_lora_weights(self):
"""
Unloads the LoRA parameters.
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
>>> pipeline.unload_lora_weights()
>>> ...
```
"""
for _, module in self.unet.named_modules():
if hasattr(module, "set_lora_layer"):
module.set_lora_layer(None)
# Safe to call the following regardless of LoRA.
self._remove_text_encoder_monkey_patch()
def fuse_lora(self, fuse_unet: bool = True, fuse_text_encoder: bool = True, lora_scale: float = 1.0):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
fuse_text_encoder (`bool`, defaults to `True`):
Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
"""
if fuse_unet or fuse_text_encoder:
self.num_fused_loras += 1
if self.num_fused_loras > 1:
logger.warn(
"The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
)
if fuse_unet:
self.unet.fuse_lora(lora_scale)
def fuse_text_encoder_lora(text_encoder):
for _, attn_module in text_encoder_attn_modules(text_encoder):
if isinstance(attn_module.q_proj, PatchedLoraProjection):
attn_module.q_proj._fuse_lora(lora_scale)
attn_module.k_proj._fuse_lora(lora_scale)
attn_module.v_proj._fuse_lora(lora_scale)
attn_module.out_proj._fuse_lora(lora_scale)
for _, mlp_module in text_encoder_mlp_modules(text_encoder):
if isinstance(mlp_module.fc1, PatchedLoraProjection):
mlp_module.fc1._fuse_lora(lora_scale)
mlp_module.fc2._fuse_lora(lora_scale)
if fuse_text_encoder:
if hasattr(self, "text_encoder"):
fuse_text_encoder_lora(self.text_encoder)
if hasattr(self, "text_encoder_2"):
fuse_text_encoder_lora(self.text_encoder_2)
def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
unfuse_text_encoder (`bool`, defaults to `True`):
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
"""
if unfuse_unet:
self.unet.unfuse_lora()
def unfuse_text_encoder_lora(text_encoder):
for _, attn_module in text_encoder_attn_modules(text_encoder):
if isinstance(attn_module.q_proj, PatchedLoraProjection):
attn_module.q_proj._unfuse_lora()
attn_module.k_proj._unfuse_lora()
attn_module.v_proj._unfuse_lora()
attn_module.out_proj._unfuse_lora()
for _, mlp_module in text_encoder_mlp_modules(text_encoder):
if isinstance(mlp_module.fc1, PatchedLoraProjection):
mlp_module.fc1._unfuse_lora()
mlp_module.fc2._unfuse_lora()
if unfuse_text_encoder:
if hasattr(self, "text_encoder"):
unfuse_text_encoder_lora(self.text_encoder)
if hasattr(self, "text_encoder_2"):
unfuse_text_encoder_lora(self.text_encoder_2)
self.num_fused_loras -= 1
class FromSingleFileMixin:
"""
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
"""
@classmethod
def from_ckpt(cls, *args, **kwargs):
deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
return cls.from_single_file(*args, **kwargs)
@classmethod
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
extract_ema (`bool`, *optional*, defaults to `False`):
Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
prediction_type (`str`, *optional*):
The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
num_in_channels (`int`, *optional*, defaults to `None`):
The number of input channels. If `None`, it is automatically inferred.
scheduler_type (`str`, *optional*, defaults to `"pndm"`):
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
"ddim"]`.
load_safety_checker (`bool`, *optional*, defaults to `True`):
Whether to load the safety checker or not.
text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
An instance of `CLIPTextModel` to use, specifically the
[clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
vae (`AutoencoderKL`, *optional*, defaults to `None`):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
of `CLIPTokenizer` by itself if needed.
original_config_file (`str`):
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
automatically inferred by looking for a key that only exists in SD2.0 models.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
Examples:
```py
>>> from diffusers import StableDiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
... )
>>> # Download pipeline from local file
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
>>> # Enable float16 and move to GPU
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
... torch_dtype=torch.float16,
... )
>>> pipeline.to("cuda")
```
"""
# import here to avoid circular dependency
from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
original_config_file = kwargs.pop("original_config_file", None)
config_files = kwargs.pop("config_files", None)
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
extract_ema = kwargs.pop("extract_ema", False)
image_size = kwargs.pop("image_size", None)
scheduler_type = kwargs.pop("scheduler_type", "pndm")
num_in_channels = kwargs.pop("num_in_channels", None)
upcast_attention = kwargs.pop("upcast_attention", None)
load_safety_checker = kwargs.pop("load_safety_checker", True)
prediction_type = kwargs.pop("prediction_type", None)
text_encoder = kwargs.pop("text_encoder", None)
vae = kwargs.pop("vae", None)
controlnet = kwargs.pop("controlnet", None)
tokenizer = kwargs.pop("tokenizer", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None)
pipeline_name = cls.__name__
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# TODO: For now we only support stable diffusion
stable_unclip = None
model_type = None
if pipeline_name in [
"StableDiffusionControlNetPipeline",
"StableDiffusionControlNetImg2ImgPipeline",
"StableDiffusionControlNetInpaintPipeline",
]:
from .models.controlnet import ControlNetModel
from .pipelines.controlnet.multicontrolnet import MultiControlNetModel
# Model type will be inferred from the checkpoint.
if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
elif "StableDiffusion" in pipeline_name:
# Model type will be inferred from the checkpoint.
pass
elif pipeline_name == "StableUnCLIPPipeline":
model_type = "FrozenOpenCLIPEmbedder"
stable_unclip = "txt2img"
elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
model_type = "FrozenOpenCLIPEmbedder"
stable_unclip = "img2img"
elif pipeline_name == "PaintByExamplePipeline":
model_type = "PaintByExample"
elif pipeline_name == "LDMTextToImagePipeline":
model_type = "LDMTextToImage"
else:
raise ValueError(f"Unhandled pipeline class: {pipeline_name}")
# remove huggingface url
has_valid_url_prefix = False
valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
for prefix in valid_url_prefixes:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
has_valid_url_prefix = True
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
if not has_valid_url_prefix:
raise ValueError(
f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
)
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
force_download=force_download,
)
pipe = download_from_original_stable_diffusion_ckpt(
pretrained_model_link_or_path,
pipeline_class=cls,
model_type=model_type,
stable_unclip=stable_unclip,
controlnet=controlnet,
from_safetensors=from_safetensors,
extract_ema=extract_ema,
image_size=image_size,
scheduler_type=scheduler_type,
num_in_channels=num_in_channels,
upcast_attention=upcast_attention,
load_safety_checker=load_safety_checker,
prediction_type=prediction_type,
text_encoder=text_encoder,
vae=vae,
tokenizer=tokenizer,
original_config_file=original_config_file,
config_files=config_files,
)
if torch_dtype is not None:
pipe.to(torch_dtype=torch_dtype)
return pipe
class FromOriginalVAEMixin:
@classmethod
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
<Tip warning={true}>
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.
</Tip>
Examples:
```py
from diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
model = AutoencoderKL.from_single_file(url)
```
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
from .models import AutoencoderKL
# import here to avoid circular dependency
from .pipelines.stable_diffusion.convert_from_ckpt import (
convert_ldm_vae_checkpoint,
create_vae_diffusers_config,
)
config_file = kwargs.pop("config_file", None)
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
image_size = kwargs.pop("image_size", None)
scaling_factor = kwargs.pop("scaling_factor", None)
kwargs.pop("upcast_attention", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None)
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# remove huggingface url
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
force_download=force_download,
)
if from_safetensors:
from safetensors import safe_open
checkpoint = {}
with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if config_file is None:
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(config_file)
# default to sd-v1-5
image_size = image_size or 512
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
if scaling_factor is None:
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
):
vae_scaling_factor = original_config.model.params.scale_factor
else:
vae_scaling_factor = 0.18215 # default SD scaling factor
vae_config["scaling_factor"] = vae_scaling_factor
ctx = init_empty_weights if is_accelerate_available() else nullcontext
with ctx():
vae = AutoencoderKL(**vae_config)
if is_accelerate_available():
load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
else:
vae.load_state_dict(converted_vae_checkpoint)
if torch_dtype is not None:
vae.to(dtype=torch_dtype)
return vae
class FromOriginalControlnetMixin:
@classmethod
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
Examples:
```py
from diffusers import StableDiffusionControlnetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
model = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
```
"""
# import here to avoid circular dependency
from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
config_file = kwargs.pop("config_file", None)
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
num_in_channels = kwargs.pop("num_in_channels", None)
use_linear_projection = kwargs.pop("use_linear_projection", None)
revision = kwargs.pop("revision", None)
extract_ema = kwargs.pop("extract_ema", False)
image_size = kwargs.pop("image_size", None)
upcast_attention = kwargs.pop("upcast_attention", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None)
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# remove huggingface url
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
force_download=force_download,
)
if config_file is None:
config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
config_file = BytesIO(requests.get(config_url).content)
image_size = image_size or 512
controlnet = download_controlnet_from_original_ckpt(
pretrained_model_link_or_path,
original_config_file=config_file,
image_size=image_size,
extract_ema=extract_ema,
num_in_channels=num_in_channels,
upcast_attention=upcast_attention,
from_safetensors=from_safetensors,
use_linear_projection=use_linear_projection,
)
if torch_dtype is not None:
controlnet.to(torch_dtype=torch_dtype)
return controlnet
class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
"""This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""
# Overrride to properly handle the loading and unloading of the additional text encoder.
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
`self.unet`.
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
into `self.text_encoder`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
kwargs (`dict`, *optional*):
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
"""
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
| diffusers-main | src/diffusers/loaders.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for diffusion models."""
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
logger = logging.get_logger(__name__)
class SchedulerType(Enum):
LINEAR = "linear"
COSINE = "cosine"
COSINE_WITH_RESTARTS = "cosine_with_restarts"
POLYNOMIAL = "polynomial"
CONSTANT = "constant"
CONSTANT_WITH_WARMUP = "constant_with_warmup"
PIECEWISE_CONSTANT = "piecewise_constant"
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
"""
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
increases linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1.0, num_warmup_steps))
return 1.0
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_epoch: int = -1):
"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
step_rules (`string`):
The rules for the learning rate. ex: rule_steps="1:10,0.1:20,0.01:30,0.005" it means that the learning rate
if multiple 1 for the first 10 steps, mutiple 0.1 for the next 20 steps, multiple 0.01 for the next 30
steps and multiple 0.005 for the other steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
rules_dict = {}
rule_list = step_rules.split(",")
for rule_str in rule_list[:-1]:
value_str, steps_str = rule_str.split(":")
steps = int(steps_str)
value = float(value_str)
rules_dict[steps] = value
last_lr_multiple = float(rule_list[-1])
def create_rules_function(rules_dict, last_lr_multiple):
def rule_func(steps: int) -> float:
sorted_steps = sorted(rules_dict.keys())
for i, sorted_step in enumerate(sorted_steps):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
rules_func = create_rules_function(rules_dict, last_lr_multiple)
return LambdaLR(optimizer, rules_func, last_epoch=last_epoch)
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
"""
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_cosine_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_periods (`float`, *optional*, defaults to 0.5):
The number of periods of the cosine function in a schedule (the default is to just decrease from the max
value to 0 following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`int`, *optional*, defaults to 1):
The number of hard restarts to use.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_polynomial_decay_schedule_with_warmup(
optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
):
"""
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
lr_end (`float`, *optional*, defaults to 1e-7):
The end LR.
power (`float`, *optional*, defaults to 1.0):
Power factor.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
implementation at
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_init = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lr_range = lr_init - lr_end
decay_steps = num_training_steps - num_warmup_steps
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
decay = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(optimizer, lr_lambda, last_epoch)
TYPE_TO_SCHEDULER_FUNCTION = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def get_scheduler(
name: Union[str, SchedulerType],
optimizer: Optimizer,
step_rules: Optional[str] = None,
num_warmup_steps: Optional[int] = None,
num_training_steps: Optional[int] = None,
num_cycles: int = 1,
power: float = 1.0,
last_epoch: int = -1,
):
"""
Unified API to get any scheduler from its name.
Args:
name (`str` or `SchedulerType`):
The name of the scheduler to use.
optimizer (`torch.optim.Optimizer`):
The optimizer that will be used during training.
step_rules (`str`, *optional*):
A string representing the step rules to use. This is only used by the `PIECEWISE_CONSTANT` scheduler.
num_warmup_steps (`int`, *optional*):
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
num_training_steps (`int``, *optional*):
The number of training steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
num_cycles (`int`, *optional*):
The number of hard restarts used in `COSINE_WITH_RESTARTS` scheduler.
power (`float`, *optional*, defaults to 1.0):
Power factor. See `POLYNOMIAL` scheduler
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
"""
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(optimizer, last_epoch=last_epoch)
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(optimizer, step_rules=step_rules, last_epoch=last_epoch)
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, last_epoch=last_epoch)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
last_epoch=last_epoch,
)
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
power=power,
last_epoch=last_epoch,
)
return schedule_func(
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, last_epoch=last_epoch
)
| diffusers-main | src/diffusers/optimization.py |
__version__ = "0.22.0.dev0"
from typing import TYPE_CHECKING
from .utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_k_diffusion_available,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
)
# Lazy Import based on
# https://github.com/huggingface/transformers/blob/main/src/transformers/__init__.py
# When adding a new object to this init, please add it to `_import_structure`. The `_import_structure` is a dictionary submodule to list of object names,
# and is used to defer the actual importing for when the objects are requested.
# This way `import diffusers` provides the names in the namespace without actually importing anything (and especially none of the backends).
_import_structure = {
"configuration_utils": ["ConfigMixin"],
"models": [],
"pipelines": [],
"schedulers": [],
"utils": [
"OptionalDependencyNotAvailable",
"is_flax_available",
"is_inflect_available",
"is_invisible_watermark_available",
"is_k_diffusion_available",
"is_k_diffusion_version",
"is_librosa_available",
"is_note_seq_available",
"is_onnx_available",
"is_scipy_available",
"is_torch_available",
"is_torchsde_available",
"is_transformers_available",
"is_transformers_version",
"is_unidecode_available",
"logging",
],
}
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_onnx_objects # noqa F403
_import_structure["utils.dummy_onnx_objects"] = [
name for name in dir(dummy_onnx_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(["OnnxRuntimeModel"])
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_pt_objects # noqa F403
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
else:
_import_structure["models"].extend(
[
"AsymmetricAutoencoderKL",
"AutoencoderKL",
"AutoencoderTiny",
"ControlNetModel",
"ModelMixin",
"MultiAdapter",
"PriorTransformer",
"T2IAdapter",
"T5FilmDecoder",
"Transformer2DModel",
"UNet1DModel",
"UNet2DConditionModel",
"UNet2DModel",
"UNet3DConditionModel",
"VQModel",
]
)
_import_structure["optimization"] = [
"get_constant_schedule",
"get_constant_schedule_with_warmup",
"get_cosine_schedule_with_warmup",
"get_cosine_with_hard_restarts_schedule_with_warmup",
"get_linear_schedule_with_warmup",
"get_polynomial_decay_schedule_with_warmup",
"get_scheduler",
]
_import_structure["pipelines"].extend(
[
"AudioPipelineOutput",
"AutoPipelineForImage2Image",
"AutoPipelineForInpainting",
"AutoPipelineForText2Image",
"ConsistencyModelPipeline",
"DanceDiffusionPipeline",
"DDIMPipeline",
"DDPMPipeline",
"DiffusionPipeline",
"DiTPipeline",
"ImagePipelineOutput",
"KarrasVePipeline",
"LDMPipeline",
"LDMSuperResolutionPipeline",
"PNDMPipeline",
"RePaintPipeline",
"ScoreSdeVePipeline",
]
)
_import_structure["schedulers"].extend(
[
"CMStochasticIterativeScheduler",
"DDIMInverseScheduler",
"DDIMParallelScheduler",
"DDIMScheduler",
"DDPMParallelScheduler",
"DDPMScheduler",
"DDPMWuerstchenScheduler",
"DEISMultistepScheduler",
"DPMSolverMultistepInverseScheduler",
"DPMSolverMultistepScheduler",
"DPMSolverSinglestepScheduler",
"EulerAncestralDiscreteScheduler",
"EulerDiscreteScheduler",
"HeunDiscreteScheduler",
"IPNDMScheduler",
"KarrasVeScheduler",
"KDPM2AncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"PNDMScheduler",
"RePaintScheduler",
"SchedulerMixin",
"ScoreSdeVeScheduler",
"UnCLIPScheduler",
"UniPCMultistepScheduler",
"VQDiffusionScheduler",
]
)
_import_structure["training_utils"] = ["EMAModel"]
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_torch_and_scipy_objects # noqa F403
_import_structure["utils.dummy_torch_and_scipy_objects"] = [
name for name in dir(dummy_torch_and_scipy_objects) if not name.startswith("_")
]
else:
_import_structure["schedulers"].extend(["LMSDiscreteScheduler"])
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_torch_and_torchsde_objects # noqa F403
_import_structure["utils.dummy_torch_and_torchsde_objects"] = [
name for name in dir(dummy_torch_and_torchsde_objects) if not name.startswith("_")
]
else:
_import_structure["schedulers"].extend(["DPMSolverSDEScheduler"])
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_torch_and_transformers_objects # noqa F403
_import_structure["utils.dummy_torch_and_transformers_objects"] = [
name for name in dir(dummy_torch_and_transformers_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(
[
"AltDiffusionImg2ImgPipeline",
"AltDiffusionPipeline",
"AudioLDM2Pipeline",
"AudioLDM2ProjectionModel",
"AudioLDM2UNet2DConditionModel",
"AudioLDMPipeline",
"CLIPImageProjection",
"CycleDiffusionPipeline",
"IFImg2ImgPipeline",
"IFImg2ImgSuperResolutionPipeline",
"IFInpaintingPipeline",
"IFInpaintingSuperResolutionPipeline",
"IFPipeline",
"IFSuperResolutionPipeline",
"ImageTextPipelineOutput",
"KandinskyCombinedPipeline",
"KandinskyImg2ImgCombinedPipeline",
"KandinskyImg2ImgPipeline",
"KandinskyInpaintCombinedPipeline",
"KandinskyInpaintPipeline",
"KandinskyPipeline",
"KandinskyPriorPipeline",
"KandinskyV22CombinedPipeline",
"KandinskyV22ControlnetImg2ImgPipeline",
"KandinskyV22ControlnetPipeline",
"KandinskyV22Img2ImgCombinedPipeline",
"KandinskyV22Img2ImgPipeline",
"KandinskyV22InpaintCombinedPipeline",
"KandinskyV22InpaintPipeline",
"KandinskyV22Pipeline",
"KandinskyV22PriorEmb2EmbPipeline",
"KandinskyV22PriorPipeline",
"LDMTextToImagePipeline",
"MusicLDMPipeline",
"PaintByExamplePipeline",
"SemanticStableDiffusionPipeline",
"ShapEImg2ImgPipeline",
"ShapEPipeline",
"StableDiffusionAdapterPipeline",
"StableDiffusionAttendAndExcitePipeline",
"StableDiffusionControlNetImg2ImgPipeline",
"StableDiffusionControlNetInpaintPipeline",
"StableDiffusionControlNetPipeline",
"StableDiffusionDepth2ImgPipeline",
"StableDiffusionDiffEditPipeline",
"StableDiffusionGLIGENPipeline",
"StableDiffusionGLIGENTextImagePipeline",
"StableDiffusionImageVariationPipeline",
"StableDiffusionImg2ImgPipeline",
"StableDiffusionInpaintPipeline",
"StableDiffusionInpaintPipelineLegacy",
"StableDiffusionInstructPix2PixPipeline",
"StableDiffusionLatentUpscalePipeline",
"StableDiffusionLDM3DPipeline",
"StableDiffusionModelEditingPipeline",
"StableDiffusionPanoramaPipeline",
"StableDiffusionParadigmsPipeline",
"StableDiffusionPipeline",
"StableDiffusionPipelineSafe",
"StableDiffusionPix2PixZeroPipeline",
"StableDiffusionSAGPipeline",
"StableDiffusionUpscalePipeline",
"StableDiffusionXLAdapterPipeline",
"StableDiffusionXLControlNetImg2ImgPipeline",
"StableDiffusionXLControlNetInpaintPipeline",
"StableDiffusionXLControlNetPipeline",
"StableDiffusionXLImg2ImgPipeline",
"StableDiffusionXLInpaintPipeline",
"StableDiffusionXLInstructPix2PixPipeline",
"StableDiffusionXLPipeline",
"StableUnCLIPImg2ImgPipeline",
"StableUnCLIPPipeline",
"TextToVideoSDPipeline",
"TextToVideoZeroPipeline",
"UnCLIPImageVariationPipeline",
"UnCLIPPipeline",
"UniDiffuserModel",
"UniDiffuserPipeline",
"UniDiffuserTextDecoder",
"VersatileDiffusionDualGuidedPipeline",
"VersatileDiffusionImageVariationPipeline",
"VersatileDiffusionPipeline",
"VersatileDiffusionTextToImagePipeline",
"VideoToVideoSDPipeline",
"VQDiffusionPipeline",
"WuerstchenCombinedPipeline",
"WuerstchenDecoderPipeline",
"WuerstchenPriorPipeline",
]
)
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
_import_structure["utils.dummy_torch_and_transformers_and_k_diffusion_objects"] = [
name for name in dir(dummy_torch_and_transformers_and_k_diffusion_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(["StableDiffusionKDiffusionPipeline"])
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_torch_and_transformers_and_onnx_objects # noqa F403
_import_structure["utils.dummy_torch_and_transformers_and_onnx_objects"] = [
name for name in dir(dummy_torch_and_transformers_and_onnx_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(
[
"OnnxStableDiffusionImg2ImgPipeline",
"OnnxStableDiffusionInpaintPipeline",
"OnnxStableDiffusionInpaintPipelineLegacy",
"OnnxStableDiffusionPipeline",
"OnnxStableDiffusionUpscalePipeline",
"StableDiffusionOnnxPipeline",
]
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_torch_and_librosa_objects # noqa F403
_import_structure["utils.dummy_torch_and_librosa_objects"] = [
name for name in dir(dummy_torch_and_librosa_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(["AudioDiffusionPipeline", "Mel"])
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
_import_structure["utils.dummy_transformers_and_torch_and_note_seq_objects"] = [
name for name in dir(dummy_transformers_and_torch_and_note_seq_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(["SpectrogramDiffusionPipeline"])
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_flax_objects # noqa F403
_import_structure["utils.dummy_flax_objects"] = [
name for name in dir(dummy_flax_objects) if not name.startswith("_")
]
else:
_import_structure["models.controlnet_flax"] = ["FlaxControlNetModel"]
_import_structure["models.modeling_flax_utils"] = ["FlaxModelMixin"]
_import_structure["models.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
_import_structure["models.vae_flax"] = ["FlaxAutoencoderKL"]
_import_structure["pipelines"].extend(["FlaxDiffusionPipeline"])
_import_structure["schedulers"].extend(
[
"FlaxDDIMScheduler",
"FlaxDDPMScheduler",
"FlaxDPMSolverMultistepScheduler",
"FlaxKarrasVeScheduler",
"FlaxLMSDiscreteScheduler",
"FlaxPNDMScheduler",
"FlaxSchedulerMixin",
"FlaxScoreSdeVeScheduler",
]
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_flax_and_transformers_objects # noqa F403
_import_structure["utils.dummy_flax_and_transformers_objects"] = [
name for name in dir(dummy_flax_and_transformers_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(
[
"FlaxStableDiffusionControlNetPipeline",
"FlaxStableDiffusionImg2ImgPipeline",
"FlaxStableDiffusionInpaintPipeline",
"FlaxStableDiffusionPipeline",
]
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_note_seq_objects # noqa F403
_import_structure["utils.dummy_note_seq_objects"] = [
name for name in dir(dummy_note_seq_objects) if not name.startswith("_")
]
else:
_import_structure["pipelines"].extend(["MidiProcessor"])
if TYPE_CHECKING:
from .configuration_utils import ConfigMixin
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AsymmetricAutoencoderKL,
AutoencoderKL,
AutoencoderTiny,
ControlNetModel,
ModelMixin,
MultiAdapter,
PriorTransformer,
T2IAdapter,
T5FilmDecoder,
Transformer2DModel,
UNet1DModel,
UNet2DConditionModel,
UNet2DModel,
UNet3DConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
AutoPipelineForText2Image,
CLIPImageProjection,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DDPMWuerstchenScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImg2ImgPipeline,
AltDiffusionPipeline,
AudioLDM2Pipeline,
AudioLDM2ProjectionModel,
AudioLDM2UNet2DConditionModel,
AudioLDMPipeline,
CLIPImageProjection,
CycleDiffusionPipeline,
IFImg2ImgPipeline,
IFImg2ImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyCombinedPipeline,
KandinskyImg2ImgCombinedPipeline,
KandinskyImg2ImgPipeline,
KandinskyInpaintCombinedPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyV22CombinedPipeline,
KandinskyV22ControlnetImg2ImgPipeline,
KandinskyV22ControlnetPipeline,
KandinskyV22Img2ImgCombinedPipeline,
KandinskyV22Img2ImgPipeline,
KandinskyV22InpaintCombinedPipeline,
KandinskyV22InpaintPipeline,
KandinskyV22Pipeline,
KandinskyV22PriorEmb2EmbPipeline,
KandinskyV22PriorPipeline,
LDMTextToImagePipeline,
MusicLDMPipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImg2ImgPipeline,
ShapEPipeline,
StableDiffusionAdapterPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionGLIGENPipeline,
StableDiffusionGLIGENTextImagePipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPix2PixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDM3DPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPix2PixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableDiffusionXLAdapterPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLInstructPix2PixPipeline,
StableDiffusionXLPipeline,
StableUnCLIPImg2ImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
WuerstchenCombinedPipeline,
WuerstchenDecoderPipeline,
WuerstchenPriorPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImg2ImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_2d_condition_flax import FlaxUNet2DConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImg2ImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
extra_objects={"__version__": __version__},
)
| diffusers-main | src/diffusers/__init__.py |
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def set_seed(seed: int):
"""
Args:
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
seed (`int`): The seed to set.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(
self,
parameters: Iterable[torch.nn.Parameter],
decay: float = 0.9999,
min_decay: float = 0.0,
update_after_step: int = 0,
use_ema_warmup: bool = False,
inv_gamma: Union[float, int] = 1.0,
power: Union[float, int] = 2 / 3,
model_cls: Optional[Any] = None,
model_config: Dict[str, Any] = None,
**kwargs,
):
"""
Args:
parameters (Iterable[torch.nn.Parameter]): The parameters to track.
decay (float): The decay factor for the exponential moving average.
min_decay (float): The minimum decay factor for the exponential moving average.
update_after_step (int): The number of steps to wait before starting to update the EMA weights.
use_ema_warmup (bool): Whether to use EMA warmup.
inv_gamma (float):
Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True.
power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True.
device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA
weights will be stored on CPU.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
at 215.4k steps).
"""
if isinstance(parameters, torch.nn.Module):
deprecation_message = (
"Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. "
"Please pass the parameters of the module instead."
)
deprecate(
"passing a `torch.nn.Module` to `ExponentialMovingAverage`",
"1.0.0",
deprecation_message,
standard_warn=False,
)
parameters = parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
use_ema_warmup = True
if kwargs.get("max_value", None) is not None:
deprecation_message = "The `max_value` argument is deprecated. Please use `decay` instead."
deprecate("max_value", "1.0.0", deprecation_message, standard_warn=False)
decay = kwargs["max_value"]
if kwargs.get("min_value", None) is not None:
deprecation_message = "The `min_value` argument is deprecated. Please use `min_decay` instead."
deprecate("min_value", "1.0.0", deprecation_message, standard_warn=False)
min_decay = kwargs["min_value"]
parameters = list(parameters)
self.shadow_params = [p.clone().detach() for p in parameters]
if kwargs.get("device", None) is not None:
deprecation_message = "The `device` argument is deprecated. Please use `to` instead."
deprecate("device", "1.0.0", deprecation_message, standard_warn=False)
self.to(device=kwargs["device"])
self.temp_stored_params = None
self.decay = decay
self.min_decay = min_decay
self.update_after_step = update_after_step
self.use_ema_warmup = use_ema_warmup
self.inv_gamma = inv_gamma
self.power = power
self.optimization_step = 0
self.cur_decay_value = None # set in `step()`
self.model_cls = model_cls
self.model_config = model_config
@classmethod
def from_pretrained(cls, path, model_cls) -> "EMAModel":
_, ema_kwargs = model_cls.load_config(path, return_unused_kwargs=True)
model = model_cls.from_pretrained(path)
ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config)
ema_model.load_state_dict(ema_kwargs)
return ema_model
def save_pretrained(self, path):
if self.model_cls is None:
raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.")
if self.model_config is None:
raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.")
model = self.model_cls.from_config(self.model_config)
state_dict = self.state_dict()
state_dict.pop("shadow_params", None)
model.register_to_config(**state_dict)
self.copy_to(model.parameters())
model.save_pretrained(path)
def get_decay(self, optimization_step: int) -> float:
"""
Compute the decay factor for the exponential moving average.
"""
step = max(0, optimization_step - self.update_after_step - 1)
if step <= 0:
return 0.0
if self.use_ema_warmup:
cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
cur_decay_value = (1 + step) / (10 + step)
cur_decay_value = min(cur_decay_value, self.decay)
# make sure decay is not smaller than min_decay
cur_decay_value = max(cur_decay_value, self.min_decay)
return cur_decay_value
@torch.no_grad()
def step(self, parameters: Iterable[torch.nn.Parameter]):
if isinstance(parameters, torch.nn.Module):
deprecation_message = (
"Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
"Please pass the parameters of the module instead."
)
deprecate(
"passing a `torch.nn.Module` to `ExponentialMovingAverage.step`",
"1.0.0",
deprecation_message,
standard_warn=False,
)
parameters = parameters.parameters()
parameters = list(parameters)
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
decay = self.get_decay(self.optimization_step)
self.cur_decay_value = decay
one_minus_decay = 1 - decay
context_manager = contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zero3_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params, parameters):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zero3_enabled():
context_manager = deepspeed.zero.GatheredParameters(param, modifier_rank=None)
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param))
else:
s_param.copy_(param)
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the parameters with which this
`ExponentialMovingAverage` was initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.to(param.device).data)
def to(self, device=None, dtype=None) -> None:
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
Args:
device: like `device` argument to `torch.Tensor.to`
"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
def state_dict(self) -> dict:
r"""
Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during
checkpointing to save the ema state dict.
"""
# Following PyTorch conventions, references to tensors are returned:
# "returns a reference to the state and not its copy!" -
# https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def store(self, parameters: Iterable[torch.nn.Parameter]) -> None:
r"""
Args:
Save the current parameters for restoring later.
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.temp_stored_params = [param.detach().cpu().clone() for param in parameters]
def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None:
r"""
Args:
Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without:
affecting the original optimization process. Store the parameters before the `copy_to()` method. After
validation (or model saving), use this to restore the former parameters.
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters. If `None`, the parameters with which this
`ExponentialMovingAverage` was initialized will be used.
"""
if self.temp_stored_params is None:
raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`")
for c_param, param in zip(self.temp_stored_params, parameters):
param.data.copy_(c_param.data)
# Better memory-wise.
self.temp_stored_params = None
def load_state_dict(self, state_dict: dict) -> None:
r"""
Args:
Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the
ema state dict.
state_dict (dict): EMA state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = copy.deepcopy(state_dict)
self.decay = state_dict.get("decay", self.decay)
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("Decay must be between 0 and 1")
self.min_decay = state_dict.get("min_decay", self.min_decay)
if not isinstance(self.min_decay, float):
raise ValueError("Invalid min_decay")
self.optimization_step = state_dict.get("optimization_step", self.optimization_step)
if not isinstance(self.optimization_step, int):
raise ValueError("Invalid optimization_step")
self.update_after_step = state_dict.get("update_after_step", self.update_after_step)
if not isinstance(self.update_after_step, int):
raise ValueError("Invalid update_after_step")
self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup)
if not isinstance(self.use_ema_warmup, bool):
raise ValueError("Invalid use_ema_warmup")
self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma)
if not isinstance(self.inv_gamma, (float, int)):
raise ValueError("Invalid inv_gamma")
self.power = state_dict.get("power", self.power)
if not isinstance(self.power, (float, int)):
raise ValueError("Invalid power")
shadow_params = state_dict.get("shadow_params", None)
if shadow_params is not None:
self.shadow_params = shadow_params
if not isinstance(self.shadow_params, list):
raise ValueError("shadow_params must be a list")
if not all(isinstance(p, torch.Tensor) for p in self.shadow_params):
raise ValueError("shadow_params must all be Tensors")
| diffusers-main | src/diffusers/training_utils.py |
# THIS FILE HAS BEEN AUTOGENERATED. To update:
# 1. modify the `_deps` dict in setup.py
# 2. run `make deps_table_update``
deps = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark>=0.2.0",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff==0.0.280",
"safetensors": "safetensors>=0.3.1",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| diffusers-main | src/diffusers/dependency_versions_table.py |
from .rl import ValueGuidedRLPipeline
| diffusers-main | src/diffusers/experimental/__init__.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import tqdm
from ...models.unet_1d import UNet1DModel
from ...pipelines import DiffusionPipeline
from ...utils.dummy_pt_objects import DDPMScheduler
from ...utils.torch_utils import randn_tensor
class ValueGuidedRLPipeline(DiffusionPipeline):
r"""
Pipeline for value-guided sampling from a diffusion model trained to predict sequences of states.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
value_function ([`UNet1DModel`]):
A specialized UNet for fine-tuning trajectories base on reward.
unet ([`UNet1DModel`]):
UNet architecture to denoise the encoded trajectories.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this
application is [`DDPMScheduler`].
env ():
An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models.
"""
def __init__(
self,
value_function: UNet1DModel,
unet: UNet1DModel,
scheduler: DDPMScheduler,
env,
):
super().__init__()
self.value_function = value_function
self.unet = unet
self.scheduler = scheduler
self.env = env
self.data = env.get_dataset()
self.means = {}
for key in self.data.keys():
try:
self.means[key] = self.data[key].mean()
except: # noqa: E722
pass
self.stds = {}
for key in self.data.keys():
try:
self.stds[key] = self.data[key].std()
except: # noqa: E722
pass
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.shape[0]
def normalize(self, x_in, key):
return (x_in - self.means[key]) / self.stds[key]
def de_normalize(self, x_in, key):
return x_in * self.stds[key] + self.means[key]
def to_torch(self, x_in):
if isinstance(x_in, dict):
return {k: self.to_torch(v) for k, v in x_in.items()}
elif torch.is_tensor(x_in):
return x_in.to(self.unet.device)
return torch.tensor(x_in, device=self.unet.device)
def reset_x0(self, x_in, cond, act_dim):
for key, val in cond.items():
x_in[:, key, act_dim:] = val.clone()
return x_in
def run_diffusion(self, x, conditions, n_guide_steps, scale):
batch_size = x.shape[0]
y = None
for i in tqdm.tqdm(self.scheduler.timesteps):
# create batch of timesteps to pass into model
timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long)
for _ in range(n_guide_steps):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
y = self.value_function(x.permute(0, 2, 1), timesteps).sample
grad = torch.autograd.grad([y.sum()], [x])[0]
posterior_variance = self.scheduler._get_variance(i)
model_std = torch.exp(0.5 * posterior_variance)
grad = model_std * grad
grad[timesteps < 2] = 0
x = x.detach()
x = x + scale * grad
x = self.reset_x0(x, conditions, self.action_dim)
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
# TODO: verify deprecation of this kwarg
x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
# apply conditions to the trajectory (set the initial state)
x = self.reset_x0(x, conditions, self.action_dim)
x = self.to_torch(x)
return x, y
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
# normalize the observations and create batch dimension
obs = self.normalize(obs, "observations")
obs = obs[None].repeat(batch_size, axis=0)
conditions = {0: self.to_torch(obs)}
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
x1 = randn_tensor(shape, device=self.unet.device)
x = self.reset_x0(x1, conditions, self.action_dim)
x = self.to_torch(x)
# run the diffusion process
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
# sort output trajectories by value
sorted_idx = y.argsort(0, descending=True).squeeze()
sorted_values = x[sorted_idx]
actions = sorted_values[:, :, : self.action_dim]
actions = actions.detach().cpu().numpy()
denorm_actions = self.de_normalize(actions, key="actions")
# select the action with the highest value
if y is not None:
selected_index = 0
else:
# if we didn't run value guiding, select a random action
selected_index = np.random.randint(0, batch_size)
denorm_actions = denorm_actions[selected_index, 0]
return denorm_actions
| diffusers-main | src/diffusers/experimental/rl/value_guided_sampling.py |
from .value_guided_sampling import ValueGuidedRLPipeline
| diffusers-main | src/diffusers/experimental/rl/__init__.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
from typing import Any, Dict, List, Optional, Union
import flax
import numpy as np
import PIL
from flax.core.frozen_dict import FrozenDict
from huggingface_hub import create_repo, snapshot_download
from PIL import Image
from tqdm.auto import tqdm
from ..configuration_utils import ConfigMixin
from ..models.modeling_flax_utils import FLAX_WEIGHTS_NAME, FlaxModelMixin
from ..schedulers.scheduling_utils_flax import SCHEDULER_CONFIG_NAME, FlaxSchedulerMixin
from ..utils import (
CONFIG_NAME,
DIFFUSERS_CACHE,
BaseOutput,
PushToHubMixin,
http_user_agent,
is_transformers_available,
logging,
)
if is_transformers_available():
from transformers import FlaxPreTrainedModel
INDEX_FILE = "diffusion_flax_model.bin"
logger = logging.get_logger(__name__)
LOADABLE_CLASSES = {
"diffusers": {
"FlaxModelMixin": ["save_pretrained", "from_pretrained"],
"FlaxSchedulerMixin": ["save_pretrained", "from_pretrained"],
"FlaxDiffusionPipeline": ["save_pretrained", "from_pretrained"],
},
"transformers": {
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
"FlaxPreTrainedModel": ["save_pretrained", "from_pretrained"],
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
"ProcessorMixin": ["save_pretrained", "from_pretrained"],
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
},
}
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
def import_flax_or_no_model(module, class_name):
try:
# 1. First make sure that if a Flax object is present, import this one
class_obj = getattr(module, "Flax" + class_name)
except AttributeError:
# 2. If this doesn't work, it's not a model and we don't append "Flax"
class_obj = getattr(module, class_name)
except AttributeError:
raise ValueError(f"Neither Flax{class_name} nor {class_name} exist in {module}")
return class_obj
@flax.struct.dataclass
class FlaxImagePipelineOutput(BaseOutput):
"""
Output class for image pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
r"""
Base class for Flax-based pipelines.
[`FlaxDiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
provides methods for loading, downloading and saving models. It also includes methods to:
- enable/disable the progress bar for the denoising iteration
Class attributes:
- **config_name** ([`str`]) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def register_modules(self, **kwargs):
# import it here to avoid circular import
from diffusers import pipelines
for name, module in kwargs.items():
if module is None:
register_dict = {name: (None, None)}
else:
# retrieve library
library = module.__module__.split(".")[0]
# check if the module is a pipeline module
pipeline_dir = module.__module__.split(".")[-2]
path = module.__module__.split(".")
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
# if library is not in LOADABLE_CLASSES, then it is a custom module.
# Or if it's a pipeline module, then the module is inside the pipeline
# folder so we set the library to module name.
if library not in LOADABLE_CLASSES or is_pipeline_module:
library = pipeline_dir
# retrieve class_name
class_name = module.__class__.__name__
register_dict = {name: (library, class_name)}
# save model index config
self.register_to_config(**register_dict)
# set models
setattr(self, name, module)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
params: Union[Dict, FrozenDict],
push_to_hub: bool = False,
**kwargs,
):
# TODO: handle inference_state
"""
Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
class implements both a save and loading method. The pipeline is easily reloaded using the
[`~FlaxDiffusionPipeline.from_pretrained`] class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
self.save_config(save_directory)
model_index_dict = dict(self.config)
model_index_dict.pop("_class_name")
model_index_dict.pop("_diffusers_version")
model_index_dict.pop("_module", None)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", False)
create_pr = kwargs.pop("create_pr", False)
token = kwargs.pop("token", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
for pipeline_component_name in model_index_dict.keys():
sub_model = getattr(self, pipeline_component_name)
if sub_model is None:
# edge case for saving a pipeline with safety_checker=None
continue
model_cls = sub_model.__class__
save_method_name = None
# search for the model's base class in LOADABLE_CLASSES
for library_name, library_classes in LOADABLE_CLASSES.items():
library = importlib.import_module(library_name)
for base_class, save_load_methods in library_classes.items():
class_candidate = getattr(library, base_class, None)
if class_candidate is not None and issubclass(model_cls, class_candidate):
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
save_method_name = save_load_methods[0]
break
if save_method_name is not None:
break
save_method = getattr(sub_model, save_method_name)
expects_params = "params" in set(inspect.signature(save_method).parameters.keys())
if expects_params:
save_method(
os.path.join(save_directory, pipeline_component_name), params=params[pipeline_component_name]
)
else:
save_method(os.path.join(save_directory, pipeline_component_name))
if push_to_hub:
self._upload_folder(
save_directory,
repo_id,
token=token,
commit_message=commit_message,
create_pr=create_pr,
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a Flax-based diffusion pipeline from pretrained pipeline weights.
The pipeline is set in evaluation mode (`model.eval()) by default and dropout modules are deactivated.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
using [`~FlaxDiffusionPipeline.save_pretrained`].
dtype (`str` or `jnp.dtype`, *optional*):
Override the default `jnp.dtype` and load the model under this dtype. If `"auto"`, the dtype is
automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components) of the specific pipeline
class. The overwritten components are passed directly to the pipelines `__init__` method.
<Tip>
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
`huggingface-cli login`. You can also activate the special
[“offline-mode”](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
firewalled environment.
</Tip>
Examples:
```py
>>> from diffusers import FlaxDiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> # Requires to be logged in to Hugging Face hub,
>>> # see more in [the documentation](https://huggingface.co/docs/hub/security-tokens)
>>> pipeline, params = FlaxDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5",
... revision="bf16",
... dtype=jnp.bfloat16,
... )
>>> # Download pipeline, but use a different scheduler
>>> from diffusers import FlaxDPMSolverMultistepScheduler
>>> model_id = "runwayml/stable-diffusion-v1-5"
>>> dpmpp, dpmpp_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
... model_id,
... subfolder="scheduler",
... )
>>> dpm_pipe, dpm_params = FlaxStableDiffusionPipeline.from_pretrained(
... model_id, revision="bf16", dtype=jnp.bfloat16, scheduler=dpmpp
... )
>>> dpm_params["scheduler"] = dpmpp_state
```
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
from_pt = kwargs.pop("from_pt", False)
use_memory_efficient_attention = kwargs.pop("use_memory_efficient_attention", False)
dtype = kwargs.pop("dtype", None)
# 1. Download the checkpoints and configs
# use snapshot download here to get it working from from_pretrained
if not os.path.isdir(pretrained_model_name_or_path):
config_dict = cls.load_config(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
)
# make sure we only download sub-folders and `diffusers` filenames
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
allow_patterns = [os.path.join(k, "*") for k in folder_names]
allow_patterns += [FLAX_WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, cls.config_name]
# make sure we don't download PyTorch weights, unless when using from_pt
ignore_patterns = "*.bin" if not from_pt else []
if cls != FlaxDiffusionPipeline:
requested_pipeline_class = cls.__name__
else:
requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
requested_pipeline_class = (
requested_pipeline_class
if requested_pipeline_class.startswith("Flax")
else "Flax" + requested_pipeline_class
)
user_agent = {"pipeline_class": requested_pipeline_class}
user_agent = http_user_agent(user_agent)
# download all allow_patterns
cached_folder = snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
user_agent=user_agent,
)
else:
cached_folder = pretrained_model_name_or_path
config_dict = cls.load_config(cached_folder)
# 2. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
if cls != FlaxDiffusionPipeline:
pipeline_class = cls
else:
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
class_name = (
config_dict["_class_name"]
if config_dict["_class_name"].startswith("Flax")
else "Flax" + config_dict["_class_name"]
)
pipeline_class = getattr(diffusers_module, class_name)
# some modules can be passed directly to the init
# in this case they are already instantiated in `kwargs`
# extract them here
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
init_dict, _, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
init_kwargs = {}
# inference_params
params = {}
# import it here to avoid circular import
from diffusers import pipelines
# 3. Load each module in the pipeline
for name, (library_name, class_name) in init_dict.items():
if class_name is None:
# edge case for when the pipeline was saved with safety_checker=None
init_kwargs[name] = None
continue
is_pipeline_module = hasattr(pipelines, library_name)
loaded_sub_model = None
sub_model_should_be_defined = True
# if the model is in a pipeline module, then we load it from the pipeline
if name in passed_class_obj:
# 1. check that passed_class_obj has correct parent class
if not is_pipeline_module:
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
expected_class_obj = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
expected_class_obj = class_candidate
if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
raise ValueError(
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
f" {expected_class_obj}"
)
elif passed_class_obj[name] is None:
logger.warning(
f"You have passed `None` for {name} to disable its functionality in {pipeline_class}. Note"
f" that this might lead to problems when using {pipeline_class} and is not recommended."
)
sub_model_should_be_defined = False
else:
logger.warning(
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
" has the correct type"
)
# set passed class object
loaded_sub_model = passed_class_obj[name]
elif is_pipeline_module:
pipeline_module = getattr(pipelines, library_name)
class_obj = import_flax_or_no_model(pipeline_module, class_name)
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in importable_classes.keys()}
else:
# else we just import it from the library.
library = importlib.import_module(library_name)
class_obj = import_flax_or_no_model(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
if loaded_sub_model is None and sub_model_should_be_defined:
load_method_name = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
load_method_name = importable_classes[class_name][1]
load_method = getattr(class_obj, load_method_name)
# check if the module is in a subdirectory
if os.path.isdir(os.path.join(cached_folder, name)):
loadable_folder = os.path.join(cached_folder, name)
else:
loaded_sub_model = cached_folder
if issubclass(class_obj, FlaxModelMixin):
loaded_sub_model, loaded_params = load_method(
loadable_folder,
from_pt=from_pt,
use_memory_efficient_attention=use_memory_efficient_attention,
dtype=dtype,
)
params[name] = loaded_params
elif is_transformers_available() and issubclass(class_obj, FlaxPreTrainedModel):
if from_pt:
# TODO(Suraj): Fix this in Transformers. We should be able to use `_do_init=False` here
loaded_sub_model = load_method(loadable_folder, from_pt=from_pt)
loaded_params = loaded_sub_model.params
del loaded_sub_model._params
else:
loaded_sub_model, loaded_params = load_method(loadable_folder, _do_init=False)
params[name] = loaded_params
elif issubclass(class_obj, FlaxSchedulerMixin):
loaded_sub_model, scheduler_state = load_method(loadable_folder)
params[name] = scheduler_state
else:
loaded_sub_model = load_method(loadable_folder)
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
# 4. Potentially add passed objects if expected
missing_modules = set(expected_modules) - set(init_kwargs.keys())
passed_modules = list(passed_class_obj.keys())
if len(missing_modules) > 0 and missing_modules <= set(passed_modules):
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
elif len(missing_modules) > 0:
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
raise ValueError(
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
)
model = pipeline_class(**init_kwargs, dtype=dtype)
return model, params
@staticmethod
def _get_signature_keys(obj):
parameters = inspect.signature(obj.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
expected_modules = set(required_parameters.keys()) - {"self"}
return expected_modules, optional_parameters
@property
def components(self) -> Dict[str, Any]:
r"""
The `self.components` property can be useful to run different pipelines with the same weights and
configurations to not have to re-allocate memory.
Examples:
```py
>>> from diffusers import (
... FlaxStableDiffusionPipeline,
... FlaxStableDiffusionImg2ImgPipeline,
... )
>>> text2img = FlaxStableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", revision="bf16", dtype=jnp.bfloat16
... )
>>> img2img = FlaxStableDiffusionImg2ImgPipeline(**text2img.components)
```
Returns:
A dictionary containing all the modules needed to initialize the pipeline.
"""
expected_modules, optional_parameters = self._get_signature_keys(self)
components = {
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
}
if set(components.keys()) != expected_modules:
raise ValueError(
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
f" {expected_modules} to be defined, but {components} are defined."
)
return components
@staticmethod
def numpy_to_pil(images):
"""
Convert a NumPy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# TODO: make it compatible with jax.lax
def progress_bar(self, iterable):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
elif not isinstance(self._progress_bar_config, dict):
raise ValueError(
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
)
return tqdm(iterable, **self._progress_bar_config)
def set_progress_bar_config(self, **kwargs):
self._progress_bar_config = kwargs
| diffusers-main | src/diffusers/pipelines/pipeline_flax_utils.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from collections import OrderedDict
from ..configuration_utils import ConfigMixin
from ..utils import DIFFUSERS_CACHE
from .controlnet import (
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
from .kandinsky import (
KandinskyCombinedPipeline,
KandinskyImg2ImgCombinedPipeline,
KandinskyImg2ImgPipeline,
KandinskyInpaintCombinedPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
)
from .kandinsky2_2 import (
KandinskyV22CombinedPipeline,
KandinskyV22Img2ImgCombinedPipeline,
KandinskyV22Img2ImgPipeline,
KandinskyV22InpaintCombinedPipeline,
KandinskyV22InpaintPipeline,
KandinskyV22Pipeline,
)
from .stable_diffusion import (
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
)
from .stable_diffusion_xl import (
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLPipeline,
)
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionPipeline),
("stable-diffusion-xl", StableDiffusionXLPipeline),
("if", IFPipeline),
("kandinsky", KandinskyCombinedPipeline),
("kandinsky22", KandinskyV22CombinedPipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
("wuerstchen", WuerstchenCombinedPipeline),
]
)
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionImg2ImgPipeline),
("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
("if", IFImg2ImgPipeline),
("kandinsky", KandinskyImg2ImgCombinedPipeline),
("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
]
)
AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionInpaintPipeline),
("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
("if", IFInpaintingPipeline),
("kandinsky", KandinskyInpaintCombinedPipeline),
("kandinsky22", KandinskyV22InpaintCombinedPipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
]
)
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyPipeline),
("kandinsky22", KandinskyV22Pipeline),
("wuerstchen", WuerstchenDecoderPipeline),
]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyImg2ImgPipeline),
("kandinsky22", KandinskyV22Img2ImgPipeline),
]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyInpaintPipeline),
("kandinsky22", KandinskyV22InpaintPipeline),
]
)
SUPPORTED_TASKS_MAPPINGS = [
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
AUTO_INPAINT_PIPELINES_MAPPING,
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
]
def _get_connected_pipeline(pipeline_cls):
# for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
)
if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
)
if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)
def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
def get_model(pipeline_class_name):
for task_mapping in SUPPORTED_TASKS_MAPPINGS:
for model_name, pipeline in task_mapping.items():
if pipeline.__name__ == pipeline_class_name:
return model_name
model_name = get_model(pipeline_class_name)
if model_name is not None:
task_class = mapping.get(model_name, None)
if task_class is not None:
return task_class
if throw_error_if_not_exist:
raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
def _get_signature_keys(obj):
parameters = inspect.signature(obj.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
expected_modules = set(required_parameters.keys()) - {"self"}
return expected_modules, optional_parameters
class AutoPipelineForText2Image(ConfigMixin):
r"""
[`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image
>>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"use_auth_token": use_auth_token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
additional memoery.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... )
>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
>>> image = pipe_t2i(prompt).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("Pipeline", "ControlNetPipeline"),
)
else:
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("ControlNetPipeline", "Pipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = _get_signature_keys(text_2_image_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config that were not expected by original pipeline is stored as private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in text_2_image_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = text_2_image_cls(**text_2_image_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
class AutoPipelineForImage2Image(ConfigMixin):
r"""
[`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForImage2Image
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"use_auth_token": use_auth_token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the
image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
additional memoery.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... )
>>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
>>> image = pipe_i2i(prompt, image).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
image_2_image_cls = _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
image_2_image_cls.__name__.replace("Img2ImgPipeline", "ControlNetImg2ImgPipeline"),
)
else:
image_2_image_cls = _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
image_2_image_cls.__name__.replace("ControlNetImg2ImgPipeline", "Img2ImgPipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = _get_signature_keys(image_2_image_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config attribute that were not expected by original pipeline is stored as its private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in image_2_image_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = image_2_image_cls(**image_2_image_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
class AutoPipelineForInpainting(ConfigMixin):
r"""
[`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForInpainting
>>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"use_auth_token": use_auth_token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
additional memoery.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
... )
>>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
>>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
inpainting_cls = _get_task_class(
AUTO_INPAINT_PIPELINES_MAPPING,
inpainting_cls.__name__.replace("InpaintPipeline", "ControlNetInpaintPipeline"),
)
else:
inpainting_cls = _get_task_class(
AUTO_INPAINT_PIPELINES_MAPPING,
inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = _get_signature_keys(inpainting_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config that were not expected by original pipeline is stored as private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in inpainting_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = inpainting_cls(**inpainting_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
| diffusers-main | src/diffusers/pipelines/auto_pipeline.py |
from typing import TYPE_CHECKING
from ..utils import (
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_flax_available,
is_k_diffusion_available,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_torch_available,
is_transformers_available,
)
# These modules contain pipelines from multiple libraries/frameworks
_dummy_objects = {}
_import_structure = {"stable_diffusion": [], "latent_diffusion": [], "controlnet": []}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_pt_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_pt_objects))
else:
_import_structure["auto_pipeline"] = [
"AutoPipelineForImage2Image",
"AutoPipelineForInpainting",
"AutoPipelineForText2Image",
]
_import_structure["consistency_models"] = ["ConsistencyModelPipeline"]
_import_structure["dance_diffusion"] = ["DanceDiffusionPipeline"]
_import_structure["ddim"] = ["DDIMPipeline"]
_import_structure["ddpm"] = ["DDPMPipeline"]
_import_structure["dit"] = ["DiTPipeline"]
_import_structure["latent_diffusion"].extend(["LDMSuperResolutionPipeline"])
_import_structure["latent_diffusion_uncond"] = ["LDMPipeline"]
_import_structure["pipeline_utils"] = ["AudioPipelineOutput", "DiffusionPipeline", "ImagePipelineOutput"]
_import_structure["pndm"] = ["PNDMPipeline"]
_import_structure["repaint"] = ["RePaintPipeline"]
_import_structure["score_sde_ve"] = ["ScoreSdeVePipeline"]
_import_structure["stochastic_karras_ve"] = ["KarrasVePipeline"]
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_torch_and_librosa_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_librosa_objects))
else:
_import_structure["audio_diffusion"] = ["AudioDiffusionPipeline", "Mel"]
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["alt_diffusion"] = ["AltDiffusionImg2ImgPipeline", "AltDiffusionPipeline"]
_import_structure["audioldm"] = ["AudioLDMPipeline"]
_import_structure["audioldm2"] = [
"AudioLDM2Pipeline",
"AudioLDM2ProjectionModel",
"AudioLDM2UNet2DConditionModel",
]
_import_structure["controlnet"].extend(
[
"StableDiffusionControlNetImg2ImgPipeline",
"StableDiffusionControlNetInpaintPipeline",
"StableDiffusionControlNetPipeline",
"StableDiffusionXLControlNetImg2ImgPipeline",
"StableDiffusionXLControlNetInpaintPipeline",
"StableDiffusionXLControlNetPipeline",
]
)
_import_structure["deepfloyd_if"] = [
"IFImg2ImgPipeline",
"IFImg2ImgSuperResolutionPipeline",
"IFInpaintingPipeline",
"IFInpaintingSuperResolutionPipeline",
"IFPipeline",
"IFSuperResolutionPipeline",
]
_import_structure["kandinsky"] = [
"KandinskyCombinedPipeline",
"KandinskyImg2ImgCombinedPipeline",
"KandinskyImg2ImgPipeline",
"KandinskyInpaintCombinedPipeline",
"KandinskyInpaintPipeline",
"KandinskyPipeline",
"KandinskyPriorPipeline",
]
_import_structure["kandinsky2_2"] = [
"KandinskyV22CombinedPipeline",
"KandinskyV22ControlnetImg2ImgPipeline",
"KandinskyV22ControlnetPipeline",
"KandinskyV22Img2ImgCombinedPipeline",
"KandinskyV22Img2ImgPipeline",
"KandinskyV22InpaintCombinedPipeline",
"KandinskyV22InpaintPipeline",
"KandinskyV22Pipeline",
"KandinskyV22PriorEmb2EmbPipeline",
"KandinskyV22PriorPipeline",
]
_import_structure["latent_diffusion"].extend(["LDMTextToImagePipeline"])
_import_structure["musicldm"] = ["MusicLDMPipeline"]
_import_structure["paint_by_example"] = ["PaintByExamplePipeline"]
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
_import_structure["stable_diffusion"].extend(
[
"CLIPImageProjection",
"CycleDiffusionPipeline",
"StableDiffusionAttendAndExcitePipeline",
"StableDiffusionDepth2ImgPipeline",
"StableDiffusionDiffEditPipeline",
"StableDiffusionGLIGENPipeline",
"StableDiffusionGLIGENPipeline",
"StableDiffusionGLIGENTextImagePipeline",
"StableDiffusionImageVariationPipeline",
"StableDiffusionImg2ImgPipeline",
"StableDiffusionInpaintPipeline",
"StableDiffusionInpaintPipelineLegacy",
"StableDiffusionInstructPix2PixPipeline",
"StableDiffusionLatentUpscalePipeline",
"StableDiffusionLDM3DPipeline",
"StableDiffusionModelEditingPipeline",
"StableDiffusionPanoramaPipeline",
"StableDiffusionParadigmsPipeline",
"StableDiffusionPipeline",
"StableDiffusionPix2PixZeroPipeline",
"StableDiffusionSAGPipeline",
"StableDiffusionUpscalePipeline",
"StableUnCLIPImg2ImgPipeline",
"StableUnCLIPPipeline",
]
)
_import_structure["stable_diffusion_safe"] = ["StableDiffusionPipelineSafe"]
_import_structure["stable_diffusion_xl"] = [
"StableDiffusionXLImg2ImgPipeline",
"StableDiffusionXLInpaintPipeline",
"StableDiffusionXLInstructPix2PixPipeline",
"StableDiffusionXLPipeline",
]
_import_structure["t2i_adapter"] = ["StableDiffusionAdapterPipeline", "StableDiffusionXLAdapterPipeline"]
_import_structure["text_to_video_synthesis"] = [
"TextToVideoSDPipeline",
"TextToVideoZeroPipeline",
"VideoToVideoSDPipeline",
]
_import_structure["unclip"] = ["UnCLIPImageVariationPipeline", "UnCLIPPipeline"]
_import_structure["unidiffuser"] = [
"ImageTextPipelineOutput",
"UniDiffuserModel",
"UniDiffuserPipeline",
"UniDiffuserTextDecoder",
]
_import_structure["versatile_diffusion"] = [
"VersatileDiffusionDualGuidedPipeline",
"VersatileDiffusionImageVariationPipeline",
"VersatileDiffusionPipeline",
"VersatileDiffusionTextToImagePipeline",
]
_import_structure["vq_diffusion"] = ["VQDiffusionPipeline"]
_import_structure["wuerstchen"] = [
"WuerstchenCombinedPipeline",
"WuerstchenDecoderPipeline",
"WuerstchenPriorPipeline",
]
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_onnx_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_onnx_objects))
else:
_import_structure["onnx_utils"] = ["OnnxRuntimeModel"]
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_torch_and_transformers_and_onnx_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_onnx_objects))
else:
_import_structure["stable_diffusion"].extend(
[
"OnnxStableDiffusionImg2ImgPipeline",
"OnnxStableDiffusionInpaintPipeline",
"OnnxStableDiffusionInpaintPipelineLegacy",
"OnnxStableDiffusionPipeline",
"OnnxStableDiffusionUpscalePipeline",
"StableDiffusionOnnxPipeline",
]
)
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_k_diffusion_objects))
else:
_import_structure["stable_diffusion"].extend(["StableDiffusionKDiffusionPipeline"])
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_flax_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_flax_objects))
else:
_import_structure["pipeline_flax_utils"] = ["FlaxDiffusionPipeline"]
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_flax_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_flax_and_transformers_objects))
else:
_import_structure["controlnet"].extend(["FlaxStableDiffusionControlNetPipeline"])
_import_structure["stable_diffusion"].extend(
[
"FlaxStableDiffusionImg2ImgPipeline",
"FlaxStableDiffusionInpaintPipeline",
"FlaxStableDiffusionPipeline",
]
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects))
else:
_import_structure["spectrogram_diffusion"] = ["MidiProcessor", "SpectrogramDiffusionPipeline"]
if TYPE_CHECKING:
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .auto_pipeline import AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoPipelineForText2Image
from .consistency_models import ConsistencyModelPipeline
from .dance_diffusion import DanceDiffusionPipeline
from .ddim import DDIMPipeline
from .ddpm import DDPMPipeline
from .dit import DiTPipeline
from .latent_diffusion import LDMSuperResolutionPipeline
from .latent_diffusion_uncond import LDMPipeline
from .pipeline_utils import AudioPipelineOutput, DiffusionPipeline, ImagePipelineOutput
from .pndm import PNDMPipeline
from .repaint import RePaintPipeline
from .score_sde_ve import ScoreSdeVePipeline
from .stochastic_karras_ve import KarrasVePipeline
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_librosa_objects import *
else:
from .audio_diffusion import AudioDiffusionPipeline, Mel
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_transformers_objects import *
else:
from .alt_diffusion import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline
from .audioldm import AudioLDMPipeline
from .audioldm2 import AudioLDM2Pipeline, AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel
from .controlnet import (
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import (
IFImg2ImgPipeline,
IFImg2ImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from .kandinsky import (
KandinskyCombinedPipeline,
KandinskyImg2ImgCombinedPipeline,
KandinskyImg2ImgPipeline,
KandinskyInpaintCombinedPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
)
from .kandinsky2_2 import (
KandinskyV22CombinedPipeline,
KandinskyV22ControlnetImg2ImgPipeline,
KandinskyV22ControlnetPipeline,
KandinskyV22Img2ImgCombinedPipeline,
KandinskyV22Img2ImgPipeline,
KandinskyV22InpaintCombinedPipeline,
KandinskyV22InpaintPipeline,
KandinskyV22Pipeline,
KandinskyV22PriorEmb2EmbPipeline,
KandinskyV22PriorPipeline,
)
from .latent_diffusion import LDMTextToImagePipeline
from .musicldm import MusicLDMPipeline
from .paint_by_example import PaintByExamplePipeline
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
from .stable_diffusion import (
CLIPImageProjection,
CycleDiffusionPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionGLIGENPipeline,
StableDiffusionGLIGENTextImagePipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPix2PixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDM3DPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPix2PixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImg2ImgPipeline,
StableUnCLIPPipeline,
)
from .stable_diffusion_safe import StableDiffusionPipelineSafe
from .stable_diffusion_xl import (
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLInstructPix2PixPipeline,
StableDiffusionXLPipeline,
)
from .t2i_adapter import StableDiffusionAdapterPipeline, StableDiffusionXLAdapterPipeline
from .text_to_video_synthesis import (
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
VideoToVideoSDPipeline,
)
from .unclip import UnCLIPImageVariationPipeline, UnCLIPPipeline
from .unidiffuser import (
ImageTextPipelineOutput,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
)
from .versatile_diffusion import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
from .vq_diffusion import VQDiffusionPipeline
from .wuerstchen import (
WuerstchenCombinedPipeline,
WuerstchenDecoderPipeline,
WuerstchenPriorPipeline,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_onnx_objects import * # noqa F403
else:
from .onnx_utils import OnnxRuntimeModel
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_transformers_and_onnx_objects import *
else:
from .stable_diffusion import (
OnnxStableDiffusionImg2ImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_transformers_and_k_diffusion_objects import *
else:
from .stable_diffusion import StableDiffusionKDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .pipeline_flax_utils import FlaxDiffusionPipeline
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_and_transformers_objects import *
else:
from .controlnet import FlaxStableDiffusionControlNetPipeline
from .stable_diffusion import (
FlaxStableDiffusionImg2ImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .spectrogram_diffusion import MidiProcessor, SpectrogramDiffusionPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
| diffusers-main | src/diffusers/pipelines/__init__.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
logger = logging.get_logger(__name__)
ORT_TO_NP_TYPE = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.int8,
"tensor(uint8)": np.uint8,
"tensor(int16)": np.int16,
"tensor(uint16)": np.uint16,
"tensor(int32)": np.int32,
"tensor(uint32)": np.uint32,
"tensor(int64)": np.int64,
"tensor(uint64)": np.uint64,
"tensor(float16)": np.float16,
"tensor(float)": np.float32,
"tensor(double)": np.float64,
}
class OnnxRuntimeModel:
def __init__(self, model=None, **kwargs):
logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.")
self.model = model
self.model_save_dir = kwargs.get("model_save_dir", None)
self.latest_model_name = kwargs.get("latest_model_name", ONNX_WEIGHTS_NAME)
def __call__(self, **kwargs):
inputs = {k: np.array(v) for k, v in kwargs.items()}
return self.model.run(None, inputs)
@staticmethod
def load_model(path: Union[str, Path], provider=None, sess_options=None):
"""
Loads an ONNX Inference session with an ExecutionProvider. Default provider is `CPUExecutionProvider`
Arguments:
path (`str` or `Path`):
Directory from which to load
provider(`str`, *optional*):
Onnxruntime execution provider to use for loading the model, defaults to `CPUExecutionProvider`
"""
if provider is None:
logger.info("No onnxruntime provider specified, using CPUExecutionProvider")
provider = "CPUExecutionProvider"
return ort.InferenceSession(path, providers=[provider], sess_options=sess_options)
def _save_pretrained(self, save_directory: Union[str, Path], file_name: Optional[str] = None, **kwargs):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
[`~optimum.onnxruntime.modeling_ort.ORTModel.from_pretrained`] class method. It will always save the
latest_model_name.
Arguments:
save_directory (`str` or `Path`):
Directory where to save the model file.
file_name(`str`, *optional*):
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to save the
model with a different name.
"""
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
src_path = self.model_save_dir.joinpath(self.latest_model_name)
dst_path = Path(save_directory).joinpath(model_file_name)
try:
shutil.copyfile(src_path, dst_path)
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
src_path = self.model_save_dir.joinpath(ONNX_EXTERNAL_WEIGHTS_NAME)
if src_path.exists():
dst_path = Path(save_directory).joinpath(ONNX_EXTERNAL_WEIGHTS_NAME)
try:
shutil.copyfile(src_path, dst_path)
except shutil.SameFileError:
pass
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
**kwargs,
):
"""
Save a model to a directory, so that it can be re-loaded using the [`~OnnxModel.from_pretrained`] class
method.:
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
"""
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
# saving model weights/files
self._save_pretrained(save_directory, **kwargs)
@classmethod
def _from_pretrained(
cls,
model_id: Union[str, Path],
use_auth_token: Optional[Union[bool, str, None]] = None,
revision: Optional[Union[str, None]] = None,
force_download: bool = False,
cache_dir: Optional[str] = None,
file_name: Optional[str] = None,
provider: Optional[str] = None,
sess_options: Optional["ort.SessionOptions"] = None,
**kwargs,
):
"""
Load a model from a directory or the HF Hub.
Arguments:
model_id (`str` or `Path`):
Directory from which to load
use_auth_token (`str` or `bool`):
Is needed to load models from a private or gated repository
revision (`str`):
Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id
cache_dir (`Union[str, Path]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
file_name(`str`):
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to load
different model files from the same repository or directory.
provider(`str`):
The ONNX runtime provider, e.g. `CPUExecutionProvider` or `CUDAExecutionProvider`.
kwargs (`Dict`, *optional*):
kwargs will be passed to the model during initialization
"""
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(model_id):
model = OnnxRuntimeModel.load_model(
os.path.join(model_id, model_file_name), provider=provider, sess_options=sess_options
)
kwargs["model_save_dir"] = Path(model_id)
# load model from hub
else:
# download model
model_cache_path = hf_hub_download(
repo_id=model_id,
filename=model_file_name,
use_auth_token=use_auth_token,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
)
kwargs["model_save_dir"] = Path(model_cache_path).parent
kwargs["latest_model_name"] = Path(model_cache_path).name
model = OnnxRuntimeModel.load_model(model_cache_path, provider=provider, sess_options=sess_options)
return cls(model=model, **kwargs)
@classmethod
def from_pretrained(
cls,
model_id: Union[str, Path],
force_download: bool = True,
use_auth_token: Optional[str] = None,
cache_dir: Optional[str] = None,
**model_kwargs,
):
revision = None
if len(str(model_id).split("@")) == 2:
model_id, revision = model_id.split("@")
return cls._from_pretrained(
model_id=model_id,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
use_auth_token=use_auth_token,
**model_kwargs,
)
| diffusers-main | src/diffusers/pipelines/onnx_utils.py |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fnmatch
import importlib
import inspect
import os
import re
import sys
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL
import torch
from huggingface_hub import ModelCard, create_repo, hf_hub_download, model_info, snapshot_download
from packaging import version
from requests.exceptions import HTTPError
from tqdm.auto import tqdm
import diffusers
from .. import __version__
from ..configuration_utils import ConfigMixin
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
CONFIG_NAME,
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HF_HUB_OFFLINE,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
BaseOutput,
deprecate,
get_class_from_dynamic_module,
is_accelerate_available,
is_accelerate_version,
is_torch_version,
is_transformers_available,
logging,
numpy_to_pil,
)
from ..utils.torch_utils import is_compiled_module
if is_transformers_available():
import transformers
from transformers import PreTrainedModel
from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME
from ..utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, PushToHubMixin
if is_accelerate_available():
import accelerate
INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
CONNECTED_PIPES_KEYS = ["prior"]
logger = logging.get_logger(__name__)
LOADABLE_CLASSES = {
"diffusers": {
"ModelMixin": ["save_pretrained", "from_pretrained"],
"SchedulerMixin": ["save_pretrained", "from_pretrained"],
"DiffusionPipeline": ["save_pretrained", "from_pretrained"],
"OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
},
"transformers": {
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
"PreTrainedModel": ["save_pretrained", "from_pretrained"],
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
"ProcessorMixin": ["save_pretrained", "from_pretrained"],
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
},
"onnxruntime.training": {
"ORTModule": ["save_pretrained", "from_pretrained"],
},
}
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
@dataclass
class ImagePipelineOutput(BaseOutput):
"""
Output class for image pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
@dataclass
class AudioPipelineOutput(BaseOutput):
"""
Output class for audio pipelines.
Args:
audios (`np.ndarray`)
List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
"""
audios: np.ndarray
def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
"""
Checking for safetensors compatibility:
- By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
files to know which safetensors files are needed.
- The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file.
Converting default pytorch serialized filenames to safetensors serialized filenames:
- For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
- For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
extension is replaced with ".safetensors"
"""
pt_filenames = []
sf_filenames = set()
passed_components = passed_components or []
for filename in filenames:
_, extension = os.path.splitext(filename)
if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
continue
if extension == ".bin":
pt_filenames.append(filename)
elif extension == ".safetensors":
sf_filenames.add(filename)
for filename in pt_filenames:
# filename = 'foo/bar/baz.bam' -> path = 'foo/bar', filename = 'baz', extention = '.bam'
path, filename = os.path.split(filename)
filename, extension = os.path.splitext(filename)
if filename.startswith("pytorch_model"):
filename = filename.replace("pytorch_model", "model")
else:
filename = filename
expected_sf_filename = os.path.join(path, filename)
expected_sf_filename = f"{expected_sf_filename}.safetensors"
if expected_sf_filename not in sf_filenames:
logger.warning(f"{expected_sf_filename} not found")
return False
return True
def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]:
weight_names = [
WEIGHTS_NAME,
SAFETENSORS_WEIGHTS_NAME,
FLAX_WEIGHTS_NAME,
ONNX_WEIGHTS_NAME,
ONNX_EXTERNAL_WEIGHTS_NAME,
]
if is_transformers_available():
weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]
# model_pytorch, diffusion_model_pytorch, ...
weight_prefixes = [w.split(".")[0] for w in weight_names]
# .bin, .safetensors, ...
weight_suffixs = [w.split(".")[-1] for w in weight_names]
# -00001-of-00002
transformers_index_format = r"\d{5}-of-\d{5}"
if variant is not None:
# `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
variant_file_re = re.compile(
rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
)
# `text_encoder/pytorch_model.bin.index.fp16.json`
variant_index_re = re.compile(
rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
)
# `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
non_variant_file_re = re.compile(
rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
)
# `text_encoder/pytorch_model.bin.index.json`
non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")
if variant is not None:
variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
variant_filenames = variant_weights | variant_indexes
else:
variant_filenames = set()
non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
non_variant_filenames = non_variant_weights | non_variant_indexes
# all variant filenames will be used by default
usable_filenames = set(variant_filenames)
def convert_to_variant(filename):
if "index" in filename:
variant_filename = filename.replace("index", f"index.{variant}")
elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
else:
variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
return variant_filename
for f in non_variant_filenames:
variant_filename = convert_to_variant(f)
if variant_filename not in usable_filenames:
usable_filenames.add(f)
return usable_filenames, variant_filenames
def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token, variant, revision, model_filenames):
info = model_info(
pretrained_model_name_or_path,
use_auth_token=use_auth_token,
revision=None,
)
filenames = {sibling.rfilename for sibling in info.siblings}
comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]
if set(comp_model_filenames) == set(model_filenames):
warnings.warn(
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
FutureWarning,
)
else:
warnings.warn(
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
FutureWarning,
)
def maybe_raise_or_warn(
library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
"""Simple helper method to raise or warn in case incorrect module has been passed"""
if not is_pipeline_module:
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
expected_class_obj = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
expected_class_obj = class_candidate
# Dynamo wraps the original model in a private class.
# I didn't find a public API to get the original class.
sub_model = passed_class_obj[name]
model_cls = sub_model.__class__
if is_compiled_module(sub_model):
model_cls = sub_model._orig_mod.__class__
if not issubclass(model_cls, expected_class_obj):
raise ValueError(
f"{passed_class_obj[name]} is of type: {model_cls}, but should be" f" {expected_class_obj}"
)
else:
logger.warning(
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
" has the correct type"
)
def get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module):
"""Simple helper method to retrieve class object of module as well as potential parent class objects"""
if is_pipeline_module:
pipeline_module = getattr(pipelines, library_name)
class_obj = getattr(pipeline_module, class_name)
class_candidates = {c: class_obj for c in importable_classes.keys()}
else:
# else we just import it from the library.
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
return class_obj, class_candidates
def _get_pipeline_class(
class_obj, config, load_connected_pipeline=False, custom_pipeline=None, cache_dir=None, revision=None
):
if custom_pipeline is not None:
if custom_pipeline.endswith(".py"):
path = Path(custom_pipeline)
# decompose into folder & file
file_name = path.name
custom_pipeline = path.parent.absolute()
else:
file_name = CUSTOM_PIPELINE_FILE_NAME
return get_class_from_dynamic_module(
custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=revision
)
if class_obj != DiffusionPipeline:
return class_obj
diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
class_name = config["_class_name"]
class_name = class_name[4:] if class_name.startswith("Flax") else class_name
pipeline_cls = getattr(diffusers_module, class_name)
if load_connected_pipeline:
from .auto_pipeline import _get_connected_pipeline
connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
if connected_pipeline_cls is not None:
logger.info(
f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
)
else:
logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")
pipeline_cls = connected_pipeline_cls or pipeline_cls
return pipeline_cls
def load_sub_model(
library_name: str,
class_name: str,
importable_classes: List[Any],
pipelines: Any,
is_pipeline_module: bool,
pipeline_class: Any,
torch_dtype: torch.dtype,
provider: Any,
sess_options: Any,
device_map: Optional[Union[Dict[str, torch.device], str]],
max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
offload_folder: Optional[Union[str, os.PathLike]],
offload_state_dict: bool,
model_variants: Dict[str, str],
name: str,
from_flax: bool,
variant: str,
low_cpu_mem_usage: bool,
cached_folder: Union[str, os.PathLike],
):
"""Helper method to load the module `name` from `library_name` and `class_name`"""
# retrieve class candidates
class_obj, class_candidates = get_class_obj_and_candidates(
library_name, class_name, importable_classes, pipelines, is_pipeline_module
)
load_method_name = None
# retrive load method name
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
load_method_name = importable_classes[class_name][1]
# if load method name is None, then we have a dummy module -> raise Error
if load_method_name is None:
none_module = class_obj.__module__
is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
TRANSFORMERS_DUMMY_MODULES_FOLDER
)
if is_dummy_path and "dummy" in none_module:
# call class_obj for nice error message of missing requirements
class_obj()
raise ValueError(
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
)
load_method = getattr(class_obj, load_method_name)
# add kwargs to loading method
loading_kwargs = {}
if issubclass(class_obj, torch.nn.Module):
loading_kwargs["torch_dtype"] = torch_dtype
if issubclass(class_obj, diffusers.OnnxRuntimeModel):
loading_kwargs["provider"] = provider
loading_kwargs["sess_options"] = sess_options
is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
if is_transformers_available():
transformers_version = version.parse(version.parse(transformers.__version__).base_version)
else:
transformers_version = "N/A"
is_transformers_model = (
is_transformers_available()
and issubclass(class_obj, PreTrainedModel)
and transformers_version >= version.parse("4.20.0")
)
# When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
# To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
# This makes sure that the weights won't be initialized which significantly speeds up loading.
if is_diffusers_model or is_transformers_model:
loading_kwargs["device_map"] = device_map
loading_kwargs["max_memory"] = max_memory
loading_kwargs["offload_folder"] = offload_folder
loading_kwargs["offload_state_dict"] = offload_state_dict
loading_kwargs["variant"] = model_variants.pop(name, None)
if from_flax:
loading_kwargs["from_flax"] = True
# the following can be deleted once the minimum required `transformers` version
# is higher than 4.27
if (
is_transformers_model
and loading_kwargs["variant"] is not None
and transformers_version < version.parse("4.27.0")
):
raise ImportError(
f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
)
elif is_transformers_model and loading_kwargs["variant"] is None:
loading_kwargs.pop("variant")
# if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
if not (from_flax and is_transformers_model):
loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
else:
loading_kwargs["low_cpu_mem_usage"] = False
# check if the module is in a subdirectory
if os.path.isdir(os.path.join(cached_folder, name)):
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
else:
# else load from the root directory
loaded_sub_model = load_method(cached_folder, **loading_kwargs)
return loaded_sub_model
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
r"""
Base class for all pipelines.
[`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
provides methods for loading, downloading and saving models. It also includes methods to:
- move all PyTorch modules to the device of your choice
- enable/disable the progress bar for the denoising iteration
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
- **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
pipeline to function (should be overridden by subclasses).
"""
config_name = "model_index.json"
model_cpu_offload_seq = None
_optional_components = []
_exclude_from_cpu_offload = []
_load_connected_pipes = False
_is_onnx = False
def register_modules(self, **kwargs):
# import it here to avoid circular import
from diffusers import pipelines
for name, module in kwargs.items():
# retrieve library
if module is None:
register_dict = {name: (None, None)}
else:
# register the config from the original module, not the dynamo compiled one
if is_compiled_module(module):
not_compiled_module = module._orig_mod
else:
not_compiled_module = module
library = not_compiled_module.__module__.split(".")[0]
# check if the module is a pipeline module
module_path_items = not_compiled_module.__module__.split(".")
pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None
path = not_compiled_module.__module__.split(".")
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
# if library is not in LOADABLE_CLASSES, then it is a custom module.
# Or if it's a pipeline module, then the module is inside the pipeline
# folder so we set the library to module name.
if is_pipeline_module:
library = pipeline_dir
elif library not in LOADABLE_CLASSES:
library = not_compiled_module.__module__
# retrieve class_name
class_name = not_compiled_module.__class__.__name__
register_dict = {name: (library, class_name)}
# save model index config
self.register_to_config(**register_dict)
# set models
setattr(self, name, module)
def __setattr__(self, name: str, value: Any):
if name in self.__dict__ and hasattr(self.config, name):
# We need to overwrite the config if name exists in config
if isinstance(getattr(self.config, name), (tuple, list)):
if value is not None and self.config[name][0] is not None:
class_library_tuple = (value.__module__.split(".")[0], value.__class__.__name__)
else:
class_library_tuple = (None, None)
self.register_to_config(**{name: class_library_tuple})
else:
self.register_to_config(**{name: value})
super().__setattr__(name, value)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
safe_serialization: bool = True,
variant: Optional[str] = None,
push_to_hub: bool = False,
**kwargs,
):
"""
Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
class implements both a save and loading method. The pipeline is easily reloaded using the
[`~DiffusionPipeline.from_pretrained`] class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save a pipeline to. Will be created if it doesn't exist.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
variant (`str`, *optional*):
If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
model_index_dict = dict(self.config)
model_index_dict.pop("_class_name", None)
model_index_dict.pop("_diffusers_version", None)
model_index_dict.pop("_module", None)
model_index_dict.pop("_name_or_path", None)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", False)
create_pr = kwargs.pop("create_pr", False)
token = kwargs.pop("token", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
expected_modules, optional_kwargs = self._get_signature_keys(self)
def is_saveable_module(name, value):
if name not in expected_modules:
return False
if name in self._optional_components and value[0] is None:
return False
return True
model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
for pipeline_component_name in model_index_dict.keys():
sub_model = getattr(self, pipeline_component_name)
model_cls = sub_model.__class__
# Dynamo wraps the original model in a private class.
# I didn't find a public API to get the original class.
if is_compiled_module(sub_model):
sub_model = sub_model._orig_mod
model_cls = sub_model.__class__
save_method_name = None
# search for the model's base class in LOADABLE_CLASSES
for library_name, library_classes in LOADABLE_CLASSES.items():
if library_name in sys.modules:
library = importlib.import_module(library_name)
else:
logger.info(
f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
)
for base_class, save_load_methods in library_classes.items():
class_candidate = getattr(library, base_class, None)
if class_candidate is not None and issubclass(model_cls, class_candidate):
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
save_method_name = save_load_methods[0]
break
if save_method_name is not None:
break
if save_method_name is None:
logger.warn(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
# make sure that unsaveable components are not tried to be loaded afterward
self.register_to_config(**{pipeline_component_name: (None, None)})
continue
save_method = getattr(sub_model, save_method_name)
# Call the save method with the argument safe_serialization only if it's supported
save_method_signature = inspect.signature(save_method)
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
save_method_accept_variant = "variant" in save_method_signature.parameters
save_kwargs = {}
if save_method_accept_safe:
save_kwargs["safe_serialization"] = safe_serialization
if save_method_accept_variant:
save_kwargs["variant"] = variant
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
# finally save the config
self.save_config(save_directory)
if push_to_hub:
self._upload_folder(
save_directory,
repo_id,
token=token,
commit_message=commit_message,
create_pr=create_pr,
)
def to(
self,
torch_device: Optional[Union[str, torch.device]] = None,
torch_dtype: Optional[torch.dtype] = None,
silence_dtype_warnings: bool = False,
):
if torch_device is None and torch_dtype is None:
return self
# throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
def module_is_sequentially_offloaded(module):
if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
return False
return hasattr(module, "_hf_hook") and not isinstance(
module._hf_hook, (accelerate.hooks.CpuOffload, accelerate.hooks.AlignDevicesHook)
)
def module_is_offloaded(module):
if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
return False
return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)
# .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
pipeline_is_sequentially_offloaded = any(
module_is_sequentially_offloaded(module) for _, module in self.components.items()
)
if pipeline_is_sequentially_offloaded and torch_device and torch.device(torch_device).type == "cuda":
raise ValueError(
"It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
)
# Display a warning in this case (the operation succeeds but the benefits are lost)
pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
if pipeline_is_offloaded and torch_device and torch.device(torch_device).type == "cuda":
logger.warning(
f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
)
module_names, _ = self._get_signature_keys(self)
modules = [getattr(self, n, None) for n in module_names]
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
for module in modules:
is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit
if is_loaded_in_8bit and torch_dtype is not None:
logger.warning(
f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {torch_dtype} is not yet supported. Module is still in 8bit precision."
)
if is_loaded_in_8bit and torch_device is not None:
logger.warning(
f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {torch_dtype} via `.to()` is not yet supported. Module is still on {module.device}."
)
else:
module.to(torch_device, torch_dtype)
if (
module.dtype == torch.float16
and str(torch_device) in ["cpu"]
and not silence_dtype_warnings
and not is_offloaded
):
logger.warning(
"Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
" is not recommended to move them to `cpu` as running them will fail. Please make"
" sure to use an accelerator to run the pipeline in inference, due to the lack of"
" support for`float16` operations on this device in PyTorch. Please, remove the"
" `torch_dtype=torch.float16` argument, or use another device for inference."
)
return self
@property
def device(self) -> torch.device:
r"""
Returns:
`torch.device`: The torch device on which the pipeline is located.
"""
module_names, _ = self._get_signature_keys(self)
modules = [getattr(self, n, None) for n in module_names]
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
for module in modules:
return module.device
return torch.device("cpu")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
custom_pipeline (`str`, *optional*):
<Tip warning={true}>
🧪 This is an experimental feature and may change in the future.
</Tip>
Can be either:
- A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
the custom pipeline.
- A string, the *file name* of a community pipeline hosted on GitHub under
[Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
current main branch of GitHub.
- A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
must contain a file called `pipeline.py` that defines the custom pipeline.
For more information on how to load and create custom pipelines, please have a look at [Loading and
Adding Custom
Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
use_onnx (`bool`, *optional*, defaults to `None`):
If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
`False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
with `.onnx` and `.pb`.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import DiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
>>> # Download pipeline that requires an authorization token
>>> # For more information on access tokens, please refer to this section
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> # Use a different scheduler
>>> from diffusers import LMSDiscreteScheduler
>>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.scheduler = scheduler
```
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
from_flax = kwargs.pop("from_flax", False)
torch_dtype = kwargs.pop("torch_dtype", None)
custom_pipeline = kwargs.pop("custom_pipeline", None)
custom_revision = kwargs.pop("custom_revision", None)
provider = kwargs.pop("provider", None)
sess_options = kwargs.pop("sess_options", None)
device_map = kwargs.pop("device_map", None)
max_memory = kwargs.pop("max_memory", None)
offload_folder = kwargs.pop("offload_folder", None)
offload_state_dict = kwargs.pop("offload_state_dict", False)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
variant = kwargs.pop("variant", None)
use_safetensors = kwargs.pop("use_safetensors", None)
use_onnx = kwargs.pop("use_onnx", None)
load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
# 1. Download the checkpoints and configs
# use snapshot download here to get it working from from_pretrained
if not os.path.isdir(pretrained_model_name_or_path):
cached_folder = cls.download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
from_flax=from_flax,
use_safetensors=use_safetensors,
use_onnx=use_onnx,
custom_pipeline=custom_pipeline,
custom_revision=custom_revision,
variant=variant,
load_connected_pipeline=load_connected_pipeline,
**kwargs,
)
else:
cached_folder = pretrained_model_name_or_path
config_dict = cls.load_config(cached_folder)
# pop out "_ignore_files" as it is only needed for download
config_dict.pop("_ignore_files", None)
# 2. Define which model components should load variants
# We retrieve the information by matching whether variant
# model checkpoints exist in the subfolders
model_variants = {}
if variant is not None:
for folder in os.listdir(cached_folder):
folder_path = os.path.join(cached_folder, folder)
is_folder = os.path.isdir(folder_path) and folder in config_dict
variant_exists = is_folder and any(
p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
)
if variant_exists:
model_variants[folder] = variant
# 3. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
pipeline_class = _get_pipeline_class(
cls,
config_dict,
load_connected_pipeline=load_connected_pipeline,
custom_pipeline=custom_pipeline,
cache_dir=cache_dir,
revision=custom_revision,
)
# DEPRECATED: To be removed in 1.0.0
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
version.parse(config_dict["_diffusers_version"]).base_version
) <= version.parse("0.5.1"):
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy
pipeline_class = StableDiffusionInpaintPipelineLegacy
deprecation_message = (
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
f" checkpoint {pretrained_model_name_or_path} to the format of"
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
)
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)
# 4. Define expected modules given pipeline signature
# and define non-None initialized modules (=`init_kwargs`)
# some modules can be passed directly to the init
# in this case they are already instantiated in `kwargs`
# extract them here
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
# define init kwargs and make sure that optional component modules are filtered out
init_kwargs = {
k: init_dict.pop(k)
for k in optional_kwargs
if k in init_dict and k not in pipeline_class._optional_components
}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
# remove `null` components
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
return True
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
# Special case: safety_checker must be loaded separately when using `from_flax`
if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
raise NotImplementedError(
"The safety checker cannot be automatically loaded when loading weights `from_flax`."
" Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
" separately if you need it."
)
# 5. Throw nice warnings / errors for fast accelerate loading
if len(unused_kwargs) > 0:
logger.warning(
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if device_map is not None and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `device_map=None`."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
if low_cpu_mem_usage is False and device_map is not None:
raise ValueError(
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
)
# import it here to avoid circular import
from diffusers import pipelines
# 6. Load each module in the pipeline
for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
# 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
class_name = class_name[4:] if class_name.startswith("Flax") else class_name
# 6.2 Define all importable classes
is_pipeline_module = hasattr(pipelines, library_name)
importable_classes = ALL_IMPORTABLE_CLASSES
loaded_sub_model = None
# 6.3 Use passed sub model or load class_name from library_name
if name in passed_class_obj:
# if the model is in a pipeline module, then we load it from the pipeline
# check that passed_class_obj has correct parent class
maybe_raise_or_warn(
library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
)
loaded_sub_model = passed_class_obj[name]
else:
# load sub model
loaded_sub_model = load_sub_model(
library_name=library_name,
class_name=class_name,
importable_classes=importable_classes,
pipelines=pipelines,
is_pipeline_module=is_pipeline_module,
pipeline_class=pipeline_class,
torch_dtype=torch_dtype,
provider=provider,
sess_options=sess_options,
device_map=device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
model_variants=model_variants,
name=name,
from_flax=from_flax,
variant=variant,
low_cpu_mem_usage=low_cpu_mem_usage,
cached_folder=cached_folder,
)
logger.info(
f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
)
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
load_kwargs = {
"cache_dir": cache_dir,
"resume_download": resume_download,
"force_download": force_download,
"proxies": proxies,
"local_files_only": local_files_only,
"use_auth_token": use_auth_token,
"revision": revision,
"torch_dtype": torch_dtype,
"custom_pipeline": custom_pipeline,
"custom_revision": custom_revision,
"provider": provider,
"sess_options": sess_options,
"device_map": device_map,
"max_memory": max_memory,
"offload_folder": offload_folder,
"offload_state_dict": offload_state_dict,
"low_cpu_mem_usage": low_cpu_mem_usage,
"variant": variant,
"use_safetensors": use_safetensors,
}
def get_connected_passed_kwargs(prefix):
connected_passed_class_obj = {
k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
}
connected_passed_pipe_kwargs = {
k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
}
connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
return connected_passed_kwargs
connected_pipes = {
prefix: DiffusionPipeline.from_pretrained(
repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
)
for prefix, repo_id in connected_pipes.items()
if repo_id is not None
}
for prefix, connected_pipe in connected_pipes.items():
# add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
init_kwargs.update(
{"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
)
# 7. Potentially add passed objects if expected
missing_modules = set(expected_modules) - set(init_kwargs.keys())
passed_modules = list(passed_class_obj.keys())
optional_modules = pipeline_class._optional_components
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
elif len(missing_modules) > 0:
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
raise ValueError(
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
)
# 8. Instantiate the pipeline
model = pipeline_class(**init_kwargs)
# 9. Save where the model was instantiated from
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
return model
@property
def name_or_path(self) -> str:
return getattr(self.config, "_name_or_path", None)
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
[`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
Accelerate's module hooks.
"""
for name, model in self.components.items():
if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
continue
if not hasattr(model, "_hf_hook"):
return self.device
for module in model.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def enable_model_cpu_offload(self, gpu_id: int = 0, device: Union[torch.device, str] = "cuda"):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if self.model_cpu_offload_seq is None:
raise ValueError(
"Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
)
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
device_mod = getattr(torch, self.device.type, None)
if hasattr(device_mod, "empty_cache") and device_mod.is_available():
device_mod.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}
self._all_hooks = []
hook = None
for model_str in self.model_cpu_offload_seq.split("->"):
model = all_model_components.pop(model_str, None)
if not isinstance(model, torch.nn.Module):
continue
_, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
self._all_hooks.append(hook)
# CPU offload models that are not in the seq chain unless they are explicitly excluded
# these models will stay on CPU until maybe_free_model_hooks is called
# some models cannot be in the seq chain because they are iteratively called, such as controlnet
for name, model in all_model_components.items():
if not isinstance(model, torch.nn.Module):
continue
if name in self._exclude_from_cpu_offload:
model.to(device)
else:
_, hook = cpu_offload_with_hook(model, device)
self._all_hooks.append(hook)
def maybe_free_model_hooks(self):
r"""
TODO: Better doc string
"""
if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
# `enable_model_cpu_offload` has not be called, so silently do nothing
return
for hook in self._all_hooks:
# offload model and remove hook from model
hook.offload()
hook.remove()
# make sure the model is in the same state as before calling it
self.enable_model_cpu_offload()
def enable_sequential_cpu_offload(self, gpu_id: int = 0, device: Union[torch.device, str] = "cuda"):
r"""
Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
method called. Offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
from accelerate import cpu_offload
else:
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
if device == "cuda":
device = torch.device(f"{device}:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
device_mod = getattr(torch, self.device.type, None)
if hasattr(device_mod, "empty_cache") and device_mod.is_available():
device_mod.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
for name, model in self.components.items():
if not isinstance(model, torch.nn.Module):
continue
if name in self._exclude_from_cpu_offload:
model.to(device)
else:
# make sure to offload buffers if not all high level weights
# are of type nn.Module
offload_buffers = len(model._parameters) > 0
cpu_offload(model, device, offload_buffers=offload_buffers)
@classmethod
def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
r"""
Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
Parameters:
pretrained_model_name (`str` or `os.PathLike`, *optional*):
A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
custom_pipeline (`str`, *optional*):
Can be either:
- A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
the custom pipeline.
- A string, the *file name* of a community pipeline hosted on GitHub under
[Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
current `main` branch of GitHub.
- A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
must contain a file called `pipeline.py` that defines the custom pipeline.
<Tip warning={true}>
🧪 This is an experimental feature and may change in the future.
</Tip>
For more information on how to load and create custom pipelines, take a look at [How to contribute a
community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
use_onnx (`bool`, *optional*, defaults to `False`):
If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
`False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
with `.onnx` and `.pb`.
Returns:
`os.PathLike`:
A path to the downloaded pipeline.
<Tip>
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
`huggingface-cli login`.
</Tip>
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
from_flax = kwargs.pop("from_flax", False)
custom_pipeline = kwargs.pop("custom_pipeline", None)
custom_revision = kwargs.pop("custom_revision", None)
variant = kwargs.pop("variant", None)
use_safetensors = kwargs.pop("use_safetensors", None)
use_onnx = kwargs.pop("use_onnx", None)
load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
allow_patterns = None
ignore_patterns = None
model_info_call_error: Optional[Exception] = None
if not local_files_only:
try:
info = model_info(
pretrained_model_name,
use_auth_token=use_auth_token,
revision=revision,
)
except HTTPError as e:
logger.warn(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
local_files_only = True
model_info_call_error = e # save error to reraise it if model is not cached locally
if not local_files_only:
config_file = hf_hub_download(
pretrained_model_name,
cls.config_name,
cache_dir=cache_dir,
revision=revision,
proxies=proxies,
force_download=force_download,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
config_dict = cls._dict_from_json_file(config_file)
ignore_filenames = config_dict.pop("_ignore_files", [])
# retrieve all folder_names that contain relevant files
folder_names = [k for k, v in config_dict.items() if isinstance(v, list)]
filenames = {sibling.rfilename for sibling in info.siblings}
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)
if len(variant_filenames) == 0 and variant is not None:
deprecation_message = (
f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
"if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variant"
"modeling files is deprecated."
)
deprecate("no variant default", "0.24.0", deprecation_message, standard_warn=False)
# remove ignored filenames
model_filenames = set(model_filenames) - set(ignore_filenames)
variant_filenames = set(variant_filenames) - set(ignore_filenames)
# if the whole pipeline is cached we don't have to ping the Hub
if revision in DEPRECATED_REVISION_ARGS and version.parse(
version.parse(__version__).base_version
) >= version.parse("0.22.0"):
warn_deprecated_model_variant(
pretrained_model_name, use_auth_token, variant, revision, model_filenames
)
model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
# all filenames compatible with variant will be added
allow_patterns = list(model_filenames)
# allow all patterns from non-model folders
# this enables downloading schedulers, tokenizers, ...
allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
# also allow downloading config.json files with the model
allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
allow_patterns += [
SCHEDULER_CONFIG_NAME,
CONFIG_NAME,
cls.config_name,
CUSTOM_PIPELINE_FILE_NAME,
]
# retrieve passed components that should not be downloaded
pipeline_class = _get_pipeline_class(
cls,
config_dict,
load_connected_pipeline=load_connected_pipeline,
custom_pipeline=custom_pipeline,
cache_dir=cache_dir,
revision=custom_revision,
)
expected_components, _ = cls._get_signature_keys(pipeline_class)
passed_components = [k for k in expected_components if k in kwargs]
if (
use_safetensors
and not allow_pickle
and not is_safetensors_compatible(
model_filenames, variant=variant, passed_components=passed_components
)
):
raise EnvironmentError(
f"Could not found the necessary `safetensors` weights in {model_filenames} (variant={variant})"
)
if from_flax:
ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
elif use_safetensors and is_safetensors_compatible(
model_filenames, variant=variant, passed_components=passed_components
):
ignore_patterns = ["*.bin", "*.msgpack"]
use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
if not use_onnx:
ignore_patterns += ["*.onnx", "*.pb"]
safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
if (
len(safetensors_variant_filenames) > 0
and safetensors_model_filenames != safetensors_variant_filenames
):
logger.warn(
f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
)
else:
ignore_patterns = ["*.safetensors", "*.msgpack"]
use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
if not use_onnx:
ignore_patterns += ["*.onnx", "*.pb"]
bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
logger.warn(
f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
)
# Don't download any objects that are passed
allow_patterns = [
p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
]
if pipeline_class._load_connected_pipes:
allow_patterns.append("README.md")
# Don't download index files of forbidden patterns either
ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]
expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
snapshot_folder = Path(config_file).parent
pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
if pipeline_is_cached and not force_download:
# if the pipeline is cached, we can directly return it
# else call snapshot_download
return snapshot_folder
user_agent = {"pipeline_class": cls.__name__}
if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
user_agent["custom_pipeline"] = custom_pipeline
# download all allow_patterns - ignore_patterns
try:
cached_folder = snapshot_download(
pretrained_model_name,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
user_agent=user_agent,
)
# retrieve pipeline class from local file
cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
cls_name = cls_name[4:] if cls_name.startswith("Flax") else cls_name
pipeline_class = getattr(diffusers, cls_name, None)
if pipeline_class is not None and pipeline_class._load_connected_pipes:
modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
for connected_pipe_repo_id in connected_pipes:
download_kwargs = {
"cache_dir": cache_dir,
"resume_download": resume_download,
"force_download": force_download,
"proxies": proxies,
"local_files_only": local_files_only,
"use_auth_token": use_auth_token,
"variant": variant,
"use_safetensors": use_safetensors,
}
DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
return cached_folder
except FileNotFoundError:
# Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
# This can happen in two cases:
# 1. If the user passed `local_files_only=True` => we raise the error directly
# 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
if model_info_call_error is None:
# 1. user passed `local_files_only=True`
raise
else:
# 2. we forced `local_files_only=True` when `model_info` failed
raise EnvironmentError(
f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occured"
" while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
" above."
) from model_info_call_error
@staticmethod
def _get_signature_keys(obj):
parameters = inspect.signature(obj.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
expected_modules = set(required_parameters.keys()) - {"self"}
return expected_modules, optional_parameters
@property
def components(self) -> Dict[str, Any]:
r"""
The `self.components` property can be useful to run different pipelines with the same weights and
configurations without reallocating additional memory.
Returns (`dict`):
A dictionary containing all the modules needed to initialize the pipeline.
Examples:
```py
>>> from diffusers import (
... StableDiffusionPipeline,
... StableDiffusionImg2ImgPipeline,
... StableDiffusionInpaintPipeline,
... )
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
```
"""
expected_modules, optional_parameters = self._get_signature_keys(self)
components = {
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
}
if set(components.keys()) != expected_modules:
raise ValueError(
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
f" {expected_modules} to be defined, but {components.keys()} are defined."
)
return components
@staticmethod
def numpy_to_pil(images):
"""
Convert a NumPy image or a batch of images to a PIL image.
"""
return numpy_to_pil(images)
def progress_bar(self, iterable=None, total=None):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
elif not isinstance(self._progress_bar_config, dict):
raise ValueError(
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
)
if iterable is not None:
return tqdm(iterable, **self._progress_bar_config)
elif total is not None:
return tqdm(total=total, **self._progress_bar_config)
else:
raise ValueError("Either `total` or `iterable` has to be defined.")
def set_progress_bar_config(self, **kwargs):
self._progress_bar_config = kwargs
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
r"""
Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
up during training is not guaranteed.
<Tip warning={true}>
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
precedent.
</Tip>
Parameters:
attention_op (`Callable`, *optional*):
Override the default `None` operator for use as `op` argument to the
[`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
function of xFormers.
Examples:
```py
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
```
"""
self.set_use_memory_efficient_attention_xformers(True, attention_op)
def disable_xformers_memory_efficient_attention(self):
r"""
Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
"""
self.set_use_memory_efficient_attention_xformers(False)
def set_use_memory_efficient_attention_xformers(
self, valid: bool, attention_op: Optional[Callable] = None
) -> None:
# Recursively walk through all the children.
# Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid, attention_op)
for child in module.children():
fn_recursive_set_mem_eff(child)
module_names, _ = self._get_signature_keys(self)
modules = [getattr(self, n, None) for n in module_names]
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
for module in modules:
fn_recursive_set_mem_eff(module)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
in slices to compute attention in several steps. For more than one attention head, the computation is performed
sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.
<Tip warning={true}>
⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!
</Tip>
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
Examples:
```py
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> pipe = StableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5",
... torch_dtype=torch.float16,
... use_safetensors=True,
... )
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> pipe.enable_attention_slicing()
>>> image = pipe(prompt).images[0]
```
"""
self.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
computed in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def set_attention_slice(self, slice_size: Optional[int]):
module_names, _ = self._get_signature_keys(self)
modules = [getattr(self, n, None) for n in module_names]
modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
for module in modules:
module.set_attention_slice(slice_size)
| diffusers-main | src/diffusers/pipelines/pipeline_utils.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import (
XLMRobertaTokenizer,
)
from ...models import UNet2DConditionModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import (
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .text_encoder import MultilingualCLIP
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyImg2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... prompt,
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
"""
def get_new_h_w(h, w, scale_factor=8):
new_h = h // scale_factor**2
if h % scale_factor**2 != 0:
new_h += 1
new_w = w // scale_factor**2
if w % scale_factor**2 != 0:
new_w += 1
return new_h * scale_factor, new_w * scale_factor
def prepare_image(pil_image, w=512, h=512):
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
arr = np.array(pil_image.convert("RGB"))
arr = arr.astype(np.float32) / 127.5 - 1
arr = np.transpose(arr, [2, 0, 1])
image = torch.from_numpy(arr).unsqueeze(0)
return image
class KandinskyImg2ImgPipeline(DiffusionPipeline):
"""
Pipeline for image-to-image generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ image encoder and decoder
"""
model_cpu_offload_seq = "text_encoder->unet->movq"
def __init__(
self,
text_encoder: MultilingualCLIP,
movq: VQModel,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: DDIMScheduler,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, latents, latent_timestep, shape, dtype, device, generator, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
shape = latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self.add_noise(latents, noise, latent_timestep)
return latents
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids.to(device)
text_mask = text_inputs.attention_mask.to(device)
prompt_embeds, text_encoder_hidden_states = self.text_encoder(
input_ids=text_input_ids, attention_mask=text_mask
)
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=77,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
uncond_text_input_ids = uncond_input.input_ids.to(device)
uncond_text_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder(
input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask
)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
# add_noise method to overwrite the one in schedule because it use a different beta schedule for adding noise vs sampling
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32)
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
image_embeds: torch.FloatTensor,
negative_image_embeds: torch.FloatTensor,
negative_prompt: Optional[Union[str, List[str]]] = None,
height: int = 512,
width: int = 512,
num_inference_steps: int = 100,
strength: float = 0.3,
guidance_scale: float = 7.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.FloatTensor`, `PIL.Image.Image`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for text prompt, that will be used to condition the image generation.
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for negative text prompt, will be used to condition the image generation.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
strength (`float`, *optional*, defaults to 0.3):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
# 1. Define call parameters
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
device = self._execution_device
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
# 2. get text and image embeddings
prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if isinstance(image_embeds, list):
image_embeds = torch.cat(image_embeds, dim=0)
if isinstance(negative_image_embeds, list):
negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
if do_classifier_free_guidance:
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(
dtype=prompt_embeds.dtype, device=device
)
# 3. pre-processing initial image
if not isinstance(image, list):
image = [image]
if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image):
raise ValueError(
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor"
)
image = torch.cat([prepare_image(i, width, height) for i in image], dim=0)
image = image.to(dtype=prompt_embeds.dtype, device=device)
latents = self.movq.encode(image)["latents"]
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
# 4. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps_tensor, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
# the formular to calculate timestep for add_noise is taken from the original kandinsky repo
latent_timestep = int(self.scheduler.config.num_train_timesteps * strength) - 2
latent_timestep = torch.tensor([latent_timestep] * batch_size, dtype=timesteps_tensor.dtype, device=device)
num_channels_latents = self.unet.config.in_channels
height, width = get_new_h_w(height, width, self.movq_scale_factor)
# 5. Create initial latent
latents = self.prepare_latents(
latents,
latent_timestep,
(batch_size, num_channels_latents, height, width),
text_encoder_hidden_states.dtype,
device,
generator,
self.scheduler,
)
# 6. Denoising loop
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds}
noise_pred = self.unet(
sample=latent_model_input,
timestep=t,
encoder_hidden_states=text_encoder_hidden_states,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
_, variance_pred_text = variance_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1)
if not (
hasattr(self.scheduler.config, "variance_type")
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred,
t,
latents,
generator=generator,
).prev_sample
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 7. post-processing
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
image = image * 0.5 + 0.5
image = image.clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| diffusers-main | src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_kandinsky"] = ["KandinskyPipeline"]
_import_structure["pipeline_kandinsky_combined"] = [
"KandinskyCombinedPipeline",
"KandinskyImg2ImgCombinedPipeline",
"KandinskyInpaintCombinedPipeline",
]
_import_structure["pipeline_kandinsky_img2img"] = ["KandinskyImg2ImgPipeline"]
_import_structure["pipeline_kandinsky_inpaint"] = ["KandinskyInpaintPipeline"]
_import_structure["pipeline_kandinsky_prior"] = ["KandinskyPriorPipeline", "KandinskyPriorPipelineOutput"]
_import_structure["text_encoder"] = ["MultilingualCLIP"]
if TYPE_CHECKING:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_combined import (
KandinskyCombinedPipeline,
KandinskyImg2ImgCombinedPipeline,
KandinskyInpaintCombinedPipeline,
)
from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
| diffusers-main | src/diffusers/pipelines/kandinsky/__init__.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection
from ...models import PriorTransformer
from ...schedulers import UnCLIPScheduler
from ...utils import (
BaseOutput,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
>>> import torch
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior")
>>> pipe_prior.to("cuda")
>>> prompt = "red cat, 4k photo"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> negative_image_emb = out.negative_image_embeds
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")
>>> pipe.to("cuda")
>>> image = pipe(
... prompt,
... image_embeds=image_emb,
... negative_image_embeds=negative_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... ).images
>>> image[0].save("cat.png")
```
"""
EXAMPLE_INTERPOLATE_DOC_STRING = """
Examples:
```py
>>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline
>>> from diffusers.utils import load_image
>>> import PIL
>>> import torch
>>> from torchvision import transforms
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> img1 = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/cat.png"
... )
>>> img2 = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/starry_night.jpeg"
... )
>>> images_texts = ["a cat", img1, img2]
>>> weights = [0.3, 0.3, 0.4]
>>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights)
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
>>> pipe.to("cuda")
>>> image = pipe(
... "",
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=150,
... ).images[0]
>>> image.save("starry_cat.png")
```
"""
@dataclass
class KandinskyPriorPipelineOutput(BaseOutput):
"""
Output class for KandinskyPriorPipeline.
Args:
image_embeds (`torch.FloatTensor`)
clip image embeddings for text prompt
negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`)
clip image embeddings for unconditional tokens
"""
image_embeds: Union[torch.FloatTensor, np.ndarray]
negative_image_embeds: Union[torch.FloatTensor, np.ndarray]
class KandinskyPriorPipeline(DiffusionPipeline):
"""
Pipeline for generating image prior for Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
"""
_exclude_from_cpu_offload = ["prior"]
model_cpu_offload_seq = "text_encoder->prior"
def __init__(
self,
prior: PriorTransformer,
image_encoder: CLIPVisionModelWithProjection,
text_encoder: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
scheduler: UnCLIPScheduler,
image_processor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
prior=prior,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
image_encoder=image_encoder,
image_processor=image_processor,
)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
def interpolate(
self,
images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
weights: List[float],
num_images_per_prompt: int = 1,
num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
negative_prior_prompt: Optional[str] = None,
negative_prompt: str = "",
guidance_scale: float = 4.0,
device=None,
):
"""
Function invoked when using the prior pipeline for interpolation.
Args:
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
list of prompts and images to guide the image generation.
weights: (`List[float]`):
list of weights for each condition in `images_and_prompts`
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
negative_prior_prompt (`str`, *optional*):
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`).
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`).
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
Examples:
Returns:
[`KandinskyPriorPipelineOutput`] or `tuple`
"""
device = device or self.device
if len(images_and_prompts) != len(weights):
raise ValueError(
f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length"
)
image_embeddings = []
for cond, weight in zip(images_and_prompts, weights):
if isinstance(cond, str):
image_emb = self(
cond,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
latents=latents,
negative_prompt=negative_prior_prompt,
guidance_scale=guidance_scale,
).image_embeds
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)):
if isinstance(cond, PIL.Image.Image):
cond = (
self.image_processor(cond, return_tensors="pt")
.pixel_values[0]
.unsqueeze(0)
.to(dtype=self.image_encoder.dtype, device=device)
)
image_emb = self.image_encoder(cond)["image_embeds"]
else:
raise ValueError(
f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}"
)
image_embeddings.append(image_emb * weight)
image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True)
out_zero = self(
negative_prompt,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
latents=latents,
negative_prompt=negative_prior_prompt,
guidance_scale=guidance_scale,
)
zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds
return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def get_zero_embed(self, batch_size=1, device=None):
device = device or self.device
zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to(
device=device, dtype=self.image_encoder.dtype
)
zero_image_emb = self.image_encoder(zero_img)["image_embeds"]
zero_image_emb = zero_image_emb.repeat(batch_size, 1)
return zero_image_emb
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
text_mask = text_inputs.attention_mask.bool().to(device)
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_encoder_output = self.text_encoder(text_input_ids.to(device))
prompt_embeds = text_encoder_output.text_embeds
text_encoder_hidden_states = text_encoder_output.last_hidden_state
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: int = 1,
num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
guidance_scale: float = 4.0,
output_type: Optional[str] = "pt",
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
output_type (`str`, *optional*, defaults to `"pt"`):
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
(`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`KandinskyPriorPipelineOutput`] or `tuple`
"""
if isinstance(prompt, str):
prompt = [prompt]
elif not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
elif not isinstance(negative_prompt, list) and negative_prompt is not None:
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
# if the negative prompt is defined we double the batch size to
# directly retrieve the negative prompt embedding
if negative_prompt is not None:
prompt = prompt + negative_prompt
negative_prompt = 2 * negative_prompt
device = self._execution_device
batch_size = len(prompt)
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# prior
self.scheduler.set_timesteps(num_inference_steps, device=device)
prior_timesteps_tensor = self.scheduler.timesteps
embedding_dim = self.prior.config.embedding_dim
latents = self.prepare_latents(
(batch_size, embedding_dim),
prompt_embeds.dtype,
device,
generator,
latents,
self.scheduler,
)
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
predicted_image_embedding = self.prior(
latent_model_input,
timestep=t,
proj_embedding=prompt_embeds,
encoder_hidden_states=text_encoder_hidden_states,
attention_mask=text_mask,
).predicted_image_embedding
if do_classifier_free_guidance:
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * (
predicted_image_embedding_text - predicted_image_embedding_uncond
)
if i + 1 == prior_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = prior_timesteps_tensor[i + 1]
latents = self.scheduler.step(
predicted_image_embedding,
timestep=t,
sample=latents,
generator=generator,
prev_timestep=prev_timestep,
).prev_sample
latents = self.prior.post_process_latents(latents)
image_embeddings = latents
# if negative prompt has been defined, we retrieve split the image embedding into two
if negative_prompt is None:
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
self.maybe_free_model_hooks
else:
image_embeddings, zero_embeds = image_embeddings.chunk(2)
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.prior_hook.offload()
if output_type not in ["pt", "np"]:
raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}")
if output_type == "np":
image_embeddings = image_embeddings.cpu().numpy()
zero_embeds = zero_embeds.cpu().numpy()
if not return_dict:
return (image_embeddings, zero_embeds)
return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds)
| diffusers-main | src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
import torch.nn.functional as F
from packaging import version
from PIL import Image
from transformers import (
XLMRobertaTokenizer,
)
from ... import __version__
from ...models import UNet2DConditionModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import (
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .text_encoder import MultilingualCLIP
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> import numpy as np
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "a hat"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyInpaintPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/cat.png"
... )
>>> mask = np.zeros((768, 768), dtype=np.float32)
>>> mask[:250, 250:-250] = 1
>>> out = pipe(
... prompt,
... image=init_image,
... mask_image=mask,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=50,
... )
>>> image = out.images[0]
>>> image.save("cat_with_hat.png")
```
"""
def get_new_h_w(h, w, scale_factor=8):
new_h = h // scale_factor**2
if h % scale_factor**2 != 0:
new_h += 1
new_w = w // scale_factor**2
if w % scale_factor**2 != 0:
new_w += 1
return new_h * scale_factor, new_w * scale_factor
def prepare_mask(masks):
prepared_masks = []
for mask in masks:
old_mask = deepcopy(mask)
for i in range(mask.shape[1]):
for j in range(mask.shape[2]):
if old_mask[0][i][j] == 1:
continue
if i != 0:
mask[:, i - 1, j] = 0
if j != 0:
mask[:, i, j - 1] = 0
if i != 0 and j != 0:
mask[:, i - 1, j - 1] = 0
if i != mask.shape[1] - 1:
mask[:, i + 1, j] = 0
if j != mask.shape[2] - 1:
mask[:, i, j + 1] = 0
if i != mask.shape[1] - 1 and j != mask.shape[2] - 1:
mask[:, i + 1, j + 1] = 0
prepared_masks.append(mask)
return torch.stack(prepared_masks, dim=0)
def prepare_mask_and_masked_image(image, mask, height, width):
r"""
Prepares a pair (mask, image) to be consumed by the Kandinsky inpaint pipeline. This means that those inputs will
be converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for
the ``image`` and ``1`` for the ``mask``.
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
Args:
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
Raises:
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
(ot the other way around).
Returns:
tuple[torch.Tensor]: The pair (mask, image) as ``torch.Tensor`` with 4
dimensions: ``batch x channels x height x width``.
"""
if image is None:
raise ValueError("`image` input cannot be undefined.")
if mask is None:
raise ValueError("`mask_image` input cannot be undefined.")
if isinstance(image, torch.Tensor):
if not isinstance(mask, torch.Tensor):
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
# Batch single image
if image.ndim == 3:
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
image = image.unsqueeze(0)
# Batch and add channel dim for single mask
if mask.ndim == 2:
mask = mask.unsqueeze(0).unsqueeze(0)
# Batch single mask or add channel dim
if mask.ndim == 3:
# Single batched mask, no channel dim or single mask not batched but channel dim
if mask.shape[0] == 1:
mask = mask.unsqueeze(0)
# Batched masks no channel dim
else:
mask = mask.unsqueeze(1)
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
# Check image is in [-1, 1]
if image.min() < -1 or image.max() > 1:
raise ValueError("Image should be in [-1, 1] range")
# Check mask is in [0, 1]
if mask.min() < 0 or mask.max() > 1:
raise ValueError("Mask should be in [0, 1] range")
# Binarize mask
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
# Image as float32
image = image.to(dtype=torch.float32)
elif isinstance(mask, torch.Tensor):
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
# resize all images w.r.t passed height an width
image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image]
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
mask = 1 - mask
return mask, image
class KandinskyInpaintPipeline(DiffusionPipeline):
"""
Pipeline for text-guided image inpainting using Kandinsky2.1
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ image encoder and decoder
"""
model_cpu_offload_seq = "text_encoder->unet->movq"
def __init__(
self,
text_encoder: MultilingualCLIP,
movq: VQModel,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: DDIMScheduler,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
movq=movq,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1)
self._warn_has_been_called = False
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids.to(device)
text_mask = text_inputs.attention_mask.to(device)
prompt_embeds, text_encoder_hidden_states = self.text_encoder(
input_ids=text_input_ids, attention_mask=text_mask
)
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=77,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
uncond_text_input_ids = uncond_input.input_ids.to(device)
uncond_text_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder(
input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask
)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
image_embeds: torch.FloatTensor,
negative_image_embeds: torch.FloatTensor,
negative_prompt: Optional[Union[str, List[str]]] = None,
height: int = 512,
width: int = 512,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.FloatTensor`, `PIL.Image.Image` or `np.ndarray`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
mask_image (`PIL.Image.Image`,`torch.FloatTensor` or `np.ndarray`):
`Image`, or a tensor representing an image batch, to mask `image`. White pixels in the mask will be
repainted, while black pixels will be preserved. You can pass a pytorch tensor as mask only if the
image you passed is a pytorch tensor, and it should contain one color channel (L) instead of 3, so the
expected shape would be either `(B, 1, H, W,)`, `(B, H, W)`, `(1, H, W)` or `(H, W)` If image is an PIL
image or numpy array, mask should also be a either PIL image or numpy array. If it is a PIL image, it
will be converted to a single channel (luminance) before use. If it is a nummpy array, the expected
shape is `(H, W)`.
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for text prompt, that will be used to condition the image generation.
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for negative text prompt, will be used to condition the image generation.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse(
"0.23.0.dev0"
):
logger.warn(
"Please note that the expected format of `mask_image` has recently been changed. "
"Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. "
"As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. "
"This way, Kandinsky's masking behavior is aligned with Stable Diffusion. "
"THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. "
"This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0"
)
self._warn_has_been_called = True
# Define call parameters
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
device = self._execution_device
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if isinstance(image_embeds, list):
image_embeds = torch.cat(image_embeds, dim=0)
if isinstance(negative_image_embeds, list):
negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
if do_classifier_free_guidance:
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(
dtype=prompt_embeds.dtype, device=device
)
# preprocess image and mask
mask_image, image = prepare_mask_and_masked_image(image, mask_image, height, width)
image = image.to(dtype=prompt_embeds.dtype, device=device)
image = self.movq.encode(image)["latents"]
mask_image = mask_image.to(dtype=prompt_embeds.dtype, device=device)
image_shape = tuple(image.shape[-2:])
mask_image = F.interpolate(
mask_image,
image_shape,
mode="nearest",
)
mask_image = prepare_mask(mask_image)
masked_image = image * mask_image
mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0)
masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
mask_image = mask_image.repeat(2, 1, 1, 1)
masked_image = masked_image.repeat(2, 1, 1, 1)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps_tensor = self.scheduler.timesteps
num_channels_latents = self.movq.config.latent_channels
# get h, w for latents
sample_height, sample_width = get_new_h_w(height, width, self.movq_scale_factor)
# create initial latent
latents = self.prepare_latents(
(batch_size, num_channels_latents, sample_height, sample_width),
text_encoder_hidden_states.dtype,
device,
generator,
latents,
self.scheduler,
)
# Check that sizes of mask, masked image and latents match with expected
num_channels_mask = mask_image.shape[1]
num_channels_masked_image = masked_image.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1)
added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds}
noise_pred = self.unet(
sample=latent_model_input,
timestep=t,
encoder_hidden_states=text_encoder_hidden_states,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
_, variance_pred_text = variance_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1)
if not (
hasattr(self.scheduler.config, "variance_type")
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred,
t,
latents,
generator=generator,
).prev_sample
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# post-processing
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
image = image * 0.5 + 0.5
image = image.clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| diffusers-main | src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Union
import torch
from transformers import (
XLMRobertaTokenizer,
)
from ...models import UNet2DConditionModel, VQModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import (
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .text_encoder import MultilingualCLIP
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
>>> import torch
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")
>>> pipe_prior.to("cuda")
>>> prompt = "red cat, 4k photo"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> negative_image_emb = out.negative_image_embeds
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")
>>> pipe.to("cuda")
>>> image = pipe(
... prompt,
... image_embeds=image_emb,
... negative_image_embeds=negative_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... ).images
>>> image[0].save("cat.png")
```
"""
def get_new_h_w(h, w, scale_factor=8):
new_h = h // scale_factor**2
if h % scale_factor**2 != 0:
new_h += 1
new_w = w // scale_factor**2
if w % scale_factor**2 != 0:
new_w += 1
return new_h * scale_factor, new_w * scale_factor
class KandinskyPipeline(DiffusionPipeline):
"""
Pipeline for text-to-image generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
"""
model_cpu_offload_seq = "text_encoder->unet->movq"
def __init__(
self,
text_encoder: MultilingualCLIP,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
movq: VQModel,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
truncation=True,
max_length=77,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids.to(device)
text_mask = text_inputs.attention_mask.to(device)
prompt_embeds, text_encoder_hidden_states = self.text_encoder(
input_ids=text_input_ids, attention_mask=text_mask
)
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=77,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
uncond_text_input_ids = uncond_input.input_ids.to(device)
uncond_text_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder(
input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask
)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
negative_prompt: Optional[Union[str, List[str]]] = None,
height: int = 512,
width: int = 512,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for text prompt, that will be used to condition the image generation.
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for negative text prompt, will be used to condition the image generation.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
device = self._execution_device
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
if isinstance(image_embeds, list):
image_embeds = torch.cat(image_embeds, dim=0)
if isinstance(negative_image_embeds, list):
negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
if do_classifier_free_guidance:
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(
dtype=prompt_embeds.dtype, device=device
)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps_tensor = self.scheduler.timesteps
num_channels_latents = self.unet.config.in_channels
height, width = get_new_h_w(height, width, self.movq_scale_factor)
# create initial latent
latents = self.prepare_latents(
(batch_size, num_channels_latents, height, width),
text_encoder_hidden_states.dtype,
device,
generator,
latents,
self.scheduler,
)
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds}
noise_pred = self.unet(
sample=latent_model_input,
timestep=t,
encoder_hidden_states=text_encoder_hidden_states,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
_, variance_pred_text = variance_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1)
if not (
hasattr(self.scheduler.config, "variance_type")
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred,
t,
latents,
generator=generator,
).prev_sample
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# post-processing
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
image = image * 0.5 + 0.5
image = image.clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| diffusers-main | src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class MCLIPConfig(XLMRobertaConfig):
model_type = "M-CLIP"
def __init__(self, transformerDimSize=1024, imageDimSize=768, **kwargs):
self.transformerDimensions = transformerDimSize
self.numDims = imageDimSize
super().__init__(**kwargs)
class MultilingualCLIP(PreTrainedModel):
config_class = MCLIPConfig
def __init__(self, config, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.transformer = XLMRobertaModel(config)
self.LinearTransformation = torch.nn.Linear(
in_features=config.transformerDimensions, out_features=config.numDims
)
def forward(self, input_ids, attention_mask):
embs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)[0]
embs2 = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
return self.LinearTransformation(embs2), embs
| diffusers-main | src/diffusers/pipelines/kandinsky/text_encoder.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
XLMRobertaTokenizer,
)
from ...models import PriorTransformer, UNet2DConditionModel, VQModel
from ...schedulers import DDIMScheduler, DDPMScheduler, UnCLIPScheduler
from ...utils import (
replace_example_docstring,
)
from ..pipeline_utils import DiffusionPipeline
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline
from .text_encoder import MultilingualCLIP
TEXT2IMAGE_EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained(
"kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipe(prompt=prompt, num_inference_steps=25).images[0]
```
"""
IMAGE2IMAGE_EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import AutoPipelineForImage2Image
import torch
import requests
from io import BytesIO
from PIL import Image
import os
pipe = AutoPipelineForImage2Image.from_pretrained(
"kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
image.thumbnail((768, 768))
image = pipe(prompt=prompt, image=original_image, num_inference_steps=25).images[0]
```
"""
INPAINT_EXAMPLE_DOC_STRING = """
Examples:
```py
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
import torch
import numpy as np
pipe = AutoPipelineForInpainting.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
original_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
mask = np.zeros((768, 768), dtype=np.float32)
# Let's mask out an area above the cat's head
mask[:250, 250:-250] = 1
image = pipe(prompt=prompt, image=original_image, mask_image=mask, num_inference_steps=25).images[0]
```
"""
class KandinskyCombinedPipeline(DiffusionPipeline):
"""
Combined Pipeline for text-to-image generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
prior_tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior_scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
"""
_load_connected_pipes = True
model_cpu_offload_seq = "text_encoder->unet->movq->prior_prior->prior_image_encoder->prior_text_encoder"
def __init__(
self,
text_encoder: MultilingualCLIP,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
movq: VQModel,
prior_prior: PriorTransformer,
prior_image_encoder: CLIPVisionModelWithProjection,
prior_text_encoder: CLIPTextModelWithProjection,
prior_tokenizer: CLIPTokenizer,
prior_scheduler: UnCLIPScheduler,
prior_image_processor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
prior_prior=prior_prior,
prior_image_encoder=prior_image_encoder,
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
prior_image_processor=prior_image_processor,
)
self.prior_pipe = KandinskyPriorPipeline(
prior=prior_prior,
image_encoder=prior_image_encoder,
text_encoder=prior_text_encoder,
tokenizer=prior_tokenizer,
scheduler=prior_scheduler,
image_processor=prior_image_processor,
)
self.decoder_pipe = KandinskyPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗
Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a
GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis.
Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower.
"""
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
def progress_bar(self, iterable=None, total=None):
self.prior_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.enable_model_cpu_offload()
def set_progress_bar_config(self, **kwargs):
self.prior_pipe.set_progress_bar_config(**kwargs)
self.decoder_pipe.set_progress_bar_config(**kwargs)
@torch.no_grad()
@replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
height: int = 512,
width: int = 512,
prior_guidance_scale: float = 4.0,
prior_num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
prior_num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
prior_outputs = self.prior_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=prior_num_inference_steps,
generator=generator,
latents=latents,
guidance_scale=prior_guidance_scale,
output_type="pt",
return_dict=False,
)
image_embeds = prior_outputs[0]
negative_image_embeds = prior_outputs[1]
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
prompt = (image_embeds.shape[0] // len(prompt)) * prompt
outputs = self.decoder_pipe(
prompt=prompt,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
output_type=output_type,
callback=callback,
callback_steps=callback_steps,
return_dict=return_dict,
)
return outputs
class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
"""
Combined Pipeline for image-to-image generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
prior_tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior_scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
"""
_load_connected_pipes = True
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->prior_prior->" "text_encoder->unet->movq"
def __init__(
self,
text_encoder: MultilingualCLIP,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
movq: VQModel,
prior_prior: PriorTransformer,
prior_image_encoder: CLIPVisionModelWithProjection,
prior_text_encoder: CLIPTextModelWithProjection,
prior_tokenizer: CLIPTokenizer,
prior_scheduler: UnCLIPScheduler,
prior_image_processor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
prior_prior=prior_prior,
prior_image_encoder=prior_image_encoder,
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
prior_image_processor=prior_image_processor,
)
self.prior_pipe = KandinskyPriorPipeline(
prior=prior_prior,
image_encoder=prior_image_encoder,
text_encoder=prior_text_encoder,
tokenizer=prior_tokenizer,
scheduler=prior_scheduler,
image_processor=prior_image_processor,
)
self.decoder_pipe = KandinskyImg2ImgPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
def progress_bar(self, iterable=None, total=None):
self.prior_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.enable_model_cpu_offload()
def set_progress_bar_config(self, **kwargs):
self.prior_pipe.set_progress_bar_config(**kwargs)
self.decoder_pipe.set_progress_bar_config(**kwargs)
@torch.no_grad()
@replace_example_docstring(IMAGE2IMAGE_EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
strength: float = 0.3,
height: int = 512,
width: int = 512,
prior_guidance_scale: float = 4.0,
prior_num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
again.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
strength (`float`, *optional*, defaults to 0.3):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
prior_num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
prior_outputs = self.prior_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=prior_num_inference_steps,
generator=generator,
latents=latents,
guidance_scale=prior_guidance_scale,
output_type="pt",
return_dict=False,
)
image_embeds = prior_outputs[0]
negative_image_embeds = prior_outputs[1]
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
image = [image] if isinstance(prompt, PIL.Image.Image) else image
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
prompt = (image_embeds.shape[0] // len(prompt)) * prompt
if (
isinstance(image, (list, tuple))
and len(image) < image_embeds.shape[0]
and image_embeds.shape[0] % len(image) == 0
):
image = (image_embeds.shape[0] // len(image)) * image
outputs = self.decoder_pipe(
prompt=prompt,
image=image,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
strength=strength,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
output_type=output_type,
callback=callback,
callback_steps=callback_steps,
return_dict=return_dict,
)
return outputs
class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
"""
Combined Pipeline for generation using Kandinsky
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`MultilingualCLIP`]):
Frozen text-encoder.
tokenizer ([`XLMRobertaTokenizer`]):
Tokenizer of class
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
prior_tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior_scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
"""
_load_connected_pipes = True
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->prior_prior->" "text_encoder->unet->movq"
def __init__(
self,
text_encoder: MultilingualCLIP,
tokenizer: XLMRobertaTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
movq: VQModel,
prior_prior: PriorTransformer,
prior_image_encoder: CLIPVisionModelWithProjection,
prior_text_encoder: CLIPTextModelWithProjection,
prior_tokenizer: CLIPTokenizer,
prior_scheduler: UnCLIPScheduler,
prior_image_processor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
prior_prior=prior_prior,
prior_image_encoder=prior_image_encoder,
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
prior_image_processor=prior_image_processor,
)
self.prior_pipe = KandinskyPriorPipeline(
prior=prior_prior,
image_encoder=prior_image_encoder,
text_encoder=prior_text_encoder,
tokenizer=prior_tokenizer,
scheduler=prior_scheduler,
image_processor=prior_image_processor,
)
self.decoder_pipe = KandinskyInpaintPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
movq=movq,
)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
def progress_bar(self, iterable=None, total=None):
self.prior_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.enable_model_cpu_offload()
def set_progress_bar_config(self, **kwargs):
self.prior_pipe.set_progress_bar_config(**kwargs)
self.decoder_pipe.set_progress_bar_config(**kwargs)
@torch.no_grad()
@replace_example_docstring(INPAINT_EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
height: int = 512,
width: int = 512,
prior_guidance_scale: float = 4.0,
prior_num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
again.
mask_image (`np.array`):
Tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while
black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single
channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3,
so the expected shape would be `(B, H, W, 1)`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
prior_num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
prior_outputs = self.prior_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=prior_num_inference_steps,
generator=generator,
latents=latents,
guidance_scale=prior_guidance_scale,
output_type="pt",
return_dict=False,
)
image_embeds = prior_outputs[0]
negative_image_embeds = prior_outputs[1]
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
image = [image] if isinstance(prompt, PIL.Image.Image) else image
mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
prompt = (image_embeds.shape[0] // len(prompt)) * prompt
if (
isinstance(image, (list, tuple))
and len(image) < image_embeds.shape[0]
and image_embeds.shape[0] % len(image) == 0
):
image = (image_embeds.shape[0] // len(image)) * image
if (
isinstance(mask_image, (list, tuple))
and len(mask_image) < image_embeds.shape[0]
and image_embeds.shape[0] % len(mask_image) == 0
):
mask_image = (image_embeds.shape[0] // len(mask_image)) * mask_image
outputs = self.decoder_pipe(
prompt=prompt,
image=image,
mask_image=mask_image,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
output_type=output_type,
callback=callback,
callback_steps=callback_steps,
return_dict=return_dict,
)
return outputs
| diffusers-main | src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py |
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
logger = logging.get_logger(__name__)
class MultiControlNetModel(ModelMixin):
r"""
Multiple `ControlNetModel` wrapper class for Multi-ControlNet
This module is a wrapper for multiple instances of the `ControlNetModel`. The `forward()` API is designed to be
compatible with `ControlNetModel`.
Args:
controlnets (`List[ControlNetModel]`):
Provides additional conditioning to the unet during the denoising process. You must set multiple
`ControlNetModel` as a list.
"""
def __init__(self, controlnets: Union[List[ControlNetModel], Tuple[ControlNetModel]]):
super().__init__()
self.nets = nn.ModuleList(controlnets)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
controlnet_cond: List[torch.tensor],
conditioning_scale: List[float],
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guess_mode: bool = False,
return_dict: bool = True,
) -> Union[ControlNetOutput, Tuple]:
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
down_samples, mid_sample = controlnet(
sample=sample,
timestep=timestep,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=image,
conditioning_scale=scale,
class_labels=class_labels,
timestep_cond=timestep_cond,
attention_mask=attention_mask,
added_cond_kwargs=added_cond_kwargs,
cross_attention_kwargs=cross_attention_kwargs,
guess_mode=guess_mode,
return_dict=return_dict,
)
# merge samples
if i == 0:
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
else:
down_block_res_samples = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
save_function: Callable = None,
safe_serialization: bool = True,
variant: Optional[str] = None,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
`[`~pipelines.controlnet.MultiControlNetModel.from_pretrained`]` class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful when in distributed training like
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
the main process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
need to replace `torch.save` by another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
variant (`str`, *optional*):
If specified, weights are saved in the format pytorch_model.<variant>.bin.
"""
idx = 0
model_path_to_save = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
model_path_to_save,
is_main_process=is_main_process,
save_function=save_function,
safe_serialization=safe_serialization,
variant=variant,
)
idx += 1
model_path_to_save = model_path_to_save + f"_{idx}"
@classmethod
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a pretrained MultiControlNet model from multiple pre-trained controlnet models.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you should first set it back in training mode with `model.train()`.
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_path (`os.PathLike`):
A path to a *directory* containing model weights saved using
[`~diffusers.pipelines.controlnet.MultiControlNetModel.save_pretrained`], e.g.,
`./my_model_directory/controlnet`.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
will be automatically derived from the model's weights.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
same device.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
GPU and the available CPU RAM if unset.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
setting this argument to `True` will raise an error.
variant (`str`, *optional*):
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
ignored when using `from_flax`.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
"""
idx = 0
controlnets = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
model_path_to_load = pretrained_model_path
while os.path.isdir(model_path_to_load):
controlnet = ControlNetModel.from_pretrained(model_path_to_load, **kwargs)
controlnets.append(controlnet)
idx += 1
model_path_to_load = pretrained_model_path + f"_{idx}"
logger.info(f"{len(controlnets)} controlnets loaded from {pretrained_model_path}.")
if len(controlnets) == 0:
raise ValueError(
f"No ControlNets found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
)
return cls(controlnets)
| diffusers-main | src/diffusers/pipelines/controlnet/multicontrolnet.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers.utils.import_utils import is_invisible_watermark_available
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
logging,
replace_example_docstring,
)
from ...utils.torch_utils import is_compiled_module, randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion_xl import StableDiffusionXLPipelineOutput
if is_invisible_watermark_available():
from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
from .multicontrolnet import MultiControlNetModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
>>> negative_prompt = "low quality, bad quality, sketches"
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
... )
>>> # initialize the models and pipeline
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
>>> controlnet = ControlNetModel.from_pretrained(
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
... )
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
>>> pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
... )
>>> pipe.enable_model_cpu_offload()
>>> # get canny image
>>> image = np.array(image)
>>> image = cv2.Canny(image, 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)
>>> # generate image
>>> image = pipe(
... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
... ).images[0]
```
"""
class StableDiffusionXLControlNetPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
Second frozen text-encoder
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
additional conditioning.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
Whether the negative prompt embeddings should always be set to 0. Also see the config of
`stabilityai/stable-diffusion-xl-base-1-0`.
add_watermarker (`bool`, *optional*):
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
watermarker is used.
"""
model_cpu_offload_seq = (
"text_encoder->text_encoder_2->unet->vae" # leave controlnet out on purpose because it iterates with unet
)
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: Optional[bool] = None,
):
super().__init__()
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
if add_watermarker:
self.watermark = StableDiffusionXLWatermarker()
else:
self.watermark = None
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(
self,
prompt: str,
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
# textual inversion: procecss multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, tokenizer)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(
text_input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
uncond_tokens: List[str]
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt, negative_prompt_2]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
prompt_2,
image,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
# `prompt` needs more sophisticated handling when there are multiple
# conditionings.
if isinstance(self.controlnet, MultiControlNetModel):
if isinstance(prompt, list):
logger.warning(
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
" prompts. The conditionings will be fixed across the prompts."
)
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
)
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
self.check_image(image, prompt, prompt_embeds)
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if not isinstance(image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets):
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
)
for image_ in image:
self.check_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if not isinstance(control_guidance_start, (tuple, list)):
control_guidance_start = [control_guidance_start]
if not isinstance(control_guidance_end, (tuple, list)):
control_guidance_end = [control_guidance_end]
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if isinstance(self.controlnet, MultiControlNetModel):
if len(control_guidance_start) != len(self.controlnet.nets):
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
`init`, images must be passed as a list such that each element of the list can be correctly batched for
input to a single ControlNet.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 5.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, pooled text embeddings are generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
The ControlNet encoder tries to recognize the content of the input image even if you remove all
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the ControlNet stops applying.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a target image resolution. It should be as same
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned containing the output images.
"""
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
image,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt,
prompt_2,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
for image_ in image:
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 7.2 Prepare added time ids & embeddings
if isinstance(image, list):
original_size = original_size or image[0].shape[-2:]
else:
original_size = original_size or image.shape[-2:]
target_size = target_size or (height, width)
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
)
else:
negative_add_time_ids = add_time_ids
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
# controlnet(s) inference
if guess_mode and do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
controlnet_added_cond_kwargs = {
"text_embeds": add_text_embeds.chunk(2)[1],
"time_ids": add_time_ids.chunk(2)[1],
}
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
controlnet_added_cond_kwargs = added_cond_kwargs
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
added_cond_kwargs=controlnet_added_cond_kwargs,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# manually for max memory savings
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
if not output_type == "latent":
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
| diffusers-main | src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
deprecate,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import is_compiled_module, randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from .multicontrolnet import MultiControlNetModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install transformers accelerate
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> init_image = load_image(
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
... )
>>> init_image = init_image.resize((512, 512))
>>> generator = torch.Generator(device="cpu").manual_seed(1)
>>> mask_image = load_image(
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
... )
>>> mask_image = mask_image.resize((512, 512))
>>> def make_inpaint_condition(image, image_mask):
... image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
... image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
... assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
... image[image_mask > 0.5] = -1.0 # set as masked pixel
... image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
... image = torch.from_numpy(image)
... return image
>>> control_image = make_inpaint_condition(init_image, mask_image)
>>> controlnet = ControlNetModel.from_pretrained(
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
... )
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> image = pipe(
... "a handsome man with ray-ban sunglasses",
... num_inference_steps=20,
... generator=generator,
... eta=1.0,
... image=init_image,
... mask_image=mask_image,
... control_image=control_image,
... ).images[0]
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
"""
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
``image`` and ``1`` for the ``mask``.
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
Args:
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
Raises:
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
(ot the other way around).
Returns:
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
dimensions: ``batch x channels x height x width``.
"""
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
deprecate(
"prepare_mask_and_masked_image",
"0.30.0",
deprecation_message,
)
if image is None:
raise ValueError("`image` input cannot be undefined.")
if mask is None:
raise ValueError("`mask_image` input cannot be undefined.")
if isinstance(image, torch.Tensor):
if not isinstance(mask, torch.Tensor):
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
# Batch single image
if image.ndim == 3:
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
image = image.unsqueeze(0)
# Batch and add channel dim for single mask
if mask.ndim == 2:
mask = mask.unsqueeze(0).unsqueeze(0)
# Batch single mask or add channel dim
if mask.ndim == 3:
# Single batched mask, no channel dim or single mask not batched but channel dim
if mask.shape[0] == 1:
mask = mask.unsqueeze(0)
# Batched masks no channel dim
else:
mask = mask.unsqueeze(1)
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
# Check image is in [-1, 1]
if image.min() < -1 or image.max() > 1:
raise ValueError("Image should be in [-1, 1] range")
# Check mask is in [0, 1]
if mask.min() < 0 or mask.max() > 1:
raise ValueError("Mask should be in [0, 1] range")
# Binarize mask
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
# Image as float32
image = image.to(dtype=torch.float32)
elif isinstance(mask, torch.Tensor):
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
# resize all images w.r.t passed height an width
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
# n.b. ensure backwards compatibility as old function does not return image
if return_image:
return mask, masked_image, image
return mask, masked_image
class StableDiffusionControlNetInpaintPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
):
r"""
Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
<Tip>
This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as
default text-to-image Stable Diffusion checkpoints
([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image
Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as
[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
</Tip>
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
additional conditioning.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
def check_inputs(
self,
prompt,
image,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
):
if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# `prompt` needs more sophisticated handling when there are multiple
# conditionings.
if isinstance(self.controlnet, MultiControlNetModel):
if isinstance(prompt, list):
logger.warning(
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
" prompts. The conditionings will be fixed across the prompts."
)
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
)
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
self.check_image(image, prompt, prompt_embeds)
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if not isinstance(image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets):
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
)
for image_ in image:
self.check_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if isinstance(self.controlnet, MultiControlNetModel):
if len(control_guidance_start) != len(self.controlnet.nets):
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
def prepare_control_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
image=None,
timestep=None,
is_strength_max=True,
return_noise=False,
return_image_latents=False,
):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if (image is None or timestep is None) and not is_strength_max:
raise ValueError(
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
"However, either the image or the noise timestep has not been provided."
)
if return_image_latents or (latents is None and not is_strength_max):
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4:
image_latents = image
else:
image_latents = self._encode_vae_image(image=image, generator=generator)
if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
# if pure noise then scale the initial latents by the Scheduler's init sigma
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
else:
noise = latents.to(device)
latents = noise * self.scheduler.init_noise_sigma
outputs = (latents,)
if return_noise:
outputs += (noise,)
if return_image_latents:
outputs += (image_latents,)
return outputs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
def prepare_mask_latents(
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
mask = mask.to(device=device, dtype=dtype)
masked_image = masked_image.to(device=device, dtype=dtype)
if masked_image.shape[1] == 4:
masked_image_latents = masked_image
else:
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return mask, masked_image_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
image_latents = self.vae.config.scaling_factor * image_latents
return image_latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
control_image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 1.0,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`,
`List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`,
`List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
W, 1)`, or `(H, W)`.
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
`init`, images must be passed as a list such that each element of the list can be correctly batched for
input to a single ControlNet.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
The ControlNet encoder tries to recognize the content of the input image even if you remove all
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the ControlNet stops applying.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
control_image,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
control_image = self.prepare_control_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
elif isinstance(controlnet, MultiControlNetModel):
control_images = []
for control_image_ in control_image:
control_image_ = self.prepare_control_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
control_images.append(control_image_)
control_image = control_images
else:
assert False
# 4. Preprocess mask and image - resizes image and mask w.r.t height and width
init_image = self.image_processor.preprocess(image, height=height, width=width)
init_image = init_image.to(dtype=torch.float32)
mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
masked_image = init_image * (mask < 0.5)
_, _, height, width = init_image.shape
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps=num_inference_steps, strength=strength, device=device
)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
is_strength_max = strength == 1.0
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_unet = self.unet.config.in_channels
return_image_latents = num_channels_unet == 4
latents_outputs = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
image=init_image,
timestep=latent_timestep,
is_strength_max=is_strength_max,
return_noise=True,
return_image_latents=return_image_latents,
)
if return_image_latents:
latents, noise, image_latents = latents_outputs
else:
latents, noise = latents_outputs
# 7. Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask,
masked_image,
batch_size * num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
do_classifier_free_guidance,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# controlnet(s) inference
if guess_mode and do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=control_image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
if num_channels_unet == 9:
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if num_channels_unet == 4:
init_latents_proper = image_latents[:1]
init_mask = mask[:1]
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
deprecate,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import is_compiled_module, randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from .multicontrolnet import MultiControlNetModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
... )
>>> image = np.array(image)
>>> # get canny image
>>> image = cv2.Canny(image, 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> # remove following line if xformers is not installed
>>> pipe.enable_xformers_memory_efficient_attention()
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
... ).images[0]
```
"""
class StableDiffusionControlNetPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
additional conditioning.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
image,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# `prompt` needs more sophisticated handling when there are multiple
# conditionings.
if isinstance(self.controlnet, MultiControlNetModel):
if isinstance(prompt, list):
logger.warning(
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
" prompts. The conditionings will be fixed across the prompts."
)
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
)
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
self.check_image(image, prompt, prompt_embeds)
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if not isinstance(image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets):
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
)
for image_ in image:
self.check_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if not isinstance(control_guidance_start, (tuple, list)):
control_guidance_start = [control_guidance_start]
if not isinstance(control_guidance_end, (tuple, list)):
control_guidance_end = [control_guidance_end]
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if isinstance(self.controlnet, MultiControlNetModel):
if len(control_guidance_start) != len(self.controlnet.nets):
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
`init`, images must be passed as a list such that each element of the list can be correctly batched for
input to a single ControlNet.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
The ControlNet encoder tries to recognize the content of the input image even if you remove all
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the ControlNet stops applying.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
image,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
for image_ in image:
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# controlnet(s) inference
if guess_mode and do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
| diffusers-main | src/diffusers/pipelines/controlnet/pipeline_controlnet.py |
Subsets and Splits