python_code
stringlengths 0
290k
| repo_name
stringclasses 30
values | file_path
stringlengths 6
125
|
---|---|---|
from typing import Dict, List
def new_state() -> Dict[str, List]:
return {
"task_categories": [],
"task_ids": [],
"multilinguality": [],
"languages": [],
"language_creators": [],
"annotations_creators": [],
"source_datasets": [],
"size_categories": [],
"licenses": [],
"pretty_name": None,
}
| datasets-tagging-main | apputils.py |
import argparse
import os
import re
import nbformat
import shutil
import yaml
from pathlib import Path
re_framework_test = re.compile(r"^{#if\s+fw\s+===\s+'([^']+)'}\s*$")
re_framework_else = re.compile(r"^{:else}\s*$")
re_framework_end = re.compile(r"^{/if}\s*$")
re_html_line = re.compile(r"^<[^>]*/>\s*$")
re_html_tag = re.compile(r"<([^/>]*)>\s*$")
re_python_code = re.compile(r"^```(?:py|python|py no\-format|python no\-format)\s*$")
re_output_code = re.compile(r"^```(?:py|python)\s+out\s*$")
re_end_code = re.compile(r"^```\s*$")
frameworks = {"pt": "PyTorch", "tf": "TensorFlow"}
PATH_TO_COURSE = Path("chapters/")
def read_and_split_frameworks(fname):
"""
Read the MDX in fname and creates two versions (if necessary) for each framework.
"""
with open(fname, "r") as f:
content = f.readlines()
contents = {"pt": [], "tf": []}
differences = False
current_content = []
line_idx = 0
for line in content:
if re_framework_test.search(line) is not None:
differences = True
framework = re_framework_test.search(line).groups()[0]
for key in contents:
contents[key].extend(current_content)
current_content = []
elif re_framework_else.search(line) is not None:
contents[framework].extend(current_content)
current_content = []
framework = "pt" if framework == "tf" else "tf"
elif re_framework_end.search(line) is not None:
contents[framework].extend(current_content)
current_content = []
else:
current_content.append(line)
if len(current_content) > 0:
for key in contents:
contents[key].extend(current_content)
if differences:
return {k: "".join(content) for k, content in contents.items()}
else:
return "".join(content)
def extract_cells(content):
"""
Extract the code/output cells from content.
"""
cells = []
current_cell = None
is_output = False
for line in content.split("\n"):
if re_python_code.search(line) is not None:
is_output = False
current_cell = []
elif re_output_code.search(line) is not None:
is_output = True
current_cell = []
elif re_end_code.search(line) is not None and current_cell is not None:
cell = "\n".join(current_cell)
if is_output:
if not isinstance(cells[-1], tuple):
cells[-1] = (cells[-1], cell)
else:
cells.append(cell)
current_cell = None
current_md = []
elif current_cell is not None:
current_cell.append(line)
return cells
def convert_to_nb_cell(cell):
"""
Convert some cell (either just code or tuple (code, output)) to a proper notebook cell.
"""
nb_cell = {"cell_type": "code", "execution_count": None, "metadata": {}}
if isinstance(cell, tuple):
nb_cell["source"] = cell[0]
nb_cell["outputs"] = [
nbformat.notebooknode.NotebookNode(
{
"data": {"text/plain": cell[1]},
"execution_count": None,
"metadata": {},
"output_type": "execute_result",
}
)
]
else:
nb_cell["source"] = cell
nb_cell["outputs"] = []
return nbformat.notebooknode.NotebookNode(nb_cell)
def nb_cell(source, code=True):
if not code:
return nbformat.notebooknode.NotebookNode({"cell_type": "markdown", "source": source, "metadata": {}})
return nbformat.notebooknode.NotebookNode(
{"cell_type": "code", "metadata": {}, "source": source, "execution_count": None, "outputs": []}
)
def build_notebook(fname, title, output_dir="."):
"""
Build the notebook for fname with a given title in output_dir.
"""
sections = read_and_split_frameworks(fname)
sections_with_accelerate = [
"chapter3/4", # "A full training",
"chapter7/2_pt", # "Token classification (PyTorch)",
"chapter7/3_pt", # "Fine-tuning a masked language model (PyTorch)"
"chapter7/4_pt", # "Translation (PyTorch)"
"chapter7/5_pt", # "Summarization (PyTorch)",
"chapter7/6_pt", # "Training a causal language model from scratch (PyTorch)"
"chapter7/7_pt", # "Question answering (PyTorch)"
]
sections_with_hf_hub = [
"chapter4/3_pt", # "Sharing pretrained models (PyTorch)"
"chapter4/3_tf", # "Sharing pretrained models (TensorFlow)"
"chapter5/5", # "Creating your own dataset"
"chapter7/2_pt", # "Token classification (PyTorch)"
"chapter7/2_tf", # "Token classification (TensorFlow)"
"chapter6/2", # "Training a new tokenizer from an old one"
"chapter7/3_pt", # "Fine-tuning a masked language model (PyTorch)"
"chapter7/3_tf", # "Fine-tuning a masked language model (TensorFlow)"
"chapter7/4_pt", # "Translation (PyTorch)"
"chapter7/4_tf", # "Translation (TensorFlow)"
"chapter7/5_pt", # "Summarization (PyTorch)"
"chapter7/5_tf", # "Summarization (TensorFlow)"
"chapter7/6_pt", # "Training a causal language model from scratch (PyTorch)"
"chapter7/6_tf", # "Training a causal language model from scratch (TensorFlow)"
"chapter7/7_pt", # "Question answering (PyTorch)"
"chapter7/7_tf", # "Question answering (TensorFlow)"
"chapter8/2", # "What to do when you get an error"
]
sections_with_faiss = [
"chapter5/6_pt", # "Semantic search with FAISS (PyTorch)"
"chapter5/6_tf", # "Semantic search with FAISS (TensorFlow)"
]
sections_with_gradio = [
"chapter9/2", # "Building your first demo"
"chapter9/3", # "Understanding the Interface class"
"chapter9/4", # "Sharing demos with others"
"chapter9/5", # "Integrations with the Hugging Face Hub"
"chapter9/6", # "Advanced Interface features"
"chapter9/7", # "Introduction to Blocks"
]
stem = Path(fname).stem
if not isinstance(sections, dict):
contents = [sections]
titles = [title]
fnames = [f"section{stem}.ipynb"]
section_names = [f"{Path(fname).parent.stem}/{stem}"]
else:
contents = []
titles = []
fnames = []
section_names = []
for key, section in sections.items():
contents.append(section)
titles.append(f"{title} ({frameworks[key]})")
fnames.append(f"section{stem}_{key}.ipynb")
section_names.append(f"{Path(fname).parent.stem}/{stem}_{key}")
for title, content, fname, section_name in zip(titles, contents, fnames, section_names):
cells = extract_cells(content)
if len(cells) == 0:
continue
nb_cells = [
nb_cell(f"# {title}", code=False),
nb_cell("Install the Transformers, Datasets, and Evaluate libraries to run this notebook.", code=False),
]
# Install cell
installs = ["!pip install datasets evaluate transformers[sentencepiece]"]
if section_name in sections_with_accelerate:
installs.append("!pip install accelerate")
installs.append("# To run the training on TPU, you will need to uncomment the followin line:")
installs.append(
"# !pip install cloud-tpu-client==0.10 torch==1.9.0 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.9-cp37-cp37m-linux_x86_64.whl"
)
if section_name in sections_with_hf_hub:
installs.append("!apt install git-lfs")
if section_name in sections_with_faiss:
installs.append("!pip install faiss-gpu")
if section_name in sections_with_gradio:
installs.append("!pip install gradio")
nb_cells.append(nb_cell("\n".join(installs)))
if section_name in sections_with_hf_hub:
nb_cells.extend(
[
nb_cell(
"You will need to setup git, adapt your email and name in the following cell.", code=False
),
nb_cell(
'!git config --global user.email "[email protected]"\n!git config --global user.name "Your Name"'
),
nb_cell(
"You will also need to be logged in to the Hugging Face Hub. Execute the following and enter your credentials.",
code=False,
),
nb_cell("from huggingface_hub import notebook_login\n\nnotebook_login()"),
]
)
nb_cells += [convert_to_nb_cell(cell) for cell in cells]
metadata = {"colab": {"name": title, "provenance": []}}
nb_dict = {"cells": nb_cells, "metadata": metadata, "nbformat": 4, "nbformat_minor": 4}
notebook = nbformat.notebooknode.NotebookNode(nb_dict)
os.makedirs(output_dir, exist_ok=True)
nbformat.write(notebook, os.path.join(output_dir, fname), version=4)
def get_titles(language):
"""
Parse the _toctree.yml file to get the correspondence filename to title
"""
table = yaml.safe_load(open(os.path.join(f"chapters/{language}", "_toctree.yml"), "r"))
result = {}
for entry in table:
for section in entry["sections"]:
section_title = section["title"]
if "local_fw" in section:
section_names = section["local_fw"]
result[section_names["pt"]] = section_title
result[section_names["tf"]] = section_title
else:
section_name = section["local"]
result[section_name] = section_title
return {k: v for k, v in result.items() if "quiz" not in v}
def create_notebooks(language, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for folder in os.listdir(output_dir):
if folder.startswith("chapter"):
shutil.rmtree(os.path.join(output_dir, folder))
titles = get_titles(language)
for fname, title in titles.items():
build_notebook(
os.path.join(f"chapters/{language}", f"{fname}.mdx"),
title,
os.path.join(output_dir, Path(fname).parent),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--output_dir", type=str, help="Where to output the notebooks")
args = parser.parse_args()
languages = [f.stem for f in PATH_TO_COURSE.iterdir() if f.is_dir()]
for language in languages:
language_output_dir = f"{args.output_dir}/{language}"
create_notebooks(language, language_output_dir)
# Remove empty notebook folders
if not any(Path(language_output_dir).iterdir()):
shutil.rmtree(language_output_dir)
| audio-transformers-course-main | utils/generate_notebooks.py |
import argparse
import black
import os
import re
from pathlib import Path
def blackify(filename, check_only=False):
# Read the content of the file
with open(filename, "r", encoding="utf-8") as f:
content = f.read()
lines = content.split("\n")
# Split the content into code samples in py or python blocks.
code_samples = []
line_index = 0
while line_index < len(lines):
line = lines[line_index]
if line.strip() in ["```py", "```python"]:
line_index += 1
start_index = line_index
while line_index < len(lines) and lines[line_index].strip() != "```":
line_index += 1
code = "\n".join(lines[start_index:line_index])
# Deal with ! instructions
code = re.sub(r"^!", r"## !", code, flags=re.MULTILINE)
code_samples.append({"start_index": start_index, "end_index": line_index - 1, "code": code})
line_index += 1
else:
line_index += 1
# Let's blackify the code! We put everything in one big text to go faster.
delimiter = "\n\n### New cell ###\n"
full_code = delimiter.join([sample["code"] for sample in code_samples])
formatted_code = full_code.replace("\t", " ")
formatted_code = black.format_str(formatted_code, mode=black.FileMode({black.TargetVersion.PY37}, line_length=90))
# Black adds last new lines we don't want, so we strip individual code samples.
cells = formatted_code.split(delimiter)
cells = [cell.strip() for cell in cells]
formatted_code = delimiter.join(cells)
if check_only:
return full_code == formatted_code
elif full_code == formatted_code:
# Nothing to do, all is good
return
formatted_code = re.sub(r"^## !", r"!", formatted_code, flags=re.MULTILINE)
print(f"Formatting {filename}")
# Re-build the content with formatted code
new_lines = []
start_index = 0
for sample, code in zip(code_samples, formatted_code.split(delimiter)):
new_lines.extend(lines[start_index : sample["start_index"]])
new_lines.append(code)
start_index = sample["end_index"] + 1
new_lines.extend(lines[start_index:])
with open(filename, "w", encoding="utf-8") as f:
f.write("\n".join(new_lines))
def format_all_files(check_only=False):
failures = []
for filename in Path("chapters").glob("**/*.mdx"):
try:
same = blackify(filename, check_only=check_only)
if check_only and not same:
failures.append(filename)
except Exception:
print(f"Failed to format {filename}.")
raise
if check_only and len(failures) > 0:
raise ValueError(f"{len(failures)} files need to be formatted, run `make style`.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--check_only",
action="store_true",
help="Just check files are properly formatted.",
)
args = parser.parse_args()
format_all_files(check_only=args.check_only)
| audio-transformers-course-main | utils/code_formatter.py |
import argparse
import os
import yaml
from pathlib import Path
PATH_TO_COURSE = Path("chapters/")
def load_sections(language: str):
toc = yaml.safe_load(
open(os.path.join(PATH_TO_COURSE / language, "_toctree.yml"), "r")
)
sections = []
for chapter in toc:
for section in chapter["sections"]:
sections.append(section["local"])
return set(sorted(sections))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--language", type=str, help="Translation language to validate")
args = parser.parse_args()
english_sections = load_sections("en")
translation_sections = load_sections(args.language)
missing_sections = english_sections.difference(translation_sections)
if len(missing_sections) > 0:
print("Missing sections:")
for section in missing_sections:
print(section)
else:
print("✅ No missing sections - translation complete!") | audio-transformers-course-main | utils/validate_translation.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py
To create the package for pypi.
1. Run `make pre-release` (or `make pre-patch` for a patch release) then run `make fix-copies` to fix the index of the
documentation.
If releasing on a special branch, copy the updated README.md on the main branch for your the commit you will make
for the post-release and run `make fix-copies` on the main branch as well.
2. Run Tests for Amazon Sagemaker. The documentation is located in `./tests/sagemaker/README.md`, otherwise @philschmid.
3. Unpin specific versions from setup.py that use a git install.
4. Checkout the release branch (v<RELEASE>-release, for example v4.19-release), and commit these changes with the
message: "Release: <RELEASE>" and push.
5. Wait for the tests on main to be completed and be green (otherwise revert and fix bugs)
6. Add a tag in git to mark the release: "git tag v<RELEASE> -m 'Adds tag v<RELEASE> for pypi' "
Push the tag to git: git push --tags origin v<RELEASE>-release
7. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
8. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi diffusers
Check you can run the following commands:
python -c "from diffusers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))"
python -c "from diffusers import *"
9. Upload the final version to actual pypi:
twine upload dist/* -r pypi
10. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
11. Run `make post-release` (or, for a patch release, `make post-patch`). If you were on a branch for the release,
you need to go back to main before executing this.
"""
import os
import re
from distutils.core import Command
from setuptools import find_packages, setup
# IMPORTANT:
# 1. all dependencies should be listed here with their version requirements if any
# 2. once modified, run: `make deps_table_update` to update src/diffusers/dependency_versions_table.py
_deps = [
"Pillow", # keep the PIL.Image.Resampling deprecation away
"accelerate>=0.11.0",
"black==22.8",
"datasets",
"filelock",
"flake8>=3.8.3",
"flax>=0.4.1",
"hf-doc-builder>=0.3.0",
"huggingface-hub>=0.10.0",
"importlib_metadata",
"isort>=5.5.4",
"jax>=0.2.8,!=0.3.2",
"jaxlib>=0.1.65",
"modelcards>=0.1.4",
"numpy",
"parameterized",
"pytest",
"pytest-timeout",
"pytest-xdist",
"safetensors",
"sentencepiece>=0.1.91,!=0.1.92",
"scipy",
"regex!=2019.12.17",
"requests",
"tensorboard",
"torch>=1.4",
"torchvision",
"transformers>=4.21.0",
]
# this is a lookup table with items like:
#
# tokenizers: "huggingface-hub==0.8.0"
# packaging: "packaging"
#
# some of the values are versioned whereas others aren't.
deps = {b: a for a, b in (re.findall(r"^(([^!=<>~]+)(?:[!=<>~].*)?$)", x)[0] for x in _deps)}
# since we save this data in src/diffusers/dependency_versions_table.py it can be easily accessed from
# anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with:
#
# python -c 'import sys; from diffusers.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets
#
# Just pass the desired package names to that script as it's shown with 2 packages above.
#
# If diffusers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above
#
# You can then feed this for example to `pip`:
#
# pip install -U $(python -c 'import sys; from diffusers.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets)
#
def deps_list(*pkgs):
return [deps[pkg] for pkg in pkgs]
class DepsTableUpdateCommand(Command):
"""
A custom distutils command that updates the dependency table.
usage: python setup.py deps_table_update
"""
description = "build runtime dependency table"
user_options = [
# format: (long option, short option, description).
("dep-table-update", None, "updates src/diffusers/dependency_versions_table.py"),
]
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()])
content = [
"# THIS FILE HAS BEEN AUTOGENERATED. To update:",
"# 1. modify the `_deps` dict in setup.py",
"# 2. run `make deps_table_update``",
"deps = {",
entries,
"}",
"",
]
target = "src/diffusers/dependency_versions_table.py"
print(f"updating {target}")
with open(target, "w", encoding="utf-8", newline="\n") as f:
f.write("\n".join(content))
extras = {}
extras = {}
extras["quality"] = deps_list("black", "isort", "flake8", "hf-doc-builder")
extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "tensorboard", "modelcards")
extras["test"] = deps_list(
"datasets",
"parameterized",
"pytest",
"pytest-timeout",
"pytest-xdist",
"safetensors",
"sentencepiece",
"scipy",
"torchvision",
"transformers",
)
extras["torch"] = deps_list("torch", "accelerate")
if os.name == "nt": # windows
extras["flax"] = [] # jax is not supported on windows
else:
extras["flax"] = deps_list("jax", "jaxlib", "flax")
extras["dev"] = (
extras["quality"] + extras["test"] + extras["training"] + extras["docs"] + extras["torch"] + extras["flax"]
)
install_requires = [
deps["importlib_metadata"],
deps["filelock"],
deps["huggingface-hub"],
deps["numpy"],
deps["regex"],
deps["requests"],
deps["Pillow"],
]
setup(
name="diffusers",
version="0.9.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="Diffusers",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="deep learning",
license="Apache",
author="The HuggingFace team",
author_email="[email protected]",
url="https://github.com/huggingface/diffusers",
package_dir={"": "src"},
packages=find_packages("src"),
include_package_data=True,
python_requires=">=3.7.0",
install_requires=install_requires,
extras_require=extras,
entry_points={"console_scripts": ["diffusers-cli=diffusers.commands.diffusers_cli:main"]},
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
cmdclass={"deps_table_update": DepsTableUpdateCommand},
)
# Release checklist
# 1. Change the version in __init__.py and setup.py.
# 2. Commit these changes with the message: "Release: Release"
# 3. Add a tag in git to mark the release: "git tag RELEASE -m 'Adds tag RELEASE for pypi' "
# Push the tag to git: git push --tags origin main
# 4. Run the following commands in the top-level directory:
# python setup.py bdist_wheel
# python setup.py sdist
# 5. Upload the package to the pypi test server first:
# twine upload dist/* -r pypitest
# twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
# 6. Check that you can install it in a virtualenv by running:
# pip install -i https://testpypi.python.org/pypi diffusers
# diffusers env
# diffusers test
# 7. Upload the final version to actual pypi:
# twine upload dist/* -r pypi
# 8. Add release notes to the tag in github once everything is looking hunky-dory.
# 9. Update the version in __init__.py, setup.py to the new version "-dev" and push to master
| diffusers-ft-main | setup.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import tempfile
import unittest
from typing import Dict, List, Tuple
import numpy as np
import torch
from diffusers.modeling_utils import ModelMixin
from diffusers.training_utils import EMAModel
from diffusers.utils import torch_device
class ModelTesterMixin:
def test_from_pretrained_save_pretrained(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
new_model = self.model_class.from_pretrained(tmpdirname)
new_model.to(torch_device)
with torch.no_grad():
# Warmup pass when using mps (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
_ = model(**self.dummy_input)
_ = new_model(**self.dummy_input)
image = model(**inputs_dict)
if isinstance(image, dict):
image = image.sample
new_image = new_model(**inputs_dict)
if isinstance(new_image, dict):
new_image = new_image.sample
max_diff = (image - new_image).abs().sum().item()
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
def test_determinism(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
# Warmup pass when using mps (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
model(**self.dummy_input)
first = model(**inputs_dict)
if isinstance(first, dict):
first = first.sample
second = model(**inputs_dict)
if isinstance(second, dict):
second = second.sample
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_output(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_forward_with_norm_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 16
init_dict["block_out_channels"] = (16, 32)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_forward_signature(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["sample", "timestep"]
self.assertListEqual(arg_names[:2], expected_arg_names)
def test_model_from_pretrained(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
# test if the model can be loaded from the config
# and has all the expected shape
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
new_model = self.model_class.from_pretrained(tmpdirname)
new_model.to(torch_device)
new_model.eval()
# check if all parameters shape are the same
for param_name in model.state_dict().keys():
param_1 = model.state_dict()[param_name]
param_2 = new_model.state_dict()[param_name]
self.assertEqual(param_1.shape, param_2.shape)
with torch.no_grad():
output_1 = model(**inputs_dict)
if isinstance(output_1, dict):
output_1 = output_1.sample
output_2 = new_model(**inputs_dict)
if isinstance(output_2, dict):
output_2 = output_2.sample
self.assertEqual(output_1.shape, output_2.shape)
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
def test_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
def test_ema_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
ema_model = EMAModel(model, device=torch_device)
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
ema_model.step(model)
def test_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
# Temporary fallback until `aten::_index_put_impl_` is implemented in mps
# Track progress in https://github.com/pytorch/pytorch/issues/77764
device = t.device
if device.type == "mps":
t = t.to("cpu")
t[t != t] = 0
return t.to(device)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
# Warmup pass when using mps (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
model(**self.dummy_input)
outputs_dict = model(**inputs_dict)
outputs_tuple = model(**inputs_dict, return_dict=False)
recursive_check(outputs_tuple, outputs_dict)
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_enable_disable_gradient_checkpointing(self):
if not self.model_class._supports_gradient_checkpointing:
return # Skip test if model does not support gradient checkpointing
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
# at init model should have gradient checkpointing disabled
model = self.model_class(**init_dict)
self.assertFalse(model.is_gradient_checkpointing)
# check enable works
model.enable_gradient_checkpointing()
self.assertTrue(model.is_gradient_checkpointing)
# check disable works
model.disable_gradient_checkpointing()
self.assertFalse(model.is_gradient_checkpointing)
def test_deprecated_kwargs(self):
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
" from `_deprecated_kwargs = [<deprecated_argument>]`"
)
| diffusers-ft-main | tests/test_modeling_common.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from diffusers import __version__
from diffusers.utils import deprecate
class DeprecateTester(unittest.TestCase):
higher_version = ".".join([str(int(__version__.split(".")[0]) + 1)] + __version__.split(".")[1:])
lower_version = "0.0.1"
def test_deprecate_function_arg(self):
kwargs = {"deprecated_arg": 4}
with self.assertWarns(FutureWarning) as warning:
output = deprecate("deprecated_arg", self.higher_version, "message", take_from=kwargs)
assert output == 4
assert (
str(warning.warning)
== f"The `deprecated_arg` argument is deprecated and will be removed in version {self.higher_version}."
" message"
)
def test_deprecate_function_arg_tuple(self):
kwargs = {"deprecated_arg": 4}
with self.assertWarns(FutureWarning) as warning:
output = deprecate(("deprecated_arg", self.higher_version, "message"), take_from=kwargs)
assert output == 4
assert (
str(warning.warning)
== f"The `deprecated_arg` argument is deprecated and will be removed in version {self.higher_version}."
" message"
)
def test_deprecate_function_args(self):
kwargs = {"deprecated_arg_1": 4, "deprecated_arg_2": 8}
with self.assertWarns(FutureWarning) as warning:
output_1, output_2 = deprecate(
("deprecated_arg_1", self.higher_version, "Hey"),
("deprecated_arg_2", self.higher_version, "Hey"),
take_from=kwargs,
)
assert output_1 == 4
assert output_2 == 8
assert (
str(warning.warnings[0].message)
== "The `deprecated_arg_1` argument is deprecated and will be removed in version"
f" {self.higher_version}. Hey"
)
assert (
str(warning.warnings[1].message)
== "The `deprecated_arg_2` argument is deprecated and will be removed in version"
f" {self.higher_version}. Hey"
)
def test_deprecate_function_incorrect_arg(self):
kwargs = {"deprecated_arg": 4}
with self.assertRaises(TypeError) as error:
deprecate(("wrong_arg", self.higher_version, "message"), take_from=kwargs)
assert "test_deprecate_function_incorrect_arg in" in str(error.exception)
assert "line" in str(error.exception)
assert "got an unexpected keyword argument `deprecated_arg`" in str(error.exception)
def test_deprecate_arg_no_kwarg(self):
with self.assertWarns(FutureWarning) as warning:
deprecate(("deprecated_arg", self.higher_version, "message"))
assert (
str(warning.warning)
== f"`deprecated_arg` is deprecated and will be removed in version {self.higher_version}. message"
)
def test_deprecate_args_no_kwarg(self):
with self.assertWarns(FutureWarning) as warning:
deprecate(
("deprecated_arg_1", self.higher_version, "Hey"),
("deprecated_arg_2", self.higher_version, "Hey"),
)
assert (
str(warning.warnings[0].message)
== f"`deprecated_arg_1` is deprecated and will be removed in version {self.higher_version}. Hey"
)
assert (
str(warning.warnings[1].message)
== f"`deprecated_arg_2` is deprecated and will be removed in version {self.higher_version}. Hey"
)
def test_deprecate_class_obj(self):
class Args:
arg = 5
with self.assertWarns(FutureWarning) as warning:
arg = deprecate(("arg", self.higher_version, "message"), take_from=Args())
assert arg == 5
assert (
str(warning.warning)
== f"The `arg` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
def test_deprecate_class_objs(self):
class Args:
arg = 5
foo = 7
with self.assertWarns(FutureWarning) as warning:
arg_1, arg_2 = deprecate(
("arg", self.higher_version, "message"),
("foo", self.higher_version, "message"),
("does not exist", self.higher_version, "message"),
take_from=Args(),
)
assert arg_1 == 5
assert arg_2 == 7
assert (
str(warning.warning)
== f"The `arg` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
assert (
str(warning.warnings[0].message)
== f"The `arg` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
assert (
str(warning.warnings[1].message)
== f"The `foo` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
def test_deprecate_incorrect_version(self):
kwargs = {"deprecated_arg": 4}
with self.assertRaises(ValueError) as error:
deprecate(("wrong_arg", self.lower_version, "message"), take_from=kwargs)
assert (
str(error.exception)
== "The deprecation tuple ('wrong_arg', '0.0.1', 'message') should be removed since diffusers' version"
f" {__version__} is >= {self.lower_version}"
)
def test_deprecate_incorrect_no_standard_warn(self):
with self.assertWarns(FutureWarning) as warning:
deprecate(("deprecated_arg", self.higher_version, "This message is better!!!"), standard_warn=False)
assert str(warning.warning) == "This message is better!!!"
| diffusers-ft-main | tests/test_utils.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
git_repo_path = abspath(join(dirname(dirname(__file__)), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def pytest_addoption(parser):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(parser)
def pytest_terminal_summary(terminalreporter):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
make_reports = terminalreporter.config.getoption("--make-reports")
if make_reports:
pytest_terminal_summary_main(terminalreporter, id=make_reports)
| diffusers-ft-main | tests/conftest.py |
from diffusers.utils.testing_utils import require_torch
@require_torch
class PipelineTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
equivalence of dict and tuple outputs, etc.
"""
pass
| diffusers-ft-main | tests/test_pipelines_common.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import json
import os
import random
import shutil
import tempfile
import unittest
import numpy as np
import torch
import PIL
from diffusers import (
AutoencoderKL,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
UNet2DConditionModel,
UNet2DModel,
logging,
)
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
from parameterized import parameterized
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
torch.backends.cuda.matmul.allow_tf32 = False
def test_progress_bar(capsys):
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, scheduler).to(torch_device)
ddpm(output_type="numpy").images
captured = capsys.readouterr()
assert "10/10" in captured.err, "Progress bar has to be displayed"
ddpm.set_progress_bar_config(disable=True)
ddpm(output_type="numpy").images
captured = capsys.readouterr()
assert captured.err == "", "Progress bar should be disabled"
class DownloadTests(unittest.TestCase):
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_ = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a flax file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".msgpack") for f in files)
# We need to never convert this tiny model to safetensors for this test to pass
assert not any(f.endswith(".safetensors") for f in files)
def test_download_safetensors(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_ = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a pytorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".bin") for f in files)
def test_download_no_safety_checker(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe_2 = pipe_2.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_explicit_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
pipe_2 = pipe_2.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_default_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe = pipe.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
pipe_2 = pipe_2.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
class CustomPipelineTests(unittest.TestCase):
def test_load_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
# NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
# under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
assert pipeline.__class__.__name__ == "CustomPipeline"
def test_run_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert images[0].shape == (1, 32, 32, 3)
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
assert output_str == "This is a test"
def test_local_custom_pipeline_repo(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
def test_local_custom_pipeline_file(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
@slow
@require_torch_gpu
def test_load_pipeline_from_git(self):
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
revision="fp16",
)
pipeline.enable_attention_slicing()
pipeline = pipeline.to(torch_device)
# NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
# https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"
image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
assert image.shape == (512, 512, 3)
class PipelineFastTests(unittest.TestCase):
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def dummy_uncond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def dummy_cond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
@parameterized.expand(
[
[DDIMScheduler, DDIMPipeline, 32],
[DDPMScheduler, DDPMPipeline, 32],
[DDIMScheduler, DDIMPipeline, (32, 64)],
[DDPMScheduler, DDPMPipeline, (64, 32)],
]
)
def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
unet = self.dummy_uncond_unet(sample_size)
scheduler = scheduler_fn()
pipeline = pipeline_fn(unet, scheduler).to(torch_device)
# Device type MPS is not supported for torch.Generator() api.
if torch_device == "mps":
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out_image = pipeline(
generator=generator,
num_inference_steps=2,
output_type="np",
).images
sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
assert out_image.shape == (1, *sample_size, 3)
def test_stable_diffusion_components(self):
"""Test that components property works correctly"""
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
inpaint = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
).to(torch_device)
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
prompt = "A painting of a squirrel eating a burger"
# Device type MPS is not supported for torch.Generator() api.
if torch_device == "mps":
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
image_inpaint = inpaint(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
).images
image_img2img = img2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
init_image=init_image,
).images
image_text2img = text2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images
assert image_inpaint.shape == (1, 32, 32, 3)
assert image_img2img.shape == (1, 32, 32, 3)
assert image_text2img.shape == (1, 64, 64, 3)
def test_set_scheduler(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDIMScheduler)
sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDPMScheduler)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, PNDMScheduler)
sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, LMSDiscreteScheduler)
sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerDiscreteScheduler)
sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)
def test_set_scheduler_consistency(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
pndm_config = sd.scheduler.config
sd.scheduler = DDPMScheduler.from_config(pndm_config)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
pndm_config_2 = sd.scheduler.config
pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}
assert dict(pndm_config) == dict(pndm_config_2)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=ddim,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
ddim_config = sd.scheduler.config
sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
ddim_config_2 = sd.scheduler.config
ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}
assert dict(ddim_config) == dict(ddim_config_2)
def test_optional_components(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
orig_sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=unet,
feature_extractor=self.dummy_extractor,
)
sd = orig_sd
assert sd.config.requires_safety_checker is True
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that passing None works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that loading previous None works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
orig_sd.save_pretrained(tmpdirname)
# Test that loading without any directory works
shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
config["safety_checker"] = [None, None]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
# Test that loading from deleted model index works
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
del config["safety_checker"]
del config["feature_extractor"]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor != (None, None)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname,
feature_extractor=self.dummy_extractor,
safety_checker=unet,
requires_safety_checker=[True, True],
)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
@slow
class PipelineSlowTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_smart_download(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
with tempfile.TemporaryDirectory() as tmpdirname:
_ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
local_repo_name = "--".join(["models"] + model_id.split("/"))
snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])
# inspect all downloaded files to make sure that everything is included
assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
# let's make sure the super large numpy file:
# https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
# is not downloaded, but all the expected ones
assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))
def test_warning_unused_kwargs(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
logger = logging.get_logger("diffusers.pipeline_utils")
with tempfile.TemporaryDirectory() as tmpdirname:
with CaptureLogger(logger) as cap_logger:
DiffusionPipeline.from_pretrained(
model_id,
not_used=True,
cache_dir=tmpdirname,
force_download=True,
)
assert (
cap_logger.out
== "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored.\n"
)
def test_from_pretrained_save_pretrained(self):
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
schedular = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, schedular)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
generator = generator.manual_seed(0)
new_image = new_ddpm(generator=generator, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm = ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
generator = generator.manual_seed(0)
new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub_pass_model(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
# pass unet into DiffusionPipeline
unet = UNet2DModel.from_pretrained(model_path)
ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
generator = generator.manual_seed(0)
new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_output_format(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDIMScheduler.from_pretrained(model_path)
pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
images = pipe(generator=generator, output_type="numpy").images
assert images.shape == (1, 32, 32, 3)
assert isinstance(images, np.ndarray)
images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
assert isinstance(images, list)
assert len(images) == 1
assert isinstance(images[0], PIL.Image.Image)
# use PIL by default
images = pipe(generator=generator, num_inference_steps=4).images
assert isinstance(images, list)
assert isinstance(images[0], PIL.Image.Image)
def test_ddpm_ddim_equality_batched(self):
seed = 0
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
ddpm_scheduler = DDPMScheduler()
ddim_scheduler = DDIMScheduler()
ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddim_images = ddim(
batch_size=2,
generator=generator,
num_inference_steps=1000,
eta=1.0,
output_type="numpy",
use_clipped_model_output=True, # Need this to make DDIM match DDPM
).images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(ddpm_images - ddim_images).max() < 1e-1
| diffusers-ft-main | tests/test_pipelines.py |
diffusers-ft-main | tests/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import tempfile
import unittest
from typing import Dict, List, Tuple
from diffusers import FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxPNDMScheduler
from diffusers.utils import deprecate, is_flax_available
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from jax import random
jax_device = jax.default_backend()
@require_flax
class FlaxSchedulerCommonTest(unittest.TestCase):
scheduler_classes = ()
forward_default_kwargs = ()
@property
def dummy_sample(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
key1, key2 = random.split(random.PRNGKey(0))
sample = random.uniform(key1, (batch_size, num_channels, height, width))
return sample, key2
@property
def dummy_sample_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
sample = jnp.arange(num_elems)
sample = sample.reshape(num_channels, height, width, batch_size)
sample = sample / num_elems
return jnp.transpose(sample, (3, 0, 1, 2))
def get_scheduler_config(self):
raise NotImplementedError
def dummy_model(self):
def model(sample, t, *args):
return sample * t / (t + 1)
return model
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample, key = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample
new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample, key = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample
new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample, key = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample
new_output = new_scheduler.step(new_state, residual, 1, sample, key, **kwargs).prev_sample
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
sample, key = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output_0 = scheduler.step(state, residual, 0, sample, key, **kwargs).prev_sample
output_1 = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
return t.at[t != t].set(0)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has"
f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
sample, key = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_dict = scheduler.step(state, residual, 0, sample, key, **kwargs)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_tuple = scheduler.step(state, residual, 0, sample, key, return_dict=False, **kwargs)
recursive_check(outputs_tuple[0], outputs_dict.prev_sample)
def test_deprecated_kwargs(self):
for scheduler_class in self.scheduler_classes:
has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters
has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
" there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
" deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
)
@require_flax
class FlaxDDPMSchedulerTest(FlaxSchedulerCommonTest):
scheduler_classes = (FlaxDDPMScheduler,)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_variance_type(self):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=variance)
def test_clip_sample(self):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=clip_sample)
def test_time_indices(self):
for t in [0, 500, 999]:
self.check_over_forward(time_step=t)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert jnp.sum(jnp.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
assert jnp.sum(jnp.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
assert jnp.sum(jnp.abs(scheduler._get_variance(999) - 0.02)) < 1e-5
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
num_trained_timesteps = len(scheduler)
model = self.dummy_model()
sample = self.dummy_sample_deter
key1, key2 = random.split(random.PRNGKey(0))
for t in reversed(range(num_trained_timesteps)):
# 1. predict noise residual
residual = model(sample, t)
# 2. predict previous mean of sample x_t-1
output = scheduler.step(state, residual, t, sample, key1)
pred_prev_sample = output.prev_sample
state = output.state
key1, key2 = random.split(key2)
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
sample = pred_prev_sample
result_sum = jnp.sum(jnp.abs(sample))
result_mean = jnp.mean(jnp.abs(sample))
if jax_device == "tpu":
assert abs(result_sum - 255.0714) < 1e-2
assert abs(result_mean - 0.332124) < 1e-3
else:
assert abs(result_sum - 255.1113) < 1e-2
assert abs(result_mean - 0.332176) < 1e-3
@require_flax
class FlaxDDIMSchedulerTest(FlaxSchedulerCommonTest):
scheduler_classes = (FlaxDDIMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**kwargs)
return config
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
key1, key2 = random.split(random.PRNGKey(0))
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
state = scheduler.set_timesteps(state, num_inference_steps)
for t in state.timesteps:
residual = model(sample, t)
output = scheduler.step(state, residual, t, sample)
sample = output.prev_sample
state = output.state
key1, key2 = random.split(key2)
return sample
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample, _ = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample, _ = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample
new_output = new_scheduler.step(new_state, residual, 1, sample, **kwargs).prev_sample
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample, _ = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
return t.at[t != t].set(0)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has"
f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
sample, _ = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple[0], outputs_dict.prev_sample)
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
sample, _ = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output_0 = scheduler.step(state, residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_steps_offset(self):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=steps_offset)
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(steps_offset=1)
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
state = scheduler.set_timesteps(state, 5)
assert jnp.equal(state.timesteps, jnp.array([801, 601, 401, 201, 1])).all()
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_time_indices(self):
for t in [1, 10, 49]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
assert jnp.sum(jnp.abs(scheduler._get_variance(0, 0, state.alphas_cumprod) - 0.0)) < 1e-5
assert jnp.sum(jnp.abs(scheduler._get_variance(420, 400, state.alphas_cumprod) - 0.14771)) < 1e-5
assert jnp.sum(jnp.abs(scheduler._get_variance(980, 960, state.alphas_cumprod) - 0.32460)) < 1e-5
assert jnp.sum(jnp.abs(scheduler._get_variance(0, 0, state.alphas_cumprod) - 0.0)) < 1e-5
assert jnp.sum(jnp.abs(scheduler._get_variance(487, 486, state.alphas_cumprod) - 0.00979)) < 1e-5
assert jnp.sum(jnp.abs(scheduler._get_variance(999, 998, state.alphas_cumprod) - 0.02)) < 1e-5
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_sum = jnp.sum(jnp.abs(sample))
result_mean = jnp.mean(jnp.abs(sample))
assert abs(result_sum - 172.0067) < 1e-2
assert abs(result_mean - 0.223967) < 1e-3
def test_full_loop_with_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
result_sum = jnp.sum(jnp.abs(sample))
result_mean = jnp.mean(jnp.abs(sample))
if jax_device == "tpu":
assert abs(result_sum - 149.8409) < 1e-2
assert abs(result_mean - 0.1951) < 1e-3
else:
assert abs(result_sum - 149.8295) < 1e-2
assert abs(result_mean - 0.1951) < 1e-3
def test_full_loop_with_no_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
result_sum = jnp.sum(jnp.abs(sample))
result_mean = jnp.mean(jnp.abs(sample))
if jax_device == "tpu":
pass
# FIXME: both result_sum and result_mean are nan on TPU
# assert jnp.isnan(result_sum)
# assert jnp.isnan(result_mean)
else:
assert abs(result_sum - 149.0784) < 1e-2
assert abs(result_mean - 0.1941) < 1e-3
def test_prediction_type(self):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
def test_deprecated_predict_epsilon(self):
deprecate("remove this test", "0.10.0", "remove")
for predict_epsilon in [True, False]:
self.check_over_configs(predict_epsilon=predict_epsilon)
def test_deprecated_predict_epsilon_to_prediction_type(self):
deprecate("remove this test", "0.10.0", "remove")
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(predict_epsilon=True)
scheduler = scheduler_class.from_config(scheduler_config)
assert scheduler.prediction_type == "epsilon"
scheduler_config = self.get_scheduler_config(predict_epsilon=False)
scheduler = scheduler_class.from_config(scheduler_config)
assert scheduler.prediction_type == "sample"
@require_flax
class FlaxPNDMSchedulerTest(FlaxSchedulerCommonTest):
scheduler_classes = (FlaxPNDMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample, _ = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05])
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape)
# copy over dummy past residuals
state = state.replace(ets=dummy_past_residuals[:])
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape)
# copy over dummy past residuals
new_state = new_state.replace(ets=dummy_past_residuals[:])
(prev_sample, state) = scheduler.step_prk(state, residual, time_step, sample, **kwargs)
(new_prev_sample, new_state) = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs)
assert jnp.sum(jnp.abs(prev_sample - new_prev_sample)) < 1e-5, "Scheduler outputs are not identical"
output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs)
new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs)
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
pass
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
return t.at[t != t].set(0)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has"
f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
sample, _ = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple[0], outputs_dict.prev_sample)
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample, _ = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05])
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.ets = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname)
# copy over dummy past residuals
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape)
# copy over dummy past residual (must be after setting timesteps)
new_state.replace(ets=dummy_past_residuals[:])
output, state = scheduler.step_prk(state, residual, time_step, sample, **kwargs)
new_output, new_state = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs)
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs)
new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs)
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape)
for i, t in enumerate(state.prk_timesteps):
residual = model(sample, t)
sample, state = scheduler.step_prk(state, residual, t, sample)
for i, t in enumerate(state.plms_timesteps):
residual = model(sample, t)
sample, state = scheduler.step_plms(state, residual, t, sample)
return sample
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
sample, _ = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05])
state = state.replace(ets=dummy_past_residuals[:])
output_0, state = scheduler.step_prk(state, residual, 0, sample, **kwargs)
output_1, state = scheduler.step_prk(state, residual, 1, sample, **kwargs)
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
output_0, state = scheduler.step_plms(state, residual, 0, sample, **kwargs)
output_1, state = scheduler.step_plms(state, residual, 1, sample, **kwargs)
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_steps_offset(self):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=steps_offset)
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(steps_offset=1)
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
state = scheduler.set_timesteps(state, 10, shape=())
assert jnp.equal(
state.timesteps,
jnp.array([901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]),
).all()
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_time_indices(self):
for t in [1, 5, 10]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
self.check_over_forward(num_inference_steps=num_inference_steps)
def test_pow_of_3_inference_steps(self):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
num_inference_steps = 27
for scheduler_class in self.scheduler_classes:
sample, _ = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape)
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(state.prk_timesteps[:2]):
sample, state = scheduler.step_prk(state, residual, t, sample)
def test_inference_plms_no_past_residuals(self):
with self.assertRaises(ValueError):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
state = scheduler.create_state()
scheduler.step_plms(state, self.dummy_sample, 1, self.dummy_sample).prev_sample
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_sum = jnp.sum(jnp.abs(sample))
result_mean = jnp.mean(jnp.abs(sample))
if jax_device == "tpu":
assert abs(result_sum - 198.1275) < 1e-2
assert abs(result_mean - 0.2580) < 1e-3
else:
assert abs(result_sum - 198.1318) < 1e-2
assert abs(result_mean - 0.2580) < 1e-3
def test_full_loop_with_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
result_sum = jnp.sum(jnp.abs(sample))
result_mean = jnp.mean(jnp.abs(sample))
if jax_device == "tpu":
assert abs(result_sum - 186.83226) < 1e-2
assert abs(result_mean - 0.24327) < 1e-3
else:
assert abs(result_sum - 186.9466) < 1e-2
assert abs(result_mean - 0.24342) < 1e-3
def test_full_loop_with_no_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
result_sum = jnp.sum(jnp.abs(sample))
result_mean = jnp.mean(jnp.abs(sample))
if jax_device == "tpu":
assert abs(result_sum - 186.83226) < 1e-2
assert abs(result_mean - 0.24327) < 1e-3
else:
assert abs(result_sum - 186.9482) < 1e-2
assert abs(result_mean - 0.2434) < 1e-3
| diffusers-ft-main | tests/test_scheduler_flax.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import tempfile
import unittest
from typing import Dict, List, Tuple
import numpy as np
import torch
import torch.nn.functional as F
import diffusers
from diffusers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
ScoreSdeVeScheduler,
VQDiffusionScheduler,
logging,
)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import deprecate, torch_device
from diffusers.utils.testing_utils import CaptureLogger
torch.backends.cuda.matmul.allow_tf32 = False
class SchedulerObject(SchedulerMixin, ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
):
pass
class SchedulerObject2(SchedulerMixin, ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
f=[1, 3],
):
pass
class SchedulerObject3(SchedulerMixin, ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
f=[1, 3],
):
pass
class SchedulerBaseTests(unittest.TestCase):
def test_save_load_from_different_config(self):
obj = SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
logger = logging.get_logger("diffusers.configuration_utils")
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
with CaptureLogger(logger) as cap_logger_1:
config = SchedulerObject2.load_config(tmpdirname)
new_obj_1 = SchedulerObject2.from_config(config)
# now save a config parameter that is not expected
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
data = json.load(f)
data["unexpected"] = True
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
json.dump(data, f)
with CaptureLogger(logger) as cap_logger_2:
config = SchedulerObject.load_config(tmpdirname)
new_obj_2 = SchedulerObject.from_config(config)
with CaptureLogger(logger) as cap_logger_3:
config = SchedulerObject2.load_config(tmpdirname)
new_obj_3 = SchedulerObject2.from_config(config)
assert new_obj_1.__class__ == SchedulerObject2
assert new_obj_2.__class__ == SchedulerObject
assert new_obj_3.__class__ == SchedulerObject2
assert cap_logger_1.out == ""
assert (
cap_logger_2.out
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
" will"
" be ignored. Please verify your config.json configuration file.\n"
)
assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out
def test_save_load_compatible_schedulers(self):
SchedulerObject2._compatibles = ["SchedulerObject"]
SchedulerObject._compatibles = ["SchedulerObject2"]
obj = SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
setattr(diffusers, "SchedulerObject2", SchedulerObject2)
logger = logging.get_logger("diffusers.configuration_utils")
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
# now save a config parameter that is expected by another class, but not origin class
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
data = json.load(f)
data["f"] = [0, 0]
data["unexpected"] = True
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
json.dump(data, f)
with CaptureLogger(logger) as cap_logger:
config = SchedulerObject.load_config(tmpdirname)
new_obj = SchedulerObject.from_config(config)
assert new_obj.__class__ == SchedulerObject
assert (
cap_logger.out
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
" will"
" be ignored. Please verify your config.json configuration file.\n"
)
def test_save_load_from_different_config_comp_schedulers(self):
SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"]
SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"]
SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"]
obj = SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
setattr(diffusers, "SchedulerObject2", SchedulerObject2)
setattr(diffusers, "SchedulerObject3", SchedulerObject3)
logger = logging.get_logger("diffusers.configuration_utils")
logger.setLevel(diffusers.logging.INFO)
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
with CaptureLogger(logger) as cap_logger_1:
config = SchedulerObject.load_config(tmpdirname)
new_obj_1 = SchedulerObject.from_config(config)
with CaptureLogger(logger) as cap_logger_2:
config = SchedulerObject2.load_config(tmpdirname)
new_obj_2 = SchedulerObject2.from_config(config)
with CaptureLogger(logger) as cap_logger_3:
config = SchedulerObject3.load_config(tmpdirname)
new_obj_3 = SchedulerObject3.from_config(config)
assert new_obj_1.__class__ == SchedulerObject
assert new_obj_2.__class__ == SchedulerObject2
assert new_obj_3.__class__ == SchedulerObject3
assert cap_logger_1.out == ""
assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
class SchedulerCommonTest(unittest.TestCase):
scheduler_classes = ()
forward_default_kwargs = ()
@property
def dummy_sample(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
@property
def dummy_sample_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
sample = torch.arange(num_elems)
sample = sample.reshape(num_channels, height, width, batch_size)
sample = sample / num_elems
sample = sample.permute(3, 0, 1, 2)
return sample
def get_scheduler_config(self):
raise NotImplementedError
def dummy_model(self):
def model(sample, t, *args):
return sample * t / (t + 1)
return model
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
# TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
time_step = float(time_step)
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, time_step)
else:
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
time_step = float(time_step)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, time_step)
else:
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
timestep = 1
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep = float(timestep)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, timestep)
else:
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_compatibles(self):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert all(c is not None for c in scheduler.compatibles)
for comp_scheduler_cls in scheduler.compatibles:
comp_scheduler = comp_scheduler_cls.from_config(scheduler.config)
assert comp_scheduler is not None
new_scheduler = scheduler_class.from_config(comp_scheduler.config)
new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config}
scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config}
# make sure that configs are essentially identical
assert new_scheduler_config == dict(scheduler.config)
# make sure that only differences are for configs that are not in init
init_keys = inspect.signature(scheduler_class.__init__).parameters.keys()
assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set()
def test_from_pretrained(self):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_pretrained(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
assert scheduler.config == new_scheduler.config
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
timestep_0 = 0
timestep_1 = 1
for scheduler_class in self.scheduler_classes:
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep_0 = float(timestep_0)
timestep_1 = float(timestep_1)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, timestep_0)
else:
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", 50)
timestep = 0
if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler:
timestep = 1
for scheduler_class in self.scheduler_classes:
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep = float(timestep)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, timestep)
else:
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
def test_scheduler_public_api(self):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class != VQDiffusionScheduler:
self.assertTrue(
hasattr(scheduler, "init_noise_sigma"),
f"{scheduler_class} does not implement a required attribute `init_noise_sigma`",
)
self.assertTrue(
hasattr(scheduler, "scale_model_input"),
f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
" timestep)`",
)
self.assertTrue(
hasattr(scheduler, "step"),
f"{scheduler_class} does not implement a required class method `step(...)`",
)
if scheduler_class != VQDiffusionScheduler:
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, 0.0)
self.assertEqual(sample.shape, scaled_sample.shape)
def test_add_noise_device(self):
for scheduler_class in self.scheduler_classes:
if scheduler_class == IPNDMScheduler:
# Skip until #990 is addressed
continue
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(100)
sample = self.dummy_sample.to(torch_device)
scaled_sample = scheduler.scale_model_input(sample, 0.0)
self.assertEqual(sample.shape, scaled_sample.shape)
noise = torch.randn_like(scaled_sample).to(torch_device)
t = scheduler.timesteps[5][None]
noised = scheduler.add_noise(scaled_sample, noise, t)
self.assertEqual(noised.shape, scaled_sample.shape)
def test_deprecated_kwargs(self):
for scheduler_class in self.scheduler_classes:
has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters
has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
" there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
" deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
)
class DDPMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DDPMScheduler,)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_variance_type(self):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=variance)
def test_clip_sample(self):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=clip_sample)
def test_prediction_type(self):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=prediction_type)
def test_deprecated_predict_epsilon(self):
deprecate("remove this test", "0.10.0", "remove")
for predict_epsilon in [True, False]:
self.check_over_configs(predict_epsilon=predict_epsilon)
def test_deprecated_epsilon(self):
deprecate("remove this test", "0.10.0", "remove")
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
sample = self.dummy_sample_deter
residual = 0.1 * self.dummy_sample_deter
time_step = 4
scheduler = scheduler_class(**scheduler_config)
scheduler_eps = scheduler_class(predict_epsilon=False, **scheduler_config)
kwargs = {}
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
output = scheduler.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample
kwargs = {}
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
output_eps = scheduler_eps.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample
assert (output - output_eps).abs().sum() < 1e-5
def test_time_indices(self):
for t in [0, 500, 999]:
self.check_over_forward(time_step=t)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_trained_timesteps = len(scheduler)
model = self.dummy_model()
sample = self.dummy_sample_deter
generator = torch.manual_seed(0)
for t in reversed(range(num_trained_timesteps)):
# 1. predict noise residual
residual = model(sample, t)
# 2. predict previous mean of sample x_t-1
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
sample = pred_prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 258.9070) < 1e-2
assert abs(result_mean.item() - 0.3374) < 1e-3
class DDIMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DDIMScheduler,)
forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**kwargs)
return config
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps, eta = 10, 0.0
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for t in scheduler.timesteps:
residual = model(sample, t)
sample = scheduler.step(residual, t, sample, eta).prev_sample
return sample
def test_timesteps(self):
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_steps_offset(self):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=steps_offset)
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(steps_offset=1)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(5)
assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1]))
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_clip_sample(self):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=clip_sample)
def test_time_indices(self):
for t in [1, 10, 49]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
def test_eta(self):
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=t, eta=eta)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 172.0067) < 1e-2
assert abs(result_mean.item() - 0.223967) < 1e-3
def test_full_loop_with_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 149.8295) < 1e-2
assert abs(result_mean.item() - 0.1951) < 1e-3
def test_full_loop_with_no_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 149.0784) < 1e-2
assert abs(result_mean.item() - 0.1941) < 1e-3
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DPMSolverMultistepScheduler,)
forward_default_kwargs = (("num_inference_steps", 25),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lower_order_final": False,
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
output, new_output = sample, sample
for t in range(time_step, time_step + scheduler.config.solver_order + 1):
output = scheduler.step(residual, t, output, **kwargs).prev_sample
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
pass
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
# copy over dummy past residuals
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residual (must be after setting timesteps)
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
return sample
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
time_step_0 = scheduler.timesteps[5]
time_step_1 = scheduler.timesteps[6]
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_thresholding(self):
self.check_over_configs(thresholding=False)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=True,
prediction_type=prediction_type,
sample_max_value=threshold,
algorithm_type="dpmsolver++",
solver_order=order,
solver_type=solver_type,
)
def test_solver_order_and_type(self):
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=order,
solver_type=solver_type,
prediction_type=prediction_type,
algorithm_type=algorithm_type,
)
sample = self.full_loop(
solver_order=order,
solver_type=solver_type,
prediction_type=prediction_type,
algorithm_type=algorithm_type,
)
assert not torch.isnan(sample).any(), "Samples have nan numbers"
def test_lower_order_final(self):
self.check_over_configs(lower_order_final=True)
self.check_over_configs(lower_order_final=False)
def test_inference_steps(self):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_mean = torch.mean(torch.abs(sample))
assert abs(result_mean.item() - 0.3301) < 1e-3
def test_fp16_support(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter.half()
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
assert sample.dtype == torch.float16
class PNDMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (PNDMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
scheduler.ets = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
pass
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.ets = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
# copy over dummy past residuals
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residual (must be after setting timesteps)
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.prk_timesteps):
residual = model(sample, t)
sample = scheduler.step_prk(residual, t, sample).prev_sample
for i, t in enumerate(scheduler.plms_timesteps):
residual = model(sample, t)
sample = scheduler.step_plms(residual, t, sample).prev_sample
return sample
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
scheduler.ets = dummy_past_residuals[:]
output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_steps_offset(self):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=steps_offset)
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(steps_offset=1)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(10)
assert torch.equal(
scheduler.timesteps,
torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]
),
)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_time_indices(self):
for t in [1, 5, 10]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
self.check_over_forward(num_inference_steps=num_inference_steps)
def test_pow_of_3_inference_steps(self):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
num_inference_steps = 27
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2]):
sample = scheduler.step_prk(residual, t, sample).prev_sample
def test_inference_plms_no_past_residuals(self):
with self.assertRaises(ValueError):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 198.1318) < 1e-2
assert abs(result_mean.item() - 0.2580) < 1e-3
def test_full_loop_with_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 230.0399) < 1e-2
assert abs(result_mean.item() - 0.2995) < 1e-3
def test_full_loop_with_no_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 186.9482) < 1e-2
assert abs(result_mean.item() - 0.2434) < 1e-3
class ScoreSdeVeSchedulerTest(unittest.TestCase):
# TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
scheduler_classes = (ScoreSdeVeScheduler,)
forward_default_kwargs = ()
@property
def dummy_sample(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
@property
def dummy_sample_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
sample = torch.arange(num_elems)
sample = sample.reshape(num_channels, height, width, batch_size)
sample = sample / num_elems
sample = sample.permute(3, 0, 1, 2)
return sample
def dummy_model(self):
def model(sample, t, *args):
return sample * t / (t + 1)
return model
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 2000,
"snr": 0.15,
"sigma_min": 0.01,
"sigma_max": 1348,
"sampling_eps": 1e-5,
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
output = scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
new_output = new_scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
new_output = new_scheduler.step_correct(
residual, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
output = scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
new_output = new_scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
new_output = new_scheduler.step_correct(
residual, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
def test_timesteps(self):
for timesteps in [10, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_sigmas(self):
for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)
def test_time_indices(self):
for t in [0.1, 0.5, 0.75]:
self.check_over_forward(time_step=t)
def test_full_loop_no_noise(self):
kwargs = dict(self.forward_default_kwargs)
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 3
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_sigmas(num_inference_steps)
scheduler.set_timesteps(num_inference_steps)
generator = torch.manual_seed(0)
for i, t in enumerate(scheduler.timesteps):
sigma_t = scheduler.sigmas[i]
for _ in range(scheduler.config.correct_steps):
with torch.no_grad():
model_output = model(sample, sigma_t)
sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
with torch.no_grad():
model_output = model(sample, sigma_t)
output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs)
sample, _ = output.prev_sample, output.prev_sample_mean
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert np.isclose(result_sum.item(), 14372758528.0)
assert np.isclose(result_mean.item(), 18714530.0)
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
class LMSDiscreteSchedulerTest(SchedulerCommonTest):
scheduler_classes = (LMSDiscreteScheduler,)
num_inference_steps = 10
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"trained_betas": None,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=schedule)
def test_time_indices(self):
for t in [0, 500, 800]:
self.check_over_forward(time_step=t)
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 1006.388) < 1e-2
assert abs(result_mean.item() - 1.31) < 1e-3
def test_full_loop_device(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 1006.388) < 1e-2
assert abs(result_mean.item() - 1.31) < 1e-3
class EulerDiscreteSchedulerTest(SchedulerCommonTest):
scheduler_classes = (EulerDiscreteScheduler,)
num_inference_steps = 10
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"trained_betas": None,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=schedule)
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 10.0807) < 1e-2
assert abs(result_mean.item() - 0.0131) < 1e-3
def test_full_loop_device(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
for t in scheduler.timesteps:
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 10.0807) < 1e-2
assert abs(result_mean.item() - 0.0131) < 1e-3
class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler_classes = (EulerAncestralDiscreteScheduler,)
num_inference_steps = 10
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"trained_betas": None,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=schedule)
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 152.3192) < 1e-2
assert abs(result_mean.item() - 0.1983) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 144.8084) < 1e-2
assert abs(result_mean.item() - 0.18855) < 1e-3
def test_full_loop_device(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
for t in scheduler.timesteps:
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if str(torch_device).startswith("cpu"):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 152.3192) < 1e-2
assert abs(result_mean.item() - 0.1983) < 1e-3
elif str(torch_device).startswith("mps"):
# Larger tolerance on mps
assert abs(result_mean.item() - 0.1983) < 1e-2
else:
# CUDA
assert abs(result_sum.item() - 144.8084) < 1e-2
assert abs(result_mean.item() - 0.18855) < 1e-3
class IPNDMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (IPNDMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50),)
def get_scheduler_config(self, **kwargs):
config = {"num_train_timesteps": 1000}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
scheduler.ets = dummy_past_residuals[:]
if time_step is None:
time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
pass
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.ets = dummy_past_residuals[:]
if time_step is None:
time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
# copy over dummy past residuals
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residual (must be after setting timesteps)
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
for i, t in enumerate(scheduler.timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
return sample
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
scheduler.ets = dummy_past_residuals[:]
time_step_0 = scheduler.timesteps[5]
time_step_1 = scheduler.timesteps[6]
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps, time_step=None)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=None)
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_mean = torch.mean(torch.abs(sample))
assert abs(result_mean.item() - 2540529) < 10
class VQDiffusionSchedulerTest(SchedulerCommonTest):
scheduler_classes = (VQDiffusionScheduler,)
def get_scheduler_config(self, **kwargs):
config = {
"num_vec_classes": 4097,
"num_train_timesteps": 100,
}
config.update(**kwargs)
return config
def dummy_sample(self, num_vec_classes):
batch_size = 4
height = 8
width = 8
sample = torch.randint(0, num_vec_classes, (batch_size, height * width))
return sample
@property
def dummy_sample_deter(self):
assert False
def dummy_model(self, num_vec_classes):
def model(sample, t, *args):
batch_size, num_latent_pixels = sample.shape
logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels))
return_value = F.log_softmax(logits.double(), dim=1).float()
return return_value
return model
def test_timesteps(self):
for timesteps in [2, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_num_vec_classes(self):
for num_vec_classes in [5, 100, 1000, 4000]:
self.check_over_configs(num_vec_classes=num_vec_classes)
def test_time_indices(self):
for t in [0, 50, 99]:
self.check_over_forward(time_step=t)
def test_add_noise_device(self):
pass
class HeunDiscreteSchedulerTest(SchedulerCommonTest):
scheduler_classes = (HeunDiscreteScheduler,)
num_inference_steps = 10
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"trained_betas": None,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=schedule)
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 0.1233) < 1e-2
assert abs(result_mean.item() - 0.0002) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 0.1233) < 1e-2
assert abs(result_mean.item() - 0.0002) < 1e-3
def test_full_loop_device(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
model = self.dummy_model()
sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if str(torch_device).startswith("cpu"):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 0.1233) < 1e-2
assert abs(result_mean.item() - 0.0002) < 1e-3
elif str(torch_device).startswith("mps"):
# Larger tolerance on mps
assert abs(result_mean.item() - 0.0002) < 1e-2
else:
# CUDA
assert abs(result_sum.item() - 0.1233) < 1e-2
assert abs(result_mean.item() - 0.0002) < 1e-3
| diffusers-ft-main | tests/test_scheduler.py |
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class OnnxPipelineTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each ONNXRuntime pipeline, e.g. saving and loading the pipeline,
equivalence of dict and tuple outputs, etc.
"""
pass
| diffusers-ft-main | tests/test_pipelines_onnx_common.py |
import inspect
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
@require_flax
class FlaxModelTesterMixin:
def test_output(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"])
jax.lax.stop_gradient(variables)
output = model.apply(variables, inputs_dict["sample"])
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_forward_with_norm_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 16
init_dict["block_out_channels"] = (16, 32)
model = self.model_class(**init_dict)
variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"])
jax.lax.stop_gradient(variables)
output = model.apply(variables, inputs_dict["sample"])
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_deprecated_kwargs(self):
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
" from `_deprecated_kwargs = [<deprecated_argument>]`"
)
| diffusers-ft-main | tests/test_modeling_common_flax.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
torch.backends.cuda.matmul.allow_tf32 = False
class TrainingTests(unittest.TestCase):
def get_model_optimizer(self, resolution=32):
set_seed(0)
model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3)
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
return model, optimizer
@slow
def test_training_step_equality(self):
device = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
ddpm_scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
beta_schedule="linear",
clip_sample=True,
)
ddim_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
beta_schedule="linear",
clip_sample=True,
)
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0)
clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(device) for _ in range(4)]
noise = [torch.randn((4, 3, 32, 32)).to(device) for _ in range(4)]
timesteps = [torch.randint(0, 1000, (4,)).long().to(device) for _ in range(4)]
# train with a DDPM scheduler
model, optimizer = self.get_model_optimizer(resolution=32)
model.train().to(device)
for i in range(4):
optimizer.zero_grad()
ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i]).sample
loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i])
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
model, optimizer = self.get_model_optimizer(resolution=32)
model.train().to(device)
for i in range(4):
optimizer.zero_grad()
ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
ddim_noise_pred = model(ddim_noisy_images, timesteps[i]).sample
loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i])
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5))
self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5))
| diffusers-ft-main | tests/test_training.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from torch import nn
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU, AttentionBlock, Transformer2DModel
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.models.resnet import Downsample2D, Upsample2D
from diffusers.utils import torch_device
torch.backends.cuda.matmul.allow_tf32 = False
class EmbeddingsTests(unittest.TestCase):
def test_timestep_embeddings(self):
embedding_dim = 256
timesteps = torch.arange(16)
t1 = get_timestep_embedding(timesteps, embedding_dim)
# first vector should always be composed only of 0's and 1's
assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5
assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5
# last element of each vector should be one
assert (t1[:, -1] - 1).abs().sum() < 1e-5
# For large embeddings (e.g. 128) the frequency of every vector is higher
# than the previous one which means that the gradients of later vectors are
# ALWAYS higher than the previous ones
grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1)
prev_grad = 0.0
for grad in grad_mean:
assert grad > prev_grad
prev_grad = grad
def test_timestep_defaults(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim)
t2 = get_timestep_embedding(
timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000
)
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)
def test_timestep_flip_sin_cos(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True)
t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1)
t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False)
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)
def test_timestep_downscale_freq_shift(self):
embedding_dim = 16
timesteps = torch.arange(10)
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0)
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1)
# get cosine half (vectors that are wrapped into cosine)
cosine_half = (t1 - t2)[:, embedding_dim // 2 :]
# cosine needs to be negative
assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5
def test_sinoid_embeddings_hardcoded(self):
embedding_dim = 64
timesteps = torch.arange(128)
# standard unet, score_vde
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False)
# glide, ldm
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True)
# grad-tts
t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000)
assert torch.allclose(
t1[23:26, 47:50].flatten().cpu(),
torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]),
1e-3,
)
assert torch.allclose(
t2[23:26, 47:50].flatten().cpu(),
torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]),
1e-3,
)
assert torch.allclose(
t3[23:26, 47:50].flatten().cpu(),
torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]),
1e-3,
)
class Upsample2DBlockTests(unittest.TestCase):
def test_upsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=False)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=True, out_channels=64)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 64, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_transpose(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32, 32)
upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64, 64)
output_slice = upsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Downsample2DBlockTests(unittest.TestCase):
def test_downsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=False)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179])
max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
assert max_diff <= 1e-3
# assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)
def test_downsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913],
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_pad1(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True, padding=1)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64, 64)
downsample = Downsample2D(channels=32, use_conv=True, out_channels=16)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 16, 32, 32)
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class AttentionBlockTests(unittest.TestCase):
@unittest.skipIf(
torch_device == "mps", "Matmul crashes on MPS, see https://github.com/pytorch/pytorch/issues/84039"
)
def test_attention_block_default(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
attentionBlock = AttentionBlock(
channels=32,
num_head_channels=1,
rescale_output_factor=1.0,
eps=1e-6,
norm_num_groups=32,
).to(torch_device)
with torch.no_grad():
attention_scores = attentionBlock(sample)
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.4975, -0.0038, -0.7847, -1.4567, 1.1220, -0.8962, -1.7394, 1.1319, -0.5427], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_attention_block_sd(self):
# This version uses SD params and is compatible with mps
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 512, 64, 64).to(torch_device)
attentionBlock = AttentionBlock(
channels=512,
rescale_output_factor=1.0,
eps=1e-6,
norm_num_groups=32,
).to(torch_device)
with torch.no_grad():
attention_scores = attentionBlock(sample)
assert attention_scores.shape == (1, 512, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.6621, -0.0156, -3.2766, 0.8025, -0.8609, 0.2820, 0.0905, -1.1179, -3.2126], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Transformer2DModelTests(unittest.TestCase):
def test_spatial_transformer_default(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=32,
num_attention_heads=1,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=None,
).to(torch_device)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.2447, -0.0137, -0.9559, -1.5223, 0.6991, -1.0126, -2.0974, 0.8921, -1.0201], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_cross_attention_dim(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 64, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=64,
num_attention_heads=2,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=64,
).to(torch_device)
with torch.no_grad():
context = torch.randn(1, 4, 64).to(torch_device)
attention_scores = spatial_transformer_block(sample, context).sample
assert attention_scores.shape == (1, 64, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-0.2555, -0.8877, -2.4739, -2.2251, 1.2714, 0.0807, -0.4161, -1.6408, -0.0471], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_timestep(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_embeds_ada_norm = 5
sample = torch.randn(1, 64, 64, 64).to(torch_device)
spatial_transformer_block = Transformer2DModel(
in_channels=64,
num_attention_heads=2,
attention_head_dim=32,
dropout=0.0,
cross_attention_dim=64,
num_embeds_ada_norm=num_embeds_ada_norm,
).to(torch_device)
with torch.no_grad():
timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device)
timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device)
attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample
attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample
assert attention_scores_1.shape == (1, 64, 64, 64)
assert attention_scores_2.shape == (1, 64, 64, 64)
output_slice_1 = attention_scores_1[0, -1, -3:, -3:]
output_slice_2 = attention_scores_2[0, -1, -3:, -3:]
expected_slice_1 = torch.tensor(
[-0.1874, -0.9704, -1.4290, -1.3357, 1.5138, 0.3036, -0.0976, -1.1667, 0.1283], device=torch_device
)
expected_slice_2 = torch.tensor(
[-0.3493, -1.0924, -1.6161, -1.5016, 1.4245, 0.1367, -0.2526, -1.3109, -0.0547], device=torch_device
)
assert torch.allclose(output_slice_1.flatten(), expected_slice_1, atol=1e-3)
assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3)
def test_spatial_transformer_dropout(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
sample = torch.randn(1, 32, 64, 64).to(torch_device)
spatial_transformer_block = (
Transformer2DModel(
in_channels=32,
num_attention_heads=2,
attention_head_dim=16,
dropout=0.3,
cross_attention_dim=None,
)
.to(torch_device)
.eval()
)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]
expected_slice = torch.tensor(
[-1.2448, -0.0190, -0.9471, -1.5140, 0.7069, -1.0144, -2.1077, 0.9099, -1.0091], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
@unittest.skipIf(torch_device == "mps", "MPS does not support float64")
def test_spatial_transformer_discrete(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_embed = 5
sample = torch.randint(0, num_embed, (1, 32)).to(torch_device)
spatial_transformer_block = (
Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
num_vector_embeds=num_embed,
sample_size=16,
)
.to(torch_device)
.eval()
)
with torch.no_grad():
attention_scores = spatial_transformer_block(sample).sample
assert attention_scores.shape == (1, num_embed - 1, 32)
output_slice = attention_scores[0, -2:, -3:]
expected_slice = torch.tensor([-0.8957, -1.8370, -1.3390, -0.9152, -0.5187, -1.1702], device=torch_device)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_spatial_transformer_default_norm_layers(self):
spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32)
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm2.__class__ == nn.LayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm
def test_spatial_transformer_ada_norm_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
num_embeds_ada_norm=5,
)
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm2.__class__ == AdaLayerNorm
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm
def test_spatial_transformer_default_ff_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
)
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear
dim = 32
inner_dim = 128
# First dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
# NOTE: inner_dim * 2 because GEGLU
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2
# Second dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim
def test_spatial_transformer_geglu_approx_ff_layers(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1,
attention_head_dim=32,
in_channels=32,
activation_fn="geglu-approximate",
)
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear
dim = 32
inner_dim = 128
# First dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim
# Second dimension change
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim
def test_spatial_transformer_attention_bias(self):
spatial_transformer_block = Transformer2DModel(
num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True
)
assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None
assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None
assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None
| diffusers-ft-main | tests/test_layers_utils.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from diffusers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
PNDMScheduler,
logging,
)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import deprecate
from diffusers.utils.testing_utils import CaptureLogger
class SampleObject(ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
):
pass
class SampleObject2(ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
f=[1, 3],
):
pass
class SampleObject3(ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
f=[1, 3],
):
pass
class ConfigTester(unittest.TestCase):
def test_load_not_from_mixin(self):
with self.assertRaises(ValueError):
ConfigMixin.load_config("dummy_path")
def test_register_to_config(self):
obj = SampleObject()
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
# init ignore private arguments
obj = SampleObject(_name_or_path="lalala")
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
# can override default
obj = SampleObject(c=6)
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == 6
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
# can use positional arguments.
obj = SampleObject(1, c=6)
config = obj.config
assert config["a"] == 1
assert config["b"] == 5
assert config["c"] == 6
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
def test_save_load(self):
obj = SampleObject()
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname))
new_config = new_obj.config
# unfreeze configs
config = dict(config)
new_config = dict(new_config)
assert config.pop("c") == (2, 5) # instantiated as tuple
assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json
assert config == new_config
def test_load_ddim_from_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
with CaptureLogger(logger) as cap_logger:
ddim = DDIMScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert ddim.__class__ == DDIMScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_load_euler_from_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
with CaptureLogger(logger) as cap_logger:
euler = EulerDiscreteScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert euler.__class__ == EulerDiscreteScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_load_euler_ancestral_from_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
with CaptureLogger(logger) as cap_logger:
euler = EulerAncestralDiscreteScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert euler.__class__ == EulerAncestralDiscreteScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_load_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
with CaptureLogger(logger) as cap_logger:
pndm = PNDMScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert pndm.__class__ == PNDMScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_overwrite_config_on_load(self):
logger = logging.get_logger("diffusers.configuration_utils")
with CaptureLogger(logger) as cap_logger:
ddpm = DDPMScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="scheduler",
prediction_type="sample",
beta_end=8,
)
with CaptureLogger(logger) as cap_logger_2:
ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88)
with CaptureLogger(logger) as cap_logger:
deprecate("remove this case", "0.10.0", "remove")
ddpm_3 = DDPMScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="scheduler",
predict_epsilon=False,
beta_end=8,
)
assert ddpm.__class__ == DDPMScheduler
assert ddpm.config.prediction_type == "sample"
assert ddpm.config.beta_end == 8
assert ddpm_2.config.beta_start == 88
assert ddpm_3.config.prediction_type == "sample"
# no warning should be thrown
assert cap_logger.out == ""
assert cap_logger_2.out == ""
def test_load_dpmsolver(self):
logger = logging.get_logger("diffusers.configuration_utils")
with CaptureLogger(logger) as cap_logger:
dpm = DPMSolverMultistepScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert dpm.__class__ == DPMSolverMultistepScheduler
# no warning should be thrown
assert cap_logger.out == ""
| diffusers-ft-main | tests/test_config.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from jax import pmap
@require_flax
class DownloadTests(unittest.TestCase):
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_ = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin") for f in files)
@slow
@require_flax
class FlaxPipelineTests(unittest.TestCase):
def test_dummy_all_tpus(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 4
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 3.1111548) < 1e-3
assert np.abs(np.abs(images, dtype=np.float32).sum() - 199746.95) < 5e-1
images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
assert len(images_pil) == num_samples
def test_stable_diffusion_v1_4(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_ddim(self):
scheduler = FlaxDDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
steps_offset=1,
)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=jnp.bfloat16,
scheduler=scheduler,
safety_checker=None,
)
scheduler_state = scheduler.create_state()
params["scheduler"] = scheduler_state
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1
| diffusers-ft-main | tests/test_pipelines_flax.py |
import unittest
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import PIL.Image
from diffusers.utils.outputs import BaseOutput
@dataclass
class CustomOutput(BaseOutput):
images: Union[List[PIL.Image.Image], np.ndarray]
class ConfigTester(unittest.TestCase):
def test_outputs_single_attribute(self):
outputs = CustomOutput(images=np.random.rand(1, 3, 4, 4))
# check every way of getting the attribute
assert isinstance(outputs.images, np.ndarray)
assert outputs.images.shape == (1, 3, 4, 4)
assert isinstance(outputs["images"], np.ndarray)
assert outputs["images"].shape == (1, 3, 4, 4)
assert isinstance(outputs[0], np.ndarray)
assert outputs[0].shape == (1, 3, 4, 4)
# test with a non-tensor attribute
outputs = CustomOutput(images=[PIL.Image.new("RGB", (4, 4))])
# check every way of getting the attribute
assert isinstance(outputs.images, list)
assert isinstance(outputs.images[0], PIL.Image.Image)
assert isinstance(outputs["images"], list)
assert isinstance(outputs["images"][0], PIL.Image.Image)
assert isinstance(outputs[0], list)
assert isinstance(outputs[0][0], PIL.Image.Image)
def test_outputs_dict_init(self):
# test output reinitialization with a `dict` for compatibility with `accelerate`
outputs = CustomOutput({"images": np.random.rand(1, 3, 4, 4)})
# check every way of getting the attribute
assert isinstance(outputs.images, np.ndarray)
assert outputs.images.shape == (1, 3, 4, 4)
assert isinstance(outputs["images"], np.ndarray)
assert outputs["images"].shape == (1, 3, 4, 4)
assert isinstance(outputs[0], np.ndarray)
assert outputs[0].shape == (1, 3, 4, 4)
# test with a non-tensor attribute
outputs = CustomOutput({"images": [PIL.Image.new("RGB", (4, 4))]})
# check every way of getting the attribute
assert isinstance(outputs.images, list)
assert isinstance(outputs.images[0], PIL.Image.Image)
assert isinstance(outputs["images"], list)
assert isinstance(outputs["images"][0], PIL.Image.Image)
assert isinstance(outputs[0], list)
assert isinstance(outputs[0][0], PIL.Image.Image)
| diffusers-ft-main | tests/test_outputs.py |
diffusers-ft-main | tests/pipelines/__init__.py |
|
diffusers-ft-main | tests/pipelines/karras_ve/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNet2DModel
from diffusers.utils.testing_utils import require_torch, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class KarrasVePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
unet = self.dummy_uncond_unet
scheduler = KarrasVeScheduler()
pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images
generator = torch.manual_seed(0)
image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch
class KarrasVePipelineIntegrationTests(unittest.TestCase):
def test_inference(self):
model_id = "google/ncsnpp-celebahq-256"
model = UNet2DModel.from_pretrained(model_id)
scheduler = KarrasVeScheduler()
pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/karras_ve/test_karras_ve.py |
diffusers-ft-main | tests/pipelines/repaint/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
@slow
@require_torch_gpu
class RepaintPipelineIntegrationTests(unittest.TestCase):
def test_celebahq(self):
original_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
)
expected_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256_result.png"
)
expected_image = np.array(expected_image, dtype=np.float32) / 255.0
model_id = "google/ddpm-ema-celebahq-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = RePaintScheduler.from_pretrained(model_id)
repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
output = repaint(
original_image,
mask_image,
num_inference_steps=250,
eta=0.0,
jump_length=10,
jump_n_sample=10,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).mean() < 1e-2
| diffusers-ft-main | tests/pipelines/repaint/test_repaint.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel
from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
device = "cpu"
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class DDIMPipelineIntegrationTests(unittest.TestCase):
def test_inference_ema_bedroom(self):
model_id = "google/ddpm-ema-bedroom-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler.from_pretrained(model_id)
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.1546, 0.1561, 0.1595, 0.1564, 0.1569, 0.1585, 0.1554, 0.1550, 0.1575])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler()
ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddim(generator=generator, eta=0.0, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.2060, 0.2042, 0.2022, 0.2193, 0.2146, 0.2110, 0.2471, 0.2446, 0.2388])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/ddim/test_ddim.py |
diffusers-ft-main | tests/pipelines/ddim/__init__.py |
|
diffusers-ft-main | tests/pipelines/altdiffusion/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import AltDiffusionImg2ImgPipeline, AutoencoderKL, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import XLMRobertaTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class AltDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = RobertaSeriesConfig(
hidden_size=32,
project_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=5006,
)
return RobertaSeriesModelWithTransformation(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_img2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe = alt_pipe.to(device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[0.41293705, 0.38656747, 0.40876025, 0.4782187, 0.4656803, 0.41394007, 0.4142093, 0.47150758, 0.4570448]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1.5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1.5e-3
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_img2img_fp16(self):
"""Test that stable diffusion img2img works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
init_image = self.dummy_image.to(torch_device)
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = alt_pipe(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
init_image=init_image,
).images
assert image.shape == (1, 32, 32, 3)
@slow
@require_torch_gpu
class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_img2img_pipeline_default(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy"
)
model_id = "BAAI/AltDiffusion"
pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-3
| diffusers-ft-main | tests/pipelines/altdiffusion/test_alt_diffusion_img2img.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import XLMRobertaTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = RobertaSeriesConfig(
hidden_size=32,
project_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
vocab_size=5002,
)
return RobertaSeriesModelWithTransformation(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_alt_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe = alt_pipe.to(device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A photo of an astronaut"
generator = torch.Generator(device=device).manual_seed(0)
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_alt_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe = alt_pipe.to(device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_alt_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch_gpu
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_alt_diffusion(self):
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast("cuda"):
output = alt_pipe(
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.8720703, 0.87109375, 0.87402344, 0.87109375, 0.8779297, 0.8925781, 0.8823242, 0.8808594, 0.8613281]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_alt_diffusion_fast_ddim(self):
scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast("cuda"):
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.9267578, 0.9301758, 0.9013672, 0.9345703, 0.92578125, 0.94433594, 0.9423828, 0.9423828, 0.9160156]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_alt_diffusion_text2img_pipeline_fp16(self):
torch.cuda.reset_peak_memory_stats()
model_id = "BAAI/AltDiffusion"
pipe = AltDiffusionPipeline.from_pretrained(
model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# Make sure results are close enough
diff = np.abs(image_chunked.flatten() - image.flatten())
# They ARE different since ops are not run always at the same precision
# however, they should be extremely close.
assert diff.mean() < 2e-2
| diffusers-ft-main | tests/pipelines/altdiffusion/test_alt_diffusion.py |
diffusers-ft-main | tests/pipelines/stable_diffusion_safe/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class SafeDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_safe_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5644, 0.6018, 0.4799, 0.5267, 0.5585, 0.4641, 0.516, 0.4964, 0.4792])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5095, 0.5674, 0.4668, 0.5126, 0.5697, 0.4675, 0.5278, 0.4964, 0.4945])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_no_safety_checker(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
)
assert isinstance(pipe, StableDiffusionPipeline)
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch_gpu
class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_harm_safe_stable_diffusion(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
seed = 4003660346
guidance_scale = 7
# without safety guidance (sld_guidance_scale = 0)
generator = torch.Generator(device=torch_device).manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=0,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
generator = torch.Generator(device=torch_device).manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=2000,
sld_warmup_steps=7,
sld_threshold=0.025,
sld_momentum_scale=0.5,
sld_mom_beta=0.7,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_nudity_safe_stable_diffusion(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "padme amidala taking a bath artwork, safe for work, no nudity"
seed = 2734971755
guidance_scale = 7
generator = torch.Generator(device=torch_device).manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=0,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
generator = torch.Generator(device=torch_device).manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=2000,
sld_warmup_steps=7,
sld_threshold=0.025,
sld_momentum_scale=0.5,
sld_mom_beta=0.7,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_nudity_safetychecker_safe_stable_diffusion(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
seed = 1044355234
guidance_scale = 12
generator = torch.Generator(device=torch_device).manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=0,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
generator = torch.Generator(device=torch_device).manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=2000,
sld_warmup_steps=7,
sld_threshold=0.025,
sld_momentum_scale=0.5,
sld_mom_beta=0.7,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/stable_diffusion_safe/test_safe_diffusion.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VQDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def num_embed(self):
return 12
@property
def num_embeds_ada_norm(self):
return 12
@property
def text_embedder_hidden_size(self):
return 32
@property
def dummy_vqvae(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
num_vq_embeddings=self.num_embed,
vq_embed_dim=3,
)
return model
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_transformer(self):
torch.manual_seed(0)
height = 12
width = 12
model_kwargs = {
"attention_bias": True,
"cross_attention_dim": 32,
"attention_head_dim": height * width,
"num_attention_heads": 1,
"num_vector_embeds": self.num_embed,
"num_embeds_ada_norm": self.num_embeds_ada_norm,
"norm_num_groups": 32,
"sample_size": width,
"activation_fn": "geglu-approximate",
}
model = Transformer2DModel(**model_kwargs)
return model
def test_vq_diffusion(self):
device = "cpu"
vqvae = self.dummy_vqvae
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
transformer = self.dummy_transformer
scheduler = VQDiffusionScheduler(self.num_embed)
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False)
pipe = VQDiffusionPipeline(
vqvae=vqvae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
prompt = "teddy bear playing in the pool"
generator = torch.Generator(device=device).manual_seed(0)
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = pipe(
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
expected_slice = np.array([0.6583, 0.6410, 0.5325, 0.5635, 0.5563, 0.4234, 0.6008, 0.5491, 0.4880])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_vq_diffusion_classifier_free_sampling(self):
device = "cpu"
vqvae = self.dummy_vqvae
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
transformer = self.dummy_transformer
scheduler = VQDiffusionScheduler(self.num_embed)
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(
learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length
)
pipe = VQDiffusionPipeline(
vqvae=vqvae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
prompt = "teddy bear playing in the pool"
generator = torch.Generator(device=device).manual_seed(0)
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = pipe(
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
expected_slice = np.array([0.6647, 0.6531, 0.5303, 0.5891, 0.5726, 0.4439, 0.6304, 0.5564, 0.4912])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class VQDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_vq_diffusion_classifier_free_sampling(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy"
)
pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq")
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipeline(
"teddy bear playing in the pool",
num_images_per_prompt=1,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).max() < 1e-2
| diffusers-ft-main | tests/pipelines/vq_diffusion/test_vq_diffusion.py |
diffusers-ft-main | tests/pipelines/vq_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
from diffusers.utils.testing_utils import require_torch, slow, torch_device
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
def test_inference_text2img(self):
unet = self.dummy_cond_unet
scheduler = DDIMScheduler()
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
# Warmup pass when using mps (see #372)
if torch_device == "mps":
generator = torch.manual_seed(0)
_ = ldm(
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy"
).images
generator = torch.manual_seed(0)
image = ldm(
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy"
).images
generator = torch.manual_seed(0)
image_from_tuple = ldm(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="numpy",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
expected_slice = np.array([0.6806, 0.5454, 0.5638, 0.4893, 0.4656, 0.4257, 0.6248, 0.5217, 0.5498])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch
class LDMTextToImagePipelineIntegrationTests(unittest.TestCase):
def test_inference_text2img(self):
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = ldm(
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy"
).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_text2img_fast(self):
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/latent_diffusion/test_latent_diffusion.py |
diffusers-ft-main | tests/pipelines/latent_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel
from diffusers.utils import PIL_INTERPOLATION, floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import require_torch
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class LDMSuperResolutionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=6,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
def test_inference_superresolution(self):
device = "cpu"
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vqvae = self.dummy_vq_model
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
ldm.to(device)
ldm.set_progress_bar_config(disable=None)
init_image = self.dummy_image.to(device)
generator = torch.Generator(device=device).manual_seed(0)
image = ldm(init_image, generator=generator, num_inference_steps=2, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_inference_superresolution_fp16(self):
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vqvae = self.dummy_vq_model
# put models in fp16
unet = unet.half()
vqvae = vqvae.half()
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
init_image = self.dummy_image.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ldm(init_image, generator=generator, num_inference_steps=2, output_type="numpy").images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase):
def test_inference_superresolution(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool.png"
)
init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"])
ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution", device_map="auto")
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ldm(init_image, generator=generator, num_inference_steps=20, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.7418, 0.7472, 0.7424, 0.7422, 0.7463, 0.726, 0.7382, 0.7248, 0.6828])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/latent_diffusion/test_latent_diffusion_superresolution.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNet2DModel, VQModel
from diffusers.utils.testing_utils import require_torch, slow, torch_device
from transformers import CLIPTextConfig, CLIPTextModel
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class LDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
def test_inference_uncond(self):
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vae = self.dummy_vq_model
ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
# Warmup pass when using mps (see #372)
if torch_device == "mps":
generator = torch.manual_seed(0)
_ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images
generator = torch.manual_seed(0)
image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = torch.manual_seed(0)
image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch
class LDMPipelineIntegrationTests(unittest.TestCase):
def test_inference_uncond(self):
ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/latent_diffusion/test_latent_diffusion_uncond.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
torch.backends.cuda.matmul.allow_tf32 = False
class PipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_unet(self):
torch.manual_seed(0)
model = UNet1DModel(
block_out_channels=(32, 32, 64),
extra_in_channels=16,
sample_size=512,
sample_rate=16_000,
in_channels=2,
out_channels=2,
flip_sin_to_cos=True,
use_timestep_embedding=False,
time_embedding_type="fourier",
mid_block_type="UNetMidBlock1D",
down_block_types=["DownBlock1DNoSkip"] + ["DownBlock1D"] + ["AttnDownBlock1D"],
up_block_types=["AttnUpBlock1D"] + ["UpBlock1D"] + ["UpBlock1DNoSkip"],
)
return model
def test_dance_diffusion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
scheduler = IPNDMScheduler()
pipe = DanceDiffusionPipeline(unet=self.dummy_unet, scheduler=scheduler)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
output = pipe(generator=generator, num_inference_steps=4)
audio = output.audios
generator = torch.Generator(device=device).manual_seed(0)
output = pipe(generator=generator, num_inference_steps=4, return_dict=False)
audio_from_tuple = output[0]
audio_slice = audio[0, -3:, -3:]
audio_from_tuple_slice = audio_from_tuple[0, -3:, -3:]
assert audio.shape == (1, 2, self.dummy_unet.sample_size)
expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(audio_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_dance_diffusion(self):
device = torch_device
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
expected_slice = np.array([-0.1576, -0.1526, -0.127, -0.2699, -0.2762, -0.2487])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
def test_dance_diffusion_fp16(self):
device = torch_device
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
expected_slice = np.array([-0.1693, -0.1698, -0.1447, -0.3044, -0.3203, -0.2937])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/dance_diffusion/test_dance_diffusion.py |
diffusers-ft-main | tests/pipelines/score_sde_ve/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNet2DModel
from diffusers.utils.testing_utils import require_torch, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class ScoreSdeVeipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
unet = self.dummy_uncond_unet
scheduler = ScoreSdeVeScheduler()
sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
sde_ve.to(torch_device)
sde_ve.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
generator = torch.manual_seed(0)
image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
0
]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch
class ScoreSdeVePipelineIntegrationTests(unittest.TestCase):
def test_inference(self):
model_id = "google/ncsnpp-church-256"
model = UNet2DModel.from_pretrained(model_id)
scheduler = ScoreSdeVeScheduler.from_pretrained(model_id)
sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
sde_ve.to(torch_device)
sde_ve.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/score_sde_ve/test_score_sde_ve.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel, UNet2DModel, VQModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class CycleDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_cycle(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = CycleDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
source_prompt = "An astronaut riding a horse"
prompt = "An astronaut riding an elephant"
init_image = self.dummy_image.to(device)
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
prompt=prompt,
source_prompt=source_prompt,
generator=generator,
num_inference_steps=2,
init_image=init_image,
eta=0.1,
strength=0.8,
guidance_scale=3,
source_guidance_scale=1,
output_type="np",
)
images = output.images
image_slice = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_cycle_fp16(self):
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = CycleDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
source_prompt = "An astronaut riding a horse"
prompt = "An astronaut riding an elephant"
init_image = self.dummy_image.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe(
prompt=prompt,
source_prompt=source_prompt,
generator=generator,
num_inference_steps=2,
init_image=init_image,
eta=0.1,
strength=0.8,
guidance_scale=3,
source_guidance_scale=1,
output_type="np",
)
images = output.images
image_slice = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_cycle_diffusion_pipeline_fp16(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
)
init_image = init_image.resize((512, 512))
model_id = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(
model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,
init_image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
generator=generator,
output_type="np",
)
image = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image).max() < 5e-1
def test_cycle_diffusion_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
)
init_image = init_image.resize((512, 512))
model_id = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,
init_image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
generator=generator,
output_type="np",
)
image = output.images
assert np.abs(image - expected_image).max() < 1e-2
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_cycle_diffusion.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionImg2ImgPipeline
from diffusers.utils.testing_utils import is_onnx_available, load_image, require_onnxruntime, require_torch_gpu, slow
from ...test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
# FIXME: add fast tests
pass
@slow
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_pndm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
# using the PNDM scheduler by default
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
expected_slice = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def test_inference_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx"
)
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
scheduler=lms_scheduler,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
expected_slice = np.array([0.7950, 0.7923, 0.7903, 0.5516, 0.5501, 0.5476, 0.4965, 0.4933, 0.4910])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_img2img.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
UNet2DConditionModel,
UNet2DModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_img2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
negative_prompt = "french fries"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
prompt,
negative_prompt=negative_prompt,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_multiple_init_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
init_image = self.dummy_image.to(device).repeat(2, 1, 1, 1)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = 2 * ["A painting of a squirrel eating a burger"]
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
prompt,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
)
image = output.images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
return_dict=False,
)
image_from_tuple = output[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_num_images_per_prompt(self):
device = "cpu"
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
# test num_images_per_prompt=1 (default)
images = sd_pipe(
prompt,
num_inference_steps=2,
output_type="np",
init_image=init_image,
).images
assert images.shape == (1, 32, 32, 3)
# test num_images_per_prompt=1 (default) for batch of prompts
batch_size = 2
images = sd_pipe(
[prompt] * batch_size,
num_inference_steps=2,
output_type="np",
init_image=init_image,
).images
assert images.shape == (batch_size, 32, 32, 3)
# test num_images_per_prompt for single prompt
num_images_per_prompt = 2
images = sd_pipe(
prompt,
num_inference_steps=2,
output_type="np",
init_image=init_image,
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (num_images_per_prompt, 32, 32, 3)
# test num_images_per_prompt for batch of prompts
batch_size = 2
images = sd_pipe(
[prompt] * batch_size,
num_inference_steps=2,
output_type="np",
init_image=init_image,
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_img2img_fp16(self):
"""Test that stable diffusion img2img works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
init_image = self.dummy_image.to(torch_device)
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
init_image=init_image,
).images
assert image.shape == (1, 32, 32, 3)
@slow
@require_torch_gpu
class StableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_img2img_pipeline_default(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.npy"
)
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_img2img_pipeline_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_k_lms.npy"
)
model_id = "CompVis/stable-diffusion-v1-4"
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
scheduler=lms,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 768, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_img2img_pipeline_ddim(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_ddim.npy"
)
model_id = "CompVis/stable-diffusion-v1-4"
ddim = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
scheduler=ddim,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 768, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_img2img_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 37:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.7071, 0.7831, 0.8300, 1.8140, 1.7840, 1.9402, 1.3651, 1.6590, 1.2828])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
test_callback_fn.has_been_called = False
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
num_inference_steps=50,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 37
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
model_id = "CompVis/stable-diffusion-v1-4"
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id, scheduler=lms, safety_checker=None, device_map="auto", revision="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
prompt=prompt,
init_image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
num_inference_steps=5,
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_stable_diffusion_img2img.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import time
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
UNet2DModel,
VQModel,
logging,
)
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.5643956661224365,
0.6017904281616211,
0.4799129366874695,
0.5267305374145508,
0.5584856271743774,
0.46413588523864746,
0.5159522294998169,
0.4963662028312683,
0.47919973731040955,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_ddim_factor_8(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
height=136,
width=136,
num_inference_steps=2,
output_type="np",
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 136, 136, 3)
expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.5094760060310364,
0.5674174427986145,
0.46675148606300354,
0.5125715136528015,
0.5696930289268494,
0.4674668312072754,
0.5277683734893799,
0.4964486062526703,
0.494540274143219,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_no_safety_checker(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
)
assert isinstance(pipe, StableDiffusionPipeline)
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
def test_stable_diffusion_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.47082293033599854,
0.5371589064598083,
0.4562119245529175,
0.5220914483070374,
0.5733777284622192,
0.4795039892196655,
0.5465868711471558,
0.5074326395988464,
0.5042197108268738,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler_ancestral(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.4707113206386566,
0.5372191071510315,
0.4563021957874298,
0.5220003724098206,
0.5734264850616455,
0.4794946610927582,
0.5463782548904419,
0.5074145197868347,
0.504422664642334,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = EulerDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.47082313895225525,
0.5371587872505188,
0.4562119245529175,
0.5220913887023926,
0.5733776688575745,
0.47950395941734314,
0.546586811542511,
0.5074326992034912,
0.5042197108268738,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_attention_chunk(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
# make sure chunking the attention yields the same result
sd_pipe.enable_attention_slicing(slice_size=1)
generator = torch.Generator(device=device).manual_seed(0)
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4
def test_stable_diffusion_vae_slicing(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
image_count = 4
generator = torch.Generator(device=device).manual_seed(0)
output_1 = sd_pipe(
[prompt] * image_count, generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np"
)
# make sure sliced vae decode yields the same result
sd_pipe.enable_vae_slicing()
generator = torch.Generator(device=device).manual_seed(0)
output_2 = sd_pipe(
[prompt] * image_count, generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np"
)
# there is a small discrepancy at image borders vs. full batch decode
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3
def test_stable_diffusion_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
negative_prompt = "french fries"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
prompt,
negative_prompt=negative_prompt,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.5108221173286438,
0.5688379406929016,
0.4685141146183014,
0.5098261833190918,
0.5657756328582764,
0.4631010890007019,
0.5226285457611084,
0.49129390716552734,
0.4899061322212219,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_num_images_per_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
# test num_images_per_prompt=1 (default)
images = sd_pipe(prompt, num_inference_steps=2, output_type="np").images
assert images.shape == (1, 64, 64, 3)
# test num_images_per_prompt=1 (default) for batch of prompts
batch_size = 2
images = sd_pipe([prompt] * batch_size, num_inference_steps=2, output_type="np").images
assert images.shape == (batch_size, 64, 64, 3)
# test num_images_per_prompt for single prompt
num_images_per_prompt = 2
images = sd_pipe(
prompt, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
).images
assert images.shape == (num_images_per_prompt, 64, 64, 3)
# test num_images_per_prompt for batch of prompts
batch_size = 2
images = sd_pipe(
[prompt] * batch_size, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
).images
assert images.shape == (batch_size * num_images_per_prompt, 64, 64, 3)
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
def test_stable_diffusion_long_prompt(self):
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
do_classifier_free_guidance = True
negative_prompt = None
num_images_per_prompt = 1
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
prompt = 25 * "@"
with CaptureLogger(logger) as cap_logger_3:
text_embeddings_3 = sd_pipe._encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
prompt = 100 * "@"
with CaptureLogger(logger) as cap_logger:
text_embeddings = sd_pipe._encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
negative_prompt = "Hello"
with CaptureLogger(logger) as cap_logger_2:
text_embeddings_2 = sd_pipe._encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
assert text_embeddings.shape[1] == 77
assert cap_logger.out == cap_logger_2.out
# 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
assert cap_logger.out.count("@") == 25
assert cap_logger_3.out == ""
def test_stable_diffusion_height_width_opt(self):
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "hey"
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
image_shape = output.images[0].shape[:2]
assert image_shape == (64, 64)
output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
image_shape = output.images[0].shape[:2]
assert image_shape == (96, 96)
config = dict(sd_pipe.unet.config)
config["sample_size"] = 96
sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
image_shape = output.images[0].shape[:2]
assert image_shape == (192, 192)
@slow
@require_torch_gpu
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion(self):
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast("cuda"):
output = sd_pipe(
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_fast_ddim(self):
scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-1", subfolder="scheduler")
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast("cuda"):
output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_lms_stable_diffusion_pipeline(self):
model_id = "CompVis/stable-diffusion-v1-1"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(torch_device)
pipe.set_progress_bar_config(disable=None)
scheduler = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe.scheduler = scheduler
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_memory_chunking(self):
torch.cuda.reset_peak_memory_stats()
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
# make attention efficient
pipe.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 3.75 GB is allocated
assert mem_bytes < 3.75 * 10**9
# disable chunking
pipe.disable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# make sure that more than 3.75 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 3.75 * 10**9
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3
def test_stable_diffusion_vae_slicing(self):
torch.cuda.reset_peak_memory_stats()
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "a photograph of an astronaut riding a horse"
# enable vae slicing
pipe.enable_vae_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output_chunked = pipe(
[prompt] * 4, generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 4 GB is allocated
assert mem_bytes < 4e9
# disable vae slicing
pipe.disable_vae_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt] * 4, generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# make sure that more than 4 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 4e9
# There is a small discrepancy at the image borders vs. a fully batched version.
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 3e-3
def test_stable_diffusion_text2img_pipeline_fp16(self):
torch.cuda.reset_peak_memory_stats()
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# Make sure results are close enough
diff = np.abs(image_chunked.flatten() - image.flatten())
# They ARE different since ops are not run always at the same precision
# however, they should be extremely close.
assert diff.mean() < 2e-2
def test_stable_diffusion_text2img_pipeline_default(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text2img/astronaut_riding_a_horse.npy"
)
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-3
def test_stable_diffusion_text2img_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[1.8285, 1.2857, -0.1024, 1.2406, -2.3068, 1.0747, -0.0818, -0.6520, -2.9506]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
elif step == 50:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[1.1078, 1.5803, 0.2773, -0.0589, -1.7928, -0.3665, -0.4695, -1.0727, -1.1601]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
test_callback_fn.has_been_called = False
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Andromeda galaxy in a bottle"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
prompt=prompt,
num_inference_steps=50,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 50
def test_stable_diffusion_low_cpu_mem_usage(self):
pipeline_id = "CompVis/stable-diffusion-v1-4"
start_time = time.time()
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16
)
pipeline_low_cpu_mem_usage.to(torch_device)
low_cpu_mem_usage_time = time.time() - start_time
start_time = time.time()
_ = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, low_cpu_mem_usage=False
)
normal_load_time = time.time() - start_time
assert 2 * low_cpu_mem_usage_time < normal_load_time
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipeline_id = "CompVis/stable-diffusion-v1-4"
prompt = "Andromeda galaxy in a bottle"
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16)
pipeline = pipeline.to(torch_device)
pipeline.enable_attention_slicing(1)
pipeline.enable_sequential_cpu_offload()
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.8 GB is allocated
assert mem_bytes < 2.8 * 10**9
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_stable_diffusion.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipeline,
UNet2DConditionModel,
UNet2DModel,
VQModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_inpaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_with_num_images_per_prompt(self):
device = "cpu"
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
images = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
num_images_per_prompt=2,
).images
# check if the output is a list of 2 images
assert len(images) == 2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_inpaint_fp16(self):
"""Test that stable diffusion inpaint_legacy works with fp16"""
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_inpaint_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_inpaint_pipeline_fp16(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
revision="fp16",
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_inpaint_pipeline_pndm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench_pndm.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None, scheduler=pndm)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
def test_stable_diffusion_inpaint_pipeline_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench_k_lms.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
# switch to LMS
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
@unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
model_id = "runwayml/stable-diffusion-inpainting"
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
safety_checker=None,
scheduler=pndm,
device_map="auto",
revision="fp16",
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
num_inference_steps=5,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
def test_pil_inputs(self):
im = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
im = Image.fromarray(im)
mask = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
mask = Image.fromarray((mask * 255).astype(np.uint8))
t_mask, t_masked = prepare_mask_and_masked_image(im, mask)
self.assertTrue(isinstance(t_mask, torch.Tensor))
self.assertTrue(isinstance(t_masked, torch.Tensor))
self.assertEqual(t_mask.ndim, 4)
self.assertEqual(t_masked.ndim, 4)
self.assertEqual(t_mask.shape, (1, 1, 32, 32))
self.assertEqual(t_masked.shape, (1, 3, 32, 32))
self.assertTrue(t_mask.dtype == torch.float32)
self.assertTrue(t_masked.dtype == torch.float32)
self.assertTrue(t_mask.min() >= 0.0)
self.assertTrue(t_mask.max() <= 1.0)
self.assertTrue(t_masked.min() >= -1.0)
self.assertTrue(t_masked.min() <= 1.0)
self.assertTrue(t_mask.sum() > 0.0)
def test_np_inputs(self):
im_np = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
im_pil = Image.fromarray(im_np)
mask_np = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil)
self.assertTrue((t_mask_np == t_mask_pil).all())
self.assertTrue((t_masked_np == t_masked_pil).all())
def test_torch_3D_2D_inputs(self):
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_3D_3D_inputs(self):
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_2D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_3D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_4D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0][0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_batch_4D_3D(self):
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (2, 32, 32), dtype=torch.uint8) > 127.5
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy() for mask in mask_tensor]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_batch_4D_4D(self):
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (2, 1, 32, 32), dtype=torch.uint8) > 127.5
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy()[0] for mask in mask_tensor]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_shape_mismatch(self):
# test height and width
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(3, 32, 32), torch.randn(64, 64))
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 64, 64))
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 1, 64, 64))
def test_type_mismatch(self):
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.rand(3, 32, 32).numpy())
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32).numpy(), torch.rand(3, 32, 32))
def test_channels_first(self):
# test channels first for 3D tensors
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.rand(32, 32, 3), torch.rand(3, 32, 32))
def test_tensor_range(self):
# test im <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * 2, torch.rand(32, 32))
# test im >= -1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * (-2), torch.rand(32, 32))
# test mask <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * 2)
# test mask >= 0
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * -1)
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import is_onnx_available, load_image, require_onnxruntime, require_torch_gpu, slow
from ...test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
# FIXME: add fast tests
pass
@slow
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_pndm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx"
)
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="onnx",
scheduler=lms_scheduler,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2520, 0.2743, 0.2643, 0.2641, 0.2517, 0.2650, 0.2498, 0.2688, 0.2529])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint.py |
diffusers-ft-main | tests/pipelines/stable_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
from diffusers import DDIMScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline
from diffusers.utils.testing_utils import is_onnx_available, require_onnxruntime, require_torch_gpu, slow
from ...test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
# FIXME: add fast tests
pass
@slow
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_pndm(self):
# using the PNDM scheduler by default
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
np.random.seed(0)
output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=10, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_ddim(self):
ddim_scheduler = DDIMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx"
)
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
scheduler=ddim_scheduler,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "open neural network exchange"
generator = np.random.RandomState(0)
output = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_k_lms(self):
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx"
)
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
scheduler=lms_scheduler,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "open neural network exchange"
generator = np.random.RandomState(0)
output = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
test_callback_fn.has_been_called = False
pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "Andromeda galaxy in a bottle"
generator = np.random.RandomState(0)
pipe(
prompt=prompt,
num_inference_steps=5,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def test_stable_diffusion_no_safety_checker(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
safety_checker=None,
)
assert isinstance(pipe, OnnxStableDiffusionPipeline)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = OnnxStableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
require_onnxruntime,
require_torch_gpu,
slow,
)
if is_onnx_available():
import onnxruntime as ort
@slow
@require_onnxruntime
@require_torch_gpu
class StableDiffusionOnnxInpaintLegacyPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy"
)
# using the PNDM scheduler by default
pipe = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
init_image=init_image,
mask_image=mask_image,
strength=0.75,
guidance_scale=7.5,
num_inference_steps=15,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_inpaint_legacy.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImageVariationPipeline,
UNet2DConditionModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPVisionConfig, CLIPVisionModelWithProjection
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=32,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
image_size=32,
patch_size=4,
)
return CLIPVisionModelWithProjection(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_img_variation_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
image_encoder = self.dummy_image_encoder
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImageVariationPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
image_encoder=image_encoder,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
init_image,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
init_image,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5093, 0.5717, 0.4806, 0.4891, 0.5552, 0.4594, 0.5177, 0.4894, 0.4904])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img_variation_multiple_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
image_encoder = self.dummy_image_encoder
init_image = self.dummy_image.to(device).repeat(2, 1, 1, 1)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImageVariationPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
image_encoder=image_encoder,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
init_image,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
)
image = output.images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
expected_slice = np.array([0.6427, 0.5452, 0.5602, 0.5478, 0.5968, 0.6211, 0.5538, 0.5514, 0.5281])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img_variation_num_images_per_prompt(self):
device = "cpu"
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
image_encoder = self.dummy_image_encoder
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImageVariationPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
image_encoder=image_encoder,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
# test num_images_per_prompt=1 (default)
images = sd_pipe(
init_image,
num_inference_steps=2,
output_type="np",
).images
assert images.shape == (1, 64, 64, 3)
# test num_images_per_prompt=1 (default) for batch of images
batch_size = 2
images = sd_pipe(
init_image.repeat(batch_size, 1, 1, 1),
num_inference_steps=2,
output_type="np",
).images
assert images.shape == (batch_size, 64, 64, 3)
# test num_images_per_prompt for single prompt
num_images_per_prompt = 2
images = sd_pipe(
init_image,
num_inference_steps=2,
output_type="np",
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (num_images_per_prompt, 64, 64, 3)
# test num_images_per_prompt for batch of prompts
batch_size = 2
images = sd_pipe(
init_image.repeat(batch_size, 1, 1, 1),
num_inference_steps=2,
output_type="np",
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (batch_size * num_images_per_prompt, 64, 64, 3)
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_img_variation_fp16(self):
"""Test that stable diffusion img2img works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
image_encoder = self.dummy_image_encoder
init_image = self.dummy_image.to(torch_device).float()
# put models in fp16
unet = unet.half()
vae = vae.half()
image_encoder = image_encoder.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImageVariationPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
image_encoder=image_encoder,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
init_image,
generator=generator,
num_inference_steps=2,
output_type="np",
).images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch_gpu
class StableDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_img_variation_pipeline_default(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/vermeer.jpg"
)
init_image = init_image.resize((512, 512))
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/vermeer.npy"
)
model_id = "fusing/sd-image-variations-diffusers"
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
init_image,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_img_variation_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([1.83, 1.293, -0.09705, 1.256, -2.293, 1.091, -0.0809, -0.65, -2.953])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
elif step == 37:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([2.285, 2.703, 1.969, 0.696, -1.323, 0.9253, -0.5464, -1.521, -2.537])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
test_callback_fn.has_been_called = False
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((512, 512))
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"fusing/sd-image-variations-diffusers",
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
init_image,
num_inference_steps=50,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 50
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((512, 512))
model_id = "fusing/sd-image-variations-diffusers"
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
model_id, scheduler=lms, safety_checker=None, torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
init_image,
guidance_scale=7.5,
generator=generator,
output_type="np",
num_inference_steps=5,
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.6 GB is allocated
assert mem_bytes < 2.6 * 10**9
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_stable_diffusion_image_variation.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
UNet2DConditionModel,
UNet2DModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import load_numpy, require_torch_gpu
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionInpaintLegacyPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_inpaint_legacy(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_legacy_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
negative_prompt = "french fries"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
prompt,
negative_prompt=negative_prompt,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4765, 0.5339, 0.4541, 0.6240, 0.5439, 0.4055, 0.5503, 0.5891, 0.5150])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_legacy_num_images_per_prompt(self):
device = "cpu"
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
# test num_images_per_prompt=1 (default)
images = sd_pipe(
prompt,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
).images
assert images.shape == (1, 32, 32, 3)
# test num_images_per_prompt=1 (default) for batch of prompts
batch_size = 2
images = sd_pipe(
[prompt] * batch_size,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
).images
assert images.shape == (batch_size, 32, 32, 3)
# test num_images_per_prompt for single prompt
num_images_per_prompt = 2
images = sd_pipe(
prompt,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (num_images_per_prompt, 32, 32, 3)
# test num_images_per_prompt for batch of prompts
batch_size = 2
images = sd_pipe(
[prompt] * batch_size,
num_inference_steps=2,
output_type="np",
init_image=init_image,
mask_image=mask_image,
num_images_per_prompt=num_images_per_prompt,
).images
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)
@slow
@require_torch_gpu
class StableDiffusionInpaintLegacyPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_inpaint_legacy_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/red_cat_sitting_on_a_park_bench.npy"
)
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A red cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
init_image=init_image,
mask_image=mask_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_inpaint_legacy_pipeline_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/red_cat_sitting_on_a_park_bench_k_lms.npy"
)
model_id = "CompVis/stable-diffusion-v1-4"
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
scheduler=lms,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A red cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
init_image=init_image,
mask_image=mask_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_inpaint_legacy_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.5472, 1.1218, -0.5505, -0.9390, -1.0794, 0.4063, 0.5158, 0.6429, -1.5246]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 37:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.4781, 1.1572, 0.6258, 0.2291, 0.2554, -0.1443, 0.7085, -0.1598, -0.5659])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
test_callback_fn.has_been_called = False
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A red cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
prompt=prompt,
init_image=init_image,
mask_image=mask_image,
strength=0.75,
num_inference_steps=50,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 37
| diffusers-ft-main | tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint_legacy.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNet2DModel
from diffusers.utils.testing_utils import require_torch, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class PNDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
unet = self.dummy_uncond_unet
scheduler = PNDMScheduler()
pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
pndm.to(torch_device)
pndm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images
generator = torch.manual_seed(0)
image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch
class PNDMPipelineIntegrationTests(unittest.TestCase):
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = PNDMScheduler()
pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
pndm.to(torch_device)
pndm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pndm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/pndm/test_pndm.py |
diffusers-ft-main | tests/pipelines/pndm/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionDualGuidedPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionDualGuidedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch_gpu
class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_remove_unused_weights_save_load(self):
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion")
# remove text_unet
pipe.remove_unused_weights()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
second_prompt = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
prompt="first prompt",
image=second_prompt,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained(tmpdirname)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe(
prompt="first prompt",
image=second_prompt,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def test_inference_dual_guided(self):
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion")
pipe.remove_unused_weights()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
first_prompt = "cyberpunk 2077"
second_prompt = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
prompt=first_prompt,
image=second_prompt,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.014, 0.0112, 0.0136, 0.0145, 0.0107, 0.0113, 0.0272, 0.0215, 0.0216])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_dual_guided.py |
diffusers-ft-main | tests/pipelines/versatile_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch_gpu
class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase):
def test_inference_image_variations(self):
pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
image_prompt = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
image=image_prompt,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1205, 0.1914, 0.2289, 0.0883, 0.1595, 0.1683, 0.0703, 0.1493, 0.1298])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_image_variation.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionMegaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch_gpu
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_from_pretrained_save_pretrained(self):
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt_image = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe.dual_guided(
prompt="first prompt",
image=prompt_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe.dual_guided(
prompt="first prompt",
image=prompt_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=2,
output_type="numpy",
).images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def test_inference_dual_guided_then_text_to_image(self):
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "cyberpunk 2077"
init_image = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe.dual_guided(
prompt=prompt,
image=init_image,
text_to_image_strength=0.75,
generator=generator,
guidance_scale=7.5,
num_inference_steps=50,
output_type="numpy",
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0081, 0.0032, 0.0002, 0.0056, 0.0027, 0.0000, 0.0051, 0.0020, 0.0007])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe.text_to_image(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3403, 0.1809, 0.0938, 0.3855, 0.2393, 0.1243, 0.4028, 0.3110, 0.1799])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
| diffusers-ft-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_mega.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch_gpu
class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_remove_unused_weights_save_load(self):
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion")
# remove text_unet
pipe.remove_unused_weights()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy"
).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained(tmpdirname)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
new_image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy"
).images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def test_inference_text2img(self):
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/versatile_diffusion/test_versatile_diffusion_text_to_image.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionUpscalePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet_upscale(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 32, 64),
layers_per_block=2,
sample_size=32,
in_channels=7,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=8,
use_linear_projection=True,
only_cross_attention=(True, True, False),
num_class_embeds=100,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
return CLIPTextModel(config)
def test_stable_diffusion_upscale(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
expected_slice = np.array([0.2562, 0.3606, 0.4204, 0.4469, 0.4822, 0.4647, 0.5315, 0.5748, 0.5606])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_upscale_fp16(self):
"""Test that stable diffusion upscale works with fp16"""
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# put models in fp16, except vae as it overflows in fp16
unet = unet.half()
text_encoder = text_encoder.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
num_inference_steps=2,
output_type="np",
).images
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_upscale_pipeline(self):
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat.npy"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "a cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_upscale_pipeline_fp16(self):
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat_fp16.npy"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(
model_id,
revision="fp16",
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "a cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(
model_id,
revision="fp16",
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "a cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
prompt=prompt,
image=image,
generator=generator,
num_inference_steps=5,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| diffusers-ft-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_upscale.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class FlaxStableDiffusion2PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def test_stable_diffusion_flax(self):
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2",
revision="bf16",
dtype=jnp.bfloat16,
)
prompt = "A painting of a squirrel eating a burger"
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = sd_pipe.prepare_inputs(prompt)
params = replicate(params)
prompt_ids = shard(prompt_ids)
prng_seed = jax.random.PRNGKey(0)
prng_seed = jax.random.split(prng_seed, jax.device_count())
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
image_slice = images[0, 253:256, 253:256, -1]
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
expected_slice = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512])
print(f"output_slice: {output_slice}")
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
def test_stable_diffusion_dpm_flax(self):
model_id = "stabilityai/stable-diffusion-2"
scheduler, scheduler_params = FlaxDPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained(
model_id,
scheduler=scheduler,
revision="bf16",
dtype=jnp.bfloat16,
)
params["scheduler"] = scheduler_params
prompt = "A painting of a squirrel eating a burger"
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = sd_pipe.prepare_inputs(prompt)
params = replicate(params)
prompt_ids = shard(prompt_ids)
prng_seed = jax.random.PRNGKey(0)
prng_seed = jax.random.split(prng_seed, jax.device_count())
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
image_slice = images[0, 253:256, 253:256, -1]
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
expected_slice = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297])
print(f"output_slice: {output_slice}")
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_flax.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import time
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
logging,
)
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4, 8, 8),
use_linear_projection=True,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
return CLIPTextModel(config)
def test_save_pretrained_from_pretrained(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
with tempfile.TemporaryDirectory() as tmpdirname:
sd_pipe.save_pretrained(tmpdirname)
sd_pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
generator = generator.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
new_image = output.images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def test_stable_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5649, 0.6022, 0.4804, 0.5270, 0.5585, 0.4643, 0.5159, 0.4963, 0.4793])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5099, 0.5677, 0.4671, 0.5128, 0.5697, 0.4676, 0.5277, 0.4964, 0.4946])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler_ancestral(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4715, 0.5376, 0.4569, 0.5224, 0.5734, 0.4797, 0.5465, 0.5074, 0.5046])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = EulerDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_attention_chunk(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
# make sure chunking the attention yields the same result
sd_pipe.enable_attention_slicing(slice_size=1)
generator = torch.Generator(device=device).manual_seed(0)
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
def test_stable_diffusion_long_prompt(self):
unet = self.dummy_cond_unet
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
do_classifier_free_guidance = True
negative_prompt = None
num_images_per_prompt = 1
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
prompt = 25 * "@"
with CaptureLogger(logger) as cap_logger_3:
text_embeddings_3 = sd_pipe._encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
prompt = 100 * "@"
with CaptureLogger(logger) as cap_logger:
text_embeddings = sd_pipe._encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
negative_prompt = "Hello"
with CaptureLogger(logger) as cap_logger_2:
text_embeddings_2 = sd_pipe._encode_prompt(
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
assert text_embeddings.shape[1] == 77
assert cap_logger.out == cap_logger_2.out
# 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
assert cap_logger.out.count("@") == 25
assert cap_logger_3.out == ""
@slow
@require_torch_gpu
class StableDiffusion2PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0788, 0.0823, 0.1091, 0.1165, 0.1263, 0.1459, 0.1317, 0.1507, 0.1551])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_ddim(self):
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0642, 0.0382, 0.0408, 0.0395, 0.0227, 0.0942, 0.0749, 0.0669, 0.0248])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_lms(self):
scheduler = LMSDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0548, 0.0626, 0.0612, 0.0611, 0.0706, 0.0586, 0.0843, 0.0333, 0.1197])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_attention_slicing(self):
torch.cuda.reset_peak_memory_stats()
model_id = "stabilityai/stable-diffusion-2-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
# make attention efficient
pipe.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 3.75 GB is allocated
assert mem_bytes < 3.75 * 10**9
# disable chunking
pipe.disable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# make sure that more than 3.75 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 3.75 * 10**9
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3
def test_stable_diffusion_same_quality(self):
torch.cuda.reset_peak_memory_stats()
model_id = "stabilityai/stable-diffusion-2-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.enable_attention_slicing()
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")
image = output.images
# Make sure results are close enough
diff = np.abs(image_chunked.flatten() - image.flatten())
# They ARE different since ops are not run always at the same precision
# however, they should be extremely close.
assert diff.mean() < 5e-2
def test_stable_diffusion_text2img_pipeline_default(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-text2img/astronaut_riding_a_horse.npy"
)
model_id = "stabilityai/stable-diffusion-2-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-3
def test_stable_diffusion_text2img_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([1.8606, 1.3169, -0.0691, 1.2374, -2.309, 1.077, -0.1084, -0.6774, -2.9594])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
elif step == 20:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([1.0757, 1.1860, 1.1410, 0.4645, -0.2476, 0.6100, -0.7755, -0.8841, -0.9497])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
test_callback_fn.has_been_called = False
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-base", revision="fp16", torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Andromeda galaxy in a bottle"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
prompt=prompt,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 20
def test_stable_diffusion_low_cpu_mem_usage(self):
pipeline_id = "stabilityai/stable-diffusion-2-base"
start_time = time.time()
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16
)
pipeline_low_cpu_mem_usage.to(torch_device)
low_cpu_mem_usage_time = time.time() - start_time
start_time = time.time()
_ = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, low_cpu_mem_usage=False
)
normal_load_time = time.time() - start_time
assert 2 * low_cpu_mem_usage_time < normal_load_time
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipeline_id = "stabilityai/stable-diffusion-2-base"
prompt = "Andromeda galaxy in a bottle"
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16)
pipeline = pipeline.to(torch_device)
pipeline.enable_attention_slicing(1)
pipeline.enable_sequential_cpu_offload()
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.8 GB is allocated
assert mem_bytes < 2.8 * 10**9
| diffusers-ft-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4, 8, 8),
use_linear_projection=True,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_inpaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_inpaint_fp16(self):
"""Test that stable diffusion inpaint works with fp16"""
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
# put models in fp16
unet = unet.half()
vae = vae.half()
text_encoder = text_encoder.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
assert image.shape == (1, 64, 64, 3)
# @slow
@require_torch_gpu
class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_inpaint_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench.npy"
)
model_id = "stabilityai/stable-diffusion-2-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_inpaint_pipeline_fp16(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy"
)
model_id = "stabilityai/stable-diffusion-2-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
revision="fp16",
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
)
model_id = "stabilityai/stable-diffusion-2-inpainting"
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
safety_checker=None,
scheduler=pndm,
device_map="auto",
revision="fp16",
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
num_inference_steps=5,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| diffusers-ft-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_inpaint.py |
diffusers-ft-main | tests/pipelines/stable_diffusion_2/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import time
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusion2VPredictionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4, 8, 8),
use_linear_projection=True,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=64,
)
return CLIPTextModel(config)
def test_stable_diffusion_v_pred_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
prediction_type="v_prediction",
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6424, 0.6109, 0.494, 0.5088, 0.4984, 0.4525, 0.5059, 0.5068, 0.4474])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_k_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = EulerDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="v_prediction"
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4616, 0.5184, 0.4887, 0.5111, 0.4839, 0.48, 0.5119, 0.5263, 0.4776])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_v_pred_fp16(self):
"""Test that stable diffusion v-prediction works with fp16"""
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
prediction_type="v_prediction",
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch_gpu
class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_v_pred_default(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0567, 0.057, 0.0416, 0.0463, 0.0433, 0.06, 0.0517, 0.0526, 0.0866])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_euler(self):
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler")
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0351, 0.0376, 0.0505, 0.0424, 0.0551, 0.0656, 0.0471, 0.0276, 0.0596])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_dpm(self):
"""
TODO: update this test after making DPM compatible with V-prediction!
"""
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"stabilityai/stable-diffusion-2", subfolder="scheduler"
)
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.2049, 0.2115, 0.2323, 0.2416, 0.256, 0.2484, 0.2517, 0.2358, 0.236])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_attention_slicing_v_pred(self):
torch.cuda.reset_peak_memory_stats()
model_id = "stabilityai/stable-diffusion-2"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
# make attention efficient
pipe.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 5.5 GB is allocated
assert mem_bytes < 5.5 * 10**9
# disable slicing
pipe.disable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# make sure that more than 5.5 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 5.5 * 10**9
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3
def test_stable_diffusion_text2img_pipeline_v_pred_default(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"sd2-text2img/astronaut_riding_a_horse_v_pred.npy"
)
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
pipe.to(torch_device)
pipe.enable_attention_slicing()
pipe.set_progress_bar_config(disable=None)
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert np.abs(expected_image - image).max() < 5e-3
def test_stable_diffusion_text2img_pipeline_v_pred_fp16(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"sd2-text2img/astronaut_riding_a_horse_v_pred_fp16.npy"
)
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_text2img_intermediate_state_v_pred(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.2543, -1.2755, 0.4261, -0.9555, -1.173, -0.5892, 2.4159, 0.1554, -1.2098]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
elif step == 19:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.9572, -0.967, -0.6152, 0.0894, -0.699, -0.2344, 1.5465, -0.0357, -0.1141]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
test_callback_fn.has_been_called = False
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Andromeda galaxy in a bottle"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
prompt=prompt,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 20
def test_stable_diffusion_low_cpu_mem_usage_v_pred(self):
pipeline_id = "stabilityai/stable-diffusion-2"
start_time = time.time()
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16
)
pipeline_low_cpu_mem_usage.to(torch_device)
low_cpu_mem_usage_time = time.time() - start_time
start_time = time.time()
_ = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16, low_cpu_mem_usage=False
)
normal_load_time = time.time() - start_time
assert 2 * low_cpu_mem_usage_time < normal_load_time
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading_v_pred(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipeline_id = "stabilityai/stable-diffusion-2"
prompt = "Andromeda galaxy in a bottle"
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16)
pipeline = pipeline.to(torch_device)
pipeline.enable_attention_slicing(1)
pipeline.enable_sequential_cpu_offload()
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.8 GB is allocated
assert mem_bytes < 2.8 * 10**9
| diffusers-ft-main | tests/pipelines/stable_diffusion_2/test_stable_diffusion_v_pred.py |
diffusers-ft-main | tests/pipelines/ddpm/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.utils import deprecate
from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class DDPMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
device = "cpu"
unet = self.dummy_uncond_unet
scheduler = DDPMScheduler()
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[5.589e-01, 7.089e-01, 2.632e-01, 6.841e-01, 1.000e-04, 9.999e-01, 1.973e-01, 1.000e-04, 8.010e-02]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_deprecated_predict_epsilon(self):
deprecate("remove this test", "0.10.0", "remove")
unet = self.dummy_uncond_unet
scheduler = DDPMScheduler(predict_epsilon=False)
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
# Warmup pass when using mps (see #372)
if torch_device == "mps":
_ = ddpm(num_inference_steps=1)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = generator.manual_seed(0)
image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", predict_epsilon=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_eps_slice = image_eps[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
tolerance = 1e-2 if torch_device != "mps" else 3e-2
assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance
def test_inference_predict_sample(self):
unet = self.dummy_uncond_unet
scheduler = DDPMScheduler(prediction_type="sample")
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
# Warmup pass when using mps (see #372)
if torch_device == "mps":
_ = ddpm(num_inference_steps=1)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = generator.manual_seed(0)
image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy")[0]
image_slice = image[0, -3:, -3:, -1]
image_eps_slice = image_eps[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
tolerance = 1e-2 if torch_device != "mps" else 3e-2
assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance
@slow
@require_torch_gpu
class DDPMPipelineIntegrationTests(unittest.TestCase):
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDPMScheduler.from_pretrained(model_id)
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4454, 0.2025, 0.0315, 0.3023, 0.2575, 0.1031, 0.0953, 0.1604, 0.2020])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-ft-main | tests/pipelines/ddpm/test_ddpm.py |
import gc
import unittest
from diffusers import FlaxUNet2DConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
from parameterized import parameterized
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class FlaxUNet2DConditionModelIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
dtype = jnp.bfloat16 if fp16 else jnp.float32
image = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype)
return image
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
dtype = jnp.bfloat16 if fp16 else jnp.float32
revision = "bf16" if fp16 else None
model, params = FlaxUNet2DConditionModel.from_pretrained(
model_id, subfolder="unet", dtype=dtype, revision=revision
)
return model, params
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
dtype = jnp.bfloat16 if fp16 else jnp.float32
hidden_states = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype)
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
]
)
def test_compvis_sd_v1_4_flax_vs_torch_fp16(self, seed, timestep, expected_slice):
model, params = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
sample = model.apply(
{"params": params},
latents,
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=encoder_hidden_states,
).sample
assert sample.shape == latents.shape
output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32)
expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32)
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2)
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
]
)
def test_stabilityai_sd_v2_flax_vs_torch_fp16(self, seed, timestep, expected_slice):
model, params = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)
sample = model.apply(
{"params": params},
latents,
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=encoder_hidden_states,
).sample
assert sample.shape == latents.shape
output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32)
expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32)
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2)
| diffusers-ft-main | tests/models/test_models_unet_2d_flax.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import UNet1DModel
from diffusers.utils import floats_tensor, slow, torch_device
from ..test_modeling_common import ModelTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class UNet1DModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet1DModel
@property
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (4, 14, 16)
def test_ema_training(self):
pass
def test_training(self):
pass
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_determinism(self):
super().test_determinism()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_pretrained_save_pretrained(self):
super().test_from_pretrained_save_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output(self):
super().test_output()
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64, 128, 256),
"in_channels": 14,
"out_channels": 14,
"time_embedding_type": "positional",
"use_timestep_embedding": True,
"flip_sin_to_cos": False,
"freq_shift": 1.0,
"out_block_type": "OutConv1DBlock",
"mid_block_type": "MidResTemporalBlock1D",
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
"up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"),
"act_fn": "mish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_pretrained_hub(self):
model, loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet"
)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output_pretrained(self):
model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet")
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_features = model.in_channels
seq_len = 16
noise = torch.randn((1, seq_len, num_features)).permute(
0, 2, 1
) # match original, we can update values and remove
time_step = torch.full((num_features,), 0)
with torch.no_grad():
output = model(noise, time_step).sample.permute(0, 2, 1)
output_slice = output[0, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass
@slow
def test_unet_1d_maestro(self):
model_id = "harmonai/maestro-150k"
model = UNet1DModel.from_pretrained(model_id, subfolder="unet")
model.to(torch_device)
sample_size = 65536
noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device)
timestep = torch.tensor([1]).to(torch_device)
with torch.no_grad():
output = model(noise, timestep).sample
output_sum = output.abs().sum()
output_max = output.abs().max()
assert (output_sum - 224.0896).abs() < 4e-2
assert (output_max - 0.0607).abs() < 4e-4
class UNetRLModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet1DModel
@property
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (4, 14, 1)
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_determinism(self):
super().test_determinism()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_pretrained_save_pretrained(self):
super().test_from_pretrained_save_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output(self):
# UNetRL is a value-function is different output shape
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1))
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_ema_training(self):
pass
def test_training(self):
pass
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 14,
"out_channels": 14,
"down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"],
"up_block_types": [],
"out_block_type": "ValueFunction",
"mid_block_type": "ValueFunctionMidBlock1D",
"block_out_channels": [32, 64, 128, 256],
"layers_per_block": 1,
"downsample_each_block": True,
"use_timestep_embedding": True,
"freq_shift": 1.0,
"flip_sin_to_cos": False,
"time_embedding_type": "positional",
"act_fn": "mish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_pretrained_hub(self):
value_function, vf_loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
)
self.assertIsNotNone(value_function)
self.assertEqual(len(vf_loading_info["missing_keys"]), 0)
value_function.to(torch_device)
image = value_function(**self.dummy_input)
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output_pretrained(self):
value_function, vf_loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_features = value_function.in_channels
seq_len = 14
noise = torch.randn((1, seq_len, num_features)).permute(
0, 2, 1
) # match original, we can update values and remove
time_step = torch.full((num_features,), 0)
with torch.no_grad():
output = value_function(noise, time_step).sample
# fmt: off
expected_output_slice = torch.tensor([165.25] * seq_len)
# fmt: on
self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3))
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass
| diffusers-ft-main | tests/models/test_models_unet_1d.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import math
import tracemalloc
import unittest
import torch
from diffusers import UNet2DConditionModel, UNet2DModel
from diffusers.utils import (
floats_tensor,
load_hf_numpy,
logging,
require_torch_gpu,
slow,
torch_all_close,
torch_device,
)
from parameterized import parameterized
from ..test_modeling_common import ModelTesterMixin
logger = logging.get_logger(__name__)
torch.backends.cuda.matmul.allow_tf32 = False
class Unet2DModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet2DModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
"up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
"attention_head_dim": None,
"out_channels": 3,
"in_channels": 3,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet2DModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"layers_per_block": 2,
"block_out_channels": (32, 64),
"attention_head_dim": 32,
"down_block_types": ("DownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "UpBlock2D"),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
def test_from_pretrained_accelerate(self):
model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
def test_from_pretrained_accelerate_wont_change_results(self):
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model_accelerate.to(torch_device)
model_accelerate.eval()
noise = torch.randn(
1,
model_accelerate.config.in_channels,
model_accelerate.config.sample_size,
model_accelerate.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
arr_accelerate = model_accelerate(noise, time_step)["sample"]
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
model_normal_load, _ = UNet2DModel.from_pretrained(
"fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
)
model_normal_load.to(torch_device)
model_normal_load.eval()
arr_normal_load = model_normal_load(noise, time_step)["sample"]
assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
def test_memory_footprint_gets_reduced(self):
torch.cuda.empty_cache()
gc.collect()
tracemalloc.start()
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model_accelerate.to(torch_device)
model_accelerate.eval()
_, peak_accelerate = tracemalloc.get_traced_memory()
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
model_normal_load, _ = UNet2DModel.from_pretrained(
"fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
)
model_normal_load.to(torch_device)
model_normal_load.eval()
_, peak_normal = tracemalloc.get_traced_memory()
tracemalloc.stop()
assert peak_accelerate < peak_normal
def test_output_pretrained(self):
model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
model.eval()
model.to(torch_device)
noise = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet2DConditionModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_gradient_checkpointing(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
assert not model.is_gradient_checkpointing and model.training
out = model(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
labels = torch.randn_like(out)
loss = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
model_2 = self.model_class(**init_dict)
# clone model
model_2.load_state_dict(model.state_dict())
model_2.to(torch_device)
model_2.enable_gradient_checkpointing()
assert model_2.is_gradient_checkpointing and model_2.training
out_2 = model_2(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_2.zero_grad()
loss_2 = (out_2 - labels).mean()
loss_2.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_2).abs() < 1e-5)
named_params = dict(model.named_parameters())
named_params_2 = dict(model_2.named_parameters())
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))
def test_model_with_attention_head_dim_tuple(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_use_linear_projection(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["use_linear_projection"] = True
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet2DModel
@property
def dummy_input(self, sizes=(32, 32)):
batch_size = 4
num_channels = 3
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64, 64, 64],
"in_channels": 3,
"layers_per_block": 1,
"out_channels": 3,
"time_embedding_type": "fourier",
"norm_eps": 1e-6,
"mid_block_scale_factor": math.sqrt(2.0),
"norm_num_groups": None,
"down_block_types": [
"SkipDownBlock2D",
"AttnSkipDownBlock2D",
"SkipDownBlock2D",
"SkipDownBlock2D",
],
"up_block_types": [
"SkipUpBlock2D",
"SkipUpBlock2D",
"AttnSkipUpBlock2D",
"SkipUpBlock2D",
],
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@slow
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
inputs = self.dummy_input
noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
inputs["sample"] = noise
image = model(**inputs)
assert image is not None, "Make sure output is not None"
@slow
def test_output_pretrained_ve_mid(self):
model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
model.to(torch_device)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
batch_size = 4
num_channels = 3
sizes = (256, 256)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_output_pretrained_ve_large(self):
model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
model.to(torch_device)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_forward_with_norm_groups(self):
# not required for this model
pass
@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
revision = "fp16" if fp16 else None
torch_dtype = torch.float16 if fp16 else torch.float32
model = UNet2DConditionModel.from_pretrained(
model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision
)
model.to(torch_device).eval()
return model
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return hidden_states
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]],
[47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]],
[21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]],
[9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_4(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4")
latents = self.get_latents(seed)
encoder_hidden_states = self.get_encoder_hidden_states(seed)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]],
[47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]],
[21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]],
[9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5")
latents = self.get_latents(seed)
encoder_hidden_states = self.get_encoder_hidden_states(seed)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]],
[17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]],
[8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]],
[3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]],
[47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]],
[21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]],
[9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting")
latents = self.get_latents(seed, shape=(4, 9, 64, 64))
encoder_hidden_states = self.get_encoder_hidden_states(seed)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == (4, 4, 64, 64)
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]],
[17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]],
[8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]],
[3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True)
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == (4, 4, 64, 64)
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
]
)
@require_torch_gpu
def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
| diffusers-ft-main | tests/models/test_models_unet_2d.py |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from ..test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class FlaxAutoencoderKLTests(FlaxModelTesterMixin, unittest.TestCase):
model_class = FlaxAutoencoderKL
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
prng_key = jax.random.PRNGKey(0)
image = jax.random.uniform(prng_key, ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
| diffusers-ft-main | tests/models/test_models_vae_flax.py |
diffusers-ft-main | tests/models/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from ..test_modeling_common import ModelTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VQModelTests(ModelTesterMixin, unittest.TestCase):
model_class = VQModel
@property
def dummy_input(self, sizes=(32, 32)):
batch_size = 4
num_channels = 3
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 3,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
def test_from_pretrained_hub(self):
model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = VQModel.from_pretrained("fusing/vqgan-dummy")
model.to(torch_device).eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
image = image.to(torch_device)
with torch.no_grad():
# Warmup pass when using mps (see #372)
if torch_device == "mps":
_ = model(image)
output = model(image).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
| diffusers-ft-main | tests/models/test_models_vq.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import torch
from diffusers import AutoencoderKL
from diffusers.modeling_utils import ModelMixin
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from parameterized import parameterized
from ..test_modeling_common import ModelTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
model_class = AutoencoderKL
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
def test_from_pretrained_hub(self):
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
model = model.to(torch_device)
model.eval()
# One-time warmup pass (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
image = image.to(torch_device)
with torch.no_grad():
_ = model(image, sample_posterior=True).sample
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
image = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
image = image.to(torch_device)
with torch.no_grad():
output = model(image, sample_posterior=True, generator=generator).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
expected_output_slice = torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
]
)
elif torch_device == "cpu":
expected_output_slice = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]
)
else:
expected_output_slice = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]
)
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
revision = "fp16" if fp16 else None
torch_dtype = torch.float16 if fp16 else torch.float32
model = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
torch_dtype=torch_dtype,
revision=revision,
)
model.to(torch_device).eval()
return model
def get_generator(self, seed=0):
return torch.Generator(device=torch_device).manual_seed(seed)
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089]],
# fmt: on
]
)
def test_stable_diffusion(self, seed, expected_slice):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
]
)
@require_torch_gpu
def test_stable_diffusion_fp16(self, seed, expected_slice):
model = self.get_sd_vae_model(fp16=True)
image = self.get_sd_image(seed, fp16=True)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085]],
# fmt: on
]
)
def test_stable_diffusion_mode(self, seed, expected_slice):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
]
)
@require_torch_gpu
def test_stable_diffusion_decode(self, seed, expected_slice):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
]
)
def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
model = self.get_sd_vae_model(fp16=True)
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
]
)
def test_stable_diffusion_encode_sample(self, seed, expected_slice):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
dist = model.encode(image).latent_dist
sample = dist.sample(generator=generator)
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
| diffusers-ft-main | tests/models/test_models_vae.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
REFERENCE_CODE = """ \"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class CopyCheckTester(unittest.TestCase):
def setUp(self):
self.diffusers_dir = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir, "schedulers/"))
check_copies.DIFFUSERS_PATH = self.diffusers_dir
shutil.copy(
os.path.join(git_repo_path, "src/diffusers/schedulers/scheduling_ddpm.py"),
os.path.join(self.diffusers_dir, "schedulers/scheduling_ddpm.py"),
)
def tearDown(self):
check_copies.DIFFUSERS_PATH = "src/diffusers"
shutil.rmtree(self.diffusers_dir)
def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None):
code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result
mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119)
code = black.format_str(code, mode=mode)
fname = os.path.join(self.diffusers_dir, "new_code.py")
with open(fname, "w", newline="\n") as f:
f.write(code)
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0)
else:
check_copies.is_copy_consistent(f.name, overwrite=True)
with open(fname, "r") as f:
self.assertTrue(f.read(), expected)
def test_find_code_in_diffusers(self):
code = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput")
self.assertEqual(code, REFERENCE_CODE)
def test_is_copy_consistent(self):
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput",
"DDPMSchedulerOutput",
REFERENCE_CODE + "\n",
)
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput",
"DDPMSchedulerOutput",
REFERENCE_CODE,
)
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test",
"TestSchedulerOutput",
re.sub("DDPM", "Test", REFERENCE_CODE),
)
# Copy consistency with a really long name
long_class_name = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}",
f"{long_class_name}SchedulerOutput",
re.sub("Bert", long_class_name, REFERENCE_CODE),
)
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test",
"TestSchedulerOutput",
REFERENCE_CODE,
overwrite_result=re.sub("DDPM", "Test", REFERENCE_CODE),
)
| diffusers-ft-main | tests/repo_utils/test_check_copies.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
check_dummies.PATH_TO_DIFFUSERS = os.path.join(git_repo_path, "src", "diffusers")
class CheckDummiesTester(unittest.TestCase):
def test_find_backend(self):
simple_backend = find_backend(" if not is_torch_available():")
self.assertEqual(simple_backend, "torch")
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
double_backend = find_backend(" if not (is_torch_available() and is_transformers_available()):")
self.assertEqual(double_backend, "torch_and_transformers")
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
triple_backend = find_backend(
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):"
)
self.assertEqual(triple_backend, "torch_and_transformers_and_onnx")
def test_read_init(self):
objects = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch", objects)
self.assertIn("torch_and_transformers", objects)
self.assertIn("flax_and_transformers", objects)
self.assertIn("torch_and_transformers_and_onnx", objects)
# Likewise, we can't assert on the exact content of a key
self.assertIn("UNet2DModel", objects["torch"])
self.assertIn("FlaxUNet2DConditionModel", objects["flax"])
self.assertIn("StableDiffusionPipeline", objects["torch_and_transformers"])
self.assertIn("FlaxStableDiffusionPipeline", objects["flax_and_transformers"])
self.assertIn("LMSDiscreteScheduler", objects["torch_and_scipy"])
self.assertIn("OnnxStableDiffusionPipeline", objects["torch_and_transformers_and_onnx"])
def test_create_dummy_object(self):
dummy_constant = create_dummy_object("CONSTANT", "'torch'")
self.assertEqual(dummy_constant, "\nCONSTANT = None\n")
dummy_function = create_dummy_object("function", "'torch'")
self.assertEqual(
dummy_function, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n"
)
expected_dummy_class = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
dummy_class = create_dummy_object("FakeClass", "'torch'")
self.assertEqual(dummy_class, expected_dummy_class)
def test_create_dummy_files(self):
expected_dummy_pytorch_file = """# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
"""
dummy_files = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]})
self.assertEqual(dummy_files["torch"], expected_dummy_pytorch_file)
| diffusers-ft-main | tests/repo_utils/test_check_dummies.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class CustomLocalPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
eta (`float`, *optional*, defaults to 0.0):
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
generator=generator,
)
image = image.to(self.device)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
image = self.scheduler.step(model_output, t, image).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=image), "This is a local test"
| diffusers-ft-main | tests/fixtures/custom_pipeline/pipeline.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class CustomLocalPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
eta (`float`, *optional*, defaults to 0.0):
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
generator=generator,
)
image = image.to(self.device)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
image = self.scheduler.step(model_output, t, image).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=image), "This is a local test"
| diffusers-ft-main | tests/fixtures/custom_pipeline/what_ever.py |
# Copyright 2022 The HuggingFace Team, the AllenNLP library authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Script to close stale issue. Taken in part from the AllenNLP repository.
https://github.com/allenai/allennlp.
"""
import os
from datetime import datetime as dt
from github import Github
LABELS_TO_EXEMPT = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def main():
g = Github(os.environ["GITHUB_TOKEN"])
repo = g.get_repo("huggingface/diffusers")
open_issues = repo.get_issues(state="open")
for issue in open_issues:
comments = sorted([comment for comment in issue.get_comments()], key=lambda i: i.created_at, reverse=True)
last_comment = comments[0] if len(comments) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed")
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open")
issue.remove_from_labels("stale")
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored."
)
issue.add_to_labels("stale")
if __name__ == "__main__":
main()
| diffusers-ft-main | utils/stale.py |
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
print("Python version:", sys.version)
print("OS platform:", platform.platform())
print("OS architecture:", platform.machine())
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
except ImportError:
print("Torch version:", None)
try:
import transformers
print("transformers version:", transformers.__version__)
except ImportError:
print("transformers version:", None)
| diffusers-ft-main | utils/print_env.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
PATH_TO_DIFFUSERS = "src/diffusers"
# Matches is_xxx_available()
_re_backend = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
_re_single_line_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
DUMMY_CONSTANT = """
{0} = None
"""
DUMMY_CLASS = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
DUMMY_FUNCTION = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def find_backend(line):
"""Find one (or multiple) backend in a code line of the init."""
backends = _re_backend.findall(line)
if len(backends) == 0:
return None
return "_and_".join(backends)
def read_init():
"""Read the init and extracts PyTorch, TensorFlow, SentencePiece and Tokenizers objects."""
with open(os.path.join(PATH_TO_DIFFUSERS, "__init__.py"), "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
# Get to the point we do the actual imports for type checking
line_index = 0
backend_specific_objects = {}
# Go through the end of the file
while line_index < len(lines):
# If the line is an if is_backend_available, we grab all objects associated.
backend = find_backend(lines[line_index])
if backend is not None:
objects = []
line_index += 1
# Until we unindent, add backend objects to the list
while not lines[line_index].startswith("else:"):
line = lines[line_index]
single_line_import_search = _re_single_line_import.search(line)
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", "))
elif line.startswith(" " * 8):
objects.append(line[8:-2])
line_index += 1
backend_specific_objects[backend] = objects
else:
line_index += 1
return backend_specific_objects
def create_dummy_object(name, backend_name):
"""Create the code for the dummy object corresponding to `name`."""
if name.isupper():
return DUMMY_CONSTANT.format(name)
elif name.islower():
return DUMMY_FUNCTION.format(name, backend_name)
else:
return DUMMY_CLASS.format(name, backend_name)
def create_dummy_files(backend_specific_objects=None):
"""Create the content of the dummy files."""
if backend_specific_objects is None:
backend_specific_objects = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
dummy_files = {}
for backend, objects in backend_specific_objects.items():
backend_name = "[" + ", ".join(f'"{b}"' for b in backend.split("_and_")) + "]"
dummy_file = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "# flake8: noqa\n\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(o, backend_name) for o in objects])
dummy_files[backend] = dummy_file
return dummy_files
def check_dummies(overwrite=False):
"""Check if the dummy files are up to date and maybe `overwrite` with the right content."""
dummy_files = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
short_names = {"torch": "pt"}
# Locate actual dummy modules and read their content.
path = os.path.join(PATH_TO_DIFFUSERS, "utils")
dummy_file_paths = {
backend: os.path.join(path, f"dummy_{short_names.get(backend, backend)}_objects.py")
for backend in dummy_files.keys()
}
actual_dummies = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(file_path):
with open(file_path, "r", encoding="utf-8", newline="\n") as f:
actual_dummies[backend] = f.read()
else:
actual_dummies[backend] = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"Updating diffusers.utils.dummy_{short_names.get(backend, backend)}_objects.py as the main "
"__init__ has new objects."
)
with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n") as f:
f.write(dummy_files[backend])
else:
raise ValueError(
"The main __init__ has objects that are not present in "
f"diffusers.utils.dummy_{short_names.get(backend, backend)}_objects.py. Run `make fix-copies` "
"to fix this."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
args = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| diffusers-ft-main | utils/check_dummies.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
PATH_TO_TRANSFORMERS = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
"transformers",
os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
_re_checkpoint = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)")
CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK = {
"CLIPConfigMixin",
"DecisionTransformerConfigMixin",
"EncoderDecoderConfigMixin",
"RagConfigMixin",
"SpeechEncoderDecoderConfigMixin",
"VisionEncoderDecoderConfigMixin",
"VisionTextDualEncoderConfigMixin",
}
def check_config_docstrings_have_checkpoints():
configs_without_checkpoint = []
for config_class in list(CONFIG_MAPPING.values()):
checkpoint_found = False
# source code of `config_class`
config_source = inspect.getsource(config_class)
checkpoints = _re_checkpoint.findall(config_source)
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
ckpt_name, ckpt_link = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
ckpt_link_from_name = f"https://huggingface.co/{ckpt_name}"
if ckpt_link == ckpt_link_from_name:
checkpoint_found = True
break
name = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(name)
if len(configs_without_checkpoint) > 0:
message = "\n".join(sorted(configs_without_checkpoint))
raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}")
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| diffusers-ft-main | utils/check_config_docstrings.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import importlib.util
import os
import re
from pathlib import Path
PATH_TO_TRANSFORMERS = "src/transformers"
# Matches is_xxx_available()
_re_backend = re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
_re_one_line_import_struct = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_re_import_struct_key_value = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
_re_test_backend = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
_re_import_struct_add_one = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_re_import_struct_add_many = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
_re_quote_object = re.compile('^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
_re_between_brackets = re.compile("^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
_re_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
_re_try = re.compile(r"^\s*try:")
# Catches a line with else:
_re_else = re.compile(r"^\s*else:")
def find_backend(line):
"""Find one (or multiple) backend in a code line of the init."""
if _re_test_backend.search(line) is None:
return None
backends = [b[0] for b in _re_backend.findall(line)]
backends.sort()
return "_and_".join(backends)
def parse_init(init_file):
"""
Read an init_file and parse (per backend) the _import_structure objects defined and the TYPE_CHECKING objects
defined
"""
with open(init_file, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
line_index = 0
while line_index < len(lines) and not lines[line_index].startswith("_import_structure = {"):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lines):
return None
# First grab the objects without a specific backend in _import_structure
objects = []
while not lines[line_index].startswith("if TYPE_CHECKING") and find_backend(lines[line_index]) is None:
line = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(line):
content = _re_one_line_import_struct.search(line).groups()[0]
imports = re.findall("\[([^\]]+)\]", content)
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", ")])
line_index += 1
continue
single_line_import_search = _re_import_struct_key_value.search(line)
if single_line_import_search is not None:
imports = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", ") if len(obj) > 0]
objects.extend(imports)
elif line.startswith(" " * 8 + '"'):
objects.append(line[9:-3])
line_index += 1
import_dict_objects = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING"):
# If the line is an if not is_backend_available, we grab all objects associated.
backend = find_backend(lines[line_index])
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1]) is None:
backend = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index]) is None:
line_index += 1
line_index += 1
objects = []
# Until we unindent, add backend objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 4):
line = lines[line_index]
if _re_import_struct_add_one.search(line) is not None:
objects.append(_re_import_struct_add_one.search(line).groups()[0])
elif _re_import_struct_add_many.search(line) is not None:
imports = _re_import_struct_add_many.search(line).groups()[0].split(", ")
imports = [obj[1:-1] for obj in imports if len(obj) > 0]
objects.extend(imports)
elif _re_between_brackets.search(line) is not None:
imports = _re_between_brackets.search(line).groups()[0].split(", ")
imports = [obj[1:-1] for obj in imports if len(obj) > 0]
objects.extend(imports)
elif _re_quote_object.search(line) is not None:
objects.append(_re_quote_object.search(line).groups()[0])
elif line.startswith(" " * 8 + '"'):
objects.append(line[9:-3])
elif line.startswith(" " * 12 + '"'):
objects.append(line[13:-3])
line_index += 1
import_dict_objects[backend] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
objects = []
while (
line_index < len(lines)
and find_backend(lines[line_index]) is None
and not lines[line_index].startswith("else")
):
line = lines[line_index]
single_line_import_search = _re_import.search(line)
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", "))
elif line.startswith(" " * 8):
objects.append(line[8:-2])
line_index += 1
type_hint_objects = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(lines):
# If the line is an if is_backend_available, we grab all objects associated.
backend = find_backend(lines[line_index])
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1]) is None:
backend = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index]) is None:
line_index += 1
line_index += 1
objects = []
# Until we unindent, add backend objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 8):
line = lines[line_index]
single_line_import_search = _re_import.search(line)
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", "))
elif line.startswith(" " * 12):
objects.append(line[12:-2])
line_index += 1
type_hint_objects[backend] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def analyze_results(import_dict_objects, type_hint_objects):
"""
Analyze the differences between _import_structure objects and TYPE_CHECKING objects found in an init.
"""
def find_duplicates(seq):
return [k for k, v in collections.Counter(seq).items() if v > 1]
if list(import_dict_objects.keys()) != list(type_hint_objects.keys()):
return ["Both sides of the init do not have the same backends!"]
errors = []
for key in import_dict_objects.keys():
duplicate_imports = find_duplicates(import_dict_objects[key])
if duplicate_imports:
errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}")
duplicate_type_hints = find_duplicates(type_hint_objects[key])
if duplicate_type_hints:
errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}")
if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])):
name = "base imports" if key == "none" else f"{key} backend"
errors.append(f"Differences for {name}:")
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f" {a} in TYPE_HINT but not in _import_structure.")
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f" {a} in _import_structure but not in TYPE_HINT.")
return errors
def check_all_inits():
"""
Check all inits in the transformers repo and raise an error if at least one does not define the same objects in
both halves.
"""
failures = []
for root, _, files in os.walk(PATH_TO_TRANSFORMERS):
if "__init__.py" in files:
fname = os.path.join(root, "__init__.py")
objects = parse_init(fname)
if objects is not None:
errors = analyze_results(*objects)
if len(errors) > 0:
errors[0] = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(errors))
if len(failures) > 0:
raise ValueError("\n\n".join(failures))
def get_transformers_submodules():
"""
Returns the list of Transformers submodules.
"""
submodules = []
for path, directories, files in os.walk(PATH_TO_TRANSFORMERS):
for folder in directories:
# Ignore private modules
if folder.startswith("_"):
directories.remove(folder)
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(path) / folder).glob("*.py"))) == 0:
continue
short_path = str((Path(path) / folder).relative_to(PATH_TO_TRANSFORMERS))
submodule = short_path.replace(os.path.sep, ".")
submodules.append(submodule)
for fname in files:
if fname == "__init__.py":
continue
short_path = str((Path(path) / fname).relative_to(PATH_TO_TRANSFORMERS))
submodule = short_path.replace(".py", "").replace(os.path.sep, ".")
if len(submodule.split(".")) == 1:
submodules.append(submodule)
return submodules
IGNORE_SUBMODULES = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
]
def check_submodules():
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
"transformers",
os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()
module_not_registered = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(module_not_registered) > 0:
list_of_modules = "\n".join(f"- {module}" for module in module_not_registered)
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
f"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value."
)
if __name__ == "__main__":
check_all_inits()
check_submodules()
| diffusers-ft-main | utils/check_inits.py |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
DIFFUSERS_PATH = "src/diffusers"
REPO_PATH = "."
# This is to make sure the diffusers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(DIFFUSERS_PATH, "__init__.py"),
submodule_search_locations=[DIFFUSERS_PATH],
)
diffusers_module = spec.loader.load_module()
def _should_continue(line, indent):
return line.startswith(indent) or len(line) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$", line) is not None
def find_code_in_diffusers(object_name):
"""Find and return the code source code of `object_name`."""
parts = object_name.split(".")
i = 0
# First let's find the module where our object lives.
module = parts[i]
while i < len(parts) and not os.path.isfile(os.path.join(DIFFUSERS_PATH, f"{module}.py")):
i += 1
if i < len(parts):
module = os.path.join(module, parts[i])
if i >= len(parts):
raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}.")
with open(os.path.join(DIFFUSERS_PATH, f"{module}.py"), "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
# Now let's find the class / func in the code!
indent = ""
line_index = 0
for name in parts[i + 1 :]:
while (
line_index < len(lines) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)", lines[line_index]) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(lines):
raise ValueError(f" {object_name} does not match any function or class in {module}.")
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
start_index = line_index
while line_index < len(lines) and _should_continue(lines[line_index], indent):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1]) <= 1:
line_index -= 1
code_lines = lines[start_index:line_index]
return "".join(code_lines)
_re_copy_warning = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)")
_re_replace_pattern = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)")
_re_fill_pattern = re.compile(r"<FILL\s+[^>]*>")
def get_indent(code):
lines = code.split("\n")
idx = 0
while idx < len(lines) and len(lines[idx]) == 0:
idx += 1
if idx < len(lines):
return re.search(r"^(\s*)\S", lines[idx]).groups()[0]
return ""
def blackify(code):
"""
Applies the black part of our `make style` command to `code`.
"""
has_indent = len(get_indent(code)) > 0
if has_indent:
code = f"class Bla:\n{code}"
mode = black.Mode(target_versions={black.TargetVersion.PY37}, line_length=119, preview=True)
result = black.format_str(code, mode=mode)
result, _ = style_docstrings_in_code(result)
return result[len("class Bla:\n") :] if has_indent else result
def is_copy_consistent(filename, overwrite=False):
"""
Check if the code commented as a copy in `filename` matches the original.
Return the differences or overwrites the content depending on `overwrite`.
"""
with open(filename, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
diffs = []
line_index = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(lines):
search = _re_copy_warning.search(lines[line_index])
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
indent, object_name, replace_pattern = search.groups()
theoretical_code = find_code_in_diffusers(object_name)
theoretical_indent = get_indent(theoretical_code)
start_index = line_index + 1 if indent == theoretical_indent else line_index + 2
indent = theoretical_indent
line_index = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
should_continue = True
while line_index < len(lines) and should_continue:
line_index += 1
if line_index >= len(lines):
break
line = lines[line_index]
should_continue = _should_continue(line, indent) and re.search(f"^{indent}# End copy", line) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1]) <= 1:
line_index -= 1
observed_code_lines = lines[start_index:line_index]
observed_code = "".join(observed_code_lines)
# Remove any nested `Copied from` comments to avoid circular copies
theoretical_code = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(line) is None]
theoretical_code = "\n".join(theoretical_code)
# Before comparing, use the `replace_pattern` on the original code.
if len(replace_pattern) > 0:
patterns = replace_pattern.replace("with", "").split(",")
patterns = [_re_replace_pattern.search(p) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
obj1, obj2, option = pattern.groups()
theoretical_code = re.sub(obj1, obj2, theoretical_code)
if option.strip() == "all-casing":
theoretical_code = re.sub(obj1.lower(), obj2.lower(), theoretical_code)
theoretical_code = re.sub(obj1.upper(), obj2.upper(), theoretical_code)
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
theoretical_code = blackify(lines[start_index - 1] + theoretical_code)
theoretical_code = theoretical_code[len(lines[start_index - 1]) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index])
if overwrite:
lines = lines[:start_index] + [theoretical_code] + lines[line_index:]
line_index = start_index + 1
if overwrite and len(diffs) > 0:
# Warn the user a file has been modified.
print(f"Detected changes, rewriting {filename}.")
with open(filename, "w", encoding="utf-8", newline="\n") as f:
f.writelines(lines)
return diffs
def check_copies(overwrite: bool = False):
all_files = glob.glob(os.path.join(DIFFUSERS_PATH, "**/*.py"), recursive=True)
diffs = []
for filename in all_files:
new_diffs = is_copy_consistent(filename, overwrite)
diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs]
if not overwrite and len(diffs) > 0:
diff = "\n".join(diffs)
raise Exception(
"Found the following copy inconsistencies:\n"
+ diff
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
args = parser.parse_args()
check_copies(args.fix_and_overwrite)
| diffusers-ft-main | utils/check_copies.py |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
PATH_TO_TRANSFORMERS = "src/diffusers"
# Pattern that looks at the indentation in a line.
_re_indent = re.compile(r"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
_re_direct_key = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
_re_indirect_key = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
_re_strip_line = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
_re_bracket_content = re.compile(r"\[([^\]]+)\]")
def get_indent(line):
"""Returns the indent in `line`."""
search = _re_indent.search(line)
return "" if search is None else search.groups()[0]
def split_code_in_indented_blocks(code, indent_level="", start_prompt=None, end_prompt=None):
"""
Split `code` into its indented blocks, starting at `indent_level`. If provided, begins splitting after
`start_prompt` and stops at `end_prompt` (but returns what's before `start_prompt` as a first block and what's
after `end_prompt` as a last block, so `code` is always the same as joining the result of this function).
"""
# Let's split the code into lines and move to start_index.
index = 0
lines = code.split("\n")
if start_prompt is not None:
while not lines[index].startswith(start_prompt):
index += 1
blocks = ["\n".join(lines[:index])]
else:
blocks = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
current_block = [lines[index]]
index += 1
while index < len(lines) and (end_prompt is None or not lines[index].startswith(end_prompt)):
if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level:
if len(current_block) > 0 and get_indent(current_block[-1]).startswith(indent_level + " "):
current_block.append(lines[index])
blocks.append("\n".join(current_block))
if index < len(lines) - 1:
current_block = [lines[index + 1]]
index += 1
else:
current_block = []
else:
blocks.append("\n".join(current_block))
current_block = [lines[index]]
else:
current_block.append(lines[index])
index += 1
# Adds current block if it's nonempty.
if len(current_block) > 0:
blocks.append("\n".join(current_block))
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lines):
blocks.append("\n".join(lines[index:]))
return blocks
def ignore_underscore(key):
"Wraps a `key` (that maps an object to string) to lower case and remove underscores."
def _inner(x):
return key(x).lower().replace("_", "")
return _inner
def sort_objects(objects, key=None):
"Sort a list of `objects` following the rules of isort. `key` optionally maps an object to a str."
# If no key is provided, we use a noop.
def noop(x):
return x
if key is None:
key = noop
# Constants are all uppercase, they go first.
constants = [obj for obj in objects if key(obj).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
classes = [obj for obj in objects if key(obj)[0].isupper() and not key(obj).isupper()]
# Functions begin with a lowercase, they go last.
functions = [obj for obj in objects if not key(obj)[0].isupper()]
key1 = ignore_underscore(key)
return sorted(constants, key=key1) + sorted(classes, key=key1) + sorted(functions, key=key1)
def sort_objects_in_import(import_statement):
"""
Return the same `import_statement` but with objects properly sorted.
"""
# This inner function sort imports between [ ].
def _replace(match):
imports = match.groups()[0]
if "," not in imports:
return f"[{imports}]"
keys = [part.strip().replace('"', "") for part in imports.split(",")]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1]) == 0:
keys = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(keys)]) + "]"
lines = import_statement.split("\n")
if len(lines) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
idx = 2 if lines[1].strip() == "[" else 1
keys_to_sort = [(i, _re_strip_line.search(line).groups()[0]) for i, line in enumerate(lines[idx:-idx])]
sorted_indices = sort_objects(keys_to_sort, key=lambda x: x[1])
sorted_lines = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:])
elif len(lines) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1]) is not None:
lines[1] = _re_bracket_content.sub(_replace, lines[1])
else:
keys = [part.strip().replace('"', "") for part in lines[1].split(",")]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1]) == 0:
keys = keys[:-1]
lines[1] = get_indent(lines[1]) + ", ".join([f'"{k}"' for k in sort_objects(keys)])
return "\n".join(lines)
else:
# Finally we have to deal with imports fitting on one line
import_statement = _re_bracket_content.sub(_replace, import_statement)
return import_statement
def sort_imports(file, check_only=True):
"""
Sort `_import_structure` imports in `file`, `check_only` determines if we only check or overwrite.
"""
with open(file, "r") as f:
code = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
main_blocks = split_code_in_indented_blocks(
code, start_prompt="_import_structure = {", end_prompt="if TYPE_CHECKING:"
)
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1, len(main_blocks) - 1):
# Check if the block contains some `_import_structure`s thingy to sort.
block = main_blocks[block_idx]
block_lines = block.split("\n")
# Get to the start of the imports.
line_idx = 0
while line_idx < len(block_lines) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
line_idx = len(block_lines)
else:
line_idx += 1
if line_idx >= len(block_lines):
continue
# Ignore beginning and last line: they don't contain anything.
internal_block_code = "\n".join(block_lines[line_idx:-1])
indent = get_indent(block_lines[1])
# Slit the internal block into blocks of indent level 1.
internal_blocks = split_code_in_indented_blocks(internal_block_code, indent_level=indent)
# We have two categories of import key: list or _import_structure[key].append/extend
pattern = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
keys = [(pattern.search(b).groups()[0] if pattern.search(b) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
keys_to_sort = [(i, key) for i, key in enumerate(keys) if key is not None]
sorted_indices = [x[0] for x in sorted(keys_to_sort, key=lambda x: x[1])]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
count = 0
reordered_blocks = []
for i in range(len(internal_blocks)):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i])
else:
block = sort_objects_in_import(internal_blocks[sorted_indices[count]])
reordered_blocks.append(block)
count += 1
# And we put our main block back together with its first and last line.
main_blocks[block_idx] = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]])
if code != "\n".join(main_blocks):
if check_only:
return True
else:
print(f"Overwriting {file}.")
with open(file, "w") as f:
f.write("\n".join(main_blocks))
def sort_imports_in_all_inits(check_only=True):
failures = []
for root, _, files in os.walk(PATH_TO_TRANSFORMERS):
if "__init__.py" in files:
result = sort_imports(os.path.join(root, "__init__.py"), check_only=check_only)
if result:
failures = [os.path.join(root, "__init__.py")]
if len(failures) > 0:
raise ValueError(f"Would overwrite {len(failures)} files, run `make style`.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
args = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| diffusers-ft-main | utils/custom_init_isort.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
import re
import warnings
from collections import OrderedDict
from difflib import get_close_matches
from pathlib import Path
from diffusers.models.auto import get_values
from diffusers.utils import ENV_VARS_TRUE_VALUES, is_flax_available, is_tf_available, is_torch_available
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_DIFFUSERS = "src/diffusers"
PATH_TO_TESTS = "tests"
PATH_TO_DOC = "docs/source/en"
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
"DPRSpanPredictor",
"RealmBertModel",
"T5Stack",
"TFDPRSpanPredictor",
]
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
# models to ignore for not tested
"OPTDecoder", # Building part of bigger (tested) model.
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
"SegformerDecodeHead", # Building part of bigger (tested) model.
"PLBartEncoder", # Building part of bigger (tested) model.
"PLBartDecoder", # Building part of bigger (tested) model.
"PLBartDecoderWrapper", # Building part of bigger (tested) model.
"BigBirdPegasusEncoder", # Building part of bigger (tested) model.
"BigBirdPegasusDecoder", # Building part of bigger (tested) model.
"BigBirdPegasusDecoderWrapper", # Building part of bigger (tested) model.
"DetrEncoder", # Building part of bigger (tested) model.
"DetrDecoder", # Building part of bigger (tested) model.
"DetrDecoderWrapper", # Building part of bigger (tested) model.
"M2M100Encoder", # Building part of bigger (tested) model.
"M2M100Decoder", # Building part of bigger (tested) model.
"Speech2TextEncoder", # Building part of bigger (tested) model.
"Speech2TextDecoder", # Building part of bigger (tested) model.
"LEDEncoder", # Building part of bigger (tested) model.
"LEDDecoder", # Building part of bigger (tested) model.
"BartDecoderWrapper", # Building part of bigger (tested) model.
"BartEncoder", # Building part of bigger (tested) model.
"BertLMHeadModel", # Needs to be setup as decoder.
"BlenderbotSmallEncoder", # Building part of bigger (tested) model.
"BlenderbotSmallDecoderWrapper", # Building part of bigger (tested) model.
"BlenderbotEncoder", # Building part of bigger (tested) model.
"BlenderbotDecoderWrapper", # Building part of bigger (tested) model.
"MBartEncoder", # Building part of bigger (tested) model.
"MBartDecoderWrapper", # Building part of bigger (tested) model.
"MegatronBertLMHeadModel", # Building part of bigger (tested) model.
"MegatronBertEncoder", # Building part of bigger (tested) model.
"MegatronBertDecoder", # Building part of bigger (tested) model.
"MegatronBertDecoderWrapper", # Building part of bigger (tested) model.
"PegasusEncoder", # Building part of bigger (tested) model.
"PegasusDecoderWrapper", # Building part of bigger (tested) model.
"DPREncoder", # Building part of bigger (tested) model.
"ProphetNetDecoderWrapper", # Building part of bigger (tested) model.
"RealmBertModel", # Building part of bigger (tested) model.
"RealmReader", # Not regular model.
"RealmScorer", # Not regular model.
"RealmForOpenQA", # Not regular model.
"ReformerForMaskedLM", # Needs to be setup as decoder.
"Speech2Text2DecoderWrapper", # Building part of bigger (tested) model.
"TFDPREncoder", # Building part of bigger (tested) model.
"TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFModelMixin ?)
"TFRobertaForMultipleChoice", # TODO: fix
"TrOCRDecoderWrapper", # Building part of bigger (tested) model.
"SeparableConv1D", # Building part of bigger (tested) model.
"FlaxBartForCausalLM", # Building part of bigger (tested) model.
"FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
"OPTDecoderWrapper",
]
# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
"models/decision_transformer/test_modeling_decision_transformer.py",
"models/camembert/test_modeling_camembert.py",
"models/mt5/test_modeling_flax_mt5.py",
"models/mbart/test_modeling_mbart.py",
"models/mt5/test_modeling_mt5.py",
"models/pegasus/test_modeling_pegasus.py",
"models/camembert/test_modeling_tf_camembert.py",
"models/mt5/test_modeling_tf_mt5.py",
"models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
"models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
"models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
"models/xlm_roberta/test_modeling_xlm_roberta.py",
"models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
"models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
"models/decision_transformer/test_modeling_decision_transformer.py",
]
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
# models to ignore for model xxx mapping
"DPTForDepthEstimation",
"DecisionTransformerGPT2Model",
"GLPNForDepthEstimation",
"ViltForQuestionAnswering",
"ViltForImagesAndTextClassification",
"ViltForImageAndTextRetrieval",
"ViltForMaskedLM",
"XGLMEncoder",
"XGLMDecoder",
"XGLMDecoderWrapper",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"SegformerDecodeHead",
"FlaxBeitForMaskedImageModeling",
"PLBartEncoder",
"PLBartDecoder",
"PLBartDecoderWrapper",
"BeitForMaskedImageModeling",
"CLIPTextModel",
"CLIPVisionModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
"FlaxCLIPTextModel",
"FlaxCLIPVisionModel",
"FlaxWav2Vec2ForCTC",
"DetrForSegmentation",
"DPRReader",
"FlaubertForQuestionAnswering",
"FlavaImageCodebook",
"FlavaTextModel",
"FlavaImageModel",
"FlavaMultimodalModel",
"GPT2DoubleHeadsModel",
"LukeForMaskedLM",
"LukeForEntityClassification",
"LukeForEntityPairClassification",
"LukeForEntitySpanClassification",
"OpenAIGPTDoubleHeadsModel",
"RagModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
"RealmEmbedder",
"RealmForOpenQA",
"RealmScorer",
"RealmReader",
"TFDPRReader",
"TFGPT2DoubleHeadsModel",
"TFOpenAIGPTDoubleHeadsModel",
"TFRagModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
"Wav2Vec2ForCTC",
"HubertForCTC",
"SEWForCTC",
"SEWDForCTC",
"XLMForQuestionAnswering",
"XLNetForQuestionAnswering",
"SeparableConv1D",
"VisualBertForRegionToPhraseAlignment",
"VisualBertForVisualReasoning",
"VisualBertForQuestionAnswering",
"VisualBertForMultipleChoice",
"TFWav2Vec2ForCTC",
"TFHubertForCTC",
"MaskFormerForInstanceSegmentation",
]
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
[
("data2vec-text", "data2vec"),
("data2vec-audio", "data2vec"),
("data2vec-vision", "data2vec"),
]
)
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(PATH_TO_DIFFUSERS, "__init__.py"),
submodule_search_locations=[PATH_TO_DIFFUSERS],
)
diffusers = spec.loader.load_module()
def check_model_list():
"""Check the model list inside the transformers library."""
# Get the models from the directory structure of `src/diffusers/models/`
models_dir = os.path.join(PATH_TO_DIFFUSERS, "models")
_models = []
for model in os.listdir(models_dir):
model_dir = os.path.join(models_dir, model)
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
_models.append(model)
# Get the models from the directory structure of `src/transformers/models/`
models = [model for model in dir(diffusers.models) if not model.startswith("__")]
missing_models = sorted(list(set(_models).difference(models)))
if missing_models:
raise Exception(
f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
)
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
"""Get the model modules inside the transformers library."""
_ignore_modules = [
"modeling_auto",
"modeling_encoder_decoder",
"modeling_marian",
"modeling_mmbt",
"modeling_outputs",
"modeling_retribert",
"modeling_utils",
"modeling_flax_auto",
"modeling_flax_encoder_decoder",
"modeling_flax_utils",
"modeling_speech_encoder_decoder",
"modeling_flax_speech_encoder_decoder",
"modeling_flax_vision_encoder_decoder",
"modeling_transfo_xl_utilities",
"modeling_tf_auto",
"modeling_tf_encoder_decoder",
"modeling_tf_outputs",
"modeling_tf_pytorch_utils",
"modeling_tf_utils",
"modeling_tf_transfo_xl_utilities",
"modeling_tf_vision_encoder_decoder",
"modeling_vision_encoder_decoder",
]
modules = []
for model in dir(diffusers.models):
# There are some magic dunder attributes in the dir, we ignore them
if not model.startswith("__"):
model_module = getattr(diffusers.models, model)
for submodule in dir(model_module):
if submodule.startswith("modeling") and submodule not in _ignore_modules:
modeling_module = getattr(model_module, submodule)
if inspect.ismodule(modeling_module):
modules.append(modeling_module)
return modules
def get_models(module, include_pretrained=False):
"""Get the objects in module that are models."""
models = []
model_classes = (diffusers.ModelMixin, diffusers.TFModelMixin, diffusers.FlaxModelMixin)
for attr_name in dir(module):
if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
continue
attr = getattr(module, attr_name)
if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
models.append((attr_name, attr))
return models
def is_a_private_model(model):
"""Returns True if the model should not be in the main init."""
if model in PRIVATE_MODELS:
return True
# Wrapper, Encoder and Decoder are all privates
if model.endswith("Wrapper"):
return True
if model.endswith("Encoder"):
return True
if model.endswith("Decoder"):
return True
return False
def check_models_are_in_init():
"""Checks all models defined in the library are in the main init."""
models_not_in_init = []
dir_transformers = dir(diffusers)
for module in get_model_modules():
models_not_in_init += [
model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
]
# Remove private models
models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
if len(models_not_in_init) > 0:
raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
"""Get the model test files.
The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
"""
_ignore_files = [
"test_modeling_common",
"test_modeling_encoder_decoder",
"test_modeling_flax_encoder_decoder",
"test_modeling_flax_speech_encoder_decoder",
"test_modeling_marian",
"test_modeling_tf_common",
"test_modeling_tf_encoder_decoder",
]
test_files = []
# Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
model_test_root = os.path.join(PATH_TO_TESTS, "models")
model_test_dirs = []
for x in os.listdir(model_test_root):
x = os.path.join(model_test_root, x)
if os.path.isdir(x):
model_test_dirs.append(x)
for target_dir in [PATH_TO_TESTS] + model_test_dirs:
for file_or_dir in os.listdir(target_dir):
path = os.path.join(target_dir, file_or_dir)
if os.path.isfile(path):
filename = os.path.split(path)[-1]
if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
file = os.path.join(*path.split(os.sep)[1:])
test_files.append(file)
return test_files
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
"""Parse the content of test_file to detect what's in all_model_classes"""
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
content = f.read()
all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
# Check with one less parenthesis as well
all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
if len(all_models) > 0:
model_tested = []
for entry in all_models:
for line in entry.split(","):
name = line.strip()
if len(name) > 0:
model_tested.append(name)
return model_tested
def check_models_are_tested(module, test_file):
"""Check models defined in module are tested in test_file."""
# XxxModelMixin are not tested
defined_models = get_models(module)
tested_models = find_tested_models(test_file)
if tested_models is None:
if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
return
return [
f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
+ "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
+ "`utils/check_repo.py`."
]
failures = []
for model_name, _ in defined_models:
if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
failures.append(
f"{model_name} is defined in {module.__name__} but is not tested in "
+ f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
+ "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
+ "in the file `utils/check_repo.py`."
)
return failures
def check_all_models_are_tested():
"""Check all models are properly tested."""
modules = get_model_modules()
test_files = get_model_test_files()
failures = []
for module in modules:
test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
if len(test_file) == 0:
failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
elif len(test_file) > 1:
failures.append(f"{module.__name__} has several test files: {test_file}.")
else:
test_file = test_file[0]
new_failures = check_models_are_tested(module, test_file)
if new_failures is not None:
failures += new_failures
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
def get_all_auto_configured_models():
"""Return the list of all models in at least one auto class."""
result = set() # To avoid duplicates we concatenate all model classes in a set.
if is_torch_available():
for attr_name in dir(diffusers.models.auto.modeling_auto):
if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(diffusers.models.auto.modeling_auto, attr_name)))
if is_tf_available():
for attr_name in dir(diffusers.models.auto.modeling_tf_auto):
if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(diffusers.models.auto.modeling_tf_auto, attr_name)))
if is_flax_available():
for attr_name in dir(diffusers.models.auto.modeling_flax_auto):
if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(diffusers.models.auto.modeling_flax_auto, attr_name)))
return [cls for cls in result]
def ignore_unautoclassed(model_name):
"""Rules to determine if `name` should be in an auto class."""
# Special white list
if model_name in IGNORE_NON_AUTO_CONFIGURED:
return True
# Encoder and Decoder should be ignored
if "Encoder" in model_name or "Decoder" in model_name:
return True
return False
def check_models_are_auto_configured(module, all_auto_models):
"""Check models defined in module are each in an auto class."""
defined_models = get_models(module)
failures = []
for model_name, _ in defined_models:
if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
failures.append(
f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
"If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
"`utils/check_repo.py`."
)
return failures
def check_all_models_are_auto_configured():
"""Check all models are each in an auto class."""
missing_backends = []
if not is_torch_available():
missing_backends.append("PyTorch")
if not is_tf_available():
missing_backends.append("TensorFlow")
if not is_flax_available():
missing_backends.append("Flax")
if len(missing_backends) > 0:
missing = ", ".join(missing_backends)
if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
raise Exception(
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
f"Transformers repo, the following are missing: {missing}."
)
else:
warnings.warn(
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
"didn't make any change in one of those backends modeling files, you should probably execute the "
"command above to be on the safe side."
)
modules = get_model_modules()
all_auto_models = get_all_auto_configured_models()
failures = []
for module in modules:
new_failures = check_models_are_auto_configured(module, all_auto_models)
if new_failures is not None:
failures += new_failures
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")
def check_decorator_order(filename):
"""Check that in the test file `filename` the slow decorator is always last."""
with open(filename, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
decorator_before = None
errors = []
for i, line in enumerate(lines):
search = _re_decorator.search(line)
if search is not None:
decorator_name = search.groups()[0]
if decorator_before is not None and decorator_name.startswith("parameterized"):
errors.append(i)
decorator_before = decorator_name
elif decorator_before is not None:
decorator_before = None
return errors
def check_all_decorator_order():
"""Check that in all test files, the slow decorator is always last."""
errors = []
for fname in os.listdir(PATH_TO_TESTS):
if fname.endswith(".py"):
filename = os.path.join(PATH_TO_TESTS, fname)
new_errors = check_decorator_order(filename)
errors += [f"- {filename}, line {i}" for i in new_errors]
if len(errors) > 0:
msg = "\n".join(errors)
raise ValueError(
"The parameterized decorator (and its variants) should always be first, but this is not the case in the"
f" following files:\n{msg}"
)
def find_all_documented_objects():
"""Parse the content of all doc files to detect which classes and functions it documents"""
documented_obj = []
for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
content = f.read()
raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
content = f.read()
raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
return documented_obj
# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
"AutoModelWithLMHead",
"BartPretrainedModel",
"DataCollator",
"DataCollatorForSOP",
"GlueDataset",
"GlueDataTrainingArguments",
"LineByLineTextDataset",
"LineByLineWithRefDataset",
"LineByLineWithSOPTextDataset",
"PretrainedBartModel",
"PretrainedFSMTModel",
"SingleSentenceClassificationProcessor",
"SquadDataTrainingArguments",
"SquadDataset",
"SquadExample",
"SquadFeatures",
"SquadV1Processor",
"SquadV2Processor",
"TFAutoModelWithLMHead",
"TFBartPretrainedModel",
"TextDataset",
"TextDatasetForNextSentencePrediction",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2Tokenizer",
"glue_compute_metrics",
"glue_convert_examples_to_features",
"glue_output_modes",
"glue_processors",
"glue_tasks_num_labels",
"squad_convert_examples_to_features",
"xnli_compute_metrics",
"xnli_output_modes",
"xnli_processors",
"xnli_tasks_num_labels",
"TFTrainer",
"TFTrainingArguments",
]
# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
"AddedToken", # This is a tokenizers class.
"BasicTokenizer", # Internal, should never have been in the main init.
"CharacterTokenizer", # Internal, should never have been in the main init.
"DPRPretrainedReader", # Like an Encoder.
"DummyObject", # Just picked by mistake sometimes.
"MecabTokenizer", # Internal, should never have been in the main init.
"ModelCard", # Internal type.
"SqueezeBertModule", # Internal building block (should have been called SqueezeBertLayer)
"TFDPRPretrainedReader", # Like an Encoder.
"TransfoXLCorpus", # Internal type.
"WordpieceTokenizer", # Internal, should never have been in the main init.
"absl", # External module
"add_end_docstrings", # Internal, should never have been in the main init.
"add_start_docstrings", # Internal, should never have been in the main init.
"cached_path", # Internal used for downloading models.
"convert_tf_weight_name_to_pt_weight_name", # Internal used to convert model weights
"logger", # Internal logger
"logging", # External module
"requires_backends", # Internal function
]
# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
# Benchmarks
"PyTorchBenchmark",
"PyTorchBenchmarkArguments",
"TensorFlowBenchmark",
"TensorFlowBenchmarkArguments",
]
def ignore_undocumented(name):
"""Rules to determine if `name` should be undocumented."""
# NOT DOCUMENTED ON PURPOSE.
# Constants uppercase are not documented.
if name.isupper():
return True
# ModelMixins / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
if (
name.endswith("ModelMixin")
or name.endswith("Decoder")
or name.endswith("Encoder")
or name.endswith("Layer")
or name.endswith("Embeddings")
or name.endswith("Attention")
):
return True
# Submodules are not documented.
if os.path.isdir(os.path.join(PATH_TO_DIFFUSERS, name)) or os.path.isfile(
os.path.join(PATH_TO_DIFFUSERS, f"{name}.py")
):
return True
# All load functions are not documented.
if name.startswith("load_tf") or name.startswith("load_pytorch"):
return True
# is_xxx_available functions are not documented.
if name.startswith("is_") and name.endswith("_available"):
return True
# Deprecated objects are not documented.
if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
return True
# MMBT model does not really work.
if name.startswith("MMBT"):
return True
if name in SHOULD_HAVE_THEIR_OWN_PAGE:
return True
return False
def check_all_objects_are_documented():
"""Check all models are properly documented."""
documented_objs = find_all_documented_objects()
modules = diffusers._modules
objects = [c for c in dir(diffusers) if c not in modules and not c.startswith("_")]
undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
if len(undocumented_objs) > 0:
raise Exception(
"The following objects are in the public init so should be documented:\n - "
+ "\n - ".join(undocumented_objs)
)
check_docstrings_are_in_md()
check_model_type_doc_match()
def check_model_type_doc_match():
"""Check all doc pages have a corresponding model type."""
model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]
model_types = list(diffusers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
errors = []
for m in model_docs:
if m not in model_types and m != "auto":
close_matches = get_close_matches(m, model_types)
error_message = f"{m} is not a proper model identifier."
if len(close_matches) > 0:
close_matches = "/".join(close_matches)
error_message += f" Did you mean {close_matches}?"
errors.append(error_message)
if len(errors) > 0:
raise ValueError(
"Some model doc pages do not match any existing model type:\n"
+ "\n".join(errors)
+ "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
"models/auto/configuration_auto.py."
)
# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)
def is_rst_docstring(docstring):
"""
Returns `True` if `docstring` is written in rst.
"""
if _re_rst_special_words.search(docstring) is not None:
return True
if _re_double_backquotes.search(docstring) is not None:
return True
if _re_rst_example.search(docstring) is not None:
return True
return False
def check_docstrings_are_in_md():
"""Check all docstrings are in md"""
files_with_rst = []
for file in Path(PATH_TO_DIFFUSERS).glob("**/*.py"):
with open(file, "r") as f:
code = f.read()
docstrings = code.split('"""')
for idx, docstring in enumerate(docstrings):
if idx % 2 == 0 or not is_rst_docstring(docstring):
continue
files_with_rst.append(file)
break
if len(files_with_rst) > 0:
raise ValueError(
"The following files have docstrings written in rst:\n"
+ "\n".join([f"- {f}" for f in files_with_rst])
+ "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
"(`pip install git+https://github.com/huggingface/doc-builder`)"
)
def check_repo_quality():
"""Check all models are properly tested and documented."""
print("Checking all models are included.")
check_model_list()
print("Checking all models are public.")
check_models_are_in_init()
print("Checking all models are properly tested.")
check_all_decorator_order()
check_all_models_are_tested()
print("Checking all objects are properly documented.")
check_all_objects_are_documented()
print("Checking all models are in at least one auto class.")
check_all_models_are_auto_configured()
if __name__ == "__main__":
check_repo_quality()
| diffusers-ft-main | utils/check_repo.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import collections
import importlib.util
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
TRANSFORMERS_PATH = "src/diffusers"
PATH_TO_DOCS = "docs/source/en"
REPO_PATH = "."
def _find_text_in_file(filename, start_prompt, end_prompt):
"""
Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty
lines.
"""
with open(filename, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
# Find the start prompt.
start_index = 0
while not lines[start_index].startswith(start_prompt):
start_index += 1
start_index += 1
end_index = start_index
while not lines[end_index].startswith(end_prompt):
end_index += 1
end_index -= 1
while len(lines[start_index]) <= 1:
start_index += 1
while len(lines[end_index]) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index]), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
ALLOWED_MODEL_SUFFIXES = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the diffusers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(TRANSFORMERS_PATH, "__init__.py"),
submodule_search_locations=[TRANSFORMERS_PATH],
)
diffusers_module = spec.loader.load_module()
# Thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
def camel_case_split(identifier):
"Split a camelcased `identifier` into words."
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
return [m.group(0) for m in matches]
def _center_text(text, width):
text_length = 2 if text == "✅" or text == "❌" else len(text)
left_indent = (width - text_length) // 2
right_indent = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def get_model_table_from_auto_modules():
"""Generates an up-to-date model table from the content of the auto modules."""
# Dictionary model names to config.
config_mapping_names = diffusers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
model_name_to_config = {
name: config_mapping_names[code]
for code, name in diffusers_module.MODEL_NAMES_MAPPING.items()
if code in config_mapping_names
}
model_name_to_prefix = {name: config.replace("ConfigMixin", "") for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
slow_tokenizers = collections.defaultdict(bool)
fast_tokenizers = collections.defaultdict(bool)
pt_models = collections.defaultdict(bool)
tf_models = collections.defaultdict(bool)
flax_models = collections.defaultdict(bool)
# Let's lookup through all diffusers object (once).
for attr_name in dir(diffusers_module):
lookup_dict = None
if attr_name.endswith("Tokenizer"):
lookup_dict = slow_tokenizers
attr_name = attr_name[:-9]
elif attr_name.endswith("TokenizerFast"):
lookup_dict = fast_tokenizers
attr_name = attr_name[:-13]
elif _re_tf_models.match(attr_name) is not None:
lookup_dict = tf_models
attr_name = _re_tf_models.match(attr_name).groups()[0]
elif _re_flax_models.match(attr_name) is not None:
lookup_dict = flax_models
attr_name = _re_flax_models.match(attr_name).groups()[0]
elif _re_pt_models.match(attr_name) is not None:
lookup_dict = pt_models
attr_name = _re_pt_models.match(attr_name).groups()[0]
if lookup_dict is not None:
while len(attr_name) > 0:
if attr_name in model_name_to_prefix.values():
lookup_dict[attr_name] = True
break
# Try again after removing the last word in the name
attr_name = "".join(camel_case_split(attr_name)[:-1])
# Let's build that table!
model_names = list(model_name_to_config.keys())
model_names.sort(key=str.lower)
columns = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
widths = [len(c) + 2 for c in columns]
widths[0] = max([len(name) for name in model_names]) + 2
# Build the table per se
table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n"
check = {True: "✅", False: "❌"}
for name in model_names:
prefix = model_name_to_prefix[name]
line = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n"
return table
def check_model_table(overwrite=False):
"""Check the model table in the index.rst is consistent with the state of the lib and maybe `overwrite`."""
current_table, start_index, end_index, lines = _find_text_in_file(
filename=os.path.join(PATH_TO_DOCS, "index.mdx"),
start_prompt="<!--This table is updated automatically from the auto modules",
end_prompt="<!-- End table-->",
)
new_table = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(PATH_TO_DOCS, "index.mdx"), "w", encoding="utf-8", newline="\n") as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:])
else:
raise ValueError(
"The model table in the `index.mdx` has not been updated. Run `make fix-copies` to fix this."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
args = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| diffusers-ft-main | utils/check_table.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
fork_point_sha = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
modified_files = subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode("utf-8").split()
joined_dirs = "|".join(sys.argv[1:])
regex = re.compile(rf"^({joined_dirs}).*?\.py$")
relevant_modified_files = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| diffusers-ft-main | utils/get_modified_files.py |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
git_repo_path = abspath(join(dirname(dirname(dirname(__file__))), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def pytest_addoption(parser):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(parser)
def pytest_terminal_summary(terminalreporter):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
make_reports = terminalreporter.config.getoption("--make-reports")
if make_reports:
pytest_terminal_summary_main(terminalreporter, id=make_reports)
| diffusers-ft-main | examples/conftest.py |
# coding=utf-8
# Copyright 2022 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from typing import List
from accelerate.utils import write_basic_config
from diffusers.utils import slow
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
# These utils relate to ensuring the right error message is received when running scripts
class SubprocessCallException(Exception):
pass
def run_command(command: List[str], return_stdout=False):
"""
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
if an error occurred while running `command`
"""
try:
output = subprocess.check_output(command, stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(output, "decode"):
output = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
) from e
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class ExamplesTestsAccelerate(unittest.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._tmpdir = tempfile.mkdtemp()
cls.configPath = os.path.join(cls._tmpdir, "default_config.yml")
write_basic_config(save_location=cls.configPath)
cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath]
@classmethod
def tearDownClass(cls):
super().tearDownClass()
shutil.rmtree(cls._tmpdir)
@slow
def test_train_unconditional(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/unconditional_image_generation/train_unconditional.py
--dataset_name huggan/few-shot-aurora
--resolution 64
--output_dir {tmpdir}
--train_batch_size 4
--num_epochs 1
--gradient_accumulation_steps 1
--learning_rate 1e-3
--lr_warmup_steps 5
--mixed_precision fp16
""".split()
run_command(self._launch_args + test_args, return_stdout=True)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin")))
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))
# logging test
self.assertTrue(len(os.listdir(os.path.join(tmpdir, "logs", "train_unconditional"))) > 0)
@slow
def test_textual_inversion(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/textual_inversion/textual_inversion.py
--pretrained_model_name_or_path runwayml/stable-diffusion-v1-5
--train_data_dir docs/source/imgs
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token toy
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 2
--max_train_steps 10
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--mixed_precision fp16
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.bin")))
| diffusers-ft-main | examples/test_examples.py |
import argparse
import inspect
import math
import os
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel, __version__
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import deprecate
from huggingface_hub import HfFolder, Repository, whoami
from packaging import version
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Normalize,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = get_logger(__name__)
diffusers_version = version.parse(version.parse(__version__).base_version)
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
if not isinstance(arr, torch.Tensor):
arr = torch.from_numpy(arr)
res = arr[timesteps].float().to(timesteps.device)
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that HF Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="ddpm-model-64",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument(
"--resolution",
type=int,
default=64,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
" process."
),
)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
parser.add_argument(
"--save_model_epochs", type=int, default=10, help="How often to save the model during training."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="cosine",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
)
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
parser.add_argument(
"--use_ema",
action="store_true",
default=True,
help="Whether to use Exponential Moving Average for the final model weights.",
)
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--prediction_type",
type=str,
default="epsilon",
choices=["epsilon", "sample"],
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
)
parser.add_argument("--ddpm_num_steps", type=int, default=1000)
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def main(args):
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
model = UNet2DModel(
sample_size=args.resolution,
in_channels=3,
out_channels=3,
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
if accepts_prediction_type:
noise_scheduler = DDPMScheduler(
num_train_timesteps=args.ddpm_num_steps,
beta_schedule=args.ddpm_beta_schedule,
prediction_type=args.prediction_type,
)
else:
noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Normalize([0.5], [0.5]),
]
)
if args.dataset_name is not None:
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
split="train",
)
else:
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
logger.info(f"Dataset size: {len(dataset)}")
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
ema_model = EMAModel(
accelerator.unwrap_model(model),
inv_gamma=args.ema_inv_gamma,
power=args.ema_power,
max_value=args.ema_max_decay,
)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
global_step = 0
for epoch in range(args.num_epochs):
model.train()
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
# Sample noise that we'll add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
model_output = model(noisy_images, timesteps).sample
if args.prediction_type == "epsilon":
loss = F.mse_loss(model_output, noise) # this could have different weights!
elif args.prediction_type == "sample":
alpha_t = _extract_into_tensor(
noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
)
snr_weights = alpha_t / (1 - alpha_t)
loss = snr_weights * F.mse_loss(
model_output, clean_images, reduction="none"
) # use SNR weighting from distillation paper
loss = loss.mean()
else:
raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if args.use_ema:
ema_model.step(model)
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
if args.use_ema:
logs["ema_decay"] = ema_model.decay
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
progress_bar.close()
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
pipeline = DDPMPipeline(
unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
scheduler=noise_scheduler,
)
deprecate("todo: remove this check", "0.10.0", "when the most used version is >= 0.8.0")
if diffusers_version < version.parse("0.8.0"):
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=pipeline.device).manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
images = pipeline(
generator=generator,
batch_size=args.eval_batch_size,
output_type="numpy",
).images
# denormalize the images and save to tensorboard
images_processed = (images * 255).round().astype("uint8")
accelerator.trackers[0].writer.add_images(
"test_samples", images_processed.transpose(0, 3, 1, 2), epoch
)
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
# save the model
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
| diffusers-ft-main | examples/unconditional_image_generation/train_unconditional.py |
import argparse
import math
import os
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from onnxruntime.training.ortmodule import ORTModule
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Normalize,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = get_logger(__name__)
def main(args):
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
model = UNet2DModel(
sample_size=args.resolution,
in_channels=3,
out_channels=3,
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
model = ORTModule(model)
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Normalize([0.5], [0.5]),
]
)
if args.dataset_name is not None:
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
use_auth_token=True if args.use_auth_token else None,
split="train",
)
else:
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
global_step = 0
for epoch in range(args.num_epochs):
model.train()
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
# Sample noise that we'll add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, return_dict=True)[0]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if args.use_ema:
ema_model.step(model)
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
if args.use_ema:
logs["ema_decay"] = ema_model.decay
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
progress_bar.close()
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
pipeline = DDPMPipeline(
unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
scheduler=noise_scheduler,
)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images
# denormalize the images and save to tensorboard
images_processed = (images * 255).round().astype("uint8")
accelerator.trackers[0].writer.add_images(
"test_samples", images_processed.transpose(0, 3, 1, 2), epoch
)
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
# save the model
if args.push_to_hub:
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
else:
pipeline.save_pretrained(args.output_dir)
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset_name", type=str, default=None)
parser.add_argument("--dataset_config_name", type=str, default=None)
parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.")
parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--save_images_epochs", type=int, default=10)
parser.add_argument("--save_model_epochs", type=int, default=10)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler", type=str, default="cosine")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--adam_beta1", type=float, default=0.95)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--use_ema", action="store_true", default=True)
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
parser.add_argument("--ema_power", type=float, default=3 / 4)
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--use_auth_token", action="store_true")
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", action="store_true")
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
main(args)
| diffusers-ft-main | examples/unconditional_image_generation/train_unconditional_ort.py |
import argparse
import itertools
import math
import os
import random
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = get_logger(__name__)
def save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path):
logger.info("Saving embeddings")
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id]
learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
torch.save(learned_embeds_dict, save_path)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save learned_embeds.bin every X updates steps.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
)
parser.add_argument(
"--placeholder_token",
type=str,
default=None,
required=True,
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
)
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.train_data_dir is None:
raise ValueError("You must specify a train data directory.")
return args
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.flip_p = flip_p
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL_INTERPOLATION["linear"],
"bilinear": PIL_INTERPOLATION["bilinear"],
"bicubic": PIL_INTERPOLATION["bicubic"],
"lanczos": PIL_INTERPOLATION["lanczos"],
}[interpolation]
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
text = random.choice(self.templates).format(placeholder_string)
example["input_ids"] = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = (
img.shape[0],
img.shape[1],
)
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
image = Image.fromarray(img)
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip_transform(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def freeze_params(params):
for param in params:
param.requires_grad = False
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Convert the initializer_token, placeholder_token to ids
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
raise ValueError("The initializer token must be a single token.")
initializer_token_id = token_ids[0]
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
# Freeze vae and unet
freeze_params(vae.parameters())
freeze_params(unet.parameters())
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
freeze_params(params_to_freeze)
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = TextualInversionDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
placeholder_token=args.placeholder_token,
repeats=args.repeats,
learnable_property=args.learnable_property,
center_crop=args.center_crop,
set="train",
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, lr_scheduler
)
# Move vae and unet to device
vae.to(accelerator.device)
unet.to(accelerator.device)
# Keep vae and unet in eval model as we don't train these
vae.eval()
unet.eval()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("textual_inversion", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(args.num_train_epochs):
text_encoder.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(text_encoder):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(model_pred, target, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
# Zero out the gradients for all token embeddings except the newly added
# embeddings for the concept, as we only want to optimize the concept embeddings
if accelerator.num_processes > 1:
grads = text_encoder.module.get_input_embeddings().weight.grad
else:
grads = text_encoder.get_input_embeddings().weight.grad
# Get the index for tokens that we want to zero the grads for
index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id
grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin")
save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
vae=vae,
unet=unet,
revision=args.revision,
)
pipeline.save_pretrained(args.output_dir)
# Also save the newly trained embeddings
save_path = os.path.join(args.output_dir, "learned_embeds.bin")
save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
main()
| diffusers-ft-main | examples/textual_inversion/textual_inversion.py |
import argparse
import logging
import math
import os
import random
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import torch.utils.checkpoint
from torch.utils.data import Dataset
import jax
import jax.numpy as jnp
import optax
import PIL
import transformers
from diffusers import (
FlaxAutoencoderKL,
FlaxDDPMScheduler,
FlaxPNDMScheduler,
FlaxStableDiffusionPipeline,
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
)
parser.add_argument(
"--placeholder_token",
type=str,
default=None,
required=True,
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
)
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--use_auth_token",
action="store_true",
help=(
"Will use the token generated when running `huggingface-cli login` (necessary to use this script with"
" private models)."
),
)
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.train_data_dir is None:
raise ValueError("You must specify a train data directory.")
return args
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.flip_p = flip_p
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL_INTERPOLATION["linear"],
"bilinear": PIL_INTERPOLATION["bilinear"],
"bicubic": PIL_INTERPOLATION["bicubic"],
"lanczos": PIL_INTERPOLATION["lanczos"],
}[interpolation]
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
text = random.choice(self.templates).format(placeholder_string)
example["input_ids"] = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = (
img.shape[0],
img.shape[1],
)
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
image = Image.fromarray(img)
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip_transform(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def resize_token_embeddings(model, new_num_tokens, initializer_token_id, placeholder_token_id, rng):
if model.config.vocab_size == new_num_tokens or new_num_tokens is None:
return
model.config.vocab_size = new_num_tokens
params = model.params
old_embeddings = params["text_model"]["embeddings"]["token_embedding"]["embedding"]
old_num_tokens, emb_dim = old_embeddings.shape
initializer = jax.nn.initializers.normal()
new_embeddings = initializer(rng, (new_num_tokens, emb_dim))
new_embeddings = new_embeddings.at[:old_num_tokens].set(old_embeddings)
new_embeddings = new_embeddings.at[placeholder_token_id].set(new_embeddings[initializer_token_id])
params["text_model"]["embeddings"]["token_embedding"]["embedding"] = new_embeddings
model.params = params
return model
def get_params_to_save(params):
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
def main():
args = parse_args()
if args.seed is not None:
set_seed(args.seed)
if jax.process_index() == 0:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Convert the initializer_token, placeholder_token to ids
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
raise ValueError("The initializer token must be a single token.")
initializer_token_id = token_ids[0]
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load models and create wrapper for stable diffusion
text_encoder = FlaxCLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae, vae_params = FlaxAutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# Create sampling rng
rng = jax.random.PRNGKey(args.seed)
rng, _ = jax.random.split(rng)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder = resize_token_embeddings(
text_encoder, len(tokenizer), initializer_token_id, placeholder_token_id, rng
)
original_token_embeds = text_encoder.params["text_model"]["embeddings"]["token_embedding"]["embedding"]
train_dataset = TextualInversionDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
placeholder_token=args.placeholder_token,
repeats=args.repeats,
learnable_property=args.learnable_property,
center_crop=args.center_crop,
set="train",
)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
input_ids = torch.stack([example["input_ids"] for example in examples])
batch = {"pixel_values": pixel_values, "input_ids": input_ids}
batch = {k: v.numpy() for k, v in batch.items()}
return batch
total_train_batch_size = args.train_batch_size * jax.local_device_count()
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=total_train_batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn
)
# Optimization
if args.scale_lr:
args.learning_rate = args.learning_rate * total_train_batch_size
constant_scheduler = optax.constant_schedule(args.learning_rate)
optimizer = optax.adamw(
learning_rate=constant_scheduler,
b1=args.adam_beta1,
b2=args.adam_beta2,
eps=args.adam_epsilon,
weight_decay=args.adam_weight_decay,
)
def create_mask(params, label_fn):
def _map(params, mask, label_fn):
for k in params:
if label_fn(k):
mask[k] = "token_embedding"
else:
if isinstance(params[k], dict):
mask[k] = {}
_map(params[k], mask[k], label_fn)
else:
mask[k] = "zero"
mask = {}
_map(params, mask, label_fn)
return mask
def zero_grads():
# from https://github.com/deepmind/optax/issues/159#issuecomment-896459491
def init_fn(_):
return ()
def update_fn(updates, state, params=None):
return jax.tree_util.tree_map(jnp.zeros_like, updates), ()
return optax.GradientTransformation(init_fn, update_fn)
# Zero out gradients of layers other than the token embedding layer
tx = optax.multi_transform(
{"token_embedding": optimizer, "zero": zero_grads()},
create_mask(text_encoder.params, lambda s: s == "token_embedding"),
)
state = train_state.TrainState.create(apply_fn=text_encoder.__call__, params=text_encoder.params, tx=tx)
noise_scheduler = FlaxDDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
# Initialize our training
train_rngs = jax.random.split(rng, jax.local_device_count())
# Define gradient train step fn
def train_step(state, vae_params, unet_params, batch, train_rng):
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
def compute_loss(params):
vae_outputs = vae.apply(
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
)
latents = vae_outputs.latent_dist.sample(sample_rng)
# (NHWC) -> (NCHW)
latents = jnp.transpose(latents, (0, 3, 1, 2))
latents = latents * 0.18215
noise_rng, timestep_rng = jax.random.split(sample_rng)
noise = jax.random.normal(noise_rng, latents.shape)
bsz = latents.shape[0]
timesteps = jax.random.randint(
timestep_rng,
(bsz,),
0,
noise_scheduler.config.num_train_timesteps,
)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
encoder_hidden_states = state.apply_fn(
batch["input_ids"], params=params, dropout_rng=dropout_rng, train=True
)[0]
unet_outputs = unet.apply(
{"params": unet_params}, noisy_latents, timesteps, encoder_hidden_states, train=False
)
noise_pred = unet_outputs.sample
loss = (noise - noise_pred) ** 2
loss = loss.mean()
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
# Keep the token embeddings fixed except the newly added embeddings for the concept,
# as we only want to optimize the concept embeddings
token_embeds = original_token_embeds.at[placeholder_token_id].set(
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"][placeholder_token_id]
)
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"] = token_embeds
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics, new_train_rng
# Create parallel version of the train and eval step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
vae_params = jax_utils.replicate(vae_params)
unet_params = jax_utils.replicate(unet_params)
# Train!
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
# Scheduler and math around the number of training steps.
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
epochs = tqdm(range(args.num_train_epochs), desc=f"Epoch ... (1/{args.num_train_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
train_metrics = []
steps_per_epoch = len(train_dataset) // total_train_batch_size
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
# train
for batch in train_dataloader:
batch = shard(batch)
state, train_metric, train_rngs = p_train_step(state, vae_params, unet_params, batch, train_rngs)
train_metrics.append(train_metric)
train_step_progress_bar.update(1)
global_step += 1
if global_step >= args.max_train_steps:
break
train_metric = jax_utils.unreplicate(train_metric)
train_step_progress_bar.close()
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
# Create the pipeline using using the trained modules and save it.
if jax.process_index() == 0:
scheduler = FlaxPNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
)
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker", from_pt=True
)
pipeline = FlaxStableDiffusionPipeline(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
)
pipeline.save_pretrained(
args.output_dir,
params={
"text_encoder": get_params_to_save(state.params),
"vae": get_params_to_save(vae_params),
"unet": get_params_to_save(unet_params),
"safety_checker": safety_checker.params,
},
)
# Also save the newly trained embeddings
learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"]["embedding"][
placeholder_token_id
]
learned_embeds_dict = {args.placeholder_token: learned_embeds}
jnp.save(os.path.join(args.output_dir, "learned_embeds.npy"), learned_embeds_dict)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
if __name__ == "__main__":
main()
| diffusers-ft-main | examples/textual_inversion/textual_inversion_flax.py |
import argparse
import logging
import math
import os
import random
from pathlib import Path
from typing import Iterable, Optional
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
action="store_true",
help="Whether to center crop images before resizing to resolution (if not set, random crop will be used)",
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("Need either a dataset name or a training folder.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
dataset_name_mapping = {
"lambdalabs/pokemon-blip-captions": ("image", "text"),
}
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
parameters = list(parameters)
self.shadow_params = [p.clone().detach() for p in parameters]
self.decay = decay
self.optimization_step = 0
def get_decay(self, optimization_step):
"""
Compute the decay factor for the exponential moving average.
"""
value = (1 + optimization_step) / (10 + optimization_step)
return 1 - min(self.decay, value)
@torch.no_grad()
def step(self, parameters):
parameters = list(parameters)
self.optimization_step += 1
self.decay = self.get_decay(self.optimization_step)
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
tmp = self.decay * (s_param - param)
s_param.sub_(tmp)
else:
s_param.copy_(param)
torch.cuda.empty_cache()
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.data)
def to(self, device=None, dtype=None) -> None:
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
Args:
device: like `device` argument to `torch.Tensor.to`
"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
logging_dir=logging_dir,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load models and create wrapper for stable diffusion
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
unet.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
)
else:
data_files = {}
if args.train_data_dir is not None:
data_files["train"] = os.path.join(args.train_data_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
cache_dir=args.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
dataset_columns = dataset_name_mapping.get(args.dataset_name, None)
if args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="do_not_pad", truncation=True)
input_ids = inputs.input_ids
return input_ids
train_transforms = transforms.Compose(
[
transforms.Resize((args.resolution, args.resolution), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [train_transforms(image) for image in images]
examples["input_ids"] = tokenize_captions(examples)
return examples
with accelerator.main_process_first():
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = [example["input_ids"] for example in examples]
padded_tokens = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt")
return {
"pixel_values": pixel_values,
"input_ids": padded_tokens.input_ids,
"attention_mask": padded_tokens.attention_mask,
}
train_dataloader = torch.utils.data.DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# Create EMA for the unet.
if args.use_ema:
ema_unet = EMAModel(unet.parameters())
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2image-fine-tune", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(args.num_train_epochs):
unet.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
# Predict the noise residual and compute loss
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if args.use_ema:
ema_unet.step(unet.parameters())
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
if args.use_ema:
ema_unet.copy_to(unet.parameters())
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
text_encoder=text_encoder,
vae=vae,
unet=unet,
revision=args.revision,
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
main()
| diffusers-ft-main | examples/text_to_image/train_text_to_image.py |
import argparse
import logging
import math
import os
import random
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import torch.utils.checkpoint
import jax
import jax.numpy as jnp
import optax
import transformers
from datasets import load_dataset
from diffusers import (
FlaxAutoencoderKL,
FlaxDDPMScheduler,
FlaxPNDMScheduler,
FlaxStableDiffusionPipeline,
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
action="store_true",
help="Whether to center crop images before resizing to resolution (if not set, random crop will be used)",
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("Need either a dataset name or a training folder.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
dataset_name_mapping = {
"lambdalabs/pokemon-blip-captions": ("image", "text"),
}
def get_params_to_save(params):
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
def main():
args = parse_args()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if jax.process_index() == 0:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
)
else:
data_files = {}
if args.train_data_dir is not None:
data_files["train"] = os.path.join(args.train_data_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
cache_dir=args.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
dataset_columns = dataset_name_mapping.get(args.dataset_name, None)
if args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="do_not_pad", truncation=True)
input_ids = inputs.input_ids
return input_ids
train_transforms = transforms.Compose(
[
transforms.Resize((args.resolution, args.resolution), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [train_transforms(image) for image in images]
examples["input_ids"] = tokenize_captions(examples)
return examples
if jax.process_index() == 0:
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = [example["input_ids"] for example in examples]
padded_tokens = tokenizer.pad(
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
)
batch = {
"pixel_values": pixel_values,
"input_ids": padded_tokens.input_ids,
}
batch = {k: v.numpy() for k, v in batch.items()}
return batch
total_train_batch_size = args.train_batch_size * jax.local_device_count()
train_dataloader = torch.utils.data.DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=total_train_batch_size, drop_last=True
)
weight_dtype = jnp.float32
if args.mixed_precision == "fp16":
weight_dtype = jnp.float16
elif args.mixed_precision == "bf16":
weight_dtype = jnp.bfloat16
# Load models and create wrapper for stable diffusion
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = FlaxCLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", dtype=weight_dtype
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", dtype=weight_dtype
)
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype
)
# Optimization
if args.scale_lr:
args.learning_rate = args.learning_rate * total_train_batch_size
constant_scheduler = optax.constant_schedule(args.learning_rate)
adamw = optax.adamw(
learning_rate=constant_scheduler,
b1=args.adam_beta1,
b2=args.adam_beta2,
eps=args.adam_epsilon,
weight_decay=args.adam_weight_decay,
)
optimizer = optax.chain(
optax.clip_by_global_norm(args.max_grad_norm),
adamw,
)
state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
noise_scheduler = FlaxDDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
# Initialize our training
rng = jax.random.PRNGKey(args.seed)
train_rngs = jax.random.split(rng, jax.local_device_count())
def train_step(state, text_encoder_params, vae_params, batch, train_rng):
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
def compute_loss(params):
# Convert images to latent space
vae_outputs = vae.apply(
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
)
latents = vae_outputs.latent_dist.sample(sample_rng)
# (NHWC) -> (NCHW)
latents = jnp.transpose(latents, (0, 3, 1, 2))
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise_rng, timestep_rng = jax.random.split(sample_rng)
noise = jax.random.normal(noise_rng, latents.shape)
# Sample a random timestep for each image
bsz = latents.shape[0]
timesteps = jax.random.randint(
timestep_rng,
(bsz,),
0,
noise_scheduler.config.num_train_timesteps,
)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(
batch["input_ids"],
params=text_encoder_params,
train=False,
)[0]
# Predict the noise residual and compute loss
unet_outputs = unet.apply({"params": params}, noisy_latents, timesteps, encoder_hidden_states, train=True)
noise_pred = unet_outputs.sample
loss = (noise - noise_pred) ** 2
loss = loss.mean()
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics, new_train_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
text_encoder_params = jax_utils.replicate(text_encoder.params)
vae_params = jax_utils.replicate(vae_params)
# Train!
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
# Scheduler and math around the number of training steps.
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
for epoch in epochs:
# ======================== Training ================================
train_metrics = []
steps_per_epoch = len(train_dataset) // total_train_batch_size
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
# train
for batch in train_dataloader:
batch = shard(batch)
state, train_metric, train_rngs = p_train_step(state, text_encoder_params, vae_params, batch, train_rngs)
train_metrics.append(train_metric)
train_step_progress_bar.update(1)
global_step += 1
if global_step >= args.max_train_steps:
break
train_metric = jax_utils.unreplicate(train_metric)
train_step_progress_bar.close()
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
# Create the pipeline using using the trained modules and save it.
if jax.process_index() == 0:
scheduler = FlaxPNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
)
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker", from_pt=True
)
pipeline = FlaxStableDiffusionPipeline(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
)
pipeline.save_pretrained(
args.output_dir,
params={
"text_encoder": get_params_to_save(text_encoder_params),
"vae": get_params_to_save(vae_params),
"unet": get_params_to_save(state.params),
"safety_checker": safety_checker.params,
},
)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
if __name__ == "__main__":
main()
| diffusers-ft-main | examples/text_to_image/train_text_to_image_flax.py |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| diffusers-ft-main | examples/inference/inpainting.py |
import warnings
from diffusers import StableDiffusionImg2ImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| diffusers-ft-main | examples/inference/image_to_image.py |
import argparse
import hashlib
import logging
import math
import os
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import torch.utils.checkpoint
from torch.utils.data import Dataset
import jax
import jax.numpy as jnp
import optax
import transformers
from diffusers import (
FlaxAutoencoderKL,
FlaxDDPMScheduler,
FlaxPNDMScheduler,
FlaxStableDiffusionPipeline,
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
" sampled with class_prompt."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.instance_data_dir is None:
raise ValueError("You must specify a train data directory.")
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def get_params_to_save(params):
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
def main():
args = parse_args()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
rng = jax.random.PRNGKey(args.seed)
if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, safety_checker=None
)
pipeline.set_progress_bar_config(disable=True)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
total_sample_batch_size = args.sample_batch_size * jax.local_device_count()
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size)
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0
):
prompt_ids = pipeline.prepare_inputs(example["prompt"])
prompt_ids = shard(prompt_ids)
p_params = jax_utils.replicate(params)
rng = jax.random.split(rng)[0]
sample_rng = jax.random.split(rng, jax.device_count())
images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
images = pipeline.numpy_to_pil(np.array(images))
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
image.save(image_filename)
del pipeline
# Handle the repository creation
if jax.process_index() == 0:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
)
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad(
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
).input_ids
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
}
batch = {k: v.numpy() for k, v in batch.items()}
return batch
total_train_batch_size = args.train_batch_size * jax.local_device_count()
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True
)
weight_dtype = jnp.float32
if args.mixed_precision == "fp16":
weight_dtype = jnp.float16
elif args.mixed_precision == "bf16":
weight_dtype = jnp.bfloat16
# Load models and create wrapper for stable diffusion
text_encoder = FlaxCLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", dtype=weight_dtype
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", dtype=weight_dtype
)
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype
)
# Optimization
if args.scale_lr:
args.learning_rate = args.learning_rate * total_train_batch_size
constant_scheduler = optax.constant_schedule(args.learning_rate)
adamw = optax.adamw(
learning_rate=constant_scheduler,
b1=args.adam_beta1,
b2=args.adam_beta2,
eps=args.adam_epsilon,
weight_decay=args.adam_weight_decay,
)
optimizer = optax.chain(
optax.clip_by_global_norm(args.max_grad_norm),
adamw,
)
unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
text_encoder_state = train_state.TrainState.create(
apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer
)
noise_scheduler = FlaxDDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
# Initialize our training
train_rngs = jax.random.split(rng, jax.local_device_count())
def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng):
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
if args.train_text_encoder:
params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params}
else:
params = {"unet": unet_state.params}
def compute_loss(params):
# Convert images to latent space
vae_outputs = vae.apply(
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
)
latents = vae_outputs.latent_dist.sample(sample_rng)
# (NHWC) -> (NCHW)
latents = jnp.transpose(latents, (0, 3, 1, 2))
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise_rng, timestep_rng = jax.random.split(sample_rng)
noise = jax.random.normal(noise_rng, latents.shape)
# Sample a random timestep for each image
bsz = latents.shape[0]
timesteps = jax.random.randint(
timestep_rng,
(bsz,),
0,
noise_scheduler.config.num_train_timesteps,
)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
if args.train_text_encoder:
encoder_hidden_states = text_encoder_state.apply_fn(
batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True
)[0]
else:
encoder_hidden_states = text_encoder(
batch["input_ids"], params=text_encoder_state.params, train=False
)[0]
# Predict the noise residual
unet_outputs = unet.apply(
{"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True
)
noise_pred = unet_outputs.sample
if args.with_prior_preservation:
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
noise_pred, noise_pred_prior = jnp.split(noise_pred, 2, axis=0)
noise, noise_prior = jnp.split(noise, 2, axis=0)
# Compute instance loss
loss = (noise - noise_pred) ** 2
loss = loss.mean()
# Compute prior loss
prior_loss = (noise_prior - noise_pred_prior) ** 2
prior_loss = prior_loss.mean()
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = (noise - noise_pred) ** 2
loss = loss.mean()
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grad = grad_fn(params)
grad = jax.lax.pmean(grad, "batch")
new_unet_state = unet_state.apply_gradients(grads=grad["unet"])
if args.train_text_encoder:
new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"])
else:
new_text_encoder_state = text_encoder_state
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_unet_state, new_text_encoder_state, metrics, new_train_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1))
# Replicate the train state on each device
unet_state = jax_utils.replicate(unet_state)
text_encoder_state = jax_utils.replicate(text_encoder_state)
vae_params = jax_utils.replicate(vae_params)
# Train!
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
# Scheduler and math around the number of training steps.
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
for epoch in epochs:
# ======================== Training ================================
train_metrics = []
steps_per_epoch = len(train_dataset) // total_train_batch_size
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
# train
for batch in train_dataloader:
batch = shard(batch)
unet_state, text_encoder_state, train_metric, train_rngs = p_train_step(
unet_state, text_encoder_state, vae_params, batch, train_rngs
)
train_metrics.append(train_metric)
train_step_progress_bar.update(1)
global_step += 1
if global_step >= args.max_train_steps:
break
train_metric = jax_utils.unreplicate(train_metric)
train_step_progress_bar.close()
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
# Create the pipeline using using the trained modules and save it.
if jax.process_index() == 0:
scheduler = FlaxPNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
)
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker", from_pt=True
)
pipeline = FlaxStableDiffusionPipeline(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
)
pipeline.save_pretrained(
args.output_dir,
params={
"text_encoder": get_params_to_save(text_encoder_state.params),
"vae": get_params_to_save(vae_params),
"unet": get_params_to_save(unet_state.params),
"safety_checker": safety_checker.params,
},
)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
if __name__ == "__main__":
main()
| diffusers-ft-main | examples/dreambooth/train_dreambooth_flax.py |
import argparse
import hashlib
import itertools
import math
import os
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
logger = get_logger(__name__)
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
required=True,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
" sampled with class_prompt."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
if args.class_data_dir is not None:
logger.warning("You need not use --class_data_dir without --with_prior_preservation.")
if args.class_prompt is not None:
logger.warning("You need not use --class_prompt without --with_prior_preservation.")
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
if args.seed is not None:
set_seed(args.seed)
if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=torch_dtype,
safety_checker=None,
revision=args.revision,
)
pipeline.set_progress_bar_config(disable=True)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
sample_dataloader = accelerator.prepare(sample_dataloader)
pipeline.to(accelerator.device)
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
):
images = pipeline(example["prompt"]).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
image.save(image_filename)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
)
vae.requires_grad_(False)
if not args.train_text_encoder:
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder.gradient_checkpointing_enable()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = (
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
)
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
)
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad(
{"input_ids": input_ids},
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
}
return batch
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
if not args.train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(args.num_train_epochs):
unet.train()
if args.train_text_encoder:
text_encoder.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
target, target_prior = torch.chunk(target, 2, dim=0)
# Compute instance loss
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean()
# Compute prior loss
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder
else unet.parameters()
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
if accelerator.is_main_process:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
revision=args.revision,
)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
pipeline.save_pretrained(save_path)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
revision=args.revision,
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
| diffusers-ft-main | examples/dreambooth/train_dreambooth.py |
Subsets and Splits