python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Owner(s): ["oncall: jit"] import io import os import sys import copy import unittest import torch from typing import Optional # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, find_library_location, ) from torch.testing import FileCheck if __name__ == "__main__": raise RuntimeError( "This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead." ) class TestTorchbind(JitTestCase): def setUp(self): if IS_SANDCASTLE or IS_WINDOWS or IS_MACOS or IS_FBCODE: raise unittest.SkipTest("non-portable load_library call used in test") lib_file_path = find_library_location('libtorchbind_test.so') torch.ops.load_library(str(lib_file_path)) def test_torchbind(self): def test_equality(f, cmp_key): obj1 = f() obj2 = torch.jit.script(f)() return (cmp_key(obj1), cmp_key(obj2)) def f(): val = torch.classes._TorchScriptTesting._Foo(5, 3) val.increment(1) return val test_equality(f, lambda x: x) with self.assertRaisesRegex(RuntimeError, "Expected a value of type 'int'"): val = torch.classes._TorchScriptTesting._Foo(5, 3) val.increment('foo') def f(): ss = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"]) return ss.pop() test_equality(f, lambda x: x) def f(): ss1 = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"]) ss2 = torch.classes._TorchScriptTesting._StackString(["111", "222"]) ss1.push(ss2.pop()) return ss1.pop() + ss2.pop() test_equality(f, lambda x: x) # test nn module with prepare_scriptable function class NonJitableClass(object): def __init__(self, int1, int2): self.int1 = int1 self.int2 = int2 def return_vals(self): return self.int1, self.int2 class CustomWrapper(torch.nn.Module): def __init__(self, foo): super(CustomWrapper, self).__init__() self.foo = foo def forward(self) -> None: self.foo.increment(1) return def __prepare_scriptable__(self): int1, int2 = self.foo.return_vals() foo = torch.classes._TorchScriptTesting._Foo(int1, int2) return CustomWrapper(foo) foo = CustomWrapper(NonJitableClass(1, 2)) jit_foo = torch.jit.script(foo) def test_torchbind_take_as_arg(self): global StackString # see [local resolution in python] StackString = torch.classes._TorchScriptTesting._StackString def foo(stackstring): # type: (StackString) stackstring.push("lel") return stackstring script_input = torch.classes._TorchScriptTesting._StackString([]) scripted = torch.jit.script(foo) script_output = scripted(script_input) self.assertEqual(script_output.pop(), "lel") def test_torchbind_return_instance(self): def foo(): ss = torch.classes._TorchScriptTesting._StackString(["hi", "mom"]) return ss scripted = torch.jit.script(foo) # Ensure we are creating the object and calling __init__ # rather than calling the __init__wrapper nonsense fc = FileCheck().check('prim::CreateObject()')\ .check('prim::CallMethod[name="__init__"]') fc.run(str(scripted.graph)) out = scripted() self.assertEqual(out.pop(), "mom") self.assertEqual(out.pop(), "hi") def test_torchbind_return_instance_from_method(self): def foo(): ss = torch.classes._TorchScriptTesting._StackString(["hi", "mom"]) clone = ss.clone() ss.pop() return ss, clone scripted = torch.jit.script(foo) out = scripted() self.assertEqual(out[0].pop(), "hi") self.assertEqual(out[1].pop(), "mom") self.assertEqual(out[1].pop(), "hi") def test_torchbind_def_property_getter_setter(self): def foo_getter_setter_full(): fooGetterSetter = torch.classes._TorchScriptTesting._FooGetterSetter(5, 6) # getX method intentionally adds 2 to x old = fooGetterSetter.x # setX method intentionally adds 2 to x fooGetterSetter.x = old + 4 new = fooGetterSetter.x return old, new self.checkScript(foo_getter_setter_full, ()) def foo_getter_setter_lambda(): foo = torch.classes._TorchScriptTesting._FooGetterSetterLambda(5) old = foo.x foo.x = old + 4 new = foo.x return old, new self.checkScript(foo_getter_setter_lambda, ()) def test_torchbind_def_property_just_getter(self): def foo_just_getter(): fooGetterSetter = torch.classes._TorchScriptTesting._FooGetterSetter(5, 6) # getY method intentionally adds 4 to x return fooGetterSetter, fooGetterSetter.y scripted = torch.jit.script(foo_just_getter) out, result = scripted() self.assertEqual(result, 10) with self.assertRaisesRegex(RuntimeError, 'can\'t set attribute'): out.y = 5 def foo_not_setter(): fooGetterSetter = torch.classes._TorchScriptTesting._FooGetterSetter(5, 6) old = fooGetterSetter.y fooGetterSetter.y = old + 4 # getY method intentionally adds 4 to x return fooGetterSetter.y with self.assertRaisesRegexWithHighlight(RuntimeError, 'Tried to set read-only attribute: y', 'fooGetterSetter.y = old + 4'): scripted = torch.jit.script(foo_not_setter) def test_torchbind_def_property_readwrite(self): def foo_readwrite(): fooReadWrite = torch.classes._TorchScriptTesting._FooReadWrite(5, 6) old = fooReadWrite.x fooReadWrite.x = old + 4 return fooReadWrite.x, fooReadWrite.y self.checkScript(foo_readwrite, ()) def foo_readwrite_error(): fooReadWrite = torch.classes._TorchScriptTesting._FooReadWrite(5, 6) fooReadWrite.y = 5 return fooReadWrite with self.assertRaisesRegexWithHighlight(RuntimeError, 'Tried to set read-only attribute: y', 'fooReadWrite.y = 5'): scripted = torch.jit.script(foo_readwrite_error) def test_torchbind_take_instance_as_method_arg(self): def foo(): ss = torch.classes._TorchScriptTesting._StackString(["mom"]) ss2 = torch.classes._TorchScriptTesting._StackString(["hi"]) ss.merge(ss2) return ss scripted = torch.jit.script(foo) out = scripted() self.assertEqual(out.pop(), "hi") self.assertEqual(out.pop(), "mom") def test_torchbind_return_tuple(self): def f(): val = torch.classes._TorchScriptTesting._StackString(["3", "5"]) return val.return_a_tuple() scripted = torch.jit.script(f) tup = scripted() self.assertEqual(tup, (1337.0, 123)) def test_torchbind_save_load(self): def foo(): ss = torch.classes._TorchScriptTesting._StackString(["mom"]) ss2 = torch.classes._TorchScriptTesting._StackString(["hi"]) ss.merge(ss2) return ss scripted = torch.jit.script(foo) self.getExportImportCopy(scripted) def test_torchbind_lambda_method(self): def foo(): ss = torch.classes._TorchScriptTesting._StackString(["mom"]) return ss.top() scripted = torch.jit.script(foo) self.assertEqual(scripted(), "mom") def test_torchbind_class_attr_recursive(self): class FooBar(torch.nn.Module): def __init__(self, foo_model): super(FooBar, self).__init__() self.foo_mod = foo_model def forward(self) -> int: return self.foo_mod.info() def to_ivalue(self): torchbind_model = torch.classes._TorchScriptTesting._Foo(self.foo_mod.info(), 1) return FooBar(torchbind_model) inst = FooBar(torch.classes._TorchScriptTesting._Foo(2, 3)) scripted = torch.jit.script(inst.to_ivalue()) self.assertEqual(scripted(), 6) def test_torchbind_class_attribute(self): class FooBar1234(torch.nn.Module): def __init__(self): super(FooBar1234, self).__init__() self.f = torch.classes._TorchScriptTesting._StackString(["3", "4"]) def forward(self): return self.f.top() inst = FooBar1234() scripted = torch.jit.script(inst) eic = self.getExportImportCopy(scripted) assert eic() == "deserialized" for expected in ["deserialized", "was", "i"]: assert eic.f.pop() == expected def test_torchbind_getstate(self): class FooBar4321(torch.nn.Module): def __init__(self): super(FooBar4321, self).__init__() self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4]) def forward(self): return self.f.top() inst = FooBar4321() scripted = torch.jit.script(inst) eic = self.getExportImportCopy(scripted) # NB: we expect the values {7, 3, 3, 1} as __getstate__ is defined to # return {1, 3, 3, 7}. I tried to make this actually depend on the # values at instantiation in the test with some transformation, but # because it seems we serialize/deserialize multiple times, that # transformation isn't as you would it expect it to be. assert eic() == 7 for expected in [7, 3, 3, 1]: assert eic.f.pop() == expected def test_torchbind_deepcopy(self): class FooBar4321(torch.nn.Module): def __init__(self): super(FooBar4321, self).__init__() self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4]) def forward(self): return self.f.top() inst = FooBar4321() scripted = torch.jit.script(inst) copied = copy.deepcopy(scripted) assert copied.forward() == 7 for expected in [7, 3, 3, 1]: assert copied.f.pop() == expected def test_torchbind_python_deepcopy(self): class FooBar4321(torch.nn.Module): def __init__(self): super(FooBar4321, self).__init__() self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4]) def forward(self): return self.f.top() inst = FooBar4321() copied = copy.deepcopy(inst) assert copied() == 7 for expected in [7, 3, 3, 1]: assert copied.f.pop() == expected def test_torchbind_tracing(self): class TryTracing(torch.nn.Module): def __init__(self): super(TryTracing, self).__init__() self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4]) def forward(self): return torch.ops._TorchScriptTesting.take_an_instance(self.f) traced = torch.jit.trace(TryTracing(), ()) self.assertEqual(torch.zeros(4, 4), traced()) def test_torchbind_pass_wrong_type(self): with self.assertRaisesRegex(RuntimeError, 'but instead found type \'Tensor\''): torch.ops._TorchScriptTesting.take_an_instance(torch.rand(3, 4)) def test_torchbind_tracing_nested(self): class TryTracingNest(torch.nn.Module): def __init__(self): super(TryTracingNest, self).__init__() self.f = torch.classes._TorchScriptTesting._PickleTester([3, 4]) class TryTracing123(torch.nn.Module): def __init__(self): super(TryTracing123, self).__init__() self.nest = TryTracingNest() def forward(self): return torch.ops._TorchScriptTesting.take_an_instance(self.nest.f) traced = torch.jit.trace(TryTracing123(), ()) self.assertEqual(torch.zeros(4, 4), traced()) def test_torchbind_pickle_serialization(self): nt = torch.classes._TorchScriptTesting._PickleTester([3, 4]) b = io.BytesIO() torch.save(nt, b) b.seek(0) nt_loaded = torch.load(b) for exp in [7, 3, 3, 1]: self.assertEqual(nt_loaded.pop(), exp) def test_torchbind_instantiate_missing_class(self): with self.assertRaisesRegex(RuntimeError, 'Tried to instantiate class \'foo.IDontExist\', but it does not exist!'): torch.classes.foo.IDontExist(3, 4, 5) def test_torchbind_optional_explicit_attr(self): class TorchBindOptionalExplicitAttr(torch.nn.Module): foo : Optional[torch.classes._TorchScriptTesting._StackString] def __init__(self): super().__init__() self.foo = torch.classes._TorchScriptTesting._StackString(["test"]) def forward(self) -> str: foo_obj = self.foo if foo_obj is not None: return foo_obj.pop() else: return '<None>' mod = TorchBindOptionalExplicitAttr() scripted = torch.jit.script(mod) def test_torchbind_no_init(self): with self.assertRaisesRegex(RuntimeError, 'torch::init'): x = torch.classes._TorchScriptTesting._NoInit() def test_profiler_custom_op(self): inst = torch.classes._TorchScriptTesting._PickleTester([3, 4]) with torch.autograd.profiler.profile() as prof: torch.ops._TorchScriptTesting.take_an_instance(inst) found_event = False for e in prof.function_events: if e.name == '_TorchScriptTesting::take_an_instance': found_event = True self.assertTrue(found_event) def test_torchbind_getattr(self): foo = torch.classes._TorchScriptTesting._StackString(["test"]) self.assertEqual(None, getattr(foo, 'bar', None)) def test_torchbind_attr_exception(self): foo = torch.classes._TorchScriptTesting._StackString(["test"]) with self.assertRaisesRegex(AttributeError, 'does not have a field'): foo.bar def test_lambda_as_constructor(self): obj_no_swap = torch.classes._TorchScriptTesting._LambdaInit(4, 3, False) self.assertEqual(obj_no_swap.diff(), 1) obj_swap = torch.classes._TorchScriptTesting._LambdaInit(4, 3, True) self.assertEqual(obj_swap.diff(), -1) def test_staticmethod(self): def fn(inp: int) -> int: return torch.classes._TorchScriptTesting._StaticMethod.staticMethod(inp) self.checkScript(fn, (1,)) def test_default_args(self): def fn() -> int: obj = torch.classes._TorchScriptTesting._DefaultArgs() obj.increment(5) obj.decrement() obj.decrement(2) obj.divide() obj.scale_add(5) obj.scale_add(3, 2) obj.divide(3) return obj.increment() self.checkScript(fn, ()) def gn() -> int: obj = torch.classes._TorchScriptTesting._DefaultArgs(5) obj.increment(3) obj.increment() obj.decrement(2) obj.divide() obj.scale_add(3) obj.scale_add(3, 2) obj.divide(2) return obj.decrement() self.checkScript(gn, ())
pytorch-master
test/jit/test_torchbind.py
# Owner(s): ["oncall: jit"] import os import sys import inspect import unittest from typing import Any, Dict, List, NamedTuple, Optional, Tuple from textwrap import dedent from collections import OrderedDict from torch import Tensor import torch import torch.nn as nn import types from torch.testing import FileCheck # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_utils import skipIfTorchDynamo if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestList(JitTestCase): def test_list_bool_conversion(self): def if_predicate(l: List[int]): if l: s = 0 for n in l: s += n return s else: return -1 self.checkScript(if_predicate, ([1, 2, 3],)) self.checkScript(if_predicate, ([],)) def while_predicate(l: List[int]): s = 0 while l: s += l.pop() self.checkScript(while_predicate, ([1, 2, 3],)) self.checkScript(while_predicate, ([],)) def ternary_predicate(l: List[int]): return "non-empty" if l else "empty" self.checkScript(ternary_predicate, ([1, 2, 3],)) self.checkScript(ternary_predicate, ([],)) def test_in_check(self): def int_in(x: List[int]) -> bool: return 2 in x self.checkScript(int_in, ([1, 2, 3],)) self.checkScript(int_in, ([1, 3, 3],)) def float_in(x: List[float]) -> bool: return 2. in x self.checkScript(float_in, ([1., 2., 3.],)) self.checkScript(float_in, ([1., 3., 3.],)) def str_in(x: List[str]) -> bool: return 'hi' in x self.checkScript(str_in, (['not', 'here'],)) self.checkScript(str_in, (['hi', 'bye'],)) self.checkScript(str_in, ([],)) def test_list_literal(self): def reassign(): x = [1] if 1 == 1: x = [2, 3] return self.checkScript(reassign, (), optimize=False) def reassign_arity_change(): x = [1] if 1 == 1: x = [1, 2, 3] return self.checkScript(reassign_arity_change, (), optimize=False) def reassign_from_empty_literal(): x = [] if 1 == 1: x = [1, 2, 3] return with self.assertRaisesRegexWithHighlight(RuntimeError, r"previously had type List\[Tensor\]", "x"): self.checkScript(reassign_from_empty_literal, (), optimize=False) def reassign_from_empty_builtin(): x = torch.jit.annotate(List[int], []) if 1 == 1: x = [1, 2, 3] y = torch.jit.annotate(List[float], []) if 1 == 1: y = [1.0, 2.0, 3.0] z = [] if 1 == 1: z = [torch.randn([1])] return self.checkScript(reassign_from_empty_builtin, (), optimize=False) def reassign_bad_type(): x = [1] if 1 == 1: x = [1.0] return with self.assertRaisesRegexWithHighlight(RuntimeError, "previously had type", "x"): self.checkScript(reassign_bad_type, (), optimize=False) def reassign_nested(): x = torch.jit.annotate(List[int], []) if 1 == 1: x = [1, 2, 3] if 1 == 1: x = [1.0] return with self.assertRaisesRegexWithHighlight(RuntimeError, "previously had type", "x"): self.checkScript(reassign_nested, (), optimize=False) def test_list_variance(self): """ `List[T1]` is not a subtype of `List[T2]`, even if `T1` is a subtype of `T2`. However, if we have a temporary list object (that is, a list comprehension or a list literal) on the rhs of an assignment statement, we want to ignore the inferred type of the rhs if we can prove that: 1) both the lhs and the rhs are lists, and 2) the inner type of the lhs list is a subtype of the inner type of the rhs list. # This should pass x: List[Optional[int]] = [None, None, None] # This should fail y: List[None] = [None, None, None] x: List[Optional[int]] = y """ def test_listliteral_is_typed_from_annotation(): x: List[Optional[int]] = [None, None, None] return x self.checkScript(test_listliteral_is_typed_from_annotation, ()) def test_listcomprehension_is_typed_from_annotation(): x: List[Optional[int]] = [None for _ in range(3)] return x self.checkScript(test_listcomprehension_is_typed_from_annotation, ()) def test_lists_with_different_internal_types_are_invariant(self): x: List[int] = [1, 2, 3] y: List[Optional[int]] = x return x with self.assertRaisesRegex(RuntimeError, "Variable 'y' is " "annotated with type " r"List\[Optional\[int\]\] but is " "being assigned to a value of type " r"List\[int\]"): torch.jit.script(test_lists_with_different_internal_types_are_invariant) def test_lists_with_different_internal_types_are_invariant_recursive(self): x: List[List[int]] = [[1, 2], [3]] y: List[List[Optional[int]]] = x return x with self.assertRaisesRegex(RuntimeError, "Variable 'y' is " "annotated with type " r"List\[List\[Optional\[int\]\]\] " "but is being assigned to a value " r"of type List\[List\[int\]\]"): torch.jit.script(test_lists_with_different_internal_types_are_invariant_recursive) def test_del(self): def inputs(): return [1, 2, 3, 4] def fn(x: List[int]) -> List[int]: del x[1] return x python_out = fn(inputs()) # checkScript reuses the same object, but here it's being mutated so do # it manually cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(fn))) self.assertEqual(cu.fn(inputs()), python_out) self.assertEqual(torch.jit.script(fn)(inputs()), python_out) @torch.jit.script def fn2(x: List[int]) -> List[int]: del x[100] return x with self.assertRaisesRegexWithHighlight(RuntimeError, "out of range", "x[100]"): fn2([]) with self.assertRaisesRegexWithHighlight(RuntimeError, "deletion at a single index", "x[1:3]"): @torch.jit.script def fn(x: List[int]) -> List[int]: del x[1:3] return x def test_list_keyword(self): def foo(): return list([1, 2, 3]), list(("a", "b")), list(range(5)), list("abcdefg") # noqa: C410 self.checkScript(foo, ()) def foo2(): x: List[int] = list() x.append(1) return x, self.checkScript(foo2, ()) def foo3(): return list(list("abc")) self.checkScript(foo3, ()) FileCheck().check_count("aten::list", 2, exactly=True).run(torch.jit.script(foo3).graph) def test_dict_keyword_with_kwargs(self): def fn(): return dict(foo=1, bar=2, baz=3) self.checkScript(fn, ()) def test_dict_keyword_with_kwargs_using_container_values(self): def fn(): return dict(foo=[1, 2, 3], bar=[4, 5, 6], baz=[7, 8, 9]) self.checkScript(fn, ()) def test_dict_keyword_with_iterable(self): def fn(): return dict([("foo", 1), ("bar", 2), ("baz", 3)]) # noqa: C406 self.checkScript(fn, ()) def test_dict_keyword_with_empty_iterable(self): def fn(): return dict([]) # noqa: C406 self.checkScript(fn, ()) def test_dict_keyword_with_internal_aggregate_function(self): def fn(): return dict(zip(["foo", "baz", "bar"], [1, 2, 3])) self.checkScript(fn, ()) def test_dict_keyword_with_mapping(self): def fn(): return dict({"foo" : 1, "bar" : 2, "baz" : 3}) self.checkScript(fn, ()) def test_dict_keyword_with_mapping_and_kwargs(self): def fn(): return dict({"foo" : 1, "bar" : 2}, baz=3) self.checkScript(fn, ()) def test_dict_keyword_with_dict_comprehension(self): def fn(): return dict({i: chr(i + 65) for i in range(4)}) self.checkScript(fn, ()) def test_dict_keyword_with_dict_comprehension_and_kwargs(self): def fn(): return dict({chr(65 + i) : i for i in range(4)}, foo=2) self.checkScript(fn, ()) def test_dict_keyword_with_empty_dict_comprehension(self): def fn(): return dict({}) self.checkScript(fn, ()) def test_dict_keyword_is_correctly_typed(self): def fn(): x: Dict[str, int] = dict() x["foo"] = 1 return x self.checkScript(fn, ()) def test_dict_keyword_with_mismatched_annotations(self): err_msg = r"Dict type annotation `Dict\[int, str\]` did not " \ "match the type of an actual key type `str`" with self.assertRaisesRegex(RuntimeError, err_msg): @torch.jit.script def fn(): x: Dict[int, str] = dict([("foo", 1), ("bar", 2), ("baz", 3)]) # noqa: C406 return x def test_dict_keyword_with_nested_call(self): def fn(): return dict(dict(foo=1, bar=2, baz=3)) self.checkScript(fn, ()) def test_dict_keyword_with_previously_declared_variable(self): def fn(): d = {"foo" : 1, "bar" : 2} return dict(d) self.checkScript(fn, ()) def test_dict_keyword_with_previously_declared_variable_and_kwargs(self): def fn(): d = {"foo" : 1, "bar" : 2} return dict(d, baz=3) self.checkScript(fn, ()) def test_min_bool_list(self): def jit_min_list(a: List[bool], b: List[bool]) -> List[bool]: return min(a, b) self.checkScript(jit_min_list, ([True, False], [False, True])) def test_min_max_list(self): def jit_min_list(a: List[int], b: List[int]) -> List[int]: return min(a, b) def jit_min_list_float(a: List[float], b: List[float]) -> List[float]: return min(a, b) def jit_min_list_bool(a: List[bool], b: List[bool]) -> List[bool]: return min(a, b) def run_tests(func, a, b): for t in zip(a, b): self.checkScript(func, t) args_left_int = [[1, 8, 8], [2, 1, 1], [], [2], [1], [1, 2, 3]] args_right_int = [[2, 1, 1], [1, 8, 8], [], [1], [], [1, 2]] run_tests(jit_min_list, args_left_int, args_right_int) args_left_float = [[1., 8., 8.], [2., 1., 1.], [], [2.], [1.], [1., 2., 3.]] args_right_float = [[2., 1., 1.], [1., 8., 8.], [], [1.], [], [1., 2.]] run_tests(jit_min_list_float, args_left_float, args_right_float) args_left_bool = [[], [], [], [False], [True], [False, True], [True, True], [False, False, False], [False, False, True]] args_right_bool = [[], [False], [True], [True], [False], [True, True], [False, True], [False, False, True], [False, False, False]] run_tests(jit_min_list_bool, args_left_bool, args_right_bool) def jit_max_list(a: List[int], b: List[int]) -> List[int]: return max(a, b) def jit_max_list_float(a: List[float], b: List[float]) -> List[float]: return max(a, b) def jit_max_list_bool(a: List[bool], b: List[bool]) -> List[bool]: return max(a, b) args_left_int = [[1, 8, 8], [8, 1, 1], [], [1], [], [1, 2]] args_right_int = [[8, 1, 1], [1, 8, 8], [], [2], [1], [1, 2, 3]] run_tests(jit_max_list, args_left_int, args_right_int) args_left_float = [[1., 8., 8.], [8., 1., 1.], [], [1.], [], [1., 2.]] args_right_float = [[8., 1., 1.], [1., 8., 8.], [], [2.], [1.], [1., 2., 3.]] run_tests(jit_max_list_float, args_left_float, args_right_float) run_tests(jit_max_list_bool, args_left_bool, args_right_bool) def test_list_gather(self): def index(): a = [1, 2, 3] return a[1] self.checkScript(index, ()) def negative_index(): a = [1, 2, 3] return a[-1] self.checkScript(negative_index, ()) def bad_index(): a = [1, 2, 3] return a[4] self.checkScriptRaisesRegex(bad_index, (), Exception, "list index out of range") def bad_negative_index(): a = [1, 2, 3] return a[-5] self.checkScriptRaisesRegex(bad_negative_index, (), Exception, "list index out of range") def test_list_len(self): def func(): a = [1, 2, 3] return len(a) == 3 self.checkScript(func, ()) def func2(): a = [] return len(a) == 0 self.checkScript(func2, ()) def test_list_ops(self): def test_equality(): a = [1, 2, 3] b = [1, 2, 3] return a == b self.checkScript(test_equality, (), optimize=True) def test_equality_str(): a = ["foo", "bar"] b = ["foo", "bar"] return a == b self.checkScript(test_equality_str, (), optimize=True) def test_inequality(): a = [1, 2, 3] b = [1, 2, 3] return a != b self.checkScript(test_inequality, (), optimize=True) def test_inequality_str(): a = ["foo", "bar"] b = ["foo", "bar", "food"] return a != b self.checkScript(test_inequality_str, (), optimize=True) def test_non_equality(): a = [1, 2, 3] b = [3] return a == b self.checkScript(test_non_equality, (), optimize=True) def test_non_inequality(): a = [1, 2, 3] b = [3] return a != b self.checkScript(test_non_equality, (), optimize=True) def test_list_equality_as_cond(): a = [1, 2, 3] b = [3] if a == b: c = 1 else: c = 2 return c self.checkScript(test_list_equality_as_cond, (), optimize=True) def test_list_add(): a = [1, 2, 3] b = [2] c = a + b return c == [1, 2, 3, 2] self.checkScript(test_list_add, (), optimize=True) def test_list_add_empty(): a = [1, 2, 3] b = torch.jit.annotate(List[int], []) c = a + b return c == [1, 2, 3] self.checkScript(test_list_add_empty, (), optimize=True) def test_tensor_list_equality(): t1 = torch.ones([1, 1]) t2 = torch.ones([1, 1]) x = [t1, t2] y = [t2, t1] return x == y self.checkScript(test_tensor_list_equality, (), optimize=True) def test_invalid_list_equality(): t1 = torch.ones([2, 2]) t2 = torch.ones([2, 2]) x = [t1, t2] y = [t2, t1] # will throw since the tensors have more than one element return x == y self.checkScriptRaisesRegex( test_invalid_list_equality, (), RuntimeError, "Boolean value of Tensor") def test_list_sort(self): template = dedent(''' def func(): li_1 = {list_create} li_2 = {list_create} li_3 = {list_create} li_1.sort() li_2.sort(reverse=True) li_4 = sorted(li_3) return li_1, li_2, li_3, li_4 ''') lists = ["[]", "[1, 3, 2]", "[True, False, True]", "[1.2, .2, 3.2]", "[torch.tensor(1.0), torch.tensor(0.2), torch.tensor(0.5)]", "[torch.tensor(5), torch.tensor(-2), torch.tensor(4)]"] for li in lists: code = template.format(list_create=li) scope = {} exec(code, globals(), scope) cu = torch.jit.CompilationUnit(code) t1 = cu.func() t2 = scope['func']() self.assertEqual(t1, t2) def test_fail(x: List[Tensor]) -> List[Tensor]: x.sort() return x self.checkScriptRaisesRegex(test_fail, (([torch.zeros([2]), torch.zeros([2])],)), Exception, "Boolean value of Tensor with more than one value") @torch.jit.script def test_mutation(): a = [1, 2, 3] a.sort() return a test_mutation() FileCheck().check("aten::sort").run(test_mutation.graph_for()) def test_sorted_copy(): a = [torch.tensor(2), torch.tensor(0), torch.tensor(1)] b = sorted(a) a[0] = torch.tensor(10) return a, b self.checkScript(test_sorted_copy, ()) def test_list_slice(self): def test_regular_slice(): a = [0, 1, 2, 3, 4] return a[2:3] == [2] self.checkScript(test_regular_slice, ()) def test_open_ended_slice(): a = [0, 1, 2, 3, 4] return a[2:] == [2, 3, 4] self.checkScript(test_open_ended_slice, ()) def test_open_ended_slice2(): a = [0, 1, 2, 3, 4] return a[:2] == [0, 1] self.checkScript(test_open_ended_slice2, ()) def test_negative_slice(): a = [0, 1, 2, 3, 4] return a[:-1] == [0, 1, 2, 3] self.checkScript(test_negative_slice, ()) def test_negative_slice2(): a = [0, 1, 2, 3, 4] return a[-3:-1] == [2, 3] self.checkScript(test_negative_slice2, ()) def test_backward_slice(): a = [0, 1, 2, 3, 4] return a[3:2] == torch.jit.annotate(List[int], []) self.checkScript(test_backward_slice, ()) def test_over_slice(): a = [0, 1, 2, 3, 4] return a[3:10] == [3, 4] self.checkScript(test_backward_slice, ()) def test_slice_index(self): a = torch.tensor( [ [[1, 11], [2, 22]], [[3, 33], [4, 44]], [[5, 55], [6, 66]], ] ) def test_index_slice1(x): x = x[:, :, [0, 1]] return x self.checkScript(test_index_slice1, (a,)) def test_index_slice2(x): x = x[[2, 1, 0], :, :] return x self.checkScript(test_index_slice2, (a,)) def test_index_slice3(x): x = x[[0, 1], :, [1]] return x self.checkScript(test_index_slice3, (a,)) def test_index_slice_empty_list(x): empty_list: List[int] = [] x = x[empty_list, :, :] return x self.checkScript(test_index_slice_empty_list, (a,)) def test_index_slice_out_of_bounds_index(x): x = x[[4], :, :] return x with self.assertRaisesRegexWithHighlight(RuntimeError, "index 4 is out of bounds for dimension 0 with size 3", "x[[4], :, :]"): self.checkScript(test_index_slice_out_of_bounds_index, (a,)) def test_mutable_list_append(self): def test_append(): a = [0, 1] a.append(2) a.append(3) return a == [0, 1, 2, 3] self.checkScript(test_append, ()) def test_comprehensions_basic(self): def comp(l: List[int]) -> List[int]: n = [x * 3 for x in l] return n comp([1, 2, 3]) self.checkScript(comp, ([1, 2, 3],)) def test_comprehensions_basic_float(self): def comp(l: List[float]) -> List[float]: n = [x * 3 for x in l] return n self.checkScript(comp, ([1.0, 2.0, 3.0],)) def test_comprehensions_two_comps(self): @torch.jit.script def comp(l1: List[int], l2: List[int]) -> List[int]: n = [x * 3 for x in l1] n2 = [x + 2 for x in l2] return n + n2 self.assertEqual(comp([1, 2, 3], [4, 5]), [3, 6, 9, 6, 7]) def test_comprehension_out_type_not_in_type(self): def list_cast() -> int: li = [int(i) for i in [torch.tensor(0), torch.tensor(1), torch.tensor(2)]] return li[0] + li[1] + li[2] self.checkScript(list_cast, ()) def test_comprehension_iterable(self): def test_func(fn, inputs): self.assertEqual(fn(*inputs), torch.jit.script(fn)(*inputs)) def foo(names: List[int], results: List[int]) -> List[Tuple[int, int]]: return [(k + 5, v - 2) for k, v in zip(names, results)] test_func(foo, ([1, 2, 4], [4, 7, 9])) test_func(foo, ([5], [4, 7, 9])) def fn(x: int) -> List[int]: return [i for i in range(x)] # noqa: C416 test_func(fn, (9,)) test_func(fn, (0,)) test_func(fn, (-1,)) def changes_type(): a = [float(i) for i in range(5)] b = [float(i) for i in [1, 2, 3, 4]] c = [(float(i), j) for i, j in enumerate([1, 2, 3, 8])] return a, b, c test_func(changes_type, ()) def test_zero_iter(): return [str(i) for i, j in zip("", "")] test_func(test_zero_iter, ()) def test_mutable_list_append_2(self): def test_append_2(): a = [0, 1] a.append(2) a = [1] a.append(4) return a == [1, 4] self.checkScript(test_append_2, ()) def test_mutable_list_append_if(self): def test_append_if(): a = [1] if 1 == 1: a.append(4) return a == [1, 4] self.checkScript(test_append_if, ()) def test_mutable_list_append_if_else(self): def test_append_if_else(): a = [1] if 1 == 2: a.append(4) else: a.append(10) return a == [1, 10] self.checkScript(test_append_if_else, ()) def test_mutable_list_append_loop(self): def test_append_loop(): a = torch.jit.annotate(List[int], []) for i in range(5): a.append(i) return a == [0, 1, 2, 3, 4] self.checkScript(test_append_loop, ()) def test_mutable_list_append_loop_if(self): def test_append_loop_if(): a = torch.jit.annotate(List[int], []) for i in range(5): if i > 3: a.append(i) else: a.append(0) return a == [0, 0, 0, 0, 4] self.checkScript(test_append_loop_if, ()) def test_mutable_list_nested_loop(self): def test_nested_loop(): a = torch.jit.annotate(List[int], []) for i in range(2): for j in range(2): a.append(i + j) return a == [0, 1, 1, 2] self.checkScript(test_nested_loop, ()) def test_mutable_list_function_inline(self): @torch.jit.script def bar(y: List[int]) -> None: y.append(4) @torch.jit.script def foo(): x = [1, 2, 3] bar(x) return x self.assertEqual(foo(), [1, 2, 3, 4]) def test_mutable_list_reverse_empty(self): def test_reverse_empty(): a = [] a.reverse() return a == [] self.checkScript(test_reverse_empty, ()) def test_mutable_list_reverse(self): def test_reverse(): a = [1, 2, 3, 4] a.reverse() return a == [4, 3, 2, 1] self.checkScript(test_reverse, ()) def test_mutable_tensor_list_reverse(self): def test_tensor_reverse(): a = [torch.tensor(1), torch.tensor(2)] a.reverse() return a == [torch.tensor(2), torch.tensor(1)] self.checkScript(test_tensor_reverse, ()) def test_mutable_list_pop_empty(self): @torch.jit.script def test_pop_empty(): a = torch.jit.annotate(List[int], []) return a.pop() with self.assertRaisesRegexWithHighlight(RuntimeError, "pop from empty list", "a.pop"): test_pop_empty() def test_mutable_list_pop(self): def test_pop(): a = [1, 2, 3, 4] b = a.pop() return b == 4 self.checkScript(test_pop, ()) def test_mutable_list_pop2(self): def test_pop2(): a = [1, 2, 3, 4] b = a.pop() return len(a) == 3 self.checkScript(test_pop2, ()) def test_mutable_list_pop_at(self): def test_pop_at(): a = [1, 2, 3, 4] b = a.pop(1) return b == 2 self.checkScript(test_pop_at, ()) def test_mutable_list_pop_at2(self): def test_pop_at2(): a = [1, 2, 3, 4] b = a.pop(1) return len(a) == 3 self.checkScript(test_pop_at2, ()) def test_mutable_list_pop_at_negative(self): def test_pop_at_negative(): a = [1, 2, 3, 4] b = a.pop(-2) return b == 3 self.checkScript(test_pop_at_negative, ()) def test_mutable_list_pop_at_negative2(self): def test_pop_at_negative2(): a = [1, 2, 3, 4] b = a.pop(-2) return len(a) == 3 self.checkScript(test_pop_at_negative2, ()) def test_mutable_list_pop_slice(self): def test_pop_slice(): a = [1, 2, 3, 4] b = [1, 2, 3, 4] a.pop() b = b[:-1] return a == b self.checkScript(test_pop_slice, ()) def test_mutable_list_clear_empty(self): def test_clear_empty(): a = torch.jit.annotate(List[int], []) a.clear() return len(a) == 0 self.checkScript(test_clear_empty, ()) def test_mutable_list_clear(self): def test_clear(): a = [1, 2, 3, 4] a.clear() return len(a) == 0 self.checkScript(test_clear, ()) def test_mutable_list_insert(self): def test_list_insert(): a = [1, 2, 3, 4] a.insert(2, 5) return a == [1, 2, 5, 3, 4] self.checkScript(test_list_insert, ()) def test_mutable_list_insert_negative(self): def test_list_insert_negative(): a = [1, 2, 3, 4] a.insert(-1, 5) return a == [1, 2, 3, 5, 4] self.checkScript(test_list_insert_negative, ()) def test_mutable_list_insert_neg_out_of_bounds(self): def test_list_insert_neg_out_of_bounds(): a = [1, 2, 3, 4] a.insert(-10, 5) return a == [5, 1, 2, 3, 4] self.checkScript(test_list_insert_neg_out_of_bounds, ()) def test_mutable_list_insert_out_of_bounds(self): def test_list_insert_out_of_bounds(): a = [1, 2, 3, 4] a.insert(10, 5) return a == [1, 2, 3, 4, 5] self.checkScript(test_list_insert_out_of_bounds, ()) def test_mutable_list_remove_not_existing(self): @torch.jit.script def test_list_remove_not_existing(): a = [1, 2, 3, 4] a.remove(5) return a with self.assertRaisesRegexWithHighlight(RuntimeError, "x not in list", "a.remove"): test_list_remove_not_existing() def test_mutable_list_remove(self): def test_list_remove(): a = [1, 2, 3, 4] a.remove(3) return a == [1, 2, 4] self.checkScript(test_list_remove, ()) def test_str_list_remove(): a = ["foo", "bar"] a.remove("foo") return a == ["bar"] self.checkScript(test_str_list_remove, ()) def test_list_index_not_existing(self): @torch.jit.script def list_index_not_existing(): a = [4, 1, 3, 2] i = a.index(5) return i with self.assertRaisesRegexWithHighlight(RuntimeError, "'5' is not in list", "a.index"): list_index_not_existing() def test_list_index(self): def list_index(): a = [4, 1, 3, 2] i = a.index(3) return i == 2 self.checkScript(list_index, ()) def list_str_index(): a = ["foo", "bar"] i = a.index("bar") return i == 1 self.checkScript(list_str_index, ()) def test_tensor_list_index(self): def tensor_list_index(): a = [torch.tensor(4), torch.tensor(1), torch.tensor(3), torch.tensor(2)] i = a.index(torch.tensor(3)) return i == 2 self.checkScript(tensor_list_index, ()) def test_tensor_list_index_not_existing(self): @torch.jit.script def tensor_list_index_not_existing(): a = [torch.tensor(4), torch.tensor(1), torch.tensor(3), torch.tensor(2)] i = a.index(torch.tensor(5)) return i with self.assertRaisesRegexWithHighlight(RuntimeError, "is not in list", "a.index"): tensor_list_index_not_existing() def test_list_count(self): def list_count(): a = [4, 1, 4, 2, 4] i = a.count(4) return i == 3 self.checkScript(list_count, ()) def list_str_count(): a = ["foo", "bar", "foo"] i = a.count("foo") return i == 2 self.checkScript(list_str_count, ()) def test_list_count_not_existing(self): def list_count_not_existing(): a = [4, 1, 4, 2, 4] i = a.count(5) return i == 0 self.checkScript(list_count_not_existing, ()) def test_tensor_list_count(self): def tensor_list_count(): a = [torch.tensor(4), torch.tensor(1), torch.tensor(4), torch.tensor(4)] i = a.count(torch.tensor(4)) return i == 3 self.checkScript(tensor_list_count, ()) def test_tensor_list_count_not_existing(self): def tensor_list_count_not_existing(): a = [torch.tensor(4), torch.tensor(1), torch.tensor(4), torch.tensor(4)] i = a.count(torch.tensor(5)) return i == 0 self.checkScript(tensor_list_count_not_existing, ()) def test_mutable_list_remove_tensor(self): def test_list_remove_tensor(): a = [torch.ones(1), torch.zeros(1), torch.ones(2)] a.remove(torch.zeros(1)) return len(a) == 2 self.checkScript(test_list_remove_tensor, ()) def test_mutable_list_remove2(self): def test_list_remove2(): a = [1] a.remove(1) return len(a) == 0 self.checkScript(test_list_remove2, ()) def test_extend_list_mutable(self): @torch.jit.script def extend_list(a: List[Tensor], b: List[Tensor]) -> List[Tensor]: a.extend(b) return a for l in [[], [torch.rand(2)], [torch.rand(2), torch.rand(2), torch.rand(2)]]: for r in [[], [torch.rand(2)], [torch.rand(2), torch.rand(2), torch.rand(2)]]: self.assertEqual(extend_list(l, r), l + r) def test_extend_list_immutable(self): @torch.jit.script def extend_list(a: List[int], b: List[int]) -> List[int]: a.extend(b) return a for l in [[], [1], [1, 2, 3]]: for r in [[], [1], [1, 2, 3]]: self.assertEqual(extend_list(l, r), l + r) def test_copy_list_mutable(self): @torch.jit.script def copy_list(a: List[Tensor]) -> List[Tensor]: return a.copy() for l in [[], [torch.rand(2)], [torch.rand(2), torch.rand(2), torch.rand(2)]]: self.assertEqual(copy_list(l), l) def test_copy_list_immutable(self): @torch.jit.script def copy_list(a: List[int]) -> List[int]: return a.copy() for l in [[], [1], [1, 2, 3]]: self.assertEqual(copy_list(l), l) def test_min_max_single_list(self): def min_intlist(li: List[int]) -> int: return min(li) def max_intlist(li: List[int]) -> int: return max(li) def min_boollist(li: List[bool]) -> bool: return min(li) def max_boollist(li: List[bool]) -> bool: return max(li) def min_floatlist(li: List[float]) -> float: return min(li) def max_floatlist(li: List[float]) -> float: return max(li) int_lists = [1], [2, 1, 2], [-3, 4, 2], [-2, -7, 1, 4], [2, 1, 0, 4], [] def check_list(fn, li): if len(li) == 0: self.checkScriptRaisesRegex(fn, (li,), Exception, "arg is an empty sequence") else: self.checkScript(fn, (li,)) for int_list in int_lists: check_list(min_intlist, int_list) check_list(max_intlist, int_list) bool_li = [bool(x) for x in int_list] check_list(min_boollist, bool_li) check_list(max_boollist, bool_li) float_li = [float(x) for x in int_list] check_list(min_floatlist, float_li) check_list(max_floatlist, float_li) def test_to_list(self): """Unit tests for Tensor.tolist() function.""" """ Boolean dtype unit tests. """ def to_list_bool_0D(x: torch.Tensor) -> bool: li = torch.jit.annotate(bool, x.tolist()) return li def to_list_bool_1D(x: torch.Tensor) -> List[bool]: li = torch.jit.annotate(List[bool], x.tolist()) return li def to_list_bool_2D(x: torch.Tensor) -> List[List[bool]]: li = torch.jit.annotate(List[List[bool]], x.tolist()) return li def to_list_bool_3D(x: torch.Tensor) -> List[List[List[bool]]]: li = torch.jit.annotate(List[List[List[bool]]], x.tolist()) return li self.checkScript(to_list_bool_0D, (torch.tensor(False, dtype=torch.bool),)) bool_input_1D = torch.tensor([True, False, True, False], dtype=torch.bool) self.checkScript(to_list_bool_1D, (bool_input_1D,)) bool_input_2D = torch.tensor( [[True, True, False], [False, True, False]], dtype=torch.bool ) self.checkScript(to_list_bool_2D, (bool_input_2D,)) bool_input_3D = torch.tensor( [[[True, False], [False, True]], [[True, False], [False, False]]], dtype=torch.bool, ) self.checkScript(to_list_bool_3D, (bool_input_3D,)) bool_input_noncontiguous = torch.tensor( [[[True, False], [False, True]], [[True, False], [False, False]]], dtype=torch.bool, ).transpose(0, 1) self.checkScript(to_list_bool_3D, (bool_input_noncontiguous,)) """ Int dtype unit tests. """ def to_list_int_0D(x: torch.Tensor) -> int: li = torch.jit.annotate(int, x.tolist()) return li def to_list_int_1D(x: torch.Tensor) -> List[int]: li = torch.jit.annotate(List[int], x.tolist()) return li def to_list_int_2D(x: torch.Tensor) -> List[List[int]]: li = torch.jit.annotate(List[List[int]], x.tolist()) return li def to_list_int_3D(x: torch.Tensor) -> List[List[List[int]]]: li = torch.jit.annotate(List[List[List[int]]], x.tolist()) return li self.checkScript(to_list_int_0D, (torch.tensor(1, dtype=torch.long),)) int_input_1D = torch.tensor([1, 2, 3, 4], dtype=torch.long) self.checkScript(to_list_int_1D, (int_input_1D,)) int_input_2D = torch.tensor([[1, 2, 3], [3, 4, 5]], dtype=torch.long) self.checkScript(to_list_int_2D, (int_input_2D,)) int_input_3D = torch.tensor( [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=torch.long ) self.checkScript(to_list_int_3D, (int_input_3D,)) int_input_noncontiguous = torch.tensor( [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=torch.long ).transpose(0, 1) self.checkScript(to_list_int_3D, (int_input_noncontiguous,)) """ Float dtype unit tests. """ def to_list_float_0D(x: torch.Tensor) -> float: li = torch.jit.annotate(float, x.tolist()) return li def to_list_float_1D(x: torch.Tensor) -> List[float]: li = torch.jit.annotate(List[float], x.tolist()) return li def to_list_float_2D(x: torch.Tensor) -> List[List[float]]: li = torch.jit.annotate(List[List[float]], x.tolist()) return li def to_list_float_3D(x: torch.Tensor) -> List[List[List[float]]]: li = torch.jit.annotate(List[List[List[float]]], x.tolist()) return li # Test with torch.float dtype Tensors to check that they are converted to double automatically. self.checkScript(to_list_float_0D, (torch.randn(5, dtype=torch.float)[0],)) self.checkScript(to_list_float_1D, (torch.randn(5, dtype=torch.float),)) self.checkScript(to_list_float_2D, (torch.randn(5, 6, dtype=torch.float),)) self.checkScript(to_list_float_3D, (torch.randn(5, 6, 7, dtype=torch.float),)) self.checkScript(to_list_float_3D, (torch.randn(5, 6, 7, dtype=torch.float).transpose(0, 1),)) self.checkScript(to_list_float_0D, (torch.randn(5, dtype=torch.double)[0],)) self.checkScript(to_list_float_1D, (torch.randn(5, dtype=torch.double),)) self.checkScript(to_list_float_2D, (torch.randn(5, 6, dtype=torch.double),)) self.checkScript(to_list_float_3D, (torch.randn(5, 6, 7, dtype=torch.double),)) self.checkScript(to_list_float_3D, (torch.randn(5, 6, 7, dtype=torch.double).transpose(0, 1),)) """ Complex dtype unit tests. """ def to_list_complex_0D(x: torch.Tensor) -> complex: li = torch.jit.annotate(complex, x.tolist()) return li def to_list_complex_1D(x: torch.Tensor) -> List[complex]: li = torch.jit.annotate(List[complex], x.tolist()) return li def to_list_complex_2D(x: torch.Tensor) -> List[List[complex]]: li = torch.jit.annotate(List[List[complex]], x.tolist()) return li def to_list_complex_3D(x: torch.Tensor) -> List[List[List[complex]]]: li = torch.jit.annotate(List[List[List[complex]]], x.tolist()) return li # Test with torch.complex dtype Tensors to check that they are converted to double automatically. self.checkScript(to_list_complex_0D, (torch.randn(5, dtype=torch.cfloat)[0],)) self.checkScript(to_list_complex_1D, (torch.randn(5, dtype=torch.cfloat),)) self.checkScript(to_list_complex_2D, (torch.randn(5, 6, dtype=torch.cfloat),)) self.checkScript(to_list_complex_3D, (torch.randn(5, 6, 7, dtype=torch.cfloat),)) self.checkScript(to_list_complex_3D, (torch.randn(5, 6, 7, dtype=torch.cfloat).transpose(0, 1),)) self.checkScript(to_list_complex_0D, (torch.randn(5, dtype=torch.cdouble)[0],)) self.checkScript(to_list_complex_1D, (torch.randn(5, dtype=torch.cdouble),)) self.checkScript(to_list_complex_2D, (torch.randn(5, 6, dtype=torch.cdouble),)) self.checkScript(to_list_complex_3D, (torch.randn(5, 6, 7, dtype=torch.cdouble),)) self.checkScript(to_list_complex_3D, (torch.randn(5, 6, 7, dtype=torch.cdouble).transpose(0, 1),)) """ Non-happy path tests: - missing type annotation - mismatch between type annotation and input - type annotation with unsupported type - type annotation with the wrong dimension - type annotation with scalar type that doesn't match the input scalar type """ def to_list_missing_type_annotation(x: torch.Tensor) -> List[float]: li = x.tolist() return li def to_list_incorrect_type_annotation(x: torch.Tensor) -> List[float]: li = torch.jit.annotate(float, x.tolist()) return li def to_list_unsupported_type_annotation(x: torch.Tensor) -> List[float]: li = torch.jit.annotate(List[str], x.tolist()) return li def to_list_type_annotation_wrong_dim(x: torch.Tensor) -> List[List[float]]: li = torch.jit.annotate(List[List[float]], x.tolist()) return li def to_list_type_annotation_incorrect_scalar_type(x: torch.Tensor) -> List[float]: li = torch.jit.annotate(List[float], x.tolist()) return li with self.assertRaisesRegexWithHighlight( RuntimeError, r"Expected type hint for result of tolist()", "x.tolist(" ): self.checkScript(to_list_missing_type_annotation, (torch.randn(5),)) with self.assertRaisesRegexWithHighlight( RuntimeError, r"Return value was annotated as having type List\[float\] but is actually of type float", "return li" ): self.checkScript(to_list_incorrect_type_annotation, (torch.randn(5),)) with self.assertRaisesRegex( RuntimeError, r"str is not one of the supported element types for tolist" ): self.checkScript(to_list_unsupported_type_annotation, (torch.randn(5),)) with self.assertRaisesRegex( RuntimeError, r"Output annotation list dimension and runtime tensor dimension must match", ): self.checkScript(to_list_type_annotation_wrong_dim, (torch.randn(5, dtype=torch.double),)) with self.assertRaisesRegex( RuntimeError, r"Output annotation element type and runtime tensor element type must match", ): self.checkScript( to_list_type_annotation_incorrect_scalar_type, (torch.ones(5, dtype=torch.long),), ) def test_to_list_gpu(self): """GPU tests for Tensor.tolist() function.""" if not torch.cuda.is_available() or torch.cuda.device_count() == 0: self.skipTest("CUDA is not available") def to_list_bool_1D(x: torch.Tensor) -> List[bool]: li = torch.jit.annotate(List[bool], x.tolist()) return li def to_list_int_1D(x: torch.Tensor) -> List[int]: li = torch.jit.annotate(List[int], x.tolist()) return li def to_list_float_1D(x: torch.Tensor) -> List[float]: li = torch.jit.annotate(List[float], x.tolist()) return li self.checkScript(to_list_bool_1D, (torch.tensor( [True, False, True, False], dtype=torch.bool).cuda(),)) self.checkScript(to_list_int_1D, (torch.tensor( [1, 2, 3, 4], dtype=torch.long).cuda(),)) self.checkScript(to_list_float_1D, (torch.randn( 5, dtype=torch.double).cuda(),)) def test_no_element_type_annotation(self): def fn_with_comment(x: torch.Tensor) -> List: a: List = x.tolist() return a def annotated_fn(x: torch.Tensor) -> List: a: List = x.tolist() return a with self.assertRaisesRegex(RuntimeError, r"Attempted to use List without a contained type"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(fn_with_comment))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use List without a contained type"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(annotated_fn))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use List without a contained type"): torch.jit.script(fn_with_comment) with self.assertRaisesRegex(RuntimeError, r"Attempted to use List without a contained type"): torch.jit.script(annotated_fn) def test_list_none(self): with self.assertRaisesRegex(RuntimeError, "Can not create ListType with None type"): x = torch._C.ListType(None) def test_list_unification_hint(self): with self.assertRaisesRegex(RuntimeError, "Expected an annotation of type List"): @torch.jit.script def x(): b : int = [2, 3] return b class TestDict(JitTestCase): def dict(self): return {u'a': torch.ones(1), u'b': torch.ones(1) + 1, u'c': torch.ones(1) + 2} def dict2(self): return {'x': torch.ones(1) + 100, 'y': torch.ones(1) + 101, 'z': torch.ones(1) + 102} def dict_bool(self): return {True: 1} @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_dict_bool_conversion(self): def if_predicate(d: Dict[int, int]): if d: s, t = 0, 0 for k, v in d.items(): s += k t += v return s, t else: return -1, -1 self.checkScript(if_predicate, ({1: 2, 3: 5},)) self.checkScript(if_predicate, ({},)) def while_predicate(d: Dict[int, int]): while d: d.clear() self.checkScript(while_predicate, ({1: 2, 3: 5},)) self.checkScript(while_predicate, ({},)) def ternary_predicate(d: Dict[int, int]): return "non-empty" if d else "empty" self.checkScript(ternary_predicate, ({1: 2, 3: 5},)) self.checkScript(ternary_predicate, ({},)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_del(self): def inputs(): return {'hi': 2, 'bye': 3} def fn(x: Dict[str, int]) -> Dict[str, int]: del x['hi'] return x python_out = fn(inputs()) # checkScript reuses the same object, but here it's being mutated so do # it manually cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(fn))) self.assertEqual(cu.fn(inputs()), python_out) self.assertEqual(torch.jit.script(fn)(inputs()), python_out) with self.assertRaisesRegexWithHighlight(RuntimeError, "KeyError", "x['hi']"): self.checkScript(fn, [{}]) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_dict_variance(self): """ `Dict[T1, _]` is not a subtype of `Dict[T2, _]`, even if `T1` is a subtype of `T2`; similarly `Dict[_, T1]` would not be a subtype of `Dict[_, T2]`. However, if we have a temporary dict object (that is, a dict comprehension or a dict literal) on the rhs of an assignment statement, we want to ignore the inferred type of the rhs if we can prove that: 1) both the lhs and the rhs are dicts with the same key types (TorchScript has a restricted set of allowed key types, so we don't need to worry about subtyping relationships here), and 2) the value type of the dict is a subtype of the value type of the rhs dict. """ def test_dictliteral_is_typed_from_annotation(): x: Dict[str, Optional[int]] = {"foo": None, "bar": None, "baz": None} return x self.checkScript(test_dictliteral_is_typed_from_annotation, ()) def test_dictcomprehension_is_typed_from_annotation(): metasyntactics = ["foo", "bar", "baz"] x: Dict[str, Optional[int]] = {word: None for word in metasyntactics} return x self.checkScript(test_dictcomprehension_is_typed_from_annotation, ()) def test_dicts_with_different_value_types_are_invariant(self): x: Dict[str, int] = {"foo": 1, "bar": 2, "baz": 3} y: Dict[str, Optional[int]] = x return x with self.assertRaisesRegex(RuntimeError, "Variable 'y' is " "annotated with type " r"Dict\[str, Optional\[int\]\] but " "is being assigned to a value of " r"type Dict\[str, int\]"): torch.jit.script(test_dicts_with_different_value_types_are_invariant) def test_dicts_with_different_value_types_are_invariant_recursive(self): x: Dict[str, int] = {"foo": 1, "bar": 2, "baz": 3} y: Dict[str, Dict[str, int]] = {"foo": x, "bar": x, "baz": x} z: Dict[str, Dict[str, Optional[int]]] = y return x with self.assertRaisesRegex(RuntimeError, "Variable 'z' is " "annotated with type " r"Dict\[str, Dict\[str, Optional" r"\[int\]\]\] but is being assigned" r" to a value of type Dict\[str, " r"Dict\[str, int\]\]"): torch.jit.script(test_dicts_with_different_value_types_are_invariant_recursive) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_keys(self): @torch.jit.script def keys(x: Dict[str, Tensor]) -> List[str]: return list(x.keys()) self.assertEqual(set(keys(self.dict())), set(self.dict().keys())) @torch.jit.script def specialized_list(): li = {1: 1, 2: 2}.keys() li.append(3) return li self.assertTrue(set(specialized_list()) == set([1, 2, 3])) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_values(self): @torch.jit.script def values(x: Dict[str, Tensor]) -> List[Tensor]: return list(x.values()) the_dict = self.dict() self.assertEqual(set(values(the_dict)), set(the_dict.values())) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_len(self): def length(x: Dict[str, Tensor]) -> int: return len(x) self.checkScript(length, (self.dict(),)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_copy(self): def func(x: Dict[str, Tensor]) -> Dict[str, Tensor]: return x.copy() self.checkScript(func, (self.dict(),)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_items(self): def func(x: Dict[str, Tensor]) -> List[Tuple[str, Tensor]]: return x.items() # The value returned by Python is in arbitrary order, so we can't use # checkScript scripted_func = torch.jit.script(func) eager_out = (func(self.dict())) script_out = (scripted_func(self.dict())) self.assertEqual(len(eager_out), len(script_out)) for item in eager_out: self.assertTrue(item in script_out) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_pop(self): def pop(x: Dict[str, Tensor], key: str) -> Tuple[Tensor, Dict[str, Tensor]]: return x.pop(key), x # checkScript doesn't copy the inputs, so we can't use it since this mutates # the dict def tester(fn, *args): eager_out = fn(self.dict(), *args) script_out = torch.jit.script(fn)(self.dict(), *args) self.assertEqual(eager_out, script_out) tester(pop, 'a') with self.assertRaisesRegexWithHighlight(RuntimeError, "KeyError", "x.pop"): torch.jit.script(pop)(self.dict(), 'x') def default_pop(x: Dict[str, Tensor], key: str, default: Tensor) -> Tuple[Tensor, Dict[str, Tensor]]: return x.pop(key, default), x tester(default_pop, 'a', torch.randn(2, 2)) tester(default_pop, 'x', torch.randn(2, 2)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_setdefault(self): def setdefault(x: Dict[str, Tensor], key: str, default: Tensor) -> Dict[str, Tensor]: x.setdefault(key, default) return x self.checkScript(setdefault, (self.dict(), 'a', torch.randn(2, 2))) self.checkScript(setdefault, (self.dict(), 'nonexistant', torch.randn(2, 2))) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_update(self): def update(a: Dict[str, Tensor], b: Dict[str, Tensor]) -> Tuple[Dict[str, Tensor], Dict[str, Tensor]]: a.update(b) return a, b self.checkScript(update, (self.dict(), self.dict())) self.checkScript(update, (self.dict(), self.dict2())) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_update_existing_key(self): def foo() -> Dict[str, int]: a: Dict[str, int] = {} for i in range(3): a.update({'a': i}) return a self.checkScript(foo, ()) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_aug_assign(self): def aug_assign_dict_tensor(a: Dict[str, Tensor]) -> Dict[str, Tensor]: a['a'] += 1 a['b'] -= 12 a['c'] *= 122 a['c'] /= 2 a['c'] %= 2 return a def aug_assign_dict_prim(a: Dict[str, float]) -> Dict[str, float]: a['a'] += 3.4 a['b'] -= 2.4 a['c'] *= 3.0 a['c'] /= 2.0 a['c'] %= 2.0 return a self.checkScript(aug_assign_dict_tensor, (self.dict(),)) self.checkScript(aug_assign_dict_prim, ({'a': 3.0, 'b': 2.0, 'c': 4.0},)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_popitem(self): @torch.jit.script def popitem(x: Dict[str, Tensor]) -> Tuple[Tuple[str, Tensor], Dict[str, Tensor]]: item = x.popitem() return item, x # The value returned by Python is arbitrary, so we can't use checkScript eager_in = self.dict() eager_out = (eager_in.popitem(), eager_in) script_out = popitem(self.dict()) # Check that an item was removed self.assertEqual(len(eager_out[1]), len(script_out[1])) # Check that the item is the correct types self.assertTrue(isinstance(script_out[0][0], str)) self.assertTrue(isinstance(script_out[0][1], torch.Tensor)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_clear(self): def clear(x: Dict[str, Tensor]) -> Dict[str, Tensor]: x.clear() return x self.checkScript(clear, (self.dict(),)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_get(self): def get(x: Dict[str, Tensor], key: str) -> Optional[Tensor]: return x.get(key) self.checkScript(get, (self.dict(), 'a')) self.checkScript(get, (self.dict(), "doesn't exist")) def get_default(x: Dict[str, Tensor], key: str) -> Optional[Tensor]: return x.get(key, torch.randn(2, 2)) self.checkScript(get, (self.dict(), 'a')) self.checkScript(get, (self.dict(), "doesn't exist")) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_get_boolkey(self): def get(x: Dict[bool, int], key: bool) -> Optional[int]: return x.get(key) self.checkScript(get, (self.dict_bool(), True)) self.checkScript(get, (self.dict_bool(), False)) def get_default(x: Dict[bool, int], key: bool) -> int: return x.get(key, 42) self.checkScript(get_default, (self.dict_bool(), True)) self.checkScript(get_default, (self.dict_bool(), False)) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_basic(self): def simple(x: Dict[str, int]) -> Dict[str, int]: return x self.checkScript(simple, ({'item': 20, 'other_item': 120},)) def index(x: Dict[str, int]) -> int: return x['item'] self.checkScript(index, ({'item': 20, 'other_item': 120},)) def type_default() -> Dict[str, Tensor]: return {} self.checkScript(type_default, ()) @torch.jit.script def missing_index(x: Dict[str, int]) -> int: return x['dne'] with self.assertRaisesRegexWithHighlight(RuntimeError, "KeyError", "x['dne'"): missing_index({'item': 20, 'other_item': 120}) code = dedent(''' def literal1(): return torch.jit.annotate(Dict[int, float], {}) def literal2(): return torch.jit.annotate(Dict[int, float], {10: 1.2}) ''') cu = torch.jit.CompilationUnit(code) self.assertEqual({}, cu.literal1()) self.assertEqual({10: 1.2}, cu.literal2()) cu = torch.jit.CompilationUnit(dedent(''' def literal3(): return torch.jit.annotate(Dict[int, float], {10: 1.2, 11: 1.3}) ''')) self.assertEqual({10: 1.2, 11: 1.3}, cu.literal3()) def list_of_dicts() -> List[Dict[str, Tensor]]: return [{'word': torch.ones(2) + 3}, {'other word': torch.ones(1) + 2}] self.checkScript(list_of_dicts, ()) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_mutability(self): @torch.jit.script def fn() -> Dict[str, int]: a = torch.jit.annotate(Dict[str, int], {}) a['ok'] = 10 return a self.assertEqual(fn(), {'ok': 10}) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_key_type(self): with self.assertRaisesRegexWithHighlight(RuntimeError, "but instead found type", "a[None]"): @torch.jit.script def fn(a: Dict[str, int]) -> int: return a[None] @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_loop(self): @torch.jit.script def fn(x: int) -> Dict[str, int]: a = torch.jit.annotate(Dict[str, int], {}) for i in range(x): a['ok'] = i return a self.assertEqual(fn(10), {'ok': 9}) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_view(self): def fn(x, y): l = {"a": x} x_view = l["a"] a = x + x x_view.add_(y) b = x + x return a == b self.checkScript(fn, (torch.rand(2, 3), torch.rand(2, 3))) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_membership(self): def fn(x: Dict[int, int], y: int) -> int: return x.get(y, 3) d = {1: 2, 3: 4} self.checkScript(fn, (d, 3)) self.checkScript(fn, (d, 2)) def optional(x: Dict[int, int], y: int) -> bool: res = x.get(y) return res is None self.checkScript(fn, (d, 3)) self.checkScript(fn, (d, 2)) with self.assertRaisesRegexWithHighlight(RuntimeError, "is actually of type Optional", "return x.get(y"): @torch.jit.script def bad_types(x: Dict[int, int], y: int) -> int: return x.get(y) # noqa: T484 @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_dict_to_python(self): @torch.jit.ignore def python_lookup(my_dict: Dict[str, int], keys: List[str]) -> List[int]: return [my_dict[k] for k in keys] def fn(my_dict: Dict[str, int], keys: List[str]) -> List[int]: return python_lookup(my_dict, keys) a_dict = {'a': torch.ones(1), 'b': torch.ones(1) + 1, 'c': torch.ones(1) + 2} self.checkScript(fn, (a_dict, ('a', 'c'))) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_ordered_dict(self): def test_func(fn, inputs): self.assertEqual(fn(*inputs), torch.jit.script(fn)(*inputs)) def repeated_key(): return OrderedDict([(1, 2), (2, 3), (1, 4)]) test_func(repeated_key, ()) def no_args(): a = OrderedDict() a["one"] = torch.tensor(1) a["two"] = torch.tensor(2) test_func(no_args, ()) def test_dict_constructor(): a = dict() a["one"] = torch.tensor(1) return a, dict([(1, 2), (2, 3), (1, 4)]) # noqa: C406 test_func(test_dict_constructor, ()) def test_dict_initializer_list(): a = {"1": torch.tensor(1), "2": torch.tensor(2)} output_order = [] for key in a: output_order.append(a[key]) return output_order test_func(test_dict_initializer_list, ()) def test_dict_error(): a = dict() a[1] = 2 return a with self.assertRaisesRegexWithHighlight(Exception, "Arguments for call are not", "a[1] = 2"): torch.jit.script(test_dict_error) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_type_annotation_missing_contained_type(self): """ Test that the use of a Dict type annotation without contained key and value types produces an error. """ # This function uses a type comment. def fn_with_comment(input: Dict) -> Any: return input # This function uses Python3 style type annotations. def annotated_fn(input: Dict) -> Any: return input with self.assertRaisesRegex(RuntimeError, r"Attempted to use Dict without contained types"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(fn_with_comment))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Dict without contained types"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(annotated_fn))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Dict without contained types"): m = torch.jit.script(fn_with_comment) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Dict without contained types"): m = torch.jit.script(annotated_fn) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_dict_preserves_order(self): def dict_ordering(): a : Dict[int, int] = {} for i in range(1000): a[i] = i + 1 return a self.checkScript(dict_ordering, ()) di = torch.jit.script(dict_ordering)() res = list(di.items()) for i in range(1000): key, value = res[i] self.assertTrue(key == i and value == i + 1) @skipIfTorchDynamo("TorchDynamo fails for this test for unknown reason") def test_optional_dict_construct(self): class M(torch.nn.Module): def use(self, buffer: Dict[str, Optional[torch.Tensor]]): return buffer["prev_key"] def forward(self, x): prev_key = torch.rand(2, 3) next_key = torch.rand(2, 3) saved_state: Dict[str, Optional[torch.Tensor]] = { "prev_key": prev_key, "next_key": next_key, } return self.use(saved_state) self.checkModule(M(), (torch.rand(2, 2),)) class TestNamedTuple(JitTestCase): def test_namedtuple(self): class FeatureVector(NamedTuple): float_features: float sequence_features: List[float] time_since_first: float @torch.jit.script def foo(x) -> float: fv = FeatureVector(3.0, [3.0], 3.0) rv = fv.float_features for val in fv.sequence_features: rv += val rv *= fv.time_since_first return rv self.assertEqual(foo(torch.rand(3, 4)), 18.0) def test_namedtuple_constant(self): class Tup(NamedTuple): a: int b: int @torch.jit.script def foo(): return Tup(1, 2) self.assertEqual(foo(), Tup(1, 2)) def test_return_named_tuple(self): class FeatureVector(NamedTuple): float_features: float sequence_features: List[float] time_since_first: float @torch.jit.script def foo(x): fv = FeatureVector(3.0, [3.0], 3.0) return fv out = foo(torch.rand(3, 4)) out = foo(torch.rand(3, 4)) self.assertEqual(out.float_features, 3.0) self.assertEqual(out.sequence_features, [3.0]) self.assertEqual(out.time_since_first, 3.0) def test_namedtuple_as_attr(self): class Config(NamedTuple): size: int class MyMod(nn.Module): configs: Dict[int, Config] def __init__(self, configs): super().__init__() self.configs = configs def forward(self, x): for _id, config in self.configs.items(): x += config.size return x s = torch.jit.script(MyMod({0: Config(size=16)})) def test_namedtuple_resolution(self): class TheType(NamedTuple): t: int class MyModule(types.ModuleType): def __init__(self): super(MyModule, self).__init__('MyModule') def __getattr__(self, attr): return TheType some_module = MyModule() def fn() -> some_module.Type: return some_module.Type(1) self.checkScript(fn, []) def test_namedtuple_slice_unpack(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(a : int, b : float, c : List[int]): tup = MyCoolNamedTuple(a, b, c) my_a, my_b, my_c = tup return tup[:1], my_a, my_c self.assertEqual(foo(3, 3.5, [6]), ((3,), 3, [6])) def test_namedtuple_lower(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(a : int): tup = MyCoolNamedTuple(a, 3.14, [9]) return tup FileCheck().check('TupleConstruct').run(foo.graph) torch._C._jit_pass_lower_all_tuples(foo.graph) FileCheck().check_not('TupleConstruct').run(foo.graph) def test_namedtuple_type_annotation(self): global MyCoolNamedTuple # see [local resolution in python] class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(x : MyCoolNamedTuple) -> MyCoolNamedTuple: return x mnt = MyCoolNamedTuple(42, 420.0, [666]) self.assertEqual(foo(mnt), mnt) def test_namedtuple_wrong_types(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] with self.assertRaisesRegex(RuntimeError, "Expected a value of type 'int' for argument 'a'" " but instead found type 'str'"): @torch.jit.script def foo(): tup = MyCoolNamedTuple('foo', 'bar', 'baz') return tup def test_namedtuple_kwarg_construct(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] @torch.jit.script def foo(): tup = MyCoolNamedTuple(c=[1, 2, 3], b=3.5, a=9) return tup tup = foo() self.assertEqual(tup.a, 9) self.assertEqual(tup.b, 3.5) self.assertEqual(tup.c, [1, 2, 3]) @unittest.skipIf(True, "broken while these tests were not in CI") def test_namedtuple_serialization(self): class MyCoolNamedTuple(NamedTuple): a : int b : float c : List[int] class MyMod(torch.jit.ScriptModule): @torch.jit.script_method def forward(self): return MyCoolNamedTuple(3, 3.5, [3, 4, 5]) mm = MyMod() mm.save('foo.zip') torch.testing._internal.jit_utils.clear_class_registry() loaded = torch.jit.load('foo.zip') out = mm() out_loaded = loaded() for name in ['a', 'b', 'c']: self.assertEqual(getattr(out_loaded, name), getattr(out, name)) class TestScriptDict(JitTestCase): """ This class contains a suite of tests for torch.jit.script, a function that returns a dictionary-like object that has reference semantics across the Python/TorchScript boundary. That is, it can be passed to a TorchScript function that mutates it and those modifications are visible in the scope of the Python caller of said TorchScript function. The vast majority of tests are for making sure that objects returned by torch.jit.script behave like dictionaries do so that they are fungible in almost all cirumstances with regular dictionaries. """ def _script_dict_add(self, d: torch._C.ScriptDict, k: int, v: int): """ This is a helper function that inserts the pair (k, v) into the dictionary d in TorchScript. It is used for testing reference semantics. """ @torch.jit.script def dict_add(d: Dict[int, int], k: int, v: int): d[k] = v dict_add(d, k, v) def _compare_eager_and_script(self, fn, input_dict, script_input_dict=None): """ This is a helper function that facilitates comparing behaviour between Python dictionaries and "scripted" dictionaries. Args: fn: The function to test and compare the behaviour of. input_dict: The input dictionary to use for the test (passed to fn). script_input_dict: The scripted input dictionary to use for the tests. If None, input_dict is scripted with torch.jit.script and used instead. """ # Create ScriptDict version of input_dict if needed. script_input_dict = script_input_dict or torch.jit.script(input_dict) # Run fn with both input_dict and scripted_dict. eager_raised, script_raised = False, False try: eager_out = fn(input_dict) except Exception as e: eager_exception = e eager_raised = True try: script_out = fn(script_input_dict) except Exception as e: script_exception = e script_raised = True # Check that both calls raised or none of them raised. self.assertEqual(eager_raised, script_raised) if eager_raised: # If fn raised an exception, it should be the same between # regular and scripted dictionaries. self.assertEqual(type(eager_exception), type(script_exception)) else: # Otherwise, make sure the outputs match and the dictionaries # match (the latter may not be the same as the output). self.assertEqual(eager_out, script_out) self.assertEqual(input_dict, script_input_dict) def test_repr(self): """ Test the __repr__ method. """ self._compare_eager_and_script(lambda d: repr(d), {1: 2}) def test_bool(self): """ Test the __bool__ method. This should return True if the dictionary is non-empty and False otherwise. """ self._compare_eager_and_script(lambda d: bool(d), {1: 2}) self._compare_eager_and_script(lambda d: bool(d), {}) def test_iter(self): """ Test iteration over a dictionary's keys. """ def sum_keys(input_dict): s = 0 for k in input_dict: s += k return s self._compare_eager_and_script(sum_keys, {1: 2, 3: 4}) def test_items(self): """ Test .items(). """ def sum_pair_product(input_dict): s = 0 for k, v in input_dict.items(): s += k * v return s self._compare_eager_and_script(sum_pair_product, {1: 2, 3: 4}) def test_getitem(self): """ Test accessing dictionary values using the [] operator. """ data = {1: 2, 3: 4} self._compare_eager_and_script(lambda d: d[1], data) self._compare_eager_and_script(lambda d: d[4], data) self._compare_eager_and_script(lambda d: d[2], data) self._compare_eager_and_script(lambda d: d["key"], data) def test_setitem(self): """ Test setting dictionary values using the [] operator. """ data = {1: 2, 3: 4} def fn(input_dict): input_dict[1] = 10 input_dict[3] = 11 self._compare_eager_and_script(fn, data) # Check that using improperly typed keys and values # throws TypeError. # _compare_eager_and_script cannot be used here since # the following uses of __setitem__ are valid in # Python. script_data = torch.jit.script(data) with self.assertRaises(TypeError): script_data["str"] = 3 with self.assertRaises(TypeError): script_data[3] = "str" def test_contains(self): """ Test membership checks (x in y, x not in y). """ data = {1: 2, 3: 4} def fn(input_dict): return 1 in input_dict, 2 not in input_dict, 3 in input_dict, 4 not in input_dict self._compare_eager_and_script(fn, data) # Check that using an improperly typed key # throws KeyError. script_data = torch.jit.script(data) with self.assertRaises(KeyError): a = "str" in script_data def test_delitem(self): """ Test deletion. """ data = {1: 2, 3: 4} def del_fn(input_dict): del input_dict[1] def del_fn_raises(input_dict): del input_dict[10] self._compare_eager_and_script(del_fn, data) self._compare_eager_and_script(del_fn_raises, data) # Check that using an improperly typed key # throws TypeError. script_data = torch.jit.script(data) with self.assertRaises(TypeError): del script_data["str"] def test_len(self): """ Test len() builtin function. """ self._compare_eager_and_script(lambda d: len(d), {1: 2}) self._compare_eager_and_script(lambda d: len(d), {}) @unittest.skip("Cannot pass until all dicts returned from TorchScript are ScriptDicts") def test_nested(self): """ Test that reference semantics are honoured when the ScriptDict that is mutated using TorchScript is inside another. """ nested = torch.jit.script({1: {1: 2}, 2: {3: 4}}, type_hint=Dict[int, Dict[int, int]]) one = nested[1] two = nested[2] self._script_dict_add(one, 9, 10) self._script_dict_add(two, 11, 12) # The mutation should be visible in the original dictionary, nested. self.assertEqual(len(one), 2) self.assertEqual(len(two), 2) self.assertEqual(len(nested[1]), 2) self.assertEqual(len(nested[2]), 2) def test_reference_semantics(self): """ Test that reference semantics are honoured; that modifications made to a ScriptDict in TorchScript are visible in Python. """ data = torch.jit.script({1: 2}) self._script_dict_add(data, 3, 4) # The mutation should be visible in the original dictionary. self.assertEqual(len(data), 2) self.assertTrue(3 in data) self.assertEqual(data[3], 4) class TestScriptList(JitTestCase): """ This class contains a suite of tests for torch._C.ScriptList, a function that returns a list-like object that has reference semantics across the Python/TorchScript boundary. That is, it can be passed to a TorchScript function that mutates it and those modifications are visible in the scope of the Python caller of said TorchScript function. The vast majority of tests are for making sure that instances of torch._C.ScriptList behave like lists do so that they are fungible in almost all cirumstances with regular list. """ def _script_list_add(self, l: torch._C.ScriptList, e: int): """ This is a helper function that inserts the element e into the list l in TorchScript. It is used for testing reference semantics. """ @torch.jit.script def list_add(l: List[int], e: int): l.append(e) list_add(l, e) def _compare_eager_and_script(self, fn, input_list, script_input_list=None): """ This is a helper function that facilitates comparing behaviour between Python lists and "scripted" lists. Args: fn: The function to test and compare the behaviour of. input_list: The input list to use for the test (passed to fn). script_input_list: The scripted input list to use for the tests. If None, input_list is scripted with torch.jit.script and used instead. """ # Create ScriptDict version of input_list if needed. script_input_list = script_input_list or torch.jit.script(input_list) # Run fn with both input_list and scripted_dict. eager_raised, script_raised = False, False try: eager_out = fn(input_list) except Exception as e: eager_exception = e eager_raised = True try: script_out = fn(script_input_list) except Exception as e: script_exception = e script_raised = True # Check that both calls raised or none of them raised. self.assertEqual(eager_raised, script_raised) if eager_raised: # If fn raised an exception, it should be the same between # regular and scripted lists. self.assertEqual(type(eager_exception), type(script_exception)) else: # Otherwise, make sure the outputs match and the lists # match (the latter may not be the same as the output). self.assertEqual(eager_out, script_out) self.assertEqual(input_list, script_input_list) def test_repr(self): """ Test the __repr__ method. """ self._compare_eager_and_script(lambda l: repr(l), [1]) def test_bool(self): """ Test the __bool__ method. This should return True if the list is non-empty and False otherwise. """ self._compare_eager_and_script(lambda l: bool(l), [1]) self._compare_eager_and_script(lambda l: bool(l), []) def test_iter(self): """ Test iteration over a list's elements. """ def sum_elements(input_list): s = 0 for k in input_list: s += k return s self._compare_eager_and_script(sum_elements, [1, 2, 3, 4]) def test_getitem(self): """ Test accessing list elements using the [] operator. """ data = [1, 2, 3, 4] # Test regular indexing. self._compare_eager_and_script(lambda l: l[1], data) self._compare_eager_and_script(lambda l: l[3], data) self._compare_eager_and_script(lambda l: l[-1], data) # Test slicing. self._compare_eager_and_script(lambda l: l[1:3], data) self._compare_eager_and_script(lambda l: l[:], data) self._compare_eager_and_script(lambda l: l[1:], data) self._compare_eager_and_script(lambda l: l[:2], data) self._compare_eager_and_script(lambda l: l[-1], data) self._compare_eager_and_script(lambda l: l[-1::-1], data) # Test errors. self._compare_eager_and_script(lambda l: l[5], data) self._compare_eager_and_script(lambda l: l[-7], data) self._compare_eager_and_script(lambda l: l["key"], data) def test_setitem(self): """ Test setting list elements using the [] operator. """ data = [1, 2, 3, 4] # Test regular assignment. def setitem(input_list): input_list[1] = 10 input_list[3] = 11 input_list[-1] = 12 self._compare_eager_and_script(setitem, data.copy()) # Test slice assignment. # TODO: Something like input_list[:1] = [1, 2, 3, 4, 5] # is allowed in Python, but pybind11/stl_bind.h does not # allow it. Should we? def setitem_slice(input_list): input_list[:4:2] = [10, 11] input_list[-2:] = [15, 16] self._compare_eager_and_script(setitem_slice, data) # Test errors. def out_of_range(input_list): input_list[11] = 3 def out_of_range_negative(input_list): input_list[-11] = 3 def wrong_index_type(input_list): input_list["str"] = 3 self._compare_eager_and_script(out_of_range, data) self._compare_eager_and_script(out_of_range_negative, data) self._compare_eager_and_script(wrong_index_type, data) # Check that using value of an incorrect type throws TypeError. # _compare_eager_and_script cannot be used here since # the following use of __setitem__ is valid in # Python. script_data = torch.jit.script(data) with self.assertRaises(TypeError): script_data[0] = "str" def test_contains(self): """ Test membership checks (x in y, x not in y). """ data = [1, 2, 3, 4] def fn(input_list): return 1 in input_list, 2 not in input_list, 3 in input_list, 4 not in input_list self._compare_eager_and_script(fn, data) # Check that using a value of an incorrect type throws a TypeError. script_data = torch.jit.script(data) with self.assertRaises(TypeError): a = "str" in script_data def test_delitem(self): """ Test deletion. """ data = [1, 2, 3, 4] def del_fn(input_list): del input_list[1] def del_fn_out_of_range(input_list): del input_list[10] def del_fn_wrong_type(input_list): del input_list["str"] self._compare_eager_and_script(del_fn, data.copy()) self._compare_eager_and_script(del_fn_out_of_range, data) self._compare_eager_and_script(del_fn_wrong_type, data) def test_len(self): """ Test len() builtin function. """ self._compare_eager_and_script(lambda l: len(l), [1, 2, 3, 4]) self._compare_eager_and_script(lambda l: len(l), []) def test_count(self): """ Test count method. """ self._compare_eager_and_script(lambda l: l.count(3), [1, 2, 3, 3]) # Check that using a value of an incorrect type throws TypeError. script_data = torch.jit.script([1]) with self.assertRaises(TypeError): script_data.count("str") def test_remove(self): """ Test remove method. """ self._compare_eager_and_script(lambda l: l.remove(1), [1, 2, 3]) self._compare_eager_and_script(lambda l: l.remove(10), [1, 2, 3]) # Check that using a value of an incorrect type throws TypeError. script_data = torch.jit.script([1]) with self.assertRaises(TypeError): script_data.remove("str") def test_append(self): """ Test append method. """ self._compare_eager_and_script(lambda l: l.append(1), [4, 3, 2]) # Check that using a value of an incorrect type throws TypeError. script_data = torch.jit.script([1]) with self.assertRaises(TypeError): script_data.append("str") def test_clear(self): """ Test clear. """ self._compare_eager_and_script(lambda l: l.clear(), [4, 3, 2]) def test_extend(self): """ Test extend. """ class Iterable(object): def __init__(self, limit: int): self.limit = limit self.value = 0 def __iter__(self): return self def __next__(self): if self.value == limit: raise StopIteration() ret = self.value self.value += 1 return ret data = [1, 2, 3] def extend_list(input_list): input_list.extend([4, 5, 6]) def extend_dict(input_list): input_list.extend({4: 10, 5: 11, 6: 12}) def extend_iterable(input_list): input_list.extend(Iterable(3)) self._compare_eager_and_script(extend_list, data.copy()) self._compare_eager_and_script(extend_dict, data.copy()) self._compare_eager_and_script(extend_iterable, data) # Check that using a value of an incorrect type throws TypeError. script_data = torch.jit.script([1]) with self.assertRaises(TypeError): script_data.extend(["a"]) with self.assertRaises(TypeError): script_data.extend({"a": 1}) def test_insert(self): """ Test insert. """ data = [1, 2, 4] self._compare_eager_and_script(lambda l: l.insert(3, 3), data.copy()) self._compare_eager_and_script(lambda l: l.insert(0, 3), data.copy()) self._compare_eager_and_script(lambda l: l.insert(-2, 3), data) # Check that using a value of an incorrect type throws TypeError. script_data = torch.jit.script([1]) with self.assertRaises(TypeError): script_data.insert((0, "str")) def test_pop(self): """ Test pop. """ data = [1, 2, 3, 4, 5] # Test normal cases. self._compare_eager_and_script(lambda l: l.pop(), data.copy()) self._compare_eager_and_script(lambda l: l.pop(2), data.copy()) self._compare_eager_and_script(lambda l: l.pop(-3), data.copy()) # Test error cases. self._compare_eager_and_script(lambda l: l.pop(10), data) @unittest.skip("Cannot pass until all list returned from TorchScript are ScriptLists") def test_nested(self): """ Test that reference semantics are honoured when the ScriptList that is mutated using TorchScript is inside another. """ nested = torch.jit.script([[1], [2]], List[List[int]]) one = nested[0] two = nested[1] self._script_list_add(one, 3) self._script_list_add(two, 4) # The mutation should be visible in the original list, nested. self.assertEqual(len(one), 2) self.assertEqual(len(two), 2) self.assertEqual(one[len(one) - 1], 3) self.assertEqual(two[len(one) - 1], 4) self.assertEqual(len(nested[0]), 2) self.assertEqual(len(nested[1]), 2) def test_reference_semantics(self): """ Test that reference semantics are honoured; that modifications made to a ScriptList in TorchScript are visible in Python. """ l = torch.jit.script([1, 2]) self._script_list_add(l, 3) self.assertEqual(len(l), 3) self.assertTrue(3 in l) self.assertEqual(l[2], 3)
pytorch-master
test/jit/test_list_dict.py
# Owner(s): ["oncall: jit"] import torch import os import sys from torch.testing._internal.jit_utils import JitTestCase, execWrapper from torch.testing._internal.common_utils import IS_MACOS from typing import List, Dict from itertools import product from textwrap import dedent import cmath # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) class TestComplex(JitTestCase): def test_script(self): def fn(a: complex): return a self.checkScript(fn, (3 + 5j,)) def test_complexlist(self): def fn(a: List[complex], idx: int): return a[idx] input = [1j, 2, 3 + 4j, -5, -7j] self.checkScript(fn, (input, 2)) def test_complexdict(self): def fn(a: Dict[complex, complex], key: complex) -> complex: return a[key] input = {2 + 3j : 2 - 3j, -4.3 - 2j: 3j} self.checkScript(fn, (input, -4.3 - 2j)) def test_pickle(self): class ComplexModule(torch.jit.ScriptModule): def __init__(self): super().__init__() self.a = 3 + 5j self.b = [2 + 3j, 3 + 4j, 0 - 3j, -4 + 0j] self.c = {2 + 3j : 2 - 3j, -4.3 - 2j: 3j} @torch.jit.script_method def forward(self, b: int): return b + 2j loaded = self.getExportImportCopy(ComplexModule()) self.assertEqual(loaded.a, 3 + 5j) self.assertEqual(loaded.b, [2 + 3j, 3 + 4j, -3j, -4]) self.assertEqual(loaded.c, {2 + 3j : 2 - 3j, -4.3 - 2j: 3j}) self.assertEqual(loaded(2), 2 + 2j) def test_complex_parse(self): def fn(a: int, b: torch.Tensor, dim: int): # verifies `emitValueToTensor()` 's behavior b[dim] = 2.4 + 0.5j return (3 * 2j) + a + 5j - 7.4j - 4 t1 = torch.tensor(1) t2 = torch.tensor([0.4, 1.4j, 2.35]) self.checkScript(fn, (t1, t2, 2)) def test_complex_constants_and_ops(self): vals = ([0.0, 1.0, 2.2, -1.0, -0.0, -2.2, 1, 0, 2] + [10.0 ** i for i in range(2)] + [-(10.0 ** i) for i in range(2)]) complex_vals = tuple(complex(x, y) for x, y in product(vals, vals)) funcs_template = dedent(''' def func(a: complex): return cmath.{func_or_const}(a) ''') def checkCmath(func_name, funcs_template=funcs_template): funcs_str = funcs_template.format(func_or_const=func_name) scope = {} execWrapper(funcs_str, globals(), scope) cu = torch.jit.CompilationUnit(funcs_str) f_script = cu.func f = scope['func'] if func_name in ['isinf', 'isnan', 'isfinite']: new_vals = vals + ([float('inf'), float('nan'), -1 * float('inf')]) final_vals = tuple(complex(x, y) for x, y in product(new_vals, new_vals)) else: final_vals = complex_vals for a in final_vals: res_python = None res_script = None try: res_python = f(a) except Exception as e: res_python = e try: res_script = f_script(a) except Exception as e: res_script = e if res_python != res_script: if isinstance(res_python, Exception): continue msg = f"Failed on {func_name} with input {a}. Python: {res_python}, Script: {res_script}" self.assertEqual(res_python, res_script, msg=msg) unary_ops = ['log', 'log10', 'sqrt', 'exp', 'sin', 'cos', 'asin', 'acos', 'atan', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh', 'phase', 'isinf', 'isnan', 'isfinite'] # --- Unary ops --- for op in unary_ops: checkCmath(op) def fn(x: complex): return abs(x) for val in complex_vals: self.checkScript(fn, (val, )) def pow_complex_float(x: complex, y: float): return pow(x, y) def pow_float_complex(x: float, y: complex): return pow(x, y) self.checkScript(pow_float_complex, (2, 3j)) self.checkScript(pow_complex_float, (3j, 2)) def pow_complex_complex(x: complex, y: complex): return pow(x, y) for x, y in zip(complex_vals, complex_vals): # Reference: https://github.com/pytorch/pytorch/issues/54622 if (x == 0): continue self.checkScript(pow_complex_complex, (x, y)) if not IS_MACOS: # --- Binary op --- def rect_fn(x: float, y: float): return cmath.rect(x, y) for x, y in product(vals, vals): self.checkScript(rect_fn, (x, y, )) func_constants_template = dedent(''' def func(): return cmath.{func_or_const} ''') float_consts = ['pi', 'e', 'tau', 'inf', 'nan'] complex_consts = ['infj', 'nanj'] for x in (float_consts + complex_consts): checkCmath(x, funcs_template=func_constants_template) def test_infj_nanj_pickle(self): class ComplexModule(torch.jit.ScriptModule): def __init__(self): super().__init__() self.a = 3 + 5j @torch.jit.script_method def forward(self, infj: int, nanj: int): if infj == 2: return infj + cmath.infj else: return nanj + cmath.nanj loaded = self.getExportImportCopy(ComplexModule()) self.assertEqual(loaded(2, 3), 2 + cmath.infj) self.assertEqual(loaded(3, 4), 4 + cmath.nanj) def test_complex_constructor(self): # Test all scalar types def fn_int(real: int, img: int): return complex(real, img) self.checkScript(fn_int, (0, 0, )) self.checkScript(fn_int, (-1234, 0, )) self.checkScript(fn_int, (0, -1256, )) self.checkScript(fn_int, (-167, -1256, )) def fn_float(real: float, img: float): return complex(real, img) self.checkScript(fn_float, (0.0, 0.0, )) self.checkScript(fn_float, (-1234.78, 0, )) self.checkScript(fn_float, (0, 56.18, )) self.checkScript(fn_float, (-1.9, -19.8, )) def fn_bool(real: bool, img: bool): return complex(real, img) self.checkScript(fn_bool, (True, True, )) self.checkScript(fn_bool, (False, False, )) self.checkScript(fn_bool, (False, True, )) self.checkScript(fn_bool, (True, False, )) def fn_bool_int(real: bool, img: int): return complex(real, img) self.checkScript(fn_bool_int, (True, 0, )) self.checkScript(fn_bool_int, (False, 0, )) self.checkScript(fn_bool_int, (False, -1, )) self.checkScript(fn_bool_int, (True, 3, )) def fn_int_bool(real: int, img: bool): return complex(real, img) self.checkScript(fn_int_bool, (0, True, )) self.checkScript(fn_int_bool, (0, False, )) self.checkScript(fn_int_bool, (-3, True, )) self.checkScript(fn_int_bool, (6, False, )) def fn_bool_float(real: bool, img: float): return complex(real, img) self.checkScript(fn_bool_float, (True, 0.0, )) self.checkScript(fn_bool_float, (False, 0.0, )) self.checkScript(fn_bool_float, (False, -1.0, )) self.checkScript(fn_bool_float, (True, 3.0, )) def fn_float_bool(real: float, img: bool): return complex(real, img) self.checkScript(fn_float_bool, (0.0, True, )) self.checkScript(fn_float_bool, (0.0, False, )) self.checkScript(fn_float_bool, (-3.0, True, )) self.checkScript(fn_float_bool, (6.0, False, )) def fn_float_int(real: float, img: int): return complex(real, img) self.checkScript(fn_float_int, (0.0, 1, )) self.checkScript(fn_float_int, (0.0, -1, )) self.checkScript(fn_float_int, (1.8, -3, )) self.checkScript(fn_float_int, (2.7, 8, )) def fn_int_float(real: int, img: float): return complex(real, img) self.checkScript(fn_int_float, (1, 0.0, )) self.checkScript(fn_int_float, (-1, 1.7, )) self.checkScript(fn_int_float, (-3, 0.0, )) self.checkScript(fn_int_float, (2, -8.9, )) def test_torch_complex_constructor_with_tensor(self): tensors = ([torch.rand(1), torch.randint(-5, 5, (1, )), torch.tensor([False])]) def fn_tensor_float(real, img: float): return complex(real, img) def fn_tensor_int(real, img: int): return complex(real, img) def fn_tensor_bool(real, img: bool): return complex(real, img) def fn_float_tensor(real: float, img): return complex(real, img) def fn_int_tensor(real: int, img): return complex(real, img) def fn_bool_tensor(real: bool, img): return complex(real, img) for tensor in tensors: self.checkScript(fn_tensor_float, (tensor, 1.2)) self.checkScript(fn_tensor_int, (tensor, 3)) self.checkScript(fn_tensor_bool, (tensor, True)) self.checkScript(fn_float_tensor, (1.2, tensor)) self.checkScript(fn_int_tensor, (3, tensor)) self.checkScript(fn_bool_tensor, (True, tensor)) def fn_tensor_tensor(real, img): return complex(real, img) + complex(2) for x, y in product(tensors, tensors): self.checkScript(fn_tensor_tensor, (x, y, )) def test_comparison_ops(self): def fn1(a: complex, b: complex): return a == b def fn2(a: complex, b: complex): return a != b def fn3(a: complex, b: float): return a == b def fn4(a: complex, b: float): return a != b x, y = 2 - 3j, 4j self.checkScript(fn1, (x, x)) self.checkScript(fn1, (x, y)) self.checkScript(fn2, (x, x)) self.checkScript(fn2, (x, y)) x1, y1 = 1 + 0j, 1.0 self.checkScript(fn3, (x1, y1)) self.checkScript(fn4, (x1, y1)) def test_div(self): def fn1(a: complex, b: complex): return a / b x, y = 2 - 3j, 4j self.checkScript(fn1, (x, y)) def test_complex_list_sum(self): def fn(x: List[complex]): return sum(x) self.checkScript(fn, (torch.randn(4, dtype=torch.cdouble).tolist(), )) def test_tensor_attributes(self): def tensor_real(x): return x.real def tensor_imag(x): return x.imag t = torch.randn(2, 3, dtype=torch.cdouble) self.checkScript(tensor_real, (t, )) self.checkScript(tensor_imag, (t, )) def test_binary_op_complex_tensor(self): def mul(x: complex, y: torch.Tensor): return x * y def add(x: complex, y: torch.Tensor): return x + y def eq(x: complex, y: torch.Tensor): return x == y def ne(x: complex, y: torch.Tensor): return x != y def sub(x: complex, y: torch.Tensor): return x - y def div(x: complex, y: torch.Tensor): return x - y ops = [mul, add, eq, ne, sub, div] for shape in [(1, ), (2, 2)]: x = 0.71 + 0.71j y = torch.randn(shape, dtype=torch.cfloat) for op in ops: eager_result = op(x, y) scripted = torch.jit.script(op) jit_result = scripted(x, y) self.assertEqual(eager_result, jit_result)
pytorch-master
test/jit/test_complex.py
# Owner(s): ["oncall: jit"] import torch from torch.testing import FileCheck from torch.testing._internal.jit_utils import JitTestCase, make_global class TestDCE(JitTestCase): def test_setattr_no_aliasdb(self): class Net(torch.nn.Module): def __init__(self): super().__init__() self.x = torch.empty([2, 2]) def forward(self): x = torch.rand([3, 3]) self.x = x net = torch.jit.script(Net()) FileCheck().check("prim::SetAttr").run(net.graph) def test_setattr_removed(self): @torch.jit.script class Thing1(object): def __init__(self): self.x = torch.zeros([2, 2]) make_global(Thing1) class Thing2(torch.nn.Module): def forward(self): x = torch.rand([2, 2]) y = torch.rand([2, 2]) t1 = Thing1() t1.x = x return y unscripted = Thing2() t2 = torch.jit.script(unscripted) t2.eval() # freezing inlines t1.__init__(), after which DCE can occur. t2 = torch.jit.freeze(t2) FileCheck().check_not("prim::SetAttr").run(t2.graph)
pytorch-master
test/jit/test_dce.py
# Owner(s): ["oncall: jit"] import torch from torch.testing._internal.jit_utils import JitTestCase if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestPythonIr(JitTestCase): def test_param_strides(self): def trace_me(arg): return arg t = torch.zeros(1, 3, 16, 16) traced = torch.jit.trace(trace_me, t) value = list(traced.graph.param_node().outputs())[0] real_strides = list(t.stride()) type_strides = value.type().strides() self.assertEqual(real_strides, type_strides)
pytorch-master
test/jit/test_python_ir.py
# Owner(s): ["oncall: jit"] from torch.testing import FileCheck from torch.testing._internal.jit_utils import JitTestCase import torch if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestGetDefaultAttr(JitTestCase): def test_getattr_with_default(self): class A(torch.nn.Module): def __init__(self): super(A, self).__init__() self.init_attr_val = 1.0 def forward(self, x): y = getattr(self, "init_attr_val") # noqa: B009 w : list[float] = [1.0] z = getattr(self, "missing", w) # noqa: B009 z.append(y) return z result = A().forward(0.0) self.assertEqual(2, len(result)) graph = torch.jit.script(A()).graph # The "init_attr_val" attribute exists FileCheck().check("prim::GetAttr[name=\"init_attr_val\"]").run(graph) # The "missing" attribute does not exist, so there should be no corresponding GetAttr in AST FileCheck().check_not("missing").run(graph) # instead the getattr call will emit the default value, which is a list with one float element FileCheck().check("float[] = prim::ListConstruct").run(graph)
pytorch-master
test/jit/test_attr.py
# Owner(s): ["oncall: jit"] import os import sys import torch from torch.testing import FileCheck # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestFunctionalBlocks(JitTestCase): def test_subgraph_creation(self): def fn(x, y, z): x = x + 1 y = y + 1 z = z + 1 z.add_(2) z = z * z y = y * z if y < 2: y = y + 5 return x + y + z graph = torch.jit.script(fn).graph self.run_pass('create_functional_graphs', graph) # all uses of x and y should be sunk FileCheck().check(r"%x").check_not(r"%x").check("FunctionalGraph").check(r"%x").run(graph) FileCheck().check(r"%y").check_not(r"%y").check("FunctionalGraph").check(r"%y").run(graph) # Don't allow any outputs which escape scope, so there is one final addition in the graph FileCheck().check("Tensor = prim::Functional").check_next("aten::add").run(graph) # z + 1, z.add_(2) considered non functional, z = z * z should be considered functional FileCheck().check("add").check("add_").check_not("mul").check("FunctionalGraph").run(graph)
pytorch-master
test/jit/test_functional_blocks.py
# Owner(s): ["oncall: jit"] import torch import os import sys from torch.testing._internal.jit_utils import JitTestCase # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestModules(JitTestCase): def test_script_module_with_constants_list(self): """ Test that a module that has __constants__ set to something that is not a set can be scripted. """ # torch.nn.Linear has a __constants__ attribute defined # and intialized to a list. class Net(torch.nn.Linear): x: torch.jit.Final[int] def __init__(self): super().__init__(5, 10) self.x = 0 self.checkModule(Net(), (torch.randn(5),))
pytorch-master
test/jit/test_modules.py
# Owner(s): ["oncall: jit"] import os import sys from itertools import product import torch import torch.nn as nn import torch.nn.functional as F from torch.testing import FileCheck import unittest try: import torchvision HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") activations = [ F.celu, F.elu, F.hardsigmoid, F.hardswish, F.hardtanh, F.leaky_relu, F.relu, F.relu6, F.rrelu, F.selu, F.silu, ] class TestFunctionalToInplaceActivation(JitTestCase): def test_check_no_type_promotion(self): dtypes = [ torch.bool, torch.int8, torch.int16, torch.int32, torch.int64, torch.float32, torch.float64, ] # restore_mutation.h contains a mapping from activation operators # to whether they allow type conversion. Use this checking to # guard the mapping, and if any later change breaks the assumption # we need to update the mapping correspondingly. for activation, dtype in product(activations, dtypes): inp = torch.normal(0, 5, size=(4, 4)).to(dtype) try: out = activation(inp) self.assertEqual(dtype, out.dtype) except RuntimeError: # Skip the not implemented error pass def test_functional_to_inplace_activation(self): for activation in activations: def test_basic(x): y = x + 1 z = activation(y) return z fn = torch.jit.script(test_basic) self.run_pass("inline", fn.graph) self.run_pass("constant_propagation", fn.graph) FileCheck().check(f"aten::{activation.__name__}(").run(fn.graph) self.run_pass('functional_to_inplace_activation', fn.graph) FileCheck().check_not(f"aten::{activation.__name__}(").run(fn.graph) FileCheck().check(f"aten::{activation.__name__}_").run(fn.graph) inp = torch.rand([2, 2]) self.assertEqual(fn(inp), test_basic(inp)) def test_no_functional_to_inplace(self): # inplace conversion should not happen because sigmoid may # perform type conversion def test1(): y = torch.ones([2, 2]) z = torch.sigmoid(y) return z fn = torch.jit.script(test1) self.run_pass('functional_to_inplace_activation', fn.graph) FileCheck().check_not("aten::sigmoid_").run(fn.graph) # inplace conversion should not happen because y is alias # the input x def test2(x): y = x[0] z = torch.relu(y) return z fn = torch.jit.script(test2) self.run_pass('functional_to_inplace_activation', fn.graph) FileCheck().check_not("aten::relu_").run(fn.graph) # inplace conversion should not happen because self.x is # at the global scope class Test3(nn.Module): def __init__(self, x): super(Test3, self).__init__() self.x = x def forward(self): y = torch.relu(self.x) return y fn = torch.jit.script(Test3(torch.rand([2, 2])).eval()) self.run_pass('functional_to_inplace_activation', fn.graph) FileCheck().check_not("aten::relu_").run(fn.graph) @skipIfNoTorchVision def test_resnet18_correctness(self): model = torchvision.models.resnet18() frozen_model = torch.jit.freeze(torch.jit.script(model.eval())) N, C, H, W, = 10, 3, 224, 224 inp = torch.randn(N, C, H, W) self.run_pass('functional_to_inplace_activation', frozen_model.graph) self.assertEqual(model(inp), frozen_model(inp)) class TestInplaceToFunctionalActivation(JitTestCase): def test_inplace_to_functional_activation(self): for activation in activations: def test_basic(x): y = x + 1 activation(y, inplace=True) return y fn = torch.jit.script(test_basic) self.run_pass("inline", fn.graph) self.run_pass("constant_propagation", fn.graph) FileCheck().check(f"aten::{activation.__name__}_").run(fn.graph) self.run_pass('inplace_to_functional_activation', fn.graph) FileCheck().check_not(f"aten::{activation.__name__}_").run(fn.graph) FileCheck().check(f"aten::{activation.__name__}(").run(fn.graph) for activation in [ torch.relu_, torch.sigmoid_, torch.tanh_, ]: def test_basic(x): y = x + 1 activation(y) return y fn = torch.jit.script(test_basic) self.run_pass("inline", fn.graph) self.run_pass("constant_propagation", fn.graph) FileCheck().check(f"aten::{activation.__name__}").run(fn.graph) self.run_pass('inplace_to_functional_activation', fn.graph) FileCheck().check_not(f"aten::{activation.__name__}").run(fn.graph) FileCheck().check(f"aten::{activation.__name__[:-1]}(").run(fn.graph) inp = torch.rand([2, 2]) self.assertEqual(fn(inp), test_basic(inp)) @skipIfNoTorchVision def test_resnet18_correctness(self): model = torchvision.models.resnet18() frozen_model = torch.jit.freeze(torch.jit.script(model.eval())) N, C, H, W, = 10, 3, 224, 224 inp = torch.randn(N, C, H, W) self.run_pass('inplace_to_functional_activation', frozen_model.graph) self.assertEqual(model(inp), frozen_model(inp))
pytorch-master
test/jit/test_convert_activation.py
# Owner(s): ["oncall: jit"] import os import sys import torch import warnings from typing import List, Any, Dict, Tuple, Optional # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase if __name__ == "__main__": raise RuntimeError( "This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead." ) # Tests for torch.jit.isinstance class TestIsinstance(JitTestCase): def test_int(self): def int_test(x: Any): assert torch.jit.isinstance(x, int) assert not torch.jit.isinstance(x, float) x = 1 self.checkScript(int_test, (x,)) def test_float(self): def float_test(x: Any): assert torch.jit.isinstance(x, float) assert not torch.jit.isinstance(x, int) x = 1.0 self.checkScript(float_test, (x,)) def test_bool(self): def bool_test(x: Any): assert torch.jit.isinstance(x, bool) assert not torch.jit.isinstance(x, float) x = False self.checkScript(bool_test, (x,)) def test_list(self): def list_str_test(x: Any): assert torch.jit.isinstance(x, List[str]) assert not torch.jit.isinstance(x, List[int]) assert not torch.jit.isinstance(x, Tuple[int]) x = ["1", "2", "3"] self.checkScript(list_str_test, (x,)) def test_list_tensor(self): def list_tensor_test(x: Any): assert torch.jit.isinstance(x, List[torch.Tensor]) assert not torch.jit.isinstance(x, Tuple[int]) x = [torch.tensor([1]), torch.tensor([2]), torch.tensor([3])] self.checkScript(list_tensor_test, (x,)) def test_dict(self): def dict_str_int_test(x: Any): assert torch.jit.isinstance(x, Dict[str, int]) assert not torch.jit.isinstance(x, Dict[int, str]) assert not torch.jit.isinstance(x, Dict[str, str]) x = {"a": 1, "b": 2} self.checkScript(dict_str_int_test, (x,)) def test_dict_tensor(self): def dict_int_tensor_test(x: Any): assert torch.jit.isinstance(x, Dict[int, torch.Tensor]) x = {2: torch.tensor([2])} self.checkScript(dict_int_tensor_test, (x,)) def test_tuple(self): def tuple_test(x: Any): assert torch.jit.isinstance(x, Tuple[str, int, str]) assert not torch.jit.isinstance(x, Tuple[int, str, str]) assert not torch.jit.isinstance(x, Tuple[str]) x = ("a", 1, "b") self.checkScript(tuple_test, (x,)) def test_tuple_tensor(self): def tuple_tensor_test(x: Any): assert torch.jit.isinstance(x, Tuple[torch.Tensor, torch.Tensor]) x = (torch.tensor([1]), torch.tensor([[2], [3]])) self.checkScript(tuple_tensor_test, (x,)) def test_optional(self): def optional_test(x: Any): assert torch.jit.isinstance(x, Optional[torch.Tensor]) assert not torch.jit.isinstance(x, Optional[str]) x = torch.ones(3, 3) self.checkScript(optional_test, (x,)) def test_optional_none(self): def optional_test_none(x: Any): assert torch.jit.isinstance(x, Optional[torch.Tensor]) # assert torch.jit.isinstance(x, Optional[str]) # TODO: above line in eager will evaluate to True while in # the TS interpreter will evaluate to False as the # first torch.jit.isinstance refines the 'None' type x = None self.checkScript(optional_test_none, (x,)) def test_list_nested(self): def list_nested(x: Any): assert torch.jit.isinstance(x, List[Dict[str, int]]) assert not torch.jit.isinstance(x, List[List[str]]) x = [{"a": 1, "b": 2}, {"aa": 11, "bb": 22}] self.checkScript(list_nested, (x,)) def test_dict_nested(self): def dict_nested(x: Any): assert torch.jit.isinstance(x, Dict[str, Tuple[str, str, str]]) assert not torch.jit.isinstance(x, Dict[str, Tuple[int, int, int]]) x = {"a": ("aa", "aa", "aa"), "b": ("bb", "bb", "bb")} self.checkScript(dict_nested, (x,)) def test_tuple_nested(self): def tuple_nested(x: Any): assert torch.jit.isinstance( x, Tuple[Dict[str, Tuple[str, str, str]], List[bool], Optional[str]] ) assert not torch.jit.isinstance(x, Dict[str, Tuple[int, int, int]]) assert not torch.jit.isinstance(x, Tuple[str]) assert not torch.jit.isinstance(x, Tuple[List[bool], List[str], List[int]]) x = ( {"a": ("aa", "aa", "aa"), "b": ("bb", "bb", "bb")}, [True, False, True], None, ) self.checkScript(tuple_nested, (x,)) def test_optional_nested(self): def optional_nested(x: Any): assert torch.jit.isinstance(x, Optional[List[str]]) x = ["a", "b", "c"] self.checkScript(optional_nested, (x,)) def test_list_tensor_type_true(self): def list_tensor_type_true(x: Any): assert torch.jit.isinstance(x, List[torch.Tensor]) x = [torch.rand(3, 3), torch.rand(4, 3)] self.checkScript(list_tensor_type_true, (x,)) def test_tensor_type_false(self): def list_tensor_type_false(x: Any): assert not torch.jit.isinstance(x, List[torch.Tensor]) x = [1, 2, 3] self.checkScript(list_tensor_type_false, (x,)) def test_in_if(self): def list_in_if(x: Any): if torch.jit.isinstance(x, List[int]): assert True if torch.jit.isinstance(x, List[str]): assert not True x = [1, 2, 3] self.checkScript(list_in_if, (x,)) def test_if_else(self): def list_in_if_else(x: Any): if torch.jit.isinstance(x, Tuple[str, str, str]): assert True else: assert not True x = ("a", "b", "c") self.checkScript(list_in_if_else, (x,)) def test_in_while_loop(self): def list_in_while_loop(x: Any): count = 0 while torch.jit.isinstance(x, List[Dict[str, int]]) and count <= 0: count = count + 1 assert count == 1 x = [{"a": 1, "b": 2}, {"aa": 11, "bb": 22}] self.checkScript(list_in_while_loop, (x,)) def test_type_refinement(self): def type_refinement(obj: Any): hit = False if torch.jit.isinstance(obj, List[torch.Tensor]): hit = not hit for el in obj: # perform some tensor operation y = el.clamp(0, 0.5) if torch.jit.isinstance(obj, Dict[str, str]): hit = not hit str_cat = "" for val in obj.values(): str_cat = str_cat + val assert "111222" == str_cat assert hit x = [torch.rand(3, 3), torch.rand(4, 3)] self.checkScript(type_refinement, (x,)) x = {"1": "111", "2": "222"} self.checkScript(type_refinement, (x,)) def test_list_no_contained_type(self): def list_no_contained_type(x: Any): assert torch.jit.isinstance(x, List) x = ["1", "2", "3"] err_msg = "Attempted to use List without a contained type. " \ r"Please add a contained type, e.g. List\[int\]" with self.assertRaisesRegex(RuntimeError, err_msg,): torch.jit.script(list_no_contained_type) with self.assertRaisesRegex(RuntimeError, err_msg,): list_no_contained_type(x) def test_tuple_no_contained_type(self): def tuple_no_contained_type(x: Any): assert torch.jit.isinstance(x, Tuple) x = ("1", "2", "3") err_msg = "Attempted to use Tuple without a contained type. " \ r"Please add a contained type, e.g. Tuple\[int\]" with self.assertRaisesRegex(RuntimeError, err_msg,): torch.jit.script(tuple_no_contained_type) with self.assertRaisesRegex(RuntimeError, err_msg,): tuple_no_contained_type(x) def test_optional_no_contained_type(self): def optional_no_contained_type(x: Any): assert torch.jit.isinstance(x, Optional) x = ("1", "2", "3") err_msg = "Attempted to use Optional without a contained type. " \ r"Please add a contained type, e.g. Optional\[int\]" with self.assertRaisesRegex(RuntimeError, err_msg,): torch.jit.script(optional_no_contained_type) with self.assertRaisesRegex(RuntimeError, err_msg,): optional_no_contained_type(x) def test_dict_no_contained_type(self): def dict_no_contained_type(x: Any): assert torch.jit.isinstance(x, Dict) x = {"a": "aa"} err_msg = "Attempted to use Dict without contained types. " \ r"Please add contained type, e.g. Dict\[int, int\]" with self.assertRaisesRegex(RuntimeError, err_msg,): torch.jit.script(dict_no_contained_type) with self.assertRaisesRegex(RuntimeError, err_msg,): dict_no_contained_type(x) def test_tuple_rhs(self): def fn(x: Any): assert torch.jit.isinstance(x, (int, List[str])) assert not torch.jit.isinstance(x, (List[float], Tuple[int, str])) assert not torch.jit.isinstance(x, (List[float], str)) self.checkScript(fn, (2,)) self.checkScript(fn, (["foo", "bar", "baz"],)) def test_nontuple_container_rhs_throws_in_eager(self): def fn1(x: Any): assert torch.jit.isinstance(x, [int, List[str]]) def fn2(x: Any): assert not torch.jit.isinstance(x, {List[str], Tuple[int, str]}) err_highlight = "must be a type or a tuple of types" with self.assertRaisesRegex(RuntimeError, err_highlight): fn1(2) with self.assertRaisesRegex(RuntimeError, err_highlight): fn2(2) def test_empty_container_throws_warning_in_eager(self): def fn(x: Any): torch.jit.isinstance(x, List[int]) with warnings.catch_warnings(record=True) as w: x: List[int] = [] fn(x) self.assertEqual(len(w), 1) with warnings.catch_warnings(record=True) as w: x: int = 2 fn(x) self.assertEqual(len(w), 0) def test_empty_container_special_cases(self): # Should not throw "Boolean value of Tensor with no values is # ambiguous" error torch._jit_internal.check_empty_containers(torch.Tensor([])) # Should not throw "Boolean value of Tensor with more than # one value is ambiguous" error torch._jit_internal.check_empty_containers(torch.rand(2, 3))
pytorch-master
test/jit/test_isinstance.py
# Owner(s): ["oncall: jit"] import io import os import sys import unittest import torch import torch.nn as nn from torch.testing import FileCheck from typing import Any # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase, make_global import torch.testing._internal.jit_utils from torch.testing._internal.common_utils import IS_SANDCASTLE, skipIfTorchDynamo from typing import List, Tuple, Iterable, Optional, Dict if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestClassType(JitTestCase): def test_reference_semantics(self): """ Test that modifications made to a class instance in TorchScript are visible in eager. """ class Foo(object): def __init__(self, a: int): self.a = a def set_a(self, value: int): self.a = value def get_a(self) -> int: return self.a @property def attr(self): return self.a make_global(Foo) # see [local resolution in python] def test_fn(obj: Foo): obj.set_a(2) scripted_fn = torch.jit.script(test_fn) obj = torch.jit.script(Foo(1)) self.assertEqual(obj.get_a(), 1) self.assertEqual(obj.attr, 1) scripted_fn(obj) self.assertEqual(obj.get_a(), 2) self.assertEqual(obj.attr, 2) def test_get_with_method(self): class FooTest(object): def __init__(self, x): self.foo = x def getFooTest(self): return self.foo def fn(x): foo = FooTest(x) return foo.getFooTest() input = torch.ones(2, 3) self.assertEqual(fn(input), input) def test_get_attr(self): class FooTest(object): # noqa: B903 def __init__(self, x): self.foo = x @torch.jit.script def fn(x): foo = FooTest(x) return foo.foo input = torch.ones(2, 3) self.assertEqual(fn(input), input) def test_in(self): class FooTest(object): # noqa: B903 def __init__(self): pass def __contains__(self, key: str) -> bool: return key == 'hi' @torch.jit.script def fn(): foo = FooTest() return 'hi' in foo, 'no' in foo self.assertEqual(fn(), (True, False)) def test_set_attr_in_method(self): class FooTest(object): def __init__(self, x: int) -> None: self.foo = x def incFooTest(self, y: int) -> None: self.foo = self.foo + y @torch.jit.script def fn(x: int) -> int: foo = FooTest(x) foo.incFooTest(2) return foo.foo self.assertEqual(fn(1), 3) def test_set_attr_type_mismatch(self): with self.assertRaisesRegexWithHighlight(RuntimeError, "Wrong type for attribute assignment", "self.foo = 10"): @torch.jit.script class FooTest(object): def __init__(self, x): self.foo = x self.foo = 10 # should error since int != Tensor def test_get_attr_not_initialized(self): with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", "self.asdf"): @torch.jit.script class FooTest(object): def __init__(self, x): self.foo = x def get_non_initialized(self): return self.asdf # asdf isn't an attr def test_set_attr_non_initialized(self): with self.assertRaisesRegexWithHighlight(RuntimeError, "Tried to set nonexistent attribute", "self.bar = y"): @torch.jit.script class FooTest(object): def __init__(self, x): self.foo = x def set_non_initialized(self, y): self.bar = y # can't assign to non-initialized attr def test_schema_human_readable(self): """ Make sure that the schema is human readable, ie the mode parameter should read "nearest" instead of being displayed in octal aten::__interpolate(Tensor input, int? size=None, float[]? scale_factor=None, str mode='\156\145\141\162\145\163\164', bool? align_corners=None) -> (Tensor): Expected a value of type 'Optional[int]' for argument 'size' but instead found type 'Tensor'. """ with self.assertRaisesRegexWithHighlight(RuntimeError, "nearest", ""): @torch.jit.script def FooTest(x): return torch.nn.functional.interpolate(x, 'bad') def test_type_annotations(self): with self.assertRaisesRegexWithHighlight(RuntimeError, "Expected a value of type \'bool", ""): @torch.jit.script # noqa: B903 class FooTest(object): # noqa: B903 def __init__(self, x: bool) -> None: self.foo = x @torch.jit.script def fn(x): FooTest(x) fn(2) def test_conditional_set_attr(self): with self.assertRaisesRegexWithHighlight(RuntimeError, "assignment cannot be in a control-flow block", ""): @torch.jit.script class FooTest(object): def __init__(self, x): if 1 == 1: self.attr = x def test_class_type_as_param(self): class FooTest(object): # noqa: B903 def __init__(self, x): self.attr = x make_global(FooTest) # see [local resolution in python] @torch.jit.script def fn(foo: FooTest) -> torch.Tensor: return foo.attr @torch.jit.script def fn2(x): foo = FooTest(x) return fn(foo) input = torch.ones(1) self.assertEqual(fn2(input), input) def test_out_of_order_methods(self): class FooTest(object): def __init__(self, x): self.x = x self.x = self.get_stuff(x) def get_stuff(self, y): return self.x + y @torch.jit.script def fn(x): f = FooTest(x) return f.x input = torch.ones(1) self.assertEqual(fn(input), input + input) def test_save_load_with_classes(self): class FooTest(object): def __init__(self, x): self.x = x def get_x(self): return self.x class MyMod(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): foo = FooTest(a) return foo.get_x() m = MyMod() buffer = io.BytesIO() torch.jit.save(m, buffer) # classes are globally registered for now, so we need to clear the JIT # registry to simulate loading a new model buffer.seek(0) m_loaded = torch.jit.load(buffer) input = torch.rand(2, 3) output = m_loaded(input) self.assertEqual(input, output) def test_save_load_with_classes_returned(self): class FooTest(object): def __init__(self, x): self.x = x def clone(self): clone = FooTest(self.x) return clone class MyMod(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): foo = FooTest(a) foo_clone = foo.clone() return foo_clone.x m = MyMod() buffer = io.BytesIO() torch.jit.save(m, buffer) # classes are globally registered for now, so we need to clear the JIT # registry to simulate loading a new model torch.testing._internal.jit_utils.clear_class_registry() buffer.seek(0) m_loaded = torch.jit.load(buffer) input = torch.rand(2, 3) output = m_loaded(input) self.assertEqual(input, output) def test_save_load_with_classes_nested(self): class FooNestedTest(object): # noqa: B903 def __init__(self, y): self.y = y class FooNestedTest2(object): def __init__(self, y): self.y = y self.nested = FooNestedTest(y) class FooTest(object): def __init__(self, x): self.class_attr = FooNestedTest(x) self.class_attr2 = FooNestedTest2(x) self.x = self.class_attr.y + self.class_attr2.y class MyMod(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): foo = FooTest(a) return foo.x m = MyMod() buffer = io.BytesIO() torch.jit.save(m, buffer) # classes are globally registered for now, so we need to clear the JIT # registry to simulate loading a new model torch.testing._internal.jit_utils.clear_class_registry() buffer.seek(0) m_loaded = torch.jit.load(buffer) input = torch.rand(2, 3) output = m_loaded(input) self.assertEqual(2 * input, output) def test_python_interop(self): class Foo(object): # noqa: B903 def __init__(self, x, y): self.x = x self.y = y make_global(Foo) # see [local resolution in python] @torch.jit.script def use_foo(foo: Foo) -> Foo: return foo # create from python x = torch.ones(2, 3) y = torch.zeros(2, 3) f = Foo(x, y) self.assertEqual(x, f.x) self.assertEqual(y, f.y) # pass in and out of script f2 = use_foo(f) self.assertEqual(x, f2.x) self.assertEqual(y, f2.y) def test_class_specialization(self): class Foo(object): # noqa: B903 def __init__(self, x, y): self.x = x self.y = y make_global(Foo) # see [local resolution in python] def use_foo(foo: Foo, foo2: Foo, tup: Tuple[Foo, Foo]) -> torch.Tensor: a, b = tup return foo.x + foo2.y + a.x + b.y # create from python x = torch.ones(2, 3) y = torch.zeros(2, 3) f = Foo(x, y) f2 = Foo(x * 2, y * 3) f3 = Foo(x * 4, y * 4) input = (f, f2, (f, f3)) sfoo = self.checkScript(use_foo, input) graphstr = str(sfoo.graph_for(*input)) FileCheck().check_count("prim::GetAttr", 4).run(graphstr) def test_class_sorting(self): class Foo(object): # noqa: B903 def __init__(self, x: int) -> None: self.x = x def __lt__(self, other) -> bool: # type: (Foo) -> bool return self.x < other.x def getVal(self): return self.x make_global(Foo) # see [local resolution in python] def test(li: List[Foo], reverse: bool = False) -> Tuple[List[int], List[int]]: li_sorted = sorted(li) ret_sorted = torch.jit.annotate(List[int], []) for foo in li_sorted: ret_sorted.append(foo.getVal()) li.sort(reverse=reverse) ret_sort = torch.jit.annotate(List[int], []) for foo in li: ret_sort.append(foo.getVal()) return ret_sorted, ret_sort self.checkScript(test, ([Foo(2), Foo(1), Foo(3)],)) self.checkScript(test, ([Foo(2), Foo(1), Foo(3)], True)) self.checkScript(test, ([Foo(2)],)) self.checkScript(test, ([],)) @torch.jit.script def test_list_no_reverse(): li = [Foo(3), Foo(1)] li.sort() return li[0].getVal() self.assertEqual(test_list_no_reverse(), 1) @torch.jit.script def test_sorted_copies(): li = [Foo(3), Foo(1)] li_sorted = sorted(li) return li[0].getVal(), li_sorted[0].getVal() self.assertEqual(test_sorted_copies(), (3, 1)) @torch.jit.script def test_nested_inside_tuple(): li = [(1, Foo(12)), (1, Foo(11))] li.sort() return [(li[0][0], li[0][1].getVal()), (li[1][0], li[1][1].getVal())] self.assertEqual(test_nested_inside_tuple(), [(1, 11), (1, 12)]) with self.assertRaisesRegexWithHighlight(RuntimeError, "bool\' for argument \'reverse", ""): @torch.jit.script def test(): li = [Foo(1)] li.sort(li) return li test() with self.assertRaisesRegexWithHighlight(RuntimeError, "must define a __lt__", ""): @torch.jit.script class NoMethod(object): def __init__(self): pass @torch.jit.script def test(): li = [NoMethod(), NoMethod()] li.sort() return li test() @torch.jit.script class WrongLt(object): def __init__(self): pass # lt method defined with the wrong signature def __lt__(self, other): pass with self.assertRaisesRegexWithHighlight(RuntimeError, "must define a __lt__", ""): @torch.jit.script def test(): li = [WrongLt(), WrongLt()] li.sort() return li test() def test_class_inheritance(self): @torch.jit.script class Base(object): def __init__(self): self.b = 2 def two(self, x): return x + self.b with self.assertRaisesRegexWithHighlight(RuntimeError, "does not support inheritance", ""): @torch.jit.script class Derived(Base): def two(self, x): return x + self.b + 2 def test_class_inheritance_implicit(self): """ Test that inheritance is detected in implicit scripting codepaths (e.g. try_ann_to_type). """ class A: def __init__(self, t): self.t = t @staticmethod def f(a: torch.Tensor): return A(a + 1) class B(A): def __init__(self, t): self.t = t + 10 @staticmethod def f(a: torch.Tensor): return A(a + 1) x = A(torch.tensor([3])) def fun(x: Any): if isinstance(x, A): return A.f(x.t) else: return B.f(x.t) with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", ""): sc = torch.jit.script(fun) @skipIfTorchDynamo("Test does not work with TorchDynamo") @unittest.skipIf(IS_SANDCASTLE, "Importing like this doesn't work in fbcode") def test_imported_classes(self): import jit._imported_class_test.foo import jit._imported_class_test.bar import jit._imported_class_test.very.very.nested class MyMod(torch.jit.ScriptModule): @torch.jit.script_method def forward(self, a): foo = jit._imported_class_test.foo.FooSameName(a) bar = jit._imported_class_test.bar.FooSameName(a) three = jit._imported_class_test.very.very.nested.FooUniqueName(a) return foo.x + bar.y + three.y m = MyMod() buffer = io.BytesIO() torch.jit.save(m, buffer) # classes are globally registered for now, so we need to clear the JIT # registry to simulate loading a new model torch.testing._internal.jit_utils.clear_class_registry() buffer.seek(0) m_loaded = torch.jit.load(buffer) input = torch.rand(2, 3) output = m_loaded(input) self.assertEqual(3 * input, output) def test_interface(self): @torch.jit.script class Foo(object): def __init__(self): pass def one(self, x, y): return x + y def two(self, x): return 2 * x @torch.jit.script class Bar(object): def __init__(self): pass def one(self, x, y): return x * y def two(self, x): return 2 / x @torch.jit.interface class OneTwo(object): def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: pass def two(self, x: torch.Tensor) -> torch.Tensor: pass @torch.jit.interface class OneTwoThree(object): def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: pass def two(self, x: torch.Tensor) -> torch.Tensor: pass def three(self, x: torch.Tensor) -> torch.Tensor: pass @torch.jit.interface class OneTwoWrong(object): def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: pass def two(self, x: int) -> int: pass @torch.jit.script class NotMember(object): def __init__(self): pass def one(self, x, y): return x + y # missing two @torch.jit.script class NotMember2(object): def __init__(self): pass def one(self, x, y): return x + y def two(self, x: int) -> int: return 3 make_global(Foo, Bar, OneTwo, OneTwoThree, OneTwoWrong, NotMember, NotMember2) def use_them(x): a = Foo() b = Bar() c = torch.jit.annotate(List[OneTwo], [a, b]) for i in range(len(c)): x = c[i].one(x, x) x = c[i].two(x) return x self.checkScript(use_them, (torch.rand(3, 4),)) @torch.jit.script def as_interface(x: OneTwo) -> OneTwo: return x @torch.jit.script def inherit(x: OneTwoThree) -> OneTwo: return as_interface(x) with self.assertRaisesRegexWithHighlight(RuntimeError, "does not have method", ""): @torch.jit.script def wrong1(): return as_interface(NotMember()) with self.assertRaisesRegexWithHighlight(RuntimeError, "is not compatible with interface", ""): @torch.jit.script def wrong2(): return as_interface(NotMember2()) with self.assertRaisesRegexWithHighlight(RuntimeError, "does not have method", ""): @torch.jit.script def wrong3(): return inherit(as_interface(Foo())) with self.assertRaisesRegexWithHighlight(RuntimeError, "is not compatible with interface", ""): @torch.jit.script def wrong4(x: OneTwoWrong) -> int: return as_interface(x) # Test interface/class python assignment class TestPyAssign(nn.Module): def __init__(self): super(TestPyAssign, self).__init__() self.proxy_mod = Foo() def forward(self, x): return self.proxy_mod.two(x) TestPyAssign.__annotations__ = {'proxy_mod': OneTwo} input = torch.rand(3, 4) scripted_pyassign_mod = torch.jit.script(TestPyAssign()) imported_mod = self.getExportImportCopy(scripted_pyassign_mod) self.assertEqual(scripted_pyassign_mod(input), imported_mod(input)) class TestPyAssignError(nn.Module): def __init__(self, obj): super(TestPyAssignError, self).__init__() self.proxy_mod = obj def forward(self, x): return self.proxy_mod.two(x) TestPyAssignError.__annotations__ = {'proxy_mod': OneTwoThree} with self.assertRaisesRegexWithHighlight(RuntimeError, "is not compatible with interface __torch__", ""): torch.jit.script(TestPyAssignError(Foo())) # test pure python object assignment to interface fails class PyClass(object): def __init__(self): pass with self.assertRaisesRegexWithHighlight(RuntimeError, "the value is not a TorchScript compatible type", ""): torch.jit.script(TestPyAssignError(PyClass())) # TODO test: interface-interface class-interface inheritance errors, # NamedTuple inheritance errors def test_overloaded_fn(self): @torch.jit.script class Foo(object): def __init__(self, x): self.x = x def __len__(self) -> int: return len(self.x) def __neg__(self): self.x = -self.x return self def __mul__(self, other: torch.Tensor) -> torch.Tensor: return self.x * other def test_overload(): a = Foo(torch.ones([3, 3])) return len(a), -a * torch.zeros([3, 3]) make_global(Foo) # see [local resolution in python] self.checkScript(test_overload, ()) # unary ops tested above # TODO - support compiling classes from strings in jit.CompilationUnit @torch.jit.script class MyClass(object): def __init__(self, x: int) -> None: self.x = x def __add__(self, other: int) -> int: return self.x + other def __sub__(self, other: int) -> int: return self.x - other def __mul__(self, other: int) -> int: return self.x * other def __pow__(self, other: int) -> int: return int(self.x ** other) def __truediv__(self, other: int) -> float: return self.x / other def __mod__(self, other: int) -> int: return self.x % other def __ne__(self, other: int) -> bool: return self.x != other def __eq__(self, other: int) -> bool: return self.x == other def __lt__(self, other: int) -> bool: return self.x < other def __gt__(self, other: int) -> bool: return self.x > other def __le__(self, other: int) -> bool: return self.x <= other def __ge__(self, other: int) -> bool: return self.x >= other def __and__(self, other: int) -> int: return self.x & other def __or__(self, other: int) -> int: return self.x | other def __xor__(self, other: int) -> int: return self.x ^ other def __getitem__(self, other: int) -> int: return other + 1 def __setitem__(self, idx: int, val: int) -> None: self.x = val * idx def __call__(self, val: int) -> int: return self.x * val * 3 make_global(Foo) # see [local resolution in python] def add(): return MyClass(4) + 3 def sub(): # noqa: E306 return MyClass(4) - 3 def mul(): # noqa: E306 return MyClass(4) * 3 def pow(): # noqa: E306 return MyClass(4) ** 3 def truediv(): # noqa: E306 return MyClass(4) / 3 def ne(): # noqa: E306 return MyClass(4) != 3 def eq(): # noqa: E306 return MyClass(4) == 3 def lt(): # noqa: E306 return MyClass(4) < 3 def gt(): # noqa: E306 return MyClass(4) > 3 def le(): # noqa: E306 return MyClass(4) <= 3 def ge(): # noqa: E306 return MyClass(4) >= 3 def _and(): # noqa: E306 return MyClass(4) & 3 def _or(): # noqa: E306 return MyClass(4) | 3 def _xor(): # noqa: E306 return MyClass(4) ^ 3 def getitem(): # noqa: E306 return MyClass(4)[1] def setitem(): # noqa: E306 a = MyClass(4) a[1] = 5 return a.x def call(): # noqa: E306 a = MyClass(5) return a(2) ops = [add, sub, mul, pow, ne, eq, lt, gt, le, ge, _and, _or, _xor, getitem, setitem, call] ops.append(truediv) for func in ops: self.checkScript(func, ()) with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", ""): @torch.jit.script def test(): return Foo(torch.tensor(1)) + Foo(torch.tensor(1)) def test_cast_overloads(self): @torch.jit.script class Foo(object): def __init__(self, val: float) -> None: self.val = val def __int__(self): return int(self.val) def __float__(self): return self.val def __bool__(self): return bool(self.val) def __str__(self): return str(self.val) make_global(Foo) # see [local resolution in python] def test(foo: Foo) -> Tuple[int, float, bool]: if foo: pass return int(foo), float(foo), bool(foo) fn = torch.jit.script(test) self.assertEqual(fn(Foo(0.5)), test(0.5)) self.assertEqual(fn(Foo(0.)), test(0.0)) # str has slightly different formatting self.assertTrue("0.5" in (str(Foo(0.5)))) self.assertTrue("0." in (str(Foo(0.0)))) @torch.jit.script class BadBool(object): def __init__(self): pass def __bool__(self): return (1, 2) with self.assertRaisesRegexWithHighlight(RuntimeError, "expected a bool expression for condition", ""): @torch.jit.script def test(): if BadBool(): print(1) pass def test_init_compiled_first(self): @torch.jit.script # noqa: B903 class Foo(object): # noqa: B903 def __before_init__(self): # accessing this field should not throw, since __init__ should be compiled return self.x def __init__(self, x, y): self.x = x self.y = y def test_class_constructs_itself(self): @torch.jit.script # noqa: B903 class LSTMStateStack(object): # noqa: B903 def __init__(self, num_layers: int, hidden_size: int) -> None: self.num_layers = num_layers self.hidden_size = hidden_size self.last_state = ( torch.zeros(num_layers, 1, hidden_size), torch.zeros(num_layers, 1, hidden_size), ) self.stack = [(self.last_state[0][-1], self.last_state[0][-1])] def copy(self): # should be able to construct a class inside its own methods other = LSTMStateStack(self.num_layers, self.hidden_size) other.stack = list(self.stack) return other def test_optional_type_promotion(self): @torch.jit.script class Leaf(object): def __init__(self): self.x = 1 # should not throw @torch.jit.script # noqa: B903 class Tree(object): # noqa: B903 def __init__(self): self.child = torch.jit.annotate(Optional[Leaf], None) def add_child(self, child: Leaf) -> None: self.child = child def test_recursive_class(self): """ Recursive class types not yet supported. We should give a good error message. """ with self.assertRaises(RuntimeError): @torch.jit.script # noqa: B903 class Tree(object): # noqa: B903 def __init__(self): self.parent = torch.jit.annotate(Optional[Tree], None) def test_class_constant(self): class M(torch.nn.Module): __constants__ = ["w"] def __init__(self, w): super(M, self).__init__() self.w = w def forward(self, x): # Make sure class constant is accessible in method y = self.w return x, y # Test serialization/deserialization of class constant for c in (2, 1.0, None, True, 'str', (2, 3), [5.9, 7.3]): m = torch.jit.script(M(c)) buffer = io.BytesIO() torch.jit.save(m, buffer) buffer.seek(0) m_loaded = torch.jit.load(buffer) input = torch.rand(2, 3) self.assertEqual(m(input), m_loaded(input)) # Make sure class constant is accessible from module self.assertEqual(m.w, m_loaded.w) def test_py_class_to_ivalue_missing_attribute(self): class Foo(object): i : int f : float def __init__(self, i : int, f : float): self.i = i self.f = f make_global(Foo) # see [local resolution in python] @torch.jit.script def test_fn(x : Foo) -> float: return x.i + x.f test_fn(Foo(3, 4.0)) with self.assertRaisesRegexWithHighlight(RuntimeError, 'missing attribute i', ""): test_fn(torch.rand(3, 4)) def test_unused_method(self): """ Test unused methods on scripted classes. """ @torch.jit.script class Unused(object): def __init__(self): self.count: int = 0 self.items: List[int] = [] def used(self): self.count += 1 return self.count @torch.jit.unused def unused(self, x: int, y: Iterable[int], **kwargs) -> int: a = next(self.items) return a def uses_unused(self) -> int: return self.unused(y="hi", x=3) class ModuleWithUnused(nn.Module): def __init__(self): super().__init__() self.obj = Unused() def forward(self): return self.obj.used() @torch.jit.export def calls_unused(self): return self.obj.unused(3, "hi") @torch.jit.export def calls_unused_indirectly(self): return self.obj.uses_unused() python_module = ModuleWithUnused() script_module = torch.jit.script(ModuleWithUnused()) # Forward should work because it does not used any methods marked unused. self.assertEqual(python_module.forward(), script_module.forward()) # Calling a method marked unused should throw. with self.assertRaises(torch.jit.Error): script_module.calls_unused() with self.assertRaises(torch.jit.Error): script_module.calls_unused_indirectly() def test_self_referential_method(self): """ Test that a scripted class can have a method that refers to the class itself in its type annotations. """ @torch.jit.script class Meta(object): def __init__(self, a: int): self.a = a def method(self, other: List['Meta']) -> 'Meta': return Meta(len(other)) class ModuleWithMeta(torch.nn.Module): def __init__(self, a: int): super().__init__() self.meta = Meta(a) def forward(self): new_obj = self.meta.method([self.meta]) return new_obj.a self.checkModule(ModuleWithMeta(5), ()) def test_type_annotation(self): """ Test that annotating container attributes with types works correctly """ @torch.jit.script class CompetitiveLinkingTokenReplacementUtils: def __init__(self): self.my_list : List[Tuple[float, int, int]] = [] self.my_dict : Dict[int, int] = {} @torch.jit.script def foo(): y = CompetitiveLinkingTokenReplacementUtils() new_dict : Dict[int, int] = {1: 1, 2: 2} y.my_dict = new_dict new_list : List[Tuple[float, int, int]] = [(1.0, 1, 1)] y.my_list = new_list return y def test_default_args(self): """ Test that methods on class types can have default arguments. """ @torch.jit.script class ClassWithDefaultArgs: def __init__( self, a: int = 1, b: Optional[List[int]] = None, c: Tuple[int, int, int] = (1, 2, 3), d: Optional[Dict[int, int]] = None, e: Optional[str] = None, ): self.int = a self.tup = c self.str = e self.list = [1, 2, 3] if b is not None: self.list = b self.dict = {1: 2, 3: 4} if d is not None: self.dict = d def add(self, b: int, scale: float = 1.0) -> float: return self.int * scale + b def all_defaults() -> int: obj: ClassWithDefaultArgs = ClassWithDefaultArgs() return obj.int + obj.list[2] + obj.tup[1] def some_defaults() -> int: obj: ClassWithDefaultArgs = ClassWithDefaultArgs(b=[5, 6, 7]) return obj.int + obj.list[2] + obj.dict[1] def override_defaults() -> int: obj: ClassWithDefaultArgs = ClassWithDefaultArgs(3, [9, 10, 11], (12, 13, 14), {3: 4}, "str") s: int = obj.int for x in obj.list: s += x for y in obj.tup: s += y s += obj.dict[3] st = obj.str if st is not None: s += len(st) return s def method_defaults() -> float: obj: ClassWithDefaultArgs = ClassWithDefaultArgs() return obj.add(3) + obj.add(3, 0.25) self.checkScript(all_defaults, ()) self.checkScript(some_defaults, ()) self.checkScript(override_defaults, ()) self.checkScript(method_defaults, ()) # The constructor of this class below has some arguments without default values. class ClassWithSomeDefaultArgs: # noqa: B903 def __init__( self, a: int, b: int = 1, ): self.a = a self.b = b def default_b() -> int: obj: ClassWithSomeDefaultArgs = ClassWithSomeDefaultArgs(1) return obj.a + obj.b def set_b() -> int: obj: ClassWithSomeDefaultArgs = ClassWithSomeDefaultArgs(1, 4) return obj.a + obj.b self.checkScript(default_b, ()) self.checkScript(set_b, ()) # The constructor of this class below has mutable arguments. This should throw # an error. class ClassWithMutableArgs: # noqa: B903 def __init__( self, a: List[int] = [1, 2, 3], # noqa: B006 ): self.a = a def should_fail(): obj: ClassWithMutableArgs = ClassWithMutableArgs() with self.assertRaisesRegexWithHighlight(RuntimeError, "Mutable default parameters are not supported", ""): torch.jit.script(should_fail) def test_staticmethod(self): """ Test static methods on class types. """ @torch.jit.script class ClassWithStaticMethod: def __init__(self, a: int, b: int): self.a: int = a self.b: int = b def get_a(self): return self.a def get_b(self): return self.b def __eq__(self, other: 'ClassWithStaticMethod'): return self.a == other.a and self.b == other.b # staticmethod that calls constructor. @staticmethod def create(args: List['ClassWithStaticMethod']) -> 'ClassWithStaticMethod': return ClassWithStaticMethod(args[0].a, args[0].b) # staticmethod that calls another staticmethod. @staticmethod def create_from(a: int, b: int) -> 'ClassWithStaticMethod': a = ClassWithStaticMethod(a, b) return ClassWithStaticMethod.create([a]) # Script function that calls staticmethod. def test_function(a: int, b: int) -> 'ClassWithStaticMethod': return ClassWithStaticMethod.create_from(a, b) make_global(ClassWithStaticMethod) self.checkScript(test_function, (1, 2)) def test_classmethod(self): """ Test classmethods on class types. """ @torch.jit.script class ClassWithClassMethod: def __init__(self, a: int): self.a: int = a def __eq__(self, other: 'ClassWithClassMethod'): return self.a == other.a @classmethod def create(cls, a: int) -> 'ClassWithClassMethod': return cls(a) make_global(ClassWithClassMethod) def test_function(a: int) -> 'ClassWithClassMethod': x = ClassWithClassMethod(a) # Support calling classmethod with an instance # Calling with the class is not supported. return x.create(a) self.checkScript(test_function, (1,)) @skipIfTorchDynamo("Not a suitable test for TorchDynamo") def test_properties(self): """ Test that a scripted class can make use of the @property decorator. """ def free_function(x: int) -> int: return x + 1 @torch.jit.script class Properties(object): __jit_unused_properties__ = ["unsupported"] def __init__(self, a: int): self.a = a @property def attr(self) -> int: return self.a - 1 @property def unsupported(self) -> int: return sum([self.a]) @torch.jit.unused @property def unsupported_2(self) -> int: return sum([self.a]) @unsupported_2.setter def unsupported_2(self, value): self.a = sum([self.a]) @attr.setter def attr(self, value: int): self.a = value + 3 @torch.jit.script class NoSetter(object): def __init__(self, a: int): self.a = a @property def attr(self) -> int: return free_function(self.a) @torch.jit.script class MethodThatUsesProperty(object): def __init__(self, a: int): self.a = a @property def attr(self) -> int: return self.a - 2 @attr.setter def attr(self, value: int): self.a = value + 4 def forward(self): return self.attr class ModuleWithProperties(torch.nn.Module): def __init__(self, a: int): super().__init__() self.props = Properties(a) def forward(self, a: int, b: int, c: int, d: int): self.props.attr = a props = Properties(b) no_setter = NoSetter(c) method_uses_property = MethodThatUsesProperty(a + b) props.attr = c method_uses_property.attr = d return self.props.attr + no_setter.attr + method_uses_property.forward() self.checkModule(ModuleWithProperties(5), (5, 6, 7, 8,)) def test_custom_delete(self): """ Test that del can be called on an instance of a class that overrides __delitem__. """ class Example(object): def __init__(self): self._data: Dict[str, torch.Tensor] = {"1": torch.tensor(1.0)} def check(self, key: str) -> bool: return key in self._data def __delitem__(self, key: str): del self._data[key] def fn() -> bool: example = Example() del example["1"] return example.check("1") self.checkScript(fn, ()) # Test the case in which the class does not have __delitem__ defined. class NoDelItem(object): def __init__(self): self._data: Dict[str, torch.Tensor] = {"1": torch.tensor(1.0)} def check(self, key: str) -> bool: return key in self._data def fn() -> bool: example = NoDelItem() key = "1" del example[key] return example.check(key) with self.assertRaisesRegexWithHighlight(RuntimeError, r"Class does not define __delitem__", "example[key]"): self.checkScript(fn, ()) def test_recursive_script_builtin_type_resolution(self): """ Test resolution of built-in torch types(e.g. torch.Tensor, torch.device) when a class is recursively compiled. """ # A will be implicitly compiled because it is not annotated with @torch.jit.script # but is used in g() below. tensor_t = torch.Tensor device_t = torch.device device_ty = torch.device class A(object): def __init__(self): pass def f(self, x: tensor_t, y: torch.device) -> tensor_t: return x.to(device=y) def g(self, x: device_t) -> device_ty: return x def h(self, a: 'A') -> 'A': return A() def i(self, a: List[int]) -> int: return a[0] def j(self, l: List[device_t]) -> device_ty: return l[0] def call_f(): a = A() return a.f(torch.tensor([1]), torch.device("cpu")) def call_g(): a = A() return a.g(torch.device("cpu")) def call_i(): a = A() return a.i([3]) def call_j(): a = A() return a.j([torch.device("cpu"), torch.device("cpu")]) for fn in [call_f, call_g, call_i, call_j]: self.checkScript(fn, ()) s = self.getExportImportCopy(torch.jit.script(fn)) self.assertEqual(s(), fn()) def test_recursive_script_module_builtin_type_resolution(self): """ Test resolution of built-in torch types(e.g. torch.Tensor, torch.device) when a class is recursively compiled when compiling a module. """ class Wrapper(): def __init__(self, t): self.t = t def to(self, l: List[torch.device], device: Optional[torch.device] = None): return self.t.to(device=device) class A(nn.Module): def forward(self): return Wrapper(torch.rand(4, 4)) scripted = torch.jit.script(A()) self.getExportImportCopy(scripted) def test_class_attribute_wrong_type(self): """ Test that the error message displayed when convering a class type to an IValue that has an attribute of the wrong type. """ @torch.jit.script # noqa: B903 class ValHolder(object): # noqa: B903 def __init__(self, val): self.val = val class Mod(nn.Module): def __init__(self): super(Mod, self).__init__() self.mod1 = ValHolder("1") self.mod2 = ValHolder("2") def forward(self, cond: bool): if cond: mod = self.mod1 else: mod = self.mod2 return mod.val with self.assertRaisesRegexWithHighlight(RuntimeError, "Could not cast attribute 'val' to type Tensor", ""): torch.jit.script(Mod()) def test_recursive_scripting(self): """ Test that class types are recursively scripted when an Python instance of one is encountered as a module attribute. """ class Class(object): def __init__(self, a: int): self.a = a def get_a(self) -> int: return self.a class M(torch.nn.Module): def __init__(self, obj): super().__init__() self.obj = obj def forward(self) -> int: return self.obj.get_a() self.checkModule(M(Class(4)), ()) def test_recursive_scripting_failed(self): """ Test that class types module attributes that fail to script are added as failed attributes and do not cause compilation itself to fail unless they are used in scripted code. """ class UnscriptableClass(object): def __init__(self, a: int): self.a = a def get_a(self) -> bool: return issubclass(self.a, int) # This Module has an attribute of type UnscriptableClass # and tries to use it in scripted code. This should fail. class ShouldNotCompile(torch.nn.Module): def __init__(self, obj): super().__init__() self.obj = obj def forward(self) -> bool: return self.obj.get_a() with self.assertRaisesRegexWithHighlight(RuntimeError, "failed to convert Python type", ""): torch.jit.script(ShouldNotCompile(UnscriptableClass(4))) # This Module has an attribute of type UnscriptableClass # and does not try to use it in scripted code. This should not fail. class ShouldCompile(torch.nn.Module): def __init__(self, obj): super().__init__() self.obj = obj @torch.jit.ignore def ignored_method(self) -> bool: return self.obj.get_a() def forward(self, x: int) -> int: return x + x self.checkModule(ShouldCompile(UnscriptableClass(4)), (4,)) def test_unresolved_class_attributes(self): class UnresolvedAttrClass(object): def __init__(self): pass (attr_a, attr_b), [attr_c, attr_d] = ("", ""), ["", ""] attr_e: int = 0 def fn_a(): u = UnresolvedAttrClass() return u.attr_a def fn_b(): u = UnresolvedAttrClass() return u.attr_b def fn_c(): u = UnresolvedAttrClass() return u.attr_c def fn_d(): u = UnresolvedAttrClass() return u.attr_d def fn_e(): u = UnresolvedAttrClass() return u.attr_e error_message_regex = "object has no attribute or method.*is defined as a class attribute" for fn in (fn_a, fn_b, fn_c, fn_d, fn_e): with self.assertRaisesRegex(RuntimeError, error_message_regex): torch.jit.script(fn)
pytorch-master
test/jit/test_class_type.py
# Owner(s): ["oncall: jit"] from torch.testing._internal.jit_utils import JitTestCase import torch import torch._C from torch.testing import FileCheck class TestGraphRewritePasses(JitTestCase): def test_fuse_linear(self): class FunctionalLinear(torch.nn.Module): def __init__(self, weight, bias): super(FunctionalLinear, self).__init__() self.weight = weight self.bias = bias def forward(self, x): res = torch.matmul(x, self.weight.t()) if self.bias is not None: res.add_(self.bias) return res x1 = torch.rand(3) w1 = torch.rand(5, 3) b1 = torch.rand(5) for has_bias in [True, False]: bias = b1 if has_bias else None model = torch.jit.trace(FunctionalLinear(w1, bias), [x1]) for node in model.graph.nodes(): if node.kind() == "aten::matmul": source_range_1 = node.sourceRange() torch._C._jit_pass_fuse_linear(model.graph) for node in model.graph.nodes(): if node.kind() == "aten::linear": source_range_2 = node.sourceRange() FileCheck().check("aten::linear").run(model.graph) check_not = ["aten::matmul", "aten::addmm", "aten::add_", "aten::t("] for cn in check_not: FileCheck().check_not(cn).run(model.graph) self.assertTrue(source_range_1 == source_range_2) # make sure it runs model(x1) # check matmuls are not fused class Matmul(torch.nn.Module): def __init__(self, weight): super(Matmul, self).__init__() self.weight = weight def forward(self, x): return torch.matmul(x, self.weight) x = torch.rand(5, 6, 5) w = torch.rand(5, 5, 100) model = torch.jit.trace(Matmul(w), [x]) torch._C._jit_pass_fuse_linear(model.graph) # check 3d matmul is not fused FileCheck().check("aten::matmul").run(model.graph) FileCheck().check_not("aten::linear").run(model.graph) # make sure it runs model(x)
pytorch-master
test/jit/test_graph_rewrite_passes.py
# Owner(s): ["oncall: jit"] import torch from torch.testing import FileCheck from torch.testing._internal.jit_utils import JitTestCase if __name__ == "__main__": raise RuntimeError( "This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TestPythonBindings\n\n" "instead." ) class TestPythonBindings(JitTestCase): def test_cu_get_functions(self): @torch.jit.script def test_get_python_cu_fn(x: torch.Tensor): return 2 * x cu = torch.jit._state._python_cu self.assertTrue( "test_get_python_cu_fn" in (str(fn.name) for fn in cu.get_functions()) ) def test_cu_create_function(self): @torch.jit.script def fn(x: torch.Tensor): return 2 * x cu = torch._C.CompilationUnit() cu.create_function("test_fn", fn.graph) inp = torch.randn(5) self.assertEqual(inp * 2, cu.find_function("test_fn")(inp)) self.assertEqual(cu.find_function("doesnt_exist"), None) self.assertEqual(inp * 2, cu.test_fn(inp)) with self.assertRaises(AttributeError): cu.doesnt_exist(inp) def test_invalidation(self): @torch.jit.script def test_invalidation_fn(x: torch.Tensor): return 2 * x gr = test_invalidation_fn.graph.copy() n = gr.insertNode(gr.create("prim::profile")) v = n.output() # check that they work str((n, v)) torch._C._jit_pass_dce(gr) with self.assertRaisesRegex(RuntimeError, "invalidated"): str(n) with self.assertRaisesRegex(RuntimeError, "invalidated"): str(v) def test_graph_iterator_keepalive(self): @torch.jit.script def test_iterator_keepalive_fn(x: torch.Tensor): return 2 * x # the list would segfault before because inlined_graph # is temporary and had been deleted (see issue #50454) n = test_iterator_keepalive_fn.inlined_graph.nodes() list(n) i = test_iterator_keepalive_fn.inlined_graph.inputs() list(i) o = test_iterator_keepalive_fn.inlined_graph.outputs() list(o) def test_aliasdb(self): @torch.jit.script def test_aliasdb_fn(x: torch.Tensor): return 2 * x gr = test_aliasdb_fn.graph.copy() alias_db = gr.alias_db() self.assertTrue("WILDCARD" in str(alias_db)) self.assertTrue("digraph alias_db" in alias_db.to_graphviz_str()) def test_graph_create(self): gr = torch._C.Graph() with self.assertRaises(ValueError): gr.create("prim::Constant", [None]) def test_canonicalize(self): ir = """ graph(%p207 : Tensor, %1 : Tensor, %p407 : int): %11 : Tensor = aten::view_expand_placeholder(%1) %12 : Tensor = aten::pointwise_placeholder(%11, %p207, %p407) %13 : Tensor = aten::view_expand_placeholder(%12) %14 : Tensor = aten::pointwise_placeholder(%13) return (%14) """ graph1 = torch._C.parse_ir(ir) graph1 = torch._C._jit_pass_canonicalize(graph1, True) graph2 = torch._C.parse_ir(ir) graph2 = torch._C._jit_pass_canonicalize(graph2) self.assertEqual(str(graph1), str(graph2)) FileCheck().check("%p207").check_not("%14").run(graph1) graph3 = torch._C.parse_ir(ir) graph3 = torch._C._jit_pass_canonicalize(graph3, False) FileCheck().check_not("%p207").run(graph3)
pytorch-master
test/jit/test_python_bindings.py
# Owner(s): ["oncall: jit"] from collections import namedtuple from typing import Dict, List, Optional, Tuple from torch.testing._internal.jit_utils import JitTestCase from torch.testing import FileCheck from textwrap import dedent from jit.test_module_interface import TestModuleInterface # noqa: F401 import inspect import os import sys import torch import torch.testing._internal.jit_utils # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestTypesAndAnnotation(JitTestCase): def test_pep585_type(self): # TODO add test to use PEP585 type annotation for return type after py3.9 # see: https://www.python.org/dev/peps/pep-0585/#id5 def fn(x: torch.Tensor) -> Tuple[Tuple[torch.Tensor], Dict[str, int]]: xl: list[tuple[torch.Tensor]] = [] xd: dict[str, int] = {} xl.append((x,)) xd['foo'] = 1 return xl.pop(), xd self.checkScript(fn, [torch.randn(2, 2)]) x = torch.randn(2, 2) expected = fn(x) scripted = torch.jit.script(fn)(x) self.assertEqual(expected, scripted) def test_types_as_values(self): def fn(m: torch.Tensor) -> torch.device: return m.device self.checkScript(fn, [torch.randn(2, 2)]) GG = namedtuple('GG', ['f', 'g']) class Foo(torch.nn.Module): def __init__(self): super().__init__() @torch.jit.ignore def foo(self, x: torch.Tensor, z: torch.Tensor) -> Tuple[GG, GG]: return GG(x, z), GG(x, z) def forward(self, x, z): return self.foo(x, z) foo = torch.jit.script(Foo()) y = foo(torch.randn(2, 2), torch.randn(2, 2)) class Foo(torch.nn.Module): def __init__(self): super().__init__() @torch.jit.ignore def foo(self, x, z) -> Tuple[GG, GG]: return GG(x, z) def forward(self, x, z): return self.foo(x, z) foo = torch.jit.script(Foo()) y = foo(torch.randn(2, 2), torch.randn(2, 2)) def test_ignore_with_types(self): @torch.jit.ignore def fn(x: Dict[str, Optional[torch.Tensor]]): return x + 10 class M(torch.nn.Module): def __init__(self): super(M, self).__init__() def forward(self, in_batch: Dict[str, Optional[torch.Tensor]]) -> torch.Tensor: self.dropout_modality(in_batch) fn(in_batch) return torch.tensor(1) @torch.jit.ignore def dropout_modality(self, in_batch: Dict[str, Optional[torch.Tensor]]) -> Dict[str, Optional[torch.Tensor]]: return in_batch sm = torch.jit.script(M()) FileCheck().check("dropout_modality").check("in_batch").run(str(sm.graph)) def test_python_callable(self): class MyPythonClass(object): @torch.jit.ignore def __call__(self, *args) -> str: return str(type(args[0])) the_class = MyPythonClass() @torch.jit.script def fn(x): return the_class(x) # This doesn't involve the string frontend, so don't use checkScript x = torch.ones(2) self.assertEqual(fn(x), the_class(x)) def test_bad_types(self): @torch.jit.ignore def fn(my_arg): return my_arg + 10 with self.assertRaisesRegex(RuntimeError, "argument 'my_arg'"): @torch.jit.script def other_fn(x): return fn('2') def test_type_annotate_py3(self): def fn(): a : List[int] = [] b : torch.Tensor = torch.ones(2, 2) c : Optional[torch.Tensor] = None d : Optional[torch.Tensor] = torch.ones(3, 4) for _ in range(10): a.append(4) c = torch.ones(2, 2) d = None return a, b, c, d self.checkScript(fn, ()) def wrong_type(): wrong : List[int] = [0.5] return wrong with self.assertRaisesRegex(RuntimeError, "List type annotation" r" `List\[int\]` did not match the " "types of the given list elements"): torch.jit.script(wrong_type) def test_optional_no_element_type_annotation(self): """ Test that using an optional with no contained types produces an error. """ def fn_with_comment(x: torch.Tensor) -> Optional: return (x, x) def annotated_fn(x: torch.Tensor) -> Optional: return (x, x) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(fn_with_comment))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(annotated_fn))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"): torch.jit.script(fn_with_comment) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"): torch.jit.script(annotated_fn) def test_tuple_no_element_type_annotation(self): """ Test that using a tuple with no contained types produces an error. """ def fn_with_comment(x: torch.Tensor) -> Tuple: return (x, x) def annotated_fn(x: torch.Tensor) -> Tuple: return (x, x) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(fn_with_comment))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"): cu = torch.jit.CompilationUnit() cu.define(dedent(inspect.getsource(annotated_fn))) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"): torch.jit.script(fn_with_comment) with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"): torch.jit.script(annotated_fn) def test_ignoring_module_attributes(self): """ Test that module attributes can be ignored. """ class Sub(torch.nn.Module): def __init__(self): super().__init__() def forward(self, a: int) -> int: return sum([a]) class ModuleWithIgnoredAttr(torch.nn.Module): __jit_ignored_attributes__ = ["a", "sub"] def __init__(self, a: int, b: int): super().__init__() self.a = a self.b = b self.sub = Sub() def forward(self) -> int: return self.b @torch.jit.ignore def ignored_fn(self) -> int: return self.sub.forward(self.a) mod = ModuleWithIgnoredAttr(1, 4) scripted_mod = torch.jit.script(mod) self.assertEqual(scripted_mod(), 4) self.assertEqual(scripted_mod.ignored_fn(), 1) # Test the error message for ignored attributes. class ModuleUsesIgnoredAttr(torch.nn.Module): __jit_ignored_attributes__ = ["a", "sub"] def __init__(self, a: int): super().__init__() self.a = a self.sub = Sub() def forward(self) -> int: return self.sub(self.b) mod = ModuleUsesIgnoredAttr(1) with self.assertRaisesRegexWithHighlight(RuntimeError, r"attribute was ignored during compilation", "self.sub"): scripted_mod = torch.jit.script(mod) def test_unimported_type_resolution(self): # verify fallback from the python resolver to the c++ resolver @ torch.jit.script def fn(x): # type: (number) -> number return x + 1 FileCheck().check('Scalar').run(fn.graph) def test_parser_bug(self): def parser_bug(o: Optional[torch.Tensor]): pass def test_mismatched_annotation(self): with self.assertRaisesRegex(RuntimeError, 'annotated with type'): @torch.jit.script def foo(): x : str = 4 return x def test_reannotate(self): with self.assertRaisesRegex(RuntimeError, 'declare and annotate'): @torch.jit.script def foo(): x = 5 if 1 == 1: x : Optional[int] = 7 def test_annotate_outside_init(self): msg = "annotations on instance attributes must be declared in __init__" highlight = "self.x: int" # Simple case with self.assertRaisesRegexWithHighlight(ValueError, msg, highlight): @torch.jit.script class BadModule(object): def __init__(self, x: int): self.x = x def set(self, val: int): self.x: int = val # Type annotation in a loop with self.assertRaisesRegexWithHighlight(ValueError, msg, highlight): @torch.jit.script class BadModuleLoop(object): def __init__(self, x: int): self.x = x def set(self, val: int): for i in range(3): self.x: int = val # Type annotation in __init__, should not fail @torch.jit.script class GoodModule(object): def __init__(self, x: int): self.x: int = x def set(self, val: int): self.x = val def test_inferred_type_error_message(self): inferred_type = torch._C.InferredType("ErrorReason") with self.assertRaisesRegex(RuntimeError, "Tried to get the type from an InferredType but the type is null."): t = inferred_type.type() with self.assertRaisesRegex(RuntimeError, "ErrorReason"): t = inferred_type.type()
pytorch-master
test/jit/test_types.py
# Owner(s): ["oncall: jit"] import os import sys import torch from torch.testing import FileCheck from enum import Enum from typing import Any, List # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from torch.testing._internal.jit_utils import JitTestCase, make_global if __name__ == '__main__': raise RuntimeError("This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead.") class TestEnum(JitTestCase): def test_enum_value_types(self): class IntEnum(Enum): FOO = 1 BAR = 2 class FloatEnum(Enum): FOO = 1.2 BAR = 2.3 class StringEnum(Enum): FOO = "foo as in foo bar" BAR = "bar as in foo bar" make_global(IntEnum, FloatEnum, StringEnum) @torch.jit.script def supported_enum_types(a: IntEnum, b: FloatEnum, c: StringEnum): return (a.name, b.name, c.name) FileCheck() \ .check("IntEnum") \ .check("FloatEnum") \ .check("StringEnum") \ .run(str(supported_enum_types.graph)) class TensorEnum(Enum): FOO = torch.tensor(0) BAR = torch.tensor(1) make_global(TensorEnum) def unsupported_enum_types(a: TensorEnum): return a.name # TODO: rewrite code so that the highlight is not empty. with self.assertRaisesRegexWithHighlight(RuntimeError, "Cannot create Enum with value type 'Tensor'", ""): torch.jit.script(unsupported_enum_types) def test_enum_comp(self): class Color(Enum): RED = 1 GREEN = 2 make_global(Color) @torch.jit.script def enum_comp(x: Color, y: Color) -> bool: return x == y FileCheck().check("aten::eq").run(str(enum_comp.graph)) self.assertEqual(enum_comp(Color.RED, Color.RED), True) self.assertEqual(enum_comp(Color.RED, Color.GREEN), False) def test_enum_comp_diff_classes(self): class Foo(Enum): ITEM1 = 1 ITEM2 = 2 class Bar(Enum): ITEM1 = 1 ITEM2 = 2 make_global(Foo, Bar) @torch.jit.script def enum_comp(x: Foo) -> bool: return x == Bar.ITEM1 FileCheck() \ .check("prim::Constant") \ .check_same("Bar.ITEM1") \ .check("aten::eq") \ .run(str(enum_comp.graph)) self.assertEqual(enum_comp(Foo.ITEM1), False) def test_heterogenous_value_type_enum_error(self): class Color(Enum): RED = 1 GREEN = "green" make_global(Color) def enum_comp(x: Color, y: Color) -> bool: return x == y # TODO: rewrite code so that the highlight is not empty. with self.assertRaisesRegexWithHighlight(RuntimeError, "Could not unify type list", ""): torch.jit.script(enum_comp) def test_enum_name(self): class Color(Enum): RED = 1 GREEN = 2 make_global(Color) @torch.jit.script def enum_name(x: Color) -> str: return x.name FileCheck() \ .check("Color") \ .check_next("prim::EnumName") \ .check_next("return") \ .run(str(enum_name.graph)) self.assertEqual(enum_name(Color.RED), Color.RED.name) self.assertEqual(enum_name(Color.GREEN), Color.GREEN.name) def test_enum_value(self): class Color(Enum): RED = 1 GREEN = 2 make_global(Color) @torch.jit.script def enum_value(x: Color) -> int: return x.value FileCheck() \ .check("Color") \ .check_next("prim::EnumValue") \ .check_next("return") \ .run(str(enum_value.graph)) self.assertEqual(enum_value(Color.RED), Color.RED.value) self.assertEqual(enum_value(Color.GREEN), Color.GREEN.value) def test_enum_as_const(self): class Color(Enum): RED = 1 GREEN = 2 make_global(Color) @torch.jit.script def enum_const(x: Color) -> bool: return x == Color.RED FileCheck() \ .check("prim::Constant[value=__torch__.jit.test_enum.Color.RED]") \ .check_next("aten::eq") \ .check_next("return") \ .run(str(enum_const.graph)) self.assertEqual(enum_const(Color.RED), True) self.assertEqual(enum_const(Color.GREEN), False) def test_non_existent_enum_value(self): class Color(Enum): RED = 1 GREEN = 2 make_global(Color) def enum_const(x: Color) -> bool: if x == Color.PURPLE: return True else: return False with self.assertRaisesRegexWithHighlight(RuntimeError, "has no attribute 'PURPLE'", "Color.PURPLE"): torch.jit.script(enum_const) def test_enum_ivalue_type(self): class Color(Enum): RED = 1 GREEN = 2 make_global(Color) @torch.jit.script def is_color_enum(x: Any): return isinstance(x, Color) FileCheck() \ .check("prim::isinstance[types=[Enum<__torch__.jit.test_enum.Color>]]") \ .check_next("return") \ .run(str(is_color_enum.graph)) self.assertEqual(is_color_enum(Color.RED), True) self.assertEqual(is_color_enum(Color.GREEN), True) self.assertEqual(is_color_enum(1), False) def test_closed_over_enum_constant(self): class Color(Enum): RED = 1 GREEN = 2 a = Color @torch.jit.script def closed_over_aliased_type(): return a.RED.value FileCheck() \ .check("prim::Constant[value={}]".format(a.RED.value)) \ .check_next("return") \ .run(str(closed_over_aliased_type.graph)) self.assertEqual(closed_over_aliased_type(), Color.RED.value) b = Color.RED @torch.jit.script def closed_over_aliased_value(): return b.value FileCheck() \ .check("prim::Constant[value={}]".format(b.value)) \ .check_next("return") \ .run(str(closed_over_aliased_value.graph)) self.assertEqual(closed_over_aliased_value(), Color.RED.value) def test_enum_as_module_attribute(self): class Color(Enum): RED = 1 GREEN = 2 class TestModule(torch.nn.Module): def __init__(self, e: Color): super(TestModule, self).__init__() self.e = e def forward(self): return self.e.value m = TestModule(Color.RED) scripted = torch.jit.script(m) FileCheck() \ .check("TestModule") \ .check_next("Color") \ .check_same("prim::GetAttr[name=\"e\"]") \ .check_next("prim::EnumValue") \ .check_next("return") \ .run(str(scripted.graph)) self.assertEqual(scripted(), Color.RED.value) def test_string_enum_as_module_attribute(self): class Color(Enum): RED = "red" GREEN = "green" class TestModule(torch.nn.Module): def __init__(self, e: Color): super(TestModule, self).__init__() self.e = e def forward(self): return (self.e.name, self.e.value) make_global(Color) m = TestModule(Color.RED) scripted = torch.jit.script(m) self.assertEqual(scripted(), (Color.RED.name, Color.RED.value)) def test_enum_return(self): class Color(Enum): RED = 1 GREEN = 2 make_global(Color) @torch.jit.script def return_enum(cond: bool): if cond: return Color.RED else: return Color.GREEN self.assertEqual(return_enum(True), Color.RED) self.assertEqual(return_enum(False), Color.GREEN) def test_enum_module_return(self): class Color(Enum): RED = 1 GREEN = 2 class TestModule(torch.nn.Module): def __init__(self, e: Color): super(TestModule, self).__init__() self.e = e def forward(self): return self.e make_global(Color) m = TestModule(Color.RED) scripted = torch.jit.script(m) FileCheck() \ .check("TestModule") \ .check_next("Color") \ .check_same("prim::GetAttr[name=\"e\"]") \ .check_next("return") \ .run(str(scripted.graph)) self.assertEqual(scripted(), Color.RED) def test_enum_iterate(self): class Color(Enum): RED = 1 GREEN = 2 BLUE = 3 def iterate_enum(x: Color): res: List[int] = [] for e in Color: if e != x: res.append(e.value) return res make_global(Color) scripted = torch.jit.script(iterate_enum) FileCheck() \ .check("Enum<__torch__.jit.test_enum.Color>[]") \ .check_same("Color.RED") \ .check_same("Color.GREEN") \ .check_same("Color.BLUE") \ .run(str(scripted.graph)) # PURPLE always appears last because we follow Python's Enum definition order. self.assertEqual(scripted(Color.RED), [Color.GREEN.value, Color.BLUE.value]) self.assertEqual(scripted(Color.GREEN), [Color.RED.value, Color.BLUE.value]) # Tests that explicitly and/or repeatedly scripting an Enum class is permitted. def test_enum_explicit_script(self): @torch.jit.script class Color(Enum): RED = 1 GREEN = 2 torch.jit.script(Color)
pytorch-master
test/jit/test_enum.py
pytorch-master
test/jit/_imported_class_test/__init__.py
import torch # This file contains definitions of script classes. # They are used by test_jit.py to test ScriptClass imports @torch.jit.script # noqa: B903 class FooSameName(object): # noqa: B903 def __init__(self, y): self.y = y
pytorch-master
test/jit/_imported_class_test/bar.py
import torch from . import bar # This file contains definitions of script classes. # They are used by test_jit.py to test ScriptClass imports @torch.jit.script # noqa: B903 class FooSameName(object): def __init__(self, x): self.x = x self.nested = bar.FooSameName(x)
pytorch-master
test/jit/_imported_class_test/foo.py
pytorch-master
test/jit/_imported_class_test/very/__init__.py
pytorch-master
test/jit/_imported_class_test/very/very/__init__.py
import torch # This file contains definitions of script classes. # They are used by test_jit.py to test ScriptClass imports @torch.jit.script # noqa: B903 class FooUniqueName(object): # noqa: B903 def __init__(self, y): self.y = y
pytorch-master
test/jit/_imported_class_test/very/very/nested.py
import torch from typing import Union class TestVersionedDivTensorExampleV7(torch.nn.Module): def __init__(self): super(TestVersionedDivTensorExampleV7, self).__init__() def forward(self, a, b): result_0 = a / b result_1 = torch.div(a, b) result_2 = a.div(b) return result_0, result_1, result_2 class TestVersionedLinspaceV7(torch.nn.Module): def __init__(self): super(TestVersionedLinspaceV7, self).__init__() def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]): c = torch.linspace(a, b, steps=5) d = torch.linspace(a, b) return c, d class TestVersionedLinspaceOutV7(torch.nn.Module): def __init__(self): super(TestVersionedLinspaceOutV7, self).__init__() def forward(self, a: Union[int, float, complex], b: Union[int, float, complex], out: torch.Tensor): return torch.linspace(a, b, out=out) class TestVersionedLogspaceV8(torch.nn.Module): def __init__(self): super(TestVersionedLogspaceV8, self).__init__() def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]): c = torch.logspace(a, b, steps=5) d = torch.logspace(a, b) return c, d class TestVersionedLogspaceOutV8(torch.nn.Module): def __init__(self): super(TestVersionedLogspaceOutV8, self).__init__() def forward(self, a: Union[int, float, complex], b: Union[int, float, complex], out: torch.Tensor): return torch.logspace(a, b, out=out) class TestVersionedGeluV9(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): return torch._C._nn.gelu(x) class TestVersionedGeluOutV9(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): out = torch.zeros_like(x) return torch._C._nn.gelu(x, out=out)
pytorch-master
test/jit/fixtures_srcs/fixtures_src.py
import io import logging import sys import zipfile from pathlib import Path from typing import Set import torch # Use asterisk symbol so developer doesn't need to import here when they add tests for upgraders. from test.jit.fixtures_srcs.fixtures_src import * # noqa: F403 from torch.jit.mobile import _load_for_lite_interpreter, _export_operator_list logging.basicConfig(stream=sys.stdout, level=logging.INFO) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) """ This file is used to generate model for test operator change. Please refer to https://github.com/pytorch/rfcs/blob/master/RFC-0017-PyTorch-Operator-Versioning.md for more details. A systematic workflow to change operator is needed to ensure Backwards Compatibility (BC) / Forwards Compatibility (FC) for operator changes. For BC-breaking operator change, an upgrader is needed. Here is the flow to properly land a BC-breaking operator change. 1. Write an upgrader in caffe2/torch/csrc/jit/operator_upgraders/upgraders_entry.cpp file. The softly enforced naming format is <operator_name>_<operator_overload>_<start>_<end>. For example, the below example means that div.Tensor at version from 0 to 3 needs to be replaced by this upgrader. ``` /* div_Tensor_0_3 is added for a change of operator div in pr xxxxxxx. Create date: 12/02/2021 Expire date: 06/02/2022 */ {"div_Tensor_0_3", R"SCRIPT( def div_Tensor_0_3(self: Tensor, other: Tensor) -> Tensor: if (self.is_floating_point() or other.is_floating_point()): return self.true_divide(other) return self.divide(other, rounding_mode='trunc') )SCRIPT"}, ``` 2. In caffe2/torch/csrc/jit/operator_upgraders/version_map.h, add changes like below. You will need to make sure that the entry is SORTED according to the version bump number. ``` {"div.Tensor", {{4, "div_Tensor_0_3", "aten::div.Tensor(Tensor self, Tensor other) -> Tensor"}}}, ``` 3. After rebuild PyTorch, run the following command and it will auto generate a change to fbcode/caffe2/torch/csrc/jit/mobile/upgrader_mobile.cpp ``` python pytorch/torchgen/operator_versions/gen_mobile_upgraders.py ``` 4. Generate the test to cover upgrader. 4.1 Switch the commit before the operator change, and add a module in `test/jit/fixtures_srcs/fixtures_src.py`. The reason why switching to commit is that, an old model with the old operator before the change is needed to ensure the upgrader is working as expected. In `test/jit/fixtures_srcs/generate_models.py`, add the module and it's corresponding changed operator like following ``` ALL_MODULES = { TestVersionedDivTensorExampleV7(): "aten::div.Tensor", } ``` This module should includes the changed operator. If the operator isn't covered in the model, the model export process in step 4.2 will fail. 4.2 Export the model to `test/jit/fixtures` by running ``` python /Users/chenlai/pytorch/test/jit/fixtures_src/generate_models.py ``` 4.3 In `test/jit/test_save_load_for_op_version.py`, add a test to cover the old models and ensure the result is equivalent between current module and old module + upgrader. 4.4 Save all change in 4.1, 4.2 and 4.3, as well as previous changes made in step 1, 2, 3. Submit a pr """ """ A map of test modules and it's according changed operator key: test module value: changed operator """ ALL_MODULES = { TestVersionedDivTensorExampleV7(): "aten::div.Tensor", TestVersionedLinspaceV7(): "aten::linspace", TestVersionedLinspaceOutV7(): "aten::linspace.out", TestVersionedLogspaceV8(): "aten::logspace", TestVersionedLogspaceOutV8(): "aten::logspace.out", TestVersionedGeluV9(): "aten::gelu", TestVersionedGeluOutV9(): "aten::gelu.out", } """ Get the path to `test/jit/fixtures`, where all test models for operator changes (upgrader/downgrader) are stored """ def get_fixtures_path() -> Path: pytorch_dir = Path(__file__).resolve().parents[3] fixtures_path = pytorch_dir / "test" / "jit" / "fixtures" return fixtures_path """ Get all models' name in `test/jit/fixtures` """ def get_all_models(model_directory_path: Path) -> Set[str]: files_in_fixtures = model_directory_path.glob('**/*') all_models_from_fixtures = [fixture.stem for fixture in files_in_fixtures if fixture.is_file()] return set(all_models_from_fixtures) """ Check if a given model already exist in `test/jit/fixtures` """ def model_exist(model_file_name: str, all_models: Set[str]) -> bool: return model_file_name in all_models """ Get the operator list given a module """ def get_operator_list(script_module: torch) -> Set[str]: buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter()) buffer.seek(0) mobile_module = _load_for_lite_interpreter(buffer) operator_list = _export_operator_list(mobile_module) return operator_list """ Get the output model operator version, given a module """ def get_output_model_version(script_module: torch.nn.Module) -> int: buffer = io.BytesIO() torch.jit.save(script_module, buffer) buffer.seek(0) zipped_model = zipfile.ZipFile(buffer) try: version = int(zipped_model.read('archive/version').decode("utf-8")) return version except KeyError: version = int(zipped_model.read('archive/.data/version').decode("utf-8")) return version """ Loop through all test modules. If the corresponding model doesn't exist in `test/jit/fixtures`, generate one. For the following reason, a model won't be exported: 1. The test module doens't cover the changed operator. For example, test_versioned_div_tensor_example_v4 is supposed to test the operator aten::div.Tensor. If the model doesn't include this operator, it will fail. The error message includes the actual operator list from the model. 2. The output model version is not the same as expected version. For example, test_versioned_div_tensor_example_v4 is used to test an operator change aten::div.Tensor, and the operator version will be bumped to v5. This script is supposed to run before the operator change (before the commit to make the change). If the actual model version is v5, likely this script is running with the commit to make the change. 3. The model already exists in `test/jit/fixtures`. """ def generate_models(model_directory_path: Path): all_models = get_all_models(model_directory_path) for a_module, expect_operator in ALL_MODULES.items(): # For example: TestVersionedDivTensorExampleV7 torch_module_name = type(a_module).__name__ if not isinstance(a_module, torch.nn.Module): logger.error( f"The module {torch_module_name} " f"is not a torch.nn.module instance. " f"Please ensure it's a subclass of torch.nn.module in fixtures_src.py" f"and it's registered as an instance in ALL_MODULES in generated_models.py") # The corresponding model name is: test_versioned_div_tensor_example_v4 model_name = ''.join([ '_' + char.lower() if char.isupper() else char for char in torch_module_name ]).lstrip('_') # Some models may not compile anymore, so skip the ones # that already has pt file for them. logger.info(f"Processing {torch_module_name}") if model_exist(model_name, all_models): logger.info(f"Model {model_name} already exists, skipping") continue script_module = torch.jit.script(a_module) actual_model_version = get_output_model_version(script_module) current_operator_version = torch._C._get_max_operator_version() if actual_model_version >= current_operator_version + 1: logger.error( f"Actual model version {actual_model_version} " f"is equal or larger than {current_operator_version} + 1. " f"Please run the script before the commit to change operator.") continue actual_operator_list = get_operator_list(script_module) if expect_operator not in actual_operator_list: logger.error( f"The model includes operator: {actual_operator_list}, " f"however it doesn't cover the operator {expect_operator}." f"Please ensure the output model includes the tested operator.") continue export_model_path = str(model_directory_path / (str(model_name) + ".ptl")) script_module._save_for_lite_interpreter(export_model_path) logger.info(f"Generating model {model_name} and it's save to {export_model_path}") def main() -> None: model_directory_path = get_fixtures_path() generate_models(model_directory_path) if __name__ == '__main__': main()
pytorch-master
test/jit/fixtures_srcs/generate_models.py
pytorch-master
test/jit/fixtures_srcs/__init__.py
# Owner(s): ["oncall: mobile"] import torch from test.jit.fixtures_srcs.generate_models import ALL_MODULES from torch.testing._internal.common_utils import TestCase, run_tests class TestUpgraderModelGeneration(TestCase): def test_all_modules(self): for a_module, expect_operator in ALL_MODULES.items(): module_name = type(a_module).__name__ self.assertTrue( isinstance(a_module, torch.nn.Module), f"The module {module_name} " f"is not a torch.nn.module instance. " f"Please ensure it's a subclass of torch.nn.module in fixtures_src.py" f"and it's registered as an instance in ALL_MODULES in generated_models.py") if __name__ == '__main__': run_tests()
pytorch-master
test/jit/fixtures_srcs/test_upgrader_models_generation.py
import argparse import os import sys import torch # grab modules from test_jit_hooks.cpp pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) from jit.test_hooks_modules import ( create_forward_tuple_input, create_module_forward_multiple_inputs, create_module_forward_single_input, create_module_hook_return_nothing, create_module_multiple_hooks_multiple_inputs, create_module_multiple_hooks_single_input, create_module_no_forward_input, create_module_same_hook_repeated, create_submodule_forward_multiple_inputs, create_submodule_forward_single_input, create_submodule_hook_return_nothing, create_submodule_multiple_hooks_multiple_inputs, create_submodule_multiple_hooks_single_input, create_submodule_same_hook_repeated, create_submodule_to_call_directly_with_hooks) # Create saved modules for JIT forward hooks and pre-hooks def main(): parser = argparse.ArgumentParser( description="Serialize a script modules with hooks attached" ) parser.add_argument("--export-script-module-to", required=True) options = parser.parse_args() global save_name save_name = options.export_script_module_to + "_" tests = [ ("test_submodule_forward_single_input", create_submodule_forward_single_input()), ("test_submodule_forward_multiple_inputs", create_submodule_forward_multiple_inputs()), ("test_submodule_multiple_hooks_single_input", create_submodule_multiple_hooks_single_input()), ("test_submodule_multiple_hooks_multiple_inputs", create_submodule_multiple_hooks_multiple_inputs()), ("test_submodule_hook_return_nothing", create_submodule_hook_return_nothing()), ("test_submodule_same_hook_repeated", create_submodule_same_hook_repeated()), ("test_module_forward_single_input", create_module_forward_single_input()), ("test_module_forward_multiple_inputs", create_module_forward_multiple_inputs()), ("test_module_multiple_hooks_single_input", create_module_multiple_hooks_single_input()), ("test_module_multiple_hooks_multiple_inputs", create_module_multiple_hooks_multiple_inputs()), ("test_module_hook_return_nothing", create_module_hook_return_nothing()), ("test_module_same_hook_repeated", create_module_same_hook_repeated()), ("test_module_no_forward_input", create_module_no_forward_input()), ("test_forward_tuple_input", create_forward_tuple_input()), ("test_submodule_to_call_directly_with_hooks", create_submodule_to_call_directly_with_hooks()) ] for name, model in tests: m_scripted = torch.jit.script(model) filename = save_name + name + ".pt" torch.jit.save(m_scripted, filename) print("OK: completed saving modules with hooks!") if __name__ == "__main__": main()
pytorch-master
test/jit_hooks/model.py
# this file contains a simple parser that parses report # from cuda-memcheck class ParseError(Exception): """Whenever the simple parser is unable to parse the report, this exception will be raised""" pass class Report: """A report is a container of errors, and a summary on how many errors are found""" def __init__(self, text, errors): # text is something like # ERROR SUMMARY: 1 error # or # ERROR SUMMARY: 2 errors self.text = text self.num_errors = int(text.strip().split()[2]) self.errors = errors if len(errors) != self.num_errors: if len(errors) == 10000 and self.num_errors > 10000: # When there are more than 10k errors, cuda-memcheck only display 10k self.num_errors = 10000 else: raise ParseError("Number of errors does not match") class Error: """Each error is a section in the output of cuda-memcheck. Each error in the report has an error message and a backtrace. It looks like: ========= Program hit cudaErrorInvalidValue (error 1) due to "invalid argument" on CUDA API call to cudaGetLastError. ========= Saved host backtrace up to driver entry point at error ========= Host Frame:/usr/lib/x86_64-linux-gnu/libcuda.so.1 [0x38c7b3] ========= Host Frame:/usr/local/cuda/lib64/libcudart.so.10.1 (cudaGetLastError + 0x163) [0x4c493] ========= Host Frame:/home/xgao/anaconda3/lib/python3.7/site-packages/torch/lib/libtorch.so [0x5b77a05] ========= Host Frame:/home/xgao/anaconda3/lib/python3.7/site-packages/torch/lib/libtorch.so [0x39d6d1d] ========= ..... """ def __init__(self, lines): self.message = lines[0] lines = lines[2:] self.stack = [l.strip() for l in lines] def parse(message): """A simple parser that parses the report of cuda-memcheck. This parser is meant to be simple and it only split the report into separate errors and a summary. Where each error is further splitted into error message and backtrace. No further details are parsed. A report contains multiple errors and a summary on how many errors are detected. It looks like: ========= CUDA-MEMCHECK ========= Program hit cudaErrorInvalidValue (error 1) due to "invalid argument" on CUDA API call to cudaPointerGetAttributes. ========= Saved host backtrace up to driver entry point at error ========= Host Frame:/usr/lib/x86_64-linux-gnu/libcuda.so.1 [0x38c7b3] ========= Host Frame:/usr/local/cuda/lib64/libcudart.so.10.1 (cudaPointerGetAttributes + 0x1a9) [0x428b9] ========= Host Frame:/home/xgao/anaconda3/lib/python3.7/site-packages/torch/lib/libtorch.so [0x5b778a9] ========= ..... ========= ========= Program hit cudaErrorInvalidValue (error 1) due to "invalid argument" on CUDA API call to cudaGetLastError. ========= Saved host backtrace up to driver entry point at error ========= Host Frame:/usr/lib/x86_64-linux-gnu/libcuda.so.1 [0x38c7b3] ========= Host Frame:/usr/local/cuda/lib64/libcudart.so.10.1 (cudaGetLastError + 0x163) [0x4c493] ========= ..... ========= ========= ..... ========= ========= Program hit cudaErrorInvalidValue (error 1) due to "invalid argument" on CUDA API call to cudaGetLastError. ========= Saved host backtrace up to driver entry point at error ========= Host Frame:/usr/lib/x86_64-linux-gnu/libcuda.so.1 [0x38c7b3] ========= ..... ========= Host Frame:python (_PyEval_EvalFrameDefault + 0x6a0) [0x1d0ad0] ========= Host Frame:python (_PyEval_EvalCodeWithName + 0xbb9) [0x116db9] ========= ========= ERROR SUMMARY: 4 errors """ errors = [] HEAD = '=========' headlen = len(HEAD) started = False in_message = False message_lines = [] lines = message.splitlines() for l in lines: if l == HEAD + ' CUDA-MEMCHECK': started = True continue if not started or not l.startswith(HEAD): continue l = l[headlen + 1:] if l.startswith('ERROR SUMMARY:'): return Report(l, errors) if not in_message: in_message = True message_lines = [l] elif l == '': errors.append(Error(message_lines)) in_message = False else: message_lines.append(l) raise ParseError("No error summary found")
pytorch-master
test/scripts/cuda_memcheck_common.py
#!/usr/bin/env python3 """This script runs cuda-memcheck on the specified unit test. Each test case is run in its isolated process with a timeout so that: 1) different test cases won't influence each other, and 2) in case of hang, the script would still finish in a finite amount of time. The output will be written to a log file result.log Example usage: python run_cuda_memcheck.py ../test_torch.py 600 Note that running cuda-memcheck could be very slow. """ import asyncio import torch import multiprocessing import argparse import subprocess import tqdm import os import sys import cuda_memcheck_common as cmc ALL_TESTS = [] GPUS = torch.cuda.device_count() # parse arguments parser = argparse.ArgumentParser(description="Run isolated cuda-memcheck on unit tests") parser.add_argument('filename', help="the python file for a test, such as test_torch.py") parser.add_argument('timeout', type=int, help='kill the test if it does not terminate in a certain amount of seconds') parser.add_argument('--strict', action='store_true', help='Whether to show cublas/cudnn errors. These errors are ignored by default because' 'cublas/cudnn does not run error-free under cuda-memcheck, and ignoring these errors') parser.add_argument('--nproc', type=int, default=multiprocessing.cpu_count(), help='Number of processes running tests, default to number of cores in the system') parser.add_argument('--gpus', default='all', help='GPU assignments for each process, it could be "all", or : separated list like "1,2:3,4:5,6"') parser.add_argument('--ci', action='store_true', help='Whether this script is executed in CI. When executed inside a CI, this script fails when ' 'an error is detected. Also, it will not show tqdm progress bar, but directly print the error' 'to stdout instead.') parser.add_argument('--nohang', action='store_true', help='Treat timeout as success') parser.add_argument('--split', type=int, default=1, help='Split the job into pieces') parser.add_argument('--rank', type=int, default=0, help='Which piece this process should pick') args = parser.parse_args() # Filters that ignores cublas/cudnn errors # TODO (@zasdfgbnm): When can we remove this? Will cublas/cudnn run error-free under cuda-memcheck? def is_ignored_only(output): try: report = cmc.parse(output) except cmc.ParseError: # in case the simple parser fails parsing the output of cuda memcheck # then this error is never ignored. return False count_ignored_errors = 0 for e in report.errors: if 'libcublas' in ''.join(e.stack) or 'libcudnn' in ''.join(e.stack) or 'libcufft' in ''.join(e.stack): count_ignored_errors += 1 return count_ignored_errors == report.num_errors # Set environment PYTORCH_CUDA_MEMCHECK=1 to allow skipping some tests os.environ['PYTORCH_CUDA_MEMCHECK'] = '1' # Discover tests: # To get a list of tests, run: # pytest --setup-only test/test_torch.py # and then parse the output proc = subprocess.Popen(['pytest', '--setup-only', args.filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() lines = stdout.decode().strip().splitlines() for line in lines: if '(fixtures used:' in line: line = line.strip().split()[0] line = line[line.find('::') + 2:] line = line.replace('::', '.') ALL_TESTS.append(line) # Do a simple filtering: # if 'cpu' or 'CPU' is in the name and 'cuda' or 'CUDA' is not in the name, then skip it def is_cpu_only(name): name = name.lower() return ('cpu' in name) and not ('cuda' in name) ALL_TESTS = [x for x in ALL_TESTS if not is_cpu_only(x)] # Split all tests into chunks, and only on the selected chunk ALL_TESTS.sort() chunk_size = (len(ALL_TESTS) + args.split - 1) // args.split start = chunk_size * args.rank end = chunk_size * (args.rank + 1) ALL_TESTS = ALL_TESTS[start:end] # Run tests: # Since running cuda-memcheck on PyTorch unit tests is very slow, these tests must be run in parallel. # This is done by using the coroutine feature in new Python versions. A number of coroutines are created; # they create subprocesses and awaiting them to finish. The number of running subprocesses could be # specified by the user and by default is the same as the number of CPUs in the machine. # These subprocesses are balanced across different GPUs on the system by assigning one devices per process, # or as specified by the user progress = 0 if not args.ci: logfile = open('result.log', 'w') progressbar = tqdm.tqdm(total=len(ALL_TESTS)) else: logfile = sys.stdout # create a fake progress bar that does not display anything class ProgressbarStub: def update(self, *args): return progressbar = ProgressbarStub() async def run1(coroutine_id): global progress if args.gpus == 'all': gpuid = coroutine_id % GPUS else: gpu_assignments = args.gpus.split(':') assert args.nproc == len(gpu_assignments), 'Please specify GPU assignmnent for each process, separated by :' gpuid = gpu_assignments[coroutine_id] while progress < len(ALL_TESTS): test = ALL_TESTS[progress] progress += 1 cmd = f'CUDA_VISIBLE_DEVICES={gpuid} cuda-memcheck --error-exitcode 1 python {args.filename} {test}' proc = await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE) try: stdout, stderr = await asyncio.wait_for(proc.communicate(), args.timeout) except asyncio.TimeoutError: print('Timeout:', test, file=logfile) proc.kill() if args.ci and not args.nohang: sys.exit("Hang detected on cuda-memcheck") else: if proc.returncode == 0: print('Success:', test, file=logfile) else: stdout = stdout.decode() stderr = stderr.decode() should_display = args.strict or not is_ignored_only(stdout) if should_display: print('Fail:', test, file=logfile) print(stdout, file=logfile) print(stderr, file=logfile) if args.ci: sys.exit("Failure detected on cuda-memcheck") else: print('Ignored:', test, file=logfile) del proc progressbar.update(1) async def main(): tasks = [asyncio.ensure_future(run1(i)) for i in range(args.nproc)] for t in tasks: await t if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
pytorch-master
test/scripts/run_cuda_memcheck.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import logging import torch import torch.ao.quantization as tq from torch import nn from torch.ao import sparsity from torch.testing._internal.common_utils import TestCase from torch.ao.quantization.quantize_fx import prepare_fx, convert_fx, convert_to_reference_fx, prepare_qat_fx from torch.ao.sparsity import fqn_to_module logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO ) sparse_defaults = { "sparsity_level": 0.8, "sparse_block_shape": (1, 4), "zeros_per_block": 4, } def _get_model_and_sparsifier_and_sparse_config(qconfig=None): model = nn.Sequential( nn.Linear(4, 4), # 0 nn.ReLU(), nn.Linear(4, 4), # 2 nn.ReLU(), tq.QuantStub(), nn.Linear(4, 4), # 5 nn.ReLU(), tq.DeQuantStub(), ) if qconfig: model[4].qconfig = qconfig model[5].qconfig = qconfig sparsifier = sparsity.WeightNormSparsifier(**sparse_defaults) sparse_config = [ { "tensor_fqn": '5.weight', "sparsity_level": 0.7, "sparse_block_shape": (1, 4), "zeros_per_block": 4, }, {"tensor_fqn": "0.weight"}, ] return model, sparsifier, sparse_config def _squash_mask_calibrate_and_convert(model, sparsifier, input): sparsifier.step() sparsifier.squash_mask() model(input) tq.convert(model, inplace=True) def _calculate_sparsity(tensor): return ((tensor == 0).sum() / tensor.numel()).item() # This series of tests are to check the composability goals for sparsity and quantization. Namely # that performing quantization and sparsity model manipulations in various orderings # does not cause problems class TestComposability(TestCase): # This test checks whether performing quantization prepare before sparse prepare # causes any issues and verifies that the correct observers are inserted and that # the quantized model works as expected def test_q_prep_before_s_prep(self): ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config(tq.get_default_qconfig("fbgemm")) tq.prepare(mod, inplace=True) sparsifier.prepare(mod, config=sparse_config) # check that correct modules had parametrizations added self.assertTrue(hasattr(mod[0], "parametrizations")) self.assertTrue(hasattr(mod[5], "parametrizations")) # check that correct observers were inserted self.assertTrue(hasattr(mod[5], "activation_post_process")) _squash_mask_calibrate_and_convert( mod, sparsifier, torch.randn(1, 4, 4, 4) ) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(mod[5], torch.nn.quantized.Linear)) self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4])) # This test checks whether performing sparsity prepare before quantization prepare # causes any issues. In particular, previous quantization flow was unable to match # the post sparse prepare module names (adding parametrizations changes the module class names) # which would result in those parametrized modules not being quantized. This test verifies that # the fix for this was successful. def test_s_prep_before_q_prep(self): ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config(tq.get_default_qconfig("fbgemm")) sparsifier.prepare(mod, config=sparse_config) tq.prepare(mod, inplace=True) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(mod[0], "parametrizations")) self.assertTrue(hasattr(mod[5], "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(hasattr(mod[5], "activation_post_process")) _squash_mask_calibrate_and_convert( mod, sparsifier, torch.randn(1, 4, 4, 4) ) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(mod[5], torch.nn.quantized.Linear)) self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4])) # if the sparsified modules have not undergone the final squash mask operation, its possible # that the problem outlined in test_s_prep_before_q_prep would occur. This test verifies # both that the fix to the convert flow avoids this issue and that the resulting quantized # module uses the sparse version of the weight value. def test_convert_without_squash_mask(self): ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config(tq.get_default_qconfig("fbgemm")) sparsifier.prepare(mod, config=sparse_config) tq.prepare(mod, inplace=True) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(mod[0], "parametrizations")) self.assertTrue(hasattr(mod[5], "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(hasattr(mod[5], "activation_post_process")) sparsifier.step() sparsity_level = _calculate_sparsity(mod[5].weight) mod(torch.randn(1, 4, 4, 4)) tq.convert(mod, inplace=True) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(mod[5], torch.nn.quantized.Linear)) self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4])) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(mod[5]._weight_bias()[0]) self.assertGreaterAlmostEqual(cur_sparsity, sparsity_level) self.assertGreaterAlmostEqual( sparsity_level, sparse_config[0]["sparsity_level"] ) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) # This tests whether performing sparse prepare before fusion causes any issues. The # worry was that the link created between the sparsifier and the modules that need to # be sparsified would be broken. def test_s_prep_before_fusion(self): ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config(tq.get_default_qconfig("fbgemm")) sparsifier.prepare(mod, config=sparse_config) tq.fuse_modules(mod, [["5", "6"]], inplace=True) mod[5].qconfig = tq.get_default_qconfig("fbgemm") tq.prepare(mod, inplace=True) # check that correct modules had parametrizations added and # that none were lost during prepare or fusion self.assertTrue(hasattr(mod[0], "parametrizations")) self.assertTrue(hasattr(mod[5][0], "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(hasattr(mod[5], "activation_post_process")) _squash_mask_calibrate_and_convert( mod, sparsifier, torch.randn(1, 4, 4, 4) ) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(mod[5], torch.nn.intrinsic.quantized.LinearReLU)) self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4])) # This tests whether performing fusion before sparse prepare causes and issues. The # main worry was that the links to the modules in the sparse config would be broken by fusion. def test_fusion_before_s_prep(self): ( mod, sparsifier, _, ) = _get_model_and_sparsifier_and_sparse_config(tq.get_default_qconfig("fbgemm")) tq.fuse_modules(mod, [["5", "6"]], inplace=True) # its absolutely broken by fusion but will still work if you put the correct fqn in sparse_config = [ { "tensor_fqn": "5.0.weight", "sparsity_level": 0.7, "sparse_block_shape": (1, 4), "zeros_per_block": 4, }, {"tensor_fqn": "0.weight"}, ] sparsifier.prepare(mod, config=sparse_config) mod[5].qconfig = tq.get_default_qconfig("fbgemm") tq.prepare(mod, inplace=True) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(mod[0], "parametrizations")) self.assertTrue(hasattr(mod[5][0], "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(hasattr(mod[5], "activation_post_process")) sparsifier.step() sparsity_level = _calculate_sparsity(mod[5][0].weight) mod(torch.randn(1, 4, 4, 4)) tq.convert(mod, inplace=True) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(mod[5], torch.nn.intrinsic.quantized.LinearReLU)) self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4])) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(mod[5]._weight_bias()[0]) self.assertGreaterAlmostEqual(cur_sparsity, sparsity_level) self.assertGreaterAlmostEqual( sparsity_level, sparse_config[0]["sparsity_level"] ) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) # This tests whether performing sparse prepare before qat prepare causes issues. # The primary worries were that qat_prep wouldn't recognize the parametrized # modules and that the convert step for qat would remove the paramerizations # from the modules. def test_s_prep_before_qat_prep(self): ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config( tq.get_default_qat_qconfig("fbgemm") ) sparsifier.prepare(mod, config=sparse_config) tq.prepare_qat(mod, inplace=True) self.assertTrue(hasattr(mod[0], "parametrizations")) self.assertTrue(hasattr(mod[5], "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(hasattr(mod[5], "activation_post_process")) self.assertTrue(isinstance(mod[5], torch.nn.qat.Linear)) _squash_mask_calibrate_and_convert( mod, sparsifier, torch.randn(1, 4, 4, 4) ) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(mod[5], torch.nn.quantized.Linear)) self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4])) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(mod[5]._weight_bias()[0]) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) # This tests whether performing qat prepare before sparse prepare causes issues. def test_qat_prep_before_s_prep(self): mod, sparsifier, _ = _get_model_and_sparsifier_and_sparse_config( tq.get_default_qat_qconfig("fbgemm") ) tq.prepare_qat(mod, inplace=True) # need to setup sparse_config on new modules sparse_config = [ { "tensor_fqn": "5.weight", "sparsity_level": 0.7, "sparse_block_shape": (1, 4), "zeros_per_block": 4, }, {"tensor_fqn": "0.weight"}, ] sparsifier.prepare(mod, config=sparse_config) # check that correct modules had parametrizations added and # that none were lost during qat prepare self.assertTrue(hasattr(mod[0], "parametrizations")) self.assertTrue(hasattr(mod[5], "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(hasattr(mod[5], "activation_post_process")) self.assertTrue(isinstance(mod[5], torch.nn.qat.Linear)) _squash_mask_calibrate_and_convert( mod, sparsifier, torch.randn(1, 4, 4, 4) ) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(mod[5], torch.nn.quantized.Linear)) self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4])) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(mod[5]._weight_bias()[0]) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) def _module_has_activation_post_process(model, fqn_of_module): for node in model.graph.nodes: # look for an observer whose arg is the target module if "activation_post_process" in node.name: if node.args[0].target == fqn_of_module: return True return False class TestFxComposability(TestCase): r"""This series of tests checks that various steps of the quantization and sparsity flow compose cleanly despite variation in sequencing. """ def test_q_prep_fx_before_s_prep(self): r""" This test checks that the ordering of prepare_fx -> sparse prepare -> convert_fx compose cleanly without issue and that the final result is sparsified without having to call squash mask between sparse prepare and convert_fx. This also tests the automatic fusion that occurs during prepare_fx. """ ( mod, sparsifier, _, ) = _get_model_and_sparsifier_and_sparse_config() example = torch.randn(1, 4, 4, 4) qconfig = tq.get_default_qconfig("fbgemm") qconfig_mapping = tq.QConfigMapping() \ .set_module_name("4", qconfig) \ .set_module_name("5", qconfig) mod = prepare_fx(mod, qconfig_mapping, (example,)) # its absolutely broken by auto fusion in fx # but will still work if you put the correct fqn in sparse_config = [ { "tensor_fqn": "5.0.weight", "sparsity_level": 0.7, "sparse_block_shape": (1, 4), "zeros_per_block": 4, }, {"tensor_fqn": "0.0.weight"}, ] sparsifier.prepare(mod, config=sparse_config) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(fqn_to_module(mod, "0.0"), "parametrizations")) self.assertTrue(hasattr(fqn_to_module(mod, "5.0"), "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(_module_has_activation_post_process(mod, "5")) sparsifier.step() sparsity_level = _calculate_sparsity(fqn_to_module(mod, "5.0.weight")) mod(example) mod = convert_fx(mod) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(fqn_to_module(mod, "5"), torch.nn.intrinsic.quantized.LinearReLU)) self.assertEqual(mod(example).shape, torch.Size([1, 4, 4, 4])) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(fqn_to_module(mod, "5")._weight_bias()[0]) self.assertGreaterAlmostEqual(cur_sparsity, sparsity_level) self.assertGreaterAlmostEqual( sparsity_level, sparse_config[0]["sparsity_level"] ) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) def test_q_prep_fx_s_prep_ref_conv(self): r""" This checks that the ordering: prepare_fx -> sparse prepare -> convert_to_reference_fx compose cleanly without issue and that the final result is sparsified without having to call squash mask before convert_to_reference_fx. """ ( mod, sparsifier, _, ) = _get_model_and_sparsifier_and_sparse_config() example = torch.randn(1, 4, 4, 4) qconfig = tq.get_default_qconfig("fbgemm") qconfig_mapping = tq.QConfigMapping() \ .set_module_name("4", qconfig) \ .set_module_name("5", qconfig) mod = prepare_fx(mod, qconfig_mapping, (example,)) # its absolutely broken by auto fusion in fx # but will still work if you put the correct fqn in sparse_config = [ { "tensor_fqn": "5.0.weight", "sparsity_level": 0.7, "sparse_block_shape": (1, 4), "zeros_per_block": 4, }, {"tensor_fqn": "0.0.weight"}, ] sparsifier.prepare(mod, config=sparse_config) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(fqn_to_module(mod, "0.0"), "parametrizations")) self.assertTrue(hasattr(fqn_to_module(mod, "5.0"), "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(_module_has_activation_post_process(mod, "5")) sparsifier.step() sparsity_level = _calculate_sparsity(fqn_to_module(mod, "5.0.weight")) mod(example) mod = convert_to_reference_fx(mod) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(fqn_to_module(mod, "5"), torch.nn.intrinsic.LinearReLU)) self.assertEqual(mod(example).shape, torch.Size([1, 4, 4, 4])) self.assertTrue(isinstance(fqn_to_module(mod, "5.0"), torch.nn.quantized._reference.Linear)) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(fqn_to_module(mod, "5.0.weight")) self.assertGreaterAlmostEqual(cur_sparsity, sparsity_level) self.assertGreaterAlmostEqual( sparsity_level, sparse_config[0]["sparsity_level"] ) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) def test_s_prep_before_q_prep_fx(self): r""" This test checks that the ordering of sparse prepare -> prepare_fx -> convert_fx compose cleanly without issue and that the final result is sparsified without having to call squash mask before convert_fx. """ ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config() sparsifier.prepare(mod, config=sparse_config) example = torch.randn(1, 4, 4, 4) qconfig = tq.get_default_qconfig("fbgemm") qconfig_mapping = tq.QConfigMapping() \ .set_module_name("4", qconfig) \ .set_module_name("5", qconfig) mod = prepare_fx(mod, qconfig_mapping, (example,)) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(fqn_to_module(mod, "0.0"), "parametrizations")) self.assertTrue(hasattr(fqn_to_module(mod, "5.0"), "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(_module_has_activation_post_process(mod, "5")) sparsifier.step() sparsity_level = _calculate_sparsity(fqn_to_module(mod, "5.0.weight")) mod(example) mod = convert_fx(mod) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(fqn_to_module(mod, "5"), torch.nn.intrinsic.quantized.LinearReLU)) self.assertEqual(mod(example).shape, torch.Size([1, 4, 4, 4])) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(fqn_to_module(mod, "5")._weight_bias()[0]) self.assertGreaterAlmostEqual(cur_sparsity, sparsity_level) self.assertGreaterAlmostEqual( sparsity_level, sparse_config[0]["sparsity_level"] ) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) def test_s_prep_before_qat_prep_fx(self): r""" This test checks that the ordering of sparse prepare -> prepare_qat_fx -> convert_fx compose cleanly without issue and that the final result is sparsified without having to call squash mask before convert_fx. """ ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config() sparsifier.prepare(mod, config=sparse_config) example = torch.randn(1, 4, 4, 4) qconfig = tq.get_default_qat_qconfig("fbgemm") qconfig_mapping = tq.QConfigMapping() \ .set_module_name("4", qconfig) \ .set_module_name("5", qconfig) mod = prepare_qat_fx(mod, qconfig_mapping, (example,)) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(fqn_to_module(mod, "0.0"), "parametrizations")) self.assertTrue(hasattr(fqn_to_module(mod, "5"), "parametrizations")) self.assertTrue(isinstance(fqn_to_module(mod, "5"), torch.nn.intrinsic.qat.LinearReLU)) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(_module_has_activation_post_process(mod, "5")) sparsifier.step() sparsity_level = _calculate_sparsity(fqn_to_module(mod, "5.weight")) mod(example) mod = convert_fx(mod) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(fqn_to_module(mod, "5"), torch.nn.intrinsic.quantized.LinearReLU)) self.assertEqual(mod(example).shape, torch.Size([1, 4, 4, 4])) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(fqn_to_module(mod, "5")._weight_bias()[0]) self.assertGreaterAlmostEqual(cur_sparsity, sparsity_level) self.assertGreaterAlmostEqual( sparsity_level, sparse_config[0]["sparsity_level"] ) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"]) def test_s_prep_q_prep_fx_ref(self): r""" This checks that the ordering: sparse prepare -> prepare_fx -> convert_to_reference_fx compose cleanly without issue and that the final result is sparsified without having to call squash mask before convert_to_reference_fx. """ ( mod, sparsifier, sparse_config, ) = _get_model_and_sparsifier_and_sparse_config() sparsifier.prepare(mod, config=sparse_config) example = torch.randn(1, 4, 4, 4) qconfig = tq.get_default_qconfig("fbgemm") qconfig_mapping = tq.QConfigMapping() \ .set_module_name("4", qconfig) \ .set_module_name("5", qconfig) mod = prepare_fx(mod, qconfig_mapping, (example,)) # check that correct modules had parametrizations added and # that none were lost during prepare self.assertTrue(hasattr(fqn_to_module(mod, "0.0"), "parametrizations")) self.assertTrue(hasattr(fqn_to_module(mod, "5.0"), "parametrizations")) # check that correct observers were inserted and that matching # occured successfully self.assertTrue(_module_has_activation_post_process(mod, "5")) sparsifier.step() sparsity_level = _calculate_sparsity(fqn_to_module(mod, "5.0.weight")) mod(example) mod = convert_to_reference_fx(mod) # check that final module is the expected quantized module and that the model runs self.assertTrue(isinstance(fqn_to_module(mod, "5"), torch.nn.intrinsic.LinearReLU)) self.assertEqual(mod(example).shape, torch.Size([1, 4, 4, 4])) self.assertTrue(isinstance(fqn_to_module(mod, "5.0"), torch.nn.quantized._reference.Linear)) # check that module was actually sparsified cur_sparsity = _calculate_sparsity(fqn_to_module(mod, "5.0.weight")) self.assertGreaterAlmostEqual(cur_sparsity, sparsity_level) self.assertGreaterAlmostEqual( sparsity_level, sparse_config[0]["sparsity_level"] ) self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"])
pytorch-master
test/ao/sparsity/test_composability.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import copy import logging import torch from torch import nn from torch.ao.sparsity._experimental.pruner import BasePruner, PruningParametrization, ZeroesParametrization from torch.nn.utils import parametrize from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) DEVICES = { torch.device("cpu"), torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") } NEEDS_ZEROS = { # these layers should have pruned indices zero-ed, not removed nn.BatchNorm2d } class Linear(nn.Module): r"""Model with Linear layers, in Sequential and outside, without biases""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(16, 16, bias=False) ) self.linear = nn.Linear(16, 16, bias=False) def forward(self, x): x = self.seq(x) x = self.linear(x) return x class LinearB(nn.Module): r"""Model with Linear layers, in Sequential and outside, with biases""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(16, 16, bias=True) ) self.linear = nn.Linear(16, 16, bias=True) def forward(self, x): x = self.seq(x) x = self.linear(x) return x class MultipleLinear(nn.Module): r"""Model with multiple Linear layers, in Sequential and outside, without biases and with activation functions""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(7, 5, bias=False), nn.ReLU(), nn.Linear(5, 8, bias=False), nn.ReLU(), nn.Linear(8, 6, bias=False) ) self.linear = nn.Linear(6, 4, bias=False) def forward(self, x): x = self.seq(x) x = self.linear(x) return x class MultipleLinearB(nn.Module): r"""Model with multiple Linear layers, in Sequential and outside, with biases and with activation functions""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(7, 5, bias=True), nn.ReLU(), nn.Linear(5, 8, bias=True), nn.ReLU(), nn.Linear(8, 6, bias=True) ) self.linear = nn.Linear(6, 4, bias=True) def forward(self, x): x = self.seq(x) x = self.linear(x) return x class MultipleLinearMixed(nn.Module): r"""Model with multiple Linear layers, in Sequential and outside, some with biases and with activation functions""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(7, 5, bias=True), nn.ReLU(), nn.Linear(5, 8, bias=False), nn.ReLU(), nn.Linear(8, 6, bias=True) ) self.linear = nn.Linear(6, 4, bias=False) def forward(self, x): x = self.seq(x) x = self.linear(x) return x class Conv2dA(nn.Module): r"""Model with Conv2d layers, in Sequential and outside, without biases""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Conv2d(1, 32, 3, 1, bias=False), ) self.conv2d = nn.Conv2d(32, 64, 3, 1, bias=False) def forward(self, x): x = self.seq(x) x = self.conv2d(x) return x class Conv2dB(nn.Module): r"""Model with Conv2d layers, in Sequential and outside, with biases""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Conv2d(1, 32, 3, 1, bias=True), ) self.conv2d = nn.Conv2d(32, 64, 3, 1, bias=True) def forward(self, x): x = self.seq(x) x = self.conv2d(x) return x class Conv2dC(nn.Module): r"""Model with Conv2d layers, in Sequential and outside, with and without biases""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Conv2d(1, 32, 3, 1, bias=True), ) self.conv2d = nn.Conv2d(32, 64, 3, 1, bias=False) def forward(self, x): x = self.seq(x) x = self.conv2d(x) return x class Conv2dBN(nn.Module): r"""Model with Conv2d layers and BatchNorms""" def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Conv2d(1, 32, 3, 1, bias=True), nn.BatchNorm2d(32) ) self.conv2d = nn.Conv2d(32, 64, 3, 1, bias=True) self.bn = nn.BatchNorm2d(64) def forward(self, x): x = self.seq(x) x = self.conv2d(x) x = self.bn(x) return x class SimplePruner(BasePruner): def update_mask(self, module, tensor_name, **kwargs): getattr(module.parametrizations, tensor_name)[0].pruned_outputs.add(1) class MultiplePruner(BasePruner): def update_mask(self, module, tensor_name, **kwargs): getattr(module.parametrizations, tensor_name)[0].pruned_outputs.update([1, 2]) class TestBasePruner(TestCase): def _check_pruner_prepared(self, model, pruner, device): for config in pruner.groups: modules = [] if type(config['module']) is tuple: for module in config['module']: modules.append(module) else: module = config['module'] modules.append(module) for module in modules: assert module.weight.device.type == device.type # Check mask exists assert hasattr(module, 'mask') # Check parametrization exists and is correct assert parametrize.is_parametrized(module) assert hasattr(module, "parametrizations") # Assume that this is the 1st/only parametrization if isinstance(module, tuple(NEEDS_ZEROS)): assert type(module.parametrizations.weight[0]) == ZeroesParametrization else: assert type(module.parametrizations.weight[0]) == PruningParametrization def _check_pruner_mask_squashed(self, model, pruner, device): for config in pruner.groups: modules = [] if type(config['module']) is tuple: for module in config['module']: modules.append(module) else: module = config['module'] modules.append(module) for module in modules: assert module.weight.device.type == device.type assert not hasattr(module, "parametrizations") assert not hasattr(module, 'mask') def _check_pruner_valid_before_step(self, model, pruner, device): for config in pruner.groups: modules = [] if type(config['module']) is tuple: for module in config['module']: modules.append(module) else: module = config['module'] modules.append(module) for module in modules: assert module.weight.device.type == device.type assert module.parametrizations.weight[0].pruned_outputs == set() def _check_pruner_valid_after_step(self, model, pruner, pruned_set, device): for config in pruner.groups: modules = [] if type(config['module']) is tuple: for module in config['module']: modules.append(module) else: module = config['module'] modules.append(module) for module in modules: assert module.weight.device.type == device.type assert module.parametrizations.weight[0].pruned_outputs == pruned_set def _test_constructor_on_device(self, model, device): self.assertRaisesRegex(TypeError, 'BasePruner .* update_mask', BasePruner) model1 = copy.deepcopy(model).to(device) pruner = SimplePruner(None) pruner.prepare(model1, None) for g in pruner.groups: module = g['module'] assert module.weight.device.type == device.type assert len(pruner.groups) == 2 pruner.step() # Can instantiate the model with configs model2 = copy.deepcopy(model).to(device) pruner = SimplePruner({'test': 3}) pruner.prepare(model2, [model2.linear]) assert len(pruner.groups) == 1 assert pruner.groups[0]['module_fqn'] == 'linear' assert 'test' in pruner.groups[0] assert pruner.groups[0]['test'] == 3 def test_constructor(self): model = Linear() for device in DEVICES: self._test_constructor_on_device(model, torch.device(device)) def _test_prepare_linear_on_device(self, model, device): model = copy.deepcopy(model).to(device) x = torch.ones(128, 16, device=device) pruner = SimplePruner(None) pruner.prepare(model, None) self._check_pruner_prepared(model, pruner, device) assert model(x).shape == (128, 16) def test_prepare_linear(self): models = [Linear(), LinearB()] # without and with bias for device in DEVICES: for model in models: self._test_prepare_linear_on_device(model, torch.device(device)) def _test_prepare_conv2d_on_device(self, model, config, device): x = torch.ones((1, 1, 28, 28), device=device) pruner = SimplePruner(None) pruner.prepare(model, config) self._check_pruner_prepared(model, pruner, device) assert model(x).shape == (1, 64, 24, 24) def test_prepare_conv2d(self): bn_model = Conv2dBN() bn_config = [(bn_model.seq[0], bn_model.seq[1]), (bn_model.conv2d, bn_model.bn)] models = [Conv2dA(), Conv2dB(), Conv2dC(), bn_model] configs = [None, None, None, bn_config] for device in DEVICES: for model, config in zip(models, configs): model = model.to(device) self._test_prepare_conv2d_on_device(model, config, torch.device(device)) def _test_squash_mask_linear_on_device(self, model, device): model = copy.deepcopy(model).to(device) x = torch.ones(128, 16, device=device) pruner = SimplePruner(None) pruner.prepare(model, None) pruner.squash_mask() self._check_pruner_mask_squashed(model, pruner, device) assert model(x).shape == (128, 16) def test_squash_mask_linear(self): models = [Linear(), LinearB()] # without and with bias for device in DEVICES: for model in models: self._test_squash_mask_linear_on_device(model, torch.device(device)) def _test_squash_mask_conv2d_on_device(self, model, config, device): model = copy.deepcopy(model).to(device) x = torch.ones((1, 1, 28, 28), device=device) pruner = SimplePruner(None) pruner.prepare(model, config) pruner.squash_mask() self._check_pruner_mask_squashed(model, pruner, device) assert model(x).shape == (1, 64, 24, 24) def test_squash_mask_conv2d(self): bn_model = Conv2dBN() bn_config = [(bn_model.seq[0], bn_model.seq[1]), (bn_model.conv2d, bn_model.bn)] models = [Conv2dA(), Conv2dB(), Conv2dC(), bn_model] configs = [None, None, None, bn_config] for device in DEVICES: for model, config in zip(models, configs): model = model.to(device) self._test_squash_mask_conv2d_on_device(model, config, torch.device(device)) def _test_step_linear_on_device(self, model, is_basic, device): model = model.to(device) if is_basic: x = torch.ones(16, 16) pruner = SimplePruner(None) pruner.prepare(model, None) self._check_pruner_valid_before_step(model, pruner, device) pruner.step() self._check_pruner_valid_after_step(model, pruner, {1}, device) else: x = torch.ones(7, 7) pruner = MultiplePruner(None) pruner.prepare(model, None) self._check_pruner_valid_before_step(model, pruner, device) pruner.step() self._check_pruner_valid_after_step(model, pruner, {1, 2}, device) def test_step_linear(self): basic_models = [Linear(), LinearB()] complex_models = [MultipleLinear(), MultipleLinearB(), MultipleLinearMixed()] for device in DEVICES: for model in basic_models: self._test_step_linear_on_device(model, True, torch.device(device)) for model in complex_models: self._test_step_linear_on_device(model, False, torch.device(device)) def _test_step_conv2d_on_device(self, model, config, device): model = model.to(device) x = torch.ones((1, 1, 28, 28)).to(device) pruner = SimplePruner(None) pruner.prepare(model, config) self._check_pruner_valid_before_step(model, pruner, device) pruner.step() if type(model) is Conv2dBN: assert pruner.get_module_pruned_outputs(model.seq[1]) == pruner.get_module_pruned_outputs(model.seq[0]) assert pruner.get_module_pruned_outputs(model.bn) == pruner.get_module_pruned_outputs(model.conv2d) self._check_pruner_valid_after_step(model, pruner, {1}, device) assert model(x).shape == (1, 64, 24, 24) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_step_conv2d(self): bn_model = Conv2dBN() bn_config = [(bn_model.seq[0], bn_model.seq[1]), (bn_model.conv2d, bn_model.bn)] models = [Conv2dA(), Conv2dB(), Conv2dC(), bn_model] configs = [None, None, None, None, bn_config] for device in DEVICES: for model, config in zip(models, configs): self._test_step_conv2d_on_device(model, config, torch.device(device))
pytorch-master
test/ao/sparsity/test_pruner.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import logging import warnings from torch.testing._internal.common_utils import TestCase from torch import nn import torch from typing import Tuple import copy from torch.ao.sparsity._experimental.data_sparsifier import DataNormSparsifier from torch.ao.sparsity._experimental.data_scheduler import BaseDataScheduler logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) class ImplementedDataScheduler(BaseDataScheduler): def __init__(self, sparsifier, sparsifier_hyperparam, last_epoch=-1, verbose=False): super().__init__(sparsifier, sparsifier_hyperparam, last_epoch, verbose) def get_schedule_param(self): if self.last_epoch > 0: return {name: config['sparsity_level'] * 0.5 for name, config in self.data_sparsifier.data_groups.items()} else: return self.base_param class TestBaseDataScheduler(TestCase): def _get_data(self): tensor1, param1, emb1 = torch.randn(5, 5), nn.Parameter(torch.randn(10, 10)), nn.Embedding(50, 5) data_list = [ ('tensor1', tensor1), ('param1', param1), ('emb1', emb1) ] defaults = { 'sparsity_level': 0.7, 'sparse_block_shape': (1, 4), 'zeros_per_block': 2 } data_with_config = [ { 'name': 'tensor2', 'data': torch.randn(4, 4), 'config': {'sparsity_level': 0.3} } ] return data_list, data_with_config, defaults def _get_sparsifier(self, data_list, data_with_config, defaults): sparsifier = DataNormSparsifier(data_list, **defaults) for data_config_dict in data_with_config: name, data, config = data_config_dict['name'], data_config_dict['data'], data_config_dict['config'] sparsifier.add_data(name=name, data=data, **config) return sparsifier def _get_scheduler(self, sparsifier, schedule_param): scheduler = ImplementedDataScheduler(sparsifier, schedule_param) return scheduler def _get_schedule_param(self): return 'sparsity_level' def _get_name_data_config(self, some_data, defaults): config = copy.deepcopy(defaults) if isinstance(some_data, Tuple): # dealing with data_list name, data = some_data else: # dealing with data_with_config name, data, new_config = some_data['name'], some_data['data'], some_data['config'] config.update(new_config) return name, data, config def test_constructor(self): """Checks if the warning is thrown if the scheduler step is called before the sparsifier step""" data_list, data_with_config, defaults = self._get_data() sparsifier = self._get_sparsifier(data_list, data_with_config, defaults) schedule_param = self._get_schedule_param() scheduler = self._get_scheduler(sparsifier, schedule_param) assert scheduler.data_sparsifier == sparsifier assert scheduler._step_count == 1 for name, config in sparsifier.data_groups.items(): assert scheduler.base_param[name] == config.get(schedule_param, None) def test_order_of_steps(self): data_list, data_with_config, defaults = self._get_data() sparsifier = self._get_sparsifier(data_list, data_with_config, defaults) schedule_param = self._get_schedule_param() scheduler = self._get_scheduler(sparsifier, schedule_param) # Sparsifier step is not called with self.assertWarns(UserWarning): scheduler.step() # Correct order has no warnings # Note: This will trigger if other warnings are present. with warnings.catch_warnings(record=True) as w: sparsifier.step() scheduler.step() # Make sure there is no warning related to the base_data_scheduler for warning in w: fname = warning.filename fname = '/'.join(fname.split('/')[-5:]) assert fname != 'torch/ao/sparsity/experimental/scheduler/data_scheduler/base_data_scheduler.py' def test_step(self): data_list, data_with_config, defaults = self._get_data() sparsifier = self._get_sparsifier(data_list, data_with_config, defaults) schedule_param = self._get_schedule_param() scheduler = self._get_scheduler(sparsifier, schedule_param) all_data = data_list + data_with_config for some_data in all_data: name, _, config = self._get_name_data_config(some_data, defaults) assert sparsifier.data_groups[name][schedule_param] == config[schedule_param] sparsifier.step() scheduler.step() for some_data in all_data: name, _, config = self._get_name_data_config(some_data, defaults) assert sparsifier.data_groups[name][schedule_param] == config[schedule_param] * 0.5 # checking step count step_cnt = 5 for _ in range(0, step_cnt): sparsifier.step() scheduler.step() assert scheduler._step_count == step_cnt + 2 # step_cnt + step above + 1 step in constructor def test_state_dict(self): data_list, data_with_config, defaults = self._get_data() sparsifier = self._get_sparsifier(data_list, data_with_config, defaults) schedule_param = self._get_schedule_param() scheduler1 = self._get_scheduler(sparsifier, schedule_param) sparsifier.step() scheduler1.step() scheduler2 = self._get_scheduler(sparsifier, schedule_param) all_data = data_list + data_with_config for some_data in all_data: name, _, _ = self._get_name_data_config(some_data, defaults) assert scheduler1.base_param[name] != scheduler2.base_param[name] assert scheduler1._last_param[name] == scheduler2.base_param[name] scheduler1_state = scheduler1.state_dict() scheduler2.load_state_dict(scheduler1_state) for some_data in all_data: name, _, _ = self._get_name_data_config(some_data, defaults) assert scheduler1.base_param[name] == scheduler2.base_param[name] assert scheduler1._last_param[name] == scheduler2._last_param[name]
pytorch-master
test/ao/sparsity/test_data_scheduler.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import logging from torch import nn from torch.ao.sparsity.sparsifier import utils from torch.nn.utils import parametrize import torch from torch.testing._internal.common_utils import TestCase logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) class ModelUnderTest(nn.Module): def __init__(self, bias=True): super().__init__() self.linear = nn.Linear(16, 16, bias=bias) self.seq = nn.Sequential( nn.Linear(16, 16, bias=bias), nn.Linear(16, 16, bias=bias) ) # Make sure the weights are not random self.linear.weight = nn.Parameter(torch.zeros_like(self.linear.weight) + 1.0) self.seq[0].weight = nn.Parameter(torch.zeros_like(self.seq[0].weight) + 2.0) self.seq[1].weight = nn.Parameter(torch.zeros_like(self.seq[1].weight) + 3.0) if bias: self.linear = nn.Parameter(torch.zeros_like(self.linear.bias) + 10.0) self.seq[0] = nn.Parameter(torch.zeros_like(self.seq[0].bias) + 20.0) self.seq[0] = nn.Parameter(torch.zeros_like(self.seq[0].bias) + 30.0) def forward(self, x): x = self.linear(x) x = self.seq(x) return x class TestFakeSparsity(TestCase): def test_masking_logic(self): model = nn.Linear(16, 16, bias=False) model.weight = nn.Parameter(torch.eye(16)) x = torch.randn(3, 16) self.assertEqual(torch.mm(x, torch.eye(16)), model(x)) mask = torch.zeros(16, 16) sparsity = utils.FakeSparsity(mask) parametrize.register_parametrization(model, 'weight', sparsity) x = torch.randn(3, 16) self.assertEqual(torch.zeros(3, 16), model(x)) def test_weights_parametrized(self): model = ModelUnderTest(bias=False) assert not hasattr(model.linear, 'parametrizations') assert not hasattr(model.seq[0], 'parametrizations') assert not hasattr(model.seq[1], 'parametrizations') mask = torch.eye(16) parametrize.register_parametrization(model.linear, 'weight', utils.FakeSparsity(mask)) mask = torch.eye(16) parametrize.register_parametrization(model.seq[0], 'weight', utils.FakeSparsity(mask)) mask = torch.eye(16) parametrize.register_parametrization(model.seq[1], 'weight', utils.FakeSparsity(mask)) assert hasattr(model.linear, 'parametrizations') assert parametrize.is_parametrized(model.linear, 'weight') assert hasattr(model.seq[0], 'parametrizations') assert parametrize.is_parametrized(model.linear, 'weight') assert hasattr(model.seq[1], 'parametrizations') assert parametrize.is_parametrized(model.linear, 'weight') def test_state_dict_preserved(self): model_save = ModelUnderTest(bias=False) mask = torch.eye(16) parametrize.register_parametrization(model_save.linear, 'weight', utils.FakeSparsity(mask)) mask = torch.eye(16) parametrize.register_parametrization(model_save.seq[0], 'weight', utils.FakeSparsity(mask)) mask = torch.eye(16) parametrize.register_parametrization(model_save.seq[1], 'weight', utils.FakeSparsity(mask)) state_dict = model_save.state_dict() model_load = ModelUnderTest(bias=False) mask = torch.zeros(model_load.linear.weight.shape) parametrize.register_parametrization(model_load.linear, 'weight', utils.FakeSparsity(mask)) mask = torch.zeros(model_load.seq[0].weight.shape) parametrize.register_parametrization(model_load.seq[0], 'weight', utils.FakeSparsity(mask)) mask = torch.zeros(model_load.seq[1].weight.shape) parametrize.register_parametrization(model_load.seq[1], 'weight', utils.FakeSparsity(mask)) # Keep this strict, as we are not loading the 'mask' model_load.load_state_dict(state_dict, strict=False) # Check the parametrizations are preserved assert hasattr(model_load.linear, 'parametrizations') assert parametrize.is_parametrized(model_load.linear, 'weight') assert hasattr(model_load.seq[0], 'parametrizations') assert parametrize.is_parametrized(model_load.linear, 'weight') assert hasattr(model_load.seq[1], 'parametrizations') assert parametrize.is_parametrized(model_load.linear, 'weight') # Check the weigths are preserved self.assertEqual(model_save.linear.parametrizations['weight'].original, model_load.linear.parametrizations['weight'].original) self.assertEqual(model_save.seq[0].parametrizations['weight'].original, model_load.seq[0].parametrizations['weight'].original) self.assertEqual(model_save.seq[1].parametrizations['weight'].original, model_load.seq[1].parametrizations['weight'].original) # Check the masks are not preserved in the state_dict # We store the state_dicts in the sparsifier, not in the model itself. # TODO: Need to find a clean way of exporting the parametrized model self.assertNotEqual(model_save.linear.parametrizations['weight'][0].mask, model_load.linear.parametrizations['weight'][0].mask) self.assertNotEqual(model_save.seq[0].parametrizations['weight'][0].mask, model_load.seq[0].parametrizations['weight'][0].mask) self.assertNotEqual(model_save.seq[1].parametrizations['weight'][0].mask, model_load.seq[1].parametrizations['weight'][0].mask) def test_jit_trace(self): model = ModelUnderTest(bias=False) mask = torch.eye(16) parametrize.register_parametrization(model.linear, 'weight', utils.FakeSparsity(mask)) mask = torch.eye(16) parametrize.register_parametrization(model.seq[0], 'weight', utils.FakeSparsity(mask)) mask = torch.eye(16) parametrize.register_parametrization(model.seq[1], 'weight', utils.FakeSparsity(mask)) # Tracing example_x = torch.ones(3, 16) model_trace = torch.jit.trace_module(model, {'forward': example_x}) x = torch.randn(3, 16) y = model(x) y_hat = model_trace(x) self.assertEqual(y_hat, y)
pytorch-master
test/ao/sparsity/test_parametrization.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] from torch import nn from torch.ao.sparsity import WeightNormSparsifier from torch.ao.sparsity import BaseScheduler, LambdaSL from torch.testing._internal.common_utils import TestCase import warnings class ImplementedScheduler(BaseScheduler): def get_sl(self): if self.last_epoch > 0: return [group['sparsity_level'] * 0.5 for group in self.sparsifier.groups] else: return list(self.base_sl) class TestScheduler(TestCase): def test_constructor(self): model = nn.Sequential( nn.Linear(16, 16) ) sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) scheduler = ImplementedScheduler(sparsifier) assert scheduler.sparsifier is sparsifier assert scheduler._step_count == 1 assert scheduler.base_sl == [sparsifier.groups[0]['sparsity_level']] def test_order_of_steps(self): """Checks if the warning is thrown if the scheduler step is called before the sparsifier step""" model = nn.Sequential( nn.Linear(16, 16) ) sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) scheduler = ImplementedScheduler(sparsifier) # Sparsifier step is not called with self.assertWarns(UserWarning): scheduler.step() # Correct order has no warnings # Note: This will trigger if other warnings are present. with warnings.catch_warnings(record=True) as w: sparsifier.step() scheduler.step() # Make sure there is no warning related to the base_scheduler for warning in w: fname = warning.filename fname = '/'.join(fname.split('/')[-5:]) assert fname != 'torch/ao/sparsity/scheduler/base_scheduler.py' def test_step(self): model = nn.Sequential( nn.Linear(16, 16) ) sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) assert sparsifier.groups[0]['sparsity_level'] == 0.5 scheduler = ImplementedScheduler(sparsifier) assert sparsifier.groups[0]['sparsity_level'] == 0.5 sparsifier.step() scheduler.step() assert sparsifier.groups[0]['sparsity_level'] == 0.25 def test_lambda_scheduler(self): model = nn.Sequential( nn.Linear(16, 16) ) sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) assert sparsifier.groups[0]['sparsity_level'] == 0.5 scheduler = LambdaSL(sparsifier, lambda epoch: epoch * 10) assert sparsifier.groups[0]['sparsity_level'] == 0.0 # Epoch 0 scheduler.step() assert sparsifier.groups[0]['sparsity_level'] == 5.0 # Epoch 1
pytorch-master
test/ao/sparsity/test_scheduler.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import logging import torch from torch.ao.sparsity.sparsifier.utils import ( fqn_to_module, get_arg_info_from_tensor_fqn, module_to_fqn, ) from torch.testing._internal.common_quantization import ( ConvBnReLUModel, ConvModel, FunctionalLinear, LinearAddModel, ManualEmbeddingBagLinear, SingleLayerLinearModel, TwoLayerLinearModel, ) from torch.testing._internal.common_utils import TestCase logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO ) model_list = [ ConvModel, SingleLayerLinearModel, TwoLayerLinearModel, LinearAddModel, ConvBnReLUModel, ManualEmbeddingBagLinear, FunctionalLinear, ] class TestSparsityUtilFunctions(TestCase): def test_module_to_fqn(self): """ Tests that module_to_fqn works as expected when compared to known good module.get_submodule(fqn) function """ for model_class in model_list: model = model_class() list_of_modules = [m for _, m in model.named_modules()] + [model] for module in list_of_modules: fqn = module_to_fqn(model, module) check_module = model.get_submodule(fqn) self.assertEqual(module, check_module) def test_module_to_fqn_fail(self): """ Tests that module_to_fqn returns None when an fqn that doesn't correspond to a path to a node/tensor is given """ for model_class in model_list: model = model_class() fqn = module_to_fqn(model, torch.nn.Linear(3, 3)) self.assertEqual(fqn, None) def test_module_to_fqn_root(self): """ Tests that module_to_fqn returns '' when model and target module are the same """ for model_class in model_list: model = model_class() fqn = module_to_fqn(model, model) self.assertEqual(fqn, "") def test_fqn_to_module(self): """ Tests that fqn_to_module operates as inverse of module_to_fqn """ for model_class in model_list: model = model_class() list_of_modules = [m for _, m in model.named_modules()] + [model] for module in list_of_modules: fqn = module_to_fqn(model, module) check_module = fqn_to_module(model, fqn) self.assertEqual(module, check_module) def test_fqn_to_module_fail(self): """ Tests that fqn_to_module returns None when it tries to find an fqn of a module outside the model """ for model_class in model_list: model = model_class() fqn = "foo.bar.baz" check_module = fqn_to_module(model, fqn) self.assertEqual(check_module, None) def test_fqn_to_module_for_tensors(self): """ Tests that fqn_to_module works for tensors, actually all parameters of the model. This is tested by identifying a module with a tensor, and generating the tensor_fqn using module_to_fqn on the module + the name of the tensor. """ for model_class in model_list: model = model_class() list_of_modules = [m for _, m in model.named_modules()] + [model] for module in list_of_modules: module_fqn = module_to_fqn(model, module) for tensor_name, tensor in module.named_parameters(recurse=False): tensor_fqn = ( # string manip to handle tensors on root module_fqn + ("." if module_fqn != "" else "") + tensor_name ) check_tensor = fqn_to_module(model, tensor_fqn) self.assertEqual(tensor, check_tensor) def test_get_arg_info_from_tensor_fqn(self): """ Tests that get_arg_info_from_tensor_fqn works for all parameters of the model. Generates a tensor_fqn in the same way as test_fqn_to_module_for_tensors and then compares with known (parent) module and tensor_name as well as module_fqn from module_to_fqn. """ for model_class in model_list: model = model_class() list_of_modules = [m for _, m in model.named_modules()] + [model] for module in list_of_modules: module_fqn = module_to_fqn(model, module) for tensor_name, tensor in module.named_parameters(recurse=False): tensor_fqn = ( module_fqn + ("." if module_fqn != "" else "") + tensor_name ) arg_info = get_arg_info_from_tensor_fqn(model, tensor_fqn) self.assertEqual(arg_info["module"], module) self.assertEqual(arg_info["module_fqn"], module_fqn) self.assertEqual(arg_info["tensor_name"], tensor_name) self.assertEqual(arg_info["tensor_fqn"], tensor_fqn) def test_get_arg_info_from_tensor_fqn_fail(self): """ Tests that get_arg_info_from_tensor_fqn works as expected for invalid tensor_fqn inputs. The string outputs still work but the output module is expected to be None. """ for model_class in model_list: model = model_class() tensor_fqn = "foo.bar.baz" arg_info = get_arg_info_from_tensor_fqn(model, tensor_fqn) self.assertEqual(arg_info["module"], None) self.assertEqual(arg_info["module_fqn"], "foo.bar") self.assertEqual(arg_info["tensor_name"], "baz") self.assertEqual(arg_info["tensor_fqn"], "foo.bar.baz")
pytorch-master
test/ao/sparsity/test_sparsity_utils.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] from torch.testing._internal.common_utils import run_tests import copy import numpy as np import io import logging from itertools import product import torch import torch.ao.quantization as tq from torch import nn from torch.ao.sparsity.sparsifier.utils import fqn_to_module from torch.testing._internal.common_utils import TestCase from torch.testing._internal.common_quantized import ( override_cpu_allocator_for_qnnpack, override_qengines, qengine_is_qnnpack, qengine_is_fbgemm, qengine_is_onednn, ) # TODO: Once more test files are created, move the contents to a ao folder. logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) class TestQuantizedSparseKernels(TestCase): @override_qengines def test_sparse_qlinear(self): batch_size = 12 input_channels = 16 output_channels = 4 decimal_val = 4 row_block_size = 1 col_block_size = 4 # X86 implementation of sparse ops in qnnpack only support # block pattern 1x4. # arm kernels have support for both 1x4 and 8x1. # This distinction is only because x86 implementations exist # only to enable testing of integration path. # We do plan to add 8x1 as well so that testing does not have to # special case like this. At the moment it is deprioritized due # to other higher priority works. if qengine_is_qnnpack() and not (row_block_size == 1 and col_block_size == 4): return # ONEDNN does not support this yet if qengine_is_onednn(): return dense_prepack = torch.ops.quantized.linear_prepack dense_qlinear = torch.ops.quantized.linear dense_qlinear_dynamic = torch.ops.quantized.linear_dynamic sparse_prepack = torch.ops.sparse.qlinear_prepack sparse_qlinear = torch.ops.sparse.qlinear sparse_qlinear_dynamic = torch.ops.sparse.qlinear_dynamic X_scale = 0.2 X_zp = 2 X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32) float_bias = torch.randn(output_channels, dtype=torch.float32) W_scales = torch.rand(output_channels, dtype=torch.float32) W_zps = torch.zeros(output_channels, dtype=torch.int32) W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32) with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()): X_q = torch.quantize_per_tensor( X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8 ) for use_channelwise, dynamic_mode in product([True, False], [True, False]): if qengine_is_fbgemm() and dynamic_mode: logging.info("dynamic sparse qlinear is only available in qnnpack") continue if qengine_is_qnnpack() and not dynamic_mode: logging.info("static sparse qlinear is only available in fbgemm") continue if use_channelwise: W_q = torch.quantize_per_channel( W_fp32, scales=W_scales, zero_points=W_zps, axis=0, dtype=torch.qint8 ) else: W_q = torch.quantize_per_tensor( W_fp32, scale=W_scales[0], zero_point=W_zps[0], dtype=torch.qint8 ) Y_scale = 1.1234 Y_zp = 5 W_prepack_dense = dense_prepack(W_q, float_bias) W_prepack_sparse = sparse_prepack(W_q, float_bias, row_block_size, col_block_size) if dynamic_mode: Y = sparse_qlinear_dynamic(X_fp32, W_prepack_sparse) Y_ref = dense_qlinear_dynamic(X_fp32, W_prepack_dense) np.testing.assert_array_almost_equal(Y_ref.numpy(), Y.numpy(), decimal=decimal_val) else: Y_q = sparse_qlinear(X_q, W_prepack_sparse, Y_scale, Y_zp) Y_q_ref = dense_qlinear(X_q, W_prepack_dense, Y_scale, Y_zp) np.testing.assert_array_almost_equal( Y_q_ref.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=decimal_val ) def _sparse_layer_test_helper( model_class, sparse_mapping, ref_mapping, qconfig_dict, fqn_to_check, test_class, test_scripting, ): # SET UP TEST PARAMETERS, INPUTS AND WEIGHTS # ------------------------------------------ batch_size = 12 input_channels = 4 output_channels = 7 model = model_class(input_channels, output_channels) # For sparse kernels both the activation and weight ZP = 0 X_scale = 0.2 X_zp = 2 W_scale = 1e-2 W_zp = 0 X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32) float_bias = torch.randn(output_channels, dtype=torch.float32) # generate a weight which we'll insert into the model W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32) mask = torch.randint(0, 2, W_fp32.shape) W_fp32 *= mask with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()): X_q = torch.quantize_per_tensor( X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8 ) X_fp32 = X_q.dequantize() W_q = torch.quantize_per_tensor(W_fp32, W_scale, W_zp, torch.qint8) # PREPARE MODELS FOR QUANTIZATION # ------------------------------- model.linear.weight = nn.Parameter(W_q.dequantize()) model.eval() # Add `sparse_params` to the model. The test for correct # sparse_param addition is in the sparsifier tests model.linear.sparse_params = {"sparse_block_shape": (1, 4)} # generate model versions qmodel = copy.deepcopy(model) sqmodel = copy.deepcopy(model) # generate model versions and apply qconfigs tq.propagate_qconfig_(qmodel, qconfig_dict) tq.propagate_qconfig_(sqmodel, qconfig_dict) tq.prepare(qmodel, inplace=True) tq.prepare(sqmodel, inplace=True) # calibrate with torch.no_grad(): qmodel(X_fp32) sqmodel(X_fp32) # ACTUAL TESTING BEGINS HERE # -------------------------- # Make sure the quantization parameters are computed the same way qparams = qmodel.linear.qconfig.weight().calculate_qparams() sqparams = sqmodel.linear.qconfig.weight().calculate_qparams() test_class.assertEqual(qparams, sqparams) sqmodule_to_check = fqn_to_module(sqmodel, fqn_to_check) sqmodule_start_class = sqmodule_to_check.__class__ sqmodule_expected_converted_class = sparse_mapping[sqmodule_start_class] qmodule_to_check = fqn_to_module(qmodel, fqn_to_check) qmodule_start_class = qmodule_to_check.__class__ qmodule_expected_converted_class = ref_mapping[qmodule_start_class] # need to determine whether dynamic quantization is being performed since # input dtype will be different at the end is_dynamic = isinstance( qmodule_to_check.activation_post_process, tq.PlaceholderObserver ) tq.convert(sqmodel, inplace=True, mapping=sparse_mapping) tq.convert(qmodel, inplace=True, mapping=ref_mapping) # this code is a duplicate of above since the references do not # update to the post-convert modules sqmodule_to_check = fqn_to_module(sqmodel, fqn_to_check) qmodule_to_check = fqn_to_module(qmodel, fqn_to_check) # check that the modules were converted as expected assert isinstance( sqmodule_to_check, sqmodule_expected_converted_class ), "Convert failed" assert isinstance( qmodule_to_check, qmodule_expected_converted_class ), "Mapping failed" row_block_size, col_block_size = sqmodel.linear._packed_params._weight_bias()[ 2: ] assert row_block_size == 1 and col_block_size == 4 # only run during serialization/deserialization tests # makes sure script/save/load doesn't malform the sqmodel if test_scripting: scripted_sqmodel = torch.jit.script(sqmodel) scripted_sqmodel.eval() buffer = io.BytesIO() torch.jit.save(scripted_sqmodel, buffer) buffer.seek(0) sqmodel = torch.jit.load(buffer) # use correct input dtype if is_dynamic: Y_ref = qmodel(X_fp32) Y_hat = sqmodel(X_fp32) test_class.assertEqual(Y_ref, Y_hat) else: Y_ref = qmodel(X_q) Y_hat = sqmodel(X_q) test_class.assertEqual(Y_ref.dequantize(), Y_hat.dequantize()) class SparseQuantizedModel(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.linear = nn.Linear(in_channels, out_channels) def forward(self, x): return self.linear(x) class TestQuantizedSparseLayers(TestCase): @override_qengines def test_sparse_qlinear(self): # Note: At the moment, for sparse kernels # fbgemm supports only static quantized sparse linear # qnnpack supports only dynamically quantized sparse linear # Hence we have two different tests. # fbgemm tests static flow, qnnpack tests dynamic. # Should be unified later on and tests should be fixed # appropriately. model_class = SparseQuantizedModel fqn_to_check = "linear" if qengine_is_fbgemm(): sparse_mapping = tq.get_default_static_sparse_quant_module_mappings() ref_mapping = tq.get_default_static_quant_module_mappings() qconfig_dict = {nn.Linear: tq.get_default_qconfig("fbgemm")} elif qengine_is_qnnpack(): sparse_mapping = tq.get_default_dynamic_sparse_quant_module_mappings() ref_mapping = tq.get_default_dynamic_quant_module_mappings() qconfig_dict = {nn.Linear: tq.qconfig.default_dynamic_qconfig} else: return _sparse_layer_test_helper( model_class=model_class, sparse_mapping=sparse_mapping, ref_mapping=ref_mapping, qconfig_dict=qconfig_dict, fqn_to_check=fqn_to_check, test_class=self, test_scripting=False, ) @override_qengines def test_sparse_qlinear_serdes(self): # Note: At the moment, for sparse kernels # fbgemm supports only static quantized sparse linear # qnnpack supports only dynamically quantized sparse linear # Hence we have two different tests. # fbgemm tests static flow, qnnpack tests dynamic. # Should be unified later on and tests should be fixed # appropriately. model_class = SparseQuantizedModel fqn_to_check = "linear" if qengine_is_fbgemm(): sparse_mapping = tq.get_default_static_sparse_quant_module_mappings() ref_mapping = tq.get_default_static_quant_module_mappings() qconfig_dict = {nn.Linear: tq.get_default_qconfig("fbgemm")} elif qengine_is_qnnpack(): sparse_mapping = tq.get_default_dynamic_sparse_quant_module_mappings() ref_mapping = tq.get_default_dynamic_quant_module_mappings() qconfig_dict = {nn.Linear: tq.qconfig.default_dynamic_qconfig} else: return _sparse_layer_test_helper( model_class=model_class, sparse_mapping=sparse_mapping, ref_mapping=ref_mapping, qconfig_dict=qconfig_dict, fqn_to_check=fqn_to_check, test_class=self, test_scripting=True, ) if __name__ == "__main__": run_tests()
pytorch-master
test/ao/sparsity/test_kernels.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import copy from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo import logging import torch from torch.ao.sparsity._experimental.activation_sparsifier.activation_sparsifier import ActivationSparsifier import torch.nn as nn import torch.nn.functional as F from torch.ao.sparsity.sparsifier.utils import module_to_fqn from typing import List logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 32, kernel_size=3) self.identity1 = nn.Identity() self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.linear1 = nn.Linear(4608, 128) self.identity2 = nn.Identity() self.linear2 = nn.Linear(128, 10) def forward(self, x): out = self.conv1(x) out = self.conv2(out) out = self.identity1(out) out = self.max_pool1(out) batch_size = x.shape[0] out = out.reshape(batch_size, -1) out = F.relu(self.identity2(self.linear1(out))) out = self.linear2(out) return out class TestActivationSparsifier(TestCase): def _check_constructor(self, activation_sparsifier, model, defaults, sparse_config): """Helper function to check if the model, defaults and sparse_config are loaded correctly in the activation sparsifier """ sparsifier_defaults = activation_sparsifier.defaults combined_defaults = {**defaults, 'sparse_config': sparse_config} # more keys are populated in activation sparsifier (eventhough they may be None) assert len(combined_defaults) <= len(activation_sparsifier.defaults) for key, config in sparsifier_defaults.items(): # all the keys in combined_defaults should be present in sparsifier defaults assert config == combined_defaults.get(key, None) def _check_register_layer(self, activation_sparsifier, defaults, sparse_config, layer_args_list): """Checks if layers in the model are correctly mapped to it's arguments. Args: activation_sparsifier (sparsifier object) activation sparsifier object that is being tested. defaults (Dict) all default config (except sparse_config) sparse_config (Dict) default sparse config passed to the sparsifier layer_args_list (list of tuples) Each entry in the list corresponds to the layer arguments. First entry in the tuple corresponds to all the arguments other than sparse_config Second entry in the tuple corresponds to sparse_config """ # check args data_groups = activation_sparsifier.data_groups assert len(data_groups) == len(layer_args_list) for layer_args in layer_args_list: layer_arg, sparse_config_layer = layer_args # check sparse config sparse_config_actual = copy.deepcopy(sparse_config) sparse_config_actual.update(sparse_config_layer) name = module_to_fqn(activation_sparsifier.model, layer_arg['layer']) assert data_groups[name]['sparse_config'] == sparse_config_actual # assert the rest other_config_actual = copy.deepcopy(defaults) other_config_actual.update(layer_arg) other_config_actual.pop('layer') for key, value in other_config_actual.items(): assert key in data_groups[name] assert value == data_groups[name][key] # get_mask should raise error with self.assertRaises(ValueError): activation_sparsifier.get_mask(name=name) def _check_pre_forward_hook(self, activation_sparsifier, data_list): """Registering a layer attaches a pre-forward hook to that layer. This function checks if the pre-forward hook works as expected. Specifically, checks if the input is aggregated correctly. Basically, asserts that the aggregate of input activations is the same as what was computed in the sparsifier. Args: activation_sparsifier (sparsifier object) activation sparsifier object that is being tested. data_list (list of torch tensors) data input to the model attached to the sparsifier """ # can only check for the first layer data_agg_actual = data_list[0] model = activation_sparsifier.model layer_name = module_to_fqn(model, model.conv1) agg_fn = activation_sparsifier.data_groups[layer_name]['aggregate_fn'] for i in range(1, len(data_list)): data_agg_actual = agg_fn(data_agg_actual, data_list[i]) assert 'data' in activation_sparsifier.data_groups[layer_name] assert torch.all(activation_sparsifier.data_groups[layer_name]['data'] == data_agg_actual) return data_agg_actual def _check_step(self, activation_sparsifier, data_agg_actual): """Checks if .step() works as expected. Specifically, checks if the mask is computed correctly. Args: activation_sparsifier (sparsifier object) activation sparsifier object that is being tested. data_agg_actual (torch tensor) aggregated torch tensor """ model = activation_sparsifier.model layer_name = module_to_fqn(model, model.conv1) assert layer_name is not None reduce_fn = activation_sparsifier.data_groups[layer_name]['reduce_fn'] data_reduce_actual = reduce_fn(data_agg_actual) mask_fn = activation_sparsifier.data_groups[layer_name]['mask_fn'] sparse_config = activation_sparsifier.data_groups[layer_name]['sparse_config'] mask_actual = mask_fn(data_reduce_actual, **sparse_config) mask_model = activation_sparsifier.get_mask(layer_name) assert torch.all(mask_model == mask_actual) for _, config in activation_sparsifier.data_groups.items(): assert 'data' not in config def _check_squash_mask(self, activation_sparsifier, data): """Makes sure that squash_mask() works as usual. Specifically, checks if the sparsifier hook is attached correctly. This is achieved by only looking at the identity layers and making sure that the output == layer(input * mask). Args: activation_sparsifier (sparsifier object) activation sparsifier object that is being tested. data (torch tensor) dummy batched data """ # create a forward hook for checking ouput == layer(input * mask) def check_output(name): mask = activation_sparsifier.get_mask(name) features = activation_sparsifier.data_groups[name].get('features') feature_dim = activation_sparsifier.data_groups[name].get('feature_dim') def hook(module, input, output): input_data = input[0] if features is None: assert torch.all(mask * input_data == output) else: for feature_idx in range(0, len(features)): feature = torch.Tensor([features[feature_idx]], device=input_data.device).long() inp_data_feature = torch.index_select(input_data, feature_dim, feature) out_data_feature = torch.index_select(output, feature_dim, feature) assert torch.all(mask[feature_idx] * inp_data_feature == out_data_feature) return hook for name, config in activation_sparsifier.data_groups.items(): if 'identity' in name: config['layer'].register_forward_hook(check_output(name)) activation_sparsifier.model(data) def _check_state_dict(self, sparsifier1): """Checks if loading and restoring of state_dict() works as expected. Basically, dumps the state of the sparsifier and loads it in the other sparsifier and checks if all the configuration are in line. This function is called at various times in the workflow to makes sure that the sparsifier can be dumped and restored at any point in time. """ state_dict = sparsifier1.state_dict() new_model = Model() # create an empty new sparsifier sparsifier2 = ActivationSparsifier(new_model) assert sparsifier2.defaults != sparsifier1.defaults assert len(sparsifier2.data_groups) != len(sparsifier1.data_groups) sparsifier2.load_state_dict(state_dict) assert sparsifier2.defaults == sparsifier1.defaults # import pdb; pdb.set_trace() for name, state in sparsifier2.state.items(): assert name in sparsifier1.state mask1 = sparsifier1.state[name]['mask'] mask2 = state['mask'] if mask1 is None: assert mask2 is None else: assert type(mask1) == type(mask2) if isinstance(mask1, List): assert len(mask1) == len(mask2) for idx in range(len(mask1)): assert torch.all(mask1[idx] == mask2[idx]) else: # import pdb; pdb.set_trace() assert torch.all(mask1 == mask2) # make sure that the state dict is stored as torch sparse for _, state in state_dict['state'].items(): mask = state['mask'] if mask is not None: if isinstance(mask, List): for idx in range(len(mask)): assert mask[idx].is_sparse else: assert mask.is_sparse dg1, dg2 = sparsifier1.data_groups, sparsifier2.data_groups for layer_name, config in dg1.items(): assert layer_name in dg2 # exclude hook and layer config1 = {key: value for key, value in config.items() if key not in ['hook', 'layer']} config2 = {key: value for key, value in dg2[layer_name].items() if key not in ['hook', 'layer']} assert config1 == config2 @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_activation_sparsifier(self): """Simulates the workflow of the activation sparsifier, starting from object creation till squash_mask(). The idea is to check that everything works as expected while in the workflow. """ # defining aggregate, reduce and mask functions def agg_fn(x, y): return x + y def reduce_fn(x): return torch.mean(x, dim=0) def _vanilla_norm_sparsifier(data, sparsity_level): r"""Similar to data norm spasifier but block_shape = (1,1). Simply, flatten the data, sort it and mask out the values less than threshold """ data_norm = torch.abs(data).flatten() _, sorted_idx = torch.sort(data_norm) threshold_idx = round(sparsity_level * len(sorted_idx)) sorted_idx = sorted_idx[:threshold_idx] mask = torch.ones_like(data_norm) mask.scatter_(dim=0, index=sorted_idx, value=0) mask = mask.reshape(data.shape) return mask # Creating default function and sparse configs # default sparse_config sparse_config = { 'sparsity_level': 0.5 } defaults = { 'aggregate_fn': agg_fn, 'reduce_fn': reduce_fn } # simulate the workflow # STEP 1: make data and activation sparsifier object model = Model() # create model activation_sparsifier = ActivationSparsifier(model, **defaults, **sparse_config) # Test Constructor self._check_constructor(activation_sparsifier, model, defaults, sparse_config) # STEP 2: Register some layers register_layer1_args = { 'layer': model.conv1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer1 = {'sparsity_level': 0.3} register_layer2_args = { 'layer': model.linear1, 'features': [0, 10, 234], 'feature_dim': 1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer2 = {'sparsity_level': 0.1} register_layer3_args = { 'layer': model.identity1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer3 = {'sparsity_level': 0.3} register_layer4_args = { 'layer': model.identity2, 'features': [0, 10, 20], 'feature_dim': 1, 'mask_fn': _vanilla_norm_sparsifier } sparse_config_layer4 = {'sparsity_level': 0.1} layer_args_list = [(register_layer1_args, sparse_config_layer1), (register_layer2_args, sparse_config_layer2)] layer_args_list += [(register_layer3_args, sparse_config_layer3), (register_layer4_args, sparse_config_layer4)] # Registering.. for layer_args in layer_args_list: layer_arg, sparse_config_layer = layer_args activation_sparsifier.register_layer(**layer_arg, **sparse_config_layer) # check if things are registered correctly self._check_register_layer(activation_sparsifier, defaults, sparse_config, layer_args_list) # check state_dict after registering and before model forward self._check_state_dict(activation_sparsifier) # check if forward pre hooks actually work # some dummy data data_list = [] num_data_points = 5 for _ in range(0, num_data_points): rand_data = torch.randn(16, 1, 28, 28) activation_sparsifier.model(rand_data) data_list.append(rand_data) data_agg_actual = self._check_pre_forward_hook(activation_sparsifier, data_list) # check state_dict() before step() self._check_state_dict(activation_sparsifier) # STEP 3: sparsifier step activation_sparsifier.step() # check state_dict() after step() and before squash_mask() self._check_state_dict(activation_sparsifier) # self.check_step() self._check_step(activation_sparsifier, data_agg_actual) # STEP 4: squash mask activation_sparsifier.squash_mask() self._check_squash_mask(activation_sparsifier, data_list[0]) # check state_dict() after squash_mask() self._check_state_dict(activation_sparsifier)
pytorch-master
test/ao/sparsity/test_activation_sparsifier.py
#!/usr/bin/env python3 # Owner(s): ["oncall: mobile"] import tempfile import torch from torch.ao.nn.sparse.quantized.dynamic.linear import Linear from torch.testing._internal.common_quantized import ( qengine_is_qnnpack, override_quantized_engine, override_cpu_allocator_for_qnnpack ) from torch.testing._internal.common_utils import TestCase class TestQlinearPackedParams(TestCase): def test_qlinear_packed_params(self, allow_non_zero_zero_points=False): # copied from https://pytorch.org/docs/stable/sparse.html#csr-tensor-operations, # so row/col block indices match that example, but with blocks and # scaled rows weight_fp32 = torch.Tensor([ [0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0], [6, 6, 6, 6, 12, 12, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ]) row_block_size = 1 col_block_size = 4 out_features = weight_fp32.shape[0] in_features = weight_fp32.shape[1] scales = [2.0, 6.0, 12.0] zero_points = [ ((i + 1) if allow_non_zero_zero_points else 0) for i in range(out_features) ] dtype = torch.qint8 wide_weight_fp32 = torch.zeros((3, 4008)) # 4000 is tile width for Fbgemm wide_weight_fp32[0][0] = 4 wide_weight_fp32[0][4004] = 6 wide_weight_fp32[1][0] = 8 per_tensor_small = ( torch.quantize_per_tensor( weight_fp32, scales[0], zero_points[0], dtype ), True, [0, 1, 3, 3], [2, 0, 1], [x + (1 if allow_non_zero_zero_points else 0) for x in [ 1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6 ]], ) per_channel_small = ( torch.quantize_per_channel( weight_fp32, torch.Tensor(scales), torch.Tensor(zero_points).to(torch.int), 0, # axis = 0 dtype, ), False, [0, 1, 3, 3], [2, 0, 1], [x + ([1, 2, 2][i // 4] if allow_non_zero_zero_points else 0) for (i, x) in enumerate([ 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 ])], ) per_tensor_large = ( torch.quantize_per_tensor( wide_weight_fp32, scales[0], zero_points[0], dtype, ), True, [0, 2, 3, 3], [0, 1001, 0], [x + (1 if allow_non_zero_zero_points else 0) for x in [ 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0 ]], ) for (weight, is_per_tensor_quantized, expected_row_block_indices, expected_col_block_indices, expected_weights) in [ per_tensor_small, per_channel_small, per_tensor_large ]: lin = Linear( out_features=weight.shape[0], in_features=weight.shape[1], row_block_size=row_block_size, col_block_size=col_block_size, bias=True, dtype=dtype, ) bias = torch.ones(size=(weight.shape[0],)) lin.set_weight_bias(weight, bias, row_block_size, col_block_size) serialized = lin._packed_params._packed_params.__getstate__() ( _, # version bias_, out_features_block_size_, in_features_block_size_, weight_scales_, weight_zero_points_, quantization_scheme_, row_block_indices_, col_block_indices_, weights_, output_channels_, input_channels_ ) = serialized[0] # Test Serialization self.assertEqual(bias_, bias) self.assertEqual(out_features_block_size_, row_block_size) self.assertEqual(in_features_block_size_, col_block_size) self.assertEqual(weight_scales_, [scales[0]] if is_per_tensor_quantized else scales) self.assertEqual(weight_zero_points_, [zero_points[0]] if is_per_tensor_quantized else zero_points) self.assertEqual(quantization_scheme_, is_per_tensor_quantized) self.assertEqual(row_block_indices_, expected_row_block_indices) self.assertEqual(col_block_indices_, expected_col_block_indices) self.assertEqual(weights_.tolist(), [v + 128 for v in expected_weights]) # weights are serialized as +128 self.assertEqual(output_channels_, weight.shape[0]) self.assertEqual(input_channels_, weight.shape[1]) # Test Unpacking (weights_, bias_, out_features_block_size_, in_features_block_size_) = lin._weight_bias() self.assertEqual(torch.dequantize(weights_), torch.dequantize(weight)) self.assertEqual(bias_, bias) self.assertEqual(out_features_block_size_, row_block_size) self.assertEqual(in_features_block_size_, col_block_size) # Test Deserialization with tempfile.TemporaryFile() as file_buff: torch.save(lin, file_buff) file_buff.seek(0) lin2 = torch.load(file_buff) self.assertEqual(lin._weight_bias(), lin2._weight_bias()) # Serialize -> Deserialize -> Serialize should match Serialize self.assertEqual(serialized, lin2._packed_params._packed_params.__getstate__()) # Test that op output is preserved by serialize -> deserialize if qengine_is_qnnpack(): x = torch.rand(size=(1, weight.shape[1])) y1 = lin(x) y2 = lin2(x) self.assertEqual(y1, y2) def test_qlinear_packed_params_qnnpack(self): torch.manual_seed(0) with override_quantized_engine('qnnpack'): with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()): self.test_qlinear_packed_params(allow_non_zero_zero_points=True)
pytorch-master
test/ao/sparsity/test_qlinear_packed_params.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import itertools import logging import re import torch from torch import nn from torch.ao.sparsity import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier from torch.nn.utils.parametrize import is_parametrized from torch.testing._internal.common_utils import TestCase logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) class Model(nn.Module): def __init__(self): super().__init__() self.seq = nn.Sequential( nn.Linear(16, 16) ) self.linear = nn.Linear(16, 16) self.head = nn.Linear(16, 4) def forward(self, x): x = self.seq(x) x = self.linear(x) x = self.head(x) return x class ImplementedSparsifier(BaseSparsifier): def __init__(self, **kwargs): super().__init__(defaults=kwargs) def update_mask(self, module, **kwargs): module.parametrizations.weight[0].mask[0] = 0 linear_state = self.state['linear.weight'] linear_state['step_count'] = linear_state.get('step_count', 0) + 1 class TestBaseSparsifier(TestCase): def test_constructor(self): # Cannot instantiate the abstract base self.assertRaises(TypeError, BaseSparsifier) # Can instantiate the model with no configs model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, config=None) assert len(sparsifier.groups) == 3 sparsifier.step() # Can instantiate the model with configs sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert len(sparsifier.groups) == 1 assert sparsifier.groups[0]['tensor_fqn'] == 'linear.weight' assert 'test' in sparsifier.groups[0] assert sparsifier.groups[0]['test'] == 3 def test_prepare_config(self): model = Model() sparsifier = ImplementedSparsifier(test=3) # Make sure there are no parametrizations before `prepare` assert not hasattr(model.seq[0], 'parametrizations') assert not hasattr(model.linear, 'parametrizations') assert not hasattr(model.head, 'parametrizations') sparsifier.prepare(model, config=[ {'tensor_fqn': 'seq.0.weight', 'test': 42}, # No 'linear' to make sure it will be skipped in the sparsification {'tensor_fqn': 'head.weight'} ]) assert len(sparsifier.groups) == 2 # Check if default argument is not assigned if explicit assert sparsifier.groups[0]['tensor_fqn'] == 'seq.0.weight' assert sparsifier.groups[0]['test'] == 42 # Check if FQN and module are pointing to the same location assert sparsifier.groups[1]['tensor_fqn'] == 'head.weight' assert sparsifier.groups[1]['module'] == model.head # Check if parameterizations are attached assert hasattr(model.seq[0], 'parametrizations') assert not hasattr(model.linear, 'parametrizations') assert hasattr(model.head, 'parametrizations') def test_step(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.enable_mask_update = True sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) sparsifier.step() assert torch.all(model.linear.parametrizations.weight[0].mask[0] == 0) def test_state_dict(self): step_count = 3 model0 = Model() sparsifier0 = ImplementedSparsifier(test=3) sparsifier0.prepare(model0, [{'tensor_fqn': 'linear.weight'}]) mask = model0.linear.parametrizations['weight'][0].mask mask.data = torch.arange(mask.shape[0] * mask.shape[1]).reshape(mask.shape) for step in range(step_count): sparsifier0.step() state_dict = sparsifier0.state_dict() # Check the expected keys in the state_dict assert 'state' in state_dict assert 'step_count' in state_dict['state']['linear.weight'] assert state_dict['state']['linear.weight']['step_count'] == 3 assert 'groups' in state_dict assert 'test' in state_dict['groups'][0] assert 'tensor_fqn' in state_dict['groups'][0] assert state_dict['groups'][0]['tensor_fqn'] == 'linear.weight' # Check loading static_dict creates an equivalent model model1 = Model() sparsifier1 = ImplementedSparsifier() sparsifier1.prepare(model1, None) assert sparsifier0.state != sparsifier1.state # Make sure the masks are different in the beginning for mg in sparsifier0.groups: if mg['tensor_fqn'] == 'linear.weight': mask0 = mg['module'].parametrizations.weight[0].mask for mg in sparsifier1.groups: if mg['tensor_fqn'] == 'linear.weight': mask1 = mg['module'].parametrizations.weight[0].mask self.assertNotEqual(mask0, mask1) sparsifier1.load_state_dict(state_dict) # Make sure the states are loaded, and are correct assert sparsifier0.state == sparsifier1.state # Make sure the masks (and all dicts) are the same after loading assert len(sparsifier0.groups) == len(sparsifier1.groups) for idx in range(len(sparsifier0.groups)): mg0 = sparsifier0.groups[idx] mg1 = sparsifier1.groups[idx] for key in mg0.keys(): assert key in mg1 if key == 'module': # We cannot compare modules as they are different param0 = mg0[key].parametrizations.weight[0] param1 = mg1[key].parametrizations.weight[0] assert hasattr(param0, 'mask') assert hasattr(param1, 'mask') self.assertEqual(param0.__dict__, param1.__dict__) else: assert mg0[key] == mg1[key] def test_mask_squash(self): model = Model() sparsifier = ImplementedSparsifier(test=3) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}]) assert hasattr(model.linear.parametrizations.weight[0], 'mask') assert is_parametrized(model.linear, 'weight') assert not is_parametrized(model.seq[0], 'weight') sparsifier.squash_mask() assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight') def test_mask_squash_with_params1(self): model = Model() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}]) sparsifier.squash_mask( params_to_keep_per_layer={ 'linear': ('foo', 'bar'), 'seq.0': ('baz',) }) assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight') assert hasattr(model.seq[0], 'sparse_params') assert hasattr(model.linear, 'sparse_params') assert model.seq[0].sparse_params.get('foo', None) is None assert model.seq[0].sparse_params.get('bar', None) is None assert model.seq[0].sparse_params.get('baz', None) == 1 assert model.linear.sparse_params.get('foo', None) == 3 assert model.linear.sparse_params.get('bar', None) == 2 assert model.linear.sparse_params.get('baz', None) is None def test_mask_squash_with_params2(self): model = Model() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}]) sparsifier.squash_mask(params_to_keep=('foo', 'bar')) assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight') assert hasattr(model.seq[0], 'sparse_params') assert hasattr(model.linear, 'sparse_params') assert model.seq[0].sparse_params.get('foo', None) == 3 assert model.seq[0].sparse_params.get('bar', None) == 2 assert model.seq[0].sparse_params.get('baz', None) is None assert model.linear.sparse_params.get('foo', None) == 3 assert model.linear.sparse_params.get('bar', None) == 2 assert model.linear.sparse_params.get('baz', None) is None def test_mask_squash_with_params3(self): model = Model() sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1) sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}]) sparsifier.squash_mask( params_to_keep=('foo', 'bar'), params_to_keep_per_layer={'seq.0': ('baz',)}) assert not is_parametrized(model.seq[0], 'weight') assert not is_parametrized(model.linear, 'weight') assert hasattr(model.seq[0], 'sparse_params') assert hasattr(model.linear, 'sparse_params') assert model.seq[0].sparse_params.get('foo', None) == 3 assert model.seq[0].sparse_params.get('bar', None) == 2 assert model.seq[0].sparse_params.get('baz', None) == 1 assert model.linear.sparse_params.get('foo', None) == 3 assert model.linear.sparse_params.get('bar', None) == 2 assert model.linear.sparse_params.get('baz', None) is None class TestWeightNormSparsifier(TestCase): def test_constructor(self): model = Model() sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) for g in sparsifier.groups: assert isinstance(g['module'], nn.Linear) # The groups are unordered assert g['module_fqn'] in ('seq.0', 'linear', 'head') def test_step(self): model = Model() sparsifier = WeightNormSparsifier(sparsity_level=0.5) sparsifier.prepare(model, config=[{'tensor_fqn': 'linear.weight'}]) for g in sparsifier.groups: # Before step module = g['module'] assert (1.0 - module.parametrizations['weight'][0].mask.mean()) == 0 # checking sparsity level is 0 sparsifier.enable_mask_update = True sparsifier.step() self.assertAlmostEqual(model.linear.parametrizations['weight'][0].mask.mean().item(), 0.5, places=2) for g in sparsifier.groups: # After step module = g['module'] assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level has increased # Test if the mask collapses to all zeros if the weights are randomized iters_before_collapse = 1000 for _ in range(iters_before_collapse): model.linear.weight.data = torch.randn(model.linear.weight.shape) sparsifier.step() for g in sparsifier.groups: # After step module = g['module'] assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level did not collapse def test_step_2_of_4(self): model = Model() sparsifier = WeightNormSparsifier(sparsity_level=1.0, sparse_block_shape=(1, 4), zeros_per_block=2) sparsifier.prepare(model, config=[{'tensor_fqn': 'linear.weight'}]) sparsifier.step() # make sure the sparsity level is approximately 50% mask = model.linear.parametrizations['weight'][0].mask.to(torch.float) # mean works on float only self.assertAlmostEqual(mask.mean().item(), 0.5, places=2) # Make sure each block has exactly 50% zeros module = sparsifier.groups[0]['module'] mask = module.parametrizations['weight'][0].mask for row in mask: for idx in range(0, len(row), 4): block = row[idx:idx + 4] block, _ = block.sort() assert (block[:2] == 0).all() assert (block[2:] != 0).all() def test_prepare(self): model = Model() sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) for g in sparsifier.groups: module = g['module'] # Check mask exists assert hasattr(module.parametrizations['weight'][0], 'mask') # Check parametrization exists and is correct assert is_parametrized(module, 'weight') assert type(module.parametrizations.weight[0]) == FakeSparsity def test_mask_squash(self): model = Model() sparsifier = WeightNormSparsifier() sparsifier.prepare(model, config=None) sparsifier.squash_mask() for g in sparsifier.groups: module = g['module'] assert not is_parametrized(module, 'weight') assert not hasattr(module, 'mask') def test_sparsity_levels(self): sparsity_levels = [-1.0, 0.0, 0.5, 1.0, 2.0] sparse_block_shapes = [(1, 1), (1, 4), (2, 2), (4, 1)] zeros_per_blocks = [0, 1, 2, 3, 4] testcases = itertools.tee(itertools.product(sparsity_levels, sparse_block_shapes, zeros_per_blocks)) # Create a config and model with all the testcases model = nn.Sequential() sparsifier = WeightNormSparsifier() sparsity_per_layer_config = [] p = re.compile(r'[-\.\s]') for sl, sbs, zpb in testcases[0]: # Make sure the number of zeros is not > values in a block if zpb > sbs[0] * sbs[1]: continue layer_name = f'{sl}_{sbs}_{zpb}' layer_name = p.sub('_', layer_name) layer = nn.Linear(12, 12, bias=False) layer.weight = nn.Parameter(torch.ones(12, 12)) model.add_module(layer_name, layer) config = { 'tensor_fqn': layer_name + ".weight", 'sparsity_level': sl, 'sparse_block_shape': sbs, 'zeros_per_block': zpb } sparsity_per_layer_config.append(config) sparsifier.prepare(model, sparsity_per_layer_config) sparsifier.step() sparsifier.squash_mask() model.eval() for sl, sbs, zpb in testcases[1]: if zpb > sbs[0] * sbs[1]: continue layer_name = f'{sl}_{sbs}_{zpb}' layer_name = p.sub('_', layer_name) layer = getattr(model, layer_name) # Level of sparsity is achieved sparse_mask = (layer.weight == 0).float() if zpb == 0: assert sparse_mask.mean() == 0 else: # Ratio of individual zeros in the tensor true_sl = min(max(sl, 0.0), 1.0) true_sl = true_sl * zpb / sbs[0] / sbs[1] assert sparse_mask.mean() == true_sl class TestNearlyDiagonalSparsifier(TestCase): def test_constructor(self): model = Model() sparsifier = NearlyDiagonalSparsifier(nearliness=1) sparsifier.prepare(model, config=None) for g in sparsifier.groups: assert isinstance(g['module'], nn.Linear) # The groups are unordered assert g['module_fqn'] in ('seq.0', 'linear', 'head') def test_step(self): model = Model() sparsifier = NearlyDiagonalSparsifier(nearliness=1) sparsifier.prepare(model, config=[{'tensor_fqn': 'linear.weight'}]) for g in sparsifier.groups: # Before step module = g['module'] assert (1.0 - module.parametrizations['weight'][0].mask.mean()) == 0 # checking sparsity level is 0 sparsifier.enable_mask_update = True sparsifier.step() mask = module.parametrizations['weight'][0].mask height, width = mask.shape assert torch.all(mask == torch.eye(height, width)) for g in sparsifier.groups: # After step module = g['module'] assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level has increased # Test if the mask collapses to all zeros if the weights are randomized iters_before_collapse = 1000 for _ in range(iters_before_collapse): model.linear.weight.data = torch.randn(model.linear.weight.shape) sparsifier.step() for g in sparsifier.groups: # After step module = g['module'] assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level did not collapse def test_prepare(self): model = Model() sparsifier = NearlyDiagonalSparsifier(nearliness=1) sparsifier.prepare(model, config=None) for g in sparsifier.groups: module = g['module'] # Check mask exists assert hasattr(module.parametrizations['weight'][0], 'mask') # Check parametrization exists and is correct assert is_parametrized(module, 'weight') assert type(module.parametrizations.weight[0]) == FakeSparsity def test_mask_squash(self): model = Model() sparsifier = NearlyDiagonalSparsifier(nearliness=1) sparsifier.prepare(model, config=None) sparsifier.step() sparsifier.squash_mask() for g in sparsifier.groups: module = g['module'] assert not is_parametrized(module, 'weight') assert not hasattr(module, 'mask') weights = module.weight height, width = weights.shape assert torch.all(weights == torch.eye(height, width) * weights) # only diagonal to be present def test_sparsity_levels(self): nearliness_levels = list(nearliness for nearliness in range(-1, 100)) model = nn.Sequential() p = re.compile(r'[-\.\s]') for nearliness in nearliness_levels: sparsifier = NearlyDiagonalSparsifier(nearliness=1) layer_name = f'{nearliness}' layer_name = p.sub('_', layer_name) layer = nn.Linear(32, 32, bias=False) layer.weight = nn.Parameter(torch.ones(32, 32)) width, height = layer.weight.shape model.add_module(layer_name, layer) config = { 'tensor_fqn': layer_name + ".weight", 'nearliness': nearliness } sparsifier.prepare(model, [config]) # should raise a ValueError when nearliness arg is illegal if (nearliness > 0 and nearliness % 2 == 0) or (nearliness // 2 >= min(width, height)): with self.assertRaises(ValueError): sparsifier.step() else: sparsifier.step() sparsifier.squash_mask() model.eval() layer = getattr(model, layer_name) # verify that mask created corresponds to the nearliness self._verify_nearliness(layer.weight, nearliness) # helper function to verify nearliness of a mask def _verify_nearliness(self, mask: torch.Tensor, nearliness: int): if nearliness <= 0: assert torch.all(mask == torch.zeros(mask.shape[0], mask.shape[1])) else: height, width = mask.shape dist_to_diagonal = nearliness // 2 for row in range(0, height): for col in range(0, width): if abs(row - col) <= dist_to_diagonal: assert mask[row, col] == 1 else: assert mask[row, col] == 0
pytorch-master
test/ao/sparsity/test_sparsifier.py
# -*- coding: utf-8 -*- # Owner(s): ["module: unknown"] import logging import torch from torch.nn.utils.parametrize import is_parametrized import unittest from torch.testing._internal.common_utils import TestCase, TEST_WITH_ASAN from typing import Tuple from torch import nn import itertools import math import copy from torch.ao.sparsity._experimental.data_sparsifier import BaseDataSparsifier, DataNormSparsifier from torch.ao.sparsity._experimental.data_sparsifier.quantization_utils import post_training_sparse_quantize logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) class ImplementedSparsifier(BaseDataSparsifier): def __init__(self, **kwargs): super().__init__(**kwargs) def update_mask(self, name, data, **kwargs): mask = self.get_mask(name) mask[0] = 0 linear_state = self.state[name] linear_state['step_count'] = linear_state.get('step_count', 0) + 1 class _BaseDataSparsiferTestCase(TestCase): r"""This helper test class takes in any supported type of and runs some tests. The user is required to pass in the data that needs to sparsified and the runner will run some tests that needs to be passed in order for the data type to be supported. TODO: Change the structure by creating a separate test case class for each member function """ def run_all_checks(self, data_list, data_with_config, defaults): self.check_constructor(data_list, data_with_config, defaults) self.check_squash_mask(data_list, data_with_config, defaults) self.check_add_data(data_list, data_with_config, defaults) self.check_step(data_list, data_with_config, defaults) self.check_state_dict(data_list, data_with_config, defaults) self.check_memory_reference(data_list, data_with_config, defaults) @staticmethod def _get_name_data_config(some_data, defaults=None): if isinstance(some_data, Tuple): # dealing with data_list name, data = some_data config = defaults else: # dealing with data_with_config name, data, config = some_data['name'], some_data['data'], some_data['config'] return name, data, config @staticmethod def _make_sparsifier(data_list, data_with_config, defaults, sparsifier_type=None, sparsifier_kwargs=None): if sparsifier_type is None: sparsifier = ImplementedSparsifier(data_list=data_list, **defaults) else: kwargs = copy.deepcopy(defaults) kwargs.update(sparsifier_kwargs) kwargs['data_list'] = data_list sparsifier = sparsifier_type(**kwargs) assert len(sparsifier.data_groups) == len(data_list) for data_config_dict in data_with_config: name, data, config = data_config_dict['name'], data_config_dict['data'], data_config_dict['config'] sparsifier.add_data(name=name, data=data, **config) return sparsifier def check_constructor(self, data_list, data_with_config, defaults, **kwargs): sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs) self.assertEqual(len(sparsifier.data_groups), len(data_list) + len(data_with_config), msg="Sparsifier data groups don't match the input " f"({len(sparsifier.data_groups)} vs. " f"{len(data_list) + len(data_with_config)}).") all_data = data_list + data_with_config for some_data in all_data: name, _, config = self._get_name_data_config(some_data, defaults=defaults) self.assertIn(name, sparsifier.data_groups) self.assertEqual(sparsifier.data_groups[name], config) def check_step(self, data_list, data_with_config, defaults, **kwargs): sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs) all_data = data_list + data_with_config # Check data and mask before doing the step for some_data in all_data: name, data, _ = self._get_name_data_config(some_data) data = sparsifier._extract_weight(data) sparsified_data = sparsifier.get_data(name=name, return_original=False) original_data = sparsifier.get_data(name=name, return_original=True) mask = sparsifier.get_mask(name=name) self.assertEqual(sparsified_data, data) self.assertEqual(original_data, data) self.assertEqualBroadcasting(mask[0], 1) step_count = 3 for _ in range(0, step_count): sparsifier.step() for some_data in all_data: name, data, _ = self._get_name_data_config(some_data) data = sparsifier._extract_weight(data) sparsified_data = sparsifier.get_data(name=name, return_original=False) original_data = sparsifier.get_data(name=name, return_original=True) mask = sparsifier.get_mask(name=name) self.assertEqualBroadcasting(sparsified_data[0], 0) self.assertEqual(original_data, data) self.assertEqualBroadcasting(mask[0], 0) assert 'step_count' in sparsifier.state[name] assert sparsifier.state[name]['step_count'] == 3 def check_squash_mask(self, data_list, data_with_config, defaults, **kwargs): sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs) all_data = data_list + data_with_config for some_data in all_data: name, _, _ = self._get_name_data_config(some_data) assert hasattr(sparsifier._container, name) assert is_parametrized(sparsifier._container, name) sparsifier.step() sparsifier.squash_mask() for some_data in all_data: name, _, _ = self._get_name_data_config(some_data) assert not is_parametrized(sparsifier._container, name) # not parametrized anymore with self.assertRaises(ValueError): sparsifier.get_data(name, return_original=True) def check_add_data(self, data_list, data_with_config, defaults, **kwargs): sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs) all_data = data_list + data_with_config for some_data in all_data: name1, data1, config = self._get_name_data_config(some_data, defaults=defaults) data1 = sparsifier._extract_weight(data1) data1_old = copy.deepcopy(data1) assert torch.all(data1 == sparsifier.get_data(name=name1)) sparsifier.step() mask = sparsifier.get_mask(name1) data2 = torch.randn(data1.shape) # add another data with the same shape as original data sparsifier.add_data(name=name1, data=data2) assert torch.all(data2 == sparsifier.get_data(name=name1)) assert torch.all(sparsifier.get_mask(name1) == mask) # mask should not change assert torch.all(data1_old == data1) assert sparsifier.data_groups[name1] == config # if replaced old_config should match new config def check_state_dict(self, data_list, data_with_config, defaults, **kwargs): sparsifier1 = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs) sparsifier2 = self._make_sparsifier(data_list=[data_list[0]], data_with_config=[], defaults=defaults, **kwargs) sparsifier1.step() state_dict1 = sparsifier1.state_dict() assert sparsifier1.state != sparsifier2.state name, _, _ = self._get_name_data_config(data_list[0]) self.assertNotEqual(sparsifier1.get_mask(name), sparsifier2.get_mask(name)) sparsifier2.load_state_dict(state_dict1) assert len(sparsifier1.state) == len(sparsifier2.state) assert len(sparsifier1.data_groups) == len(sparsifier2.data_groups) state1 = state_dict1['state'] for name in state1.keys(): # compare mask assert name in sparsifier2.state assert 'mask' in sparsifier2.state[name] assert 'mask' in sparsifier1.state[name] mask1, mask2 = state1[name]['mask'], sparsifier2.state[name]['mask'] assert mask1.is_sparse and not mask2.is_sparse assert torch.all(mask1.to_dense() == mask2) # mask1 is stored as sparse coo now # compare data_groups dg1, dg2 = sparsifier1.data_groups, sparsifier2.data_groups assert name in dg1 and name in dg2 assert dg1[name] == dg2[name] # compare container container1, container2 = sparsifier1._container, sparsifier2._container assert torch.all(getattr(container1, name) == getattr(container2, name)) assert is_parametrized(container1, name) == is_parametrized(container2, name) if is_parametrized(container1, name): param1 = getattr(container1.parametrizations, name)[0] param2 = getattr(container2.parametrizations, name)[0] assert hasattr(param1, 'mask') assert hasattr(param2, 'mask') self.assertEqual(param1.__dict__, param2.__dict__) def check_memory_reference(self, data_list, data_with_config, defaults, **kwargs): """Checks if the data is truly "attached" to the sparsifier. Meaning, when the data is changed outside of the sparsifier, the changes must be reflected on the data inside the data sparsifier as well. This makes sure that the sparsifier is holding the memory reference of the data and not copies. This test modifies the data and asserts that data in the sparsifier is changed as well """ sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs) all_data = data_list + data_with_config for some_data in all_data: name, data, _ = self._get_name_data_config(some_data) weight = sparsifier._extract_weight(data) weight.data = weight + torch.randn(*weight.shape) contained_data = sparsifier.get_data(name=name) assert id(weight.data) == id(contained_data.data) assert torch.all(contained_data == weight) class _NormDataSparsifierTestCase(_BaseDataSparsiferTestCase): r"""This helper test class takes in any supported type of and runs some tests. This inherits the TestBaseDataSparsifierRuner wherein some functions are over-ridden to take accomodate the specific sparsifier. TODO: Change the structure by creating a separate test case class for each member function """ def run_all_checks(self, data_list, defaults, data_with_config, norm_type='L1'): assert norm_type in ['L1', 'L2'] kwargs = { 'sparsifier_type': DataNormSparsifier, 'sparsifier_kwargs': {'norm': norm_type} } self.check_constructor(data_list, data_with_config, defaults, **kwargs) self.check_squash_mask(data_list, data_with_config, defaults, **kwargs) self.check_add_data(data_list, data_with_config, defaults, **kwargs) self.check_state_dict(data_list, data_with_config, defaults, **kwargs) self.check_step(data_list, data_with_config, defaults, norm_type=norm_type) self.check_step_2_of_4(norm_type=norm_type) self.check_sparsity_level(data_list, data_with_config, defaults, norm_type=norm_type) self.check_memory_reference(data_list, data_with_config, defaults, **kwargs) @staticmethod def _get_bounds_on_actual_sparsity(config, tensor_shape): r"""This function gets the bounds on actual sparsity. Note:: Although we specify the sparsity_level parameter, this does not mean that the actual sparsity obtained after sparsification is the same as sparsity_level. The actual sparsity depends largely on the shape and the data itself. """ sparsity_level = config['sparsity_level'] zeros_per_block = config['zeros_per_block'] sparse_block_shape = config['sparse_block_shape'] height, width = tensor_shape[-2], tensor_shape[-1] block_height, block_width = sparse_block_shape number_blocks = math.ceil(height / block_height) * math.ceil(width / block_width) values_per_block = block_height * block_width if zeros_per_block == 0: return (1.0, 1.0) else: # min value assumes zeros_per_block is 1 min_values_sparsified = round(number_blocks * sparsity_level) # max value assumes actual zeros_per_block max_values_sparsified = min_values_sparsified * min(values_per_block, zeros_per_block) lower_bound = min_values_sparsified / (height * width) upper_bound = min(1.0, max_values_sparsified / (height * width)) lower_bound, upper_bound = round(lower_bound, 3), round(upper_bound, 3) return lower_bound, upper_bound def check_step(self, data_list, data_with_config, defaults, norm_type='L1'): sparsifier = self._make_sparsifier(data_list, data_with_config, defaults, sparsifier_type=DataNormSparsifier, sparsifier_kwargs={'norm': norm_type}) all_data = data_list + data_with_config # mask before step() should not be sparsified for some_data in all_data: name, _, _ = self._get_name_data_config(some_data) mask = sparsifier.get_mask(name=name) assert (1.0 - mask.mean()) == 0 # checking sparsity level is 0 sparsifier.step() for some_data in all_data: name, _, _ = self._get_name_data_config(some_data) mask = sparsifier.get_mask(name=name) config = sparsifier.data_groups[name] lb, ub = self._get_bounds_on_actual_sparsity(config, mask.shape) mask = mask.to(torch.float) actual_sparsity = round(1 - mask.mean().item(), 3) assert actual_sparsity >= lb and actual_sparsity <= ub assert actual_sparsity > 0.0 # exact sparsity level cannot be achieved due to size of tensor iters_before_collapse = 100 test_sparsifier = DataNormSparsifier(sparsity_level=0.5, sparse_block_shape=(1, 4), zeros_per_block=4, norm=norm_type) for _ in range(iters_before_collapse): new_data = torch.randn(20, 20) test_sparsifier.add_data(name='test_data', data=new_data) test_sparsifier.step() mask = test_sparsifier.get_mask(name='test_data') mask = mask.to(torch.float) assert (1.0 - mask.mean().item()) > 0 # some sparsity achieved def check_step_2_of_4(self, norm_type): # overriding default config for test purposes default_config = {'sparsity_level': 1.0, 'zeros_per_block': 2, 'sparse_block_shape': (1, 4)} data_list = [('test_data', torch.randn(4, 4))] sparsifier = DataNormSparsifier(data_list=data_list, norm=norm_type, **default_config) sparsifier.step() for some_data in data_list: name, _ = some_data mask = sparsifier.get_mask(name=name) mask = mask.to(torch.float) self.assertAlmostEqual(1.0 - mask.mean().item(), 0.5, places=2) for row in mask: for idx in range(0, len(row), 4): block = row[idx:idx + 4] block, _ = block.sort() assert (block[:2] == 0).all() assert (block[2:] != 0).all() def check_sparsity_level(self, data_list, data_with_config, defaults, norm_type='L1'): sparsity_levels = [-1.0, 0.0, 0.5, 1.0, 2.0] sparse_block_shapes = [(1, 1), (1, 4), (2, 2), (4, 1)] zeros_per_blocks = [0, 1, 2, 3, 4] sparsifier = DataNormSparsifier(data_list=data_list, norm=norm_type) testcases = itertools.tee(itertools.product(sparsity_levels, sparse_block_shapes, zeros_per_blocks)) assert len(data_with_config) > 0 and 'name' in data_with_config[0] and 'data' in data_with_config[0] # get some data name, data = data_with_config[0]['name'], data_with_config[0]['data'] for idx, (sl, sbs, zpb) in enumerate(testcases[0]): new_name = f'{name}_{idx}' if zpb > sbs[0] * sbs[1]: continue current_config = {'sparsity_level': sl, 'sparse_block_shape': sbs, 'zeros_per_block': zpb} sparsifier.add_data(name=new_name, data=data, **current_config) if zpb > sbs[0] * sbs[1]: continue sparsifier.step() sparsifier.squash_mask() for idx, (sl, sbs, zpb) in enumerate(testcases[0]): new_name = f'{name}_{idx}' sparsified_data = sparsifier.get_data(name=new_name, original=False) # sparse mask sparse_mask = (sparsified_data == 0).float() if zpb == 0: assert sparse_mask.mean() == 0 else: # Ratio of individual zeros in the tensor true_sl = min(max(sl, 0.0), 1.0) true_sl = true_sl * zpb / sbs[0] / sbs[1] assert sparse_mask.mean() == true_sl class TestBaseDataSparsifier(_BaseDataSparsiferTestCase): """To add unit tests to support new data types for the BaseDataSparsifier, create the following data_list: List of tuples of name, data to be added to the constructor defaults: default config for the above data in data_list data_with_config: list of dictionaries defining name, data and config (look test_tensors()) Once the above is done, create an instance of TestBaseDataSparsifierType and call all the run_tests() """ def test_tensors(self): tensor1, tensor2, tensor3 = torch.randn(3, 3), torch.randn(4, 4), torch.randn(5, 5) tensor4, tensor5 = torch.randn(1, 1), torch.randn(4, 4) data_list = [('tensor1', tensor1), ('tensor2', tensor2), ('tensor3', tensor3)] defaults = {'test': 3} data_with_config = [ { 'name': 'tensor4', 'data': tensor4, 'config': {'test': 7} }, { 'name': 'tensor5', 'data': tensor5, 'config': {'test': 8} }, ] self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config) def test_nn_parameters(self): param1, param2, param3 = nn.Parameter(torch.randn(3, 3)), nn.Parameter(torch.randn(4, 4)), nn.Parameter(torch.randn(5, 5)) param4, param5 = nn.Parameter(torch.randn(1, 1)), nn.Parameter(torch.randn(4, 4)) data_list = [('param1', param1), ('param2', param2), ('param3', param3)] defaults = {'test': 3} data_with_config = [ { 'name': 'param4', 'data': param4, 'config': {'test': 7} }, { 'name': 'param5', 'data': param5, 'config': {'test': 8} }, ] self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config) def test_nn_embeddings(self): emb1, emb2, = nn.Embedding(10, 3), nn.Embedding(20, 3) emb1_bag, emb2_bag = nn.EmbeddingBag(10, 3), nn.EmbeddingBag(20, 3) emb3, emb3_bag = nn.Embedding(15, 3), nn.EmbeddingBag(20, 3) data_list = [('emb1', emb1), ('emb1_bag', emb1_bag), ('emb2', emb2), ('emb2_bag', emb2_bag)] defaults = {'test': 3} data_with_config = [ { 'name': 'emb3', 'data': emb3, 'config': {'test': 7} }, { 'name': 'emb3_bag', 'data': emb3_bag, 'config': {'test': 8} }, ] self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config) class TestNormDataSparsifiers(_NormDataSparsifierTestCase): """To add unit tests to support new data types for the NormDataSparsifier, create the following data_list: List of tuples of name, data to be added to the constructor defaults: default config for the above data in data_list data_with_config: list of dictionaries defining name, data and config (look test_tensors()) Once the above is done, create an instance of _NormDataSparsifierTestRunner and call run_tests() """ def test_tensors(self): tensor1, tensor2, tensor3 = torch.randn(1, 10), torch.randn(4, 4), torch.randn(1, 5) tensor4, tensor5 = torch.randn(1, 2), torch.randn(4, 4) data_list = [('tensor1', tensor1), ('tensor2', tensor2), ('tensor3', tensor3)] defaults = {'sparsity_level': 0.5, 'sparse_block_shape': (1, 4), 'zeros_per_block': 4} data_with_config = [ { 'name': 'tensor4', 'data': tensor4, 'config': {'sparsity_level': 0.7, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6} }, { 'name': 'tensor5', 'data': tensor5, 'config': {'sparsity_level': 0.3, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6} }, ] self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config, norm_type='L1') self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config, norm_type='L2') def test_nn_parameters(self): param1, param2, param3 = nn.Parameter(torch.randn(1, 8)), nn.Parameter(torch.randn(4, 4)), nn.Parameter(torch.randn(5, 5)) param4, param5 = nn.Parameter(torch.randn(10, 10)), nn.Parameter(torch.randn(4, 4)) data_list = [('param1', param1), ('param2', param2), ('param3', param3)] defaults = {'sparsity_level': 0.5, 'sparse_block_shape': (1, 4), 'zeros_per_block': 4} data_with_config = [ { 'name': 'param4', 'data': param4, 'config': {'sparsity_level': 0.7, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6} }, { 'name': 'param5', 'data': param5, 'config': {'sparsity_level': 0.3, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6} }, ] self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config, norm_type='L1') self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config, norm_type='L2') def test_nn_embeddings(self): emb1, emb2, = nn.Embedding(10, 3), nn.Embedding(20, 3) emb1_bag, emb2_bag = nn.EmbeddingBag(10, 3), nn.EmbeddingBag(20, 3) emb3, emb3_bag = nn.Embedding(15, 3), nn.EmbeddingBag(20, 3) data_list = [('emb1', emb1), ('emb1_bag', emb1_bag), ('emb2', emb2), ('emb2_bag', emb2_bag)] defaults = {'sparsity_level': 0.5, 'sparse_block_shape': (1, 4), 'zeros_per_block': 4} data_with_config = [ { 'name': 'emb3', 'data': emb3, 'config': {'sparsity_level': 0.7, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6} }, { 'name': 'emb3_bag', 'data': emb3_bag, 'config': {'sparsity_level': 0.3, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6} }, ] self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config, norm_type='L1') self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config, norm_type='L2') class Model(nn.Module): def __init__(self): super().__init__() self.emb1 = nn.Embedding(100, 3) self.embbag1 = nn.EmbeddingBag(200, 32) self.emb_seq = nn.Sequential(nn.Embedding(150, 3), nn.EmbeddingBag(100, 3)) self.linear1 = nn.Linear(32, 32) self.linear2 = nn.Linear(16, 16) class TestQuantizationUtils(TestCase): @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN due to address sanitization") def test_ptq_sparsify_first(self): """The expectation is post_training_sparse_quantize function 1. Takes in a model 2. Sparsifies the embeddings 3. Quantize the embeddings This unit test checks that 1. Embeddings and EmbeddingBags are sparsified to the right sparsity levels 2. Embeddings and EmbeddingBags are quantized 3. Linear modules are not quanitzed """ model = Model() sparse_config = {'sparsity_level': 0.80, 'sparse_block_shape': (1, 1)} select_embeddings = [model.embbag1, model.emb1] post_training_sparse_quantize(model, data_sparsifier_class=DataNormSparsifier, sparsify_first=True, select_embeddings=select_embeddings, **sparse_config) assert type(model.emb1) == torch.nn.quantized.modules.embedding_ops.Embedding assert type(model.embbag1) == torch.nn.quantized.modules.embedding_ops.EmbeddingBag assert type(model.emb_seq[0] == nn.Embedding) assert type(model.emb_seq[1] == nn.EmbeddingBag) assert type(model.linear1) == nn.Linear assert type(model.linear2) == nn.Linear dequant_emb1 = torch.dequantize(model.emb1.weight()) dequant_embbag1 = torch.dequantize(model.embbag1.weight()) threshold = 1e-2 sl_emb1 = (torch.abs(dequant_emb1) < threshold).float().mean() sl_embbag1 = (torch.abs(dequant_embbag1) < threshold).float().mean() assert abs(sl_emb1 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_embbag1 - 0.80) <= 0.05 # +- 5% leeway @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN due to address sanitization") def test_ptq_quantize_first(self): """The expectation is post_training_sparse_quantize function 1. Takes in a model 2. Quantize the embeddings 3. Sparsifies the embeddings This unit test checks that 1. Embeddings and EmbeddingBags are sparsified to the right sparsity levels 2. Embeddings and EmbeddingBags are quantized 3. Linear modules are not quanitzed """ model = Model() sparse_config = {'sparsity_level': 0.8, 'sparse_block_shape': (1, 1)} post_training_sparse_quantize(model, DataNormSparsifier, sparsify_first=False, **sparse_config) assert type(model.emb1) == torch.nn.quantized.modules.embedding_ops.Embedding assert type(model.embbag1) == torch.nn.quantized.modules.embedding_ops.EmbeddingBag assert type(model.emb_seq[0] == torch.nn.quantized.modules.embedding_ops.Embedding) assert type(model.emb_seq[1] == torch.nn.quantized.modules.embedding_ops.EmbeddingBag) assert type(model.linear1) == nn.Linear # not quantized assert type(model.linear2) == nn.Linear # not quantized dequant_emb1 = torch.dequantize(model.emb1.weight()) dequant_embbag1 = torch.dequantize(model.embbag1.weight()) dequant_emb_seq_0 = torch.dequantize(model.emb_seq[0].weight()) dequant_emb_seq_1 = torch.dequantize(model.emb_seq[1].weight()) # higher threshold as quantization occurs before sparsity threshold = 1 # zero points seem to have higher magnitude with sparsity occuring after sl_emb1 = (torch.abs(dequant_emb1) < threshold).float().mean() sl_embbag1 = (torch.abs(dequant_embbag1) < threshold).float().mean() sl_emb_seq_0 = (torch.abs(dequant_emb_seq_0) < threshold).float().mean() sl_emb_seq_1 = (torch.abs(dequant_emb_seq_1) < threshold).float().mean() assert abs(sl_emb1 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_embbag1 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_emb_seq_0 - 0.80) <= 0.05 # +- 5% leeway assert abs(sl_emb_seq_1 - 0.80) <= 0.05 # +- 5% leeway
pytorch-master
test/ao/sparsity/test_data_sparsifier.py
# Owner(s): ["oncall: jit"] import unittest from torch._lazy.ts_backend import init as init_ts_backend init_ts_backend() from torch._lazy import config from torch._lazy.extract_compiled_graph import extract_compiled_graph import torch from torch import nn import dis import inspect from torch import fx import re from contextlib import contextmanager import copy class ModuleConstScale(nn.Module): def __init__(self): super(ModuleConstScale, self).__init__() def forward(self, a): return a * 2 class ModuleSub(nn.Module): def __init__(self): super(ModuleSub, self).__init__() def forward(self, a, b): return a - b class ModuleAddcmul(nn.Module): """ addcmul function takes a at::Scalar which results in a special TSData containing a Scalar rather than a Tensor. """ def __init__(self): super(ModuleAddcmul, self).__init__() def forward(self, a, b, c): return torch.addcmul(a, b, c, value=5) class ModuleReturnMulti(nn.Module): def __init__(self): super(ModuleReturnMulti, self).__init__() def forward(self, a, b): return (b + 1, a - 1) # The default fx tracer will convert torch.randn to a constant.. We may need # a custom tracer. # class ModuleEagerTensor(nn.Module): # def __init__(self): # super(ModuleEagerTensor, self).__init__() # # def forward(self, a): # b = torch.randn(2, 3, device="cpu") # eager device # return a + b # The module was planned to cover the case that a Fx graph return an eager # tensor on the default device. It's harder than ModuleEagerTensor because # we can not just override the device argument to Lazy since there is no # explicit device argument. # # Unfortunately, the default fx tracer convert the return value of the forward # method to a constant.. Comment out for now # class ModuleReturnEagerTensorOnDefaultDevice(nn.Module): # def __init__(self): # super(ModuleReturnEagerTensorOnDefaultDevice, self).__init__() # # def forward(self): # return torch.tensor((2, 3), dtype=torch.float32) class ModuleReturnDupTensor(nn.Module): """ Handle the corner case that the same tensor appears multiple times in the returned tuple. torchbench like drq will hit this corner case when running thru torchdynamo.. """ def __init__(self): super(ModuleReturnDupTensor, self).__init__() def forward(self, a, b): c = a + b return a - b, c, a + 1, c class ModuleInplaceUpdate(nn.Module): def __init__(self): super(ModuleInplaceUpdate, self).__init__() def forward(self, a, b): a.sub_(b) return b - 1, b + 1 @contextmanager def force_fallback_ctx_mgr(fallback_op): oldconfig = config.get_force_fallback() config.set_force_fallback(fallback_op) try: yield None finally: config.set_force_fallback(oldconfig) @contextmanager def nop_ctx_mgr(): try: yield None finally: pass def gen_rand_args(mod): args = [] for _ in range(len(inspect.signature(mod.forward).parameters)): args.append(torch.randn(2, 3)) return args def allclose(expected, actual): def unwrap(cont): if isinstance(cont, (list, tuple)) and len(cont) == 1: return cont[0] return cont expected = unwrap(expected) actual = unwrap(actual) if isinstance(expected, torch.Tensor) and isinstance(actual, torch.Tensor): return torch.allclose(expected, actual) elif isinstance(expected, (tuple, list)) and isinstance(actual, (tuple, list)): return len(expected) == len(actual) and all(torch.allclose(a, b) for a, b in zip(expected, actual)) else: raise RuntimeError("Unexpected types") def verify_reusing_compiled_graph(mod, exception_msg_pattern, ncase=10): args = gen_rand_args(mod) out = mod(*args) dis.dis(mod.forward) try: optimized_mod = extract_compiled_graph(fx.symbolic_trace(mod), args) except RuntimeError as e: if exception_msg_pattern is None: raise e # reraise the exception exception_message = str(e) if not re.search(exception_msg_pattern, exception_message): raise RuntimeError(f"Expection message does not match the required pattern: {exception_message}") else: # We are done for the test case that expects an exception return if exception_msg_pattern is not None: raise RuntimeError(f"Expect an exception matching pattern {exception_msg_pattern}") print("return value of optimized_mod", optimized_mod(*args)) # check correctness failed_index = [] for i in range(ncase): rand_args = gen_rand_args(mod) rand_args_copy = copy.deepcopy(rand_args) expected = mod(*rand_args) actual = optimized_mod(*rand_args_copy) if not allclose(expected, actual): print(f"Incorrect results. expected {expected}, actual {actual}") failed_index.append(i) continue # make sure arguments match after calling the model forward method to handle inplace # updates. if not allclose(rand_args, rand_args_copy): print(f"Incorrect updated arguments. expected {rand_args}, actual {rand_args_copy}") failed_index.append(i) continue if len(failed_index) > 0: raise RuntimeError(f"Failed {len(failed_index)}/{ncase} cases") def maketest(module_cls, exception_msg_pattern=None, ctxmgr=None): def wrapper(self): nonlocal ctxmgr if not ctxmgr: ctxmgr = nop_ctx_mgr() with ctxmgr: verify_reusing_compiled_graph(module_cls(), exception_msg_pattern) return wrapper class OptimizeTest(unittest.TestCase): test_sub = maketest(ModuleSub) # Same as test_sub but force aten::sub to fallback # We expect an exception caught because of LTC fallabck. test_ltc_fallback = maketest(ModuleSub, exception_msg_pattern="fallback.*aten::sub", ctxmgr=force_fallback_ctx_mgr("aten::sub")) test_const_scale = maketest(ModuleConstScale) test_addcmul = maketest(ModuleAddcmul) test_return_multi = maketest(ModuleReturnMulti) test_return_dup_tensor = maketest(ModuleReturnDupTensor) test_inplace_update = maketest(ModuleInplaceUpdate)
pytorch-master
test/lazy/test_extract_compiled_graph.py
# Owner(s): ["oncall: jit"] import torch import torch._lazy import torch._lazy.config import torch._lazy.ir_cache import torch._lazy.ts_backend import torch._lazy.metrics as metrics from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase import os import unittest torch._lazy.ts_backend.init() torch._lazy.config.set_reuse_ir(True) def get_test_device(): return 'cuda' if 'LTC_TS_CUDA' in os.environ else 'cpu' @unittest.skipIf(IS_WINDOWS, "To be fixed") class TestLazyReuseIr(TestCase): def testAdd(self): device = get_test_device() x = torch.randn(2, 3, 4, device=device) y = torch.randn(2, 3, 4, device=device) z = torch.zeros(2, 3, 4, device=device) device = 'lazy' x_lazy = x.detach().clone().to(device=device) y_lazy = y.detach().clone().to(device=device) z_lazy = z.detach().clone().to(device=device) for i in range(10): z += (x + y) for i in range(10): z_lazy += (x_lazy + y_lazy) torch._lazy.mark_step() torch.testing.assert_close(z.cpu(), z_lazy.cpu()) assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 14 metrics.reset() torch._lazy.ir_cache.reset() def testAddSub(self): device = get_test_device() x = torch.randn(2, 3, 4, device=device) y = torch.randn(2, 3, 4, device=device) z = torch.zeros(2, 3, 4, device=device) device = 'lazy' x_lazy = x.detach().clone().to(device=device) y_lazy = y.detach().clone().to(device=device) z_lazy = z.detach().clone().to(device=device) for i in range(10): if i < 5: z += (x + y) else: z += (x - y) for i in range(10): if i < 5: z_lazy += (x_lazy + y_lazy) else: z_lazy += (x_lazy - y_lazy) torch._lazy.mark_step() torch.testing.assert_close(z.cpu(), z_lazy.cpu()) assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8 metrics.reset() torch._lazy.ir_cache.reset() def testAddSubFallback(self): torch._lazy.config.set_force_fallback("aten::sub") device = get_test_device() x = torch.randn(2, 3, 4, device=device) y = torch.randn(2, 3, 4, device=device) z = torch.zeros(2, 3, 4, device=device) device = 'lazy' x_lazy = x.detach().clone().to(device=device) y_lazy = y.detach().clone().to(device=device) z_lazy = z.detach().clone().to(device=device) for i in range(10): if i < 5: z += (x + y) else: z += (x - y) for i in range(10): if i < 5: z_lazy += (x_lazy + y_lazy) else: z_lazy += (x_lazy - y_lazy) torch._lazy.mark_step() torch.testing.assert_close(z.cpu(), z_lazy.cpu()) assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8 metrics.reset() torch._lazy.ir_cache.reset() torch._lazy.config.set_force_fallback("") def testBatchNorm(self): device = get_test_device() x = torch.randn(16, 3, 224, 224, device=device) weight = torch.randn(3, device=device) bias = torch.randn(3, device=device) for i in range(10): # BatchNorm2d does extra checks on dimensions which SymInts don't support yet # so we call `torch.ops.aten.native_batch_norm` to bypass the checks. z, _, _ = torch.ops.aten.native_batch_norm(x, weight, bias, None, None, True, 0.1, 1e-5) device = "lazy" x_lazy = x.detach().clone().to(device=device) weight_lazy = weight.detach().clone().to(device=device) bias_lazy = bias.detach().clone().to(device=device) for i in range(10): z_lazy, _, _ = torch.ops.aten.native_batch_norm(x_lazy, weight_lazy, bias_lazy, None, None, True, 0.1, 1e-5) torch._lazy.mark_step() torch.testing.assert_close(z.cpu(), z_lazy.cpu()) assert metrics.counter_value("IrNodeReused_torch::lazy::NativeBatchNorm") >= 7 metrics.reset() torch._lazy.ir_cache.reset() if __name__ == '__main__': run_tests()
pytorch-master
test/lazy/test_reuse_ir.py
pytorch-master
test/lazy/__init__.py
# Owner(s): ["oncall: jit"] from typing import Sequence import torch import functools from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests import torch._lazy import torch._lazy.config import torch._lazy.metrics import torch._lazy.ir_cache import torch._lazy.ts_backend import itertools import yaml import os import pathlib from unittest import skip torch._lazy.ts_backend.init() def get_test_device(): return 'cuda' if 'LTC_TS_CUDA' in os.environ else 'cpu' def remove_suffixes(l): return [x.split(".")[0] for x in l] def init_lists(): path_to_script = pathlib.Path(os.path.abspath(os.path.dirname(__file__))) TS_NATIVE_FUNCTIONS_PATH = path_to_script.parent.parent / "aten/src/ATen/native/ts_native_functions.yaml" with open(TS_NATIVE_FUNCTIONS_PATH) as f: yaml_ts = yaml.load(f, yaml.Loader) LAZY_OPS_LIST = set(remove_suffixes(itertools.chain(yaml_ts["full_codegen"], yaml_ts["supported"], yaml_ts["autograd"]))) FALLBACK_LIST = set(["clamp"]) SKIP_RUNTIME_ERROR_LIST = set([ 'index_select', # Empty output_sizes is not supported 'clone', # is clone decomposed? # General ASAN Failure due to related to generating bool values. # https://github.com/pytorch/pytorch/issues/74519 # https://github.com/pytorch/pytorch/issues/63034 'nonzero', # ASAN failure (paste: P501906539) 'all', # ASAN failure 'any', # ASAN failure 'logdet', # ASAN failure ]) SKIP_INCORRECT_RESULTS_LIST = set([ 'squeeze', # Value out of range 't', # Value out of range 'transpose', # Value out of range 'bernoulli', # incorrect results 'pow', # incorrect results 'addcdiv', # incorrect results (on CI not locally?) ]) # The following ops all show up directly in ts_native_functions.yaml, # but run functionalized versions of the composite kernels in core. # This means that we don't expect the ops to show directly in the LTC metrics. FUNCTIONAL_DECOMPOSE_LIST = set([ 'block_diag', 'new_empty_strided', 'narrow_copy', 'pixel_shuffle', 'pixel_unshuffle', 'select_backward', '_trilinear', 'linalg_inv_ex', 'linalg_pinv.atol_rtol_tensor', 'logsumexp', ]) return (LAZY_OPS_LIST, FALLBACK_LIST, SKIP_RUNTIME_ERROR_LIST, SKIP_INCORRECT_RESULTS_LIST, FUNCTIONAL_DECOMPOSE_LIST) (LAZY_OPS_LIST, FALLBACK_LIST, SKIP_RUNTIME_ERROR_LIST, SKIP_INCORRECT_RESULTS_LIST, FUNCTIONAL_DECOMPOSE_LIST) = init_lists() torch.manual_seed(42) def clone_move(t): dev = 'lazy' copy_t = t.detach().clone().requires_grad_(True).to(device=dev) return copy_t class TestLazyTensor(JitTestCase): @skip("Disable until autograd supports symints") def testConvolutionBackward(self): test_device = get_test_device() inp = torch.rand(1, 3, 128, 128, device=test_device, requires_grad=True) inp_copy = clone_move(inp) grad = torch.rand(1, 32, 121, 121, device=test_device) # no requires_grad grad_copy = clone_move(grad) weight = torch.rand(32, 3, 8, 8, device=test_device, requires_grad=True) weight_copy = clone_move(weight) bias = torch.rand(32, device=test_device, requires_grad=True) bias_copy = clone_move(bias) # run eager conv_out = torch.nn.functional.conv2d(inp, weight, bias) (inp_grad, weight_grad, bias_grad) = torch.autograd.grad([conv_out], [inp, weight, bias], [grad]) # run lazy conv_copy_out = torch.nn.functional.conv2d(inp_copy, weight_copy, bias_copy) (inp_copy_grad, weight_copy_grad, bias_copy_grad) = torch.autograd.grad( [conv_copy_out], [inp_copy, weight_copy, bias_copy], [grad_copy]) # check numerics torch.testing.assert_close(bias_copy_grad.cpu(), bias_grad.cpu()) torch.testing.assert_close(weight_copy_grad.cpu(), weight_grad.cpu()) torch.testing.assert_close(inp_copy_grad.cpu(), inp_grad.cpu()) def test_view_mark_step_preserved(self): test_device = get_test_device() inp = torch.rand(4, device=test_device) inp_lazy = clone_move(inp) def foo(x, *, mark_step): y = x.view(2, 2) y.add_(1) z = x + x if mark_step: torch._lazy.mark_step() # y and x should contiue to be aliased after the mark_step call. y.add_(1) return x out_ref = foo(inp, mark_step=False) out = foo(inp_lazy, mark_step=True) # out will have some pending mutations, which will be synced by the .cpu() call. torch.testing.assert_close(out_ref.cpu(), out.cpu()) def test_tensor_ctr(self): test_device = get_test_device() inp = torch.tensor([[1, 2, 3, 4, 5]], device=test_device) inp_lazy = torch.tensor([[1, 2, 3, 4, 5]], device='lazy') def foo(x): # Calling a view op to ensure that functionalization wrapping occurs. return x.view(-1) out_ref = foo(inp) out = foo(inp_lazy) torch.testing.assert_close(out_ref.cpu(), out.cpu()) class TestLazyOpInfo(TestCase): @ops([op for op in op_db if op.name in LAZY_OPS_LIST and op.name not in SKIP_RUNTIME_ERROR_LIST and op.name not in FUNCTIONAL_DECOMPOSE_LIST ], allowed_dtypes=(torch.float,)) def test_dispatched_to_lazy(self, device, dtype, op): def get_name(op): l = [op.name] if op.variant_test_name != '': l.append(op.variant_test_name) return '.'.join(l) global FALLBACK_LIST samples = op.sample_inputs("lazy", dtype, requires_grad=False) sample = list(samples)[0] args = [sample.input] + list(sample.args) kwargs = sample.kwargs torch._lazy.mark_step() torch._lazy.wait_device_ops() torch._lazy.metrics.reset() r = op(*args, **kwargs) torch._lazy.mark_step() torch._lazy.wait_device_ops() prefix = "aten" if op.name in FALLBACK_LIST else "lazy" found = f"{prefix}::{op.name}" in remove_suffixes(torch._lazy.metrics.counter_names()) # check aliases if not found: for alias in op.aliases: alias_found = f"{prefix}::{alias.name}" in remove_suffixes(torch._lazy.metrics.counter_names()) found = found or alias_found if found: break self.assertTrue(found) @ops([op for op in op_db if op.name in LAZY_OPS_LIST and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST], allowed_dtypes=(torch.float,)) # noqa: B950 def test_correctness(self, device, dtype, op): test_device = get_test_device() def clone_to_device(input, dev): if isinstance(input, torch.Tensor): return input.detach().clone().to(device=dev) if isinstance(input, Sequence) and not isinstance(input, str): return tuple(map(functools.partial(clone_to_device, dev=dev), input)) return input def assert_allclose_rec(t): a, b = t self.assertEqual(type(a), type(b)) if isinstance(a, torch.Tensor): self.assertTrue(torch.allclose(clone_to_device(a, test_device), b, atol=1e-4)) if isinstance(a, Sequence): map(assert_allclose_rec, zip(a, b)) samples = op.sample_inputs("lazy", dtype, requires_grad=False) for sample in samples: args = [sample.input] + list(sample.args) kwargs = sample.kwargs copy_args = clone_to_device(args, test_device) r_exp = op(*copy_args, **kwargs) r_actual = op(*args, **kwargs) assert_allclose_rec((r_actual, r_exp)) @ops([op for op in op_db if op.name in LAZY_OPS_LIST and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST], allowed_dtypes=(torch.float,)) # noqa: B950 def test_correctness_with_reusing_ir(self, device, dtype, op): torch._lazy.config.set_reuse_ir(True) test_device = get_test_device() def clone_to_device(input, dev): if isinstance(input, torch.Tensor): return input.detach().clone().to(device=dev) if isinstance(input, Sequence) and not isinstance(input, str): return tuple(map(functools.partial(clone_to_device, dev=dev), input)) return input def assert_allclose_rec(t): a, b = t self.assertEqual(type(a), type(b)) if isinstance(a, torch.Tensor): self.assertTrue(torch.allclose(clone_to_device(a, test_device), b, atol=1e-4)) if isinstance(a, Sequence): map(assert_allclose_rec, zip(a, b)) samples = op.sample_inputs("lazy", dtype, requires_grad=False) for sample in samples: args = [sample.input] + list(sample.args) kwargs = sample.kwargs copy_args = clone_to_device(args, test_device) r_exp = op(*copy_args, **kwargs) r_actual = op(*args, **kwargs) torch._lazy.mark_step() assert_allclose_rec((r_actual, r_exp)) torch._lazy.ir_cache.reset() torch._lazy.config.set_reuse_ir(False) # TODO: after we move to master, add Lazy as a new Device here: # https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_device_type.py#L532 instantiate_device_type_tests(TestLazyOpInfo, globals(), only_for="cpu") class TestLazyDynamicOps(TestCase): @classmethod def setUpClass(cls) -> None: # Setup the dynamic shape mode cls.old_ssa_mode = torch._C._lazy._get_symbolic_shape_mode() torch._C._lazy._set_symbolic_shape_mode(True) return super().setUpClass() @classmethod def tearDownClass(cls) -> None: torch._C._lazy._set_symbolic_shape_mode(cls.old_ssa_mode) return super().tearDownClass() def test_nonzero_dynamic(self): # Test that nonzero gives upper bounds sizes when symbolic shape mode is enabled test_device = get_test_device() x1 = torch.tensor([[0, 1.0, 2.0], [3.0, 0, 0]], device=test_device, requires_grad=True) x1_lazy = clone_move(x1) x2_lazy = torch.nonzero(x1_lazy) # FIXME: Add bindings to get upper bounds # self.assertEqual(tuple(x2_lazy.size()), (6, 2)) # We should still be able to instantiate it and get the actual result x2_eager = x2_lazy.cpu() self.assertEqual(tuple(x2_eager.size()), (3, 2)) if __name__ == '__main__': run_tests()
pytorch-master
test/lazy/test_ts_opinfo.py
# Owner(s): ["oncall: jit"] import torch._lazy.metrics def test_metrics(): names = torch._lazy.metrics.counter_names() assert len(names) == 0, f"Expected no counter names, but got {names}"
pytorch-master
test/lazy/test_bindings.py
# Owner(s): ["module: unknown"] import torch x = torch.ones((3, 3), requires_grad=True) (3 * x).sum().backward()
pytorch-master
test/bottleneck_test/test.py
# Owner(s): ["module: unknown"] import argparse import torch if __name__ == '__main__': parser = argparse.ArgumentParser() # Required args. Raises error if they aren't passed. parser.add_argument('--foo', help='foo', required=True) parser.add_argument('--bar', help='bar', required=True) _ = parser.parse_args() x = torch.ones((3, 3), requires_grad=True) (3 * x).sum().backward()
pytorch-master
test/bottleneck_test/test_args.py
# Owner(s): ["module: unknown"] import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.linear = nn.Linear(20, 20) def forward(self, input): out = self.linear(input[:, 10:30]) return out.sum() def main(): data = torch.randn(10, 50).cuda() model = Model().cuda() optimizer = torch.optim.SGD(model.parameters(), lr=0.0001) for i in range(10): optimizer.zero_grad() loss = model(data) loss.backward() optimizer.step() if __name__ == '__main__': main()
pytorch-master
test/bottleneck_test/test_cuda.py
# Owner(s): ["module: distributions"] import pytest import torch from torch.distributions.utils import tril_matrix_to_vec, vec_to_tril_matrix @pytest.mark.parametrize('shape', [ (2, 2), (3, 3), (2, 4, 4), (2, 2, 4, 4), ]) def test_tril_matrix_to_vec(shape): mat = torch.randn(shape) n = mat.shape[-1] for diag in range(-n, n): actual = mat.tril(diag) vec = tril_matrix_to_vec(actual, diag) tril_mat = vec_to_tril_matrix(vec, diag) assert torch.allclose(tril_mat, actual) if __name__ == '__main__': pytest.main([__file__])
pytorch-master
test/distributions/test_utils.py
# Owner(s): ["module: distributions"] import pytest import torch from torch.distributions import biject_to, constraints, transform_to from torch.testing._internal.common_cuda import TEST_CUDA EXAMPLES = [ (constraints.symmetric, False, [[2., 0], [2., 2]]), (constraints.positive_semidefinite, False, [[2., 0], [2., 2]]), (constraints.positive_definite, False, [[2., 0], [2., 2]]), (constraints.symmetric, True, [[3., -5], [-5., 3]]), (constraints.positive_semidefinite, False, [[3., -5], [-5., 3]]), (constraints.positive_definite, False, [[3., -5], [-5., 3]]), (constraints.symmetric, True, [[1., 2], [2., 4]]), (constraints.positive_semidefinite, True, [[1., 2], [2., 4]]), (constraints.positive_definite, False, [[1., 2], [2., 4]]), (constraints.symmetric, True, [[[1., -2], [-2., 1]], [[2., 3], [3., 2]]]), (constraints.positive_semidefinite, False, [[[1., -2], [-2., 1]], [[2., 3], [3., 2]]]), (constraints.positive_definite, False, [[[1., -2], [-2., 1]], [[2., 3], [3., 2]]]), (constraints.symmetric, True, [[[1., -2], [-2., 4]], [[1., -1], [-1., 1]]]), (constraints.positive_semidefinite, True, [[[1., -2], [-2., 4]], [[1., -1], [-1., 1]]]), (constraints.positive_definite, False, [[[1., -2], [-2., 4]], [[1., -1], [-1., 1]]]), (constraints.symmetric, True, [[[4., 2], [2., 4]], [[3., -1], [-1., 3]]]), (constraints.positive_semidefinite, True, [[[4., 2], [2., 4]], [[3., -1], [-1., 3]]]), (constraints.positive_definite, True, [[[4., 2], [2., 4]], [[3., -1], [-1., 3]]]), ] CONSTRAINTS = [ (constraints.real,), (constraints.real_vector,), (constraints.positive,), (constraints.greater_than, [-10., -2, 0, 2, 10]), (constraints.greater_than, 0), (constraints.greater_than, 2), (constraints.greater_than, -2), (constraints.greater_than_eq, 0), (constraints.greater_than_eq, 2), (constraints.greater_than_eq, -2), (constraints.less_than, [-10., -2, 0, 2, 10]), (constraints.less_than, 0), (constraints.less_than, 2), (constraints.less_than, -2), (constraints.unit_interval,), (constraints.interval, [-4., -2, 0, 2, 4], [-3., 3, 1, 5, 5]), (constraints.interval, -2, -1), (constraints.interval, 1, 2), (constraints.half_open_interval, [-4., -2, 0, 2, 4], [-3., 3, 1, 5, 5]), (constraints.half_open_interval, -2, -1), (constraints.half_open_interval, 1, 2), (constraints.simplex,), (constraints.corr_cholesky,), (constraints.lower_cholesky,), ] def build_constraint(constraint_fn, args, is_cuda=False): if not args: return constraint_fn t = torch.cuda.DoubleTensor if is_cuda else torch.DoubleTensor return constraint_fn(*(t(x) if isinstance(x, list) else x for x in args)) @pytest.mark.parametrize('constraint_fn, result, value', EXAMPLES) @pytest.mark.parametrize('is_cuda', [False, pytest.param(True, marks=pytest.mark.skipif(not TEST_CUDA, reason='CUDA not found.'))]) def test_constraint(constraint_fn, result, value, is_cuda): t = torch.cuda.DoubleTensor if is_cuda else torch.DoubleTensor assert constraint_fn.check(t(value)).all() == result @pytest.mark.parametrize('constraint_fn, args', [(c[0], c[1:]) for c in CONSTRAINTS]) @pytest.mark.parametrize('is_cuda', [False, pytest.param(True, marks=pytest.mark.skipif(not TEST_CUDA, reason='CUDA not found.'))]) def test_biject_to(constraint_fn, args, is_cuda): constraint = build_constraint(constraint_fn, args, is_cuda=is_cuda) try: t = biject_to(constraint) except NotImplementedError: pytest.skip('`biject_to` not implemented.') assert t.bijective, "biject_to({}) is not bijective".format(constraint) if constraint_fn is constraints.corr_cholesky: # (D * (D-1)) / 2 (where D = 4) = 6 (size of last dim) x = torch.randn(6, 6, dtype=torch.double) else: x = torch.randn(5, 5, dtype=torch.double) if is_cuda: x = x.cuda() y = t(x) assert constraint.check(y).all(), '\n'.join([ "Failed to biject_to({})".format(constraint), "x = {}".format(x), "biject_to(...)(x) = {}".format(y), ]) x2 = t.inv(y) assert torch.allclose(x, x2), "Error in biject_to({}) inverse".format(constraint) j = t.log_abs_det_jacobian(x, y) assert j.shape == x.shape[:x.dim() - t.domain.event_dim] @pytest.mark.parametrize('constraint_fn, args', [(c[0], c[1:]) for c in CONSTRAINTS]) @pytest.mark.parametrize('is_cuda', [False, pytest.param(True, marks=pytest.mark.skipif(not TEST_CUDA, reason='CUDA not found.'))]) def test_transform_to(constraint_fn, args, is_cuda): constraint = build_constraint(constraint_fn, args, is_cuda=is_cuda) t = transform_to(constraint) if constraint_fn is constraints.corr_cholesky: # (D * (D-1)) / 2 (where D = 4) = 6 (size of last dim) x = torch.randn(6, 6, dtype=torch.double) else: x = torch.randn(5, 5, dtype=torch.double) if is_cuda: x = x.cuda() y = t(x) assert constraint.check(y).all(), "Failed to transform_to({})".format(constraint) x2 = t.inv(y) y2 = t(x2) assert torch.allclose(y, y2), "Error in transform_to({}) pseudoinverse".format(constraint) if __name__ == '__main__': pytest.main([__file__])
pytorch-master
test/distributions/test_constraints.py
# Owner(s): ["module: distributions"] """ Note [Randomized statistical tests] ----------------------------------- This note describes how to maintain tests in this file as random sources change. This file contains two types of randomized tests: 1. The easier type of randomized test are tests that should always pass but are initialized with random data. If these fail something is wrong, but it's fine to use a fixed seed by inheriting from common.TestCase. 2. The trickier tests are statistical tests. These tests explicitly call set_rng_seed(n) and are marked "see Note [Randomized statistical tests]". These statistical tests have a known positive failure rate (we set failure_rate=1e-3 by default). We need to balance strength of these tests with annoyance of false alarms. One way that works is to specifically set seeds in each of the randomized tests. When a random generator occasionally changes (as in #4312 vectorizing the Box-Muller sampler), some of these statistical tests may (rarely) fail. If one fails in this case, it's fine to increment the seed of the failing test (but you shouldn't need to increment it more than once; otherwise something is probably actually wrong). 3. `test_geometric_sample`, `test_binomial_sample` and `test_poisson_sample` are validated against `scipy.stats.` which are not guaranteed to be identical across different versions of scipy (namely, they yield invalid results in 1.7+) """ import math import numbers import unittest from collections import namedtuple from itertools import product from random import shuffle from packaging import version import torch # TODO: remove this global setting # Distributions tests use double as the default dtype torch.set_default_dtype(torch.double) from torch._six import inf, nan from torch.testing._internal.common_utils import \ (TestCase, run_tests, set_rng_seed, TEST_WITH_UBSAN, load_tests, gradcheck) from torch.testing._internal.common_cuda import TEST_CUDA from torch.autograd import grad import torch.autograd.forward_ad as fwAD from torch.autograd.functional import jacobian from torch.distributions import (Bernoulli, Beta, Binomial, Categorical, Cauchy, Chi2, ContinuousBernoulli, Dirichlet, Distribution, Exponential, ExponentialFamily, FisherSnedecor, Gamma, Geometric, Gumbel, HalfCauchy, HalfNormal, Independent, Kumaraswamy, LKJCholesky, Laplace, LogisticNormal, LogNormal, LowRankMultivariateNormal, MixtureSameFamily, Multinomial, MultivariateNormal, NegativeBinomial, Normal, OneHotCategorical, OneHotCategoricalStraightThrough, Pareto, Poisson, RelaxedBernoulli, RelaxedOneHotCategorical, StudentT, TransformedDistribution, Uniform, VonMises, Weibull, Wishart, constraints, kl_divergence) from torch.distributions.constraint_registry import transform_to from torch.distributions.constraints import Constraint, is_dependent from torch.distributions.dirichlet import _Dirichlet_backward from torch.distributions.kl import _kl_expfamily_expfamily from torch.distributions.transforms import (AffineTransform, CatTransform, ExpTransform, StackTransform, identity_transform) from torch.distributions.utils import (probs_to_logits, lazy_property, tril_matrix_to_vec, vec_to_tril_matrix) from torch.nn.functional import softmax # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests TEST_NUMPY = True try: import numpy as np import scipy.stats import scipy.special except ImportError: TEST_NUMPY = False def pairwise(Dist, *params): """ Creates a pair of distributions `Dist` initialized to test each element of param with each other. """ params1 = [torch.tensor([p] * len(p)) for p in params] params2 = [p.transpose(0, 1) for p in params1] return Dist(*params1), Dist(*params2) def is_all_nan(tensor): """ Checks if all entries of a tensor is nan. """ return (tensor != tensor).all() # Register all distributions for generic tests. Example = namedtuple('Example', ['Dist', 'params']) EXAMPLES = [ Example(Bernoulli, [ {'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)}, {'probs': torch.tensor([0.3], requires_grad=True)}, {'probs': 0.3}, {'logits': torch.tensor([0.], requires_grad=True)}, ]), Example(Geometric, [ {'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)}, {'probs': torch.tensor([0.3], requires_grad=True)}, {'probs': 0.3}, ]), Example(Beta, [ { 'concentration1': torch.randn(2, 3).exp().requires_grad_(), 'concentration0': torch.randn(2, 3).exp().requires_grad_(), }, { 'concentration1': torch.randn(4).exp().requires_grad_(), 'concentration0': torch.randn(4).exp().requires_grad_(), }, ]), Example(Categorical, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)}, {'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)}, ]), Example(Binomial, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10])}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([10, 8])}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor([[10., 8.], [5., 3.]])}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': torch.tensor(0.)}, ]), Example(NegativeBinomial, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10}, {'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': 10}, {'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10])}, {'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([10, 8])}, {'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor([[10., 8.], [5., 3.]])}, {'probs': torch.tensor([[0.9, 0.0], [0.0, 0.9]], requires_grad=True), 'total_count': torch.tensor(0.)}, ]), Example(Multinomial, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True), 'total_count': 10}, ]), Example(Cauchy, [ {'loc': 0.0, 'scale': 1.0}, {'loc': torch.tensor([0.0]), 'scale': 1.0}, {'loc': torch.tensor([[0.0], [0.0]]), 'scale': torch.tensor([[1.0], [1.0]])} ]), Example(Chi2, [ {'df': torch.randn(2, 3).exp().requires_grad_()}, {'df': torch.randn(1).exp().requires_grad_()}, ]), Example(StudentT, [ {'df': torch.randn(2, 3).exp().requires_grad_()}, {'df': torch.randn(1).exp().requires_grad_()}, ]), Example(Dirichlet, [ {'concentration': torch.randn(2, 3).exp().requires_grad_()}, {'concentration': torch.randn(4).exp().requires_grad_()}, ]), Example(Exponential, [ {'rate': torch.randn(5, 5).abs().requires_grad_()}, {'rate': torch.randn(1).abs().requires_grad_()}, ]), Example(FisherSnedecor, [ { 'df1': torch.randn(5, 5).abs().requires_grad_(), 'df2': torch.randn(5, 5).abs().requires_grad_(), }, { 'df1': torch.randn(1).abs().requires_grad_(), 'df2': torch.randn(1).abs().requires_grad_(), }, { 'df1': torch.tensor([1.0]), 'df2': 1.0, } ]), Example(Gamma, [ { 'concentration': torch.randn(2, 3).exp().requires_grad_(), 'rate': torch.randn(2, 3).exp().requires_grad_(), }, { 'concentration': torch.randn(1).exp().requires_grad_(), 'rate': torch.randn(1).exp().requires_grad_(), }, ]), Example(Gumbel, [ { 'loc': torch.randn(5, 5, requires_grad=True), 'scale': torch.randn(5, 5).abs().requires_grad_(), }, { 'loc': torch.randn(1, requires_grad=True), 'scale': torch.randn(1).abs().requires_grad_(), }, ]), Example(HalfCauchy, [ {'scale': 1.0}, {'scale': torch.tensor([[1.0], [1.0]])} ]), Example(HalfNormal, [ {'scale': torch.randn(5, 5).abs().requires_grad_()}, {'scale': torch.randn(1).abs().requires_grad_()}, {'scale': torch.tensor([1e-5, 1e-5], requires_grad=True)} ]), Example(Independent, [ { 'base_distribution': Normal(torch.randn(2, 3, requires_grad=True), torch.randn(2, 3).abs().requires_grad_()), 'reinterpreted_batch_ndims': 0, }, { 'base_distribution': Normal(torch.randn(2, 3, requires_grad=True), torch.randn(2, 3).abs().requires_grad_()), 'reinterpreted_batch_ndims': 1, }, { 'base_distribution': Normal(torch.randn(2, 3, requires_grad=True), torch.randn(2, 3).abs().requires_grad_()), 'reinterpreted_batch_ndims': 2, }, { 'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True), torch.randn(2, 3, 5).abs().requires_grad_()), 'reinterpreted_batch_ndims': 2, }, { 'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True), torch.randn(2, 3, 5).abs().requires_grad_()), 'reinterpreted_batch_ndims': 3, }, ]), Example(Kumaraswamy, [ { 'concentration1': torch.empty(2, 3).uniform_(1, 2).requires_grad_(), 'concentration0': torch.empty(2, 3).uniform_(1, 2).requires_grad_(), }, { 'concentration1': torch.rand(4).uniform_(1, 2).requires_grad_(), 'concentration0': torch.rand(4).uniform_(1, 2).requires_grad_(), }, ]), Example(LKJCholesky, [ { 'dim': 2, 'concentration': 0.5 }, { 'dim': 3, 'concentration': torch.tensor([0.5, 1., 2.]), }, { 'dim': 100, 'concentration': 4. }, ]), Example(Laplace, [ { 'loc': torch.randn(5, 5, requires_grad=True), 'scale': torch.randn(5, 5).abs().requires_grad_(), }, { 'loc': torch.randn(1, requires_grad=True), 'scale': torch.randn(1).abs().requires_grad_(), }, { 'loc': torch.tensor([1.0, 0.0], requires_grad=True), 'scale': torch.tensor([1e-5, 1e-5], requires_grad=True), }, ]), Example(LogNormal, [ { 'loc': torch.randn(5, 5, requires_grad=True), 'scale': torch.randn(5, 5).abs().requires_grad_(), }, { 'loc': torch.randn(1, requires_grad=True), 'scale': torch.randn(1).abs().requires_grad_(), }, { 'loc': torch.tensor([1.0, 0.0], requires_grad=True), 'scale': torch.tensor([1e-5, 1e-5], requires_grad=True), }, ]), Example(LogisticNormal, [ { 'loc': torch.randn(5, 5).requires_grad_(), 'scale': torch.randn(5, 5).abs().requires_grad_(), }, { 'loc': torch.randn(1).requires_grad_(), 'scale': torch.randn(1).abs().requires_grad_(), }, { 'loc': torch.tensor([1.0, 0.0], requires_grad=True), 'scale': torch.tensor([1e-5, 1e-5], requires_grad=True), }, ]), Example(LowRankMultivariateNormal, [ { 'loc': torch.randn(5, 2, requires_grad=True), 'cov_factor': torch.randn(5, 2, 1, requires_grad=True), 'cov_diag': torch.tensor([2.0, 0.25], requires_grad=True), }, { 'loc': torch.randn(4, 3, requires_grad=True), 'cov_factor': torch.randn(3, 2, requires_grad=True), 'cov_diag': torch.tensor([5.0, 1.5, 3.], requires_grad=True), } ]), Example(MultivariateNormal, [ { 'loc': torch.randn(5, 2, requires_grad=True), 'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True), }, { 'loc': torch.randn(2, 3, requires_grad=True), 'precision_matrix': torch.tensor([[2.0, 0.1, 0.0], [0.1, 0.25, 0.0], [0.0, 0.0, 0.3]], requires_grad=True), }, { 'loc': torch.randn(5, 3, 2, requires_grad=True), 'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]], [[2.0, 0.0], [0.3, 0.25]], [[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True), }, { 'loc': torch.tensor([1.0, -1.0]), 'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]), }, ]), Example(Normal, [ { 'loc': torch.randn(5, 5, requires_grad=True), 'scale': torch.randn(5, 5).abs().requires_grad_(), }, { 'loc': torch.randn(1, requires_grad=True), 'scale': torch.randn(1).abs().requires_grad_(), }, { 'loc': torch.tensor([1.0, 0.0], requires_grad=True), 'scale': torch.tensor([1e-5, 1e-5], requires_grad=True), }, ]), Example(OneHotCategorical, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)}, {'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)}, ]), Example(OneHotCategoricalStraightThrough, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]], requires_grad=True)}, {'logits': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)}, ]), Example(Pareto, [ { 'scale': 1.0, 'alpha': 1.0 }, { 'scale': torch.randn(5, 5).abs().requires_grad_(), 'alpha': torch.randn(5, 5).abs().requires_grad_() }, { 'scale': torch.tensor([1.0]), 'alpha': 1.0 } ]), Example(Poisson, [ { 'rate': torch.randn(5, 5).abs().requires_grad_(), }, { 'rate': torch.randn(3).abs().requires_grad_(), }, { 'rate': 0.2, }, { 'rate': torch.tensor([0.0], requires_grad=True), }, { 'rate': 0.0, } ]), Example(RelaxedBernoulli, [ { 'temperature': torch.tensor([0.5], requires_grad=True), 'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True), }, { 'temperature': torch.tensor([2.0]), 'probs': torch.tensor([0.3]), }, { 'temperature': torch.tensor([7.2]), 'logits': torch.tensor([-2.0, 2.0, 1.0, 5.0]) } ]), Example(RelaxedOneHotCategorical, [ { 'temperature': torch.tensor([0.5], requires_grad=True), 'probs': torch.tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True) }, { 'temperature': torch.tensor([2.0]), 'probs': torch.tensor([[1.0, 0.0], [0.0, 1.0]]) }, { 'temperature': torch.tensor([7.2]), 'logits': torch.tensor([[-2.0, 2.0], [1.0, 5.0]]) } ]), Example(TransformedDistribution, [ { 'base_distribution': Normal(torch.randn(2, 3, requires_grad=True), torch.randn(2, 3).abs().requires_grad_()), 'transforms': [], }, { 'base_distribution': Normal(torch.randn(2, 3, requires_grad=True), torch.randn(2, 3).abs().requires_grad_()), 'transforms': ExpTransform(), }, { 'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True), torch.randn(2, 3, 5).abs().requires_grad_()), 'transforms': [AffineTransform(torch.randn(3, 5), torch.randn(3, 5)), ExpTransform()], }, { 'base_distribution': Normal(torch.randn(2, 3, 5, requires_grad=True), torch.randn(2, 3, 5).abs().requires_grad_()), 'transforms': AffineTransform(1, 2), }, { 'base_distribution': Uniform(torch.tensor(1e8).log(), torch.tensor(1e10).log()), 'transforms': ExpTransform(), }, ]), Example(Uniform, [ { 'low': torch.zeros(5, 5, requires_grad=True), 'high': torch.ones(5, 5, requires_grad=True), }, { 'low': torch.zeros(1, requires_grad=True), 'high': torch.ones(1, requires_grad=True), }, { 'low': torch.tensor([1.0, 1.0], requires_grad=True), 'high': torch.tensor([2.0, 3.0], requires_grad=True), }, ]), Example(Weibull, [ { 'scale': torch.randn(5, 5).abs().requires_grad_(), 'concentration': torch.randn(1).abs().requires_grad_() } ]), Example(Wishart, [ { 'covariance_matrix': torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True), 'df': torch.tensor([3.], requires_grad=True), }, { 'precision_matrix': torch.tensor([[2.0, 0.1, 0.0], [0.1, 0.25, 0.0], [0.0, 0.0, 0.3]], requires_grad=True), 'df': torch.tensor([5., 4], requires_grad=True), }, { 'scale_tril': torch.tensor([[[2.0, 0.0], [-0.5, 0.25]], [[2.0, 0.0], [0.3, 0.25]], [[5.0, 0.0], [-0.5, 1.5]]], requires_grad=True), 'df': torch.tensor([5., 3.5, 3], requires_grad=True), }, { 'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]), 'df': torch.tensor([3.0]), }, { 'covariance_matrix': torch.tensor([[5.0, -0.5], [-0.5, 1.5]]), 'df': 3.0, }, ]), Example(MixtureSameFamily, [ { 'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)), 'component_distribution': Normal(torch.randn(5, requires_grad=True), torch.rand(5, requires_grad=True)), }, { 'mixture_distribution': Categorical(torch.rand(5, requires_grad=True)), 'component_distribution': MultivariateNormal( loc=torch.randn(5, 2, requires_grad=True), covariance_matrix=torch.tensor([[2.0, 0.3], [0.3, 0.25]], requires_grad=True)), }, ]), Example(VonMises, [ { 'loc': torch.tensor(1.0, requires_grad=True), 'concentration': torch.tensor(10.0, requires_grad=True) }, { 'loc': torch.tensor([0.0, math.pi / 2], requires_grad=True), 'concentration': torch.tensor([1.0, 10.0], requires_grad=True) }, ]), Example(ContinuousBernoulli, [ {'probs': torch.tensor([0.7, 0.2, 0.4], requires_grad=True)}, {'probs': torch.tensor([0.3], requires_grad=True)}, {'probs': 0.3}, {'logits': torch.tensor([0.], requires_grad=True)}, ]) ] BAD_EXAMPLES = [ Example(Bernoulli, [ {'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)}, {'probs': torch.tensor([-0.5], requires_grad=True)}, {'probs': 1.00001}, ]), Example(Beta, [ { 'concentration1': torch.tensor([0.0], requires_grad=True), 'concentration0': torch.tensor([0.0], requires_grad=True), }, { 'concentration1': torch.tensor([-1.0], requires_grad=True), 'concentration0': torch.tensor([-2.0], requires_grad=True), }, ]), Example(Geometric, [ {'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)}, {'probs': torch.tensor([-0.3], requires_grad=True)}, {'probs': 1.00000001}, ]), Example(Categorical, [ {'probs': torch.tensor([[-0.1, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True)}, {'probs': torch.tensor([[-1.0, 10.0], [0.0, -1.0]], requires_grad=True)}, ]), Example(Binomial, [ {'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True), 'total_count': 10}, ]), Example(NegativeBinomial, [ {'probs': torch.tensor([[-0.0000001, 0.2, 0.3], [0.5, 0.3, 0.2]], requires_grad=True), 'total_count': 10}, {'probs': torch.tensor([[1.0, 0.0], [0.0, 2.0]], requires_grad=True), 'total_count': 10}, ]), Example(Cauchy, [ {'loc': 0.0, 'scale': -1.0}, {'loc': torch.tensor([0.0]), 'scale': 0.0}, {'loc': torch.tensor([[0.0], [-2.0]]), 'scale': torch.tensor([[-0.000001], [1.0]])} ]), Example(Chi2, [ {'df': torch.tensor([0.], requires_grad=True)}, {'df': torch.tensor([-2.], requires_grad=True)}, ]), Example(StudentT, [ {'df': torch.tensor([0.], requires_grad=True)}, {'df': torch.tensor([-2.], requires_grad=True)}, ]), Example(Dirichlet, [ {'concentration': torch.tensor([0.], requires_grad=True)}, {'concentration': torch.tensor([-2.], requires_grad=True)} ]), Example(Exponential, [ {'rate': torch.tensor([0., 0.], requires_grad=True)}, {'rate': torch.tensor([-2.], requires_grad=True)} ]), Example(FisherSnedecor, [ { 'df1': torch.tensor([0., 0.], requires_grad=True), 'df2': torch.tensor([-1., -100.], requires_grad=True), }, { 'df1': torch.tensor([1., 1.], requires_grad=True), 'df2': torch.tensor([0., 0.], requires_grad=True), } ]), Example(Gamma, [ { 'concentration': torch.tensor([0., 0.], requires_grad=True), 'rate': torch.tensor([-1., -100.], requires_grad=True), }, { 'concentration': torch.tensor([1., 1.], requires_grad=True), 'rate': torch.tensor([0., 0.], requires_grad=True), } ]), Example(Gumbel, [ { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([0., 1.], requires_grad=True), }, { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([1., -1.], requires_grad=True), }, ]), Example(HalfCauchy, [ {'scale': -1.0}, {'scale': 0.0}, {'scale': torch.tensor([[-0.000001], [1.0]])} ]), Example(HalfNormal, [ {'scale': torch.tensor([0., 1.], requires_grad=True)}, {'scale': torch.tensor([1., -1.], requires_grad=True)}, ]), Example(LKJCholesky, [ { 'dim': -2, 'concentration': 0.1 }, { 'dim': 1, 'concentration': 2., }, { 'dim': 2, 'concentration': 0., }, ]), Example(Laplace, [ { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([0., 1.], requires_grad=True), }, { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([1., -1.], requires_grad=True), }, ]), Example(LogNormal, [ { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([0., 1.], requires_grad=True), }, { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([1., -1.], requires_grad=True), }, ]), Example(MultivariateNormal, [ { 'loc': torch.tensor([1., 1.], requires_grad=True), 'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True), }, ]), Example(Normal, [ { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([0., 1.], requires_grad=True), }, { 'loc': torch.tensor([1., 1.], requires_grad=True), 'scale': torch.tensor([1., -1.], requires_grad=True), }, { 'loc': torch.tensor([1.0, 0.0], requires_grad=True), 'scale': torch.tensor([1e-5, -1e-5], requires_grad=True), }, ]), Example(OneHotCategorical, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)}, {'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)}, ]), Example(OneHotCategoricalStraightThrough, [ {'probs': torch.tensor([[0.1, 0.2, 0.3], [0.1, -10.0, 0.2]], requires_grad=True)}, {'probs': torch.tensor([[0.0, 0.0], [0.0, 0.0]], requires_grad=True)}, ]), Example(Pareto, [ { 'scale': 0.0, 'alpha': 0.0 }, { 'scale': torch.tensor([0.0, 0.0], requires_grad=True), 'alpha': torch.tensor([-1e-5, 0.0], requires_grad=True) }, { 'scale': torch.tensor([1.0]), 'alpha': -1.0 } ]), Example(Poisson, [ { 'rate': torch.tensor([-0.1], requires_grad=True), }, { 'rate': -1.0, } ]), Example(RelaxedBernoulli, [ { 'temperature': torch.tensor([1.5], requires_grad=True), 'probs': torch.tensor([1.7, 0.2, 0.4], requires_grad=True), }, { 'temperature': torch.tensor([2.0]), 'probs': torch.tensor([-1.0]), } ]), Example(RelaxedOneHotCategorical, [ { 'temperature': torch.tensor([0.5], requires_grad=True), 'probs': torch.tensor([[-0.1, 0.2, 0.7], [0.5, 0.3, 0.2]], requires_grad=True) }, { 'temperature': torch.tensor([2.0]), 'probs': torch.tensor([[-1.0, 0.0], [-1.0, 1.1]]) } ]), Example(TransformedDistribution, [ { 'base_distribution': Normal(0, 1), 'transforms': lambda x: x, }, { 'base_distribution': Normal(0, 1), 'transforms': [lambda x: x], }, ]), Example(Uniform, [ { 'low': torch.tensor([2.0], requires_grad=True), 'high': torch.tensor([2.0], requires_grad=True), }, { 'low': torch.tensor([0.0], requires_grad=True), 'high': torch.tensor([0.0], requires_grad=True), }, { 'low': torch.tensor([1.0], requires_grad=True), 'high': torch.tensor([0.0], requires_grad=True), } ]), Example(Weibull, [ { 'scale': torch.tensor([0.0], requires_grad=True), 'concentration': torch.tensor([0.0], requires_grad=True) }, { 'scale': torch.tensor([1.0], requires_grad=True), 'concentration': torch.tensor([-1.0], requires_grad=True) } ]), Example(Wishart, [ { 'covariance_matrix': torch.tensor([[1.0, 0.0], [0.0, -2.0]], requires_grad=True), 'df': torch.tensor([1.5], requires_grad=True), }, { 'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True), 'df': torch.tensor([3.], requires_grad=True), }, { 'covariance_matrix': torch.tensor([[1.0, 1.0], [1.0, -2.0]], requires_grad=True), 'df': 3., }, ]), Example(ContinuousBernoulli, [ {'probs': torch.tensor([1.1, 0.2, 0.4], requires_grad=True)}, {'probs': torch.tensor([-0.5], requires_grad=True)}, {'probs': 1.00001}, ]) ] class DistributionsTestCase(TestCase): def setUp(self): """The tests assume that the validation flag is set.""" torch.distributions.Distribution.set_default_validate_args(True) super(DistributionsTestCase, self).setUp() class TestDistributions(DistributionsTestCase): _do_cuda_memory_leak_check = True _do_cuda_non_default_stream = True def _gradcheck_log_prob(self, dist_ctor, ctor_params): # performs gradient checks on log_prob distribution = dist_ctor(*ctor_params) s = distribution.sample() if not distribution.support.is_discrete: s = s.detach().requires_grad_() expected_shape = distribution.batch_shape + distribution.event_shape self.assertEqual(s.size(), expected_shape) def apply_fn(s, *params): return dist_ctor(*params).log_prob(s) gradcheck(apply_fn, (s,) + tuple(ctor_params), raise_exception=True) def _check_forward_ad(self, fn): with fwAD.dual_level(): x = torch.tensor(1.) t = torch.tensor(1.) dual = fwAD.make_dual(x, t) dual_out = fn(dual) self.assertEqual(torch.count_nonzero(fwAD.unpack_dual(dual_out).tangent).item(), 0) def _check_log_prob(self, dist, asset_fn): # checks that the log_prob matches a reference function s = dist.sample() log_probs = dist.log_prob(s) log_probs_data_flat = log_probs.view(-1) s_data_flat = s.view(len(log_probs_data_flat), -1) for i, (val, log_prob) in enumerate(zip(s_data_flat, log_probs_data_flat)): asset_fn(i, val.squeeze(), log_prob) def _check_sampler_sampler(self, torch_dist, ref_dist, message, multivariate=False, circular=False, num_samples=10000, failure_rate=1e-3): # Checks that the .sample() method matches a reference function. torch_samples = torch_dist.sample((num_samples,)).squeeze() torch_samples = torch_samples.cpu().numpy() ref_samples = ref_dist.rvs(num_samples).astype(np.float64) if multivariate: # Project onto a random axis. axis = np.random.normal(size=(1,) + torch_samples.shape[1:]) axis /= np.linalg.norm(axis) torch_samples = (axis * torch_samples).reshape(num_samples, -1).sum(-1) ref_samples = (axis * ref_samples).reshape(num_samples, -1).sum(-1) samples = [(x, +1) for x in torch_samples] + [(x, -1) for x in ref_samples] if circular: samples = [(np.cos(x), v) for (x, v) in samples] shuffle(samples) # necessary to prevent stable sort from making uneven bins for discrete samples.sort(key=lambda x: x[0]) samples = np.array(samples)[:, 1] # Aggregate into bins filled with roughly zero-mean unit-variance RVs. num_bins = 10 samples_per_bin = len(samples) // num_bins bins = samples.reshape((num_bins, samples_per_bin)).mean(axis=1) stddev = samples_per_bin ** -0.5 threshold = stddev * scipy.special.erfinv(1 - 2 * failure_rate / num_bins) message = '{}.sample() is biased:\n{}'.format(message, bins) for bias in bins: self.assertLess(-threshold, bias, message) self.assertLess(bias, threshold, message) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def _check_sampler_discrete(self, torch_dist, ref_dist, message, num_samples=10000, failure_rate=1e-3): """Runs a Chi2-test for the support, but ignores tail instead of combining""" torch_samples = torch_dist.sample((num_samples,)).squeeze() torch_samples = torch_samples.cpu().numpy() unique, counts = np.unique(torch_samples, return_counts=True) pmf = ref_dist.pmf(unique) pmf = pmf / pmf.sum() # renormalize to 1.0 for chisq test msk = (counts > 5) & ((pmf * num_samples) > 5) self.assertGreater(pmf[msk].sum(), 0.9, "Distribution is too sparse for test; try increasing num_samples") # Add a remainder bucket that combines counts for all values # below threshold, if such values exist (i.e. mask has False entries). if not msk.all(): counts = np.concatenate([counts[msk], np.sum(counts[~msk], keepdims=True)]) pmf = np.concatenate([pmf[msk], np.sum(pmf[~msk], keepdims=True)]) chisq, p = scipy.stats.chisquare(counts, pmf * num_samples) self.assertGreater(p, failure_rate, message) def _check_enumerate_support(self, dist, examples): for params, expected in examples: params = {k: torch.tensor(v) for k, v in params.items()} expected = torch.tensor(expected) d = dist(**params) actual = d.enumerate_support(expand=False) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(actual, expected) actual = d.enumerate_support(expand=True) expected_with_expand = expected.expand((-1,) + d.batch_shape + d.event_shape) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(actual, expected_with_expand) def test_repr(self): for Dist, params in EXAMPLES: for param in params: dist = Dist(**param) self.assertTrue(repr(dist).startswith(dist.__class__.__name__)) def test_sample_detached(self): for Dist, params in EXAMPLES: for i, param in enumerate(params): variable_params = [p for p in param.values() if getattr(p, 'requires_grad', False)] if not variable_params: continue dist = Dist(**param) sample = dist.sample() self.assertFalse(sample.requires_grad, msg='{} example {}/{}, .sample() is not detached'.format( Dist.__name__, i + 1, len(params))) def test_rsample_requires_grad(self): for Dist, params in EXAMPLES: for i, param in enumerate(params): if not any(getattr(p, 'requires_grad', False) for p in param.values()): continue dist = Dist(**param) if not dist.has_rsample: continue sample = dist.rsample() self.assertTrue(sample.requires_grad, msg='{} example {}/{}, .rsample() does not require grad'.format( Dist.__name__, i + 1, len(params))) def test_enumerate_support_type(self): for Dist, params in EXAMPLES: for i, param in enumerate(params): dist = Dist(**param) try: self.assertTrue(type(dist.sample()) is type(dist.enumerate_support()), msg=('{} example {}/{}, return type mismatch between ' + 'sample and enumerate_support.').format(Dist.__name__, i + 1, len(params))) except NotImplementedError: pass def test_lazy_property_grad(self): x = torch.randn(1, requires_grad=True) class Dummy(object): @lazy_property def y(self): return x + 1 def test(): x.grad = None Dummy().y.backward() self.assertEqual(x.grad, torch.ones(1)) test() with torch.no_grad(): test() mean = torch.randn(2) cov = torch.eye(2, requires_grad=True) distn = MultivariateNormal(mean, cov) with torch.no_grad(): distn.scale_tril distn.scale_tril.sum().backward() self.assertIsNotNone(cov.grad) def test_has_examples(self): distributions_with_examples = {e.Dist for e in EXAMPLES} for Dist in globals().values(): if isinstance(Dist, type) and issubclass(Dist, Distribution) \ and Dist is not Distribution and Dist is not ExponentialFamily: self.assertIn(Dist, distributions_with_examples, "Please add {} to the EXAMPLES list in test_distributions.py".format(Dist.__name__)) def test_support_attributes(self): for Dist, params in EXAMPLES: for param in params: d = Dist(**param) event_dim = len(d.event_shape) self.assertEqual(d.support.event_dim, event_dim) try: self.assertEqual(Dist.support.event_dim, event_dim) except NotImplementedError: pass is_discrete = d.support.is_discrete try: self.assertEqual(Dist.support.is_discrete, is_discrete) except NotImplementedError: pass def test_distribution_expand(self): shapes = [torch.Size(), torch.Size((2,)), torch.Size((2, 1))] for Dist, params in EXAMPLES: for param in params: for shape in shapes: d = Dist(**param) expanded_shape = shape + d.batch_shape original_shape = d.batch_shape + d.event_shape expected_shape = shape + original_shape expanded = d.expand(batch_shape=list(expanded_shape)) sample = expanded.sample() actual_shape = expanded.sample().shape self.assertEqual(expanded.__class__, d.__class__) self.assertEqual(d.sample().shape, original_shape) self.assertEqual(expanded.log_prob(sample), d.log_prob(sample)) self.assertEqual(actual_shape, expected_shape) self.assertEqual(expanded.batch_shape, expanded_shape) try: self.assertEqual(expanded.mean, d.mean.expand(expanded_shape + d.event_shape)) self.assertEqual(expanded.variance, d.variance.expand(expanded_shape + d.event_shape)) except NotImplementedError: pass def test_distribution_subclass_expand(self): expand_by = torch.Size((2,)) for Dist, params in EXAMPLES: class SubClass(Dist): pass for param in params: d = SubClass(**param) expanded_shape = expand_by + d.batch_shape original_shape = d.batch_shape + d.event_shape expected_shape = expand_by + original_shape expanded = d.expand(batch_shape=expanded_shape) sample = expanded.sample() actual_shape = expanded.sample().shape self.assertEqual(expanded.__class__, d.__class__) self.assertEqual(d.sample().shape, original_shape) self.assertEqual(expanded.log_prob(sample), d.log_prob(sample)) self.assertEqual(actual_shape, expected_shape) def test_bernoulli(self): p = torch.tensor([0.7, 0.2, 0.4], requires_grad=True) r = torch.tensor(0.3, requires_grad=True) s = 0.3 self.assertEqual(Bernoulli(p).sample((8,)).size(), (8, 3)) self.assertFalse(Bernoulli(p).sample().requires_grad) self.assertEqual(Bernoulli(r).sample((8,)).size(), (8,)) self.assertEqual(Bernoulli(r).sample().size(), ()) self.assertEqual(Bernoulli(r).sample((3, 2)).size(), (3, 2,)) self.assertEqual(Bernoulli(s).sample().size(), ()) self._gradcheck_log_prob(Bernoulli, (p,)) def ref_log_prob(idx, val, log_prob): prob = p[idx] self.assertEqual(log_prob, math.log(prob if val else 1 - prob)) self._check_log_prob(Bernoulli(p), ref_log_prob) self._check_log_prob(Bernoulli(logits=p.log() - (-p).log1p()), ref_log_prob) self.assertRaises(NotImplementedError, Bernoulli(r).rsample) # check entropy computation self.assertEqual(Bernoulli(p).entropy(), torch.tensor([0.6108, 0.5004, 0.6730]), atol=1e-4, rtol=0) self.assertEqual(Bernoulli(torch.tensor([0.0])).entropy(), torch.tensor([0.0])) self.assertEqual(Bernoulli(s).entropy(), torch.tensor(0.6108), atol=1e-4, rtol=0) self._check_forward_ad(torch.bernoulli) self._check_forward_ad(lambda x: x.bernoulli_()) self._check_forward_ad(lambda x: x.bernoulli_(x.clone().detach())) self._check_forward_ad(lambda x: x.bernoulli_(x)) def test_bernoulli_enumerate_support(self): examples = [ ({"probs": [0.1]}, [[0], [1]]), ({"probs": [0.1, 0.9]}, [[0], [1]]), ({"probs": [[0.1, 0.2], [0.3, 0.4]]}, [[[0]], [[1]]]), ] self._check_enumerate_support(Bernoulli, examples) def test_bernoulli_3d(self): p = torch.full((2, 3, 5), 0.5).requires_grad_() self.assertEqual(Bernoulli(p).sample().size(), (2, 3, 5)) self.assertEqual(Bernoulli(p).sample(sample_shape=(2, 5)).size(), (2, 5, 2, 3, 5)) self.assertEqual(Bernoulli(p).sample((2,)).size(), (2, 2, 3, 5)) def test_geometric(self): p = torch.tensor([0.7, 0.2, 0.4], requires_grad=True) r = torch.tensor(0.3, requires_grad=True) s = 0.3 self.assertEqual(Geometric(p).sample((8,)).size(), (8, 3)) self.assertEqual(Geometric(1).sample(), 0) self.assertEqual(Geometric(1).log_prob(torch.tensor(1.)), -inf) self.assertEqual(Geometric(1).log_prob(torch.tensor(0.)), 0) self.assertFalse(Geometric(p).sample().requires_grad) self.assertEqual(Geometric(r).sample((8,)).size(), (8,)) self.assertEqual(Geometric(r).sample().size(), ()) self.assertEqual(Geometric(r).sample((3, 2)).size(), (3, 2)) self.assertEqual(Geometric(s).sample().size(), ()) self._gradcheck_log_prob(Geometric, (p,)) self.assertRaises(ValueError, lambda: Geometric(0)) self.assertRaises(NotImplementedError, Geometric(r).rsample) self._check_forward_ad(lambda x: x.geometric_(0.2)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_geometric_log_prob_and_entropy(self): p = torch.tensor([0.7, 0.2, 0.4], requires_grad=True) s = 0.3 def ref_log_prob(idx, val, log_prob): prob = p[idx].detach() self.assertEqual(log_prob, scipy.stats.geom(prob, loc=-1).logpmf(val)) self._check_log_prob(Geometric(p), ref_log_prob) self._check_log_prob(Geometric(logits=p.log() - (-p).log1p()), ref_log_prob) # check entropy computation self.assertEqual(Geometric(p).entropy(), scipy.stats.geom(p.detach().numpy(), loc=-1).entropy(), atol=1e-3, rtol=0) self.assertEqual(float(Geometric(s).entropy()), scipy.stats.geom(s, loc=-1).entropy().item(), atol=1e-3, rtol=0) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_geometric_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] for prob in [0.01, 0.18, 0.8]: self._check_sampler_discrete(Geometric(prob), scipy.stats.geom(p=prob, loc=-1), 'Geometric(prob={})'.format(prob)) def test_binomial(self): p = torch.arange(0.05, 1, 0.1).requires_grad_() for total_count in [1, 2, 10]: self._gradcheck_log_prob(lambda p: Binomial(total_count, p), [p]) self._gradcheck_log_prob(lambda p: Binomial(total_count, None, p.log()), [p]) self.assertRaises(NotImplementedError, Binomial(10, p).rsample) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_binomial_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] for prob in [0.01, 0.1, 0.5, 0.8, 0.9]: for count in [2, 10, 100, 500]: self._check_sampler_discrete(Binomial(total_count=count, probs=prob), scipy.stats.binom(count, prob), 'Binomial(total_count={}, probs={})'.format(count, prob)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_binomial_log_prob_and_entropy(self): probs = torch.arange(0.05, 1, 0.1) for total_count in [1, 2, 10]: def ref_log_prob(idx, x, log_prob): p = probs.view(-1)[idx].item() expected = scipy.stats.binom(total_count, p).logpmf(x) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Binomial(total_count, probs), ref_log_prob) logits = probs_to_logits(probs, is_binary=True) self._check_log_prob(Binomial(total_count, logits=logits), ref_log_prob) bin = Binomial(total_count, logits=logits) self.assertEqual( bin.entropy(), scipy.stats.binom(total_count, bin.probs.detach().numpy(), loc=-1).entropy(), atol=1e-3, rtol=0) def test_binomial_stable(self): logits = torch.tensor([-100., 100.], dtype=torch.float) total_count = 1. x = torch.tensor([0., 0.], dtype=torch.float) log_prob = Binomial(total_count, logits=logits).log_prob(x) self.assertTrue(torch.isfinite(log_prob).all()) # make sure that the grad at logits=0, value=0 is 0.5 x = torch.tensor(0., requires_grad=True) y = Binomial(total_count, logits=x).log_prob(torch.tensor(0.)) self.assertEqual(grad(y, x)[0], torch.tensor(-0.5)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_binomial_log_prob_vectorized_count(self): probs = torch.tensor([0.2, 0.7, 0.9]) for total_count, sample in [(torch.tensor([10]), torch.tensor([7., 3., 9.])), (torch.tensor([1, 2, 10]), torch.tensor([0., 1., 9.]))]: log_prob = Binomial(total_count, probs).log_prob(sample) expected = scipy.stats.binom(total_count.cpu().numpy(), probs.cpu().numpy()).logpmf(sample) self.assertEqual(log_prob, expected, atol=1e-4, rtol=0) def test_binomial_enumerate_support(self): examples = [ ({"probs": [0.1], "total_count": 2}, [[0], [1], [2]]), ({"probs": [0.1, 0.9], "total_count": 2}, [[0], [1], [2]]), ({"probs": [[0.1, 0.2], [0.3, 0.4]], "total_count": 3}, [[[0]], [[1]], [[2]], [[3]]]), ] self._check_enumerate_support(Binomial, examples) def test_binomial_extreme_vals(self): total_count = 100 bin0 = Binomial(total_count, 0) self.assertEqual(bin0.sample(), 0) self.assertEqual(bin0.log_prob(torch.tensor([0.]))[0], 0, atol=1e-3, rtol=0) self.assertEqual(float(bin0.log_prob(torch.tensor([1.])).exp()), 0) bin1 = Binomial(total_count, 1) self.assertEqual(bin1.sample(), total_count) self.assertEqual(bin1.log_prob(torch.tensor([float(total_count)]))[0], 0, atol=1e-3, rtol=0) self.assertEqual(float(bin1.log_prob(torch.tensor([float(total_count - 1)])).exp()), 0) zero_counts = torch.zeros(torch.Size((2, 2))) bin2 = Binomial(zero_counts, 1) self.assertEqual(bin2.sample(), zero_counts) self.assertEqual(bin2.log_prob(zero_counts), zero_counts) def test_binomial_vectorized_count(self): set_rng_seed(1) # see Note [Randomized statistical tests] total_count = torch.tensor([[4, 7], [3, 8]]) bin0 = Binomial(total_count, torch.tensor(1.)) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(bin0.sample(), total_count) bin1 = Binomial(total_count, torch.tensor(0.5)) samples = bin1.sample(torch.Size((100000,))) self.assertTrue((samples <= total_count.type_as(samples)).all()) self.assertEqual(samples.mean(dim=0), bin1.mean, atol=0.02, rtol=0) self.assertEqual(samples.var(dim=0), bin1.variance, atol=0.02, rtol=0) def test_negative_binomial(self): p = torch.arange(0.05, 1, 0.1).requires_grad_() for total_count in [1, 2, 10]: self._gradcheck_log_prob(lambda p: NegativeBinomial(total_count, p), [p]) self._gradcheck_log_prob(lambda p: NegativeBinomial(total_count, None, p.log()), [p]) self.assertRaises(NotImplementedError, NegativeBinomial(10, p).rsample) self.assertRaises(NotImplementedError, NegativeBinomial(10, p).entropy) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_negative_binomial_log_prob(self): probs = torch.arange(0.05, 1, 0.1) for total_count in [1, 2, 10]: def ref_log_prob(idx, x, log_prob): p = probs.view(-1)[idx].item() expected = scipy.stats.nbinom(total_count, 1 - p).logpmf(x) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(NegativeBinomial(total_count, probs), ref_log_prob) logits = probs_to_logits(probs, is_binary=True) self._check_log_prob(NegativeBinomial(total_count, logits=logits), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_negative_binomial_log_prob_vectorized_count(self): probs = torch.tensor([0.2, 0.7, 0.9]) for total_count, sample in [(torch.tensor([10]), torch.tensor([7., 3., 9.])), (torch.tensor([1, 2, 10]), torch.tensor([0., 1., 9.]))]: log_prob = NegativeBinomial(total_count, probs).log_prob(sample) expected = scipy.stats.nbinom(total_count.cpu().numpy(), 1 - probs.cpu().numpy()).logpmf(sample) self.assertEqual(log_prob, expected, atol=1e-4, rtol=0) @unittest.skipIf(not TEST_CUDA, "CUDA not found") def test_zero_excluded_binomial(self): vals = Binomial(total_count=torch.tensor(1.0).cuda(), probs=torch.tensor(0.9).cuda() ).sample(torch.Size((100000000,))) self.assertTrue((vals >= 0).all()) vals = Binomial(total_count=torch.tensor(1.0).cuda(), probs=torch.tensor(0.1).cuda() ).sample(torch.Size((100000000,))) self.assertTrue((vals < 2).all()) vals = Binomial(total_count=torch.tensor(1.0).cuda(), probs=torch.tensor(0.5).cuda() ).sample(torch.Size((10000,))) # vals should be roughly half zeroes, half ones assert (vals == 0.0).sum() > 4000 assert (vals == 1.0).sum() > 4000 def test_multinomial_1d(self): total_count = 10 p = torch.tensor([0.1, 0.2, 0.3], requires_grad=True) self.assertEqual(Multinomial(total_count, p).sample().size(), (3,)) self.assertEqual(Multinomial(total_count, p).sample((2, 2)).size(), (2, 2, 3)) self.assertEqual(Multinomial(total_count, p).sample((1,)).size(), (1, 3)) self._gradcheck_log_prob(lambda p: Multinomial(total_count, p), [p]) self._gradcheck_log_prob(lambda p: Multinomial(total_count, None, p.log()), [p]) self.assertRaises(NotImplementedError, Multinomial(10, p).rsample) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_multinomial_1d_log_prob_and_entropy(self): total_count = 10 p = torch.tensor([0.1, 0.2, 0.3], requires_grad=True) dist = Multinomial(total_count, probs=p) x = dist.sample() log_prob = dist.log_prob(x) expected = torch.tensor(scipy.stats.multinomial.logpmf(x.numpy(), n=total_count, p=dist.probs.detach().numpy())) self.assertEqual(log_prob, expected) dist = Multinomial(total_count, logits=p.log()) x = dist.sample() log_prob = dist.log_prob(x) expected = torch.tensor(scipy.stats.multinomial.logpmf(x.numpy(), n=total_count, p=dist.probs.detach().numpy())) self.assertEqual(log_prob, expected) expected = scipy.stats.multinomial.entropy(total_count, dist.probs.detach().numpy()) self.assertEqual(dist.entropy(), expected, atol=1e-3, rtol=0) def test_multinomial_2d(self): total_count = 10 probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] p = torch.tensor(probabilities, requires_grad=True) s = torch.tensor(probabilities_1, requires_grad=True) self.assertEqual(Multinomial(total_count, p).sample().size(), (2, 3)) self.assertEqual(Multinomial(total_count, p).sample(sample_shape=(3, 4)).size(), (3, 4, 2, 3)) self.assertEqual(Multinomial(total_count, p).sample((6,)).size(), (6, 2, 3)) set_rng_seed(0) self._gradcheck_log_prob(lambda p: Multinomial(total_count, p), [p]) self._gradcheck_log_prob(lambda p: Multinomial(total_count, None, p.log()), [p]) # sample check for extreme value of probs # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(Multinomial(total_count, s).sample(), torch.tensor([[total_count, 0], [0, total_count]])) def test_categorical_1d(self): p = torch.tensor([0.1, 0.2, 0.3], requires_grad=True) self.assertTrue(is_all_nan(Categorical(p).mean)) self.assertTrue(is_all_nan(Categorical(p).variance)) self.assertEqual(Categorical(p).sample().size(), ()) self.assertFalse(Categorical(p).sample().requires_grad) self.assertEqual(Categorical(p).sample((2, 2)).size(), (2, 2)) self.assertEqual(Categorical(p).sample((1,)).size(), (1,)) self._gradcheck_log_prob(Categorical, (p,)) self.assertRaises(NotImplementedError, Categorical(p).rsample) def test_categorical_2d(self): probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] p = torch.tensor(probabilities, requires_grad=True) s = torch.tensor(probabilities_1, requires_grad=True) self.assertEqual(Categorical(p).mean.size(), (2,)) self.assertEqual(Categorical(p).variance.size(), (2,)) self.assertTrue(is_all_nan(Categorical(p).mean)) self.assertTrue(is_all_nan(Categorical(p).variance)) self.assertEqual(Categorical(p).sample().size(), (2,)) self.assertEqual(Categorical(p).sample(sample_shape=(3, 4)).size(), (3, 4, 2)) self.assertEqual(Categorical(p).sample((6,)).size(), (6, 2)) self._gradcheck_log_prob(Categorical, (p,)) # sample check for extreme value of probs set_rng_seed(0) self.assertEqual(Categorical(s).sample(sample_shape=(2,)), torch.tensor([[0, 1], [0, 1]])) def ref_log_prob(idx, val, log_prob): sample_prob = p[idx][val] / p[idx].sum() self.assertEqual(log_prob, math.log(sample_prob)) self._check_log_prob(Categorical(p), ref_log_prob) self._check_log_prob(Categorical(logits=p.log()), ref_log_prob) # check entropy computation self.assertEqual(Categorical(p).entropy(), torch.tensor([1.0114, 1.0297]), atol=1e-4, rtol=0) self.assertEqual(Categorical(s).entropy(), torch.tensor([0.0, 0.0])) # issue gh-40553 logits = p.log() logits[1, 1] = logits[0, 2] = float('-inf') e = Categorical(logits=logits).entropy() self.assertEqual(e, torch.tensor([0.6365, 0.5983]), atol=1e-4, rtol=0) def test_categorical_enumerate_support(self): examples = [ ({"probs": [0.1, 0.2, 0.7]}, [0, 1, 2]), ({"probs": [[0.1, 0.9], [0.3, 0.7]]}, [[0], [1]]), ] self._check_enumerate_support(Categorical, examples) def test_one_hot_categorical_1d(self): p = torch.tensor([0.1, 0.2, 0.3], requires_grad=True) self.assertEqual(OneHotCategorical(p).sample().size(), (3,)) self.assertFalse(OneHotCategorical(p).sample().requires_grad) self.assertEqual(OneHotCategorical(p).sample((2, 2)).size(), (2, 2, 3)) self.assertEqual(OneHotCategorical(p).sample((1,)).size(), (1, 3)) self._gradcheck_log_prob(OneHotCategorical, (p,)) self.assertRaises(NotImplementedError, OneHotCategorical(p).rsample) def test_one_hot_categorical_2d(self): probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] p = torch.tensor(probabilities, requires_grad=True) s = torch.tensor(probabilities_1, requires_grad=True) self.assertEqual(OneHotCategorical(p).sample().size(), (2, 3)) self.assertEqual(OneHotCategorical(p).sample(sample_shape=(3, 4)).size(), (3, 4, 2, 3)) self.assertEqual(OneHotCategorical(p).sample((6,)).size(), (6, 2, 3)) self._gradcheck_log_prob(OneHotCategorical, (p,)) dist = OneHotCategorical(p) x = dist.sample() self.assertEqual(dist.log_prob(x), Categorical(p).log_prob(x.max(-1)[1])) def test_one_hot_categorical_enumerate_support(self): examples = [ ({"probs": [0.1, 0.2, 0.7]}, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]), ({"probs": [[0.1, 0.9], [0.3, 0.7]]}, [[[1, 0]], [[0, 1]]]), ] self._check_enumerate_support(OneHotCategorical, examples) def test_poisson_forward_ad(self): self._check_forward_ad(torch.poisson) def test_poisson_shape(self): rate = torch.randn(2, 3).abs().requires_grad_() rate_1d = torch.randn(1).abs().requires_grad_() self.assertEqual(Poisson(rate).sample().size(), (2, 3)) self.assertEqual(Poisson(rate).sample((7,)).size(), (7, 2, 3)) self.assertEqual(Poisson(rate_1d).sample().size(), (1,)) self.assertEqual(Poisson(rate_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Poisson(2.0).sample((2,)).size(), (2,)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_poisson_log_prob(self): rate = torch.randn(2, 3).abs().requires_grad_() rate_1d = torch.randn(1).abs().requires_grad_() rate_zero = torch.zeros([], requires_grad=True) def ref_log_prob(ref_rate, idx, x, log_prob): l = ref_rate.view(-1)[idx].detach() expected = scipy.stats.poisson.logpmf(x, l) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) set_rng_seed(0) self._check_log_prob(Poisson(rate), lambda *args: ref_log_prob(rate, *args)) self._check_log_prob(Poisson(rate_zero), lambda *args: ref_log_prob(rate_zero, *args)) self._gradcheck_log_prob(Poisson, (rate,)) self._gradcheck_log_prob(Poisson, (rate_1d,)) # We cannot check gradients automatically for zero rates because the finite difference # approximation enters the forbidden parameter space. We instead compare with the # theoretical results. dist = Poisson(rate_zero) s = dist.sample() dist.log_prob(s).backward() torch.testing.assert_allclose(rate_zero.grad, -1.0) dist.log_prob(torch.ones_like(rate_zero)).backward() torch.testing.assert_allclose(rate_zero.grad, torch.inf) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_poisson_sample(self): set_rng_seed(1) # see Note [Randomized statistical tests] for rate in [0.1, 1.0, 5.0]: self._check_sampler_discrete(Poisson(rate), scipy.stats.poisson(rate), 'Poisson(lambda={})'.format(rate), failure_rate=1e-3) @unittest.skipIf(not TEST_CUDA, "CUDA not found") @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_poisson_gpu_sample(self): set_rng_seed(1) for rate in [0.12, 0.9, 4.0]: self._check_sampler_discrete(Poisson(torch.tensor([rate]).cuda()), scipy.stats.poisson(rate), 'Poisson(lambda={}, cuda)'.format(rate), failure_rate=1e-3) def test_relaxed_bernoulli(self): p = torch.tensor([0.7, 0.2, 0.4], requires_grad=True) r = torch.tensor(0.3, requires_grad=True) s = 0.3 temp = torch.tensor(0.67, requires_grad=True) self.assertEqual(RelaxedBernoulli(temp, p).sample((8,)).size(), (8, 3)) self.assertFalse(RelaxedBernoulli(temp, p).sample().requires_grad) self.assertEqual(RelaxedBernoulli(temp, r).sample((8,)).size(), (8,)) self.assertEqual(RelaxedBernoulli(temp, r).sample().size(), ()) self.assertEqual(RelaxedBernoulli(temp, r).sample((3, 2)).size(), (3, 2,)) self.assertEqual(RelaxedBernoulli(temp, s).sample().size(), ()) self._gradcheck_log_prob(RelaxedBernoulli, (temp, p)) self._gradcheck_log_prob(RelaxedBernoulli, (temp, r)) # test that rsample doesn't fail s = RelaxedBernoulli(temp, p).rsample() s.backward(torch.ones_like(s)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_rounded_relaxed_bernoulli(self): set_rng_seed(0) # see Note [Randomized statistical tests] class Rounded(object): def __init__(self, dist): self.dist = dist def sample(self, *args, **kwargs): return torch.round(self.dist.sample(*args, **kwargs)) for probs, temp in product([0.1, 0.2, 0.8], [0.1, 1.0, 10.0]): self._check_sampler_discrete(Rounded(RelaxedBernoulli(temp, probs)), scipy.stats.bernoulli(probs), 'Rounded(RelaxedBernoulli(temp={}, probs={}))'.format(temp, probs), failure_rate=1e-3) for probs in [0.001, 0.2, 0.999]: equal_probs = torch.tensor(0.5) dist = RelaxedBernoulli(1e10, probs) s = dist.rsample() self.assertEqual(equal_probs, s) def test_relaxed_one_hot_categorical_1d(self): p = torch.tensor([0.1, 0.2, 0.3], requires_grad=True) temp = torch.tensor(0.67, requires_grad=True) self.assertEqual(RelaxedOneHotCategorical(probs=p, temperature=temp).sample().size(), (3,)) self.assertFalse(RelaxedOneHotCategorical(probs=p, temperature=temp).sample().requires_grad) self.assertEqual(RelaxedOneHotCategorical(probs=p, temperature=temp).sample((2, 2)).size(), (2, 2, 3)) self.assertEqual(RelaxedOneHotCategorical(probs=p, temperature=temp).sample((1,)).size(), (1, 3)) self._gradcheck_log_prob(lambda t, p: RelaxedOneHotCategorical(t, p, validate_args=False), (temp, p)) def test_relaxed_one_hot_categorical_2d(self): probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] temp = torch.tensor([3.0], requires_grad=True) # The lower the temperature, the more unstable the log_prob gradcheck is # w.r.t. the sample. Values below 0.25 empirically fail the default tol. temp_2 = torch.tensor([0.25], requires_grad=True) p = torch.tensor(probabilities, requires_grad=True) s = torch.tensor(probabilities_1, requires_grad=True) self.assertEqual(RelaxedOneHotCategorical(temp, p).sample().size(), (2, 3)) self.assertEqual(RelaxedOneHotCategorical(temp, p).sample(sample_shape=(3, 4)).size(), (3, 4, 2, 3)) self.assertEqual(RelaxedOneHotCategorical(temp, p).sample((6,)).size(), (6, 2, 3)) self._gradcheck_log_prob(lambda t, p: RelaxedOneHotCategorical(t, p, validate_args=False), (temp, p)) self._gradcheck_log_prob(lambda t, p: RelaxedOneHotCategorical(t, p, validate_args=False), (temp_2, p)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_argmax_relaxed_categorical(self): set_rng_seed(0) # see Note [Randomized statistical tests] class ArgMax(object): def __init__(self, dist): self.dist = dist def sample(self, *args, **kwargs): s = self.dist.sample(*args, **kwargs) _, idx = torch.max(s, -1) return idx class ScipyCategorical(object): def __init__(self, dist): self.dist = dist def pmf(self, samples): new_samples = np.zeros(samples.shape + self.dist.p.shape) new_samples[np.arange(samples.shape[0]), samples] = 1 return self.dist.pmf(new_samples) for probs, temp in product([torch.tensor([0.1, 0.9]), torch.tensor([0.2, 0.2, 0.6])], [0.1, 1.0, 10.0]): self._check_sampler_discrete(ArgMax(RelaxedOneHotCategorical(temp, probs)), ScipyCategorical(scipy.stats.multinomial(1, probs)), 'Rounded(RelaxedOneHotCategorical(temp={}, probs={}))'.format(temp, probs), failure_rate=1e-3) for probs in [torch.tensor([0.1, 0.9]), torch.tensor([0.2, 0.2, 0.6])]: equal_probs = torch.ones(probs.size()) / probs.size()[0] dist = RelaxedOneHotCategorical(1e10, probs) s = dist.rsample() self.assertEqual(equal_probs, s) def test_uniform(self): low = torch.zeros(5, 5, requires_grad=True) high = (torch.ones(5, 5) * 3).requires_grad_() low_1d = torch.zeros(1, requires_grad=True) high_1d = (torch.ones(1) * 3).requires_grad_() self.assertEqual(Uniform(low, high).sample().size(), (5, 5)) self.assertEqual(Uniform(low, high).sample((7,)).size(), (7, 5, 5)) self.assertEqual(Uniform(low_1d, high_1d).sample().size(), (1,)) self.assertEqual(Uniform(low_1d, high_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Uniform(0.0, 1.0).sample((1,)).size(), (1,)) # Check log_prob computation when value outside range uniform = Uniform(low_1d, high_1d, validate_args=False) above_high = torch.tensor([4.0]) below_low = torch.tensor([-1.0]) self.assertEqual(uniform.log_prob(above_high).item(), -inf) self.assertEqual(uniform.log_prob(below_low).item(), -inf) # check cdf computation when value outside range self.assertEqual(uniform.cdf(below_low).item(), 0) self.assertEqual(uniform.cdf(above_high).item(), 1) set_rng_seed(1) self._gradcheck_log_prob(Uniform, (low, high)) self._gradcheck_log_prob(Uniform, (low, 1.0)) self._gradcheck_log_prob(Uniform, (0.0, high)) state = torch.get_rng_state() rand = low.new(low.size()).uniform_() torch.set_rng_state(state) u = Uniform(low, high).rsample() u.backward(torch.ones_like(u)) self.assertEqual(low.grad, 1 - rand) self.assertEqual(high.grad, rand) low.grad.zero_() high.grad.zero_() self._check_forward_ad(lambda x: x.uniform_()) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_vonmises_sample(self): for loc in [0.0, math.pi / 2.0]: for concentration in [0.03, 0.3, 1.0, 10.0, 100.0]: self._check_sampler_sampler(VonMises(loc, concentration), scipy.stats.vonmises(loc=loc, kappa=concentration), "VonMises(loc={}, concentration={})".format(loc, concentration), num_samples=int(1e5), circular=True) def test_vonmises_logprob(self): concentrations = [0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0] for concentration in concentrations: grid = torch.arange(0., 2 * math.pi, 1e-4) prob = VonMises(0.0, concentration).log_prob(grid).exp() norm = prob.mean().item() * 2 * math.pi self.assertLess(abs(norm - 1), 1e-3) def test_cauchy(self): loc = torch.zeros(5, 5, requires_grad=True) scale = torch.ones(5, 5, requires_grad=True) loc_1d = torch.zeros(1, requires_grad=True) scale_1d = torch.ones(1, requires_grad=True) self.assertTrue(is_all_nan(Cauchy(loc_1d, scale_1d).mean)) self.assertEqual(Cauchy(loc_1d, scale_1d).variance, inf) self.assertEqual(Cauchy(loc, scale).sample().size(), (5, 5)) self.assertEqual(Cauchy(loc, scale).sample((7,)).size(), (7, 5, 5)) self.assertEqual(Cauchy(loc_1d, scale_1d).sample().size(), (1,)) self.assertEqual(Cauchy(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Cauchy(0.0, 1.0).sample((1,)).size(), (1,)) set_rng_seed(1) self._gradcheck_log_prob(Cauchy, (loc, scale)) self._gradcheck_log_prob(Cauchy, (loc, 1.0)) self._gradcheck_log_prob(Cauchy, (0.0, scale)) state = torch.get_rng_state() eps = loc.new(loc.size()).cauchy_() torch.set_rng_state(state) c = Cauchy(loc, scale).rsample() c.backward(torch.ones_like(c)) self.assertEqual(loc.grad, torch.ones_like(scale)) self.assertEqual(scale.grad, eps) loc.grad.zero_() scale.grad.zero_() self._check_forward_ad(lambda x: x.cauchy_()) def test_halfcauchy(self): scale = torch.ones(5, 5, requires_grad=True) scale_1d = torch.ones(1, requires_grad=True) self.assertTrue(torch.isinf(HalfCauchy(scale_1d).mean).all()) self.assertEqual(HalfCauchy(scale_1d).variance, inf) self.assertEqual(HalfCauchy(scale).sample().size(), (5, 5)) self.assertEqual(HalfCauchy(scale).sample((7,)).size(), (7, 5, 5)) self.assertEqual(HalfCauchy(scale_1d).sample().size(), (1,)) self.assertEqual(HalfCauchy(scale_1d).sample((1,)).size(), (1, 1)) self.assertEqual(HalfCauchy(1.0).sample((1,)).size(), (1,)) set_rng_seed(1) self._gradcheck_log_prob(HalfCauchy, (scale,)) self._gradcheck_log_prob(HalfCauchy, (1.0,)) state = torch.get_rng_state() eps = scale.new(scale.size()).cauchy_().abs_() torch.set_rng_state(state) c = HalfCauchy(scale).rsample() c.backward(torch.ones_like(c)) self.assertEqual(scale.grad, eps) scale.grad.zero_() def test_halfnormal(self): std = torch.randn(5, 5).abs().requires_grad_() std_1d = torch.randn(1).abs().requires_grad_() std_delta = torch.tensor([1e-5, 1e-5]) self.assertEqual(HalfNormal(std).sample().size(), (5, 5)) self.assertEqual(HalfNormal(std).sample((7,)).size(), (7, 5, 5)) self.assertEqual(HalfNormal(std_1d).sample((1,)).size(), (1, 1)) self.assertEqual(HalfNormal(std_1d).sample().size(), (1,)) self.assertEqual(HalfNormal(.6).sample((1,)).size(), (1,)) self.assertEqual(HalfNormal(50.0).sample((1,)).size(), (1,)) # sample check for extreme value of std set_rng_seed(1) self.assertEqual(HalfNormal(std_delta).sample(sample_shape=(1, 2)), torch.tensor([[[0.0, 0.0], [0.0, 0.0]]]), atol=1e-4, rtol=0) self._gradcheck_log_prob(HalfNormal, (std,)) self._gradcheck_log_prob(HalfNormal, (1.0,)) # check .log_prob() can broadcast. dist = HalfNormal(torch.ones(2, 1, 4)) log_prob = dist.log_prob(torch.ones(3, 1)) self.assertEqual(log_prob.shape, (2, 3, 4)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_halfnormal_logprob(self): std = torch.randn(5, 1).abs().requires_grad_() def ref_log_prob(idx, x, log_prob): s = std.view(-1)[idx].detach() expected = scipy.stats.halfnorm(scale=s).logpdf(x) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(HalfNormal(std), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_halfnormal_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] for std in [0.1, 1.0, 10.0]: self._check_sampler_sampler(HalfNormal(std), scipy.stats.halfnorm(scale=std), 'HalfNormal(scale={})'.format(std)) def test_lognormal(self): mean = torch.randn(5, 5, requires_grad=True) std = torch.randn(5, 5).abs().requires_grad_() mean_1d = torch.randn(1, requires_grad=True) std_1d = torch.randn(1).abs().requires_grad_() mean_delta = torch.tensor([1.0, 0.0]) std_delta = torch.tensor([1e-5, 1e-5]) self.assertEqual(LogNormal(mean, std).sample().size(), (5, 5)) self.assertEqual(LogNormal(mean, std).sample((7,)).size(), (7, 5, 5)) self.assertEqual(LogNormal(mean_1d, std_1d).sample((1,)).size(), (1, 1)) self.assertEqual(LogNormal(mean_1d, std_1d).sample().size(), (1,)) self.assertEqual(LogNormal(0.2, .6).sample((1,)).size(), (1,)) self.assertEqual(LogNormal(-0.7, 50.0).sample((1,)).size(), (1,)) # sample check for extreme value of mean, std set_rng_seed(1) self.assertEqual(LogNormal(mean_delta, std_delta).sample(sample_shape=(1, 2)), torch.tensor([[[math.exp(1), 1.0], [math.exp(1), 1.0]]]), atol=1e-4, rtol=0) self._gradcheck_log_prob(LogNormal, (mean, std)) self._gradcheck_log_prob(LogNormal, (mean, 1.0)) self._gradcheck_log_prob(LogNormal, (0.0, std)) # check .log_prob() can broadcast. dist = LogNormal(torch.zeros(4), torch.ones(2, 1, 1)) log_prob = dist.log_prob(torch.ones(3, 1)) self.assertEqual(log_prob.shape, (2, 3, 4)) self._check_forward_ad(lambda x: x.log_normal_()) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_lognormal_logprob(self): mean = torch.randn(5, 1, requires_grad=True) std = torch.randn(5, 1).abs().requires_grad_() def ref_log_prob(idx, x, log_prob): m = mean.view(-1)[idx].detach() s = std.view(-1)[idx].detach() expected = scipy.stats.lognorm(s=s, scale=math.exp(m)).logpdf(x) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(LogNormal(mean, std), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_lognormal_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] for mean, std in product([-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(LogNormal(mean, std), scipy.stats.lognorm(scale=math.exp(mean), s=std), 'LogNormal(loc={}, scale={})'.format(mean, std)) def test_logisticnormal(self): set_rng_seed(1) # see Note [Randomized statistical tests] mean = torch.randn(5, 5).requires_grad_() std = torch.randn(5, 5).abs().requires_grad_() mean_1d = torch.randn(1).requires_grad_() std_1d = torch.randn(1).abs().requires_grad_() mean_delta = torch.tensor([1.0, 0.0]) std_delta = torch.tensor([1e-5, 1e-5]) self.assertEqual(LogisticNormal(mean, std).sample().size(), (5, 6)) self.assertEqual(LogisticNormal(mean, std).sample((7,)).size(), (7, 5, 6)) self.assertEqual(LogisticNormal(mean_1d, std_1d).sample((1,)).size(), (1, 2)) self.assertEqual(LogisticNormal(mean_1d, std_1d).sample().size(), (2,)) self.assertEqual(LogisticNormal(0.2, .6).sample().size(), (2,)) self.assertEqual(LogisticNormal(-0.7, 50.0).sample().size(), (2,)) # sample check for extreme value of mean, std set_rng_seed(1) self.assertEqual(LogisticNormal(mean_delta, std_delta).sample(), torch.tensor([math.exp(1) / (1. + 1. + math.exp(1)), 1. / (1. + 1. + math.exp(1)), 1. / (1. + 1. + math.exp(1))]), atol=1e-4, rtol=0) # TODO: gradcheck seems to mutate the sample values so that the simplex # constraint fails by a very small margin. self._gradcheck_log_prob(lambda m, s: LogisticNormal(m, s, validate_args=False), (mean, std)) self._gradcheck_log_prob(lambda m, s: LogisticNormal(m, s, validate_args=False), (mean, 1.0)) self._gradcheck_log_prob(lambda m, s: LogisticNormal(m, s, validate_args=False), (0.0, std)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_logisticnormal_logprob(self): mean = torch.randn(5, 7).requires_grad_() std = torch.randn(5, 7).abs().requires_grad_() # Smoke test for now # TODO: Once _check_log_prob works with multidimensional distributions, # add proper testing of the log probabilities. dist = LogisticNormal(mean, std) assert dist.log_prob(dist.sample()).detach().cpu().numpy().shape == (5,) def _get_logistic_normal_ref_sampler(self, base_dist): def _sampler(num_samples): x = base_dist.rvs(num_samples) offset = np.log((x.shape[-1] + 1) - np.ones_like(x).cumsum(-1)) z = 1. / (1. + np.exp(offset - x)) z_cumprod = np.cumprod(1 - z, axis=-1) y1 = np.pad(z, ((0, 0), (0, 1)), mode='constant', constant_values=1.) y2 = np.pad(z_cumprod, ((0, 0), (1, 0)), mode='constant', constant_values=1.) return y1 * y2 return _sampler @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_logisticnormal_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] means = map(np.asarray, [(-1.0, -1.0), (0.0, 0.0), (1.0, 1.0)]) covs = map(np.diag, [(0.1, 0.1), (1.0, 1.0), (10.0, 10.0)]) for mean, cov in product(means, covs): base_dist = scipy.stats.multivariate_normal(mean=mean, cov=cov) ref_dist = scipy.stats.multivariate_normal(mean=mean, cov=cov) ref_dist.rvs = self._get_logistic_normal_ref_sampler(base_dist) mean_th = torch.tensor(mean) std_th = torch.tensor(np.sqrt(np.diag(cov))) self._check_sampler_sampler( LogisticNormal(mean_th, std_th), ref_dist, 'LogisticNormal(loc={}, scale={})'.format(mean_th, std_th), multivariate=True) def test_mixture_same_family_shape(self): normal_case_1d = MixtureSameFamily( Categorical(torch.rand(5)), Normal(torch.randn(5), torch.rand(5))) normal_case_1d_batch = MixtureSameFamily( Categorical(torch.rand(3, 5)), Normal(torch.randn(3, 5), torch.rand(3, 5))) normal_case_1d_multi_batch = MixtureSameFamily( Categorical(torch.rand(4, 3, 5)), Normal(torch.randn(4, 3, 5), torch.rand(4, 3, 5))) normal_case_2d = MixtureSameFamily( Categorical(torch.rand(5)), Independent(Normal(torch.randn(5, 2), torch.rand(5, 2)), 1)) normal_case_2d_batch = MixtureSameFamily( Categorical(torch.rand(3, 5)), Independent(Normal(torch.randn(3, 5, 2), torch.rand(3, 5, 2)), 1)) normal_case_2d_multi_batch = MixtureSameFamily( Categorical(torch.rand(4, 3, 5)), Independent(Normal(torch.randn(4, 3, 5, 2), torch.rand(4, 3, 5, 2)), 1)) self.assertEqual(normal_case_1d.sample().size(), ()) self.assertEqual(normal_case_1d.sample((2,)).size(), (2,)) self.assertEqual(normal_case_1d.sample((2, 7)).size(), (2, 7)) self.assertEqual(normal_case_1d_batch.sample().size(), (3,)) self.assertEqual(normal_case_1d_batch.sample((2,)).size(), (2, 3)) self.assertEqual(normal_case_1d_batch.sample((2, 7)).size(), (2, 7, 3)) self.assertEqual(normal_case_1d_multi_batch.sample().size(), (4, 3)) self.assertEqual(normal_case_1d_multi_batch.sample((2,)).size(), (2, 4, 3)) self.assertEqual(normal_case_1d_multi_batch.sample((2, 7)).size(), (2, 7, 4, 3)) self.assertEqual(normal_case_2d.sample().size(), (2,)) self.assertEqual(normal_case_2d.sample((2,)).size(), (2, 2)) self.assertEqual(normal_case_2d.sample((2, 7)).size(), (2, 7, 2)) self.assertEqual(normal_case_2d_batch.sample().size(), (3, 2)) self.assertEqual(normal_case_2d_batch.sample((2,)).size(), (2, 3, 2)) self.assertEqual(normal_case_2d_batch.sample((2, 7)).size(), (2, 7, 3, 2)) self.assertEqual(normal_case_2d_multi_batch.sample().size(), (4, 3, 2)) self.assertEqual(normal_case_2d_multi_batch.sample((2,)).size(), (2, 4, 3, 2)) self.assertEqual(normal_case_2d_multi_batch.sample((2, 7)).size(), (2, 7, 4, 3, 2)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_mixture_same_family_log_prob(self): probs = torch.rand(5, 5).softmax(dim=-1) loc = torch.randn(5, 5) scale = torch.rand(5, 5) def ref_log_prob(idx, x, log_prob): p = probs[idx].numpy() m = loc[idx].numpy() s = scale[idx].numpy() mix = scipy.stats.multinomial(1, p) comp = scipy.stats.norm(m, s) expected = scipy.special.logsumexp(comp.logpdf(x) + np.log(mix.p)) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob( MixtureSameFamily(Categorical(probs=probs), Normal(loc, scale)), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_mixture_same_family_sample(self): probs = torch.rand(5).softmax(dim=-1) loc = torch.randn(5) scale = torch.rand(5) class ScipyMixtureNormal(object): def __init__(self, probs, mu, std): self.probs = probs self.mu = mu self.std = std def rvs(self, n_sample): comp_samples = [scipy.stats.norm(m, s).rvs(n_sample) for m, s in zip(self.mu, self.std)] mix_samples = scipy.stats.multinomial(1, self.probs).rvs(n_sample) samples = [] for i in range(n_sample): samples.append(comp_samples[mix_samples[i].argmax()][i]) return np.asarray(samples) self._check_sampler_sampler( MixtureSameFamily(Categorical(probs=probs), Normal(loc, scale)), ScipyMixtureNormal(probs.numpy(), loc.numpy(), scale.numpy()), '''MixtureSameFamily(Categorical(probs={}), Normal(loc={}, scale={}))'''.format(probs, loc, scale)) def test_normal(self): loc = torch.randn(5, 5, requires_grad=True) scale = torch.randn(5, 5).abs().requires_grad_() loc_1d = torch.randn(1, requires_grad=True) scale_1d = torch.randn(1).abs().requires_grad_() loc_delta = torch.tensor([1.0, 0.0]) scale_delta = torch.tensor([1e-5, 1e-5]) self.assertEqual(Normal(loc, scale).sample().size(), (5, 5)) self.assertEqual(Normal(loc, scale).sample((7,)).size(), (7, 5, 5)) self.assertEqual(Normal(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Normal(loc_1d, scale_1d).sample().size(), (1,)) self.assertEqual(Normal(0.2, .6).sample((1,)).size(), (1,)) self.assertEqual(Normal(-0.7, 50.0).sample((1,)).size(), (1,)) # sample check for extreme value of mean, std set_rng_seed(1) self.assertEqual(Normal(loc_delta, scale_delta).sample(sample_shape=(1, 2)), torch.tensor([[[1.0, 0.0], [1.0, 0.0]]]), atol=1e-4, rtol=0) self._gradcheck_log_prob(Normal, (loc, scale)) self._gradcheck_log_prob(Normal, (loc, 1.0)) self._gradcheck_log_prob(Normal, (0.0, scale)) state = torch.get_rng_state() eps = torch.normal(torch.zeros_like(loc), torch.ones_like(scale)) torch.set_rng_state(state) z = Normal(loc, scale).rsample() z.backward(torch.ones_like(z)) self.assertEqual(loc.grad, torch.ones_like(loc)) self.assertEqual(scale.grad, eps) loc.grad.zero_() scale.grad.zero_() self.assertEqual(z.size(), (5, 5)) def ref_log_prob(idx, x, log_prob): m = loc.view(-1)[idx] s = scale.view(-1)[idx] expected = (math.exp(-(x - m) ** 2 / (2 * s ** 2)) / math.sqrt(2 * math.pi * s ** 2)) self.assertEqual(log_prob, math.log(expected), atol=1e-3, rtol=0) self._check_log_prob(Normal(loc, scale), ref_log_prob) self._check_forward_ad(torch.normal) self._check_forward_ad(lambda x: torch.normal(x, 0.5)) self._check_forward_ad(lambda x: torch.normal(0.2, x)) self._check_forward_ad(lambda x: torch.normal(x, x)) self._check_forward_ad(lambda x: x.normal_()) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_normal_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] for loc, scale in product([-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(Normal(loc, scale), scipy.stats.norm(loc=loc, scale=scale), 'Normal(mean={}, std={})'.format(loc, scale)) def test_lowrank_multivariate_normal_shape(self): mean = torch.randn(5, 3, requires_grad=True) mean_no_batch = torch.randn(3, requires_grad=True) mean_multi_batch = torch.randn(6, 5, 3, requires_grad=True) # construct PSD covariance cov_factor = torch.randn(3, 1, requires_grad=True) cov_diag = torch.randn(3).abs().requires_grad_() # construct batch of PSD covariances cov_factor_batched = torch.randn(6, 5, 3, 2, requires_grad=True) cov_diag_batched = torch.randn(6, 5, 3).abs().requires_grad_() # ensure that sample, batch, event shapes all handled correctly self.assertEqual(LowRankMultivariateNormal(mean, cov_factor, cov_diag) .sample().size(), (5, 3)) self.assertEqual(LowRankMultivariateNormal(mean_no_batch, cov_factor, cov_diag) .sample().size(), (3,)) self.assertEqual(LowRankMultivariateNormal(mean_multi_batch, cov_factor, cov_diag) .sample().size(), (6, 5, 3)) self.assertEqual(LowRankMultivariateNormal(mean, cov_factor, cov_diag) .sample((2,)).size(), (2, 5, 3)) self.assertEqual(LowRankMultivariateNormal(mean_no_batch, cov_factor, cov_diag) .sample((2,)).size(), (2, 3)) self.assertEqual(LowRankMultivariateNormal(mean_multi_batch, cov_factor, cov_diag) .sample((2,)).size(), (2, 6, 5, 3)) self.assertEqual(LowRankMultivariateNormal(mean, cov_factor, cov_diag) .sample((2, 7)).size(), (2, 7, 5, 3)) self.assertEqual(LowRankMultivariateNormal(mean_no_batch, cov_factor, cov_diag) .sample((2, 7)).size(), (2, 7, 3)) self.assertEqual(LowRankMultivariateNormal(mean_multi_batch, cov_factor, cov_diag) .sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(LowRankMultivariateNormal(mean, cov_factor_batched, cov_diag_batched) .sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(LowRankMultivariateNormal(mean_no_batch, cov_factor_batched, cov_diag_batched) .sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(LowRankMultivariateNormal(mean_multi_batch, cov_factor_batched, cov_diag_batched) .sample((2, 7)).size(), (2, 7, 6, 5, 3)) # check gradients self._gradcheck_log_prob(LowRankMultivariateNormal, (mean, cov_factor, cov_diag)) self._gradcheck_log_prob(LowRankMultivariateNormal, (mean_multi_batch, cov_factor, cov_diag)) self._gradcheck_log_prob(LowRankMultivariateNormal, (mean_multi_batch, cov_factor_batched, cov_diag_batched)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_lowrank_multivariate_normal_log_prob(self): mean = torch.randn(3, requires_grad=True) cov_factor = torch.randn(3, 1, requires_grad=True) cov_diag = torch.randn(3).abs().requires_grad_() cov = cov_factor.matmul(cov_factor.t()) + cov_diag.diag() # check that logprob values match scipy logpdf, # and that covariance and scale_tril parameters are equivalent dist1 = LowRankMultivariateNormal(mean, cov_factor, cov_diag) ref_dist = scipy.stats.multivariate_normal(mean.detach().numpy(), cov.detach().numpy()) x = dist1.sample((10,)) expected = ref_dist.logpdf(x.numpy()) self.assertEqual(0.0, np.mean((dist1.log_prob(x).detach().numpy() - expected)**2), atol=1e-3, rtol=0) # Double-check that batched versions behave the same as unbatched mean = torch.randn(5, 3, requires_grad=True) cov_factor = torch.randn(5, 3, 2, requires_grad=True) cov_diag = torch.randn(5, 3).abs().requires_grad_() dist_batched = LowRankMultivariateNormal(mean, cov_factor, cov_diag) dist_unbatched = [LowRankMultivariateNormal(mean[i], cov_factor[i], cov_diag[i]) for i in range(mean.size(0))] x = dist_batched.sample((10,)) batched_prob = dist_batched.log_prob(x) unbatched_prob = torch.stack([dist_unbatched[i].log_prob(x[:, i]) for i in range(5)]).t() self.assertEqual(batched_prob.shape, unbatched_prob.shape) self.assertEqual(0.0, (batched_prob - unbatched_prob).abs().max(), atol=1e-3, rtol=0) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_lowrank_multivariate_normal_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] mean = torch.randn(5, requires_grad=True) cov_factor = torch.randn(5, 1, requires_grad=True) cov_diag = torch.randn(5).abs().requires_grad_() cov = cov_factor.matmul(cov_factor.t()) + cov_diag.diag() self._check_sampler_sampler(LowRankMultivariateNormal(mean, cov_factor, cov_diag), scipy.stats.multivariate_normal(mean.detach().numpy(), cov.detach().numpy()), 'LowRankMultivariateNormal(loc={}, cov_factor={}, cov_diag={})' .format(mean, cov_factor, cov_diag), multivariate=True) def test_lowrank_multivariate_normal_properties(self): loc = torch.randn(5) cov_factor = torch.randn(5, 2) cov_diag = torch.randn(5).abs() cov = cov_factor.matmul(cov_factor.t()) + cov_diag.diag() m1 = LowRankMultivariateNormal(loc, cov_factor, cov_diag) m2 = MultivariateNormal(loc=loc, covariance_matrix=cov) self.assertEqual(m1.mean, m2.mean) self.assertEqual(m1.variance, m2.variance) self.assertEqual(m1.covariance_matrix, m2.covariance_matrix) self.assertEqual(m1.scale_tril, m2.scale_tril) self.assertEqual(m1.precision_matrix, m2.precision_matrix) self.assertEqual(m1.entropy(), m2.entropy()) def test_lowrank_multivariate_normal_moments(self): set_rng_seed(0) # see Note [Randomized statistical tests] mean = torch.randn(5) cov_factor = torch.randn(5, 2) cov_diag = torch.randn(5).abs() d = LowRankMultivariateNormal(mean, cov_factor, cov_diag) samples = d.rsample((100000,)) empirical_mean = samples.mean(0) self.assertEqual(d.mean, empirical_mean, atol=0.01, rtol=0) empirical_var = samples.var(0) self.assertEqual(d.variance, empirical_var, atol=0.02, rtol=0) def test_multivariate_normal_shape(self): mean = torch.randn(5, 3, requires_grad=True) mean_no_batch = torch.randn(3, requires_grad=True) mean_multi_batch = torch.randn(6, 5, 3, requires_grad=True) # construct PSD covariance tmp = torch.randn(3, 10) cov = (torch.matmul(tmp, tmp.t()) / tmp.size(-1)).requires_grad_() prec = cov.inverse().requires_grad_() scale_tril = torch.linalg.cholesky(cov).requires_grad_() # construct batch of PSD covariances tmp = torch.randn(6, 5, 3, 10) cov_batched = (tmp.unsqueeze(-2) * tmp.unsqueeze(-3)).mean(-1).requires_grad_() prec_batched = cov_batched.inverse() scale_tril_batched = torch.linalg.cholesky(cov_batched) # ensure that sample, batch, event shapes all handled correctly self.assertEqual(MultivariateNormal(mean, cov).sample().size(), (5, 3)) self.assertEqual(MultivariateNormal(mean_no_batch, cov).sample().size(), (3,)) self.assertEqual(MultivariateNormal(mean_multi_batch, cov).sample().size(), (6, 5, 3)) self.assertEqual(MultivariateNormal(mean, cov).sample((2,)).size(), (2, 5, 3)) self.assertEqual(MultivariateNormal(mean_no_batch, cov).sample((2,)).size(), (2, 3)) self.assertEqual(MultivariateNormal(mean_multi_batch, cov).sample((2,)).size(), (2, 6, 5, 3)) self.assertEqual(MultivariateNormal(mean, cov).sample((2, 7)).size(), (2, 7, 5, 3)) self.assertEqual(MultivariateNormal(mean_no_batch, cov).sample((2, 7)).size(), (2, 7, 3)) self.assertEqual(MultivariateNormal(mean_multi_batch, cov).sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(MultivariateNormal(mean, cov_batched).sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(MultivariateNormal(mean_no_batch, cov_batched).sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(MultivariateNormal(mean_multi_batch, cov_batched).sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(MultivariateNormal(mean, precision_matrix=prec).sample((2, 7)).size(), (2, 7, 5, 3)) self.assertEqual(MultivariateNormal(mean, precision_matrix=prec_batched).sample((2, 7)).size(), (2, 7, 6, 5, 3)) self.assertEqual(MultivariateNormal(mean, scale_tril=scale_tril).sample((2, 7)).size(), (2, 7, 5, 3)) self.assertEqual(MultivariateNormal(mean, scale_tril=scale_tril_batched).sample((2, 7)).size(), (2, 7, 6, 5, 3)) # check gradients # We write a custom gradcheck function to maintain the symmetry # of the perturbed covariances and their inverses (precision) def multivariate_normal_log_prob_gradcheck(mean, covariance=None, precision=None, scale_tril=None): mvn_samples = MultivariateNormal(mean, covariance, precision, scale_tril).sample().requires_grad_() def gradcheck_func(samples, mu, sigma, prec, scale_tril): if sigma is not None: sigma = 0.5 * (sigma + sigma.mT) # Ensure symmetry of covariance if prec is not None: prec = 0.5 * (prec + prec.mT) # Ensure symmetry of precision if scale_tril is not None: scale_tril = scale_tril.tril() return MultivariateNormal(mu, sigma, prec, scale_tril).log_prob(samples) gradcheck(gradcheck_func, (mvn_samples, mean, covariance, precision, scale_tril), raise_exception=True) multivariate_normal_log_prob_gradcheck(mean, cov) multivariate_normal_log_prob_gradcheck(mean_multi_batch, cov) multivariate_normal_log_prob_gradcheck(mean_multi_batch, cov_batched) multivariate_normal_log_prob_gradcheck(mean, None, prec) multivariate_normal_log_prob_gradcheck(mean_no_batch, None, prec_batched) multivariate_normal_log_prob_gradcheck(mean, None, None, scale_tril) multivariate_normal_log_prob_gradcheck(mean_no_batch, None, None, scale_tril_batched) def test_multivariate_normal_stable_with_precision_matrix(self): x = torch.randn(10) P = torch.exp(-(x - x.unsqueeze(-1)) ** 2) # RBF kernel MultivariateNormal(x.new_zeros(10), precision_matrix=P) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_multivariate_normal_log_prob(self): mean = torch.randn(3, requires_grad=True) tmp = torch.randn(3, 10) cov = (torch.matmul(tmp, tmp.t()) / tmp.size(-1)).requires_grad_() prec = cov.inverse().requires_grad_() scale_tril = torch.linalg.cholesky(cov).requires_grad_() # check that logprob values match scipy logpdf, # and that covariance and scale_tril parameters are equivalent dist1 = MultivariateNormal(mean, cov) dist2 = MultivariateNormal(mean, precision_matrix=prec) dist3 = MultivariateNormal(mean, scale_tril=scale_tril) ref_dist = scipy.stats.multivariate_normal(mean.detach().numpy(), cov.detach().numpy()) x = dist1.sample((10,)) expected = ref_dist.logpdf(x.numpy()) self.assertEqual(0.0, np.mean((dist1.log_prob(x).detach().numpy() - expected)**2), atol=1e-3, rtol=0) self.assertEqual(0.0, np.mean((dist2.log_prob(x).detach().numpy() - expected)**2), atol=1e-3, rtol=0) self.assertEqual(0.0, np.mean((dist3.log_prob(x).detach().numpy() - expected)**2), atol=1e-3, rtol=0) # Double-check that batched versions behave the same as unbatched mean = torch.randn(5, 3, requires_grad=True) tmp = torch.randn(5, 3, 10) cov = (tmp.unsqueeze(-2) * tmp.unsqueeze(-3)).mean(-1).requires_grad_() dist_batched = MultivariateNormal(mean, cov) dist_unbatched = [MultivariateNormal(mean[i], cov[i]) for i in range(mean.size(0))] x = dist_batched.sample((10,)) batched_prob = dist_batched.log_prob(x) unbatched_prob = torch.stack([dist_unbatched[i].log_prob(x[:, i]) for i in range(5)]).t() self.assertEqual(batched_prob.shape, unbatched_prob.shape) self.assertEqual(0.0, (batched_prob - unbatched_prob).abs().max(), atol=1e-3, rtol=0) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_multivariate_normal_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] mean = torch.randn(3, requires_grad=True) tmp = torch.randn(3, 10) cov = (torch.matmul(tmp, tmp.t()) / tmp.size(-1)).requires_grad_() prec = cov.inverse().requires_grad_() scale_tril = torch.linalg.cholesky(cov).requires_grad_() self._check_sampler_sampler(MultivariateNormal(mean, cov), scipy.stats.multivariate_normal(mean.detach().numpy(), cov.detach().numpy()), 'MultivariateNormal(loc={}, cov={})'.format(mean, cov), multivariate=True) self._check_sampler_sampler(MultivariateNormal(mean, precision_matrix=prec), scipy.stats.multivariate_normal(mean.detach().numpy(), cov.detach().numpy()), 'MultivariateNormal(loc={}, atol={})'.format(mean, prec), multivariate=True) self._check_sampler_sampler(MultivariateNormal(mean, scale_tril=scale_tril), scipy.stats.multivariate_normal(mean.detach().numpy(), cov.detach().numpy()), 'MultivariateNormal(loc={}, scale_tril={})'.format(mean, scale_tril), multivariate=True) def test_multivariate_normal_properties(self): loc = torch.randn(5) scale_tril = transform_to(constraints.lower_cholesky)(torch.randn(5, 5)) m = MultivariateNormal(loc=loc, scale_tril=scale_tril) self.assertEqual(m.covariance_matrix, m.scale_tril.mm(m.scale_tril.t())) self.assertEqual(m.covariance_matrix.mm(m.precision_matrix), torch.eye(m.event_shape[0])) self.assertEqual(m.scale_tril, torch.linalg.cholesky(m.covariance_matrix)) def test_multivariate_normal_moments(self): set_rng_seed(0) # see Note [Randomized statistical tests] mean = torch.randn(5) scale_tril = transform_to(constraints.lower_cholesky)(torch.randn(5, 5)) d = MultivariateNormal(mean, scale_tril=scale_tril) samples = d.rsample((100000,)) empirical_mean = samples.mean(0) self.assertEqual(d.mean, empirical_mean, atol=0.01, rtol=0) empirical_var = samples.var(0) self.assertEqual(d.variance, empirical_var, atol=0.05, rtol=0) # We applied same tests in Multivariate Normal distribution for Wishart distribution def test_wishart_shape(self): set_rng_seed(0) # see Note [Randomized statistical tests] ndim = 3 df = torch.rand(5, requires_grad=True) + ndim df_no_batch = torch.rand([], requires_grad=True) + ndim df_multi_batch = torch.rand(6, 5, requires_grad=True) + ndim # construct PSD covariance tmp = torch.randn(ndim, 10) cov = (torch.matmul(tmp, tmp.t()) / tmp.size(-1)).requires_grad_() prec = cov.inverse().requires_grad_() scale_tril = torch.linalg.cholesky(cov).requires_grad_() # construct batch of PSD covariances tmp = torch.randn(6, 5, ndim, 10) cov_batched = (tmp.unsqueeze(-2) * tmp.unsqueeze(-3)).mean(-1).requires_grad_() prec_batched = cov_batched.inverse() scale_tril_batched = torch.linalg.cholesky(cov_batched) # ensure that sample, batch, event shapes all handled correctly self.assertEqual(Wishart(df, cov).sample().size(), (5, ndim, ndim)) self.assertEqual(Wishart(df_no_batch, cov).sample().size(), (ndim, ndim)) self.assertEqual(Wishart(df_multi_batch, cov).sample().size(), (6, 5, ndim, ndim)) self.assertEqual(Wishart(df, cov).sample((2,)).size(), (2, 5, ndim, ndim)) self.assertEqual(Wishart(df_no_batch, cov).sample((2,)).size(), (2, ndim, ndim)) self.assertEqual(Wishart(df_multi_batch, cov).sample((2,)).size(), (2, 6, 5, ndim, ndim)) self.assertEqual(Wishart(df, cov).sample((2, 7)).size(), (2, 7, 5, ndim, ndim)) self.assertEqual(Wishart(df_no_batch, cov).sample((2, 7)).size(), (2, 7, ndim, ndim)) self.assertEqual(Wishart(df_multi_batch, cov).sample((2, 7)).size(), (2, 7, 6, 5, ndim, ndim)) self.assertEqual(Wishart(df, cov_batched).sample((2, 7)).size(), (2, 7, 6, 5, ndim, ndim)) self.assertEqual(Wishart(df_no_batch, cov_batched).sample((2, 7)).size(), (2, 7, 6, 5, ndim, ndim)) self.assertEqual(Wishart(df_multi_batch, cov_batched).sample((2, 7)).size(), (2, 7, 6, 5, ndim, ndim)) self.assertEqual(Wishart(df, precision_matrix=prec).sample((2, 7)).size(), (2, 7, 5, ndim, ndim)) self.assertEqual(Wishart(df, precision_matrix=prec_batched).sample((2, 7)).size(), (2, 7, 6, 5, ndim, ndim)) self.assertEqual(Wishart(df, scale_tril=scale_tril).sample((2, 7)).size(), (2, 7, 5, ndim, ndim)) self.assertEqual(Wishart(df, scale_tril=scale_tril_batched).sample((2, 7)).size(), (2, 7, 6, 5, ndim, ndim)) # check gradients # Modified and applied the same tests for multivariate_normal def wishart_log_prob_gradcheck(df=None, covariance=None, precision=None, scale_tril=None): wishart_samples = Wishart(df, covariance, precision, scale_tril).sample().requires_grad_() def gradcheck_func(samples, nu, sigma, prec, scale_tril): if sigma is not None: sigma = 0.5 * (sigma + sigma.mT) # Ensure symmetry of covariance if prec is not None: prec = 0.5 * (prec + prec.mT) # Ensure symmetry of precision if scale_tril is not None: scale_tril = scale_tril.tril() return Wishart(nu, sigma, prec, scale_tril).log_prob(samples) gradcheck(gradcheck_func, (wishart_samples, df, covariance, precision, scale_tril), raise_exception=True) wishart_log_prob_gradcheck(df, cov) wishart_log_prob_gradcheck(df_multi_batch, cov) wishart_log_prob_gradcheck(df_multi_batch, cov_batched) wishart_log_prob_gradcheck(df, None, prec) wishart_log_prob_gradcheck(df_no_batch, None, prec_batched) wishart_log_prob_gradcheck(df, None, None, scale_tril) wishart_log_prob_gradcheck(df_no_batch, None, None, scale_tril_batched) def test_wishart_stable_with_precision_matrix(self): set_rng_seed(0) # see Note [Randomized statistical tests] ndim = 10 x = torch.randn(ndim) P = torch.exp(-(x - x.unsqueeze(-1)) ** 2) # RBF kernel Wishart(torch.tensor(ndim), precision_matrix=P) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_wishart_log_prob(self): set_rng_seed(0) # see Note [Randomized statistical tests] ndim = 3 df = torch.rand([], requires_grad=True) + ndim - 1 # SciPy allowed ndim -1 < df < ndim for Wishar distribution after version 1.7.0 if version.parse(scipy.__version__) < version.parse("1.7.0"): df += 1. tmp = torch.randn(ndim, 10) cov = (torch.matmul(tmp, tmp.t()) / tmp.size(-1)).requires_grad_() prec = cov.inverse().requires_grad_() scale_tril = torch.linalg.cholesky(cov).requires_grad_() # check that logprob values match scipy logpdf, # and that covariance and scale_tril parameters are equivalent dist1 = Wishart(df, cov) dist2 = Wishart(df, precision_matrix=prec) dist3 = Wishart(df, scale_tril=scale_tril) ref_dist = scipy.stats.wishart(df.item(), cov.detach().numpy()) x = dist1.sample((1000,)) expected = ref_dist.logpdf(x.transpose(0, 2).numpy()) self.assertEqual(0.0, np.mean((dist1.log_prob(x).detach().numpy() - expected)**2), atol=1e-3, rtol=0) self.assertEqual(0.0, np.mean((dist2.log_prob(x).detach().numpy() - expected)**2), atol=1e-3, rtol=0) self.assertEqual(0.0, np.mean((dist3.log_prob(x).detach().numpy() - expected)**2), atol=1e-3, rtol=0) # Double-check that batched versions behave the same as unbatched df = torch.rand(5, requires_grad=True) + ndim - 1 # SciPy allowed ndim -1 < df < ndim for Wishar distribution after version 1.7.0 if version.parse(scipy.__version__) < version.parse("1.7.0"): df += 1. tmp = torch.randn(5, ndim, 10) cov = (tmp.unsqueeze(-2) * tmp.unsqueeze(-3)).mean(-1).requires_grad_() dist_batched = Wishart(df, cov) dist_unbatched = [Wishart(df[i], cov[i]) for i in range(df.size(0))] x = dist_batched.sample((1000,)) batched_prob = dist_batched.log_prob(x) unbatched_prob = torch.stack([dist_unbatched[i].log_prob(x[:, i]) for i in range(5)]).t() self.assertEqual(batched_prob.shape, unbatched_prob.shape) self.assertEqual(0.0, (batched_prob - unbatched_prob).abs().max(), atol=1e-3, rtol=0) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_wishart_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] ndim = 3 df = torch.rand([], requires_grad=True) + ndim - 1 # SciPy allowed ndim -1 < df < ndim for Wishar distribution after version 1.7.0 if version.parse(scipy.__version__) < version.parse("1.7.0"): df += 1. tmp = torch.randn(ndim, 10) cov = (torch.matmul(tmp, tmp.t()) / tmp.size(-1)).requires_grad_() prec = cov.inverse().requires_grad_() scale_tril = torch.linalg.cholesky(cov).requires_grad_() ref_dist = scipy.stats.wishart(df.item(), cov.detach().numpy()) self._check_sampler_sampler(Wishart(df, cov), ref_dist, 'Wishart(df={}, covariance_matrix={})'.format(df, cov), multivariate=True) self._check_sampler_sampler(Wishart(df, precision_matrix=prec), ref_dist, 'Wishart(df={}, precision_matrix={})'.format(df, prec), multivariate=True) self._check_sampler_sampler(Wishart(df, scale_tril=scale_tril), ref_dist, 'Wishart(df={}, scale_tril={})'.format(df, scale_tril), multivariate=True) def test_wishart_properties(self): set_rng_seed(0) # see Note [Randomized statistical tests] ndim = 5 df = torch.rand([]) + ndim - 1 scale_tril = transform_to(constraints.lower_cholesky)(torch.randn(ndim, ndim)) m = Wishart(df=df, scale_tril=scale_tril) self.assertEqual(m.covariance_matrix, m.scale_tril.mm(m.scale_tril.t())) self.assertEqual(m.covariance_matrix.mm(m.precision_matrix), torch.eye(m.event_shape[0])) self.assertEqual(m.scale_tril, torch.linalg.cholesky(m.covariance_matrix)) def test_wishart_moments(self): set_rng_seed(0) # see Note [Randomized statistical tests] ndim = 3 df = torch.rand([]) + ndim - 1 scale_tril = transform_to(constraints.lower_cholesky)(torch.randn(ndim, ndim)) d = Wishart(df=df, scale_tril=scale_tril) samples = d.rsample((ndim * ndim * 100000,)) empirical_mean = samples.mean(0) self.assertEqual(d.mean, empirical_mean, atol=0.5, rtol=0) empirical_var = samples.var(0) self.assertEqual(d.variance, empirical_var, atol=0.5, rtol=0) def test_exponential(self): rate = torch.randn(5, 5).abs().requires_grad_() rate_1d = torch.randn(1).abs().requires_grad_() self.assertEqual(Exponential(rate).sample().size(), (5, 5)) self.assertEqual(Exponential(rate).sample((7,)).size(), (7, 5, 5)) self.assertEqual(Exponential(rate_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Exponential(rate_1d).sample().size(), (1,)) self.assertEqual(Exponential(0.2).sample((1,)).size(), (1,)) self.assertEqual(Exponential(50.0).sample((1,)).size(), (1,)) self._gradcheck_log_prob(Exponential, (rate,)) state = torch.get_rng_state() eps = rate.new(rate.size()).exponential_() torch.set_rng_state(state) z = Exponential(rate).rsample() z.backward(torch.ones_like(z)) self.assertEqual(rate.grad, -eps / rate**2) rate.grad.zero_() self.assertEqual(z.size(), (5, 5)) def ref_log_prob(idx, x, log_prob): m = rate.view(-1)[idx] expected = math.log(m) - m * x self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Exponential(rate), ref_log_prob) self._check_forward_ad(lambda x: x.exponential_()) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_exponential_sample(self): set_rng_seed(1) # see Note [Randomized statistical tests] for rate in [1e-5, 1.0, 10.]: self._check_sampler_sampler(Exponential(rate), scipy.stats.expon(scale=1. / rate), 'Exponential(rate={})'.format(rate)) def test_laplace(self): loc = torch.randn(5, 5, requires_grad=True) scale = torch.randn(5, 5).abs().requires_grad_() loc_1d = torch.randn(1, requires_grad=True) scale_1d = torch.randn(1, requires_grad=True) loc_delta = torch.tensor([1.0, 0.0]) scale_delta = torch.tensor([1e-5, 1e-5]) self.assertEqual(Laplace(loc, scale).sample().size(), (5, 5)) self.assertEqual(Laplace(loc, scale).sample((7,)).size(), (7, 5, 5)) self.assertEqual(Laplace(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Laplace(loc_1d, scale_1d).sample().size(), (1,)) self.assertEqual(Laplace(0.2, .6).sample((1,)).size(), (1,)) self.assertEqual(Laplace(-0.7, 50.0).sample((1,)).size(), (1,)) # sample check for extreme value of mean, std set_rng_seed(0) self.assertEqual(Laplace(loc_delta, scale_delta).sample(sample_shape=(1, 2)), torch.tensor([[[1.0, 0.0], [1.0, 0.0]]]), atol=1e-4, rtol=0) self._gradcheck_log_prob(Laplace, (loc, scale)) self._gradcheck_log_prob(Laplace, (loc, 1.0)) self._gradcheck_log_prob(Laplace, (0.0, scale)) state = torch.get_rng_state() eps = torch.ones_like(loc).uniform_(-.5, .5) torch.set_rng_state(state) z = Laplace(loc, scale).rsample() z.backward(torch.ones_like(z)) self.assertEqual(loc.grad, torch.ones_like(loc)) self.assertEqual(scale.grad, -eps.sign() * torch.log1p(-2 * eps.abs())) loc.grad.zero_() scale.grad.zero_() self.assertEqual(z.size(), (5, 5)) def ref_log_prob(idx, x, log_prob): m = loc.view(-1)[idx] s = scale.view(-1)[idx] expected = (-math.log(2 * s) - abs(x - m) / s) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Laplace(loc, scale), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_laplace_sample(self): set_rng_seed(1) # see Note [Randomized statistical tests] for loc, scale in product([-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(Laplace(loc, scale), scipy.stats.laplace(loc=loc, scale=scale), 'Laplace(loc={}, scale={})'.format(loc, scale)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_gamma_shape(self): alpha = torch.randn(2, 3).exp().requires_grad_() beta = torch.randn(2, 3).exp().requires_grad_() alpha_1d = torch.randn(1).exp().requires_grad_() beta_1d = torch.randn(1).exp().requires_grad_() self.assertEqual(Gamma(alpha, beta).sample().size(), (2, 3)) self.assertEqual(Gamma(alpha, beta).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Gamma(alpha_1d, beta_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Gamma(alpha_1d, beta_1d).sample().size(), (1,)) self.assertEqual(Gamma(0.5, 0.5).sample().size(), ()) self.assertEqual(Gamma(0.5, 0.5).sample((1,)).size(), (1,)) def ref_log_prob(idx, x, log_prob): a = alpha.view(-1)[idx].detach() b = beta.view(-1)[idx].detach() expected = scipy.stats.gamma.logpdf(x, a, scale=1 / b) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Gamma(alpha, beta), ref_log_prob) @unittest.skipIf(not TEST_CUDA, "CUDA not found") @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_gamma_gpu_shape(self): alpha = torch.randn(2, 3).cuda().exp().requires_grad_() beta = torch.randn(2, 3).cuda().exp().requires_grad_() alpha_1d = torch.randn(1).cuda().exp().requires_grad_() beta_1d = torch.randn(1).cuda().exp().requires_grad_() self.assertEqual(Gamma(alpha, beta).sample().size(), (2, 3)) self.assertEqual(Gamma(alpha, beta).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Gamma(alpha_1d, beta_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Gamma(alpha_1d, beta_1d).sample().size(), (1,)) self.assertEqual(Gamma(0.5, 0.5).sample().size(), ()) self.assertEqual(Gamma(0.5, 0.5).sample((1,)).size(), (1,)) def ref_log_prob(idx, x, log_prob): a = alpha.view(-1)[idx].detach().cpu() b = beta.view(-1)[idx].detach().cpu() expected = scipy.stats.gamma.logpdf(x.cpu(), a, scale=1 / b) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Gamma(alpha, beta), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_gamma_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] for alpha, beta in product([0.1, 1.0, 5.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(Gamma(alpha, beta), scipy.stats.gamma(alpha, scale=1.0 / beta), 'Gamma(concentration={}, rate={})'.format(alpha, beta)) @unittest.skipIf(not TEST_CUDA, "CUDA not found") @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_gamma_gpu_sample(self): set_rng_seed(0) for alpha, beta in product([0.1, 1.0, 5.0], [0.1, 1.0, 10.0]): a, b = torch.tensor([alpha]).cuda(), torch.tensor([beta]).cuda() self._check_sampler_sampler(Gamma(a, b), scipy.stats.gamma(alpha, scale=1.0 / beta), 'Gamma(alpha={}, beta={})'.format(alpha, beta), failure_rate=1e-4) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_pareto(self): scale = torch.randn(2, 3).abs().requires_grad_() alpha = torch.randn(2, 3).abs().requires_grad_() scale_1d = torch.randn(1).abs().requires_grad_() alpha_1d = torch.randn(1).abs().requires_grad_() self.assertEqual(Pareto(scale_1d, 0.5).mean, inf) self.assertEqual(Pareto(scale_1d, 0.5).variance, inf) self.assertEqual(Pareto(scale, alpha).sample().size(), (2, 3)) self.assertEqual(Pareto(scale, alpha).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Pareto(scale_1d, alpha_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Pareto(scale_1d, alpha_1d).sample().size(), (1,)) self.assertEqual(Pareto(1.0, 1.0).sample().size(), ()) self.assertEqual(Pareto(1.0, 1.0).sample((1,)).size(), (1,)) def ref_log_prob(idx, x, log_prob): s = scale.view(-1)[idx].detach() a = alpha.view(-1)[idx].detach() expected = scipy.stats.pareto.logpdf(x, a, scale=s) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Pareto(scale, alpha), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_pareto_sample(self): set_rng_seed(1) # see Note [Randomized statistical tests] for scale, alpha in product([0.1, 1.0, 5.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(Pareto(scale, alpha), scipy.stats.pareto(alpha, scale=scale), 'Pareto(scale={}, alpha={})'.format(scale, alpha)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_gumbel(self): loc = torch.randn(2, 3, requires_grad=True) scale = torch.randn(2, 3).abs().requires_grad_() loc_1d = torch.randn(1, requires_grad=True) scale_1d = torch.randn(1).abs().requires_grad_() self.assertEqual(Gumbel(loc, scale).sample().size(), (2, 3)) self.assertEqual(Gumbel(loc, scale).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Gumbel(loc_1d, scale_1d).sample().size(), (1,)) self.assertEqual(Gumbel(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Gumbel(1.0, 1.0).sample().size(), ()) self.assertEqual(Gumbel(1.0, 1.0).sample((1,)).size(), (1,)) def ref_log_prob(idx, x, log_prob): l = loc.view(-1)[idx].detach() s = scale.view(-1)[idx].detach() expected = scipy.stats.gumbel_r.logpdf(x, loc=l, scale=s) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Gumbel(loc, scale), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_gumbel_sample(self): set_rng_seed(1) # see note [Randomized statistical tests] for loc, scale in product([-5.0, -1.0, -0.1, 0.1, 1.0, 5.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(Gumbel(loc, scale), scipy.stats.gumbel_r(loc=loc, scale=scale), 'Gumbel(loc={}, scale={})'.format(loc, scale)) def test_kumaraswamy_shape(self): concentration1 = torch.randn(2, 3).abs().requires_grad_() concentration0 = torch.randn(2, 3).abs().requires_grad_() concentration1_1d = torch.randn(1).abs().requires_grad_() concentration0_1d = torch.randn(1).abs().requires_grad_() self.assertEqual(Kumaraswamy(concentration1, concentration0).sample().size(), (2, 3)) self.assertEqual(Kumaraswamy(concentration1, concentration0).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Kumaraswamy(concentration1_1d, concentration0_1d).sample().size(), (1,)) self.assertEqual(Kumaraswamy(concentration1_1d, concentration0_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Kumaraswamy(1.0, 1.0).sample().size(), ()) self.assertEqual(Kumaraswamy(1.0, 1.0).sample((1,)).size(), (1,)) # Kumaraswamy distribution is not implemented in SciPy # Hence these tests are explicit def test_kumaraswamy_mean_variance(self): c1_1 = torch.randn(2, 3).abs().requires_grad_() c0_1 = torch.randn(2, 3).abs().requires_grad_() c1_2 = torch.randn(4).abs().requires_grad_() c0_2 = torch.randn(4).abs().requires_grad_() cases = [(c1_1, c0_1), (c1_2, c0_2)] for i, (a, b) in enumerate(cases): m = Kumaraswamy(a, b) samples = m.sample((60000, )) expected = samples.mean(0) actual = m.mean error = (expected - actual).abs() max_error = max(error[error == error]) self.assertLess(max_error, 0.01, "Kumaraswamy example {}/{}, incorrect .mean".format(i + 1, len(cases))) expected = samples.var(0) actual = m.variance error = (expected - actual).abs() max_error = max(error[error == error]) self.assertLess(max_error, 0.01, "Kumaraswamy example {}/{}, incorrect .variance".format(i + 1, len(cases))) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_fishersnedecor(self): df1 = torch.randn(2, 3).abs().requires_grad_() df2 = torch.randn(2, 3).abs().requires_grad_() df1_1d = torch.randn(1).abs() df2_1d = torch.randn(1).abs() self.assertTrue(is_all_nan(FisherSnedecor(1, 2).mean)) self.assertTrue(is_all_nan(FisherSnedecor(1, 4).variance)) self.assertEqual(FisherSnedecor(df1, df2).sample().size(), (2, 3)) self.assertEqual(FisherSnedecor(df1, df2).sample((5,)).size(), (5, 2, 3)) self.assertEqual(FisherSnedecor(df1_1d, df2_1d).sample().size(), (1,)) self.assertEqual(FisherSnedecor(df1_1d, df2_1d).sample((1,)).size(), (1, 1)) self.assertEqual(FisherSnedecor(1.0, 1.0).sample().size(), ()) self.assertEqual(FisherSnedecor(1.0, 1.0).sample((1,)).size(), (1,)) def ref_log_prob(idx, x, log_prob): f1 = df1.view(-1)[idx].detach() f2 = df2.view(-1)[idx].detach() expected = scipy.stats.f.logpdf(x, f1, f2) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(FisherSnedecor(df1, df2), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_fishersnedecor_sample(self): set_rng_seed(1) # see note [Randomized statistical tests] for df1, df2 in product([0.1, 0.5, 1.0, 5.0, 10.0], [0.1, 0.5, 1.0, 5.0, 10.0]): self._check_sampler_sampler(FisherSnedecor(df1, df2), scipy.stats.f(df1, df2), 'FisherSnedecor(loc={}, scale={})'.format(df1, df2)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_chi2_shape(self): df = torch.randn(2, 3).exp().requires_grad_() df_1d = torch.randn(1).exp().requires_grad_() self.assertEqual(Chi2(df).sample().size(), (2, 3)) self.assertEqual(Chi2(df).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Chi2(df_1d).sample((1,)).size(), (1, 1)) self.assertEqual(Chi2(df_1d).sample().size(), (1,)) self.assertEqual(Chi2(torch.tensor(0.5, requires_grad=True)).sample().size(), ()) self.assertEqual(Chi2(0.5).sample().size(), ()) self.assertEqual(Chi2(0.5).sample((1,)).size(), (1,)) def ref_log_prob(idx, x, log_prob): d = df.view(-1)[idx].detach() expected = scipy.stats.chi2.logpdf(x, d) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(Chi2(df), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_chi2_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] for df in [0.1, 1.0, 5.0]: self._check_sampler_sampler(Chi2(df), scipy.stats.chi2(df), 'Chi2(df={})'.format(df)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_studentT(self): df = torch.randn(2, 3).exp().requires_grad_() df_1d = torch.randn(1).exp().requires_grad_() self.assertTrue(is_all_nan(StudentT(1).mean)) self.assertTrue(is_all_nan(StudentT(1).variance)) self.assertEqual(StudentT(2).variance, inf) self.assertEqual(StudentT(df).sample().size(), (2, 3)) self.assertEqual(StudentT(df).sample((5,)).size(), (5, 2, 3)) self.assertEqual(StudentT(df_1d).sample((1,)).size(), (1, 1)) self.assertEqual(StudentT(df_1d).sample().size(), (1,)) self.assertEqual(StudentT(torch.tensor(0.5, requires_grad=True)).sample().size(), ()) self.assertEqual(StudentT(0.5).sample().size(), ()) self.assertEqual(StudentT(0.5).sample((1,)).size(), (1,)) def ref_log_prob(idx, x, log_prob): d = df.view(-1)[idx].detach() expected = scipy.stats.t.logpdf(x, d) self.assertEqual(log_prob, expected, atol=1e-3, rtol=0) self._check_log_prob(StudentT(df), ref_log_prob) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_studentT_sample(self): set_rng_seed(11) # see Note [Randomized statistical tests] for df, loc, scale in product([0.1, 1.0, 5.0, 10.0], [-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(StudentT(df=df, loc=loc, scale=scale), scipy.stats.t(df=df, loc=loc, scale=scale), 'StudentT(df={}, loc={}, scale={})'.format(df, loc, scale)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_studentT_log_prob(self): set_rng_seed(0) # see Note [Randomized statistical tests] num_samples = 10 for df, loc, scale in product([0.1, 1.0, 5.0, 10.0], [-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): dist = StudentT(df=df, loc=loc, scale=scale) x = dist.sample((num_samples,)) actual_log_prob = dist.log_prob(x) for i in range(num_samples): expected_log_prob = scipy.stats.t.logpdf(x[i], df=df, loc=loc, scale=scale) self.assertEqual(float(actual_log_prob[i]), float(expected_log_prob), atol=1e-3, rtol=0) def test_dirichlet_shape(self): alpha = torch.randn(2, 3).exp().requires_grad_() alpha_1d = torch.randn(4).exp().requires_grad_() self.assertEqual(Dirichlet(alpha).sample().size(), (2, 3)) self.assertEqual(Dirichlet(alpha).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Dirichlet(alpha_1d).sample().size(), (4,)) self.assertEqual(Dirichlet(alpha_1d).sample((1,)).size(), (1, 4)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_dirichlet_log_prob(self): num_samples = 10 alpha = torch.exp(torch.randn(5)) dist = Dirichlet(alpha) x = dist.sample((num_samples,)) actual_log_prob = dist.log_prob(x) for i in range(num_samples): expected_log_prob = scipy.stats.dirichlet.logpdf(x[i].numpy(), alpha.numpy()) self.assertEqual(actual_log_prob[i], expected_log_prob, atol=1e-3, rtol=0) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_dirichlet_sample(self): set_rng_seed(0) # see Note [Randomized statistical tests] alpha = torch.exp(torch.randn(3)) self._check_sampler_sampler(Dirichlet(alpha), scipy.stats.dirichlet(alpha.numpy()), 'Dirichlet(alpha={})'.format(list(alpha)), multivariate=True) def test_dirichlet_mode(self): # Test a few edge cases for the Dirichlet distribution mode. This also covers beta distributions. concentrations_and_modes = [ ([2, 2, 1], [.5, .5, 0.]), ([3, 2, 1], [2 / 3, 1 / 3, 0]), ([.5, .2, .2], [1., 0., 0.]), ([1, 1, 1], [nan, nan, nan]), ] for concentration, mode in concentrations_and_modes: dist = Dirichlet(torch.tensor(concentration)) self.assertEqual(dist.mode, torch.tensor(mode)) def test_beta_shape(self): con1 = torch.randn(2, 3).exp().requires_grad_() con0 = torch.randn(2, 3).exp().requires_grad_() con1_1d = torch.randn(4).exp().requires_grad_() con0_1d = torch.randn(4).exp().requires_grad_() self.assertEqual(Beta(con1, con0).sample().size(), (2, 3)) self.assertEqual(Beta(con1, con0).sample((5,)).size(), (5, 2, 3)) self.assertEqual(Beta(con1_1d, con0_1d).sample().size(), (4,)) self.assertEqual(Beta(con1_1d, con0_1d).sample((1,)).size(), (1, 4)) self.assertEqual(Beta(0.1, 0.3).sample().size(), ()) self.assertEqual(Beta(0.1, 0.3).sample((5,)).size(), (5,)) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_beta_log_prob(self): for _ in range(100): con1 = np.exp(np.random.normal()) con0 = np.exp(np.random.normal()) dist = Beta(con1, con0) x = dist.sample() actual_log_prob = dist.log_prob(x).sum() expected_log_prob = scipy.stats.beta.logpdf(x, con1, con0) self.assertEqual(float(actual_log_prob), float(expected_log_prob), atol=1e-3, rtol=0) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_beta_sample(self): set_rng_seed(1) # see Note [Randomized statistical tests] for con1, con0 in product([0.1, 1.0, 10.0], [0.1, 1.0, 10.0]): self._check_sampler_sampler(Beta(con1, con0), scipy.stats.beta(con1, con0), 'Beta(alpha={}, beta={})'.format(con1, con0)) # Check that small alphas do not cause NANs. for Tensor in [torch.FloatTensor, torch.DoubleTensor]: x = Beta(Tensor([1e-6]), Tensor([1e-6])).sample()[0] self.assertTrue(np.isfinite(x) and x > 0, 'Invalid Beta.sample(): {}'.format(x)) def test_beta_underflow(self): # For low values of (alpha, beta), the gamma samples can underflow # with float32 and result in a spurious mode at 0.5. To prevent this, # torch._sample_dirichlet works with double precision for intermediate # calculations. set_rng_seed(1) num_samples = 50000 for dtype in [torch.float, torch.double]: conc = torch.tensor(1e-2, dtype=dtype) beta_samples = Beta(conc, conc).sample([num_samples]) self.assertEqual((beta_samples == 0).sum(), 0) self.assertEqual((beta_samples == 1).sum(), 0) # assert support is concentrated around 0 and 1 frac_zeros = float((beta_samples < 0.1).sum()) / num_samples frac_ones = float((beta_samples > 0.9).sum()) / num_samples self.assertEqual(frac_zeros, 0.5, atol=0.05, rtol=0) self.assertEqual(frac_ones, 0.5, atol=0.05, rtol=0) @unittest.skipIf(not TEST_CUDA, "CUDA not found") def test_beta_underflow_gpu(self): set_rng_seed(1) num_samples = 50000 conc = torch.tensor(1e-2, dtype=torch.float64).cuda() beta_samples = Beta(conc, conc).sample([num_samples]) self.assertEqual((beta_samples == 0).sum(), 0) self.assertEqual((beta_samples == 1).sum(), 0) # assert support is concentrated around 0 and 1 frac_zeros = float((beta_samples < 0.1).sum()) / num_samples frac_ones = float((beta_samples > 0.9).sum()) / num_samples # TODO: increase precision once imbalance on GPU is fixed. self.assertEqual(frac_zeros, 0.5, atol=0.12, rtol=0) self.assertEqual(frac_ones, 0.5, atol=0.12, rtol=0) def test_continuous_bernoulli(self): p = torch.tensor([0.7, 0.2, 0.4], requires_grad=True) r = torch.tensor(0.3, requires_grad=True) s = 0.3 self.assertEqual(ContinuousBernoulli(p).sample((8,)).size(), (8, 3)) self.assertFalse(ContinuousBernoulli(p).sample().requires_grad) self.assertEqual(ContinuousBernoulli(r).sample((8,)).size(), (8,)) self.assertEqual(ContinuousBernoulli(r).sample().size(), ()) self.assertEqual(ContinuousBernoulli(r).sample((3, 2)).size(), (3, 2,)) self.assertEqual(ContinuousBernoulli(s).sample().size(), ()) self._gradcheck_log_prob(ContinuousBernoulli, (p,)) def ref_log_prob(idx, val, log_prob): prob = p[idx] if prob > 0.499 and prob < 0.501: # using default value of lim here log_norm_const = math.log(2.) + 4. / 3. * math.pow(prob - 0.5, 2) + 104. / 45. * math.pow(prob - 0.5, 4) else: log_norm_const = math.log(2. * math.atanh(1. - 2. * prob) / (1. - 2.0 * prob)) res = val * math.log(prob) + (1. - val) * math.log1p(-prob) + log_norm_const self.assertEqual(log_prob, res) self._check_log_prob(ContinuousBernoulli(p), ref_log_prob) self._check_log_prob(ContinuousBernoulli(logits=p.log() - (-p).log1p()), ref_log_prob) # check entropy computation self.assertEqual(ContinuousBernoulli(p).entropy(), torch.tensor([-0.02938, -0.07641, -0.00682]), atol=1e-4, rtol=0) # entropy below corresponds to the clamped value of prob when using float 64 # the value for float32 should be -1.76898 self.assertEqual(ContinuousBernoulli(torch.tensor([0.0])).entropy(), torch.tensor([-2.58473]), atol=1e-5, rtol=0) self.assertEqual(ContinuousBernoulli(s).entropy(), torch.tensor(-0.02938), atol=1e-4, rtol=0) def test_continuous_bernoulli_3d(self): p = torch.full((2, 3, 5), 0.5).requires_grad_() self.assertEqual(ContinuousBernoulli(p).sample().size(), (2, 3, 5)) self.assertEqual(ContinuousBernoulli(p).sample(sample_shape=(2, 5)).size(), (2, 5, 2, 3, 5)) self.assertEqual(ContinuousBernoulli(p).sample((2,)).size(), (2, 2, 3, 5)) def test_lkj_cholesky_log_prob(self): def tril_cholesky_to_tril_corr(x): x = vec_to_tril_matrix(x, -1) diag = (1 - (x * x).sum(-1)).sqrt().diag_embed() x = x + diag return tril_matrix_to_vec(x @ x.T, -1) for dim in range(2, 5): log_probs = [] lkj = LKJCholesky(dim, concentration=1., validate_args=True) for i in range(2): sample = lkj.sample() sample_tril = tril_matrix_to_vec(sample, diag=-1) log_prob = lkj.log_prob(sample) log_abs_det_jacobian = torch.slogdet(jacobian(tril_cholesky_to_tril_corr, sample_tril)).logabsdet log_probs.append(log_prob - log_abs_det_jacobian) # for concentration=1., the density is uniform over the space of all # correlation matrices. if dim == 2: # for dim=2, pdf = 0.5 (jacobian adjustment factor is 0.) self.assertTrue(all(torch.allclose(x, torch.tensor(0.5).log(), atol=1e-10) for x in log_probs)) self.assertEqual(log_probs[0], log_probs[1]) invalid_sample = torch.cat([sample, sample.new_ones(1, dim)], dim=0) self.assertRaises(ValueError, lambda: lkj.log_prob(invalid_sample)) def test_independent_shape(self): for Dist, params in EXAMPLES: for param in params: base_dist = Dist(**param) x = base_dist.sample() base_log_prob_shape = base_dist.log_prob(x).shape for reinterpreted_batch_ndims in range(len(base_dist.batch_shape) + 1): indep_dist = Independent(base_dist, reinterpreted_batch_ndims) indep_log_prob_shape = base_log_prob_shape[:len(base_log_prob_shape) - reinterpreted_batch_ndims] self.assertEqual(indep_dist.log_prob(x).shape, indep_log_prob_shape) self.assertEqual(indep_dist.sample().shape, base_dist.sample().shape) self.assertEqual(indep_dist.has_rsample, base_dist.has_rsample) if indep_dist.has_rsample: self.assertEqual(indep_dist.sample().shape, base_dist.sample().shape) try: self.assertEqual(indep_dist.enumerate_support().shape, base_dist.enumerate_support().shape) self.assertEqual(indep_dist.mean.shape, base_dist.mean.shape) except NotImplementedError: pass try: self.assertEqual(indep_dist.variance.shape, base_dist.variance.shape) except NotImplementedError: pass try: self.assertEqual(indep_dist.entropy().shape, indep_log_prob_shape) except NotImplementedError: pass def test_independent_expand(self): for Dist, params in EXAMPLES: for param in params: base_dist = Dist(**param) for reinterpreted_batch_ndims in range(len(base_dist.batch_shape) + 1): for s in [torch.Size(), torch.Size((2,)), torch.Size((2, 3))]: indep_dist = Independent(base_dist, reinterpreted_batch_ndims) expanded_shape = s + indep_dist.batch_shape expanded = indep_dist.expand(expanded_shape) expanded_sample = expanded.sample() expected_shape = expanded_shape + indep_dist.event_shape self.assertEqual(expanded_sample.shape, expected_shape) self.assertEqual(expanded.log_prob(expanded_sample), indep_dist.log_prob(expanded_sample)) self.assertEqual(expanded.event_shape, indep_dist.event_shape) self.assertEqual(expanded.batch_shape, expanded_shape) def test_cdf_icdf_inverse(self): # Tests the invertibility property on the distributions for Dist, params in EXAMPLES: for i, param in enumerate(params): dist = Dist(**param) samples = dist.sample(sample_shape=(20,)) try: cdf = dist.cdf(samples) actual = dist.icdf(cdf) except NotImplementedError: continue rel_error = torch.abs(actual - samples) / (1e-10 + torch.abs(samples)) self.assertLess(rel_error.max(), 1e-4, msg='\n'.join([ '{} example {}/{}, icdf(cdf(x)) != x'.format(Dist.__name__, i + 1, len(params)), 'x = {}'.format(samples), 'cdf(x) = {}'.format(cdf), 'icdf(cdf(x)) = {}'.format(actual), ])) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_gamma_log_prob_at_boundary(self): for concentration, log_prob in [(.5, inf), (1, 0), (2, -inf)]: dist = Gamma(concentration, 1) scipy_dist = scipy.stats.gamma(concentration) self.assertAlmostEqual(dist.log_prob(0), log_prob) self.assertAlmostEqual(dist.log_prob(0), scipy_dist.logpdf(0)) def test_cdf_log_prob(self): # Tests if the differentiation of the CDF gives the PDF at a given value for Dist, params in EXAMPLES: for i, param in enumerate(params): dist = Dist(**param) samples = dist.sample() if not dist.support.is_discrete: samples.requires_grad_() try: cdfs = dist.cdf(samples) pdfs = dist.log_prob(samples).exp() except NotImplementedError: continue cdfs_derivative = grad(cdfs.sum(), [samples])[0] # this should not be wrapped in torch.abs() self.assertEqual(cdfs_derivative, pdfs, msg='\n'.join([ '{} example {}/{}, d(cdf)/dx != pdf(x)'.format(Dist.__name__, i + 1, len(params)), 'x = {}'.format(samples), 'cdf = {}'.format(cdfs), 'pdf = {}'.format(pdfs), 'grad(cdf) = {}'.format(cdfs_derivative), ])) def test_valid_parameter_broadcasting(self): # Test correct broadcasting of parameter sizes for distributions that have multiple # parameters. # example type (distribution instance, expected sample shape) valid_examples = [ (Normal(loc=torch.tensor([0., 0.]), scale=1), (2,)), (Normal(loc=0, scale=torch.tensor([1., 1.])), (2,)), (Normal(loc=torch.tensor([0., 0.]), scale=torch.tensor([1.])), (2,)), (Normal(loc=torch.tensor([0., 0.]), scale=torch.tensor([[1.], [1.]])), (2, 2)), (Normal(loc=torch.tensor([0., 0.]), scale=torch.tensor([[1.]])), (1, 2)), (Normal(loc=torch.tensor([0.]), scale=torch.tensor([[1.]])), (1, 1)), (FisherSnedecor(df1=torch.tensor([1., 1.]), df2=1), (2,)), (FisherSnedecor(df1=1, df2=torch.tensor([1., 1.])), (2,)), (FisherSnedecor(df1=torch.tensor([1., 1.]), df2=torch.tensor([1.])), (2,)), (FisherSnedecor(df1=torch.tensor([1., 1.]), df2=torch.tensor([[1.], [1.]])), (2, 2)), (FisherSnedecor(df1=torch.tensor([1., 1.]), df2=torch.tensor([[1.]])), (1, 2)), (FisherSnedecor(df1=torch.tensor([1.]), df2=torch.tensor([[1.]])), (1, 1)), (Gamma(concentration=torch.tensor([1., 1.]), rate=1), (2,)), (Gamma(concentration=1, rate=torch.tensor([1., 1.])), (2,)), (Gamma(concentration=torch.tensor([1., 1.]), rate=torch.tensor([[1.], [1.], [1.]])), (3, 2)), (Gamma(concentration=torch.tensor([1., 1.]), rate=torch.tensor([[1.], [1.]])), (2, 2)), (Gamma(concentration=torch.tensor([1., 1.]), rate=torch.tensor([[1.]])), (1, 2)), (Gamma(concentration=torch.tensor([1.]), rate=torch.tensor([[1.]])), (1, 1)), (Gumbel(loc=torch.tensor([0., 0.]), scale=1), (2,)), (Gumbel(loc=0, scale=torch.tensor([1., 1.])), (2,)), (Gumbel(loc=torch.tensor([0., 0.]), scale=torch.tensor([1.])), (2,)), (Gumbel(loc=torch.tensor([0., 0.]), scale=torch.tensor([[1.], [1.]])), (2, 2)), (Gumbel(loc=torch.tensor([0., 0.]), scale=torch.tensor([[1.]])), (1, 2)), (Gumbel(loc=torch.tensor([0.]), scale=torch.tensor([[1.]])), (1, 1)), (Kumaraswamy(concentration1=torch.tensor([1., 1.]), concentration0=1.), (2,)), (Kumaraswamy(concentration1=1, concentration0=torch.tensor([1., 1.])), (2, )), (Kumaraswamy(concentration1=torch.tensor([1., 1.]), concentration0=torch.tensor([1.])), (2,)), (Kumaraswamy(concentration1=torch.tensor([1., 1.]), concentration0=torch.tensor([[1.], [1.]])), (2, 2)), (Kumaraswamy(concentration1=torch.tensor([1., 1.]), concentration0=torch.tensor([[1.]])), (1, 2)), (Kumaraswamy(concentration1=torch.tensor([1.]), concentration0=torch.tensor([[1.]])), (1, 1)), (Laplace(loc=torch.tensor([0., 0.]), scale=1), (2,)), (Laplace(loc=0, scale=torch.tensor([1., 1.])), (2,)), (Laplace(loc=torch.tensor([0., 0.]), scale=torch.tensor([1.])), (2,)), (Laplace(loc=torch.tensor([0., 0.]), scale=torch.tensor([[1.], [1.]])), (2, 2)), (Laplace(loc=torch.tensor([0., 0.]), scale=torch.tensor([[1.]])), (1, 2)), (Laplace(loc=torch.tensor([0.]), scale=torch.tensor([[1.]])), (1, 1)), (Pareto(scale=torch.tensor([1., 1.]), alpha=1), (2,)), (Pareto(scale=1, alpha=torch.tensor([1., 1.])), (2,)), (Pareto(scale=torch.tensor([1., 1.]), alpha=torch.tensor([1.])), (2,)), (Pareto(scale=torch.tensor([1., 1.]), alpha=torch.tensor([[1.], [1.]])), (2, 2)), (Pareto(scale=torch.tensor([1., 1.]), alpha=torch.tensor([[1.]])), (1, 2)), (Pareto(scale=torch.tensor([1.]), alpha=torch.tensor([[1.]])), (1, 1)), (StudentT(df=torch.tensor([1., 1.]), loc=1), (2,)), (StudentT(df=1, scale=torch.tensor([1., 1.])), (2,)), (StudentT(df=torch.tensor([1., 1.]), loc=torch.tensor([1.])), (2,)), (StudentT(df=torch.tensor([1., 1.]), scale=torch.tensor([[1.], [1.]])), (2, 2)), (StudentT(df=torch.tensor([1., 1.]), loc=torch.tensor([[1.]])), (1, 2)), (StudentT(df=torch.tensor([1.]), scale=torch.tensor([[1.]])), (1, 1)), (StudentT(df=1., loc=torch.zeros(5, 1), scale=torch.ones(3)), (5, 3)), ] for dist, expected_size in valid_examples: actual_size = dist.sample().size() self.assertEqual(actual_size, expected_size, msg='{} actual size: {} != expected size: {}'.format(dist, actual_size, expected_size)) sample_shape = torch.Size((2,)) expected_size = sample_shape + expected_size actual_size = dist.sample(sample_shape).size() self.assertEqual(actual_size, expected_size, msg='{} actual size: {} != expected size: {}'.format(dist, actual_size, expected_size)) def test_invalid_parameter_broadcasting(self): # invalid broadcasting cases; should throw error # example type (distribution class, distribution params) invalid_examples = [ (Normal, { 'loc': torch.tensor([[0, 0]]), 'scale': torch.tensor([1, 1, 1, 1]) }), (Normal, { 'loc': torch.tensor([[[0, 0, 0], [0, 0, 0]]]), 'scale': torch.tensor([1, 1]) }), (FisherSnedecor, { 'df1': torch.tensor([1, 1]), 'df2': torch.tensor([1, 1, 1]), }), (Gumbel, { 'loc': torch.tensor([[0, 0]]), 'scale': torch.tensor([1, 1, 1, 1]) }), (Gumbel, { 'loc': torch.tensor([[[0, 0, 0], [0, 0, 0]]]), 'scale': torch.tensor([1, 1]) }), (Gamma, { 'concentration': torch.tensor([0, 0]), 'rate': torch.tensor([1, 1, 1]) }), (Kumaraswamy, { 'concentration1': torch.tensor([[1, 1]]), 'concentration0': torch.tensor([1, 1, 1, 1]) }), (Kumaraswamy, { 'concentration1': torch.tensor([[[1, 1, 1], [1, 1, 1]]]), 'concentration0': torch.tensor([1, 1]) }), (Laplace, { 'loc': torch.tensor([0, 0]), 'scale': torch.tensor([1, 1, 1]) }), (Pareto, { 'scale': torch.tensor([1, 1]), 'alpha': torch.tensor([1, 1, 1]) }), (StudentT, { 'df': torch.tensor([1., 1.]), 'scale': torch.tensor([1., 1., 1.]) }), (StudentT, { 'df': torch.tensor([1., 1.]), 'loc': torch.tensor([1., 1., 1.]) }) ] for dist, kwargs in invalid_examples: self.assertRaises(RuntimeError, dist, **kwargs) def _test_discrete_distribution_mode(self, dist, sanitized_mode, batch_isfinite): # We cannot easily check the mode for discrete distributions, but we can look left and right # to ensure the log probability is smaller than at the mode. for step in [-1, 1]: log_prob_mode = dist.log_prob(sanitized_mode) if isinstance(dist, OneHotCategorical): idx = (dist._categorical.mode + 1) % dist.probs.shape[-1] other = torch.nn.functional.one_hot(idx, num_classes=dist.probs.shape[-1]).to(dist.mode) else: other = dist.mode + step mask = batch_isfinite & dist.support.check(other) self.assertTrue(mask.any() or dist.mode.unique().numel() == 1) # Add a dimension to the right if the event shape is not a scalar, e.g. OneHotCategorical. other = torch.where(mask[..., None] if mask.ndim < other.ndim else mask, other, dist.sample()) log_prob_other = dist.log_prob(other) delta = log_prob_mode - log_prob_other self.assertTrue((-1e-12 < delta[mask].detach()).all()) # Allow up to 1e-12 rounding error. def _test_continuous_distribution_mode(self, dist, sanitized_mode, batch_isfinite): if isinstance(dist, Wishart): return # We perturb the mode in the unconstrained space and expect the log probability to decrease. num_points = 10 transform = transform_to(dist.support) unconstrained_mode = transform.inv(sanitized_mode) perturbation = 1e-5 * (torch.rand((num_points,) + unconstrained_mode.shape) - 0.5) perturbed_mode = transform(perturbation + unconstrained_mode) log_prob_mode = dist.log_prob(sanitized_mode) log_prob_other = dist.log_prob(perturbed_mode) delta = log_prob_mode - log_prob_other # We pass the test with a small tolerance to allow for rounding and manually set the # difference to zero if both log probs are infinite with the same sign. both_infinite_with_same_sign = (log_prob_mode == log_prob_other) & (log_prob_mode.abs() == inf) delta[both_infinite_with_same_sign] = 0. ordering = (delta > -1e-12).all(axis=0) self.assertTrue(ordering[batch_isfinite].all()) def test_mode(self): discrete_distributions = ( Bernoulli, Binomial, Categorical, Geometric, NegativeBinomial, OneHotCategorical, Poisson, ) no_mode_available = ( ContinuousBernoulli, LKJCholesky, LogisticNormal, MixtureSameFamily, Multinomial, RelaxedBernoulli, RelaxedOneHotCategorical, ) for dist_cls, params in EXAMPLES: for param in params: dist = dist_cls(**param) if isinstance(dist, no_mode_available) or type(dist) is TransformedDistribution: with self.assertRaises(NotImplementedError): dist.mode continue # Check that either all or no elements in the event shape are nan: the mode cannot be # defined for part of an event. isfinite = dist.mode.isfinite().reshape(dist.batch_shape + (dist.event_shape.numel(),)) batch_isfinite = isfinite.all(axis=-1) self.assertTrue((batch_isfinite | ~isfinite.any(axis=-1)).all()) # We sanitize undefined modes by sampling from the distribution. sanitized_mode = torch.where(~dist.mode.isnan(), dist.mode, dist.sample()) if isinstance(dist, discrete_distributions): self._test_discrete_distribution_mode(dist, sanitized_mode, batch_isfinite) else: self._test_continuous_distribution_mode(dist, sanitized_mode, batch_isfinite) self.assertFalse(dist.log_prob(sanitized_mode).isnan().any()) # These tests are only needed for a few distributions that implement custom # reparameterized gradients. Most .rsample() implementations simply rely on # the reparameterization trick and do not need to be tested for accuracy. class TestRsample(DistributionsTestCase): @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_gamma(self): num_samples = 100 for alpha in [1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]: alphas = torch.tensor([alpha] * num_samples, dtype=torch.float, requires_grad=True) betas = alphas.new_ones(num_samples) x = Gamma(alphas, betas).rsample() x.sum().backward() x, ind = x.sort() x = x.detach().numpy() actual_grad = alphas.grad[ind].numpy() # Compare with expected gradient dx/dalpha along constant cdf(x,alpha). cdf = scipy.stats.gamma.cdf pdf = scipy.stats.gamma.pdf eps = 0.01 * alpha / (1.0 + alpha ** 0.5) cdf_alpha = (cdf(x, alpha + eps) - cdf(x, alpha - eps)) / (2 * eps) cdf_x = pdf(x, alpha) expected_grad = -cdf_alpha / cdf_x rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) self.assertLess(np.max(rel_error), 0.0005, '\n'.join([ 'Bad gradient dx/alpha for x ~ Gamma({}, 1)'.format(alpha), 'x {}'.format(x), 'expected {}'.format(expected_grad), 'actual {}'.format(actual_grad), 'rel error {}'.format(rel_error), 'max error {}'.format(rel_error.max()), 'at alpha={}, x={}'.format(alpha, x[rel_error.argmax()]), ])) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_chi2(self): num_samples = 100 for df in [1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]: dfs = torch.tensor([df] * num_samples, dtype=torch.float, requires_grad=True) x = Chi2(dfs).rsample() x.sum().backward() x, ind = x.sort() x = x.detach().numpy() actual_grad = dfs.grad[ind].numpy() # Compare with expected gradient dx/ddf along constant cdf(x,df). cdf = scipy.stats.chi2.cdf pdf = scipy.stats.chi2.pdf eps = 0.01 * df / (1.0 + df ** 0.5) cdf_df = (cdf(x, df + eps) - cdf(x, df - eps)) / (2 * eps) cdf_x = pdf(x, df) expected_grad = -cdf_df / cdf_x rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) self.assertLess(np.max(rel_error), 0.001, '\n'.join([ 'Bad gradient dx/ddf for x ~ Chi2({})'.format(df), 'x {}'.format(x), 'expected {}'.format(expected_grad), 'actual {}'.format(actual_grad), 'rel error {}'.format(rel_error), 'max error {}'.format(rel_error.max()), ])) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_dirichlet_on_diagonal(self): num_samples = 20 grid = [1e-1, 1e0, 1e1] for a0, a1, a2 in product(grid, grid, grid): alphas = torch.tensor([[a0, a1, a2]] * num_samples, dtype=torch.float, requires_grad=True) x = Dirichlet(alphas).rsample()[:, 0] x.sum().backward() x, ind = x.sort() x = x.detach().numpy() actual_grad = alphas.grad[ind].numpy()[:, 0] # Compare with expected gradient dx/dalpha0 along constant cdf(x,alpha). # This reduces to a distribution Beta(alpha[0], alpha[1] + alpha[2]). cdf = scipy.stats.beta.cdf pdf = scipy.stats.beta.pdf alpha, beta = a0, a1 + a2 eps = 0.01 * alpha / (1.0 + np.sqrt(alpha)) cdf_alpha = (cdf(x, alpha + eps, beta) - cdf(x, alpha - eps, beta)) / (2 * eps) cdf_x = pdf(x, alpha, beta) expected_grad = -cdf_alpha / cdf_x rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) self.assertLess(np.max(rel_error), 0.001, '\n'.join([ 'Bad gradient dx[0]/dalpha[0] for Dirichlet([{}, {}, {}])'.format(a0, a1, a2), 'x {}'.format(x), 'expected {}'.format(expected_grad), 'actual {}'.format(actual_grad), 'rel error {}'.format(rel_error), 'max error {}'.format(rel_error.max()), 'at x={}'.format(x[rel_error.argmax()]), ])) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_beta_wrt_alpha(self): num_samples = 20 grid = [1e-2, 1e-1, 1e0, 1e1, 1e2] for con1, con0 in product(grid, grid): con1s = torch.tensor([con1] * num_samples, dtype=torch.float, requires_grad=True) con0s = con1s.new_tensor([con0] * num_samples) x = Beta(con1s, con0s).rsample() x.sum().backward() x, ind = x.sort() x = x.detach().numpy() actual_grad = con1s.grad[ind].numpy() # Compare with expected gradient dx/dcon1 along constant cdf(x,con1,con0). cdf = scipy.stats.beta.cdf pdf = scipy.stats.beta.pdf eps = 0.01 * con1 / (1.0 + np.sqrt(con1)) cdf_alpha = (cdf(x, con1 + eps, con0) - cdf(x, con1 - eps, con0)) / (2 * eps) cdf_x = pdf(x, con1, con0) expected_grad = -cdf_alpha / cdf_x rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) self.assertLess(np.max(rel_error), 0.005, '\n'.join([ 'Bad gradient dx/dcon1 for x ~ Beta({}, {})'.format(con1, con0), 'x {}'.format(x), 'expected {}'.format(expected_grad), 'actual {}'.format(actual_grad), 'rel error {}'.format(rel_error), 'max error {}'.format(rel_error.max()), 'at x = {}'.format(x[rel_error.argmax()]), ])) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") def test_beta_wrt_beta(self): num_samples = 20 grid = [1e-2, 1e-1, 1e0, 1e1, 1e2] for con1, con0 in product(grid, grid): con0s = torch.tensor([con0] * num_samples, dtype=torch.float, requires_grad=True) con1s = con0s.new_tensor([con1] * num_samples) x = Beta(con1s, con0s).rsample() x.sum().backward() x, ind = x.sort() x = x.detach().numpy() actual_grad = con0s.grad[ind].numpy() # Compare with expected gradient dx/dcon0 along constant cdf(x,con1,con0). cdf = scipy.stats.beta.cdf pdf = scipy.stats.beta.pdf eps = 0.01 * con0 / (1.0 + np.sqrt(con0)) cdf_beta = (cdf(x, con1, con0 + eps) - cdf(x, con1, con0 - eps)) / (2 * eps) cdf_x = pdf(x, con1, con0) expected_grad = -cdf_beta / cdf_x rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) self.assertLess(np.max(rel_error), 0.005, '\n'.join([ 'Bad gradient dx/dcon0 for x ~ Beta({}, {})'.format(con1, con0), 'x {}'.format(x), 'expected {}'.format(expected_grad), 'actual {}'.format(actual_grad), 'rel error {}'.format(rel_error), 'max error {}'.format(rel_error.max()), 'at x = {!r}'.format(x[rel_error.argmax()]), ])) def test_dirichlet_multivariate(self): alpha_crit = 0.25 * (5.0 ** 0.5 - 1.0) num_samples = 100000 for shift in [-0.1, -0.05, -0.01, 0.0, 0.01, 0.05, 0.10]: alpha = alpha_crit + shift alpha = torch.tensor([alpha], dtype=torch.float, requires_grad=True) alpha_vec = torch.cat([alpha, alpha, alpha.new([1])]) z = Dirichlet(alpha_vec.expand(num_samples, 3)).rsample() mean_z3 = 1.0 / (2.0 * alpha + 1.0) loss = torch.pow(z[:, 2] - mean_z3, 2.0).mean() actual_grad = grad(loss, [alpha])[0] # Compute expected gradient by hand. num = 1.0 - 2.0 * alpha - 4.0 * alpha**2 den = (1.0 + alpha)**2 * (1.0 + 2.0 * alpha)**3 expected_grad = num / den self.assertEqual(actual_grad, expected_grad, atol=0.002, rtol=0, msg='\n'.join([ "alpha = alpha_c + %.2g" % shift, "expected_grad: %.5g" % expected_grad, "actual_grad: %.5g" % actual_grad, "error = %.2g" % torch.abs(expected_grad - actual_grad).max(), ])) def test_dirichlet_tangent_field(self): num_samples = 20 alpha_grid = [0.5, 1.0, 2.0] # v = dx/dalpha[0] is the reparameterized gradient aka tangent field. def compute_v(x, alpha): return torch.stack([ _Dirichlet_backward(x, alpha, torch.eye(3, 3)[i].expand_as(x))[:, 0] for i in range(3) ], dim=-1) for a1, a2, a3 in product(alpha_grid, alpha_grid, alpha_grid): alpha = torch.tensor([a1, a2, a3], requires_grad=True).expand(num_samples, 3) x = Dirichlet(alpha).rsample() dlogp_da = grad([Dirichlet(alpha).log_prob(x.detach()).sum()], [alpha], retain_graph=True)[0][:, 0] dlogp_dx = grad([Dirichlet(alpha.detach()).log_prob(x).sum()], [x], retain_graph=True)[0] v = torch.stack([grad([x[:, i].sum()], [alpha], retain_graph=True)[0][:, 0] for i in range(3)], dim=-1) # Compute ramaining properties by finite difference. self.assertEqual(compute_v(x, alpha), v, msg='Bug in compute_v() helper') # dx is an arbitrary orthonormal basis tangent to the simplex. dx = torch.tensor([[2., -1., -1.], [0., 1., -1.]]) dx /= dx.norm(2, -1, True) eps = 1e-2 * x.min(-1, True)[0] # avoid boundary dv0 = (compute_v(x + eps * dx[0], alpha) - compute_v(x - eps * dx[0], alpha)) / (2 * eps) dv1 = (compute_v(x + eps * dx[1], alpha) - compute_v(x - eps * dx[1], alpha)) / (2 * eps) div_v = (dv0 * dx[0] + dv1 * dx[1]).sum(-1) # This is a modification of the standard continuity equation, using the product rule to allow # expression in terms of log_prob rather than the less numerically stable log_prob.exp(). error = dlogp_da + (dlogp_dx * v).sum(-1) + div_v self.assertLess(torch.abs(error).max(), 0.005, '\n'.join([ 'Dirichlet([{}, {}, {}]) gradient violates continuity equation:'.format(a1, a2, a3), 'error = {}'.format(error), ])) class TestDistributionShapes(DistributionsTestCase): def setUp(self): super(TestDistributionShapes, self).setUp() self.scalar_sample = 1 self.tensor_sample_1 = torch.ones(3, 2) self.tensor_sample_2 = torch.ones(3, 2, 3) def tearDown(self): super(TestDistributionShapes, self).tearDown() def test_entropy_shape(self): for Dist, params in EXAMPLES: for i, param in enumerate(params): dist = Dist(validate_args=False, **param) try: actual_shape = dist.entropy().size() expected_shape = dist.batch_shape if dist.batch_shape else torch.Size() message = '{} example {}/{}, shape mismatch. expected {}, actual {}'.format( Dist.__name__, i + 1, len(params), expected_shape, actual_shape) self.assertEqual(actual_shape, expected_shape, msg=message) except NotImplementedError: continue def test_bernoulli_shape_scalar_params(self): bernoulli = Bernoulli(0.3) self.assertEqual(bernoulli._batch_shape, torch.Size()) self.assertEqual(bernoulli._event_shape, torch.Size()) self.assertEqual(bernoulli.sample().size(), torch.Size()) self.assertEqual(bernoulli.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, bernoulli.log_prob, self.scalar_sample) self.assertEqual(bernoulli.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(bernoulli.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_bernoulli_shape_tensor_params(self): bernoulli = Bernoulli(torch.tensor([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) self.assertEqual(bernoulli._batch_shape, torch.Size((3, 2))) self.assertEqual(bernoulli._event_shape, torch.Size(())) self.assertEqual(bernoulli.sample().size(), torch.Size((3, 2))) self.assertEqual(bernoulli.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) self.assertEqual(bernoulli.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, bernoulli.log_prob, self.tensor_sample_2) self.assertEqual(bernoulli.log_prob(torch.ones(3, 1, 1)).size(), torch.Size((3, 3, 2))) def test_geometric_shape_scalar_params(self): geometric = Geometric(0.3) self.assertEqual(geometric._batch_shape, torch.Size()) self.assertEqual(geometric._event_shape, torch.Size()) self.assertEqual(geometric.sample().size(), torch.Size()) self.assertEqual(geometric.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, geometric.log_prob, self.scalar_sample) self.assertEqual(geometric.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(geometric.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_geometric_shape_tensor_params(self): geometric = Geometric(torch.tensor([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) self.assertEqual(geometric._batch_shape, torch.Size((3, 2))) self.assertEqual(geometric._event_shape, torch.Size(())) self.assertEqual(geometric.sample().size(), torch.Size((3, 2))) self.assertEqual(geometric.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) self.assertEqual(geometric.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, geometric.log_prob, self.tensor_sample_2) self.assertEqual(geometric.log_prob(torch.ones(3, 1, 1)).size(), torch.Size((3, 3, 2))) def test_beta_shape_scalar_params(self): dist = Beta(0.1, 0.1) self.assertEqual(dist._batch_shape, torch.Size()) self.assertEqual(dist._event_shape, torch.Size()) self.assertEqual(dist.sample().size(), torch.Size()) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, dist.log_prob, self.scalar_sample) self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_beta_shape_tensor_params(self): dist = Beta(torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]]), torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]])) self.assertEqual(dist._batch_shape, torch.Size((3, 2))) self.assertEqual(dist._event_shape, torch.Size(())) self.assertEqual(dist.sample().size(), torch.Size((3, 2))) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) self.assertEqual(dist.log_prob(torch.ones(3, 1, 1)).size(), torch.Size((3, 3, 2))) def test_binomial_shape(self): dist = Binomial(10, torch.tensor([0.6, 0.3])) self.assertEqual(dist._batch_shape, torch.Size((2,))) self.assertEqual(dist._event_shape, torch.Size(())) self.assertEqual(dist.sample().size(), torch.Size((2,))) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 2))) self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) def test_binomial_shape_vectorized_n(self): dist = Binomial(torch.tensor([[10, 3, 1], [4, 8, 4]]), torch.tensor([0.6, 0.3, 0.1])) self.assertEqual(dist._batch_shape, torch.Size((2, 3))) self.assertEqual(dist._event_shape, torch.Size(())) self.assertEqual(dist.sample().size(), torch.Size((2, 3))) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 2, 3))) self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_1) def test_multinomial_shape(self): dist = Multinomial(10, torch.tensor([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) self.assertEqual(dist._batch_shape, torch.Size((3,))) self.assertEqual(dist._event_shape, torch.Size((2,))) self.assertEqual(dist.sample().size(), torch.Size((3, 2))) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3,))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) self.assertEqual(dist.log_prob(torch.ones(3, 1, 2)).size(), torch.Size((3, 3))) def test_categorical_shape(self): # unbatched dist = Categorical(torch.tensor([0.6, 0.3, 0.1])) self.assertEqual(dist._batch_shape, torch.Size(())) self.assertEqual(dist._event_shape, torch.Size(())) self.assertEqual(dist.sample().size(), torch.Size()) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2,))) self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) self.assertEqual(dist.log_prob(torch.ones(3, 1)).size(), torch.Size((3, 1))) # batched dist = Categorical(torch.tensor([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) self.assertEqual(dist._batch_shape, torch.Size((3,))) self.assertEqual(dist._event_shape, torch.Size(())) self.assertEqual(dist.sample().size(), torch.Size((3,))) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3,))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_1) self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) self.assertEqual(dist.log_prob(torch.ones(3, 1)).size(), torch.Size((3, 3))) def test_one_hot_categorical_shape(self): # unbatched dist = OneHotCategorical(torch.tensor([0.6, 0.3, 0.1])) self.assertEqual(dist._batch_shape, torch.Size(())) self.assertEqual(dist._event_shape, torch.Size((3,))) self.assertEqual(dist.sample().size(), torch.Size((3,))) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_1) sample = torch.tensor([0., 1., 0.]).expand(3, 2, 3) self.assertEqual(dist.log_prob(sample).size(), torch.Size((3, 2,))) self.assertEqual(dist.log_prob(dist.enumerate_support()).size(), torch.Size((3,))) sample = torch.eye(3) self.assertEqual(dist.log_prob(sample).size(), torch.Size((3,))) # batched dist = OneHotCategorical(torch.tensor([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) self.assertEqual(dist._batch_shape, torch.Size((3,))) self.assertEqual(dist._event_shape, torch.Size((2,))) self.assertEqual(dist.sample().size(), torch.Size((3, 2))) self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) sample = torch.tensor([0., 1.]) self.assertEqual(dist.log_prob(sample).size(), torch.Size((3,))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) self.assertEqual(dist.log_prob(dist.enumerate_support()).size(), torch.Size((2, 3))) sample = torch.tensor([0., 1.]).expand(3, 1, 2) self.assertEqual(dist.log_prob(sample).size(), torch.Size((3, 3))) def test_cauchy_shape_scalar_params(self): cauchy = Cauchy(0, 1) self.assertEqual(cauchy._batch_shape, torch.Size()) self.assertEqual(cauchy._event_shape, torch.Size()) self.assertEqual(cauchy.sample().size(), torch.Size()) self.assertEqual(cauchy.sample(torch.Size((3, 2))).size(), torch.Size((3, 2))) self.assertRaises(ValueError, cauchy.log_prob, self.scalar_sample) self.assertEqual(cauchy.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(cauchy.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_cauchy_shape_tensor_params(self): cauchy = Cauchy(torch.tensor([0., 0.]), torch.tensor([1., 1.])) self.assertEqual(cauchy._batch_shape, torch.Size((2,))) self.assertEqual(cauchy._event_shape, torch.Size(())) self.assertEqual(cauchy.sample().size(), torch.Size((2,))) self.assertEqual(cauchy.sample(torch.Size((3, 2))).size(), torch.Size((3, 2, 2))) self.assertEqual(cauchy.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, cauchy.log_prob, self.tensor_sample_2) self.assertEqual(cauchy.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_halfcauchy_shape_scalar_params(self): halfcauchy = HalfCauchy(1) self.assertEqual(halfcauchy._batch_shape, torch.Size()) self.assertEqual(halfcauchy._event_shape, torch.Size()) self.assertEqual(halfcauchy.sample().size(), torch.Size()) self.assertEqual(halfcauchy.sample(torch.Size((3, 2))).size(), torch.Size((3, 2))) self.assertRaises(ValueError, halfcauchy.log_prob, self.scalar_sample) self.assertEqual(halfcauchy.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(halfcauchy.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_halfcauchy_shape_tensor_params(self): halfcauchy = HalfCauchy(torch.tensor([1., 1.])) self.assertEqual(halfcauchy._batch_shape, torch.Size((2,))) self.assertEqual(halfcauchy._event_shape, torch.Size(())) self.assertEqual(halfcauchy.sample().size(), torch.Size((2,))) self.assertEqual(halfcauchy.sample(torch.Size((3, 2))).size(), torch.Size((3, 2, 2))) self.assertEqual(halfcauchy.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, halfcauchy.log_prob, self.tensor_sample_2) self.assertEqual(halfcauchy.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_dirichlet_shape(self): dist = Dirichlet(torch.tensor([[0.6, 0.3], [1.6, 1.3], [2.6, 2.3]])) self.assertEqual(dist._batch_shape, torch.Size((3,))) self.assertEqual(dist._event_shape, torch.Size((2,))) self.assertEqual(dist.sample().size(), torch.Size((3, 2))) self.assertEqual(dist.sample((5, 4)).size(), torch.Size((5, 4, 3, 2))) simplex_sample = self.tensor_sample_1 / self.tensor_sample_1.sum(-1, keepdim=True) self.assertEqual(dist.log_prob(simplex_sample).size(), torch.Size((3,))) self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) simplex_sample = torch.ones(3, 1, 2) simplex_sample = simplex_sample / simplex_sample.sum(-1).unsqueeze(-1) self.assertEqual(dist.log_prob(simplex_sample).size(), torch.Size((3, 3))) def test_mixture_same_family_shape(self): dist = MixtureSameFamily(Categorical(torch.rand(5)), Normal(torch.randn(5), torch.rand(5))) self.assertEqual(dist._batch_shape, torch.Size()) self.assertEqual(dist._event_shape, torch.Size()) self.assertEqual(dist.sample().size(), torch.Size()) self.assertEqual(dist.sample((5, 4)).size(), torch.Size((5, 4))) self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_gamma_shape_scalar_params(self): gamma = Gamma(1, 1) self.assertEqual(gamma._batch_shape, torch.Size()) self.assertEqual(gamma._event_shape, torch.Size()) self.assertEqual(gamma.sample().size(), torch.Size()) self.assertEqual(gamma.sample((3, 2)).size(), torch.Size((3, 2))) self.assertEqual(gamma.log_prob(self.scalar_sample).size(), torch.Size()) self.assertEqual(gamma.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(gamma.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_gamma_shape_tensor_params(self): gamma = Gamma(torch.tensor([1., 1.]), torch.tensor([1., 1.])) self.assertEqual(gamma._batch_shape, torch.Size((2,))) self.assertEqual(gamma._event_shape, torch.Size(())) self.assertEqual(gamma.sample().size(), torch.Size((2,))) self.assertEqual(gamma.sample((3, 2)).size(), torch.Size((3, 2, 2))) self.assertEqual(gamma.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, gamma.log_prob, self.tensor_sample_2) self.assertEqual(gamma.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_chi2_shape_scalar_params(self): chi2 = Chi2(1) self.assertEqual(chi2._batch_shape, torch.Size()) self.assertEqual(chi2._event_shape, torch.Size()) self.assertEqual(chi2.sample().size(), torch.Size()) self.assertEqual(chi2.sample((3, 2)).size(), torch.Size((3, 2))) self.assertEqual(chi2.log_prob(self.scalar_sample).size(), torch.Size()) self.assertEqual(chi2.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(chi2.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_chi2_shape_tensor_params(self): chi2 = Chi2(torch.tensor([1., 1.])) self.assertEqual(chi2._batch_shape, torch.Size((2,))) self.assertEqual(chi2._event_shape, torch.Size(())) self.assertEqual(chi2.sample().size(), torch.Size((2,))) self.assertEqual(chi2.sample((3, 2)).size(), torch.Size((3, 2, 2))) self.assertEqual(chi2.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, chi2.log_prob, self.tensor_sample_2) self.assertEqual(chi2.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_studentT_shape_scalar_params(self): st = StudentT(1) self.assertEqual(st._batch_shape, torch.Size()) self.assertEqual(st._event_shape, torch.Size()) self.assertEqual(st.sample().size(), torch.Size()) self.assertEqual(st.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, st.log_prob, self.scalar_sample) self.assertEqual(st.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(st.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_studentT_shape_tensor_params(self): st = StudentT(torch.tensor([1., 1.])) self.assertEqual(st._batch_shape, torch.Size((2,))) self.assertEqual(st._event_shape, torch.Size(())) self.assertEqual(st.sample().size(), torch.Size((2,))) self.assertEqual(st.sample((3, 2)).size(), torch.Size((3, 2, 2))) self.assertEqual(st.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, st.log_prob, self.tensor_sample_2) self.assertEqual(st.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_pareto_shape_scalar_params(self): pareto = Pareto(1, 1) self.assertEqual(pareto._batch_shape, torch.Size()) self.assertEqual(pareto._event_shape, torch.Size()) self.assertEqual(pareto.sample().size(), torch.Size()) self.assertEqual(pareto.sample((3, 2)).size(), torch.Size((3, 2))) self.assertEqual(pareto.log_prob(self.tensor_sample_1 + 1).size(), torch.Size((3, 2))) self.assertEqual(pareto.log_prob(self.tensor_sample_2 + 1).size(), torch.Size((3, 2, 3))) def test_gumbel_shape_scalar_params(self): gumbel = Gumbel(1, 1) self.assertEqual(gumbel._batch_shape, torch.Size()) self.assertEqual(gumbel._event_shape, torch.Size()) self.assertEqual(gumbel.sample().size(), torch.Size()) self.assertEqual(gumbel.sample((3, 2)).size(), torch.Size((3, 2))) self.assertEqual(gumbel.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(gumbel.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_kumaraswamy_shape_scalar_params(self): kumaraswamy = Kumaraswamy(1, 1) self.assertEqual(kumaraswamy._batch_shape, torch.Size()) self.assertEqual(kumaraswamy._event_shape, torch.Size()) self.assertEqual(kumaraswamy.sample().size(), torch.Size()) self.assertEqual(kumaraswamy.sample((3, 2)).size(), torch.Size((3, 2))) self.assertEqual(kumaraswamy.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(kumaraswamy.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_vonmises_shape_tensor_params(self): von_mises = VonMises(torch.tensor([0., 0.]), torch.tensor([1., 1.])) self.assertEqual(von_mises._batch_shape, torch.Size((2,))) self.assertEqual(von_mises._event_shape, torch.Size(())) self.assertEqual(von_mises.sample().size(), torch.Size((2,))) self.assertEqual(von_mises.sample(torch.Size((3, 2))).size(), torch.Size((3, 2, 2))) self.assertEqual(von_mises.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(von_mises.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_vonmises_shape_scalar_params(self): von_mises = VonMises(0., 1.) self.assertEqual(von_mises._batch_shape, torch.Size()) self.assertEqual(von_mises._event_shape, torch.Size()) self.assertEqual(von_mises.sample().size(), torch.Size()) self.assertEqual(von_mises.sample(torch.Size((3, 2))).size(), torch.Size((3, 2))) self.assertEqual(von_mises.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(von_mises.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_weibull_scale_scalar_params(self): weibull = Weibull(1, 1) self.assertEqual(weibull._batch_shape, torch.Size()) self.assertEqual(weibull._event_shape, torch.Size()) self.assertEqual(weibull.sample().size(), torch.Size()) self.assertEqual(weibull.sample((3, 2)).size(), torch.Size((3, 2))) self.assertEqual(weibull.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(weibull.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_wishart_shape_scalar_params(self): wishart = Wishart(torch.tensor(1), torch.tensor([[1.]])) self.assertEqual(wishart._batch_shape, torch.Size()) self.assertEqual(wishart._event_shape, torch.Size((1, 1))) self.assertEqual(wishart.sample().size(), torch.Size((1, 1))) self.assertEqual(wishart.sample((3, 2)).size(), torch.Size((3, 2, 1, 1))) self.assertRaises(ValueError, wishart.log_prob, self.scalar_sample) def test_wishart_shape_tensor_params(self): wishart = Wishart(torch.tensor([1., 1.]), torch.tensor([[[1.]], [[1.]]])) self.assertEqual(wishart._batch_shape, torch.Size((2,))) self.assertEqual(wishart._event_shape, torch.Size((1, 1))) self.assertEqual(wishart.sample().size(), torch.Size((2, 1, 1))) self.assertEqual(wishart.sample((3, 2)).size(), torch.Size((3, 2, 2, 1, 1))) self.assertRaises(ValueError, wishart.log_prob, self.tensor_sample_2) self.assertEqual(wishart.log_prob(torch.ones(2, 1, 1)).size(), torch.Size((2,))) def test_normal_shape_scalar_params(self): normal = Normal(0, 1) self.assertEqual(normal._batch_shape, torch.Size()) self.assertEqual(normal._event_shape, torch.Size()) self.assertEqual(normal.sample().size(), torch.Size()) self.assertEqual(normal.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, normal.log_prob, self.scalar_sample) self.assertEqual(normal.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(normal.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_normal_shape_tensor_params(self): normal = Normal(torch.tensor([0., 0.]), torch.tensor([1., 1.])) self.assertEqual(normal._batch_shape, torch.Size((2,))) self.assertEqual(normal._event_shape, torch.Size(())) self.assertEqual(normal.sample().size(), torch.Size((2,))) self.assertEqual(normal.sample((3, 2)).size(), torch.Size((3, 2, 2))) self.assertEqual(normal.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, normal.log_prob, self.tensor_sample_2) self.assertEqual(normal.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_uniform_shape_scalar_params(self): uniform = Uniform(0, 1) self.assertEqual(uniform._batch_shape, torch.Size()) self.assertEqual(uniform._event_shape, torch.Size()) self.assertEqual(uniform.sample().size(), torch.Size()) self.assertEqual(uniform.sample(torch.Size((3, 2))).size(), torch.Size((3, 2))) self.assertRaises(ValueError, uniform.log_prob, self.scalar_sample) self.assertEqual(uniform.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(uniform.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_uniform_shape_tensor_params(self): uniform = Uniform(torch.tensor([0., 0.]), torch.tensor([1., 1.])) self.assertEqual(uniform._batch_shape, torch.Size((2,))) self.assertEqual(uniform._event_shape, torch.Size(())) self.assertEqual(uniform.sample().size(), torch.Size((2,))) self.assertEqual(uniform.sample(torch.Size((3, 2))).size(), torch.Size((3, 2, 2))) self.assertEqual(uniform.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, uniform.log_prob, self.tensor_sample_2) self.assertEqual(uniform.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_exponential_shape_scalar_param(self): expon = Exponential(1.) self.assertEqual(expon._batch_shape, torch.Size()) self.assertEqual(expon._event_shape, torch.Size()) self.assertEqual(expon.sample().size(), torch.Size()) self.assertEqual(expon.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, expon.log_prob, self.scalar_sample) self.assertEqual(expon.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(expon.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_exponential_shape_tensor_param(self): expon = Exponential(torch.tensor([1., 1.])) self.assertEqual(expon._batch_shape, torch.Size((2,))) self.assertEqual(expon._event_shape, torch.Size(())) self.assertEqual(expon.sample().size(), torch.Size((2,))) self.assertEqual(expon.sample((3, 2)).size(), torch.Size((3, 2, 2))) self.assertEqual(expon.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, expon.log_prob, self.tensor_sample_2) self.assertEqual(expon.log_prob(torch.ones(2, 2)).size(), torch.Size((2, 2))) def test_laplace_shape_scalar_params(self): laplace = Laplace(0, 1) self.assertEqual(laplace._batch_shape, torch.Size()) self.assertEqual(laplace._event_shape, torch.Size()) self.assertEqual(laplace.sample().size(), torch.Size()) self.assertEqual(laplace.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, laplace.log_prob, self.scalar_sample) self.assertEqual(laplace.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(laplace.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_laplace_shape_tensor_params(self): laplace = Laplace(torch.tensor([0., 0.]), torch.tensor([1., 1.])) self.assertEqual(laplace._batch_shape, torch.Size((2,))) self.assertEqual(laplace._event_shape, torch.Size(())) self.assertEqual(laplace.sample().size(), torch.Size((2,))) self.assertEqual(laplace.sample((3, 2)).size(), torch.Size((3, 2, 2))) self.assertEqual(laplace.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, laplace.log_prob, self.tensor_sample_2) self.assertEqual(laplace.log_prob(torch.ones(2, 1)).size(), torch.Size((2, 2))) def test_continuous_bernoulli_shape_scalar_params(self): continuous_bernoulli = ContinuousBernoulli(0.3) self.assertEqual(continuous_bernoulli._batch_shape, torch.Size()) self.assertEqual(continuous_bernoulli._event_shape, torch.Size()) self.assertEqual(continuous_bernoulli.sample().size(), torch.Size()) self.assertEqual(continuous_bernoulli.sample((3, 2)).size(), torch.Size((3, 2))) self.assertRaises(ValueError, continuous_bernoulli.log_prob, self.scalar_sample) self.assertEqual(continuous_bernoulli.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertEqual(continuous_bernoulli.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) def test_continuous_bernoulli_shape_tensor_params(self): continuous_bernoulli = ContinuousBernoulli(torch.tensor([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) self.assertEqual(continuous_bernoulli._batch_shape, torch.Size((3, 2))) self.assertEqual(continuous_bernoulli._event_shape, torch.Size(())) self.assertEqual(continuous_bernoulli.sample().size(), torch.Size((3, 2))) self.assertEqual(continuous_bernoulli.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) self.assertEqual(continuous_bernoulli.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) self.assertRaises(ValueError, continuous_bernoulli.log_prob, self.tensor_sample_2) self.assertEqual(continuous_bernoulli.log_prob(torch.ones(3, 1, 1)).size(), torch.Size((3, 3, 2))) class TestKL(DistributionsTestCase): def setUp(self): super(TestKL, self).setUp() class Binomial30(Binomial): def __init__(self, probs): super(Binomial30, self).__init__(30, probs) # These are pairs of distributions with 4 x 4 parameters as specified. # The first of the pair e.g. bernoulli[0] varies column-wise and the second # e.g. bernoulli[1] varies row-wise; that way we test all param pairs. bernoulli = pairwise(Bernoulli, [0.1, 0.2, 0.6, 0.9]) binomial30 = pairwise(Binomial30, [0.1, 0.2, 0.6, 0.9]) binomial_vectorized_count = (Binomial(torch.tensor([3, 4]), torch.tensor([0.4, 0.6])), Binomial(torch.tensor([3, 4]), torch.tensor([0.5, 0.8]))) beta = pairwise(Beta, [1.0, 2.5, 1.0, 2.5], [1.5, 1.5, 3.5, 3.5]) categorical = pairwise(Categorical, [[0.4, 0.3, 0.3], [0.2, 0.7, 0.1], [0.33, 0.33, 0.34], [0.2, 0.2, 0.6]]) cauchy = pairwise(Cauchy, [-2.0, 2.0, -3.0, 3.0], [1.0, 2.0, 1.0, 2.0]) chi2 = pairwise(Chi2, [1.0, 2.0, 2.5, 5.0]) dirichlet = pairwise(Dirichlet, [[0.1, 0.2, 0.7], [0.5, 0.4, 0.1], [0.33, 0.33, 0.34], [0.2, 0.2, 0.4]]) exponential = pairwise(Exponential, [1.0, 2.5, 5.0, 10.0]) gamma = pairwise(Gamma, [1.0, 2.5, 1.0, 2.5], [1.5, 1.5, 3.5, 3.5]) gumbel = pairwise(Gumbel, [-2.0, 4.0, -3.0, 6.0], [1.0, 2.5, 1.0, 2.5]) halfnormal = pairwise(HalfNormal, [1.0, 2.0, 1.0, 2.0]) laplace = pairwise(Laplace, [-2.0, 4.0, -3.0, 6.0], [1.0, 2.5, 1.0, 2.5]) lognormal = pairwise(LogNormal, [-2.0, 2.0, -3.0, 3.0], [1.0, 2.0, 1.0, 2.0]) normal = pairwise(Normal, [-2.0, 2.0, -3.0, 3.0], [1.0, 2.0, 1.0, 2.0]) independent = (Independent(normal[0], 1), Independent(normal[1], 1)) onehotcategorical = pairwise(OneHotCategorical, [[0.4, 0.3, 0.3], [0.2, 0.7, 0.1], [0.33, 0.33, 0.34], [0.2, 0.2, 0.6]]) pareto = (Pareto(torch.tensor([2.5, 4.0, 2.5, 4.0]).expand(4, 4), torch.tensor([2.25, 3.75, 2.25, 3.75]).expand(4, 4)), Pareto(torch.tensor([2.25, 3.75, 2.25, 3.8]).expand(4, 4), torch.tensor([2.25, 3.75, 2.25, 3.75]).expand(4, 4))) poisson = pairwise(Poisson, [0.3, 1.0, 5.0, 10.0]) uniform_within_unit = pairwise(Uniform, [0.1, 0.9, 0.2, 0.75], [0.15, 0.95, 0.25, 0.8]) uniform_positive = pairwise(Uniform, [1, 1.5, 2, 4], [1.2, 2.0, 3, 7]) uniform_real = pairwise(Uniform, [-2., -1, 0, 2], [-1., 1, 1, 4]) uniform_pareto = pairwise(Uniform, [6.5, 7.5, 6.5, 8.5], [7.5, 8.5, 9.5, 9.5]) continuous_bernoulli = pairwise(ContinuousBernoulli, [0.1, 0.2, 0.5, 0.9]) # These tests should pass with precision = 0.01, but that makes tests very expensive. # Instead, we test with precision = 0.1 and only test with higher precision locally # when adding a new KL implementation. # The following pairs are not tested due to very high variance of the monte carlo # estimator; their implementations have been reviewed with extra care: # - (pareto, normal) self.precision = 0.1 # Set this to 0.01 when testing a new KL implementation. self.max_samples = int(1e07) # Increase this when testing at smaller precision. self.samples_per_batch = int(1e04) self.finite_examples = [ (bernoulli, bernoulli), (bernoulli, poisson), (beta, beta), (beta, chi2), (beta, exponential), (beta, gamma), (beta, normal), (binomial30, binomial30), (binomial_vectorized_count, binomial_vectorized_count), (categorical, categorical), (cauchy, cauchy), (chi2, chi2), (chi2, exponential), (chi2, gamma), (chi2, normal), (dirichlet, dirichlet), (exponential, chi2), (exponential, exponential), (exponential, gamma), (exponential, gumbel), (exponential, normal), (gamma, chi2), (gamma, exponential), (gamma, gamma), (gamma, gumbel), (gamma, normal), (gumbel, gumbel), (gumbel, normal), (halfnormal, halfnormal), (independent, independent), (laplace, laplace), (lognormal, lognormal), (laplace, normal), (normal, gumbel), (normal, laplace), (normal, normal), (onehotcategorical, onehotcategorical), (pareto, chi2), (pareto, pareto), (pareto, exponential), (pareto, gamma), (poisson, poisson), (uniform_within_unit, beta), (uniform_positive, chi2), (uniform_positive, exponential), (uniform_positive, gamma), (uniform_real, gumbel), (uniform_real, normal), (uniform_pareto, pareto), (continuous_bernoulli, continuous_bernoulli), (continuous_bernoulli, exponential), (continuous_bernoulli, normal), (beta, continuous_bernoulli) ] self.infinite_examples = [ (Bernoulli(0), Bernoulli(1)), (Bernoulli(1), Bernoulli(0)), (Categorical(torch.tensor([0.9, 0.1])), Categorical(torch.tensor([1., 0.]))), (Categorical(torch.tensor([[0.9, 0.1], [.9, .1]])), Categorical(torch.tensor([1., 0.]))), (Beta(1, 2), Uniform(0.25, 1)), (Beta(1, 2), Uniform(0, 0.75)), (Beta(1, 2), Uniform(0.25, 0.75)), (Beta(1, 2), Pareto(1, 2)), (Binomial(31, 0.7), Binomial(30, 0.3)), (Binomial(torch.tensor([3, 4]), torch.tensor([0.4, 0.6])), Binomial(torch.tensor([2, 3]), torch.tensor([0.5, 0.8]))), (Chi2(1), Beta(2, 3)), (Chi2(1), Pareto(2, 3)), (Chi2(1), Uniform(-2, 3)), (Exponential(1), Beta(2, 3)), (Exponential(1), Pareto(2, 3)), (Exponential(1), Uniform(-2, 3)), (Gamma(1, 2), Beta(3, 4)), (Gamma(1, 2), Pareto(3, 4)), (Gamma(1, 2), Uniform(-3, 4)), (Gumbel(-1, 2), Beta(3, 4)), (Gumbel(-1, 2), Chi2(3)), (Gumbel(-1, 2), Exponential(3)), (Gumbel(-1, 2), Gamma(3, 4)), (Gumbel(-1, 2), Pareto(3, 4)), (Gumbel(-1, 2), Uniform(-3, 4)), (Laplace(-1, 2), Beta(3, 4)), (Laplace(-1, 2), Chi2(3)), (Laplace(-1, 2), Exponential(3)), (Laplace(-1, 2), Gamma(3, 4)), (Laplace(-1, 2), Pareto(3, 4)), (Laplace(-1, 2), Uniform(-3, 4)), (Normal(-1, 2), Beta(3, 4)), (Normal(-1, 2), Chi2(3)), (Normal(-1, 2), Exponential(3)), (Normal(-1, 2), Gamma(3, 4)), (Normal(-1, 2), Pareto(3, 4)), (Normal(-1, 2), Uniform(-3, 4)), (Pareto(2, 1), Chi2(3)), (Pareto(2, 1), Exponential(3)), (Pareto(2, 1), Gamma(3, 4)), (Pareto(1, 2), Normal(-3, 4)), (Pareto(1, 2), Pareto(3, 4)), (Poisson(2), Bernoulli(0.5)), (Poisson(2.3), Binomial(10, 0.2)), (Uniform(-1, 1), Beta(2, 2)), (Uniform(0, 2), Beta(3, 4)), (Uniform(-1, 2), Beta(3, 4)), (Uniform(-1, 2), Chi2(3)), (Uniform(-1, 2), Exponential(3)), (Uniform(-1, 2), Gamma(3, 4)), (Uniform(-1, 2), Pareto(3, 4)), (ContinuousBernoulli(0.25), Uniform(0.25, 1)), (ContinuousBernoulli(0.25), Uniform(0, 0.75)), (ContinuousBernoulli(0.25), Uniform(0.25, 0.75)), (ContinuousBernoulli(0.25), Pareto(1, 2)), (Exponential(1), ContinuousBernoulli(0.75)), (Gamma(1, 2), ContinuousBernoulli(0.75)), (Gumbel(-1, 2), ContinuousBernoulli(0.75)), (Laplace(-1, 2), ContinuousBernoulli(0.75)), (Normal(-1, 2), ContinuousBernoulli(0.75)), (Uniform(-1, 1), ContinuousBernoulli(0.75)), (Uniform(0, 2), ContinuousBernoulli(0.75)), (Uniform(-1, 2), ContinuousBernoulli(0.75)) ] def test_kl_monte_carlo(self): set_rng_seed(0) # see Note [Randomized statistical tests] for (p, _), (_, q) in self.finite_examples: actual = kl_divergence(p, q) numerator = 0 denominator = 0 while denominator < self.max_samples: x = p.sample(sample_shape=(self.samples_per_batch,)) numerator += (p.log_prob(x) - q.log_prob(x)).sum(0) denominator += x.size(0) expected = numerator / denominator error = torch.abs(expected - actual) / (1 + expected) if error[error == error].max() < self.precision: break self.assertLess(error[error == error].max(), self.precision, '\n'.join([ 'Incorrect KL({}, {}).'.format(type(p).__name__, type(q).__name__), 'Expected ({} Monte Carlo samples): {}'.format(denominator, expected), 'Actual (analytic): {}'.format(actual), ])) # Multivariate normal has a separate Monte Carlo based test due to the requirement of random generation of # positive (semi) definite matrices. n is set to 5, but can be increased during testing. def test_kl_multivariate_normal(self): set_rng_seed(0) # see Note [Randomized statistical tests] n = 5 # Number of tests for multivariate_normal for i in range(0, n): loc = [torch.randn(4) for _ in range(0, 2)] scale_tril = [transform_to(constraints.lower_cholesky)(torch.randn(4, 4)) for _ in range(0, 2)] p = MultivariateNormal(loc=loc[0], scale_tril=scale_tril[0]) q = MultivariateNormal(loc=loc[1], scale_tril=scale_tril[1]) actual = kl_divergence(p, q) numerator = 0 denominator = 0 while denominator < self.max_samples: x = p.sample(sample_shape=(self.samples_per_batch,)) numerator += (p.log_prob(x) - q.log_prob(x)).sum(0) denominator += x.size(0) expected = numerator / denominator error = torch.abs(expected - actual) / (1 + expected) if error[error == error].max() < self.precision: break self.assertLess(error[error == error].max(), self.precision, '\n'.join([ 'Incorrect KL(MultivariateNormal, MultivariateNormal) instance {}/{}'.format(i + 1, n), 'Expected ({} Monte Carlo sample): {}'.format(denominator, expected), 'Actual (analytic): {}'.format(actual), ])) def test_kl_multivariate_normal_batched(self): b = 7 # Number of batches loc = [torch.randn(b, 3) for _ in range(0, 2)] scale_tril = [transform_to(constraints.lower_cholesky)(torch.randn(b, 3, 3)) for _ in range(0, 2)] expected_kl = torch.stack([ kl_divergence(MultivariateNormal(loc[0][i], scale_tril=scale_tril[0][i]), MultivariateNormal(loc[1][i], scale_tril=scale_tril[1][i])) for i in range(0, b)]) actual_kl = kl_divergence(MultivariateNormal(loc[0], scale_tril=scale_tril[0]), MultivariateNormal(loc[1], scale_tril=scale_tril[1])) self.assertEqual(expected_kl, actual_kl) def test_kl_multivariate_normal_batched_broadcasted(self): b = 7 # Number of batches loc = [torch.randn(b, 3) for _ in range(0, 2)] scale_tril = [transform_to(constraints.lower_cholesky)(torch.randn(b, 3, 3)), transform_to(constraints.lower_cholesky)(torch.randn(3, 3))] expected_kl = torch.stack([ kl_divergence(MultivariateNormal(loc[0][i], scale_tril=scale_tril[0][i]), MultivariateNormal(loc[1][i], scale_tril=scale_tril[1])) for i in range(0, b)]) actual_kl = kl_divergence(MultivariateNormal(loc[0], scale_tril=scale_tril[0]), MultivariateNormal(loc[1], scale_tril=scale_tril[1])) self.assertEqual(expected_kl, actual_kl) def test_kl_lowrank_multivariate_normal(self): set_rng_seed(0) # see Note [Randomized statistical tests] n = 5 # Number of tests for lowrank_multivariate_normal for i in range(0, n): loc = [torch.randn(4) for _ in range(0, 2)] cov_factor = [torch.randn(4, 3) for _ in range(0, 2)] cov_diag = [transform_to(constraints.positive)(torch.randn(4)) for _ in range(0, 2)] covariance_matrix = [cov_factor[i].matmul(cov_factor[i].t()) + cov_diag[i].diag() for i in range(0, 2)] p = LowRankMultivariateNormal(loc[0], cov_factor[0], cov_diag[0]) q = LowRankMultivariateNormal(loc[1], cov_factor[1], cov_diag[1]) p_full = MultivariateNormal(loc[0], covariance_matrix[0]) q_full = MultivariateNormal(loc[1], covariance_matrix[1]) expected = kl_divergence(p_full, q_full) actual_lowrank_lowrank = kl_divergence(p, q) actual_lowrank_full = kl_divergence(p, q_full) actual_full_lowrank = kl_divergence(p_full, q) error_lowrank_lowrank = torch.abs(actual_lowrank_lowrank - expected).max() self.assertLess(error_lowrank_lowrank, self.precision, '\n'.join([ 'Incorrect KL(LowRankMultivariateNormal, LowRankMultivariateNormal) instance {}/{}'.format(i + 1, n), 'Expected (from KL MultivariateNormal): {}'.format(expected), 'Actual (analytic): {}'.format(actual_lowrank_lowrank), ])) error_lowrank_full = torch.abs(actual_lowrank_full - expected).max() self.assertLess(error_lowrank_full, self.precision, '\n'.join([ 'Incorrect KL(LowRankMultivariateNormal, MultivariateNormal) instance {}/{}'.format(i + 1, n), 'Expected (from KL MultivariateNormal): {}'.format(expected), 'Actual (analytic): {}'.format(actual_lowrank_full), ])) error_full_lowrank = torch.abs(actual_full_lowrank - expected).max() self.assertLess(error_full_lowrank, self.precision, '\n'.join([ 'Incorrect KL(MultivariateNormal, LowRankMultivariateNormal) instance {}/{}'.format(i + 1, n), 'Expected (from KL MultivariateNormal): {}'.format(expected), 'Actual (analytic): {}'.format(actual_full_lowrank), ])) def test_kl_lowrank_multivariate_normal_batched(self): b = 7 # Number of batches loc = [torch.randn(b, 3) for _ in range(0, 2)] cov_factor = [torch.randn(b, 3, 2) for _ in range(0, 2)] cov_diag = [transform_to(constraints.positive)(torch.randn(b, 3)) for _ in range(0, 2)] expected_kl = torch.stack([ kl_divergence(LowRankMultivariateNormal(loc[0][i], cov_factor[0][i], cov_diag[0][i]), LowRankMultivariateNormal(loc[1][i], cov_factor[1][i], cov_diag[1][i])) for i in range(0, b)]) actual_kl = kl_divergence(LowRankMultivariateNormal(loc[0], cov_factor[0], cov_diag[0]), LowRankMultivariateNormal(loc[1], cov_factor[1], cov_diag[1])) self.assertEqual(expected_kl, actual_kl) def test_kl_exponential_family(self): for (p, _), (_, q) in self.finite_examples: if type(p) == type(q) and issubclass(type(p), ExponentialFamily): actual = kl_divergence(p, q) expected = _kl_expfamily_expfamily(p, q) self.assertEqual(actual, expected, msg='\n'.join([ 'Incorrect KL({}, {}).'.format(type(p).__name__, type(q).__name__), 'Expected (using Bregman Divergence) {}'.format(expected), 'Actual (analytic) {}'.format(actual), 'max error = {}'.format(torch.abs(actual - expected).max()) ])) def test_kl_infinite(self): for p, q in self.infinite_examples: self.assertTrue((kl_divergence(p, q) == inf).all(), 'Incorrect KL({}, {})'.format(type(p).__name__, type(q).__name__)) def test_kl_edgecases(self): self.assertEqual(kl_divergence(Bernoulli(0), Bernoulli(0)), 0) self.assertEqual(kl_divergence(Bernoulli(1), Bernoulli(1)), 0) self.assertEqual(kl_divergence(Categorical(torch.tensor([0., 1.])), Categorical(torch.tensor([0., 1.]))), 0) def test_kl_shape(self): for Dist, params in EXAMPLES: for i, param in enumerate(params): dist = Dist(**param) try: kl = kl_divergence(dist, dist) except NotImplementedError: continue expected_shape = dist.batch_shape if dist.batch_shape else torch.Size() self.assertEqual(kl.shape, expected_shape, msg='\n'.join([ '{} example {}/{}'.format(Dist.__name__, i + 1, len(params)), 'Expected {}'.format(expected_shape), 'Actual {}'.format(kl.shape), ])) def test_kl_transformed(self): # Regression test for https://github.com/pytorch/pytorch/issues/34859 scale = torch.ones(2, 3) loc = torch.zeros(2, 3) normal = Normal(loc=loc, scale=scale) diag_normal = Independent(normal, reinterpreted_batch_ndims=1) trans_dist = TransformedDistribution(diag_normal, AffineTransform(loc=0., scale=2.)) self.assertEqual(kl_divergence(diag_normal, diag_normal).shape, (2,)) self.assertEqual(kl_divergence(trans_dist, trans_dist).shape, (2,)) def test_entropy_monte_carlo(self): set_rng_seed(0) # see Note [Randomized statistical tests] for Dist, params in EXAMPLES: for i, param in enumerate(params): dist = Dist(**param) try: actual = dist.entropy() except NotImplementedError: continue x = dist.sample(sample_shape=(60000,)) expected = -dist.log_prob(x).mean(0) ignore = (expected == inf) | (expected == -inf) expected[ignore] = actual[ignore] self.assertEqual(actual, expected, atol=0.2, rtol=0, msg='\n'.join([ '{} example {}/{}, incorrect .entropy().'.format(Dist.__name__, i + 1, len(params)), 'Expected (monte carlo) {}'.format(expected), 'Actual (analytic) {}'.format(actual), 'max error = {}'.format(torch.abs(actual - expected).max()), ])) def test_entropy_exponential_family(self): for Dist, params in EXAMPLES: if not issubclass(Dist, ExponentialFamily): continue for i, param in enumerate(params): dist = Dist(**param) try: actual = dist.entropy() except NotImplementedError: continue try: expected = ExponentialFamily.entropy(dist) except NotImplementedError: continue self.assertEqual(actual, expected, msg='\n'.join([ '{} example {}/{}, incorrect .entropy().'.format(Dist.__name__, i + 1, len(params)), 'Expected (Bregman Divergence) {}'.format(expected), 'Actual (analytic) {}'.format(actual), 'max error = {}'.format(torch.abs(actual - expected).max()) ])) class TestConstraints(DistributionsTestCase): def test_params_constraints(self): normalize_probs_dists = ( Categorical, Multinomial, OneHotCategorical, OneHotCategoricalStraightThrough, RelaxedOneHotCategorical ) for Dist, params in EXAMPLES: for i, param in enumerate(params): dist = Dist(**param) for name, value in param.items(): if isinstance(value, numbers.Number): value = torch.tensor([value]) if Dist in normalize_probs_dists and name == 'probs': # These distributions accept positive probs, but elsewhere we # use a stricter constraint to the simplex. value = value / value.sum(-1, True) try: constraint = dist.arg_constraints[name] except KeyError: continue # ignore optional parameters # Check param shape is compatible with distribution shape. self.assertGreaterEqual(value.dim(), constraint.event_dim) value_batch_shape = value.shape[:value.dim() - constraint.event_dim] torch.broadcast_shapes(dist.batch_shape, value_batch_shape) if is_dependent(constraint): continue message = '{} example {}/{} parameter {} = {}'.format( Dist.__name__, i + 1, len(params), name, value) self.assertTrue(constraint.check(value).all(), msg=message) def test_support_constraints(self): for Dist, params in EXAMPLES: self.assertIsInstance(Dist.support, Constraint) for i, param in enumerate(params): dist = Dist(**param) value = dist.sample() constraint = dist.support message = '{} example {}/{} sample = {}'.format( Dist.__name__, i + 1, len(params), value) self.assertEqual(constraint.event_dim, len(dist.event_shape), msg=message) ok = constraint.check(value) self.assertEqual(ok.shape, dist.batch_shape, msg=message) self.assertTrue(ok.all(), msg=message) class TestNumericalStability(DistributionsTestCase): def _test_pdf_score(self, dist_class, x, expected_value, probs=None, logits=None, expected_gradient=None, atol=1e-5): if probs is not None: p = probs.detach().requires_grad_() dist = dist_class(p) else: p = logits.detach().requires_grad_() dist = dist_class(logits=p) log_pdf = dist.log_prob(x) log_pdf.sum().backward() self.assertEqual(log_pdf, expected_value, atol=atol, rtol=0, msg='Incorrect value for tensor type: {}. Expected = {}, Actual = {}' .format(type(x), expected_value, log_pdf)) if expected_gradient is not None: self.assertEqual(p.grad, expected_gradient, atol=atol, rtol=0, msg='Incorrect gradient for tensor type: {}. Expected = {}, Actual = {}' .format(type(x), expected_gradient, p.grad)) def test_bernoulli_gradient(self): for tensor_type in [torch.FloatTensor, torch.DoubleTensor]: self._test_pdf_score(dist_class=Bernoulli, probs=tensor_type([0]), x=tensor_type([0]), expected_value=tensor_type([0]), expected_gradient=tensor_type([0])) self._test_pdf_score(dist_class=Bernoulli, probs=tensor_type([0]), x=tensor_type([1]), expected_value=tensor_type([torch.finfo(tensor_type([]).dtype).eps]).log(), expected_gradient=tensor_type([0])) self._test_pdf_score(dist_class=Bernoulli, probs=tensor_type([1e-4]), x=tensor_type([1]), expected_value=tensor_type([math.log(1e-4)]), expected_gradient=tensor_type([10000])) # Lower precision due to: # >>> 1 / (1 - torch.FloatTensor([0.9999])) # 9998.3408 # [torch.FloatTensor of size 1] self._test_pdf_score(dist_class=Bernoulli, probs=tensor_type([1 - 1e-4]), x=tensor_type([0]), expected_value=tensor_type([math.log(1e-4)]), expected_gradient=tensor_type([-10000]), atol=2) self._test_pdf_score(dist_class=Bernoulli, logits=tensor_type([math.log(9999)]), x=tensor_type([0]), expected_value=tensor_type([math.log(1e-4)]), expected_gradient=tensor_type([-1]), atol=1e-3) def test_bernoulli_with_logits_underflow(self): for tensor_type, lim in ([(torch.FloatTensor, -1e38), (torch.DoubleTensor, -1e308)]): self._test_pdf_score(dist_class=Bernoulli, logits=tensor_type([lim]), x=tensor_type([0]), expected_value=tensor_type([0]), expected_gradient=tensor_type([0])) def test_bernoulli_with_logits_overflow(self): for tensor_type, lim in ([(torch.FloatTensor, 1e38), (torch.DoubleTensor, 1e308)]): self._test_pdf_score(dist_class=Bernoulli, logits=tensor_type([lim]), x=tensor_type([1]), expected_value=tensor_type([0]), expected_gradient=tensor_type([0])) def test_categorical_log_prob(self): for dtype in ([torch.float, torch.double]): p = torch.tensor([0, 1], dtype=dtype, requires_grad=True) categorical = OneHotCategorical(p) log_pdf = categorical.log_prob(torch.tensor([0, 1], dtype=dtype)) self.assertEqual(log_pdf.item(), 0) def test_categorical_log_prob_with_logits(self): for dtype in ([torch.float, torch.double]): p = torch.tensor([-inf, 0], dtype=dtype, requires_grad=True) categorical = OneHotCategorical(logits=p) log_pdf_prob_1 = categorical.log_prob(torch.tensor([0, 1], dtype=dtype)) self.assertEqual(log_pdf_prob_1.item(), 0) log_pdf_prob_0 = categorical.log_prob(torch.tensor([1, 0], dtype=dtype)) self.assertEqual(log_pdf_prob_0.item(), -inf) def test_multinomial_log_prob(self): for dtype in ([torch.float, torch.double]): p = torch.tensor([0, 1], dtype=dtype, requires_grad=True) s = torch.tensor([0, 10], dtype=dtype) multinomial = Multinomial(10, p) log_pdf = multinomial.log_prob(s) self.assertEqual(log_pdf.item(), 0) def test_multinomial_log_prob_with_logits(self): for dtype in ([torch.float, torch.double]): p = torch.tensor([-inf, 0], dtype=dtype, requires_grad=True) multinomial = Multinomial(10, logits=p) log_pdf_prob_1 = multinomial.log_prob(torch.tensor([0, 10], dtype=dtype)) self.assertEqual(log_pdf_prob_1.item(), 0) log_pdf_prob_0 = multinomial.log_prob(torch.tensor([10, 0], dtype=dtype)) self.assertEqual(log_pdf_prob_0.item(), -inf) def test_continuous_bernoulli_gradient(self): def expec_val(x, probs=None, logits=None): assert not (probs is None and logits is None) if logits is not None: probs = 1. / (1. + math.exp(-logits)) bern_log_lik = x * math.log(probs) + (1. - x) * math.log1p(-probs) if probs < 0.499 or probs > 0.501: # using default values of lims here log_norm_const = math.log( math.fabs(math.atanh(1. - 2. * probs))) - math.log(math.fabs(1. - 2. * probs)) + math.log(2.) else: aux = math.pow(probs - 0.5, 2) log_norm_const = math.log(2.0) + (4.0 / 3.0 + 104.0 / 45.0 * aux) * aux log_lik = bern_log_lik + log_norm_const return log_lik def expec_grad(x, probs=None, logits=None): assert not (probs is None and logits is None) if logits is not None: probs = 1. / (1. + math.exp(-logits)) grad_bern_log_lik = x / probs - (1. - x) / (1. - probs) if probs < 0.499 or probs > 0.501: # using default values of lims here grad_log_c = 2. * probs - 4. * (probs - 1.) * probs * math.atanh(1. - 2. * probs) - 1. grad_log_c /= 2. * (probs - 1.) * probs * (2. * probs - 1.) * math.atanh(1. - 2. * probs) else: grad_log_c = 8. / 3. * (probs - 0.5) + 416. / 45. * math.pow(probs - 0.5, 3) grad = grad_bern_log_lik + grad_log_c if logits is not None: grad *= 1. / (1. + math.exp(logits)) - 1. / math.pow(1. + math.exp(logits), 2) return grad for tensor_type in [torch.FloatTensor, torch.DoubleTensor]: self._test_pdf_score(dist_class=ContinuousBernoulli, probs=tensor_type([0.1]), x=tensor_type([0.1]), expected_value=tensor_type([expec_val(0.1, probs=0.1)]), expected_gradient=tensor_type([expec_grad(0.1, probs=0.1)])) self._test_pdf_score(dist_class=ContinuousBernoulli, probs=tensor_type([0.1]), x=tensor_type([1.]), expected_value=tensor_type([expec_val(1., probs=0.1)]), expected_gradient=tensor_type([expec_grad(1., probs=0.1)])) self._test_pdf_score(dist_class=ContinuousBernoulli, probs=tensor_type([0.4999]), x=tensor_type([0.9]), expected_value=tensor_type([expec_val(0.9, probs=0.4999)]), expected_gradient=tensor_type([expec_grad(0.9, probs=0.4999)])) self._test_pdf_score(dist_class=ContinuousBernoulli, probs=tensor_type([1e-4]), x=tensor_type([1]), expected_value=tensor_type([expec_val(1, probs=1e-4)]), expected_gradient=tensor_type(tensor_type([expec_grad(1, probs=1e-4)])), atol=1e-3) self._test_pdf_score(dist_class=ContinuousBernoulli, probs=tensor_type([1 - 1e-4]), x=tensor_type([0.1]), expected_value=tensor_type([expec_val(0.1, probs=1 - 1e-4)]), expected_gradient=tensor_type([expec_grad(0.1, probs=1 - 1e-4)]), atol=2) self._test_pdf_score(dist_class=ContinuousBernoulli, logits=tensor_type([math.log(9999)]), x=tensor_type([0]), expected_value=tensor_type([expec_val(0, logits=math.log(9999))]), expected_gradient=tensor_type([expec_grad(0, logits=math.log(9999))]), atol=1e-3) self._test_pdf_score(dist_class=ContinuousBernoulli, logits=tensor_type([0.001]), x=tensor_type([0.5]), expected_value=tensor_type([expec_val(0.5, logits=0.001)]), expected_gradient=tensor_type([expec_grad(0.5, logits=0.001)])) def test_continuous_bernoulli_with_logits_underflow(self): for tensor_type, lim, expected in ([(torch.FloatTensor, -1e38, 2.76898), (torch.DoubleTensor, -1e308, 3.58473)]): self._test_pdf_score(dist_class=ContinuousBernoulli, logits=tensor_type([lim]), x=tensor_type([0]), expected_value=tensor_type([expected]), expected_gradient=tensor_type([0.])) def test_continuous_bernoulli_with_logits_overflow(self): for tensor_type, lim, expected in ([(torch.FloatTensor, 1e38, 2.76898), (torch.DoubleTensor, 1e308, 3.58473)]): self._test_pdf_score(dist_class=ContinuousBernoulli, logits=tensor_type([lim]), x=tensor_type([1]), expected_value=tensor_type([expected]), expected_gradient=tensor_type([0.])) # TODO: make this a pytest parameterized test class TestLazyLogitsInitialization(DistributionsTestCase): def setUp(self): super(TestLazyLogitsInitialization, self).setUp() # ContinuousBernoulli is not tested because log_prob is not computed simply # from 'logits', but 'probs' is also needed self.examples = [e for e in EXAMPLES if e.Dist in (Categorical, OneHotCategorical, Bernoulli, Binomial, Multinomial)] def test_lazy_logits_initialization(self): for Dist, params in self.examples: param = params[0].copy() if 'probs' not in param: continue probs = param.pop('probs') param['logits'] = probs_to_logits(probs) dist = Dist(**param) # Create new instance to generate a valid sample dist.log_prob(Dist(**param).sample()) message = 'Failed for {} example 0/{}'.format(Dist.__name__, len(params)) self.assertNotIn('probs', dist.__dict__, msg=message) try: dist.enumerate_support() except NotImplementedError: pass self.assertNotIn('probs', dist.__dict__, msg=message) batch_shape, event_shape = dist.batch_shape, dist.event_shape self.assertNotIn('probs', dist.__dict__, msg=message) def test_lazy_probs_initialization(self): for Dist, params in self.examples: param = params[0].copy() if 'probs' not in param: continue dist = Dist(**param) dist.sample() message = 'Failed for {} example 0/{}'.format(Dist.__name__, len(params)) self.assertNotIn('logits', dist.__dict__, msg=message) try: dist.enumerate_support() except NotImplementedError: pass self.assertNotIn('logits', dist.__dict__, msg=message) batch_shape, event_shape = dist.batch_shape, dist.event_shape self.assertNotIn('logits', dist.__dict__, msg=message) @unittest.skipIf(not TEST_NUMPY, "NumPy not found") class TestAgainstScipy(DistributionsTestCase): def setUp(self): super(TestAgainstScipy, self).setUp() positive_var = torch.randn(20).exp() positive_var2 = torch.randn(20).exp() random_var = torch.randn(20) simplex_tensor = softmax(torch.randn(20), dim=-1) cov_tensor = torch.randn(20, 20) cov_tensor = cov_tensor @ cov_tensor.mT self.distribution_pairs = [ ( Bernoulli(simplex_tensor), scipy.stats.bernoulli(simplex_tensor) ), ( Beta(positive_var, positive_var2), scipy.stats.beta(positive_var, positive_var2) ), ( Binomial(10, simplex_tensor), scipy.stats.binom(10 * np.ones(simplex_tensor.shape), simplex_tensor.numpy()) ), ( Cauchy(random_var, positive_var), scipy.stats.cauchy(loc=random_var, scale=positive_var) ), ( Dirichlet(positive_var), scipy.stats.dirichlet(positive_var) ), ( Exponential(positive_var), scipy.stats.expon(scale=positive_var.reciprocal()) ), ( FisherSnedecor(positive_var, 4 + positive_var2), # var for df2<=4 is undefined scipy.stats.f(positive_var, 4 + positive_var2) ), ( Gamma(positive_var, positive_var2), scipy.stats.gamma(positive_var, scale=positive_var2.reciprocal()) ), ( Geometric(simplex_tensor), scipy.stats.geom(simplex_tensor, loc=-1) ), ( Gumbel(random_var, positive_var2), scipy.stats.gumbel_r(random_var, positive_var2) ), ( HalfCauchy(positive_var), scipy.stats.halfcauchy(scale=positive_var) ), ( HalfNormal(positive_var2), scipy.stats.halfnorm(scale=positive_var2) ), ( Laplace(random_var, positive_var2), scipy.stats.laplace(random_var, positive_var2) ), ( # Tests fail 1e-5 threshold if scale > 3 LogNormal(random_var, positive_var.clamp(max=3)), scipy.stats.lognorm(s=positive_var.clamp(max=3), scale=random_var.exp()) ), ( LowRankMultivariateNormal(random_var, torch.zeros(20, 1), positive_var2), scipy.stats.multivariate_normal(random_var, torch.diag(positive_var2)) ), ( Multinomial(10, simplex_tensor), scipy.stats.multinomial(10, simplex_tensor) ), ( MultivariateNormal(random_var, torch.diag(positive_var2)), scipy.stats.multivariate_normal(random_var, torch.diag(positive_var2)) ), ( MultivariateNormal(random_var, cov_tensor), scipy.stats.multivariate_normal(random_var, cov_tensor) ), ( Normal(random_var, positive_var2), scipy.stats.norm(random_var, positive_var2) ), ( OneHotCategorical(simplex_tensor), scipy.stats.multinomial(1, simplex_tensor) ), ( Pareto(positive_var, 2 + positive_var2), scipy.stats.pareto(2 + positive_var2, scale=positive_var) ), ( Poisson(positive_var), scipy.stats.poisson(positive_var) ), ( StudentT(2 + positive_var, random_var, positive_var2), scipy.stats.t(2 + positive_var, random_var, positive_var2) ), ( Uniform(random_var, random_var + positive_var), scipy.stats.uniform(random_var, positive_var) ), ( VonMises(random_var, positive_var), scipy.stats.vonmises(positive_var, loc=random_var) ), ( Weibull(positive_var[0], positive_var2[0]), # scipy var for Weibull only supports scalars scipy.stats.weibull_min(c=positive_var2[0], scale=positive_var[0]) ), ( # scipy var for Wishart only supports scalars # SciPy allowed ndim -1 < df < ndim for Wishar distribution after version 1.7.0 Wishart( (20 if version.parse(scipy.__version__) < version.parse("1.7.0") else 19) + positive_var[0], cov_tensor, ), scipy.stats.wishart( (20 if version.parse(scipy.__version__) < version.parse("1.7.0") else 19) + positive_var[0].item(), cov_tensor, ), ), ] def test_mean(self): for pytorch_dist, scipy_dist in self.distribution_pairs: if isinstance(pytorch_dist, (Cauchy, HalfCauchy)): # Cauchy, HalfCauchy distributions' mean is nan, skipping check continue elif isinstance(pytorch_dist, (LowRankMultivariateNormal, MultivariateNormal)): self.assertEqual(pytorch_dist.mean, scipy_dist.mean, msg=pytorch_dist) else: self.assertEqual(pytorch_dist.mean, scipy_dist.mean(), msg=pytorch_dist) def test_variance_stddev(self): for pytorch_dist, scipy_dist in self.distribution_pairs: if isinstance(pytorch_dist, (Cauchy, HalfCauchy, VonMises)): # Cauchy, HalfCauchy distributions' standard deviation is nan, skipping check # VonMises variance is circular and scipy doesn't produce a correct result continue elif isinstance(pytorch_dist, (Multinomial, OneHotCategorical)): self.assertEqual(pytorch_dist.variance, np.diag(scipy_dist.cov()), msg=pytorch_dist) self.assertEqual(pytorch_dist.stddev, np.diag(scipy_dist.cov()) ** 0.5, msg=pytorch_dist) elif isinstance(pytorch_dist, (LowRankMultivariateNormal, MultivariateNormal)): self.assertEqual(pytorch_dist.variance, np.diag(scipy_dist.cov), msg=pytorch_dist) self.assertEqual(pytorch_dist.stddev, np.diag(scipy_dist.cov) ** 0.5, msg=pytorch_dist) else: self.assertEqual(pytorch_dist.variance, scipy_dist.var(), msg=pytorch_dist) self.assertEqual(pytorch_dist.stddev, scipy_dist.var() ** 0.5, msg=pytorch_dist) def test_cdf(self): for pytorch_dist, scipy_dist in self.distribution_pairs: samples = pytorch_dist.sample((5,)) try: cdf = pytorch_dist.cdf(samples) except NotImplementedError: continue self.assertEqual(cdf, scipy_dist.cdf(samples), msg=pytorch_dist) def test_icdf(self): for pytorch_dist, scipy_dist in self.distribution_pairs: samples = torch.rand((5,) + pytorch_dist.batch_shape) try: icdf = pytorch_dist.icdf(samples) except NotImplementedError: continue self.assertEqual(icdf, scipy_dist.ppf(samples), msg=pytorch_dist) class TestFunctors(DistributionsTestCase): def test_cat_transform(self): x1 = -1 * torch.arange(1, 101, dtype=torch.float).view(-1, 100) x2 = (torch.arange(1, 101, dtype=torch.float).view(-1, 100) - 1) / 100 x3 = torch.arange(1, 101, dtype=torch.float).view(-1, 100) t1, t2, t3 = ExpTransform(), AffineTransform(1, 100), identity_transform dim = 0 x = torch.cat([x1, x2, x3], dim=dim) t = CatTransform([t1, t2, t3], dim=dim) actual_dom_check = t.domain.check(x) expected_dom_check = torch.cat([t1.domain.check(x1), t2.domain.check(x2), t3.domain.check(x3)], dim=dim) self.assertEqual(expected_dom_check, actual_dom_check) actual = t(x) expected = torch.cat([t1(x1), t2(x2), t3(x3)], dim=dim) self.assertEqual(expected, actual) y1 = torch.arange(1, 101, dtype=torch.float).view(-1, 100) y2 = torch.arange(1, 101, dtype=torch.float).view(-1, 100) y3 = torch.arange(1, 101, dtype=torch.float).view(-1, 100) y = torch.cat([y1, y2, y3], dim=dim) actual_cod_check = t.codomain.check(y) expected_cod_check = torch.cat([t1.codomain.check(y1), t2.codomain.check(y2), t3.codomain.check(y3)], dim=dim) self.assertEqual(actual_cod_check, expected_cod_check) actual_inv = t.inv(y) expected_inv = torch.cat([t1.inv(y1), t2.inv(y2), t3.inv(y3)], dim=dim) self.assertEqual(expected_inv, actual_inv) actual_jac = t.log_abs_det_jacobian(x, y) expected_jac = torch.cat([t1.log_abs_det_jacobian(x1, y1), t2.log_abs_det_jacobian(x2, y2), t3.log_abs_det_jacobian(x3, y3)], dim=dim) self.assertEqual(actual_jac, expected_jac) def test_cat_transform_non_uniform(self): x1 = -1 * torch.arange(1, 101, dtype=torch.float).view(-1, 100) x2 = torch.cat([(torch.arange(1, 101, dtype=torch.float).view(-1, 100) - 1) / 100, torch.arange(1, 101, dtype=torch.float).view(-1, 100)]) t1 = ExpTransform() t2 = CatTransform([AffineTransform(1, 100), identity_transform], dim=0) dim = 0 x = torch.cat([x1, x2], dim=dim) t = CatTransform([t1, t2], dim=dim, lengths=[1, 2]) actual_dom_check = t.domain.check(x) expected_dom_check = torch.cat([t1.domain.check(x1), t2.domain.check(x2)], dim=dim) self.assertEqual(expected_dom_check, actual_dom_check) actual = t(x) expected = torch.cat([t1(x1), t2(x2)], dim=dim) self.assertEqual(expected, actual) y1 = torch.arange(1, 101, dtype=torch.float).view(-1, 100) y2 = torch.cat([torch.arange(1, 101, dtype=torch.float).view(-1, 100), torch.arange(1, 101, dtype=torch.float).view(-1, 100)]) y = torch.cat([y1, y2], dim=dim) actual_cod_check = t.codomain.check(y) expected_cod_check = torch.cat([t1.codomain.check(y1), t2.codomain.check(y2)], dim=dim) self.assertEqual(actual_cod_check, expected_cod_check) actual_inv = t.inv(y) expected_inv = torch.cat([t1.inv(y1), t2.inv(y2)], dim=dim) self.assertEqual(expected_inv, actual_inv) actual_jac = t.log_abs_det_jacobian(x, y) expected_jac = torch.cat([t1.log_abs_det_jacobian(x1, y1), t2.log_abs_det_jacobian(x2, y2)], dim=dim) self.assertEqual(actual_jac, expected_jac) def test_cat_event_dim(self): t1 = AffineTransform(0, 2 * torch.ones(2), event_dim=1) t2 = AffineTransform(0, 2 * torch.ones(2), event_dim=1) dim = 1 bs = 16 x1 = torch.randn(bs, 2) x2 = torch.randn(bs, 2) x = torch.cat([x1, x2], dim=1) t = CatTransform([t1, t2], dim=dim, lengths=[2, 2]) y1 = t1(x1) y2 = t2(x2) y = t(x) actual_jac = t.log_abs_det_jacobian(x, y) expected_jac = sum([t1.log_abs_det_jacobian(x1, y1), t2.log_abs_det_jacobian(x2, y2)]) def test_stack_transform(self): x1 = -1 * torch.arange(1, 101, dtype=torch.float) x2 = (torch.arange(1, 101, dtype=torch.float) - 1) / 100 x3 = torch.arange(1, 101, dtype=torch.float) t1, t2, t3 = ExpTransform(), AffineTransform(1, 100), identity_transform dim = 0 x = torch.stack([x1, x2, x3], dim=dim) t = StackTransform([t1, t2, t3], dim=dim) actual_dom_check = t.domain.check(x) expected_dom_check = torch.stack([t1.domain.check(x1), t2.domain.check(x2), t3.domain.check(x3)], dim=dim) self.assertEqual(expected_dom_check, actual_dom_check) actual = t(x) expected = torch.stack([t1(x1), t2(x2), t3(x3)], dim=dim) self.assertEqual(expected, actual) y1 = torch.arange(1, 101, dtype=torch.float) y2 = torch.arange(1, 101, dtype=torch.float) y3 = torch.arange(1, 101, dtype=torch.float) y = torch.stack([y1, y2, y3], dim=dim) actual_cod_check = t.codomain.check(y) expected_cod_check = torch.stack([t1.codomain.check(y1), t2.codomain.check(y2), t3.codomain.check(y3)], dim=dim) self.assertEqual(actual_cod_check, expected_cod_check) actual_inv = t.inv(x) expected_inv = torch.stack([t1.inv(x1), t2.inv(x2), t3.inv(x3)], dim=dim) self.assertEqual(expected_inv, actual_inv) actual_jac = t.log_abs_det_jacobian(x, y) expected_jac = torch.stack([t1.log_abs_det_jacobian(x1, y1), t2.log_abs_det_jacobian(x2, y2), t3.log_abs_det_jacobian(x3, y3)], dim=dim) self.assertEqual(actual_jac, expected_jac) class TestValidation(DistributionsTestCase): def setUp(self): super(TestValidation, self).setUp() def test_valid(self): for Dist, params in EXAMPLES: for param in params: Dist(validate_args=True, **param) def test_invalid_log_probs_arg(self): # Check that validation errors are indeed disabled, # but they might raise another error for Dist, params in EXAMPLES: if Dist == TransformedDistribution: # TransformedDistribution has a distribution instance # as the argument, so we cannot do much about that continue for i, param in enumerate(params): d_nonval = Dist(validate_args=False, **param) d_val = Dist(validate_args=True, **param) for v in torch.tensor([-2.0, -1.0, 0.0, 1.0, 2.0]): # samples with incorrect shape must throw ValueError only try: log_prob = d_val.log_prob(v) except ValueError: pass # get sample of correct shape val = torch.full(d_val.batch_shape + d_val.event_shape, v) # check samples with incorrect support try: log_prob = d_val.log_prob(val) except ValueError as e: if e.args and 'must be within the support' in e.args[0]: try: log_prob = d_nonval.log_prob(val) except RuntimeError: pass # check correct samples are ok valid_value = d_val.sample() d_val.log_prob(valid_value) # check invalid values raise ValueError if valid_value.dtype == torch.long: valid_value = valid_value.float() invalid_value = torch.full_like(valid_value, math.nan) try: with self.assertRaisesRegex( ValueError, "Expected value argument .* to be within the support .*", ): d_val.log_prob(invalid_value) except AssertionError as e: fail_string = "Support ValueError not raised for {} example {}/{}" raise AssertionError( fail_string.format(Dist.__name__, i + 1, len(params)) ) from e @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN") def test_invalid(self): for Dist, params in BAD_EXAMPLES: for i, param in enumerate(params): try: with self.assertRaises(ValueError): Dist(validate_args=True, **param) except AssertionError as e: fail_string = "ValueError not raised for {} example {}/{}" raise AssertionError( fail_string.format(Dist.__name__, i + 1, len(params)) ) from e def test_warning_unimplemented_constraints(self): class Delta(Distribution): def __init__(self, validate_args=True): super().__init__(validate_args=validate_args) def sample(self, sample_shape=torch.Size()): return torch.tensor(0.).expand(sample_shape) def log_prob(self, value): if self._validate_args: self._validate_sample(value) value[value != 0.] = -float('inf') value[value == 0.] = 0. return value with self.assertWarns(UserWarning): d = Delta() sample = d.sample((2,)) with self.assertWarns(UserWarning): d.log_prob(sample) def tearDown(self): super(TestValidation, self).tearDown() class TestJit(DistributionsTestCase): def _examples(self): for Dist, params in EXAMPLES: for param in params: keys = param.keys() values = tuple(param[key] for key in keys) if not all(isinstance(x, torch.Tensor) for x in values): continue sample = Dist(**param).sample() yield Dist, keys, values, sample def _perturb_tensor(self, value, constraint): if isinstance(constraint, constraints._IntegerGreaterThan): return value + 1 if isinstance(constraint, constraints._PositiveDefinite) or isinstance(constraint, constraints._PositiveSemidefinite): return value + torch.eye(value.shape[-1]) if value.dtype in [torch.float, torch.double]: transform = transform_to(constraint) delta = value.new(value.shape).normal_() return transform(transform.inv(value) + delta) if value.dtype == torch.long: result = value.clone() result[value == 0] = 1 result[value == 1] = 0 return result raise NotImplementedError def _perturb(self, Dist, keys, values, sample): with torch.no_grad(): if Dist is Uniform: param = dict(zip(keys, values)) param['low'] = param['low'] - torch.rand(param['low'].shape) param['high'] = param['high'] + torch.rand(param['high'].shape) values = [param[key] for key in keys] else: values = [self._perturb_tensor(value, Dist.arg_constraints.get(key, constraints.real)) for key, value in zip(keys, values)] param = dict(zip(keys, values)) sample = Dist(**param).sample() return values, sample def test_sample(self): for Dist, keys, values, sample in self._examples(): def f(*values): param = dict(zip(keys, values)) dist = Dist(**param) return dist.sample() traced_f = torch.jit.trace(f, values, check_trace=False) # FIXME Schema not found for node xfail = [ Cauchy, # aten::cauchy(Double(2,1), float, float, Generator) HalfCauchy, # aten::cauchy(Double(2, 1), float, float, Generator) VonMises # Variance is not Euclidean ] if Dist in xfail: continue with torch.random.fork_rng(): sample = f(*values) traced_sample = traced_f(*values) self.assertEqual(sample, traced_sample) # FIXME no nondeterministic nodes found in trace xfail = [Beta, Dirichlet] if Dist not in xfail: self.assertTrue(any(n.isNondeterministic() for n in traced_f.graph.nodes())) def test_rsample(self): for Dist, keys, values, sample in self._examples(): if not Dist.has_rsample: continue def f(*values): param = dict(zip(keys, values)) dist = Dist(**param) return dist.rsample() traced_f = torch.jit.trace(f, values, check_trace=False) # FIXME Schema not found for node xfail = [ Cauchy, # aten::cauchy(Double(2,1), float, float, Generator) HalfCauchy, # aten::cauchy(Double(2, 1), float, float, Generator) ] if Dist in xfail: continue with torch.random.fork_rng(): sample = f(*values) traced_sample = traced_f(*values) self.assertEqual(sample, traced_sample) # FIXME no nondeterministic nodes found in trace xfail = [Beta, Dirichlet] if Dist not in xfail: self.assertTrue(any(n.isNondeterministic() for n in traced_f.graph.nodes())) def test_log_prob(self): for Dist, keys, values, sample in self._examples(): # FIXME traced functions produce incorrect results xfail = [LowRankMultivariateNormal, MultivariateNormal] if Dist in xfail: continue def f(sample, *values): param = dict(zip(keys, values)) dist = Dist(**param) return dist.log_prob(sample) traced_f = torch.jit.trace(f, (sample,) + values) # check on different data values, sample = self._perturb(Dist, keys, values, sample) expected = f(sample, *values) actual = traced_f(sample, *values) self.assertEqual(expected, actual, msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual)) def test_enumerate_support(self): for Dist, keys, values, sample in self._examples(): # FIXME traced functions produce incorrect results xfail = [Binomial] if Dist in xfail: continue def f(*values): param = dict(zip(keys, values)) dist = Dist(**param) return dist.enumerate_support() try: traced_f = torch.jit.trace(f, values) except NotImplementedError: continue # check on different data values, sample = self._perturb(Dist, keys, values, sample) expected = f(*values) actual = traced_f(*values) self.assertEqual(expected, actual, msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual)) def test_mean(self): for Dist, keys, values, sample in self._examples(): def f(*values): param = dict(zip(keys, values)) dist = Dist(**param) return dist.mean try: traced_f = torch.jit.trace(f, values) except NotImplementedError: continue # check on different data values, sample = self._perturb(Dist, keys, values, sample) expected = f(*values) actual = traced_f(*values) expected[expected == float('inf')] = 0. actual[actual == float('inf')] = 0. self.assertEqual(expected, actual, msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual)) def test_variance(self): for Dist, keys, values, sample in self._examples(): if Dist in [Cauchy, HalfCauchy]: continue # infinite variance def f(*values): param = dict(zip(keys, values)) dist = Dist(**param) return dist.variance try: traced_f = torch.jit.trace(f, values) except NotImplementedError: continue # check on different data values, sample = self._perturb(Dist, keys, values, sample) expected = f(*values).clone() actual = traced_f(*values).clone() expected[expected == float('inf')] = 0. actual[actual == float('inf')] = 0. self.assertEqual(expected, actual, msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual)) def test_entropy(self): for Dist, keys, values, sample in self._examples(): # FIXME traced functions produce incorrect results xfail = [LowRankMultivariateNormal, MultivariateNormal] if Dist in xfail: continue def f(*values): param = dict(zip(keys, values)) dist = Dist(**param) return dist.entropy() try: traced_f = torch.jit.trace(f, values) except NotImplementedError: continue # check on different data values, sample = self._perturb(Dist, keys, values, sample) expected = f(*values) actual = traced_f(*values) self.assertEqual(expected, actual, msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual)) def test_cdf(self): for Dist, keys, values, sample in self._examples(): def f(sample, *values): param = dict(zip(keys, values)) dist = Dist(**param) cdf = dist.cdf(sample) return dist.icdf(cdf) try: traced_f = torch.jit.trace(f, (sample,) + values) except NotImplementedError: continue # check on different data values, sample = self._perturb(Dist, keys, values, sample) expected = f(sample, *values) actual = traced_f(sample, *values) self.assertEqual(expected, actual, msg='{}\nExpected:\n{}\nActual:\n{}'.format(Dist.__name__, expected, actual)) if __name__ == '__main__' and torch._C.has_lapack: run_tests()
pytorch-master
test/distributions/test_distributions.py
# Owner(s): ["module: distributions"] import io from numbers import Number import pytest import torch from torch.autograd.functional import jacobian from torch.distributions import Dirichlet, Independent, Normal, TransformedDistribution, constraints from torch.distributions.transforms import (AbsTransform, AffineTransform, ComposeTransform, CorrCholeskyTransform, CumulativeDistributionTransform, ExpTransform, IndependentTransform, LowerCholeskyTransform, PowerTransform, ReshapeTransform, SigmoidTransform, TanhTransform, SoftmaxTransform, SoftplusTransform, StickBreakingTransform, identity_transform, Transform, _InverseTransform) from torch.distributions.utils import tril_matrix_to_vec, vec_to_tril_matrix def get_transforms(cache_size): transforms = [ AbsTransform(cache_size=cache_size), ExpTransform(cache_size=cache_size), PowerTransform(exponent=2, cache_size=cache_size), PowerTransform(exponent=torch.tensor(5.).normal_(), cache_size=cache_size), PowerTransform(exponent=torch.tensor(5.).normal_(), cache_size=cache_size), SigmoidTransform(cache_size=cache_size), TanhTransform(cache_size=cache_size), AffineTransform(0, 1, cache_size=cache_size), AffineTransform(1, -2, cache_size=cache_size), AffineTransform(torch.randn(5), torch.randn(5), cache_size=cache_size), AffineTransform(torch.randn(4, 5), torch.randn(4, 5), cache_size=cache_size), SoftmaxTransform(cache_size=cache_size), SoftplusTransform(cache_size=cache_size), StickBreakingTransform(cache_size=cache_size), LowerCholeskyTransform(cache_size=cache_size), CorrCholeskyTransform(cache_size=cache_size), ComposeTransform([ AffineTransform(torch.randn(4, 5), torch.randn(4, 5), cache_size=cache_size), ]), ComposeTransform([ AffineTransform(torch.randn(4, 5), torch.randn(4, 5), cache_size=cache_size), ExpTransform(cache_size=cache_size), ]), ComposeTransform([ AffineTransform(0, 1, cache_size=cache_size), AffineTransform(torch.randn(4, 5), torch.randn(4, 5), cache_size=cache_size), AffineTransform(1, -2, cache_size=cache_size), AffineTransform(torch.randn(4, 5), torch.randn(4, 5), cache_size=cache_size), ]), ReshapeTransform((4, 5), (2, 5, 2)), IndependentTransform( AffineTransform(torch.randn(5), torch.randn(5), cache_size=cache_size), 1), CumulativeDistributionTransform(Normal(0, 1)), ] transforms += [t.inv for t in transforms] return transforms def reshape_transform(transform, shape): # Needed to squash batch dims for testing jacobian if isinstance(transform, AffineTransform): if isinstance(transform.loc, Number): return transform try: return AffineTransform(transform.loc.expand(shape), transform.scale.expand(shape), cache_size=transform._cache_size) except RuntimeError: return AffineTransform(transform.loc.reshape(shape), transform.scale.reshape(shape), cache_size=transform._cache_size) if isinstance(transform, ComposeTransform): reshaped_parts = [] for p in transform.parts: reshaped_parts.append(reshape_transform(p, shape)) return ComposeTransform(reshaped_parts, cache_size=transform._cache_size) if isinstance(transform.inv, AffineTransform): return reshape_transform(transform.inv, shape).inv if isinstance(transform.inv, ComposeTransform): return reshape_transform(transform.inv, shape).inv return transform # Generate pytest ids def transform_id(x): assert isinstance(x, Transform) name = f'Inv({type(x._inv).__name__})' if isinstance(x, _InverseTransform) else f'{type(x).__name__}' return f'{name}(cache_size={x._cache_size})' def generate_data(transform): torch.manual_seed(1) while isinstance(transform, IndependentTransform): transform = transform.base_transform if isinstance(transform, ReshapeTransform): return torch.randn(transform.in_shape) if isinstance(transform.inv, ReshapeTransform): return torch.randn(transform.inv.out_shape) domain = transform.domain while (isinstance(domain, constraints.independent) and domain is not constraints.real_vector): domain = domain.base_constraint codomain = transform.codomain x = torch.empty(4, 5) if domain is constraints.lower_cholesky or codomain is constraints.lower_cholesky: x = torch.empty(6, 6) x = x.normal_() return x elif domain is constraints.real: return x.normal_() elif domain is constraints.real_vector: # For corr_cholesky the last dim in the vector # must be of size (dim * dim) // 2 x = torch.empty(3, 6) x = x.normal_() return x elif domain is constraints.positive: return x.normal_().exp() elif domain is constraints.unit_interval: return x.uniform_() elif isinstance(domain, constraints.interval): x = x.uniform_() x = x.mul_(domain.upper_bound - domain.lower_bound).add_(domain.lower_bound) return x elif domain is constraints.simplex: x = x.normal_().exp() x /= x.sum(-1, True) return x elif domain is constraints.corr_cholesky: x = torch.empty(4, 5, 5) x = x.normal_().tril() x /= x.norm(dim=-1, keepdim=True) x.diagonal(dim1=-1).copy_(x.diagonal(dim1=-1).abs()) return x raise ValueError('Unsupported domain: {}'.format(domain)) TRANSFORMS_CACHE_ACTIVE = get_transforms(cache_size=1) TRANSFORMS_CACHE_INACTIVE = get_transforms(cache_size=0) ALL_TRANSFORMS = TRANSFORMS_CACHE_ACTIVE + TRANSFORMS_CACHE_INACTIVE + [identity_transform] @pytest.mark.parametrize('transform', ALL_TRANSFORMS, ids=transform_id) def test_inv_inv(transform, ids=transform_id): assert transform.inv.inv is transform @pytest.mark.parametrize('x', TRANSFORMS_CACHE_INACTIVE, ids=transform_id) @pytest.mark.parametrize('y', TRANSFORMS_CACHE_INACTIVE, ids=transform_id) def test_equality(x, y): if x is y: assert x == y else: assert x != y assert identity_transform == identity_transform.inv @pytest.mark.parametrize('transform', ALL_TRANSFORMS, ids=transform_id) def test_with_cache(transform): if transform._cache_size == 0: transform = transform.with_cache(1) assert transform._cache_size == 1 x = generate_data(transform).requires_grad_() try: y = transform(x) except NotImplementedError: pytest.skip('Not implemented.') y2 = transform(x) assert y2 is y @pytest.mark.parametrize('transform', ALL_TRANSFORMS, ids=transform_id) @pytest.mark.parametrize('test_cached', [True, False]) def test_forward_inverse(transform, test_cached): x = generate_data(transform).requires_grad_() try: y = transform(x) except NotImplementedError: pytest.skip('Not implemented.') assert y.shape == transform.forward_shape(x.shape) if test_cached: x2 = transform.inv(y) # should be implemented at least by caching else: try: x2 = transform.inv(y.clone()) # bypass cache except NotImplementedError: pytest.skip('Not implemented.') assert x2.shape == transform.inverse_shape(y.shape) y2 = transform(x2) if transform.bijective: # verify function inverse assert torch.allclose(x2, x, atol=1e-4, equal_nan=True), '\n'.join([ '{} t.inv(t(-)) error'.format(transform), 'x = {}'.format(x), 'y = t(x) = {}'.format(y), 'x2 = t.inv(y) = {}'.format(x2), ]) else: # verify weaker function pseudo-inverse assert torch.allclose(y2, y, atol=1e-4, equal_nan=True), '\n'.join([ '{} t(t.inv(t(-))) error'.format(transform), 'x = {}'.format(x), 'y = t(x) = {}'.format(y), 'x2 = t.inv(y) = {}'.format(x2), 'y2 = t(x2) = {}'.format(y2), ]) def test_compose_transform_shapes(): transform0 = ExpTransform() transform1 = SoftmaxTransform() transform2 = LowerCholeskyTransform() assert transform0.event_dim == 0 assert transform1.event_dim == 1 assert transform2.event_dim == 2 assert ComposeTransform([transform0, transform1]).event_dim == 1 assert ComposeTransform([transform0, transform2]).event_dim == 2 assert ComposeTransform([transform1, transform2]).event_dim == 2 transform0 = ExpTransform() transform1 = SoftmaxTransform() transform2 = LowerCholeskyTransform() base_dist0 = Normal(torch.zeros(4, 4), torch.ones(4, 4)) base_dist1 = Dirichlet(torch.ones(4, 4)) base_dist2 = Normal(torch.zeros(3, 4, 4), torch.ones(3, 4, 4)) @pytest.mark.parametrize('batch_shape, event_shape, dist', [ ((4, 4), (), base_dist0), ((4,), (4,), base_dist1), ((4, 4), (), TransformedDistribution(base_dist0, [transform0])), ((4,), (4,), TransformedDistribution(base_dist0, [transform1])), ((4,), (4,), TransformedDistribution(base_dist0, [transform0, transform1])), ((), (4, 4), TransformedDistribution(base_dist0, [transform0, transform2])), ((4,), (4,), TransformedDistribution(base_dist0, [transform1, transform0])), ((), (4, 4), TransformedDistribution(base_dist0, [transform1, transform2])), ((), (4, 4), TransformedDistribution(base_dist0, [transform2, transform0])), ((), (4, 4), TransformedDistribution(base_dist0, [transform2, transform1])), ((4,), (4,), TransformedDistribution(base_dist1, [transform0])), ((4,), (4,), TransformedDistribution(base_dist1, [transform1])), ((), (4, 4), TransformedDistribution(base_dist1, [transform2])), ((4,), (4,), TransformedDistribution(base_dist1, [transform0, transform1])), ((), (4, 4), TransformedDistribution(base_dist1, [transform0, transform2])), ((4,), (4,), TransformedDistribution(base_dist1, [transform1, transform0])), ((), (4, 4), TransformedDistribution(base_dist1, [transform1, transform2])), ((), (4, 4), TransformedDistribution(base_dist1, [transform2, transform0])), ((), (4, 4), TransformedDistribution(base_dist1, [transform2, transform1])), ((3, 4, 4), (), base_dist2), ((3,), (4, 4), TransformedDistribution(base_dist2, [transform2])), ((3,), (4, 4), TransformedDistribution(base_dist2, [transform0, transform2])), ((3,), (4, 4), TransformedDistribution(base_dist2, [transform1, transform2])), ((3,), (4, 4), TransformedDistribution(base_dist2, [transform2, transform0])), ((3,), (4, 4), TransformedDistribution(base_dist2, [transform2, transform1])), ]) def test_transformed_distribution_shapes(batch_shape, event_shape, dist): assert dist.batch_shape == batch_shape assert dist.event_shape == event_shape x = dist.rsample() try: dist.log_prob(x) # this should not crash except NotImplementedError: pytest.skip('Not implemented.') @pytest.mark.parametrize('transform', TRANSFORMS_CACHE_INACTIVE, ids=transform_id) def test_jit_fwd(transform): x = generate_data(transform).requires_grad_() def f(x): return transform(x) try: traced_f = torch.jit.trace(f, (x,)) except NotImplementedError: pytest.skip('Not implemented.') # check on different inputs x = generate_data(transform).requires_grad_() assert torch.allclose(f(x), traced_f(x), atol=1e-5, equal_nan=True) @pytest.mark.parametrize('transform', TRANSFORMS_CACHE_INACTIVE, ids=transform_id) def test_jit_inv(transform): y = generate_data(transform.inv).requires_grad_() def f(y): return transform.inv(y) try: traced_f = torch.jit.trace(f, (y,)) except NotImplementedError: pytest.skip('Not implemented.') # check on different inputs y = generate_data(transform.inv).requires_grad_() assert torch.allclose(f(y), traced_f(y), atol=1e-5, equal_nan=True) @pytest.mark.parametrize('transform', TRANSFORMS_CACHE_INACTIVE, ids=transform_id) def test_jit_jacobian(transform): x = generate_data(transform).requires_grad_() def f(x): y = transform(x) return transform.log_abs_det_jacobian(x, y) try: traced_f = torch.jit.trace(f, (x,)) except NotImplementedError: pytest.skip('Not implemented.') # check on different inputs x = generate_data(transform).requires_grad_() assert torch.allclose(f(x), traced_f(x), atol=1e-5, equal_nan=True) @pytest.mark.parametrize('transform', ALL_TRANSFORMS, ids=transform_id) def test_jacobian(transform): x = generate_data(transform) try: y = transform(x) actual = transform.log_abs_det_jacobian(x, y) except NotImplementedError: pytest.skip('Not implemented.') # Test shape target_shape = x.shape[:x.dim() - transform.domain.event_dim] assert actual.shape == target_shape # Expand if required transform = reshape_transform(transform, x.shape) ndims = len(x.shape) event_dim = ndims - transform.domain.event_dim x_ = x.view((-1,) + x.shape[event_dim:]) n = x_.shape[0] # Reshape to squash batch dims to a single batch dim transform = reshape_transform(transform, x_.shape) # 1. Transforms with unit jacobian if isinstance(transform, ReshapeTransform) or isinstance(transform.inv, ReshapeTransform): expected = x.new_zeros(x.shape[x.dim() - transform.domain.event_dim]) expected = x.new_zeros(x.shape[x.dim() - transform.domain.event_dim]) # 2. Transforms with 0 off-diagonal elements elif transform.domain.event_dim == 0: jac = jacobian(transform, x_) # assert off-diagonal elements are zero assert torch.allclose(jac, jac.diagonal().diag_embed()) expected = jac.diagonal().abs().log().reshape(x.shape) # 3. Transforms with non-0 off-diagonal elements else: if isinstance(transform, CorrCholeskyTransform): jac = jacobian(lambda x: tril_matrix_to_vec(transform(x), diag=-1), x_) elif isinstance(transform.inv, CorrCholeskyTransform): jac = jacobian(lambda x: transform(vec_to_tril_matrix(x, diag=-1)), tril_matrix_to_vec(x_, diag=-1)) elif isinstance(transform, StickBreakingTransform): jac = jacobian(lambda x: transform(x)[..., :-1], x_) else: jac = jacobian(transform, x_) # Note that jacobian will have shape (batch_dims, y_event_dims, batch_dims, x_event_dims) # However, batches are independent so this can be converted into a (batch_dims, event_dims, event_dims) # after reshaping the event dims (see above) to give a batched square matrix whose determinant # can be computed. gather_idx_shape = list(jac.shape) gather_idx_shape[-2] = 1 gather_idxs = torch.arange(n).reshape((n,) + (1,) * (len(jac.shape) - 1)).expand(gather_idx_shape) jac = jac.gather(-2, gather_idxs).squeeze(-2) out_ndims = jac.shape[-2] jac = jac[..., :out_ndims] # Remove extra zero-valued dims (for inverse stick-breaking). expected = torch.slogdet(jac).logabsdet assert torch.allclose(actual, expected, atol=1e-5) @pytest.mark.parametrize("event_dims", [(0,), (1,), (2, 3), (0, 1, 2), (1, 2, 0), (2, 0, 1)], ids=str) def test_compose_affine(event_dims): transforms = [AffineTransform(torch.zeros((1,) * e), 1, event_dim=e) for e in event_dims] transform = ComposeTransform(transforms) assert transform.codomain.event_dim == max(event_dims) assert transform.domain.event_dim == max(event_dims) base_dist = Normal(0, 1) if transform.domain.event_dim: base_dist = base_dist.expand((1,) * transform.domain.event_dim) dist = TransformedDistribution(base_dist, transform.parts) assert dist.support.event_dim == max(event_dims) base_dist = Dirichlet(torch.ones(5)) if transform.domain.event_dim > 1: base_dist = base_dist.expand((1,) * (transform.domain.event_dim - 1)) dist = TransformedDistribution(base_dist, transforms) assert dist.support.event_dim == max(1, max(event_dims)) @pytest.mark.parametrize("batch_shape", [(), (6,), (5, 4)], ids=str) def test_compose_reshape(batch_shape): transforms = [ReshapeTransform((), ()), ReshapeTransform((2,), (1, 2)), ReshapeTransform((3, 1, 2), (6,)), ReshapeTransform((6,), (2, 3))] transform = ComposeTransform(transforms) assert transform.codomain.event_dim == 2 assert transform.domain.event_dim == 2 data = torch.randn(batch_shape + (3, 2)) assert transform(data).shape == batch_shape + (2, 3) dist = TransformedDistribution(Normal(data, 1), transforms) assert dist.batch_shape == batch_shape assert dist.event_shape == (2, 3) assert dist.support.event_dim == 2 @pytest.mark.parametrize("sample_shape", [(), (7,)], ids=str) @pytest.mark.parametrize("transform_dim", [0, 1, 2]) @pytest.mark.parametrize("base_batch_dim", [0, 1, 2]) @pytest.mark.parametrize("base_event_dim", [0, 1, 2]) @pytest.mark.parametrize("num_transforms", [0, 1, 2, 3]) def test_transformed_distribution(base_batch_dim, base_event_dim, transform_dim, num_transforms, sample_shape): shape = torch.Size([2, 3, 4, 5]) base_dist = Normal(0, 1) base_dist = base_dist.expand(shape[4 - base_batch_dim - base_event_dim:]) if base_event_dim: base_dist = Independent(base_dist, base_event_dim) transforms = [AffineTransform(torch.zeros(shape[4 - transform_dim:]), 1), ReshapeTransform((4, 5), (20,)), ReshapeTransform((3, 20), (6, 10))] transforms = transforms[:num_transforms] transform = ComposeTransform(transforms) # Check validation in .__init__(). if base_batch_dim + base_event_dim < transform.domain.event_dim: with pytest.raises(ValueError): TransformedDistribution(base_dist, transforms) return d = TransformedDistribution(base_dist, transforms) # Check sampling is sufficiently expanded. x = d.sample(sample_shape) assert x.shape == sample_shape + d.batch_shape + d.event_shape num_unique = len(set(x.reshape(-1).tolist())) assert num_unique >= 0.9 * x.numel() # Check log_prob shape on full samples. log_prob = d.log_prob(x) assert log_prob.shape == sample_shape + d.batch_shape # Check log_prob shape on partial samples. y = x while y.dim() > len(d.event_shape): y = y[0] log_prob = d.log_prob(y) assert log_prob.shape == d.batch_shape def test_save_load_transform(): # Evaluating `log_prob` will create a weakref `_inv` which cannot be pickled. Here, we check # that `__getstate__` correctly handles the weakref, and that we can evaluate the density after. dist = TransformedDistribution(Normal(0, 1), [AffineTransform(2, 3)]) x = torch.linspace(0, 1, 10) log_prob = dist.log_prob(x) stream = io.BytesIO() torch.save(dist, stream) stream.seek(0) other = torch.load(stream) assert torch.allclose(log_prob, other.log_prob(x)) if __name__ == '__main__': pytest.main([__file__])
pytorch-master
test/distributions/test_transforms.py
# -*- coding: utf-8 -*- # Owner(s): ["oncall: package/deploy"] from io import BytesIO from sys import version_info from textwrap import dedent from unittest import skipIf from torch.package import PackageExporter, PackageImporter from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase @skipIf(version_info < (3, 7), "ResourceReader API introduced in Python 3.7") class TestResources(PackageTestCase): """Tests for access APIs for packaged resources.""" def test_resource_reader(self): """Test compliance with the get_resource_reader importlib API.""" buffer = BytesIO() with PackageExporter(buffer) as pe: # Layout looks like: # package # ├── one/ # │ ├── a.txt # │ ├── b.txt # │ ├── c.txt # │ └── three/ # │ ├── d.txt # │ └── e.txt # └── two/ # ├── f.txt # └── g.txt pe.save_text("one", "a.txt", "hello, a!") pe.save_text("one", "b.txt", "hello, b!") pe.save_text("one", "c.txt", "hello, c!") pe.save_text("one.three", "d.txt", "hello, d!") pe.save_text("one.three", "e.txt", "hello, e!") pe.save_text("two", "f.txt", "hello, f!") pe.save_text("two", "g.txt", "hello, g!") buffer.seek(0) importer = PackageImporter(buffer) reader_one = importer.get_resource_reader("one") with self.assertRaises(FileNotFoundError): reader_one.resource_path("a.txt") self.assertTrue(reader_one.is_resource("a.txt")) self.assertEqual(reader_one.open_resource("a.txt").getbuffer(), b"hello, a!") self.assertFalse(reader_one.is_resource("three")) reader_one_contents = list(reader_one.contents()) self.assertSequenceEqual( reader_one_contents, ["a.txt", "b.txt", "c.txt", "three"] ) reader_two = importer.get_resource_reader("two") self.assertTrue(reader_two.is_resource("f.txt")) self.assertEqual(reader_two.open_resource("f.txt").getbuffer(), b"hello, f!") reader_two_contents = list(reader_two.contents()) self.assertSequenceEqual(reader_two_contents, ["f.txt", "g.txt"]) reader_one_three = importer.get_resource_reader("one.three") self.assertTrue(reader_one_three.is_resource("d.txt")) self.assertEqual( reader_one_three.open_resource("d.txt").getbuffer(), b"hello, d!" ) reader_one_three_contenst = list(reader_one_three.contents()) self.assertSequenceEqual(reader_one_three_contenst, ["d.txt", "e.txt"]) self.assertIsNone(importer.get_resource_reader("nonexistent_package")) def test_package_resource_access(self): """Packaged modules should be able to use the importlib.resources API to access resources saved in the package. """ mod_src = dedent( """\ import importlib.resources import my_cool_resources def secret_message(): return importlib.resources.read_text(my_cool_resources, 'sekrit.txt') """ ) buffer = BytesIO() with PackageExporter(buffer) as pe: pe.save_source_string("foo.bar", mod_src) pe.save_text("my_cool_resources", "sekrit.txt", "my sekrit plays") buffer.seek(0) importer = PackageImporter(buffer) self.assertEqual( importer.import_module("foo.bar").secret_message(), "my sekrit plays" ) def test_importer_access(self): buffer = BytesIO() with PackageExporter(buffer) as he: he.save_text("main", "main", "my string") he.save_binary("main", "main_binary", "my string".encode("utf-8")) src = dedent( """\ import importlib import torch_package_importer as resources t = resources.load_text('main', 'main') b = resources.load_binary('main', 'main_binary') """ ) he.save_source_string("main", src, is_package=True) buffer.seek(0) hi = PackageImporter(buffer) m = hi.import_module("main") self.assertEqual(m.t, "my string") self.assertEqual(m.b, "my string".encode("utf-8")) def test_resource_access_by_path(self): """ Tests that packaged code can used importlib.resources.path. """ buffer = BytesIO() with PackageExporter(buffer) as he: he.save_binary("string_module", "my_string", "my string".encode("utf-8")) src = dedent( """\ import importlib.resources import string_module with importlib.resources.path(string_module, 'my_string') as path: with open(path, mode='r', encoding='utf-8') as f: s = f.read() """ ) he.save_source_string("main", src, is_package=True) buffer.seek(0) hi = PackageImporter(buffer) m = hi.import_module("main") self.assertEqual(m.s, "my string") if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_resources.py
# Owner(s): ["oncall: package/deploy"] from io import BytesIO from textwrap import dedent from unittest import skipIf import torch from torch.package import PackageExporter, PackageImporter, sys_importer from torch.testing._internal.common_utils import IS_FBCODE, IS_SANDCASTLE, run_tests try: from torchvision.models import resnet18 HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skipIfNoTorchVision = skipIf(not HAS_TORCHVISION, "no torchvision") try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase @skipIf(True, "Does not work with recent torchvision, see https://github.com/pytorch/pytorch/issues/81115") @skipIfNoTorchVision class ModelTest(PackageTestCase): """End-to-end tests packaging an entire model.""" @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_resnet(self): resnet = resnet18() f1 = self.temp() # create a package that will save it along with its code with PackageExporter(f1) as e: # put the pickled resnet in the package, by default # this will also save all the code files references by # the objects in the pickle e.intern("**") e.save_pickle("model", "model.pkl", resnet) # we can now load the saved model i = PackageImporter(f1) r2 = i.load_pickle("model", "model.pkl") # test that it works input = torch.rand(1, 3, 224, 224) ref = resnet(input) self.assertEqual(r2(input), ref) # functions exist also to get at the private modules in each package torchvision = i.import_module("torchvision") f2 = BytesIO() # if we are doing transfer learning we might want to re-save # things that were loaded from a package. # We need to tell the exporter about any modules that # came from imported packages so that it can resolve # class names like torchvision.models.resnet.ResNet # to their source code. with PackageExporter(f2, importer=(i, sys_importer)) as e: # e.importers is a list of module importing functions # that by default contains importlib.import_module. # it is searched in order until the first success and # that module is taken to be what torchvision.models.resnet # should be in this code package. In the case of name collisions, # such as trying to save a ResNet from two different packages, # we take the first thing found in the path, so only ResNet objects from # one importer will work. This avoids a bunch of name mangling in # the source code. If you need to actually mix ResNet objects, # we suggest reconstructing the model objects using code from a single package # using functions like save_state_dict and load_state_dict to transfer state # to the correct code objects. e.intern("**") e.save_pickle("model", "model.pkl", r2) f2.seek(0) i2 = PackageImporter(f2) r3 = i2.load_pickle("model", "model.pkl") self.assertEqual(r3(input), ref) @skipIfNoTorchVision def test_model_save(self): # This example shows how you might package a model # so that the creator of the model has flexibility about # how they want to save it but the 'server' can always # use the same API to load the package. # The convension is for each model to provide a # 'model' package with a 'load' function that actual # reads the model out of the archive. # How the load function is implemented is up to the # the packager. # get our normal torchvision resnet resnet = resnet18() f1 = BytesIO() # Option 1: save by pickling the whole model # + single-line, similar to torch.jit.save # - more difficult to edit the code after the model is created with PackageExporter(f1) as e: e.intern("**") e.save_pickle("model", "pickled", resnet) # note that this source is the same for all models in this approach # so it can be made part of an API that just takes the model and # packages it with this source. src = dedent( """\ import importlib import torch_package_importer as resources # server knows to call model.load() to get the model, # maybe in the future it passes options as arguments by convension def load(): return resources.load_pickle('model', 'pickled') """ ) e.save_source_string("model", src, is_package=True) f2 = BytesIO() # Option 2: save with state dict # - more code to write to save/load the model # + but this code can be edited later to adjust adapt the model later with PackageExporter(f2) as e: e.intern("**") e.save_pickle("model", "state_dict", resnet.state_dict()) src = dedent( """\ import importlib import torch_package_importer as resources from torchvision.models.resnet import resnet18 def load(): # if you want, you can later edit how resnet is constructed here # to edit the model in the package, while still loading the original # state dict weights r = resnet18() state_dict = resources.load_pickle('model', 'state_dict') r.load_state_dict(state_dict) return r """ ) e.save_source_string("model", src, is_package=True) # regardless of how we chose to package, we can now use the model in a server in the same way input = torch.rand(1, 3, 224, 224) results = [] for m in [f1, f2]: m.seek(0) importer = PackageImporter(m) the_model = importer.import_module("model").load() r = the_model(input) results.append(r) self.assertEqual(*results) @skipIfNoTorchVision def test_script_resnet(self): resnet = resnet18() f1 = BytesIO() # Option 1: save by pickling the whole model # + single-line, similar to torch.jit.save # - more difficult to edit the code after the model is created with PackageExporter(f1) as e: e.intern("**") e.save_pickle("model", "pickled", resnet) f1.seek(0) i = PackageImporter(f1) loaded = i.load_pickle("model", "pickled") # Model should script successfully. scripted = torch.jit.script(loaded) # Scripted model should save and load successfully. f2 = BytesIO() torch.jit.save(scripted, f2) f2.seek(0) loaded = torch.jit.load(f2) input = torch.rand(1, 3, 224, 224) self.assertEqual(loaded(input), resnet(input)) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_model.py
# Owner(s): ["oncall: package/deploy"] import importlib from io import BytesIO from sys import version_info from textwrap import dedent from unittest import skipIf import torch.nn from torch.package import EmptyMatchError, Importer, PackageExporter, PackageImporter from torch.package.package_exporter import PackagingError from torch.testing._internal.common_utils import IS_WINDOWS, run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestDependencyAPI(PackageTestCase): """Dependency management API tests. - mock() - extern() - deny() """ def test_extern(self): buffer = BytesIO() with PackageExporter(buffer) as he: he.extern(["package_a.subpackage", "module_a"]) he.save_source_string("foo", "import package_a.subpackage; import module_a") buffer.seek(0) hi = PackageImporter(buffer) import module_a import package_a.subpackage module_a_im = hi.import_module("module_a") hi.import_module("package_a.subpackage") package_a_im = hi.import_module("package_a") self.assertIs(module_a, module_a_im) self.assertIsNot(package_a, package_a_im) self.assertIs(package_a.subpackage, package_a_im.subpackage) def test_extern_glob(self): buffer = BytesIO() with PackageExporter(buffer) as he: he.extern(["package_a.*", "module_*"]) he.save_module("package_a") he.save_source_string( "test_module", dedent( """\ import package_a.subpackage import module_a """ ), ) buffer.seek(0) hi = PackageImporter(buffer) import module_a import package_a.subpackage module_a_im = hi.import_module("module_a") hi.import_module("package_a.subpackage") package_a_im = hi.import_module("package_a") self.assertIs(module_a, module_a_im) self.assertIsNot(package_a, package_a_im) self.assertIs(package_a.subpackage, package_a_im.subpackage) def test_extern_glob_allow_empty(self): """ Test that an error is thrown when a extern glob is specified with allow_empty=True and no matching module is required during packaging. """ import package_a.subpackage # noqa: F401 buffer = BytesIO() with self.assertRaisesRegex(EmptyMatchError, r"did not match any modules"): with PackageExporter(buffer) as exporter: exporter.extern(include=["package_b.*"], allow_empty=False) exporter.save_module("package_a.subpackage") def test_deny(self): """ Test marking packages as "deny" during export. """ buffer = BytesIO() with self.assertRaisesRegex(PackagingError, "denied"): with PackageExporter(buffer) as exporter: exporter.deny(["package_a.subpackage", "module_a"]) exporter.save_source_string("foo", "import package_a.subpackage") def test_deny_glob(self): """ Test marking packages as "deny" using globs instead of package names. """ buffer = BytesIO() with self.assertRaises(PackagingError): with PackageExporter(buffer) as exporter: exporter.deny(["package_a.*", "module_*"]) exporter.save_source_string( "test_module", dedent( """\ import package_a.subpackage import module_a """ ), ) @skipIf(version_info < (3, 7), "mock uses __getattr__ a 3.7 feature") def test_mock(self): buffer = BytesIO() with PackageExporter(buffer) as he: he.mock(["package_a.subpackage", "module_a"]) # Import something that dependso n package_a.subpackage he.save_source_string("foo", "import package_a.subpackage") buffer.seek(0) hi = PackageImporter(buffer) import package_a.subpackage _ = package_a.subpackage import module_a _ = module_a m = hi.import_module("package_a.subpackage") r = m.result with self.assertRaisesRegex(NotImplementedError, "was mocked out"): r() @skipIf(version_info < (3, 7), "mock uses __getattr__ a 3.7 feature") def test_mock_glob(self): buffer = BytesIO() with PackageExporter(buffer) as he: he.mock(["package_a.*", "module*"]) he.save_module("package_a") he.save_source_string( "test_module", dedent( """\ import package_a.subpackage import module_a """ ), ) buffer.seek(0) hi = PackageImporter(buffer) import package_a.subpackage _ = package_a.subpackage import module_a _ = module_a m = hi.import_module("package_a.subpackage") r = m.result with self.assertRaisesRegex(NotImplementedError, "was mocked out"): r() def test_mock_glob_allow_empty(self): """ Test that an error is thrown when a mock glob is specified with allow_empty=True and no matching module is required during packaging. """ import package_a.subpackage # noqa: F401 buffer = BytesIO() with self.assertRaisesRegex(EmptyMatchError, r"did not match any modules"): with PackageExporter(buffer) as exporter: exporter.mock(include=["package_b.*"], allow_empty=False) exporter.save_module("package_a.subpackage") @skipIf(version_info < (3, 7), "mock uses __getattr__ a 3.7 feature") def test_pickle_mocked(self): import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) buffer = BytesIO() with self.assertRaises(PackagingError): with PackageExporter(buffer) as he: he.mock(include="package_a.subpackage") he.intern("**") he.save_pickle("obj", "obj.pkl", obj2) @skipIf(version_info < (3, 7), "mock uses __getattr__ a 3.7 feature") def test_pickle_mocked_all(self): import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) buffer = BytesIO() with PackageExporter(buffer) as he: he.intern(include="package_a.**") he.mock("**") he.save_pickle("obj", "obj.pkl", obj2) def test_allow_empty_with_error(self): """If an error occurs during packaging, it should not be shadowed by the allow_empty error.""" buffer = BytesIO() with self.assertRaises(ModuleNotFoundError): with PackageExporter(buffer) as pe: # Even though we did not extern a module that matches this # pattern, we want to show the save_module error, not the allow_empty error. pe.extern("foo", allow_empty=False) pe.save_module("aodoifjodisfj") # will error # we never get here, so technically the allow_empty check # should raise an error. However, the error above is more # informative to what's actually going wrong with packaging. pe.save_source_string("bar", "import foo\n") def test_implicit_intern(self): """The save_module APIs should implicitly intern the module being saved.""" import package_a # noqa: F401 buffer = BytesIO() with PackageExporter(buffer) as he: he.save_module("package_a") def test_intern_error(self): """Failure to handle all dependencies should lead to an error.""" import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) buffer = BytesIO() with self.assertRaises(PackagingError) as e: with PackageExporter(buffer) as he: he.save_pickle("obj", "obj.pkl", obj2) self.assertEqual( str(e.exception), dedent( """ * Module did not match against any action pattern. Extern, mock, or intern it. package_a package_a.subpackage """ ), ) # Interning all dependencies should work with PackageExporter(buffer) as he: he.intern(["package_a", "package_a.subpackage"]) he.save_pickle("obj", "obj.pkl", obj2) @skipIf(IS_WINDOWS, "extension modules have a different file extension on windows") def test_broken_dependency(self): """A unpackageable dependency should raise a PackagingError.""" def create_module(name): spec = importlib.machinery.ModuleSpec(name, self, is_package=False) # type: ignore[arg-type] module = importlib.util.module_from_spec(spec) ns = module.__dict__ ns["__spec__"] = spec ns["__loader__"] = self ns["__file__"] = f"{name}.so" ns["__cached__"] = None return module class BrokenImporter(Importer): def __init__(self): self.modules = { "foo": create_module("foo"), "bar": create_module("bar"), } def import_module(self, module_name): return self.modules[module_name] buffer = BytesIO() with self.assertRaises(PackagingError) as e: with PackageExporter(buffer, importer=BrokenImporter()) as exporter: exporter.intern(["foo", "bar"]) exporter.save_source_string("my_module", "import foo; import bar") self.assertEqual( str(e.exception), dedent( """ * Module is a C extension module. torch.package supports Python modules only. foo bar """ ), ) def test_invalid_import(self): """An incorrectly-formed import should raise a PackagingError.""" buffer = BytesIO() with self.assertRaises(PackagingError) as e: with PackageExporter(buffer) as exporter: # This import will fail to load. exporter.save_source_string("foo", "from ........ import lol") self.assertEqual( str(e.exception), dedent( """ * Dependency resolution failed. foo Context: attempted relative import beyond top-level package """ ), ) @skipIf(version_info < (3, 7), "mock uses __getattr__ a 3.7 feature") def test_repackage_mocked_module(self): """Re-packaging a package that contains a mocked module should work correctly.""" buffer = BytesIO() with PackageExporter(buffer) as exporter: exporter.mock("package_a") exporter.save_source_string("foo", "import package_a") buffer.seek(0) importer = PackageImporter(buffer) foo = importer.import_module("foo") # "package_a" should be mocked out. with self.assertRaises(NotImplementedError): foo.package_a.get_something() # Re-package the model, but intern the previously-mocked module and mock # everything else. buffer2 = BytesIO() with PackageExporter(buffer2, importer=importer) as exporter: exporter.intern("package_a") exporter.mock("**") exporter.save_source_string("foo", "import package_a") buffer2.seek(0) importer2 = PackageImporter(buffer2) foo2 = importer2.import_module("foo") # "package_a" should still be mocked out. with self.assertRaises(NotImplementedError): foo2.package_a.get_something() def test_externing_c_extension(self): """Externing c extensions modules should allow us to still access them especially those found in torch._C.""" buffer = BytesIO() # The C extension module in question is F.gelu which comes from torch._C._nn model = torch.nn.TransformerEncoderLayer( d_model=64, nhead=2, dim_feedforward=64, dropout=1.0, batch_first=True, activation="gelu", norm_first=True, ) with PackageExporter(buffer) as e: e.extern("torch.**") e.intern("**") e.save_pickle("model", "model.pkl", model) buffer.seek(0) imp = PackageImporter(buffer) imp.load_pickle("model", "model.pkl") if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_dependency_api.py
result = "module_a"
pytorch-master
test/package/module_a.py
# Owner(s): ["oncall: package/deploy"] from io import BytesIO from torch.package import PackageExporter, PackageImporter from torch.package._mangling import ( demangle, get_mangle_prefix, is_mangled, PackageMangler, ) from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestMangling(PackageTestCase): def test_unique_manglers(self): """ Each mangler instance should generate a unique mangled name for a given input. """ a = PackageMangler() b = PackageMangler() self.assertNotEqual(a.mangle("foo.bar"), b.mangle("foo.bar")) def test_mangler_is_consistent(self): """ Mangling the same name twice should produce the same result. """ a = PackageMangler() self.assertEqual(a.mangle("abc.def"), a.mangle("abc.def")) def test_roundtrip_mangling(self): a = PackageMangler() self.assertEqual("foo", demangle(a.mangle("foo"))) def test_is_mangled(self): a = PackageMangler() b = PackageMangler() self.assertTrue(is_mangled(a.mangle("foo.bar"))) self.assertTrue(is_mangled(b.mangle("foo.bar"))) self.assertFalse(is_mangled("foo.bar")) self.assertFalse(is_mangled(demangle(a.mangle("foo.bar")))) def test_demangler_multiple_manglers(self): """ PackageDemangler should be able to demangle name generated by any PackageMangler. """ a = PackageMangler() b = PackageMangler() self.assertEqual("foo.bar", demangle(a.mangle("foo.bar"))) self.assertEqual("bar.foo", demangle(b.mangle("bar.foo"))) def test_mangle_empty_errors(self): a = PackageMangler() with self.assertRaises(AssertionError): a.mangle("") def test_demangle_base(self): """ Demangling a mangle parent directly should currently return an empty string. """ a = PackageMangler() mangled = a.mangle("foo") mangle_parent = mangled.partition(".")[0] self.assertEqual("", demangle(mangle_parent)) def test_mangle_prefix(self): a = PackageMangler() mangled = a.mangle("foo.bar") mangle_prefix = get_mangle_prefix(mangled) self.assertEqual(mangle_prefix + "." + "foo.bar", mangled) def test_unique_module_names(self): import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) f1 = BytesIO() with PackageExporter(f1) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", obj2) f1.seek(0) importer1 = PackageImporter(f1) loaded1 = importer1.load_pickle("obj", "obj.pkl") f1.seek(0) importer2 = PackageImporter(f1) loaded2 = importer2.load_pickle("obj", "obj.pkl") # Modules from loaded packages should not shadow the names of modules. # See mangling.md for more info. self.assertNotEqual(type(obj2).__module__, type(loaded1).__module__) self.assertNotEqual(type(loaded1).__module__, type(loaded2).__module__) def test_package_mangler(self): a = PackageMangler() b = PackageMangler() a_mangled = a.mangle("foo.bar") # Since `a` mangled this string, it should demangle properly. self.assertEqual(a.demangle(a_mangled), "foo.bar") # Since `b` did not mangle this string, demangling should leave it alone. self.assertEqual(b.demangle(a_mangled), a_mangled) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_mangling.py
# -*- coding: utf-8 -*- # Owner(s): ["oncall: package/deploy"] import inspect import platform from io import BytesIO from pathlib import Path from textwrap import dedent from unittest import skipIf from torch.package import is_from_package, PackageExporter, PackageImporter from torch.package.package_exporter import PackagingError from torch.testing._internal.common_utils import IS_FBCODE, IS_SANDCASTLE, run_tests, skipIfTorchDynamo try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestMisc(PackageTestCase): """Tests for one-off or random functionality. Try not to add to this!""" def test_file_structure(self): """ Tests package's Directory structure representation of a zip file. Ensures that the returned Directory prints what is expected and filters inputs/outputs correctly. """ buffer = BytesIO() export_plain = dedent( """\ ├── .data │ ├── extern_modules │ ├── python_version │ └── version ├── main │ └── main ├── obj │ └── obj.pkl ├── package_a │ ├── __init__.py │ └── subpackage.py └── module_a.py """ ) export_include = dedent( """\ ├── obj │ └── obj.pkl └── package_a └── subpackage.py """ ) import_exclude = dedent( """\ ├── .data │ ├── extern_modules │ ├── python_version │ └── version ├── main │ └── main ├── obj │ └── obj.pkl ├── package_a │ ├── __init__.py │ └── subpackage.py └── module_a.py """ ) with PackageExporter(buffer) as he: import module_a import package_a import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() he.intern("**") he.save_module(module_a.__name__) he.save_module(package_a.__name__) he.save_pickle("obj", "obj.pkl", obj) he.save_text("main", "main", "my string") buffer.seek(0) hi = PackageImporter(buffer) file_structure = hi.file_structure() # remove first line from testing because WINDOW/iOS/Unix treat the buffer differently self.assertEqual( dedent("\n".join(str(file_structure).split("\n")[1:])), export_plain, ) file_structure = hi.file_structure(include=["**/subpackage.py", "**/*.pkl"]) self.assertEqual( dedent("\n".join(str(file_structure).split("\n")[1:])), export_include, ) file_structure = hi.file_structure(exclude="**/*.storage") self.assertEqual( dedent("\n".join(str(file_structure).split("\n")[1:])), import_exclude, ) def test_python_version(self): """ Tests that the current python version is stored in the package and is available via PackageImporter's python_version() method. """ buffer = BytesIO() with PackageExporter(buffer) as he: from package_a.test_module import SimpleTest he.intern("**") obj = SimpleTest() he.save_pickle("obj", "obj.pkl", obj) buffer.seek(0) hi = PackageImporter(buffer) self.assertEqual(hi.python_version(), platform.python_version()) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_load_python_version_from_package(self): """Tests loading a package with a python version embdded""" importer1 = PackageImporter( f"{Path(__file__).parent}/package_e/test_nn_module.pt" ) self.assertEqual(importer1.python_version(), "3.9.7") def test_file_structure_has_file(self): """ Test Directory's has_file() method. """ buffer = BytesIO() with PackageExporter(buffer) as he: import package_a.subpackage he.intern("**") obj = package_a.subpackage.PackageASubpackageObject() he.save_pickle("obj", "obj.pkl", obj) buffer.seek(0) importer = PackageImporter(buffer) file_structure = importer.file_structure() self.assertTrue(file_structure.has_file("package_a/subpackage.py")) self.assertFalse(file_structure.has_file("package_a/subpackage")) def test_exporter_content_lists(self): """ Test content list API for PackageExporter's contained modules. """ with PackageExporter(BytesIO()) as he: import package_b he.extern("package_b.subpackage_1") he.mock("package_b.subpackage_2") he.intern("**") he.save_pickle("obj", "obj.pkl", package_b.PackageBObject(["a"])) self.assertEqual(he.externed_modules(), ["package_b.subpackage_1"]) self.assertEqual(he.mocked_modules(), ["package_b.subpackage_2"]) self.assertEqual( he.interned_modules(), ["package_b", "package_b.subpackage_0.subsubpackage_0"], ) self.assertEqual(he.get_rdeps("package_b.subpackage_2"), ["package_b"]) with self.assertRaises(PackagingError) as e: with PackageExporter(BytesIO()) as he: import package_b he.deny("package_b") he.save_pickle("obj", "obj.pkl", package_b.PackageBObject(["a"])) self.assertEqual(he.denied_modules(), ["package_b"]) def test_is_from_package(self): """is_from_package should work for objects and modules""" import package_a.subpackage buffer = BytesIO() obj = package_a.subpackage.PackageASubpackageObject() with PackageExporter(buffer) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", obj) buffer.seek(0) pi = PackageImporter(buffer) mod = pi.import_module("package_a.subpackage") loaded_obj = pi.load_pickle("obj", "obj.pkl") self.assertFalse(is_from_package(package_a.subpackage)) self.assertTrue(is_from_package(mod)) self.assertFalse(is_from_package(obj)) self.assertTrue(is_from_package(loaded_obj)) def test_inspect_class(self): """Should be able to retrieve source for a packaged class.""" import package_a.subpackage buffer = BytesIO() obj = package_a.subpackage.PackageASubpackageObject() with PackageExporter(buffer) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", obj) buffer.seek(0) pi = PackageImporter(buffer) packaged_class = pi.import_module( "package_a.subpackage" ).PackageASubpackageObject regular_class = package_a.subpackage.PackageASubpackageObject packaged_src = inspect.getsourcelines(packaged_class) regular_src = inspect.getsourcelines(regular_class) self.assertEqual(packaged_src, regular_src) def test_dunder_package_present(self): """ The attribute '__torch_package__' should be populated on imported modules. """ import package_a.subpackage buffer = BytesIO() obj = package_a.subpackage.PackageASubpackageObject() with PackageExporter(buffer) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", obj) buffer.seek(0) pi = PackageImporter(buffer) mod = pi.import_module("package_a.subpackage") self.assertTrue(hasattr(mod, "__torch_package__")) def test_dunder_package_works_from_package(self): """ The attribute '__torch_package__' should be accessible from within the module itself, so that packaged code can detect whether it's being used in a packaged context or not. """ import package_a.use_dunder_package as mod buffer = BytesIO() with PackageExporter(buffer) as pe: pe.intern("**") pe.save_module(mod.__name__) buffer.seek(0) pi = PackageImporter(buffer) imported_mod = pi.import_module(mod.__name__) self.assertTrue(imported_mod.is_from_package()) self.assertFalse(mod.is_from_package()) @skipIfTorchDynamo("Not a suitable test for TorchDynamo") def test_std_lib_sys_hackery_checks(self): """ The standard library performs sys.module assignment hackery which causes modules who do this hackery to fail on import. See https://github.com/pytorch/pytorch/issues/57490 for more information. """ import package_a.std_sys_module_hacks buffer = BytesIO() mod = package_a.std_sys_module_hacks.Module() with PackageExporter(buffer) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", mod) buffer.seek(0) pi = PackageImporter(buffer) mod = pi.load_pickle("obj", "obj.pkl") mod() if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_misc.py
# -*- coding: utf-8 -*- # Owner(s): ["oncall: package/deploy"] import os import zipfile from sys import version_info from tempfile import TemporaryDirectory from textwrap import dedent from unittest import skipIf import torch from torch.package import PackageExporter, PackageImporter from torch.testing._internal.common_utils import ( IS_FBCODE, IS_SANDCASTLE, IS_WINDOWS, run_tests, ) try: from torchvision.models import resnet18 HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skipIfNoTorchVision = skipIf(not HAS_TORCHVISION, "no torchvision") try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase from pathlib import Path packaging_directory = Path(__file__).parent @skipIf( IS_FBCODE or IS_SANDCASTLE or IS_WINDOWS, "Tests that use temporary files are disabled in fbcode", ) class DirectoryReaderTest(PackageTestCase): """Tests use of DirectoryReader as accessor for opened packages.""" @skipIfNoTorchVision @skipIf(True, "Does not work with latest TorchVision, see https://github.com/pytorch/pytorch/issues/81115") def test_loading_pickle(self): """ Test basic saving and loading of modules and pickles from a DirectoryReader. """ resnet = resnet18() filename = self.temp() with PackageExporter(filename) as e: e.intern("**") e.save_pickle("model", "model.pkl", resnet) zip_file = zipfile.ZipFile(filename, "r") with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) importer = PackageImporter(Path(temp_dir) / Path(filename).name) dir_mod = importer.load_pickle("model", "model.pkl") input = torch.rand(1, 3, 224, 224) self.assertEqual(dir_mod(input), resnet(input)) def test_loading_module(self): """ Test basic saving and loading of a packages from a DirectoryReader. """ import package_a filename = self.temp() with PackageExporter(filename) as e: e.save_module("package_a") zip_file = zipfile.ZipFile(filename, "r") with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) dir_importer = PackageImporter(Path(temp_dir) / Path(filename).name) dir_mod = dir_importer.import_module("package_a") self.assertEqual(dir_mod.result, package_a.result) def test_loading_has_record(self): """ Test DirectoryReader's has_record(). """ import package_a # noqa: F401 filename = self.temp() with PackageExporter(filename) as e: e.save_module("package_a") zip_file = zipfile.ZipFile(filename, "r") with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) dir_importer = PackageImporter(Path(temp_dir) / Path(filename).name) self.assertTrue(dir_importer.zip_reader.has_record("package_a/__init__.py")) self.assertFalse(dir_importer.zip_reader.has_record("package_a")) @skipIf(version_info < (3, 7), "ResourceReader API introduced in Python 3.7") def test_resource_reader(self): """Tests DirectoryReader as the base for get_resource_reader.""" filename = self.temp() with PackageExporter(filename) as pe: # Layout looks like: # package # ├── one/ # │ ├── a.txt # │ ├── b.txt # │ ├── c.txt # │ └── three/ # │ ├── d.txt # │ └── e.txt # └── two/ # ├── f.txt # └── g.txt pe.save_text("one", "a.txt", "hello, a!") pe.save_text("one", "b.txt", "hello, b!") pe.save_text("one", "c.txt", "hello, c!") pe.save_text("one.three", "d.txt", "hello, d!") pe.save_text("one.three", "e.txt", "hello, e!") pe.save_text("two", "f.txt", "hello, f!") pe.save_text("two", "g.txt", "hello, g!") zip_file = zipfile.ZipFile(filename, "r") with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) importer = PackageImporter(Path(temp_dir) / Path(filename).name) reader_one = importer.get_resource_reader("one") # Different behavior from still zipped archives resource_path = os.path.join( Path(temp_dir), Path(filename).name, "one", "a.txt" ) self.assertEqual(reader_one.resource_path("a.txt"), resource_path) self.assertTrue(reader_one.is_resource("a.txt")) self.assertEqual( reader_one.open_resource("a.txt").getbuffer(), b"hello, a!" ) self.assertFalse(reader_one.is_resource("three")) reader_one_contents = list(reader_one.contents()) reader_one_contents.sort() self.assertSequenceEqual( reader_one_contents, ["a.txt", "b.txt", "c.txt", "three"] ) reader_two = importer.get_resource_reader("two") self.assertTrue(reader_two.is_resource("f.txt")) self.assertEqual( reader_two.open_resource("f.txt").getbuffer(), b"hello, f!" ) reader_two_contents = list(reader_two.contents()) reader_two_contents.sort() self.assertSequenceEqual(reader_two_contents, ["f.txt", "g.txt"]) reader_one_three = importer.get_resource_reader("one.three") self.assertTrue(reader_one_three.is_resource("d.txt")) self.assertEqual( reader_one_three.open_resource("d.txt").getbuffer(), b"hello, d!" ) reader_one_three_contents = list(reader_one_three.contents()) reader_one_three_contents.sort() self.assertSequenceEqual(reader_one_three_contents, ["d.txt", "e.txt"]) self.assertIsNone(importer.get_resource_reader("nonexistent_package")) @skipIf(version_info < (3, 7), "ResourceReader API introduced in Python 3.7") def test_package_resource_access(self): """Packaged modules should be able to use the importlib.resources API to access resources saved in the package. """ mod_src = dedent( """\ import importlib.resources import my_cool_resources def secret_message(): return importlib.resources.read_text(my_cool_resources, 'sekrit.txt') """ ) filename = self.temp() with PackageExporter(filename) as pe: pe.save_source_string("foo.bar", mod_src) pe.save_text("my_cool_resources", "sekrit.txt", "my sekrit plays") zip_file = zipfile.ZipFile(filename, "r") with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) dir_importer = PackageImporter(Path(temp_dir) / Path(filename).name) self.assertEqual( dir_importer.import_module("foo.bar").secret_message(), "my sekrit plays", ) @skipIf(version_info < (3, 7), "ResourceReader API introduced in Python 3.7") def test_importer_access(self): filename = self.temp() with PackageExporter(filename) as he: he.save_text("main", "main", "my string") he.save_binary("main", "main_binary", "my string".encode("utf-8")) src = dedent( """\ import importlib import torch_package_importer as resources t = resources.load_text('main', 'main') b = resources.load_binary('main', 'main_binary') """ ) he.save_source_string("main", src, is_package=True) zip_file = zipfile.ZipFile(filename, "r") with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) dir_importer = PackageImporter(Path(temp_dir) / Path(filename).name) m = dir_importer.import_module("main") self.assertEqual(m.t, "my string") self.assertEqual(m.b, "my string".encode("utf-8")) @skipIf(version_info < (3, 7), "ResourceReader API introduced in Python 3.7") def test_resource_access_by_path(self): """ Tests that packaged code can used importlib.resources.path. """ filename = self.temp() with PackageExporter(filename) as e: e.save_binary("string_module", "my_string", "my string".encode("utf-8")) src = dedent( """\ import importlib.resources import string_module with importlib.resources.path(string_module, 'my_string') as path: with open(path, mode='r', encoding='utf-8') as f: s = f.read() """ ) e.save_source_string("main", src, is_package=True) zip_file = zipfile.ZipFile(filename, "r") with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) dir_importer = PackageImporter(Path(temp_dir) / Path(filename).name) m = dir_importer.import_module("main") self.assertEqual(m.s, "my string") def test_scriptobject_failure_message(self): """ Test basic saving and loading of a ScriptModule in a directory. Currently not supported. """ from package_a.test_module import ModWithTensor scripted_mod = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) filename = self.temp() with PackageExporter(filename) as e: e.save_pickle("res", "mod.pkl", scripted_mod) zip_file = zipfile.ZipFile(filename, "r") with self.assertRaisesRegex( RuntimeError, "Loading ScriptObjects from a PackageImporter created from a " "directory is not supported. Use a package archive file instead.", ): with TemporaryDirectory() as temp_dir: zip_file.extractall(path=temp_dir) dir_importer = PackageImporter(Path(temp_dir) / Path(filename).name) dir_mod = dir_importer.load_pickle("res", "mod.pkl") if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_directory_reader.py
# Owner(s): ["oncall: package/deploy"] from io import BytesIO import torch from torch.package import ( Importer, OrderedImporter, PackageExporter, PackageImporter, sys_importer, ) from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestImporter(PackageTestCase): """Tests for Importer and derived classes.""" def test_sys_importer(self): import package_a import package_a.subpackage self.assertIs(sys_importer.import_module("package_a"), package_a) self.assertIs( sys_importer.import_module("package_a.subpackage"), package_a.subpackage ) def test_sys_importer_roundtrip(self): import package_a import package_a.subpackage importer = sys_importer type_ = package_a.subpackage.PackageASubpackageObject module_name, type_name = importer.get_name(type_) module = importer.import_module(module_name) self.assertIs(getattr(module, type_name), type_) def test_single_ordered_importer(self): import module_a # noqa: F401 import package_a buffer = BytesIO() with PackageExporter(buffer) as pe: pe.save_module(package_a.__name__) buffer.seek(0) importer = PackageImporter(buffer) # Construct an importer-only environment. ordered_importer = OrderedImporter(importer) # The module returned by this environment should be the same one that's # in the importer. self.assertIs( ordered_importer.import_module("package_a"), importer.import_module("package_a"), ) # It should not be the one available in the outer Python environment. self.assertIsNot(ordered_importer.import_module("package_a"), package_a) # We didn't package this module, so it should not be available. with self.assertRaises(ModuleNotFoundError): ordered_importer.import_module("module_a") def test_ordered_importer_basic(self): import package_a buffer = BytesIO() with PackageExporter(buffer) as pe: pe.save_module(package_a.__name__) buffer.seek(0) importer = PackageImporter(buffer) ordered_importer_sys_first = OrderedImporter(sys_importer, importer) self.assertIs(ordered_importer_sys_first.import_module("package_a"), package_a) ordered_importer_package_first = OrderedImporter(importer, sys_importer) self.assertIs( ordered_importer_package_first.import_module("package_a"), importer.import_module("package_a"), ) def test_ordered_importer_whichmodule(self): """OrderedImporter's implementation of whichmodule should try each underlying importer's whichmodule in order. """ class DummyImporter(Importer): def __init__(self, whichmodule_return): self._whichmodule_return = whichmodule_return def import_module(self, module_name): raise NotImplementedError() def whichmodule(self, obj, name): return self._whichmodule_return class DummyClass: pass dummy_importer_foo = DummyImporter("foo") dummy_importer_bar = DummyImporter("bar") dummy_importer_not_found = DummyImporter( "__main__" ) # __main__ is used as a proxy for "not found" by CPython foo_then_bar = OrderedImporter(dummy_importer_foo, dummy_importer_bar) self.assertEqual(foo_then_bar.whichmodule(DummyClass(), ""), "foo") bar_then_foo = OrderedImporter(dummy_importer_bar, dummy_importer_foo) self.assertEqual(bar_then_foo.whichmodule(DummyClass(), ""), "bar") notfound_then_foo = OrderedImporter( dummy_importer_not_found, dummy_importer_foo ) self.assertEqual(notfound_then_foo.whichmodule(DummyClass(), ""), "foo") def test_package_importer_whichmodule_no_dunder_module(self): """Exercise corner case where we try to pickle an object whose __module__ doesn't exist because it's from a C extension. """ # torch.float16 is an example of such an object: it is a C extension # type for which there is no __module__ defined. The default pickler # finds it using special logic to traverse sys.modules and look up # `float16` on each module (see pickle.py:whichmodule). # # We must ensure that we emulate the same behavior from PackageImporter. my_dtype = torch.float16 # Set up a PackageImporter which has a torch.float16 object pickled: buffer = BytesIO() with PackageExporter(buffer) as exporter: exporter.save_pickle("foo", "foo.pkl", my_dtype) buffer.seek(0) importer = PackageImporter(buffer) my_loaded_dtype = importer.load_pickle("foo", "foo.pkl") # Re-save a package with only our PackageImporter as the importer buffer2 = BytesIO() with PackageExporter(buffer2, importer=importer) as exporter: exporter.save_pickle("foo", "foo.pkl", my_loaded_dtype) buffer2.seek(0) importer2 = PackageImporter(buffer2) my_loaded_dtype2 = importer2.load_pickle("foo", "foo.pkl") self.assertIs(my_dtype, my_loaded_dtype) self.assertIs(my_dtype, my_loaded_dtype2) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_importer.py
pytorch-master
test/package/__init__.py
# Owner(s): ["oncall: package/deploy"] from typing import Iterable from torch.package import GlobGroup from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestGlobGroup(PackageTestCase): def assertMatchesGlob(self, glob: GlobGroup, candidates: Iterable[str]): for candidate in candidates: self.assertTrue(glob.matches(candidate)) def assertNotMatchesGlob(self, glob: GlobGroup, candidates: Iterable[str]): for candidate in candidates: self.assertFalse(glob.matches(candidate)) def test_one_star(self): glob_group = GlobGroup("torch.*") self.assertMatchesGlob(glob_group, ["torch.foo", "torch.bar"]) self.assertNotMatchesGlob(glob_group, ["tor.foo", "torch.foo.bar", "torch"]) def test_one_star_middle(self): glob_group = GlobGroup("foo.*.bar") self.assertMatchesGlob(glob_group, ["foo.q.bar", "foo.foo.bar"]) self.assertNotMatchesGlob( glob_group, [ "foo.bar", "foo.foo", "outer.foo.inner.bar", "foo.q.bar.more", "foo.one.two.bar", ], ) def test_one_star_partial(self): glob_group = GlobGroup("fo*.bar") self.assertMatchesGlob(glob_group, ["fo.bar", "foo.bar", "foobar.bar"]) self.assertNotMatchesGlob(glob_group, ["oij.bar", "f.bar", "foo"]) def test_one_star_multiple_in_component(self): glob_group = GlobGroup("foo/a*.htm*", separator="/") self.assertMatchesGlob(glob_group, ["foo/a.html", "foo/a.htm", "foo/abc.html"]) def test_one_star_partial_extension(self): glob_group = GlobGroup("foo/*.txt", separator="/") self.assertMatchesGlob( glob_group, ["foo/hello.txt", "foo/goodbye.txt", "foo/.txt"] ) self.assertNotMatchesGlob( glob_group, ["foo/bar/hello.txt", "bar/foo/hello.txt"] ) def test_two_star(self): glob_group = GlobGroup("torch.**") self.assertMatchesGlob( glob_group, ["torch.foo", "torch.bar", "torch.foo.bar", "torch"] ) self.assertNotMatchesGlob(glob_group, ["what.torch", "torchvision"]) def test_two_star_end(self): glob_group = GlobGroup("**.torch") self.assertMatchesGlob(glob_group, ["torch", "bar.torch"]) self.assertNotMatchesGlob(glob_group, ["visiontorch"]) def test_two_star_middle(self): glob_group = GlobGroup("foo.**.baz") self.assertMatchesGlob( glob_group, ["foo.baz", "foo.bar.baz", "foo.bar1.bar2.baz"] ) self.assertNotMatchesGlob(glob_group, ["foobaz", "foo.bar.baz.z"]) def test_two_star_multiple(self): glob_group = GlobGroup("**/bar/**/*.txt", separator="/") self.assertMatchesGlob( glob_group, ["bar/baz.txt", "a/bar/b.txt", "bar/foo/c.txt"] ) self.assertNotMatchesGlob(glob_group, ["baz.txt", "a/b.txt"]) def test_raw_two_star(self): glob_group = GlobGroup("**") self.assertMatchesGlob(glob_group, ["bar", "foo.bar", "ab.c.d.e"]) self.assertNotMatchesGlob(glob_group, [""]) def test_invalid_raw(self): with self.assertRaises(ValueError): GlobGroup("a.**b") def test_exclude(self): glob_group = GlobGroup("torch.**", exclude=["torch.**.foo"]) self.assertMatchesGlob( glob_group, ["torch", "torch.bar", "torch.barfoo"], ) self.assertNotMatchesGlob( glob_group, ["torch.foo", "torch.some.foo"], ) def test_exclude_from_all(self): glob_group = GlobGroup("**", exclude=["foo.**", "bar.**"]) self.assertMatchesGlob(glob_group, ["a", "hello", "anything.really"]) self.assertNotMatchesGlob(glob_group, ["foo.bar", "foo.bar.baz"]) def test_list_include_exclude(self): glob_group = GlobGroup(["foo", "bar.**"], exclude=["bar.baz", "bar.qux"]) self.assertMatchesGlob(glob_group, ["foo", "bar.other", "bar.bazother"]) self.assertNotMatchesGlob(glob_group, ["bar.baz", "bar.qux"]) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_glob_group.py
# Owner(s): ["oncall: package/deploy"] from io import BytesIO from textwrap import dedent from unittest import skipIf import torch from torch.package import PackageExporter, PackageImporter from torch.testing._internal.common_utils import IS_FBCODE, IS_SANDCASTLE, run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase try: from torchvision.models import resnet18 HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skipIfNoTorchVision = skipIf(not HAS_TORCHVISION, "no torchvision") class TestPackageScript(PackageTestCase): """Tests for compatibility with TorchScript.""" def test_package_interface(self): """Packaging an interface class should work correctly.""" import package_a.fake_interface as fake uses_interface = fake.UsesInterface() scripted = torch.jit.script(uses_interface) scripted.proxy_mod = torch.jit.script(fake.NewModule()) buffer = BytesIO() with PackageExporter(buffer) as pe: pe.intern("**") pe.save_pickle("model", "model.pkl", uses_interface) buffer.seek(0) package_importer = PackageImporter(buffer) loaded = package_importer.load_pickle("model", "model.pkl") scripted_loaded = torch.jit.script(loaded) scripted_loaded.proxy_mod = torch.jit.script(fake.NewModule()) input = torch.tensor(1) self.assertEqual(scripted(input), scripted_loaded(input)) def test_different_package_interface(self): """Test a case where the interface defined in the package is different than the one defined in the loading environment, to make sure TorchScript can distinguish between the two. """ # Import one version of the interface import package_a.fake_interface as fake # Simulate a package that contains a different version of the # interface, with the exact same name. buffer = BytesIO() with PackageExporter(buffer) as pe: pe.save_source_string( fake.__name__, dedent( """\ import torch from torch import Tensor @torch.jit.interface class ModuleInterface(torch.nn.Module): def one(self, inp1: Tensor) -> Tensor: pass class ImplementsInterface(torch.nn.Module): def one(self, inp1: Tensor) -> Tensor: return inp1 + 1 class UsesInterface(torch.nn.Module): proxy_mod: ModuleInterface def __init__(self): super().__init__() self.proxy_mod = ImplementsInterface() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod.one(input) """ ), ) buffer.seek(0) package_importer = PackageImporter(buffer) diff_fake = package_importer.import_module(fake.__name__) # We should be able to script successfully. torch.jit.script(diff_fake.UsesInterface()) def test_package_script_class(self): import package_a.fake_script_class as fake buffer = BytesIO() with PackageExporter(buffer) as pe: pe.save_module(fake.__name__) buffer.seek(0) package_importer = PackageImporter(buffer) loaded = package_importer.import_module(fake.__name__) input = torch.tensor(1) self.assertTrue( torch.allclose( fake.uses_script_class(input), loaded.uses_script_class(input) ) ) def test_package_script_class_referencing_self(self): import package_a.fake_script_class as fake obj = fake.UsesIdListFeature() # intentionally script here to fill the compilation cache, to make sure # there is no false sharing between scripted types coming from the # package vs. outside environment. torch.jit.script(obj) buffer = BytesIO() with PackageExporter(buffer) as exporter: exporter.intern("**") exporter.save_pickle("obj", "obj.pkl", obj) buffer.seek(0) importer = PackageImporter(buffer) obj_loaded = importer.load_pickle("obj", "obj.pkl") scripted_obj_loaded = torch.jit.script(obj_loaded) # Make sure the scripted object can be serialized without error. buffer2 = scripted_obj_loaded.save_to_buffer() torch.jit.load(BytesIO(buffer2)) def test_different_package_script_class(self): """Test a case where the script class defined in the package is different than the one defined in the loading environment, to make sure TorchScript can distinguish between the two. """ import package_a.fake_script_class as fake # Simulate a package that contains a different version of the # script class ,with the attribute `bar` instead of `foo` buffer = BytesIO() with PackageExporter(buffer) as pe2: pe2.save_source_string( fake.__name__, dedent( """\ import torch @torch.jit.script class MyScriptClass: def __init__(self, x): self.bar = x """ ), ) buffer.seek(0) package_importer = PackageImporter(buffer) diff_fake = package_importer.import_module(fake.__name__) input = torch.rand(2, 3) loaded_script_class = diff_fake.MyScriptClass(input) orig_script_class = fake.MyScriptClass(input) self.assertEqual(loaded_script_class.bar, orig_script_class.foo) def test_save_scriptmodule(self): """ Test basic saving of ScriptModule. """ from package_a.test_module import ModWithTensor scripted_mod = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("res", "mod.pkl", scripted_mod) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod = importer.load_pickle("res", "mod.pkl", map_location="cpu") input = torch.rand(1, 2, 3) self.assertEqual(loaded_mod(input), scripted_mod(input)) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_save_scriptmodule_file(self): """ Test basic saving of ScriptModule in file. """ from package_a.test_module import ModWithTensor scripted_mod = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) filename = self.temp() with PackageExporter(filename) as e: e.save_pickle("res", "mod.pkl", scripted_mod) importer = PackageImporter(filename) loaded_mod = importer.load_pickle("res", "mod.pkl") input = torch.rand(1, 2, 3) self.assertEqual(loaded_mod(input), scripted_mod(input)) def test_save_scriptmodule_with_submods(self): """ Test basic saving of ScriptModule with submodule. """ from package_a.test_module import ModWithSubmod, ModWithTensor scripted_mod = torch.jit.script( ModWithSubmod(ModWithTensor(torch.rand(1, 2, 3))) ) buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("res", "mod.pkl", scripted_mod) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod = importer.load_pickle("res", "mod.pkl", map_location="cpu") input = torch.rand(1, 2, 3) self.assertEqual(loaded_mod(input), scripted_mod(input)) def test_save_scriptmodules_submod_redefinition(self): """ Test to verify saving multiple ScriptModules with same top module but different submodules works. Submodule is redefined to between the defintion of the top module to check that the different concrete types of the modules are thoroughly recognized by serializaiton code. """ class Submod(torch.nn.Module): def __init__(self): super().__init__() def forward(self, input: str): input = input + "_submod" return input class TopMod(torch.nn.Module): def __init__(self): super().__init__() self.modB = Submod() def forward(self, input: str): return self.modB(input) scripted_mod_0 = torch.jit.script(TopMod()) # redefinition is intentional, change single inner string # string attribute, should trigger new module type class Submod(torch.nn.Module): # noqa: F811 def __init__(self): super().__init__() def forward(self, input: str): input = input + "_submod(changed)" return input scripted_mod_1 = torch.jit.script(TopMod()) buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("res", "mod1.pkl", scripted_mod_0) e.save_pickle("res", "mod2.pkl", scripted_mod_1) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod_0 = importer.load_pickle("res", "mod1.pkl") loaded_mod_1 = importer.load_pickle("res", "mod2.pkl") self.assertEqual(loaded_mod_0("input"), scripted_mod_0("input")) self.assertEqual(loaded_mod_1("input"), scripted_mod_1("input")) self.assertNotEqual(loaded_mod_0("input"), loaded_mod_1("input")) def test_save_independent_scriptmodules(self): """ Test to verify saving multiple ScriptModules with completely separate code works. """ from package_a.test_module import ModWithTensor, SimpleTest scripted_mod_0 = torch.jit.script(SimpleTest()) scripted_mod_1 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("res", "mod1.pkl", scripted_mod_0) e.save_pickle("res", "mod2.pkl", scripted_mod_1) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod_0 = importer.load_pickle("res", "mod1.pkl") loaded_mod_1 = importer.load_pickle("res", "mod2.pkl") input = torch.rand(1, 2, 3) self.assertEqual(loaded_mod_0(input), scripted_mod_0(input)) self.assertEqual(loaded_mod_1(input), scripted_mod_1(input)) def test_save_repeat_scriptmodules(self): """ Test to verify saving multiple different modules and repeats of same scriptmodule in package works. Also tests that PyTorchStreamReader isn't having code hidden from PyTorchStreamWriter writing ScriptModule code files multiple times. """ from package_a.test_module import ( ModWithSubmodAndTensor, ModWithTensor, SimpleTest, ) scripted_mod_0 = torch.jit.script(SimpleTest()) scripted_mod_1 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) scripted_mod_2 = torch.jit.script( ModWithSubmodAndTensor( torch.rand(1, 2, 3), ModWithTensor(torch.rand(1, 2, 3)) ) ) buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("res", "mod0.pkl", scripted_mod_0) e.save_pickle("res", "mod1.pkl", scripted_mod_1) e.save_pickle("res", "mod2.pkl", scripted_mod_0) e.save_pickle("res", "mod3.pkl", scripted_mod_1) e.save_pickle("res", "mod4.pkl", scripted_mod_2) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod_0 = importer.load_pickle("res", "mod0.pkl") loaded_mod_1 = importer.load_pickle("res", "mod3.pkl") loaded_mod_2 = importer.load_pickle("res", "mod4.pkl") input = torch.rand(1, 2, 3) self.assertEqual(loaded_mod_0(input), scripted_mod_0(input)) self.assertEqual(loaded_mod_1(input), scripted_mod_1(input)) self.assertEqual(loaded_mod_2(input), scripted_mod_2(input)) def test_scriptmodules_repeat_save(self): """ Test to verify saving and loading same ScriptModule object works across multiple packages. """ from package_a.test_module import ModWithSubmodAndTensor, ModWithTensor scripted_mod_0 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) scripted_mod_1 = torch.jit.script( ModWithSubmodAndTensor( torch.rand(1, 2, 3), ModWithTensor(torch.rand(1, 2, 3)) ) ) buffer_0 = BytesIO() with PackageExporter(buffer_0) as e: e.save_pickle("res", "mod1.pkl", scripted_mod_0) buffer_0.seek(0) importer_0 = PackageImporter(buffer_0) loaded_module_0 = importer_0.load_pickle("res", "mod1.pkl") buffer_1 = BytesIO() with PackageExporter(buffer_1) as e: e.save_pickle("res", "mod1.pkl", scripted_mod_1) e.save_pickle("res", "mod2.pkl", loaded_module_0) buffer_1.seek(0) importer_1 = PackageImporter(buffer_1) loaded_module_1 = importer_1.load_pickle("res", "mod1.pkl") reloaded_module_0 = importer_1.load_pickle("res", "mod2.pkl") input = torch.rand(1, 2, 3) self.assertEqual(loaded_module_0(input), scripted_mod_0(input)) self.assertEqual(loaded_module_0(input), reloaded_module_0(input)) self.assertEqual(loaded_module_1(input), scripted_mod_1(input)) @skipIfNoTorchVision def test_save_scriptmodule_only_necessary_code(self): """ Test to verify when saving multiple packages with same CU that packages don't include unnecessary torchscript code files. The TorchVision code should only be saved in the package that relies on it. """ from package_a.test_module import ModWithTensor class ModWithTorchVision(torch.nn.Module): def __init__(self, name: str): super().__init__() self.tvmod = resnet18() def forward(self, input): return input * 4 scripted_mod_0 = torch.jit.script(ModWithTorchVision("foo")) scripted_mod_1 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) buffer_0 = BytesIO() with PackageExporter(buffer_0) as e: e.save_pickle("res", "mod1.pkl", scripted_mod_0) buffer_0.seek(0) importer_0 = importer = PackageImporter(buffer_0) buffer_1 = BytesIO() with PackageExporter(buffer_1) as e: e.save_pickle("res", "mod1.pkl", scripted_mod_1) buffer_1.seek(0) importer_1 = PackageImporter(buffer_1) self.assertTrue("torchvision" in str(importer_0.file_structure())) self.assertFalse("torchvision" in str(importer_1.file_structure())) def test_save_scriptmodules_in_container(self): """ Test saving of ScriptModules inside of container. Checks that relations between shared modules are upheld. """ from package_a.test_module import ModWithSubmodAndTensor, ModWithTensor scripted_mod_a = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3))) scripted_mod_b = torch.jit.script( ModWithSubmodAndTensor(torch.rand(1, 2, 3), scripted_mod_a) ) script_mods_list = [scripted_mod_a, scripted_mod_b] buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("res", "list.pkl", script_mods_list) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod_list = importer.load_pickle("res", "list.pkl") input = torch.rand(1, 2, 3) self.assertEqual(loaded_mod_list[0](input), scripted_mod_a(input)) self.assertEqual(loaded_mod_list[1](input), scripted_mod_b(input)) def test_save_eager_mods_sharing_scriptmodule(self): """ Test saving of single ScriptModule shared by multiple eager modules (ScriptModule should be saved just once even though is contained in multiple pickles). """ from package_a.test_module import ModWithSubmod, SimpleTest scripted_mod = torch.jit.script(SimpleTest()) mod1 = ModWithSubmod(scripted_mod) mod2 = ModWithSubmod(scripted_mod) buffer = BytesIO() with PackageExporter(buffer) as e: e.intern("**") e.save_pickle("res", "mod1.pkl", mod1) e.save_pickle("res", "mod2.pkl", mod2) buffer.seek(0) importer = PackageImporter(buffer) file_structure = importer.file_structure() self.assertTrue(file_structure.has_file(".data/ts_code/0")) self.assertFalse(file_structure.has_file(".data/ts_code/1")) def test_load_shared_scriptmodules(self): """ Test loading of single ScriptModule shared by multiple eager modules in single pickle (ScriptModule objects should be the same). """ from package_a.test_module import ( ModWithMultipleSubmods, ModWithSubmod, SimpleTest, ) scripted_mod = torch.jit.script(SimpleTest()) mod1 = ModWithSubmod(scripted_mod) mod2 = ModWithSubmod(scripted_mod) mod_parent = ModWithMultipleSubmods(mod1, mod2) buffer = BytesIO() with PackageExporter(buffer) as e: e.intern("**") e.save_pickle("res", "mod.pkl", mod_parent) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod = importer.load_pickle("res", "mod.pkl") self.assertTrue( id(loaded_mod.mod1.script_mod) == id(loaded_mod.mod2.script_mod) ) def test_save_shared_tensors(self): """ Test tensors shared across eager and ScriptModules are serialized once. """ from package_a.test_module import ModWithSubmodAndTensor, ModWithTensor shared_tensor = torch.rand(2, 3, 4) scripted_mod = torch.jit.script(ModWithTensor(shared_tensor)) mod1 = ModWithSubmodAndTensor(shared_tensor, scripted_mod) mod2 = ModWithSubmodAndTensor(shared_tensor, scripted_mod) buffer = BytesIO() with PackageExporter(buffer) as e: e.intern("**") e.save_pickle("res", "tensor", shared_tensor) e.save_pickle("res", "mod1.pkl", mod1) e.save_pickle("res", "mod2.pkl", mod2) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod_1 = importer.load_pickle("res", "mod1.pkl") # assert that there is only one storage stored in package file_structure = importer.file_structure(include=".data/*.storage") self.assertTrue(len(file_structure.children[".data"].children) == 1) input = torch.rand(2, 3, 4) self.assertEqual(loaded_mod_1(input), mod1(input)) def test_load_shared_tensors(self): """ Test tensors shared across eager and ScriptModules on load are the same. """ from package_a.test_module import ModWithTensor, ModWithTwoSubmodsAndTensor shared_tensor = torch.ones(3, 3) scripted_mod_0 = torch.jit.script(ModWithTensor(shared_tensor)) scripted_mod_1 = torch.jit.script(ModWithTensor(shared_tensor)) mod1 = ModWithTwoSubmodsAndTensor(shared_tensor, scripted_mod_0, scripted_mod_1) self.assertEqual( shared_tensor.storage()._cdata, scripted_mod_0.tensor.storage()._cdata, ) self.assertEqual( shared_tensor.storage()._cdata, scripted_mod_1.tensor.storage()._cdata, ) buffer = BytesIO() with PackageExporter(buffer) as e: e.intern("**") e.save_pickle("res", "mod1.pkl", mod1) buffer.seek(0) importer = PackageImporter(buffer) loaded_mod_1 = importer.load_pickle("res", "mod1.pkl") self.assertEqual( loaded_mod_1.tensor.storage()._cdata, loaded_mod_1.sub_mod_0.tensor.storage()._cdata, ) self.assertEqual( loaded_mod_1.tensor.storage()._cdata, loaded_mod_1.sub_mod_1.tensor.storage()._cdata, ) loaded_mod_1.tensor.add_(torch.ones(3, 3)) self.assertTrue( torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_0.tensor) ) self.assertTrue( torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_1.tensor) ) def test_load_shared_tensors_repackaged(self): """ Test tensors shared across eager and ScriptModules on load are the same across multiple package saves and loads. This is an important test because not all of the tensor information is restored in python between packages. The python identity is not maintained, but the backing cpp TensorImpl is. We load/save storages based off of this cpp TensorImpl and not the python identity. """ from package_a.test_module import ModWithTensor, ModWithTwoSubmodsAndTensor shared_tensor = torch.ones(3, 3) scripted_mod_0 = torch.jit.script(ModWithTensor(shared_tensor)) scripted_mod_1 = torch.jit.script(ModWithTensor(shared_tensor)) mod1 = ModWithTwoSubmodsAndTensor(shared_tensor, scripted_mod_0, scripted_mod_1) buffer_0 = BytesIO() with PackageExporter(buffer_0) as e: e.intern("**") e.save_pickle("res", "mod1.pkl", mod1) buffer_0.seek(0) importer_0 = PackageImporter(buffer_0) loaded_mod_0 = importer_0.load_pickle("res", "mod1.pkl") buffer_1 = BytesIO() with PackageExporter(buffer_1, importer=importer_0) as e: e.intern("**") e.save_pickle("res", "mod1.pkl", loaded_mod_0) buffer_1.seek(0) importer = PackageImporter(buffer_1) loaded_mod_1 = importer.load_pickle("res", "mod1.pkl") self.assertEqual( loaded_mod_1.tensor.storage()._cdata, loaded_mod_1.sub_mod_0.tensor.storage()._cdata, ) self.assertEqual( loaded_mod_1.tensor.storage()._cdata, loaded_mod_1.sub_mod_1.tensor.storage()._cdata, ) loaded_mod_1.tensor.add_( torch.ones(3, 3) ) # all tensors should reflect this change self.assertTrue( torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_0.tensor) ) self.assertTrue( torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_1.tensor) ) def test_saving_and_scripting_packaged_mod(self): """ Test scripting a module loaded from a package and saving it in a new package as a script object. """ from package_a.test_module import SimpleTest orig_mod = SimpleTest() buffer_0 = BytesIO() with PackageExporter(buffer_0) as e: e.intern("**") e.save_pickle("model", "model.pkl", orig_mod) buffer_0.seek(0) importer_0 = PackageImporter(buffer_0) loaded_mod = importer_0.load_pickle("model", "model.pkl") input = torch.rand(2, 3) self.assertEqual(loaded_mod(input), orig_mod(input)) scripted_mod = torch.jit.script(loaded_mod) buffer_1 = BytesIO() with PackageExporter(buffer_1, importer=importer_0) as e: e.intern("**") e.save_pickle("res", "scripted_mod.pkl", scripted_mod) buffer_1.seek(0) importer_1 = PackageImporter(buffer_1) loaded_mod_scripted = importer_1.load_pickle("res", "scripted_mod.pkl") self.assertEqual(loaded_mod_scripted(input), orig_mod(input)) def test_mixing_packaged_and_inline_modules(self): """ Test saving inline and imported modules in same package with independent code. """ class InlineMod(torch.nn.Module): def __init__(self, name: str): super().__init__() self.name = name self.tensor = torch.rand(1, 2, 3) def forward(self, input: str): input = input + "_modInline:" + self.name return input, (self.tensor * 4) inline_mod = InlineMod("inline") scripted_inline = torch.jit.script(inline_mod) from package_a.test_module import SimpleTest imported_mod = SimpleTest() scripted_imported = torch.jit.script(imported_mod) buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("model", "inline.pkl", scripted_inline) e.save_pickle("model", "imported.pkl", scripted_imported) buffer.seek(0) importer = PackageImporter(buffer) loaded_inline = importer.load_pickle("model", "inline.pkl") loaded_imported = importer.load_pickle("model", "imported.pkl") input = torch.rand(2, 3) self.assertEqual(loaded_imported(input), imported_mod(input)) self.assertEqual(loaded_inline("input"), inline_mod("input")) @skipIfNoTorchVision def test_mixing_packaged_and_inline_modules_shared_code(self): """ Test saving inline and imported modules in same package that share code. """ class TorchVisionTestInline(torch.nn.Module): def __init__(self): super().__init__() self.tvmod = resnet18() def forward(self, x): x = a_non_torch_leaf(x, x) return torch.relu(x + 3.0) def a_non_torch_leaf(a, b): return a + b inline_mod = TorchVisionTestInline() scripted_inline = torch.jit.script(inline_mod) from package_c.test_module import TorchVisionTest imported_mod = TorchVisionTest() scripted_imported = torch.jit.script(imported_mod) buffer = BytesIO() with PackageExporter(buffer) as e: e.save_pickle("model", "inline.pkl", scripted_inline) e.save_pickle("model", "imported.pkl", scripted_imported) buffer.seek(0) importer = PackageImporter(buffer) loaded_inline = importer.load_pickle("model", "inline.pkl") loaded_imported = importer.load_pickle("model", "imported.pkl") input = torch.rand(2, 3) self.assertEqual(loaded_imported(input), imported_mod(input)) self.assertEqual(loaded_inline(input), inline_mod(input)) def test_tensor_sharing_pickle(self): """Test that saving a ScriptModule and a separately saving a tensor object causes no issues. """ class M(torch.nn.Module): def __init__(self): super().__init__() self.foo = torch.ones(2, 3) def forward(self): return self.foo scripted_m = torch.jit.script(M()) original_tensor = torch.ones(0) f = BytesIO() with torch.package.PackageExporter(f) as exporter: exporter.save_pickle("model", "model.pkl", scripted_m) exporter.save_pickle("model", "input.pkl", original_tensor) f.seek(0) # Should be able to load correctly importer = PackageImporter(f) loaded_m = importer.load_pickle("model", "model.pkl") loaded_tensor = importer.load_pickle("model", "input.pkl") self.assertEqual(scripted_m.foo, loaded_m.foo) self.assertEqual(original_tensor, loaded_tensor) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_package_script.py
# Owner(s): ["oncall: package/deploy"] import pickle from io import BytesIO from textwrap import dedent from unittest import skipIf from torch.package import PackageExporter, PackageImporter, sys_importer from torch.testing._internal.common_utils import IS_FBCODE, IS_SANDCASTLE, run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase from pathlib import Path packaging_directory = Path(__file__).parent class TestSaveLoad(PackageTestCase): """Core save_* and loading API tests.""" @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_saving_source(self): filename = self.temp() with PackageExporter(filename) as he: he.save_source_file("foo", str(packaging_directory / "module_a.py")) he.save_source_file("foodir", str(packaging_directory / "package_a")) hi = PackageImporter(filename) foo = hi.import_module("foo") s = hi.import_module("foodir.subpackage") self.assertEqual(foo.result, "module_a") self.assertEqual(s.result, "package_a.subpackage") @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_saving_string(self): filename = self.temp() with PackageExporter(filename) as he: src = dedent( """\ import math the_math = math """ ) he.save_source_string("my_mod", src) hi = PackageImporter(filename) m = hi.import_module("math") import math self.assertIs(m, math) my_mod = hi.import_module("my_mod") self.assertIs(my_mod.math, math) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_save_module(self): filename = self.temp() with PackageExporter(filename) as he: import module_a import package_a he.save_module(module_a.__name__) he.save_module(package_a.__name__) hi = PackageImporter(filename) module_a_i = hi.import_module("module_a") self.assertEqual(module_a_i.result, "module_a") self.assertIsNot(module_a, module_a_i) package_a_i = hi.import_module("package_a") self.assertEqual(package_a_i.result, "package_a") self.assertIsNot(package_a_i, package_a) def test_dunder_imports(self): buffer = BytesIO() with PackageExporter(buffer) as he: import package_b obj = package_b.PackageBObject he.intern("**") he.save_pickle("res", "obj.pkl", obj) buffer.seek(0) hi = PackageImporter(buffer) loaded_obj = hi.load_pickle("res", "obj.pkl") package_b = hi.import_module("package_b") self.assertEqual(package_b.result, "package_b") math = hi.import_module("math") self.assertEqual(math.__name__, "math") xml_sub_sub_package = hi.import_module("xml.sax.xmlreader") self.assertEqual(xml_sub_sub_package.__name__, "xml.sax.xmlreader") subpackage_1 = hi.import_module("package_b.subpackage_1") self.assertEqual(subpackage_1.result, "subpackage_1") subpackage_2 = hi.import_module("package_b.subpackage_2") self.assertEqual(subpackage_2.result, "subpackage_2") subsubpackage_0 = hi.import_module("package_b.subpackage_0.subsubpackage_0") self.assertEqual(subsubpackage_0.result, "subsubpackage_0") def test_bad_dunder_imports(self): """Test to ensure bad __imports__ don't cause PackageExporter to fail.""" buffer = BytesIO() with PackageExporter(buffer) as e: e.save_source_string( "m", '__import__(these, unresolvable, "things", wont, crash, me)' ) def test_save_module_binary(self): f = BytesIO() with PackageExporter(f) as he: import module_a import package_a he.save_module(module_a.__name__) he.save_module(package_a.__name__) f.seek(0) hi = PackageImporter(f) module_a_i = hi.import_module("module_a") self.assertEqual(module_a_i.result, "module_a") self.assertIsNot(module_a, module_a_i) package_a_i = hi.import_module("package_a") self.assertEqual(package_a_i.result, "package_a") self.assertIsNot(package_a_i, package_a) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_pickle(self): import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) filename = self.temp() with PackageExporter(filename) as he: he.intern("**") he.save_pickle("obj", "obj.pkl", obj2) hi = PackageImporter(filename) # check we got dependencies sp = hi.import_module("package_a.subpackage") # check we didn't get other stuff with self.assertRaises(ImportError): hi.import_module("module_a") obj_loaded = hi.load_pickle("obj", "obj.pkl") self.assertIsNot(obj2, obj_loaded) self.assertIsInstance(obj_loaded.obj, sp.PackageASubpackageObject) self.assertIsNot( package_a.subpackage.PackageASubpackageObject, sp.PackageASubpackageObject ) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_exporting_mismatched_code(self): """ If an object with the same qualified name is loaded from different packages, the user should get an error if they try to re-save the object with the wrong package's source code. """ import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) f1 = self.temp() with PackageExporter(f1) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", obj2) importer1 = PackageImporter(f1) loaded1 = importer1.load_pickle("obj", "obj.pkl") importer2 = PackageImporter(f1) loaded2 = importer2.load_pickle("obj", "obj.pkl") f2 = self.temp() def make_exporter(): pe = PackageExporter(f2, importer=[importer1, sys_importer]) # Ensure that the importer finds the 'PackageAObject' defined in 'importer1' first. return pe # This should fail. The 'PackageAObject' type defined from 'importer1' # is not necessarily the same 'obj2's version of 'PackageAObject'. pe = make_exporter() with self.assertRaises(pickle.PicklingError): pe.save_pickle("obj", "obj.pkl", obj2) # This should also fail. The 'PackageAObject' type defined from 'importer1' # is not necessarily the same as the one defined from 'importer2' pe = make_exporter() with self.assertRaises(pickle.PicklingError): pe.save_pickle("obj", "obj.pkl", loaded2) # This should succeed. The 'PackageAObject' type defined from # 'importer1' is a match for the one used by loaded1. pe = make_exporter() pe.save_pickle("obj", "obj.pkl", loaded1) def test_save_imported_module(self): """Saving a module that came from another PackageImporter should work.""" import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) buffer = BytesIO() with PackageExporter(buffer) as exporter: exporter.intern("**") exporter.save_pickle("model", "model.pkl", obj2) buffer.seek(0) importer = PackageImporter(buffer) imported_obj2 = importer.load_pickle("model", "model.pkl") imported_obj2_module = imported_obj2.__class__.__module__ # Should export without error. buffer2 = BytesIO() with PackageExporter(buffer2, importer=(importer, sys_importer)) as exporter: exporter.intern("**") exporter.save_module(imported_obj2_module) def test_save_imported_module_using_package_importer(self): """Exercise a corner case: re-packaging a module that uses `torch_package_importer`""" import package_a.use_torch_package_importer # noqa: F401 buffer = BytesIO() with PackageExporter(buffer) as exporter: exporter.intern("**") exporter.save_module("package_a.use_torch_package_importer") buffer.seek(0) importer = PackageImporter(buffer) # Should export without error. buffer2 = BytesIO() with PackageExporter(buffer2, importer=(importer, sys_importer)) as exporter: exporter.intern("**") exporter.save_module("package_a.use_torch_package_importer") if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_save_load.py
# Owner(s): ["oncall: package/deploy"] from io import BytesIO from torch.package import PackageExporter, PackageImporter, sys_importer from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestRepackage(PackageTestCase): """Tests for repackaging.""" def test_repackage_import_indirectly_via_parent_module(self): from package_d.imports_directly import ImportsDirectlyFromSubSubPackage from package_d.imports_indirectly import ImportsIndirectlyFromSubPackage model_a = ImportsDirectlyFromSubSubPackage() buffer = BytesIO() with PackageExporter(buffer) as pe: pe.intern("**") pe.save_pickle("default", "model.py", model_a) buffer.seek(0) pi = PackageImporter(buffer) loaded_model = pi.load_pickle("default", "model.py") model_b = ImportsIndirectlyFromSubPackage() buffer = BytesIO() with PackageExporter( buffer, importer=( pi, sys_importer, ), ) as pe: pe.intern("**") pe.save_pickle("default", "model_b.py", model_b) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_repackage.py
import os import sys from tempfile import NamedTemporaryFile import torch.package.package_exporter from torch.testing._internal.common_utils import IS_WINDOWS, TestCase class PackageTestCase(TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._temporary_files = [] def temp(self): t = NamedTemporaryFile() name = t.name if IS_WINDOWS: t.close() # can't read an open file in windows else: self._temporary_files.append(t) return name def setUp(self): """Add test/package/ to module search path. This ensures that importing our fake packages via, e.g. `import package_a` will always work regardless of how we invoke the test. """ super().setUp() self.package_test_dir = os.path.dirname(os.path.realpath(__file__)) self.orig_sys_path = sys.path.copy() sys.path.append(self.package_test_dir) torch.package.package_exporter._gate_torchscript_serialization = False def tearDown(self): super().tearDown() sys.path = self.orig_sys_path # remove any temporary files for t in self._temporary_files: t.close() self._temporary_files = []
pytorch-master
test/package/common.py
# Owner(s): ["oncall: package/deploy"] from io import BytesIO import torch from torch.fx import Graph, GraphModule, symbolic_trace from torch.package import ( ObjMismatchError, PackageExporter, PackageImporter, sys_importer, ) from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestPackageFX(PackageTestCase): """Tests for compatibility with FX.""" def test_package_fx_simple(self): class SimpleTest(torch.nn.Module): def forward(self, x): return torch.relu(x + 3.0) st = SimpleTest() traced = symbolic_trace(st) f = BytesIO() with PackageExporter(f) as pe: pe.save_pickle("model", "model.pkl", traced) f.seek(0) pi = PackageImporter(f) loaded_traced = pi.load_pickle("model", "model.pkl") input = torch.rand(2, 3) self.assertEqual(loaded_traced(input), traced(input)) def test_package_then_fx(self): from package_a.test_module import SimpleTest model = SimpleTest() f = BytesIO() with PackageExporter(f) as pe: pe.intern("**") pe.save_pickle("model", "model.pkl", model) f.seek(0) pi = PackageImporter(f) loaded = pi.load_pickle("model", "model.pkl") traced = symbolic_trace(loaded) input = torch.rand(2, 3) self.assertEqual(loaded(input), traced(input)) def test_package_fx_package(self): from package_a.test_module import SimpleTest model = SimpleTest() f = BytesIO() with PackageExporter(f) as pe: pe.intern("**") pe.save_pickle("model", "model.pkl", model) f.seek(0) pi = PackageImporter(f) loaded = pi.load_pickle("model", "model.pkl") traced = symbolic_trace(loaded) # re-save the package exporter f2 = BytesIO() # This should fail, because we are referencing some globals that are # only in the package. with self.assertRaises(ObjMismatchError): with PackageExporter(f2) as pe: pe.intern("**") pe.save_pickle("model", "model.pkl", traced) f2.seek(0) with PackageExporter(f2, importer=(pi, sys_importer)) as pe: # Make the package available to the exporter's environment. pe.intern("**") pe.save_pickle("model", "model.pkl", traced) f2.seek(0) pi2 = PackageImporter(f2) loaded2 = pi2.load_pickle("model", "model.pkl") input = torch.rand(2, 3) self.assertEqual(loaded(input), loaded2(input)) def test_package_fx_with_imports(self): import package_a.subpackage # Manually construct a graph that invokes a leaf function graph = Graph() a = graph.placeholder("x") b = graph.placeholder("y") c = graph.call_function(package_a.subpackage.leaf_function, (a, b)) d = graph.call_function(torch.sin, (c,)) graph.output(d) gm = GraphModule(torch.nn.Module(), graph) f = BytesIO() with PackageExporter(f) as pe: pe.intern("**") pe.save_pickle("model", "model.pkl", gm) f.seek(0) pi = PackageImporter(f) loaded_gm = pi.load_pickle("model", "model.pkl") input_x = torch.rand(2, 3) input_y = torch.rand(2, 3) self.assertTrue( torch.allclose(loaded_gm(input_x, input_y), gm(input_x, input_y)) ) # Check that the packaged version of the leaf_function dependency is # not the same as in the outer env. packaged_dependency = pi.import_module("package_a.subpackage") self.assertTrue(packaged_dependency is not package_a.subpackage) def test_package_fx_custom_tracer(self): from package_a.test_all_leaf_modules_tracer import TestAllLeafModulesTracer from package_a.test_module import ModWithTwoSubmodsAndTensor, SimpleTest class SpecialGraphModule(torch.fx.GraphModule): def __init__(self, root, graph, info): super().__init__(root, graph) self.info = info sub_module = SimpleTest() module = ModWithTwoSubmodsAndTensor( torch.ones(3), sub_module, sub_module, ) tracer = TestAllLeafModulesTracer() graph = tracer.trace(module) self.assertEqual(graph._tracer_cls, TestAllLeafModulesTracer) gm = SpecialGraphModule(module, graph, "secret") self.assertEqual(gm._tracer_cls, TestAllLeafModulesTracer) f = BytesIO() with PackageExporter(f) as pe: pe.intern("**") pe.save_pickle("model", "model.pkl", gm) f.seek(0) pi = PackageImporter(f) loaded_gm = pi.load_pickle("model", "model.pkl") self.assertEqual( type(loaded_gm).__class__.__name__, SpecialGraphModule.__class__.__name__ ) self.assertEqual(loaded_gm.info, "secret") input_x = torch.randn(3) self.assertEqual(loaded_gm(input_x), gm(input_x)) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_package_fx.py
# Owner(s): ["oncall: package/deploy"] from io import BytesIO from torch.package import PackageExporter from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestDependencyHooks(PackageTestCase): """Dependency management hooks API tests. - register_mock_hook() - register_extern_hook() """ def test_single_hook(self): buffer = BytesIO() my_externs = set() def my_extern_hook(package_exporter, module_name): my_externs.add(module_name) with PackageExporter(buffer) as exporter: exporter.extern(["package_a.subpackage", "module_a"]) exporter.register_extern_hook(my_extern_hook) exporter.save_source_string("foo", "import module_a") self.assertEqual(my_externs, set(["module_a"])) def test_multiple_extern_hooks(self): buffer = BytesIO() my_externs = set() def my_extern_hook(package_exporter, module_name): my_externs.add(module_name) # This also checks ordering, since `remove()` will fail if the value is not in the set. def my_extern_hook2(package_exporter, module_name): my_externs.remove(module_name) with PackageExporter(buffer) as exporter: exporter.extern(["package_a.subpackage", "module_a"]) exporter.register_extern_hook(my_extern_hook) exporter.register_extern_hook(my_extern_hook2) exporter.save_source_string("foo", "import module_a") self.assertEqual(my_externs, set()) def test_multiple_mock_hooks(self): buffer = BytesIO() my_mocks = set() def my_mock_hook(package_exporter, module_name): my_mocks.add(module_name) # This also checks ordering, since `remove()` will fail if the value is not in the set. def my_mock_hook2(package_exporter, module_name): my_mocks.remove(module_name) with PackageExporter(buffer) as exporter: exporter.mock(["package_a.subpackage", "module_a"]) exporter.register_mock_hook(my_mock_hook) exporter.register_mock_hook(my_mock_hook2) exporter.save_source_string("foo", "import module_a") self.assertEqual(my_mocks, set()) def test_remove_hooks(self): buffer = BytesIO() my_externs = set() my_externs2 = set() def my_extern_hook(package_exporter, module_name): my_externs.add(module_name) def my_extern_hook2(package_exporter, module_name): my_externs2.add(module_name) with PackageExporter(buffer) as exporter: exporter.extern(["package_a.subpackage", "module_a"]) handle = exporter.register_extern_hook(my_extern_hook) exporter.register_extern_hook(my_extern_hook2) handle.remove() exporter.save_source_string("foo", "import module_a") self.assertEqual(my_externs, set()) self.assertEqual(my_externs2, set(["module_a"])) def test_extern_and_mock_hook(self): buffer = BytesIO() my_externs = set() my_mocks = set() def my_extern_hook(package_exporter, module_name): my_externs.add(module_name) def my_mock_hook(package_exporter, module_name): my_mocks.add(module_name) with PackageExporter(buffer) as exporter: exporter.extern("module_a") exporter.mock("package_a") exporter.register_extern_hook(my_extern_hook) exporter.register_mock_hook(my_mock_hook) exporter.save_source_string("foo", "import module_a; import package_a") self.assertEqual(my_externs, set(["module_a"])) self.assertEqual(my_mocks, set(["package_a"])) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_dependency_hooks.py
from pathlib import Path import torch from torch.fx import symbolic_trace from torch.package import PackageExporter from torch.testing._internal.common_utils import IS_FBCODE, IS_SANDCASTLE packaging_directory = f"{Path(__file__).parent}/package_bc" torch.package.package_exporter._gate_torchscript_serialization = False def generate_bc_packages(): """Function to create packages for testing backwards compatiblity""" if not IS_FBCODE or IS_SANDCASTLE: from package_a.test_nn_module import TestNnModule test_nn_module = TestNnModule() test_torchscript_module = torch.jit.script(TestNnModule()) test_fx_module: torch.fx.GraphModule = symbolic_trace(TestNnModule()) with PackageExporter(f"{packaging_directory}/test_nn_module.pt") as pe1: pe1.intern("**") pe1.save_pickle("nn_module", "nn_module.pkl", test_nn_module) with PackageExporter( f"{packaging_directory}/test_torchscript_module.pt" ) as pe2: pe2.intern("**") pe2.save_pickle( "torchscript_module", "torchscript_module.pkl", test_torchscript_module ) with PackageExporter(f"{packaging_directory}/test_fx_module.pt") as pe3: pe3.intern("**") pe3.save_pickle("fx_module", "fx_module.pkl", test_fx_module) if __name__ == "__main__": generate_bc_packages()
pytorch-master
test/package/generate_bc_packages.py
# Owner(s): ["oncall: package/deploy"] from pathlib import Path from unittest import skipIf from torch.package import PackageImporter from torch.testing._internal.common_utils import IS_FBCODE, IS_SANDCASTLE, run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase packaging_directory = f"{Path(__file__).parent}/package_bc" class TestLoadBCPackages(PackageTestCase): """Tests for checking loading has backwards compatiblity""" @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_load_bc_packages_nn_module(self): """Tests for backwards compatible nn module""" importer1 = PackageImporter(f"{packaging_directory}/test_nn_module.pt") loaded1 = importer1.load_pickle("nn_module", "nn_module.pkl") @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_load_bc_packages_torchscript_module(self): """Tests for backwards compatible torchscript module""" importer2 = PackageImporter(f"{packaging_directory}/test_torchscript_module.pt") loaded2 = importer2.load_pickle("torchscript_module", "torchscript_module.pkl") @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_load_bc_packages_fx_module(self): """Tests for backwards compatible fx module""" importer3 = PackageImporter(f"{packaging_directory}/test_fx_module.pt") loaded3 = importer3.load_pickle("fx_module", "fx_module.pkl") if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_load_bc_packages.py
# Owner(s): ["oncall: package/deploy"] import torch from torch.package import analyze from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestAnalyze(PackageTestCase): """Dependency analysis API tests.""" def test_trace_dependencies(self): import test_trace_dep obj = test_trace_dep.SumMod() used_modules = analyze.trace_dependencies(obj, [(torch.randn(4),)]) self.assertNotIn("yaml", used_modules) self.assertIn("test_trace_dep", used_modules) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_analyze.py
# Owner(s): ["oncall: package/deploy"] from torch.package._digraph import DiGraph from torch.testing._internal.common_utils import run_tests try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase class TestDiGraph(PackageTestCase): """Test the DiGraph structure we use to represent dependencies in PackageExporter""" def test_successors(self): g = DiGraph() g.add_edge("foo", "bar") g.add_edge("foo", "baz") g.add_node("qux") self.assertIn("bar", list(g.successors("foo"))) self.assertIn("baz", list(g.successors("foo"))) self.assertEqual(len(list(g.successors("qux"))), 0) def test_predecessors(self): g = DiGraph() g.add_edge("foo", "bar") g.add_edge("foo", "baz") g.add_node("qux") self.assertIn("foo", list(g.predecessors("bar"))) self.assertIn("foo", list(g.predecessors("baz"))) self.assertEqual(len(list(g.predecessors("qux"))), 0) def test_successor_not_in_graph(self): g = DiGraph() with self.assertRaises(ValueError): g.successors("not in graph") def test_predecessor_not_in_graph(self): g = DiGraph() with self.assertRaises(ValueError): g.predecessors("not in graph") def test_node_attrs(self): g = DiGraph() g.add_node("foo", my_attr=1, other_attr=2) self.assertEqual(g.nodes["foo"]["my_attr"], 1) self.assertEqual(g.nodes["foo"]["other_attr"], 2) def test_node_attr_update(self): g = DiGraph() g.add_node("foo", my_attr=1) self.assertEqual(g.nodes["foo"]["my_attr"], 1) g.add_node("foo", my_attr="different") self.assertEqual(g.nodes["foo"]["my_attr"], "different") def test_edges(self): g = DiGraph() g.add_edge(1, 2) g.add_edge(2, 3) g.add_edge(1, 3) g.add_edge(4, 5) edge_list = list(g.edges) self.assertEqual(len(edge_list), 4) self.assertIn((1, 2), edge_list) self.assertIn((2, 3), edge_list) self.assertIn((1, 3), edge_list) self.assertIn((4, 5), edge_list) def test_iter(self): g = DiGraph() g.add_node(1) g.add_node(2) g.add_node(3) nodes = set() for n in g: nodes.add(n) self.assertEqual(nodes, set([1, 2, 3])) def test_contains(self): g = DiGraph() g.add_node("yup") self.assertTrue("yup" in g) self.assertFalse("nup" in g) def test_contains_non_hashable(self): g = DiGraph() self.assertFalse([1, 2, 3] in g) def test_forward_closure(self): g = DiGraph() g.add_edge("1", "2") g.add_edge("2", "3") g.add_edge("5", "4") g.add_edge("4", "3") self.assertTrue(g.forward_transitive_closure("1") == set(["1", "2", "3"])) self.assertTrue(g.forward_transitive_closure("4") == set(["4", "3"])) def test_all_paths(self): g = DiGraph() g.add_edge("1", "2") g.add_edge("1", "7") g.add_edge("7", "8") g.add_edge("8", "3") g.add_edge("2", "3") g.add_edge("5", "4") g.add_edge("4", "3") result = g.all_paths("1", "3") # to get rid of indeterminism actual = set([i.strip("\n") for i in result.split(";")[2:-1]]) expected = { '"2" -> "3"', '"1" -> "7"', '"7" -> "8"', '"1" -> "2"', '"8" -> "3"', } self.assertEqual(actual, expected) if __name__ == "__main__": run_tests()
pytorch-master
test/package/test_digraph.py
result = "subpackage_1" class PackageBSubpackage1Object_0: __slots__ = ["obj"] def __init__(self, obj): self.obj = obj def return_result(self): return result
pytorch-master
test/package/package_b/subpackage_1.py
__import__("subpackage_1", globals(), fromlist=["PackageBSubpackage1Object_0"], level=1) __import__("subpackage_0.subsubpackage_0", globals(), fromlist=[""], level=1) __import__("subpackage_2", globals=globals(), locals=locals(), fromlist=["*"], level=1) result = "package_b" class PackageBObject: __slots__ = ["obj"] def __init__(self, obj): self.obj = obj def return_result(self): return result
pytorch-master
test/package/package_b/__init__.py
__import__("math", fromlist=[]) __import__("xml.sax.xmlreader") result = "subpackage_2" class PackageBSubpackage2Object_0: pass def dynamic_import_test(name: str): __import__(name)
pytorch-master
test/package/package_b/subpackage_2.py
result = "subpackage_0"
pytorch-master
test/package/package_b/subpackage_0/__init__.py
__import__("subpackage_1", globals(), locals(), ["PackageBSubpackage1Object_0"], 3) result = "subsubpackage_0" class PackageBSubsubpackage0Object_0: pass
pytorch-master
test/package/package_b/subpackage_0/subsubpackage_0/__init__.py
import torch import yaml class SumMod(torch.nn.Module): def forward(self, inp): return torch.sum(inp)
pytorch-master
test/package/test_trace_dep/__init__.py
# Owner(s): ["oncall: package/deploy"] import torch try: from torchvision.models import resnet18 class TorchVisionTest(torch.nn.Module): def __init__(self): super().__init__() self.tvmod = resnet18() def forward(self, x): x = a_non_torch_leaf(x, x) return torch.relu(x + 3.0) except ImportError: pass def a_non_torch_leaf(a, b): return a + b
pytorch-master
test/package/package_c/test_module.py
result = "package_c" class PackageCObject: __slots__ = ["obj"] def __init__(self, obj): self.obj = obj def return_result(self): return result
pytorch-master
test/package/package_c/__init__.py
import torch from .subpackage_0 import important_string class ImportsIndirectlyFromSubPackage(torch.nn.Module): key = important_string def forward(self, inp): return torch.sum(inp)
pytorch-master
test/package/package_d/imports_indirectly.py
pytorch-master
test/package/package_d/__init__.py
import torch from .subpackage_0.subsubpackage_0 import important_string class ImportsDirectlyFromSubSubPackage(torch.nn.Module): key = important_string def forward(self, inp): return torch.sum(inp)
pytorch-master
test/package/package_d/imports_directly.py
from .subsubpackage_0 import important_string
pytorch-master
test/package/package_d/subpackage_0/__init__.py
important_string = "subsubpackage_0"
pytorch-master
test/package/package_d/subpackage_0/subsubpackage_0/__init__.py
if "__torch_package__" in dir(): def is_from_package(): return True else: def is_from_package(): return False
pytorch-master
test/package/package_a/use_dunder_package.py
# Owner(s): ["oncall: package/deploy"] import torch from torch.fx import wrap wrap("a_non_torch_leaf") class ModWithSubmod(torch.nn.Module): def __init__(self, script_mod): super().__init__() self.script_mod = script_mod def forward(self, x): return self.script_mod(x) class ModWithTensor(torch.nn.Module): def __init__(self, tensor): super().__init__() self.tensor = tensor def forward(self, x): return self.tensor * x class ModWithSubmodAndTensor(torch.nn.Module): def __init__(self, tensor, sub_mod): super().__init__() self.tensor = tensor self.sub_mod = sub_mod def forward(self, x): return self.sub_mod(x) + self.tensor class ModWithTwoSubmodsAndTensor(torch.nn.Module): def __init__(self, tensor, sub_mod_0, sub_mod_1): super().__init__() self.tensor = tensor self.sub_mod_0 = sub_mod_0 self.sub_mod_1 = sub_mod_1 def forward(self, x): return self.sub_mod_0(x) + self.sub_mod_1(x) + self.tensor class ModWithMultipleSubmods(torch.nn.Module): def __init__(self, mod1, mod2): super().__init__() self.mod1 = mod1 self.mod2 = mod2 def forward(self, x): return self.mod1(x) + self.mod2(x) class SimpleTest(torch.nn.Module): def forward(self, x): x = a_non_torch_leaf(x, x) return torch.relu(x + 3.0) def a_non_torch_leaf(a, b): return a + b
pytorch-master
test/package/package_a/test_module.py
# Owner(s): ["oncall: package/deploy"] from torch.fx import Tracer class TestAllLeafModulesTracer(Tracer): def is_leaf_module(self, m, qualname): return True
pytorch-master
test/package/package_a/test_all_leaf_modules_tracer.py
result = "package_a" class PackageAObject: __slots__ = ["obj"] def __init__(self, obj): self.obj = obj def return_result(self): return result
pytorch-master
test/package/package_a/__init__.py
import torch from torch import Tensor @torch.jit.interface class ModuleInterface(torch.nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: pass class OrigModule(torch.nn.Module): """A module that implements ModuleInterface.""" def __init__(self): super(OrigModule, self).__init__() def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: return inp1 + inp2 + 1 def two(self, input: Tensor) -> Tensor: return input + 2 def forward(self, input: Tensor) -> Tensor: return input + self.one(input, input) + 1 class NewModule(torch.nn.Module): """A *different* module that implements ModuleInterface.""" def __init__(self): super(NewModule, self).__init__() def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: return inp1 * inp2 + 1 def forward(self, input: Tensor) -> Tensor: return self.one(input, input + 1) class UsesInterface(torch.nn.Module): proxy_mod: ModuleInterface def __init__(self): super().__init__() self.proxy_mod = OrigModule() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod.one(input, input)
pytorch-master
test/package/package_a/fake_interface.py
from typing import Any import torch @torch.jit.script class MyScriptClass: """Intended to be scripted.""" def __init__(self, x): self.foo = x def set_foo(self, x): self.foo = x @torch.jit.script def uses_script_class(x): """Intended to be scripted.""" foo = MyScriptClass(x) return foo.foo class IdListFeature: def __init__(self): self.id_list = torch.ones(1, 1) def returns_self(self) -> "IdListFeature": return IdListFeature() class UsesIdListFeature(torch.nn.Module): def __init__(self): super().__init__() def forward(self, feature: Any): if isinstance(feature, IdListFeature): return feature.id_list else: return feature
pytorch-master
test/package/package_a/fake_script_class.py
try: import torch_package_importer # noqa: F401 except ImportError: pass
pytorch-master
test/package/package_a/use_torch_package_importer.py
import os # noqa: F401 import os.path # noqa: F401 import typing # noqa: F401 import typing.io # noqa: F401 import typing.re # noqa: F401 import torch class Module(torch.nn.Module): def __init__(self): super().__init__() def forward(self): return os.path.abspath("test")
pytorch-master
test/package/package_a/std_sys_module_hacks.py
# Owner(s): ["oncall: package/deploy"] import torch class TestNnModule(torch.nn.Module): def __init__(self, nz=6, ngf=9, nc=3): super(TestNnModule, self).__init__() self.main = torch.nn.Sequential( # input is Z, going into a convolution torch.nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), torch.nn.BatchNorm2d(ngf * 8), torch.nn.ReLU(True), # state size. (ngf*8) x 4 x 4 torch.nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), torch.nn.BatchNorm2d(ngf * 4), torch.nn.ReLU(True), # state size. (ngf*4) x 8 x 8 torch.nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), torch.nn.BatchNorm2d(ngf * 2), torch.nn.ReLU(True), # state size. (ngf*2) x 16 x 16 torch.nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), torch.nn.BatchNorm2d(ngf), torch.nn.ReLU(True), # state size. (ngf) x 32 x 32 torch.nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), torch.nn.Tanh() # state size. (nc) x 64 x 64 ) def forward(self, input): return self.main(input)
pytorch-master
test/package/package_a/test_nn_module.py
result = "package_a.subpackage" class PackageASubpackageObject: pass def leaf_function(a, b): return a + b
pytorch-master
test/package/package_a/subpackage.py
pytorch-master
test/expect/__init__.py
import warnings from torch.onnx import _CAFFE2_ATEN_FALLBACK if not _CAFFE2_ATEN_FALLBACK: warnings.warn("Caffe2 support is not fully enabled in this PyTorch build. " "Please enable Caffe2 by building PyTorch from source with `BUILD_CAFFE2=1` flag.")
pytorch-master
caffe2/__init__.py
pytorch-master
caffe2/core/__init__.py
pytorch-master
caffe2/core/nomnigraph/__init__.py
#!/usr/bin/env python3 import argparse from textwrap import dedent from subprocess import call def parse_lines(lines): # States EMPTY = 0 OP = 1 MACRO = 2 parse_state = EMPTY # Preprocess the macros curr_macro = "" macros = {} index = 0 while index < len(lines): line = lines[index] if line.lower().startswith("macro"): assert parse_state == EMPTY macro_line = line.split(" ") # Support macros that look like attributes # e.g. macro - CONV_LIKE curr_macro = " ".join(macro_line[1:]) assert curr_macro not in macros, 'Macro "{}" defined twice.'.format( curr_macro ) macros[curr_macro] = [] parse_state = MACRO lines = lines[:index] + lines[index + 1 :] continue elif line.lower().startswith("endmacro"): assert parse_state == MACRO parse_state = EMPTY lines = lines[:index] + lines[index + 1 :] continue elif parse_state == MACRO: macros[curr_macro].append(line) lines = lines[:index] + lines[index + 1 :] continue index += 1 index = 0 while index < len(lines): line = lines[index] if line in macros: lines = lines[:index] + macros[line] + lines[index + 1 :] index += len(macros[line]) - 1 index += 1 # Now parse the file curr_op = "" # dict of the form # opName : { attributes: [], ... } ops = {} # To preserve parsing order for dependencies (for things like init_from) op_list = [] for line in lines: if not len(line): continue if line[0] == "-": assert parse_state is OP attr = [_.strip() for _ in line[1:].split(":")] assert attr[0][0].isupper() if len(attr) == 2: # attribute : type ops[curr_op]["attributes"].append((attr[0], attr[1])) elif len(attr) == 3: # attribute : type ops[curr_op]["attributes"].append((attr[0], attr[1], attr[2])) else: op = [l.strip() for l in line.split(":")] assert len(op[0].split(" ")) == 1 parse_state = OP curr_op = op[0] assert curr_op not in ops ops[curr_op] = {} op_list.append(curr_op) if len(op) > 1: ops[curr_op]["init_from"] = [op[1]] ops[curr_op]["attributes"] = [] return ops, op_list def gen_class(op, op_def): attributes = op_def["attributes"] attribute_args = [] default_init = "NeuralNetOperator(NNKind::{op})".format(op=op) attribute_init = [default_init] attribute_declarations = [] attribute_getters = [] attribute_setters = [] for attr in attributes: lower_name = attr[0][0].lower() + attr[0][1:] private_name = lower_name + "_" default_arg = "" if len(attr) < 3 else " = {}".format(attr[2]) name = attr[0] t = attr[1] attr_arg = "{type} {lower_name}".format( type=t, lower_name=lower_name + default_arg ) attr_init = "{private_name}({lower_name})".format( private_name=private_name, lower_name=lower_name) attr_declare = "{type} {private_name};".format( type=t, private_name=private_name) attr_get = dedent( """ {type} get{name}() const {{ return {private_name}; }} """.format( type=t, name=name, private_name=private_name ) ) attr_set = dedent( """ void set{name}({type} {lower_name}) {{ {private_name} = {lower_name}; }} """.format( type=t, name=name, private_name=private_name, lower_name=lower_name ) ) attribute_args.append(attr_arg) attribute_init.append(attr_init) attribute_declarations.append(attr_declare) attribute_getters.append(attr_get) attribute_setters.append(attr_set) extra_init = "" if "init_from" in op_def: for other_op in op_def["init_from"]: lower_other_op = other_op[0].lower() + other_op[1:] other_init = [default_init] for attr in attributes: lower_name = attr[0][0].lower() + attr[0][1:] private_name = lower_name + "_" other_init.append( "{private_name}({other_op}.get{name}())".format( name=attr[0], private_name=private_name, other_op=lower_other_op ) ) init = dedent( """ {op}(const {other_op}& {lower_other_op}) : {other_init} {{}} """.format( op=op, other_op=other_op, lower_other_op=lower_other_op, other_init=",\n ".join(other_init), ) ) extra_init += init return dedent( """ class {op} : public NeuralNetOperator {{ public: {op}({attribute_args}) : {attribute_init} {{}} {extra_init} ~{op}() {{}} NOMNIGRAPH_DEFINE_NN_RTTI({op}); {getters}{setters} private: {attribute_declarations} }}; """.format( op=op, extra_init=extra_init, getters="".join(attribute_getters), setters="".join(attribute_setters), attribute_args=",\n".join(attribute_args), attribute_init=",\n".join(attribute_init), attribute_declarations="\n".join(attribute_declarations), ) ) def gen_classes(ops, op_list): f = "" for op in op_list: f += gen_class(op, ops[op]) return f def gen_enum(op_list): return ",\n".join([op for op in op_list]) + "\n" def gen_names(op_list): f = "" for op in op_list: f += dedent( """ case NNKind::{name}: return \"{name}\"; """.format( name=op ) ) return f if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate op files.") parser.add_argument("--install_dir", help="installation directory") parser.add_argument("--source_def", help="ops.def", action="append") args = parser.parse_args() install_dir = args.install_dir sources = args.source_def lines = [] for source in sources: with open(source, "rb") as f: lines_tmp = f.readlines() lines += [l.strip().decode("utf-8") for l in lines_tmp] ops, op_list = parse_lines(lines) with open(install_dir + "/OpClasses.h", "wb") as f: f.write(gen_classes(ops, op_list).encode("utf-8")) with open(install_dir + "/OpNames.h", "wb") as f: f.write(gen_names(op_list).encode("utf-8")) with open(install_dir + "/OpEnum.h", "wb") as f: f.write(gen_enum(op_list).encode("utf-8")) try: cmd = ["clang-format", "-i", install_dir + "/OpClasses.h"] call(cmd) cmd = ["clang-format", "-i", install_dir + "/OpNames.h"] call(cmd) cmd = ["clang-format", "-i", install_dir + "/OpEnum.h"] call(cmd) except Exception: pass
pytorch-master
caffe2/core/nomnigraph/op_gen.py
import warnings # NOTE: we have to import python protobuf here **before** we load cpp extension. # Otherwise it breaks under certain build conditions if cpp implementation of # protobuf is used. Presumably there's some registry in protobuf library and # python side has to initialize the dictionary first, before static # initialization in python extension does so. Otherwise, duplicated protobuf # descriptors will be created and it can lead to obscure errors like # "Parameter to MergeFrom() must be instance of same class: # expected caffe2.NetDef got caffe2.NetDef." # # This has to be done for all python targets, so listing them here try: from caffe2.proto import caffe2_pb2, metanet_pb2, torch_pb2 except ImportError: warnings.warn('Caffe2 support is not enabled in this PyTorch build. ' 'Please enable Caffe2 by building PyTorch from source with `BUILD_CAFFE2=1` flag.') raise try: from caffe2.caffe2.fb.session.proto import session_pb2 except ImportError: pass
pytorch-master
caffe2/proto/__init__.py