python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
import numpy as np import caffe2.proto.caffe2_pb2 as caffe2_pb2 from caffe2.python import core, workspace, timeout_guard, test_util class BlobsQueueDBTest(test_util.TestCase): def test_create_blobs_queue_db_string(self): def add_blobs(queue, num_samples): blob = core.BlobReference("blob") status = core.BlobReference("blob_status") for i in range(num_samples): self._add_blob_to_queue( queue, self._create_test_tensor_protos(i), blob, status ) self._test_create_blobs_queue_db(add_blobs) def test_create_blobs_queue_db_tensor(self): def add_blobs(queue, num_samples): blob = core.BlobReference("blob") status = core.BlobReference("blob_status") for i in range(num_samples): data = self._create_test_tensor_protos(i) data = np.array([data], dtype=str) self._add_blob_to_queue( queue, data, blob, status ) self._test_create_blobs_queue_db(add_blobs) def _test_create_blobs_queue_db(self, add_blobs_fun): num_samples = 10000 batch_size = 10 init_net = core.Net('init_net') net = core.Net('test_create_blobs_queue_db') queue = init_net.CreateBlobsQueue([], 'queue', capacity=num_samples) reader = init_net.CreateBlobsQueueDB( [queue], 'blobs_queue_db_reader', value_blob_index=0, timeout_secs=0.1, ) workspace.RunNetOnce(init_net) add_blobs_fun(queue, num_samples) net.TensorProtosDBInput( [reader], ['image', 'label'], batch_size=batch_size) workspace.CreateNet(net) close_net = core.Net('close_net') close_net.CloseBlobsQueue([queue], []) for i in range(int(num_samples / batch_size)): print("Running net, iteration {}".format(i)) with timeout_guard.CompleteInTimeOrDie(2.0): workspace.RunNet(net) images = workspace.FetchBlob('image') labels = workspace.FetchBlob('label') self.assertEqual(batch_size, len(images)) self.assertEqual(batch_size, len(labels)) for idx, item in enumerate(images): self.assertEqual( "foo{}".format(i * batch_size + idx).encode('utf-8'), item ) for item in labels: self.assertEqual(1, item) workspace.RunNetOnce(close_net) def _add_blob_to_queue(self, queue, data, blob, status): workspace.FeedBlob(blob, data) op = core.CreateOperator( "SafeEnqueueBlobs", [queue, blob], [blob, status], ) workspace.RunOperatorOnce(op) def _create_test_tensor_protos(self, idx): item = caffe2_pb2.TensorProtos() data = item.protos.add() data.data_type = core.DataType.STRING data.string_data.append("foo{}".format(idx).encode('utf-8')) label = item.protos.add() label.data_type = core.DataType.INT32 label.int32_data.append(1) return item.SerializeToString()
pytorch-master
caffe2/python/operator_test/blobs_queue_db_test.py
import hypothesis.strategies as st from hypothesis import given, assume, settings import io import math import numpy as np import os import struct import unittest from pathlib import Path from typing import Dict, Generator, List, NamedTuple, Optional, Tuple, Type from caffe2.proto import caffe2_pb2 from caffe2.proto.caffe2_pb2 import BlobSerializationOptions from caffe2.python import core, test_util, workspace if workspace.has_gpu_support: DEVICES = [caffe2_pb2.CPU, workspace.GpuDeviceType] max_gpuid = workspace.NumGpuDevices() - 1 else: DEVICES = [caffe2_pb2.CPU] max_gpuid = 0 class MiniDBEntry(NamedTuple): key: str value_size: int # Utility class for other loading tests, don't add test functions here # Inherit from this test instead. If you add a test here, # each derived class will inherit it as well and cause test duplication class TestLoadSaveBase(test_util.TestCase): def __init__(self, methodName, db_type='minidb'): super(TestLoadSaveBase, self).__init__(methodName) self._db_type = db_type @settings(deadline=None) @given(src_device_type=st.sampled_from(DEVICES), src_gpu_id=st.integers(min_value=0, max_value=max_gpuid), dst_device_type=st.sampled_from(DEVICES), dst_gpu_id=st.integers(min_value=0, max_value=max_gpuid)) def load_save(self, src_device_type, src_gpu_id, dst_device_type, dst_gpu_id): workspace.ResetWorkspace() dtypes = [np.float16, np.float32, np.float64, np.bool, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16] arrays = [np.random.permutation(6).reshape(2, 3).astype(T) for T in dtypes] assume(core.IsGPUDeviceType(src_device_type) or src_gpu_id == 0) assume(core.IsGPUDeviceType(dst_device_type) or dst_gpu_id == 0) src_device_option = core.DeviceOption( src_device_type, src_gpu_id) dst_device_option = core.DeviceOption( dst_device_type, dst_gpu_id) for i, arr in enumerate(arrays): self.assertTrue(workspace.FeedBlob(str(i), arr, src_device_option)) self.assertTrue(workspace.HasBlob(str(i))) # Saves the blobs to a local db. tmp_folder = self.make_tempdir() op = core.CreateOperator( "Save", [str(i) for i in range(len(arrays))], [], absolute_path=1, db=str(tmp_folder / "db"), db_type=self._db_type) self.assertTrue(workspace.RunOperatorOnce(op)) # Reset the workspace so that anything we load is surely loaded # from the serialized proto. workspace.ResetWorkspace() self.assertEqual(len(workspace.Blobs()), 0) def _LoadTest(keep_device, device_type, gpu_id, blobs, loadAll): """A helper subfunction to test keep and not keep.""" op = core.CreateOperator( "Load", [], blobs, absolute_path=1, db=str(tmp_folder / "db"), db_type=self._db_type, device_option=dst_device_option, keep_device=keep_device, load_all=loadAll) self.assertTrue(workspace.RunOperatorOnce(op)) for i, arr in enumerate(arrays): self.assertTrue(workspace.HasBlob(str(i))) fetched = workspace.FetchBlob(str(i)) self.assertEqual(fetched.dtype, arr.dtype) np.testing.assert_array_equal( workspace.FetchBlob(str(i)), arr) proto = caffe2_pb2.BlobProto() proto.ParseFromString(workspace.SerializeBlob(str(i))) self.assertTrue(proto.HasField('tensor')) self.assertEqual(proto.tensor.device_detail.device_type, device_type) if core.IsGPUDeviceType(device_type): self.assertEqual(proto.tensor.device_detail.device_id, gpu_id) blobs = [str(i) for i in range(len(arrays))] # Load using device option stored in the proto, i.e. # src_device_option _LoadTest(1, src_device_type, src_gpu_id, blobs, 0) # Load again, but this time load into dst_device_option. _LoadTest(0, dst_device_type, dst_gpu_id, blobs, 0) # Load back to the src_device_option to see if both paths are able # to reallocate memory. _LoadTest(1, src_device_type, src_gpu_id, blobs, 0) # Reset the workspace, and load directly into the dst_device_option. workspace.ResetWorkspace() _LoadTest(0, dst_device_type, dst_gpu_id, blobs, 0) # Test load all which loads all blobs in the db into the workspace. workspace.ResetWorkspace() _LoadTest(1, src_device_type, src_gpu_id, [], 1) # Load again making sure that overwrite functionality works. _LoadTest(1, src_device_type, src_gpu_id, [], 1) # Load again with different device. _LoadTest(0, dst_device_type, dst_gpu_id, [], 1) workspace.ResetWorkspace() _LoadTest(0, dst_device_type, dst_gpu_id, [], 1) workspace.ResetWorkspace() _LoadTest(1, src_device_type, src_gpu_id, blobs, 1) workspace.ResetWorkspace() _LoadTest(0, dst_device_type, dst_gpu_id, blobs, 1) def saveFile( self, tmp_folder: Path, db_name: str, db_type: str, start_blob_id: int ) -> Tuple[str, List[np.ndarray]]: dtypes = [np.float16, np.float32, np.float64, np.bool, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16] arrays = [np.random.permutation(6).reshape(2, 3).astype(T) for T in dtypes] for i, arr in enumerate(arrays): self.assertTrue(workspace.FeedBlob(str(i + start_blob_id), arr)) self.assertTrue(workspace.HasBlob(str(i + start_blob_id))) # Saves the blobs to a local db. tmp_file = str(tmp_folder / db_name) op = core.CreateOperator( "Save", [str(i + start_blob_id) for i in range(len(arrays))], [], absolute_path=1, db=tmp_file, db_type=db_type) workspace.RunOperatorOnce(op) return tmp_file, arrays class TestLoadSave(TestLoadSaveBase): def testLoadSave(self): self.load_save() def testRepeatedArgs(self): dtypes = [np.float16, np.float32, np.float64, np.bool, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16] arrays = [np.random.permutation(6).reshape(2, 3).astype(T) for T in dtypes] for i, arr in enumerate(arrays): self.assertTrue(workspace.FeedBlob(str(i), arr)) self.assertTrue(workspace.HasBlob(str(i))) # Saves the blobs to a local db. tmp_folder = self.make_tempdir() op = core.CreateOperator( "Save", [str(i) for i in range(len(arrays))] * 2, [], absolute_path=1, db=str(tmp_folder / "db"), db_type=self._db_type) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) def testLoadExcessblobs(self): tmp_folder = self.make_tempdir() tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0) op = core.CreateOperator( "Load", [], [str(i) for i in range(len(arrays))] * 2, absolute_path=1, db=tmp_file, db_type=self._db_type, load_all=False) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) op = core.CreateOperator( "Load", [], [str(len(arrays) + i) for i in [-1, 0]], absolute_path=1, db=tmp_file, db_type=self._db_type, load_all=True) with self.assertRaises(RuntimeError): workspace.ResetWorkspace() workspace.RunOperatorOnce(op) op = core.CreateOperator( "Load", [], [str(len(arrays) + i) for i in range(2)], absolute_path=1, db=tmp_file, db_type=self._db_type, load_all=True) with self.assertRaises(RuntimeError): workspace.ResetWorkspace() workspace.RunOperatorOnce(op) def testTruncatedFile(self): tmp_folder = self.make_tempdir() tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0) with open(tmp_file, 'wb+') as fdest: fdest.seek(20, os.SEEK_END) fdest.truncate() op = core.CreateOperator( "Load", [], [str(i) for i in range(len(arrays))], absolute_path=1, db=tmp_file, db_type=self._db_type, load_all=False) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) op = core.CreateOperator( "Load", [], [], absolute_path=1, db=tmp_file, db_type=self._db_type, load_all=True) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) def testBlobNameOverrides(self): original_names = ['blob_a', 'blob_b', 'blob_c'] new_names = ['x', 'y', 'z'] blobs = [np.random.permutation(6) for i in range(3)] for i, blob in enumerate(blobs): self.assertTrue(workspace.FeedBlob(original_names[i], blob)) self.assertTrue(workspace.HasBlob(original_names[i])) self.assertEqual(len(workspace.Blobs()), 3) # Saves the blobs to a local db. tmp_folder = self.make_tempdir() with self.assertRaises(RuntimeError): workspace.RunOperatorOnce( core.CreateOperator( "Save", original_names, [], absolute_path=1, strip_prefix='.temp', blob_name_overrides=new_names, db=str(tmp_folder / "db"), db_type=self._db_type ) ) self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "Save", original_names, [], absolute_path=1, blob_name_overrides=new_names, db=str(tmp_folder / "db"), db_type=self._db_type ) ) ) self.assertTrue(workspace.ResetWorkspace()) self.assertEqual(len(workspace.Blobs()), 0) self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "Load", [], [], absolute_path=1, db=str(tmp_folder / "db"), db_type=self._db_type, load_all=1 ) ) ) self.assertEqual(len(workspace.Blobs()), 3) for i, name in enumerate(new_names): self.assertTrue(workspace.HasBlob(name)) self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all()) # moved here per @cxj's suggestion load_new_names = ['blob_x', 'blob_y', 'blob_z'] # load 'x' into 'blob_x' self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "Load", [], load_new_names[0:1], absolute_path=1, db=str(tmp_folder / "db"), db_type=self._db_type, source_blob_names=new_names[0:1] ) ) ) # we should have 'blob_a/b/c/' and 'blob_x' now self.assertEqual(len(workspace.Blobs()), 4) for i, name in enumerate(load_new_names[0:1]): self.assertTrue(workspace.HasBlob(name)) self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all()) self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "Load", [], load_new_names[0:3], absolute_path=1, db=str(tmp_folder / "db"), db_type=self._db_type, source_blob_names=new_names[0:3] ) ) ) # we should have 'blob_a/b/c/' and 'blob_x/y/z' now self.assertEqual(len(workspace.Blobs()), 6) for i, name in enumerate(load_new_names[0:3]): self.assertTrue(workspace.HasBlob(name)) self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all()) def testMissingFile(self): tmp_folder = self.make_tempdir() tmp_file = tmp_folder / "missing_db" op = core.CreateOperator( "Load", [], [], absolute_path=1, db=str(tmp_file), db_type=self._db_type, load_all=True) with self.assertRaises(RuntimeError): try: workspace.RunOperatorOnce(op) except RuntimeError as e: print(e) raise def testLoadMultipleFilesGivenSourceBlobNames(self): tmp_folder = self.make_tempdir() db_file_1, arrays_1 = self.saveFile(tmp_folder, "db1", self._db_type, 0) db_file_2, arrays_2 = self.saveFile( tmp_folder, "db2", self._db_type, len(arrays_1) ) db_files = [db_file_1, db_file_2] blobs_names = [str(i) for i in range(len(arrays_1) + len(arrays_2))] workspace.ResetWorkspace() self.assertEqual(len(workspace.Blobs()), 0) self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "Load", [], blobs_names, absolute_path=1, dbs=db_files, db_type=self._db_type, source_blob_names=blobs_names ) ) ) self.assertEqual(len(workspace.Blobs()), len(blobs_names)) for i in range(len(arrays_1)): np.testing.assert_array_equal( workspace.FetchBlob(str(i)), arrays_1[i] ) for i in range(len(arrays_2)): np.testing.assert_array_equal( workspace.FetchBlob(str(i + len(arrays_1))), arrays_2[i] ) def testLoadAllMultipleFiles(self): tmp_folder = self.make_tempdir() db_file_1, arrays_1 = self.saveFile(tmp_folder, "db1", self._db_type, 0) db_file_2, arrays_2 = self.saveFile( tmp_folder, "db2", self._db_type, len(arrays_1) ) db_files = [db_file_1, db_file_2] workspace.ResetWorkspace() self.assertEqual(len(workspace.Blobs()), 0) self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "Load", [], [], absolute_path=1, dbs=db_files, db_type=self._db_type, load_all=True ) ) ) self.assertEqual(len(workspace.Blobs()), len(arrays_1) + len(arrays_2)) for i in range(len(arrays_1)): np.testing.assert_array_equal( workspace.FetchBlob(str(i)), arrays_1[i] ) for i in range(len(arrays_2)): np.testing.assert_array_equal( workspace.FetchBlob(str(i + len(arrays_1))), arrays_2[i] ) def testLoadAllMultipleFilesWithSameKey(self): tmp_folder = self.make_tempdir() db_file_1, arrays_1 = self.saveFile(tmp_folder, "db1", self._db_type, 0) db_file_2, arrays_2 = self.saveFile(tmp_folder, "db2", self._db_type, 0) db_files = [db_file_1, db_file_2] workspace.ResetWorkspace() self.assertEqual(len(workspace.Blobs()), 0) op = core.CreateOperator( "Load", [], [], absolute_path=1, dbs=db_files, db_type=self._db_type, load_all=True) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) def testLoadRepeatedFiles(self): tmp_folder = self.make_tempdir() tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0) db_files = [tmp_file, tmp_file] workspace.ResetWorkspace() self.assertEqual(len(workspace.Blobs()), 0) op = core.CreateOperator( "Load", [], [str(i) for i in range(len(arrays))], absolute_path=1, dbs=db_files, db_type=self._db_type, load_all=False) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) def testLoadWithDBOptions(self) -> None: tmp_folder = self.make_tempdir() tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0) db_files = [tmp_file, tmp_file] workspace.ResetWorkspace() self.assertEqual(len(workspace.Blobs()), 0) db_options = b"test_db_options" op = core.CreateOperator( "Load", [], [str(i) for i in range(len(arrays))], absolute_path=1, dbs=db_files, db_type=self._db_type, load_all=False, db_options=db_options, ) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) def create_test_blobs( self, size: int = 1234, feed: bool = True ) -> List[Tuple[str, np.ndarray]]: def int_array(dtype: Type[np.integer], size: int) -> np.ndarray: info = np.iinfo(dtype) return np.random.randint(info.min, info.max, size, dtype=dtype) def float_array(dtype: Type[np.floating], size: int) -> np.ndarray: return np.random.random_sample(size).astype(dtype) blobs = [ ("int8_data", int_array(np.int8, size)), ("int16_data", int_array(np.int16, size)), ("int32_data", int_array(np.int32, size)), ("int64_data", int_array(np.int64, size)), ("uint8_data", int_array(np.uint8, size)), ("uint16_data", int_array(np.uint16, size)), ("float16_data", float_array(np.float16, size)), ("float32_data", float_array(np.float32, size)), ("float64_data", float_array(np.float64, size)), ] if feed: for name, data in blobs: workspace.FeedBlob(name, data) return blobs def load_blobs( self, blob_names: List[str], dbs: List[str], db_type: Optional[str] = None ) -> None: workspace.ResetWorkspace() self.assertEqual(len(workspace.Blobs()), 0) load_op = core.CreateOperator( "Load", [], blob_names, absolute_path=1, dbs=dbs, db_type=db_type or self._db_type, ) self.assertTrue(workspace.RunOperatorOnce(load_op)) self.assertEqual(len(workspace.Blobs()), len(blob_names)) def load_and_check_blobs( self, blobs: List[Tuple[str, np.ndarray]], dbs: List[str], db_type: Optional[str] = None ) -> None: self.load_blobs([name for name, data in blobs], dbs, db_type) for name, data in blobs: np.testing.assert_array_equal(workspace.FetchBlob(name), data) def _read_minidb_entries( self, path: Path ) -> Generator[MiniDBEntry, None, None]: """Read the entry information out of a minidb file. """ header = struct.Struct("=ii") with path.open("rb") as f: while True: buf = f.read(header.size) if not buf: break if len(buf) < header.size: raise Exception("early EOF in minidb header") (key_len, value_len) = header.unpack(buf) if key_len < 0 or value_len < 0: raise Exception( f"invalid minidb header: ({key_len}, {value_len})" ) key = f.read(key_len) if len(key) < key_len: raise Exception("early EOF in minidb key") f.seek(value_len, io.SEEK_CUR) yield MiniDBEntry(key=key.decode("utf-8"), value_size=value_len) def _read_chunk_info(self, path: Path) -> Dict[str, List[MiniDBEntry]]: """Read a minidb file and return the names of each blob and how many chunks are stored for that blob. """ chunk_id_separator = "#%" results: Dict[str, List[MiniDBEntry]] = {} for entry in self._read_minidb_entries(path): parts = entry.key.rsplit(chunk_id_separator, 1) if len(parts) == 0: assert entry.key not in results results[entry.key] = [entry] else: blob_name = parts[0] results.setdefault(blob_name, []) results[blob_name].append(entry) return results def _test_save_with_chunk_size( self, num_elems: int, chunk_size: int, expected_num_chunks: int, ) -> None: tmp_folder = self.make_tempdir() tmp_file = str(tmp_folder / "save.output") blobs = self.create_test_blobs(num_elems) # Saves the blobs to a local db. save_op = core.CreateOperator( "Save", [name for name, data in blobs], [], absolute_path=1, db=tmp_file, db_type=self._db_type, chunk_size=chunk_size, ) self.assertTrue(workspace.RunOperatorOnce(save_op)) self.load_and_check_blobs(blobs, [tmp_file]) blob_chunks = self._read_chunk_info(Path(tmp_file)) for blob_name, chunks in blob_chunks.items(): self.assertEqual(len(chunks), expected_num_chunks) def testSaveWithChunkSize(self) -> None: num_elems = 1234 chunk_size = 32 expected_num_chunks = math.ceil(num_elems / chunk_size) self._test_save_with_chunk_size( num_elems=num_elems, chunk_size=chunk_size, expected_num_chunks=expected_num_chunks, ) def testSaveWithDefaultChunkSize(self) -> None: # This is the default value of the --caffe2_tensor_chunk_size flag from # core/blob_serialization.cc # # Test with just slightly more than this to ensure that 2 chunks are # used. default_chunk_size = 1000000 self._test_save_with_chunk_size( num_elems=default_chunk_size + 10, chunk_size=-1, expected_num_chunks=2, ) def testSaveWithNoChunking(self) -> None: default_chunk_size = 1000000 self._test_save_with_chunk_size( num_elems=default_chunk_size + 10, chunk_size=0, expected_num_chunks=1, ) def testSaveWithOptions(self) -> None: tmp_folder = self.make_tempdir() tmp_file = str(tmp_folder / "save.output") num_elems = 1234 blobs = self.create_test_blobs(num_elems) # Saves the blobs to a local db. save_op = core.CreateOperator( "Save", [name for name, data in blobs], [], absolute_path=1, db=tmp_file, db_type=self._db_type, chunk_size=40, options=caffe2_pb2.SerializationOptions( options=[ BlobSerializationOptions( blob_name_regex="int16_data", chunk_size=10 ), BlobSerializationOptions( blob_name_regex=".*16_data", chunk_size=20 ), BlobSerializationOptions( blob_name_regex="float16_data", chunk_size=30 ), ], ), ) self.assertTrue(workspace.RunOperatorOnce(save_op)) self.load_and_check_blobs(blobs, [tmp_file]) blob_chunks = self._read_chunk_info(Path(tmp_file)) # We explicitly set a chunk_size of 10 for int16_data self.assertEqual( len(blob_chunks["int16_data"]), math.ceil(num_elems / 10) ) # uint16_data should match the .*16_data pattern, and get a size of 20 self.assertEqual( len(blob_chunks["uint16_data"]), math.ceil(num_elems / 20) ) # float16_data should also match the .*16_data pattern, and get a size # of 20. The explicitly float16_data rule came after the .*16_data # pattern, so it has lower precedence and will be ignored. self.assertEqual( len(blob_chunks["float16_data"]), math.ceil(num_elems / 20) ) # int64_data will get the default chunk_size of 40 self.assertEqual( len(blob_chunks["int64_data"]), math.ceil(num_elems / 40) ) def testSaveWithDBOptions(self) -> None: num_elems = 1234 chunk_size = 32 expected_num_chunks = math.ceil(num_elems / chunk_size) tmp_folder = self.make_tempdir() tmp_file = str(tmp_folder / "save.output") blobs = self.create_test_blobs(num_elems) db_options = b"test_db_options" # Saves the blobs to a local db. save_op = core.CreateOperator( "Save", [name for name, data in blobs], [], absolute_path=1, db=tmp_file, db_type=self._db_type, chunk_size=chunk_size, db_options=db_options, ) self.assertTrue(workspace.RunOperatorOnce(save_op)) self.load_and_check_blobs(blobs, [tmp_file]) blob_chunks = self._read_chunk_info(Path(tmp_file)) for blob_name, chunks in blob_chunks.items(): self.assertEqual(len(chunks), expected_num_chunks) def testSaveFloatToBfloat16(self) -> None: tmp_folder = self.make_tempdir() tmp_file = str(tmp_folder / "save.output") # Create 2 blobs with the same float data float_data = np.random.random_sample(4000).astype(np.float32) workspace.FeedBlob("float1", float_data) workspace.FeedBlob("float2", float_data) blob_names = ["float1", "float2"] # Serialize the data, using bfloat16 serialization for one of the blobs save_op = core.CreateOperator( "Save", blob_names, [], absolute_path=1, db=tmp_file, db_type=self._db_type, options=caffe2_pb2.SerializationOptions( options=[ BlobSerializationOptions( blob_name_regex="float1", float_format=BlobSerializationOptions.FLOAT_BFLOAT16, ), ], ), ) self.assertTrue(workspace.RunOperatorOnce(save_op)) # As long as fbgemm was available for us to perform bfloat16 conversion, # the serialized data for float1 should be almost half the size of float2 if workspace.has_fbgemm: blob_chunks = self._read_chunk_info(Path(tmp_file)) self.assertEqual(len(blob_chunks["float1"]), 1, blob_chunks["float1"]) self.assertEqual(len(blob_chunks["float2"]), 1, blob_chunks["float2"]) self.assertLess( blob_chunks["float1"][0].value_size, 0.6 * blob_chunks["float2"][0].value_size ) self.load_blobs(blob_names, [tmp_file]) # float2 should be exactly the same as the input data np.testing.assert_array_equal(workspace.FetchBlob("float2"), float_data) # float2 should be close-ish to the input data np.testing.assert_array_almost_equal( workspace.FetchBlob("float1"), float_data, decimal=2 ) def testEstimateBlobSizes(self) -> None: # Create some blobs to test with float_data = np.random.random_sample(4000).astype(np.float32) workspace.FeedBlob("float1", float_data) workspace.FeedBlob("float2", float_data) workspace.FeedBlob( "float3", np.random.random_sample(2).astype(np.float32) ) workspace.FeedBlob( "ui16", np.random.randint(0, 0xffff, size=1024, dtype=np.uint16) ) # Estimate the serialized size of the data. # Request bfloat16 serialization for one of the float blobs, just to # exercise size estimation when using this option. options = caffe2_pb2.SerializationOptions( options=[ BlobSerializationOptions( blob_name_regex="float1", float_format=BlobSerializationOptions.FLOAT_BFLOAT16, chunk_size=500, ), ], ) get_blobs_op = core.CreateOperator( "EstimateAllBlobSizes", [], ["blob_names", "blob_sizes"], options=options, ) self.assertTrue(workspace.RunOperatorOnce(get_blobs_op)) blob_names = workspace.FetchBlob("blob_names") blob_sizes = workspace.FetchBlob("blob_sizes") sizes_by_name: Dict[str, int] = {} for idx, name in enumerate(blob_names): sizes_by_name[name.decode("utf-8")] = blob_sizes[idx] # Note that the output blob list will include our output blob names. expected_blobs = [ "float1", "float2", "float3", "ui16", "blob_names", "blob_sizes" ] self.assertEqual(set(sizes_by_name.keys()), set(expected_blobs)) def check_expected_blob_size( name: str, num_elems: int, elem_size: int, num_chunks: int = 1 ) -> None: # The estimation code applies a fixed 40 byte per-chunk overhead to # account for the extra space required for other fixed TensorProto # message fields. per_chunk_overhead = 50 expected_size = ( (num_chunks * (len(name) + per_chunk_overhead)) + (num_elems * elem_size) ) self.assertEqual( sizes_by_name[name], expected_size, f"expected size mismatch for {name}" ) check_expected_blob_size("ui16", 1024, 3) check_expected_blob_size("float2", 4000, 4) check_expected_blob_size("float3", 2, 4) # Our serialization options request to split float1 into 500-element # chunks when saving it. If fbgemm is available then the float1 blob # will be serialized using 2 bytes per element instead of 4 bytes. float1_num_chunks = 4000 // 500 if workspace.has_fbgemm: check_expected_blob_size("float1", 4000, 2, float1_num_chunks) else: check_expected_blob_size("float1", 4000, 4, float1_num_chunks) check_expected_blob_size("blob_names", len(expected_blobs), 50) check_expected_blob_size("blob_sizes", len(expected_blobs), 8) # Now actually save the blobs so we can compare our estimates # to how big the serialized data actually is. tmp_folder = self.make_tempdir() tmp_file = str(tmp_folder / "save.output") save_op = core.CreateOperator( "Save", list(sizes_by_name.keys()), [], absolute_path=1, db=tmp_file, db_type=self._db_type, options=options, ) self.assertTrue(workspace.RunOperatorOnce(save_op)) blob_chunks = self._read_chunk_info(Path(tmp_file)) saved_sizes: Dict[str, int] = {} for blob_name, chunks in blob_chunks.items(): total_size = sum(chunk.value_size for chunk in chunks) saved_sizes[blob_name] = total_size # For sanity checking, ensure that our estimates aren't # extremely far off for name in expected_blobs: estimated_size = sizes_by_name[name] saved_size = saved_sizes[name] difference = abs(estimated_size - saved_size) error_pct = 100.0 * (difference / saved_size) print( f"{name}: estimated={estimated_size} actual={saved_size} " f"error={error_pct:.2f}%" ) # Don't check the blob_names blob. It is a string tensor, and we # can't estimate string tensor sizes very well without knowing the # individual string lengths. (Currently it requires 102 bytes to # save, but we estimate 360). if name == "blob_names": continue # Check that we are within 100 bytes, or within 25% # We are generally quite close for tensors with fixed-width fields # (like float), but a little farther off for tensors that use varint # encoding. if difference > 100: self.assertLess(error_pct, 25.0) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/operator_test/load_save_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import copy from functools import partial import math import numpy as np class TestLearningRate(serial.SerializedTestCase): @given(**hu.gcs_cpu_only) @settings(deadline=None, max_examples=50) def test_alter_learning_rate_op(self, gc, dc): iter = np.random.randint(low=1, high=1e5, size=1) active_period = int(np.random.randint(low=1, high=1e3, size=1)) inactive_period = int(np.random.randint(low=1, high=1e3, size=1)) base_lr = float(np.random.random(1)) def ref(iter): iter = float(iter) reminder = iter % (active_period + inactive_period) if reminder < active_period: return (np.array(base_lr), ) else: return (np.array(0.), ) op = core.CreateOperator( 'LearningRate', 'iter', 'lr', policy="alter", active_first=True, base_lr=base_lr, active_period=active_period, inactive_period=inactive_period ) self.assertReferenceChecks(gc, op, [iter], ref) @given(**hu.gcs_cpu_only) def test_hill_learning_rate_op(self, gc, dc): iter = np.random.randint(low=1, high=1e5, size=1) num_iter = int(np.random.randint(low=1e2, high=1e8, size=1)) start_multiplier = 1e-4 gamma = 1.0 power = 0.5 end_multiplier = 1e-2 base_lr = float(np.random.random(1)) def ref(iter): iter = float(iter) if iter < num_iter: lr = start_multiplier + ( 1.0 - start_multiplier ) * iter / num_iter else: iter -= num_iter lr = math.pow(1.0 + gamma * iter, -power) lr = max(lr, end_multiplier) return (np.array(base_lr * lr), ) op = core.CreateOperator( 'LearningRate', 'data', 'out', policy="hill", base_lr=base_lr, num_iter=num_iter, start_multiplier=start_multiplier, gamma=gamma, power=power, end_multiplier=end_multiplier, ) self.assertReferenceChecks(gc, op, [iter], ref) @given(**hu.gcs_cpu_only) def test_slope_learning_rate_op(self, gc, dc): iter = np.random.randint(low=1, high=1e5, size=1) num_iter_1 = int(np.random.randint(low=1e2, high=1e3, size=1)) multiplier_1 = 1.0 num_iter_2 = num_iter_1 + int(np.random.randint(low=1e2, high=1e3, size=1)) multiplier_2 = 0.5 base_lr = float(np.random.random(1)) def ref(iter): iter = float(iter) if iter < num_iter_1: lr = multiplier_1 else: lr = max( multiplier_1 + (iter - num_iter_1) * (multiplier_2 - multiplier_1) / (num_iter_2 - num_iter_1), multiplier_2 ) return (np.array(base_lr * lr), ) op = core.CreateOperator( 'LearningRate', 'data', 'out', policy="slope", base_lr=base_lr, num_iter_1=num_iter_1, multiplier_1=multiplier_1, num_iter_2=num_iter_2, multiplier_2=multiplier_2, ) self.assertReferenceChecks(gc, op, [iter], ref) @given( **hu.gcs_cpu_only ) @settings(max_examples=10) def test_gate_learningrate(self, gc, dc): iter = np.random.randint(low=1, high=1e5, size=1) num_iter = int(np.random.randint(low=1e2, high=1e3, size=1)) base_lr = float(np.random.uniform(-1, 1)) multiplier_1 = float(np.random.uniform(-1, 1)) multiplier_2 = float(np.random.uniform(-1, 1)) def ref(iter): iter = float(iter) if iter < num_iter: return (np.array(multiplier_1 * base_lr), ) else: return (np.array(multiplier_2 * base_lr), ) op = core.CreateOperator( 'LearningRate', 'data', 'out', policy="gate", num_iter=num_iter, multiplier_1=multiplier_1, multiplier_2=multiplier_2, base_lr=base_lr, ) self.assertReferenceChecks(gc, op, [iter], ref) @given( gc=hu.gcs['gc'], min_num_iter=st.integers(min_value=10, max_value=20), max_num_iter=st.integers(min_value=50, max_value=100), ) @settings(max_examples=2, deadline=None) def test_composite_learning_rate_op(self, gc, min_num_iter, max_num_iter): np.random.seed(65535) # Generate the iteration numbers for sub policy # The four sub policies are as follows: # 1. exp; 2. step; 3. fix; 4. exp num_lr_policy = 4 iter_nums = np.random.randint( low=min_num_iter, high=max_num_iter, size=num_lr_policy) accu_iter_num = copy.deepcopy(iter_nums) for i in range(1, num_lr_policy): accu_iter_num[i] += accu_iter_num[i - 1] total_iter_nums = accu_iter_num[-1] policy_lr_scale = np.random.uniform(low=0.1, high=2.0, size=num_lr_policy) # args for StepLRPolicy step_size = np.random.randint(low=2, high=min_num_iter // 2) step_gamma = np.random.random() # args for ExpLRPolicy exp_gamma = np.random.random() # common args base_lr = 0.1 # StepLRPolicy def step_lr(iter, lr_scale): return math.pow(step_gamma, iter // step_size) * lr_scale # ExpLRPolicy def exp_lr(iter, lr_scale): return math.pow(exp_gamma, iter) * lr_scale # FixedLRPolicy def fixed_lr(iter, lr_scale): return lr_scale # test one sub policy case def one_policy_check_ref(iter, lr_scale): iter = int(iter) exp_lr_val = exp_lr(iter, lr_scale=lr_scale) return (np.array(base_lr * exp_lr_val), ) op = core.CreateOperator( 'LearningRate', 'data', 'out', policy='composite', sub_policy_num_iters=iter_nums[:1], sub_policy_0_lr_scale=policy_lr_scale[0], sub_policy_0_policy='exp', sub_policy_0_gamma=exp_gamma, base_lr=base_lr, ) for iter_idx in range(1, total_iter_nums + 1): self.assertReferenceChecks( gc, op, [np.asarray([iter_idx])], partial(one_policy_check_ref, lr_scale=policy_lr_scale[0])) # all the case with all four sub policies def all_sub_policy_check_ref(iter, lr_scale): assert iter <= accu_iter_num[3] if iter <= accu_iter_num[0]: lr = exp_lr(iter, lr_scale=lr_scale) elif iter <= accu_iter_num[1]: lr = step_lr(iter, lr_scale=lr_scale) elif iter <= accu_iter_num[2]: lr = fixed_lr(iter, lr_scale=lr_scale) else: lr = exp_lr(iter, lr_scale=lr_scale) return (np.array(base_lr * lr), ) op = core.CreateOperator( 'LearningRate', 'data', 'out', policy='composite', sub_policy_num_iters=iter_nums, sub_policy_0_policy='exp', sub_policy_0_lr_scale=policy_lr_scale[0], sub_policy_0_gamma=exp_gamma, sub_policy_1_policy='step', sub_policy_1_lr_scale=policy_lr_scale[1], sub_policy_1_stepsize=step_size, sub_policy_1_gamma=step_gamma, sub_policy_2_policy='fixed', sub_policy_2_lr_scale=policy_lr_scale[2], sub_policy_3_policy='exp', sub_policy_3_gamma=exp_gamma, sub_policy_3_lr_scale=policy_lr_scale[3], base_lr=base_lr, ) iter_policy = 0 for iter_idx in range(1, total_iter_nums + 1): if iter_idx > accu_iter_num[iter_policy]: iter_policy += 1 self.assertReferenceChecks( gc, op, [np.asarray([iter_idx])], partial(all_sub_policy_check_ref, lr_scale=policy_lr_scale[iter_policy]) ) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/learning_rate_op_test.py
import unittest from hypothesis import given, assume, settings import hypothesis.strategies as st import numpy as np import operator from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial # TODO(jiayq): make them hypothesis tests for better coverage. class TestElementwiseBroadcast(serial.SerializedTestCase): def __generate_test_cases(self, allow_broadcast_fastpath: bool): """ generates a set of test cases For each iteration, generates X, Y, args, X_out, Y_out where X, Y are test input tensors args is a dictionary of arguments to be passed to core.CreateOperator() X_out, Y_out are reshaped versions of X and Y which can be used to calculate the expected result with the operator to be tested """ # Set broadcast and no axis, i.e. broadcasting last dimensions. X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(4, 5).astype(np.float32) args = dict(broadcast=1, allow_broadcast_fastpath=allow_broadcast_fastpath) yield X, Y, args, X, Y # broadcasting intermediate dimensions X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(3, 4).astype(np.float32) args = dict(broadcast=1, axis=1, allow_broadcast_fastpath=allow_broadcast_fastpath) yield X, Y, args, X, Y[:, :, np.newaxis] # broadcasting the first dimension X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(2).astype(np.float32) args = dict(broadcast=1, axis=0, allow_broadcast_fastpath=allow_broadcast_fastpath) yield X, Y, args, X, Y[:, np.newaxis, np.newaxis, np.newaxis] # broadcasting with single elem dimensions at both ends X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(1, 4, 1).astype(np.float32) args = dict(broadcast=1, axis=1, allow_broadcast_fastpath=allow_broadcast_fastpath) yield X, Y, args, X, Y def __test_binary_op( self, gc, dc, caffe2_op, op_function, allow_broadcast_fastpath: bool = False ): """ Args: caffe2_op: A string. Name of the caffe operator to test. op_function: an actual python operator (e.g. operator.add) path_prefix: A string. Optional param used to construct db name or path where checkpoint files are stored. """ for X, Y, op_args, X_out, Y_out in self.__generate_test_cases(allow_broadcast_fastpath): op = core.CreateOperator(caffe2_op, ["X", "Y"], "out", **op_args) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") np.testing.assert_array_almost_equal(out, op_function(X_out, Y_out)) self.assertDeviceChecks(dc, op, [X, Y], [0]) self.assertGradientChecks(gc, op, [X, Y], 1, [0]) @given(allow_broadcast_fastpath=st.booleans(), **hu.gcs) @settings(deadline=None) def test_broadcast_Add(self, allow_broadcast_fastpath: bool, gc, dc): self.__test_binary_op( gc, dc, "Add", operator.add, allow_broadcast_fastpath=allow_broadcast_fastpath ) @given(allow_broadcast_fastpath=st.booleans(), **hu.gcs) @settings(deadline=None) def test_broadcast_Mul(self, allow_broadcast_fastpath: bool, gc, dc): self.__test_binary_op( gc, dc, "Mul", operator.mul, allow_broadcast_fastpath=allow_broadcast_fastpath ) @given(allow_broadcast_fastpath=st.booleans(), **hu.gcs) @settings(deadline=None) def test_broadcast_Sub(self, allow_broadcast_fastpath: bool, gc, dc): self.__test_binary_op( gc, dc, "Sub", operator.sub, allow_broadcast_fastpath=allow_broadcast_fastpath ) @given(**hu.gcs) @settings(deadline=None) def test_broadcast_powt(self, gc, dc): np.random.seed(101) #operator def powt_op(X, Y): return [np.power(X, Y)] #two gradients Y*X^(Y-1) and X^Y * ln(X) def powt_grad(g_out, outputs, fwd_inputs): [X, Y] = fwd_inputs Z = outputs[0] return ([Y * np.power(X, Y - 1), Z * np.log(X)] * g_out) #1. Set broadcast and no axis, i.e. broadcasting last dimensions. X = np.random.rand(2, 3, 4, 5).astype(np.float32) + 1.0 Y = np.random.rand(4, 5).astype(np.float32) + 2.0 #two gradients Y*X^(Y-1) and X^Y * ln(X) #latter gradient is summed over 1 and 0 dims to account for broadcast def powt_grad_broadcast(g_out, outputs, fwd_inputs): [GX, GY] = powt_grad(g_out, outputs, fwd_inputs) return ([GX, np.sum(np.sum(GY, 1), 0)]) op = core.CreateOperator("Pow", ["X", "Y"], "Z", broadcast=1) self.assertReferenceChecks(device_option=gc, op=op, inputs=[X, Y], reference=powt_op, output_to_grad="Z", grad_reference=powt_grad_broadcast) #2. broadcasting intermediate dimensions X = np.random.rand(2, 3, 4, 5).astype(np.float32) + 1.0 Y = np.random.rand(3, 4).astype(np.float32) + 2.0 #pow op with the latter array increased by one dim def powt_op_axis1(X, Y): return powt_op(X, Y[:, :, np.newaxis]) #two gradients Y*X^(Y-1) and X^Y * ln(X) #latter gradient is summed over 3 and 0 dims to account for broadcast def powt_grad_axis1(g_out, outputs, fwd_inputs): [X, Y] = fwd_inputs [GX, GY] = powt_grad(g_out, outputs, [X, Y[:, :, np.newaxis]]) return ([GX, np.sum(np.sum(GY, 3), 0)]) op = core.CreateOperator("Pow", ["X", "Y"], "Z", broadcast=1, axis=1) self.assertReferenceChecks(device_option=gc, op=op, inputs=[X, Y], reference=powt_op_axis1, output_to_grad="Z", grad_reference=powt_grad_axis1) #3. broadcasting the first dimension X = np.random.rand(2, 3, 4, 5).astype(np.float32) + 1.0 Y = np.random.rand(2).astype(np.float32) + 2.0 #pow op with the latter array increased by one dim def powt_op_axis0(X, Y): return powt_op(X, Y[:, np.newaxis, np.newaxis, np.newaxis]) #two gradients Y*X^(Y-1) and X^Y * ln(X) #latter gradient is summed over 3, 2 and 1 dims to account for broadcast def powt_grad_axis0(g_out, outputs, fwd_inputs): [X, Y] = fwd_inputs [GX, GY] = powt_grad(g_out, outputs, [X, Y[:, np.newaxis, np.newaxis, np.newaxis]]) return ([GX, np.sum(np.sum(np.sum(GY, 3), 2), 1)]) op = core.CreateOperator("Pow", ["X", "Y"], "Z", broadcast=1, axis=0) self.assertReferenceChecks(device_option=gc, op=op, inputs=[X, Y], reference=powt_op_axis0, output_to_grad="Z", grad_reference=powt_grad_axis0) #4. broadcasting with single elem dimensions at both ends X = np.random.rand(2, 3, 4, 5).astype(np.float32) + 1.0 Y = np.random.rand(1, 4, 1).astype(np.float32) + 2.0 #pow op with the latter array increased by one dim def powt_op_mixed(X, Y): return powt_op(X, Y[np.newaxis, :, :, :]) #two gradients Y*X^(Y-1) and X^Y * ln(X) #latter gradient is summed over 0 and 1 dims to account for broadcast def powt_grad_mixed(g_out, outputs, fwd_inputs): [X, Y] = fwd_inputs [GX, GY] = powt_grad(g_out, outputs, [X, Y[np.newaxis, :, :, :]]) return ([GX, np.reshape(np.sum(np.sum(np.sum(GY, 3), 1), 0), (1, 4, 1))]) op = core.CreateOperator("Pow", ["X", "Y"], "Z", broadcast=1, axis=1) self.assertReferenceChecks(device_option=gc, op=op, inputs=[X, Y], reference=powt_op_mixed, output_to_grad="Z", grad_reference=powt_grad_mixed) @given(allow_broadcast_fastpath=st.booleans(), **hu.gcs) def test_broadcast_scalar(self, allow_broadcast_fastpath: bool, gc, dc): # broadcasting constant X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(1).astype(np.float32) op = core.CreateOperator( "Add", ["X", "Y"], "out", broadcast=1, allow_broadcast_fastpath=allow_broadcast_fastpath ) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") np.testing.assert_array_almost_equal( out, X + Y) self.assertDeviceChecks(dc, op, [X, Y], [0]) # broadcasting scalar X = np.random.rand(1).astype(np.float32) Y = np.random.rand(1).astype(np.float32).reshape([]) op = core.CreateOperator( "Add", ["X", "Y"], "out", broadcast=1, allow_broadcast_fastpath=allow_broadcast_fastpath ) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") np.testing.assert_array_almost_equal( out, X + Y) self.assertDeviceChecks(dc, op, [X, Y], [0]) @given(allow_broadcast_fastpath=st.booleans(), **hu.gcs) def test_semantic_broadcast(self, allow_broadcast_fastpath: bool, gc, dc): # NCHW as default X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(3).astype(np.float32) op = core.CreateOperator( "Add", ["X", "Y"], "out", broadcast=1, axis_str="C", allow_broadcast_fastpath=allow_broadcast_fastpath) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") np.testing.assert_array_almost_equal( out, X + Y[:, np.newaxis, np.newaxis]) self.assertDeviceChecks(dc, op, [X, Y], [0]) # NHWC X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(5).astype(np.float32) op = core.CreateOperator( "Add", ["X", "Y"], "out", broadcast=1, axis_str="C", order="NHWC", allow_broadcast_fastpath=allow_broadcast_fastpath) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") np.testing.assert_array_almost_equal(out, X + Y) self.assertDeviceChecks(dc, op, [X, Y], [0]) @given(**hu.gcs) def test_sum_reduce_empty_blob(self, gc, dc): net = core.Net('test') with core.DeviceScope(gc): net.GivenTensorFill([], ["X"], values=[], shape=[2, 0, 5]) net.GivenTensorFill([], ["Y"], values=[], shape=[2, 0]) net.SumReduceLike(["X", "Y"], "out", axis=0) workspace.RunNetOnce(net) @given(**hu.gcs) def test_sum_reduce(self, gc, dc): # Set broadcast and no axis, i.e. broadcasting last dimensions. X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(4, 5).astype(np.float32) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") res = np.sum(X, axis=0) res = np.sum(res, axis=0) np.testing.assert_array_almost_equal(out, res) self.assertDeviceChecks(dc, op, [X, Y], [0]) # Set broadcast and no axis, i.e. broadcasting last dimensions. X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(2, 3).astype(np.float32) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1, axis=0) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") res = np.sum(X, axis=3) res = np.sum(res, axis=2) np.testing.assert_array_almost_equal(out, res, decimal=3) self.assertDeviceChecks(dc, op, [X, Y], [0]) # broadcasting intermediate dimensions X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(3, 4).astype(np.float32) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1, axis=1) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") res = np.sum(X, axis=0) res = np.sum(res, axis=2) np.testing.assert_array_almost_equal(out, res) self.assertDeviceChecks(dc, op, [X, Y], [0]) # broadcasting intermediate dimensions X = np.random.rand(2, 3, 4, 500).astype(np.float64) Y = np.random.rand(1).astype(np.float64) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") res = np.array(np.sum(X)) np.testing.assert_array_almost_equal(out, res, decimal=0) # broadcasting with single elem dimensions at both ends X = np.random.rand(2, 3, 4, 5).astype(np.float32) Y = np.random.rand(1, 3, 4, 1).astype(np.float32) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) workspace.RunOperatorOnce(op) out = workspace.FetchBlob("out") res = np.sum(X, axis=0) res = np.sum(res, axis=2).reshape(Y.shape) np.testing.assert_array_almost_equal(out, res) self.assertDeviceChecks(dc, op, [X, Y], [0]) # fp64 is not supported with the CUDA op dc_cpu_only = [d for d in dc if d.device_type != caffe2_pb2.CUDA] self.assertDeviceChecks(dc_cpu_only, op, [X, Y], [0]) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given(**hu.gcs) def test_sum_reduce_fp16(self, gc, dc): assume(core.IsGPUDeviceType(gc.device_type)) # Set broadcast and no axis, i.e. broadcasting last dimensions. X = np.random.rand(2, 3, 4, 5).astype(np.float16) Y = np.random.rand(4, 5).astype(np.float16) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1, device_option=gc) def ref_op(X, Y): res = np.sum(X, axis=0) res = np.sum(res, axis=0) return [res] self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, Y], reference=ref_op, threshold=1e-3) # Set broadcast and no axis, i.e. broadcasting last dimensions. X = np.random.rand(2, 3, 4, 5).astype(np.float16) Y = np.random.rand(2, 3).astype(np.float16) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1, axis=0) def ref_op(X, Y): res = np.sum(X, axis=3) res = np.sum(res, axis=2) return [res] self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, Y], reference=ref_op, threshold=1e-3) # broadcasting intermediate dimensions X = np.random.rand(2, 3, 4, 5).astype(np.float16) Y = np.random.rand(3, 4).astype(np.float16) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1, axis=1) def ref_op(X, Y): res = np.sum(X, axis=0) res = np.sum(res, axis=2) return [res] self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, Y], reference=ref_op, threshold=1e-3) # broadcasting with single elem dimensions at both ends X = np.random.rand(2, 3, 4, 5).astype(np.float16) Y = np.random.rand(1, 3, 4, 1).astype(np.float16) op = core.CreateOperator( "SumReduceLike", ["X", "Y"], "out", broadcast=1) def ref_op(X, Y): res = np.sum(X, axis=0) res = np.sum(res, axis=2) return [res.reshape(Y.shape)] self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, Y], reference=ref_op, threshold=1e-3) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/elementwise_op_broadcast_test.py
from caffe2.python import recurrent, workspace from caffe2.python.model_helper import ModelHelper from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class RecurrentNetworkTest(serial.SerializedTestCase): @given(T=st.integers(1, 4), n=st.integers(1, 5), d=st.integers(1, 5)) @settings(deadline=10000) def test_sum_mul(self, T, n, d): model = ModelHelper(name='external') input_blob, initial_input_blob = model.net.AddExternalInputs( 'input', 'initial_input') step = ModelHelper(name='step', param_model=model) input_t, output_t_prev = step.net.AddExternalInput( 'input_t', 'output_t_prev') output_t_internal = step.net.Sum([input_t, output_t_prev]) output_t = step.net.Mul([input_t, output_t_internal]) step.net.AddExternalOutput(output_t) self.simple_rnn(T, n, d, model, step, input_t, output_t, output_t_prev, input_blob, initial_input_blob) @given(T=st.integers(1, 4), n=st.integers(1, 5), d=st.integers(1, 5)) @settings(deadline=10000) def test_mul(self, T, n, d): model = ModelHelper(name='external') input_blob, initial_input_blob = model.net.AddExternalInputs( 'input', 'initial_input') step = ModelHelper(name='step', param_model=model) input_t, output_t_prev = step.net.AddExternalInput( 'input_t', 'output_t_prev') output_t = step.net.Mul([input_t, output_t_prev]) step.net.AddExternalOutput(output_t) self.simple_rnn(T, n, d, model, step, input_t, output_t, output_t_prev, input_blob, initial_input_blob) @given(T=st.integers(1, 4), n=st.integers(1, 5), d=st.integers(1, 5)) def test_extract(self, T, n, d): model = ModelHelper(name='external') workspace.ResetWorkspace() input_blob, initial_input_blob = model.net.AddExternalInputs( 'input', 'initial_input') step = ModelHelper(name='step', param_model=model) input_t, output_t_prev = step.net.AddExternalInput( 'input_t', 'output_t_prev') output_t = step.net.Mul([input_t, output_t_prev]) step.net.AddExternalOutput(output_t) inputs = np.random.randn(T, n, d).astype(np.float32) initial_input = np.random.randn(1, n, d).astype(np.float32) recurrent.recurrent_net( net=model.net, cell_net=step.net, inputs=[(input_t, input_blob)], initial_cell_inputs=[(output_t_prev, initial_input_blob)], links={output_t_prev: output_t}, scope="test_rnn_sum_mull", ) workspace.blobs[input_blob] = inputs workspace.blobs[initial_input_blob] = initial_input workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) prefix = "extractTest" workspace.RunNet(model.net.Proto().name, T) retrieved_blobs = recurrent.retrieve_step_blobs( model.net, prefix ) # needed for python3.6, which returns bytearrays instead of str retrieved_blobs = [x.decode() for x in retrieved_blobs] for i in range(T): blob_name = prefix + "_" + "input_t" + str(i) self.assertTrue( blob_name in retrieved_blobs, "blob extraction failed on timestep {}\ . \n\n Extracted Blobs: {} \n\n Looking for {}\ .".format(i, retrieved_blobs, blob_name) ) def simple_rnn(self, T, n, d, model, step, input_t, output_t, output_t_prev, input_blob, initial_input_blob): input = np.random.randn(T, n, d).astype(np.float32) initial_input = np.random.randn(1, n, d).astype(np.float32) print(locals()) recurrent.recurrent_net( net=model.net, cell_net=step.net, inputs=[(input_t, input_blob)], initial_cell_inputs=[(output_t_prev, initial_input_blob)], links={output_t_prev: output_t}, scope="test_rnn_sum_mull", ) workspace.blobs[input_blob] = input workspace.blobs[initial_input_blob] = initial_input op = model.net._net.op[-1] # Just conviniently store all inputs in an array in the same # order as op.input inputs = [workspace.blobs[name] for name in op.input] def reference(input, initial_input): global_ws_name = workspace.CurrentWorkspace() input_all = workspace.blobs[input_blob] workspace.SwitchWorkspace("ref", create_if_missing=True) workspace.blobs[input_blob] = input workspace.blobs[output_t_prev] = initial_input.reshape(n, d) res_all = np.zeros(shape=input.shape, dtype=np.float32) for t_cur in range(T): workspace.blobs[input_t] = input_all[t_cur] workspace.RunNetOnce(step.net) result_t = workspace.blobs[output_t] workspace.blobs[output_t_prev] = result_t res_all[t_cur] = result_t workspace.SwitchWorkspace(global_ws_name) shape = list(input.shape) shape[0] = 1 return (res_all, res_all[-1].reshape(shape)) self.assertReferenceChecks( device_option=hu.cpu_do, op=op, inputs=inputs, reference=reference, output_to_grad=op.output[0], outputs_to_check=[0, 1], ) self.assertGradientChecks( device_option=hu.cpu_do, op=op, inputs=inputs, outputs_to_check=0, outputs_with_grads=[0], threshold=0.01, stepsize=0.005, ) # Hacky version of 1-D convolution def _convolution_1d( self, model, inputs, conv_window, conv_filter, conv_bias, output_name, left_pad, ): if left_pad: padding_width = conv_window - 1 else: padding_width = 0 # [batch_size, inputs_length, state_size] inputs_transposed = model.net.Transpose( inputs, 'inputs_transposed', axes=[1, 0, 2], ) # [batch_size, 1, inputs_length, state_size] inputs_transposed_4d = model.net.ExpandDims( inputs_transposed, 'inputs_transposed_4d', dims=[1], ) # [batch_size, 1, inputs_length - conv_window + 1, state_size] output_transposed_4d = model.net.Conv( [inputs_transposed_4d, conv_filter, conv_bias], output_name + '_transposed_4d', kernel_h=1, kernel_w=conv_window, order='NHWC', pad_t=0, pad_l=padding_width, pad_b=0, pad_r=0, ) # [batch_size, inputs_length - conv_window + 1, state_size] output_transposed = model.net.Squeeze( output_transposed_4d, output_name + '_transposed', dims=[1], ) # [inputs_length - conv_window + 1, batch_size, state_size] output = model.net.Transpose( output_transposed, output_name, axes=[1, 0, 2], ) return output @given(sequence_length=st.integers(3, 7), conv_window=st.integers(1, 3), batch_size=st.integers(1, 5), state_size=st.integers(1, 5)) def test_stateful_convolution_forward_only( self, sequence_length, conv_window, batch_size, state_size, ): ''' This unit test demonstrates another ways of using RecurrentNetwork. Imagine, that you want to compute convolution over a sequence, but sequence elements are not given to you from the beginning, so you have to loop over the sequence and compute convolution for each element separately. This situation can occur, during inference/generation step of the neural networks. First of all, you have to provide actual input via recurrent states, since the input of RecurrentNetwork should be known in advance. Here, we use `fake_inputs` as the input, and it's used by the op to extract batch size and sequence length. The actual input sequence is stored in the recurrent state `input_state`. At every step we generate a new element via input_state_t (in this example, input_state_t is generated at random, but in a real situation it can be created using convolution output from the previous step). A few important differences from regular RecurrentNetwork usecase: 1. input_state_t_prev is not only a single previous element of input_state sequence. It is last conv_window elements including (!) the current one - input_state_t. We specify that using `link_window` argument of RecurrentNetwork. We need that many elements to compute a single convolution step. Also, note that `link_window` specifies how many elements to link starting at `timestep` + `link_offset` position. 2. First few steps might require additional zero padding from the left, since there is no enough element of input_state sequence are available. So the initial_state for input_state contains several elements (exactly how many pads we need for the first step). Also, because of that all offseting over input_state sequence is being shifted by length of initial_input_state: see `link_offset` and `alias_offset` arguments of RecurrentNetwork. In this test, we assert that we get the same result if we apply convolution over all elements simultaneously, since the whole input_state sequence was generated at the end. ''' model = ModelHelper(name='model') fake_inputs = model.param_init_net.UniformFill( [], 'fake_inputs', min=-1.0, max=1.0, shape=[sequence_length, batch_size, state_size], ) initial_input_state = model.param_init_net.ConstantFill( [], 'initial_input_state', value=0.0, shape=[conv_window - 1, batch_size, state_size], ) initial_output_state = model.param_init_net.ConstantFill( [], 'initial_output_state', value=0.0, shape=[1, batch_size, state_size], ) step_model = ModelHelper(name='step_model', param_model=model) ( fake_input_t, timestep, input_state_t_prev, ) = step_model.net.AddExternalInputs( 'fake_input_t', 'timestep', 'input_state_t_prev', ) conv_filter = step_model.param_init_net.XavierFill( [], 'conv_filter', shape=[state_size, 1, conv_window, state_size], ) conv_bias = step_model.param_init_net.ConstantFill( [], 'conv_bias', shape=[state_size], value=0.0, ) step_model.params.extend([conv_filter, conv_bias]) input_state_t = step_model.net.UniformFill( [], 'input_state_t', min=-1.0, max=1.0, shape=[1, batch_size, state_size], ) output_state_t = self._convolution_1d( model=step_model, inputs=input_state_t_prev, conv_window=conv_window, conv_filter=conv_filter, conv_bias=conv_bias, output_name='output_state_t', left_pad=False, ) initial_recurrent_states = [initial_input_state, initial_output_state] all_inputs = ( [fake_inputs] + step_model.params + initial_recurrent_states ) all_outputs = ['input_state_all', 'output_state_all'] recurrent_states = ['input_state', 'output_state'] input_state_all, output_state_all, _ = model.net.RecurrentNetwork( all_inputs, all_outputs + ['step_workspaces'], param=[all_inputs.index(p) for p in step_model.params], alias_src=recurrent_states, alias_dst=all_outputs, alias_offset=[conv_window - 1, 1], recurrent_states=recurrent_states, initial_recurrent_state_ids=[ all_inputs.index(s) for s in initial_recurrent_states ], link_internal=[ str(input_state_t_prev), str(input_state_t), str(output_state_t), ], link_external=['input_state', 'input_state', 'output_state'], link_offset=[0, conv_window - 1, 1], link_window=[conv_window, 1, 1], backward_link_internal=[], backward_link_external=[], backward_link_offset=[], step_net=step_model.net.Proto(), timestep='timestep' if timestep is None else str(timestep), outputs_with_grads=[], ) output_states_2 = self._convolution_1d( model=model, inputs=input_state_all, conv_window=conv_window, conv_filter=conv_filter, conv_bias=conv_bias, output_name='output_states_2', left_pad=True, ) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) np.testing.assert_almost_equal( workspace.FetchBlob(output_state_all), workspace.FetchBlob(output_states_2), decimal=3, )
pytorch-master
caffe2/python/operator_test/recurrent_network_test.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import unittest class TestAtomicOps(TestCase): @unittest.skip("Test is flaky: https://github.com/pytorch/pytorch/issues/28179") def test_atomic_ops(self): """ Test that both countdown and checksum are update atomically by having cowntdown count from 20k to 0 from parallel the workers and updating the checksum to the value fetched. If operations are trully atomic, each value from 1 to 20k should be fetched exactly once from the countdown, and fed exactly once to the checksum, such that at the end checksum must contain the exact value of sum[i=0..20000](i). """ init_net = core.Net('init') mutex_countdown = init_net.CreateMutex([]) mutex_checksum = init_net.CreateMutex([]) countdown = init_net.ConstantFill([], shape=[], value=20000, dtype=core.DataType.INT32) checksum = init_net.ConstantFill( [], shape=[], value=0, dtype=core.DataType.INT32) minus_one = init_net.ConstantFill( [], shape=[], value=-1, dtype=core.DataType.INT32) steps = [] for i in range(0, 100): net = core.Net('net:%d' % i) _, fetched_count = net.AtomicFetchAdd( [mutex_countdown, countdown, minus_one], [countdown, 'fetched_count:%d' % i]) net.AtomicFetchAdd( [mutex_checksum, checksum, fetched_count], [checksum, 'not_used']) steps.append( core.execution_step('worker:%d' % i, net, num_iter=200)) super_step = core.execution_step( 'parent', steps, concurrent_substeps=True) plan = core.Plan('plan') plan.AddStep(core.execution_step('init', init_net)) plan.AddStep(super_step) workspace.RunPlan(plan) # checksum = sum[i=1..20000](i) = 20000 * 20001 / 2 = 200010000 self.assertEquals(workspace.FetchBlob(checksum), 200010000) @unittest.skip("Test is flaky: https://github.com/pytorch/pytorch/issues/28179") def test_atomic64_ops(self): """ Test that both countdown and checksum are update atomically by having cowntdown count from 20k to 0 from parallel the workers and updating the checksum to the value fetched. If operations are trully atomic, each value from 1 to 20k should be fetched exactly once from the countdown, and fed exactly once to the checksum, such that at the end checksum must contain the exact value of sum[i=0..20000](i). """ init_net = core.Net('init') mutex_countdown = init_net.CreateMutex([]) mutex_checksum = init_net.CreateMutex([]) countdown = init_net.ConstantFill([], shape=[], value=20000, dtype=core.DataType.INT64) checksum = init_net.ConstantFill( [], shape=[], value=0, dtype=core.DataType.INT64) minus_one = init_net.ConstantFill( [], shape=[], value=-1, dtype=core.DataType.INT64) steps = [] for i in range(0, 100): net = core.Net('net:%d' % i) _, fetched_count = net.AtomicFetchAdd64( [mutex_countdown, countdown, minus_one], [countdown, 'fetched_count:%d' % i]) net.AtomicFetchAdd64( [mutex_checksum, checksum, fetched_count], [checksum, 'not_used']) steps.append( core.execution_step('worker:%d' % i, net, num_iter=200)) super_step = core.execution_step( 'parent', steps, concurrent_substeps=True) plan = core.Plan('plan') plan.AddStep(core.execution_step('init', init_net)) plan.AddStep(super_step) workspace.RunPlan(plan) # checksum = sum[i=1..20000](i) = 20000 * 20001 / 2 = 200010000 self.assertEquals(workspace.FetchBlob(checksum), 200010000) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/atomic_ops_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np class RMACRegionsOpTest(hu.HypothesisTestCase): @given( n=st.integers(500, 500), h=st.integers(1, 10), w=st.integers(1, 10), scales=st.integers(1, 3), **hu.gcs ) @settings(deadline=10000) def test(self, n, h, w, scales, gc, dc): X = np.random.rand(n, 64, h, w).astype(np.float32) overlap = 0.4 def ref_op(X): N, H, W = X.shape[0], X.shape[2], X.shape[3] # Possible regions for the long dimension steps = np.array((2, 3, 4, 5, 6, 7), dtype=np.float32) minW = np.minimum(H, W) # steps(idx) regions for long dimension b = (np.maximum(H, W) - minW) / (steps - 1) idx = np.argmin( np.abs(((minW**2 - minW * b) / minW**2) - overlap)) + 1 # Region overplus per dimension Wd = 0 Hd = 0 if H < W: Wd = idx elif H > W: Hd = idx regions_xywh = [] for l in range(1, scales + 1): wl = np.floor(2 * minW / (l + 1)) # Center coordinates if l + Wd - 1 > 0: b = (W - wl) / (l + Wd - 1) else: b = 0 cenW = np.floor(b * np.arange(l - 1 + Wd + 1)) # Center coordinates if l + Hd - 1 > 0: b = (H - wl) / (l + Hd - 1) else: b = 0 cenH = np.floor(b * np.arange(l - 1 + Hd + 1)) for i_ in cenW: for j_ in cenH: regions_xywh.append([i_, j_, wl, wl]) # Round the regions. Careful with the borders! for i in range(len(regions_xywh)): for j in range(4): regions_xywh[i][j] = int(round(regions_xywh[i][j])) if regions_xywh[i][0] + regions_xywh[i][2] > W: regions_xywh[i][0] -= ( (regions_xywh[i][0] + regions_xywh[i][2]) - W ) if regions_xywh[i][1] + regions_xywh[i][3] > H: regions_xywh[i][1] -= ( (regions_xywh[i][1] + regions_xywh[i][3]) - H ) # Filter out 0-sized regions regions_xywh = [r for r in regions_xywh if r[2] * r[3] > 0] # Convert to ROIPoolOp format: (batch_index x1 y1 x2 y2) regions = [ [i, x, y, x + w - 1, y + h - 1] for i in np.arange(N) for x, y, w, h in regions_xywh ] return (np.array(regions).astype(np.float32), ) op = core.CreateOperator( 'RMACRegions', ['X'], ['RMAC_REGIONS'], scales=scales, overlap=overlap, ) # Check against numpy reference self.assertReferenceChecks(gc, op, [X], ref_op)
pytorch-master
caffe2/python/operator_test/rmac_regions_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestPackRNNSequenceOperator(serial.SerializedTestCase): @serial.given(n=st.integers(0, 10), k=st.integers(1, 5), dim=st.integers(1, 5), **hu.gcs_cpu_only) def test_pack_rnn_seqence(self, n, k, dim, gc, dc): lengths = np.random.randint(k, size=n).astype(np.int32) + 1 values = np.random.rand(sum(lengths), dim).astype(np.float32) def pack_op(values, lengths): T = max(lengths) if any(lengths) else 0 N = lengths.size output = np.zeros((T, N) + values.shape[1:]).astype(np.float32) offset = 0 for c in range(N): for r in range(lengths[c]): output[r][c] = values[offset + r] offset += lengths[c] return [output] op = core.CreateOperator( 'PackRNNSequence', ['values', 'lengths'], 'out' ) # Check against numpy reference self.assertReferenceChecks( device_option=gc, op=op, inputs=[values, lengths], reference=pack_op, ) # Check over multiple devices self.assertDeviceChecks(dc, op, [values, lengths], [0]) # Gradient check self.assertGradientChecks(gc, op, [values, lengths], 0, [0]) @serial.given(n=st.integers(0, 10), k=st.integers(2, 5), dim=st.integers(1, 5), **hu.gcs_cpu_only) def test_unpack_rnn_seqence(self, n, k, dim, gc, dc): lengths = np.random.randint(k, size=n).astype(np.int32) + 1 T = max(lengths) if any(lengths) else 0 N = lengths.size values = np.random.rand(T, N, dim).astype(np.float32) def unpack_op(values, lengths): M = sum(lengths) output = np.zeros((M,) + values.shape[2:]).astype(np.float32) N = lengths.size offset = 0 for c in range(N): for r in range(lengths[c]): output[offset + r] = values[r][c] offset += lengths[c] return [output] op = core.CreateOperator( 'UnpackRNNSequence', ['values', 'lengths'], 'out' ) # Check against numpy reference self.assertReferenceChecks( device_option=gc, op=op, inputs=[values, lengths], reference=unpack_op, ) # Check over multiple devices self.assertDeviceChecks(dc, op, [values, lengths], [0]) # Gradient check self.assertGradientChecks(gc, op, [values, lengths], 0, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/pack_rnn_sequence_op_test.py
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestLengthsTopKOps(serial.SerializedTestCase): @serial.given(N=st.integers(min_value=0, max_value=10), K=st.integers(min_value=1, max_value=10), **hu.gcs_cpu_only) def test_lengths_top_k_op(self, N, K, gc, dc): lens = np.random.randint(low=1, high=2 * K + 1, size=N).astype(np.int32) X = [] for i in lens: X.extend(x / 100.0 for x in range(0, 6 * i, 6)) X = np.array(X, dtype=np.float32) op = core.CreateOperator("LengthsTopK", ["X", "Y"], ["values", "indices"], k=K) def lengths_top_k(X, lens): N, si = lens.shape[0], 0 values, indices = [], [] for i in range(N): cur_indices = X[si:si + lens[i]].argsort()[-K:][::-1] cur_values = X[si:si + lens[i]][cur_indices] values.extend(cur_values) indices.extend(cur_indices) si += lens[i] if lens[i] < K: values.extend([0] * (K - lens[i])) indices.extend([-1] * (K - lens[i])) return (np.array(values, dtype=np.float32).reshape(-1, K), np.array(indices, dtype=np.int32).reshape(-1, K)) self.assertDeviceChecks(dc, op, [X, lens], [0, 1]) self.assertReferenceChecks(gc, op, [X, lens], lengths_top_k) self.assertGradientChecks(gc, op, [X, lens], 0, [0]) @given(N=st.integers(min_value=0, max_value=10), K=st.integers(min_value=1, max_value=10), **hu.gcs_cpu_only) def test_lengths_top_k_empty_op(self, N, K, gc, dc): lens = np.zeros((N, ), dtype=np.int32) X = np.array([], dtype=np.float32) op = core.CreateOperator("LengthsTopK", ["X", "Y"], ["values", "indices"], k=K) def lengths_top_k(X, lens): return (np.zeros((N, K), dtype=np.float32), -1 * np.ones((N, K), dtype=np.int32)) self.assertDeviceChecks(dc, op, [X, lens], [0, 1]) self.assertReferenceChecks(gc, op, [X, lens], lengths_top_k) self.assertGradientChecks(gc, op, [X, lens], 0, [0])
pytorch-master
caffe2/python/operator_test/lengths_top_k_ops_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest class TestSelu(serial.SerializedTestCase): @serial.given(X=hu.tensor(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_selu_1(self, X, gc, dc, engine): alpha = 1.0 scale = 2.0 op = core.CreateOperator("Selu", ["X"], ["Y"], alpha=alpha, scale=scale, engine=engine) X = TestSelu.fix0(X) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) self.assertReferenceChecks( gc, op, [X], lambda x: TestSelu.selu_ref(x, alpha=alpha, scale=scale) ) @given(X=hu.tensor(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_selu_2(self, X, gc, dc, engine): alpha = 1.6732 scale = 1.0507 op = core.CreateOperator("Selu", ["X"], ["Y"], alpha=alpha, scale=scale, engine=engine) X = TestSelu.fix0(X) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=1e-2, threshold=1e-2) self.assertReferenceChecks( gc, op, [X], lambda x: TestSelu.selu_ref(x, alpha=alpha, scale=scale) ) @given(X=hu.tensor(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_selu_3(self, X, gc, dc, engine): alpha = 1.3 scale = 1.1 op = core.CreateOperator("Selu", ["X"], ["Y"], alpha=alpha, scale=scale, engine=engine) X = TestSelu.fix0(X) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) self.assertReferenceChecks( gc, op, [X], lambda x: TestSelu.selu_ref(x, alpha=alpha, scale=scale) ) @given(X=hu.tensor(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_selu_inplace(self, X, gc, dc, engine): alpha = 1.3 scale = 1.1 op = core.CreateOperator("Selu", ["X"], ["X"], alpha=alpha, scale=scale, engine=engine) X = TestSelu.fix0(X) self.assertDeviceChecks(dc, op, [X], [0]) # inplace gradient Y = TestSelu.selu_ref(X, alpha=alpha, scale=scale) dX = np.ones_like(X) op2 = core.CreateOperator("SeluGradient", ["Y", "dX"], ["dX"], alpha=alpha, scale=scale, engine=engine) self.assertDeviceChecks(dc, op2, [Y, dX], [0]) @staticmethod def fix0(X): # go away from the origin point to avoid kink problems X += 0.02 * np.sign(X) X[X == 0.0] += 0.02 return X @staticmethod def selu_ref(x, scale, alpha): ret = scale * ((x > 0) * x + (x <= 0) * (alpha * (np.exp(x) - 1))) return [ret] if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/selu_op_test.py
import numpy as np import caffe2.python.hypothesis_test_util as hu from caffe2.python import core, utils from hypothesis import given, settings import hypothesis.strategies as st class Depthwise3x3ConvOpsTest(hu.HypothesisTestCase): @given(pad=st.integers(0, 1), kernel=st.integers(3, 3), size=st.integers(4, 8), channels=st.integers(2, 4), batch_size=st.integers(1, 1), order=st.sampled_from(["NCHW"]), engine=st.sampled_from(["DEPTHWISE_3x3"]), use_bias=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_convolution_gradients(self, pad, kernel, size, channels, batch_size, order, engine, use_bias, gc, dc): op = core.CreateOperator( "Conv", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], kernel=kernel, pad=pad, group=channels, order=order, engine=engine, ) X = np.random.rand( batch_size, size, size, channels).astype(np.float32) - 0.5 w = np.random.rand( channels, kernel, kernel, 1).astype(np.float32)\ - 0.5 b = np.random.rand(channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, w, b] if use_bias else [X, w] # Error handling path. if size + pad + pad < kernel or size + pad + pad < kernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0])
pytorch-master
caffe2/python/operator_test/depthwise_3x3_conv_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestExpandOp(serial.SerializedTestCase): def _rand_shape(self, X_shape, max_length): length = np.random.randint(max_length) shape = np.ones(length, dtype=np.int64) i = len(X_shape) - 1 for j in reversed(range(length)): if i >= 0: k = np.random.choice([1, X_shape[i]]) i -= 1 else: k = np.random.randint(3) + 1 shape[j] = k return shape def _run_expand_op_test(self, X, shape, gc, dc): shape = np.array(shape) op = core.CreateOperator( 'Expand', ["X", "shape"], ["Y"], ) def ref(X, shape): return (X * np.ones(abs(shape)),) self.assertReferenceChecks(gc, op, [X, shape], ref) self.assertDeviceChecks(dc, op, [X, shape], [0]) self.assertGradientChecks(gc, op, [X, shape], 0, [0]) @serial.given(X=hu.tensor(max_dim=5, dtype=np.float32), **hu.gcs) def test_expand_rand_shape(self, X, gc, dc): shape = self._rand_shape(X.shape, 5) self._run_expand_op_test(X, shape, gc, dc) @given(X=st.sampled_from([np.ones([1, 3, 1]), np.ones([3, 1, 3]), np.ones([1, 3])]), **hu.gcs) def test_expand_nonrand_shape1(self, X, gc, dc): self._run_expand_op_test(X, [3, 1, 3], gc, dc) self._run_expand_op_test(X, [3, -1, 3], gc, dc) @given(X=st.sampled_from([np.ones([4, 4, 2, 1]), np.ones([1, 4, 1, 2]), np.ones([4, 1, 2])]), **hu.gcs) @settings(deadline=10000) def test_expand_nonrand_shape2(self, X, gc, dc): self._run_expand_op_test(X, [4, 1, 2, 2], gc, dc) self._run_expand_op_test(X, [4, -1, 2, 2], gc, dc)
pytorch-master
caffe2/python/operator_test/expand_op_test.py
from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st from hypothesis import given, settings import numpy as np class TestIndexHashOps(serial.SerializedTestCase): @given( indices=st.sampled_from([ np.int32, np.int64 ]).flatmap(lambda dtype: hu.tensor(min_dim=1, max_dim=1, dtype=dtype)), seed=st.integers(min_value=0, max_value=10), modulo=st.integers(min_value=100000, max_value=200000), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_index_hash_ops(self, indices, seed, modulo, gc, dc): def index_hash(indices): dtype = np.array(indices).dtype assert dtype == np.int32 or dtype == np.int64 hashed_indices = [] for index in indices: hashed = dtype.type(0xDEADBEEF * seed) indices_bytes = np.array([index], dtype).view(np.int8) for b in indices_bytes: hashed = dtype.type(hashed * 65537 + b) hashed = (modulo + hashed % modulo) % modulo hashed_indices.append(hashed) return [hashed_indices] op = core.CreateOperator("IndexHash", ["indices"], ["hashed_indices"], seed=seed, modulo=modulo) self.assertDeviceChecks(dc, op, [indices], [0]) self.assertReferenceChecks(gc, op, [indices], index_hash) # In-place update op = core.CreateOperator("IndexHash", ["indices"], ["indices"], seed=seed, modulo=modulo) self.assertDeviceChecks(dc, op, [indices], [0]) self.assertReferenceChecks(gc, op, [indices], index_hash) def test_shape_and_type_inference(self): with hu.temp_workspace("shape_type_inf_int64"): net = core.Net('test_net') net.ConstantFill( [], "values", shape=[64], dtype=core.DataType.INT64, ) net.IndexHash(['values'], ['values_output']) (shapes, types) = workspace.InferShapesAndTypes([net], {}) self.assertEqual(shapes["values_output"], [64]) self.assertEqual(types["values_output"], core.DataType.INT64) with hu.temp_workspace("shape_type_inf_int32"): net = core.Net('test_net') net.ConstantFill( [], "values", shape=[2, 32], dtype=core.DataType.INT32, ) net.IndexHash(['values'], ['values_output']) (shapes, types) = workspace.InferShapesAndTypes([net], {}) self.assertEqual(shapes["values_output"], [2, 32]) self.assertEqual(types["values_output"], core.DataType.INT32)
pytorch-master
caffe2/python/operator_test/index_hash_ops_test.py
import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, workspace from hypothesis import given class TestLengthsReducerOpsFusedNBitRowwise(hu.HypothesisTestCase): @given( num_rows=st.integers(1, 20), blocksize=st.sampled_from([8, 12, 16, 32, 64, 96, 128]), weighted=st.booleans(), seed=st.integers(0, 2 ** 32 - 1), empty_indices=st.booleans(), engine=st.sampled_from(["", "GREEDY"]), bit_rate=st.sampled_from([2, 4]), ) def test_sparse_lengths_sum( self, num_rows, blocksize, weighted, seed, empty_indices, engine, bit_rate ): net = core.Net("bench") np.random.seed(seed) input_data = np.random.rand(num_rows, blocksize).astype(np.float32) if empty_indices: lengths = np.zeros(num_rows, dtype=np.int32) num_indices = 0 else: num_indices = np.random.randint(len(input_data)) # the number of indices per sample lengths_split = np.clip(num_indices // 2, 1, 10) lengths = ( np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split ) # readjust num_indices when lengths_split doesn't divide num_indices num_indices = num_indices // lengths_split * lengths_split indices = np.random.randint( low=0, high=len(input_data), size=[num_indices], dtype=np.int64 ) weights = np.random.uniform(size=[len(indices)]).astype(np.float32) op = core.CreateOperator( "FloatToFused" + str(bit_rate) + "BitRowwiseQuantized", "input_data", "quantized_data", engine=engine, ) net.Proto().op.extend([op]) op = core.CreateOperator( "Fused" + str(bit_rate) + "BitRowwiseQuantizedToFloat", "quantized_data", "dequantized_data", ) net.Proto().op.extend([op]) op = core.CreateOperator( "FloatToFused" + str(bit_rate) + "BitFakeRowwiseQuantized", "input_data", "fake_quantized_data", engine=engine, ) net.Proto().op.extend([op]) if weighted: net.SparseLengthsWeightedSum( ["dequantized_data", "weights", "indices", "lengths"], "sum_reference" ) net.SparseLengthsWeightedSumFused8BitRowwise( ["fake_quantized_data", "weights", "indices", "lengths"], "sum_fake_quantized", ) op = core.CreateOperator( "SparseLengthsWeightedSumFused" + str(bit_rate) + "BitRowwise", ["quantized_data", "weights", "indices", "lengths"], "sum_quantized", ) net.Proto().op.extend([op]) else: net.SparseLengthsSum( ["dequantized_data", "indices", "lengths"], "sum_reference" ) net.SparseLengthsSumFused8BitRowwise( ["fake_quantized_data", "indices", "lengths"], "sum_fake_quantized" ) op = core.CreateOperator( "SparseLengthsSumFused" + str(bit_rate) + "BitRowwise", ["quantized_data", "indices", "lengths"], "sum_quantized", ) net.Proto().op.extend([op]) net.Proto().external_input.extend(["input_data"]) workspace.FeedBlob("input_data", input_data) workspace.FeedBlob("weights", weights) workspace.FeedBlob("indices", indices) workspace.FeedBlob("lengths", lengths) workspace.GlobalInit(["caffe2", "--caffe2_log_level=0"]) workspace.RunNetOnce(net) sum_reference = workspace.FetchBlob("sum_reference") sum_fake_quantized = workspace.FetchBlob("sum_fake_quantized") sum_quantized = workspace.FetchBlob("sum_quantized") np.testing.assert_array_almost_equal(sum_reference, sum_quantized) np.testing.assert_array_equal(sum_fake_quantized, sum_quantized) @given( num_rows=st.integers(1, 20), blocksize=st.sampled_from([8, 12, 16, 32, 64, 96, 128]), seed=st.integers(0, 2 ** 32 - 1), empty_indices=st.booleans(), engine=st.sampled_from(["", "GREEDY"]), bit_rate=st.sampled_from([2, 4]), ) def test_sparse_lengths_mean( self, num_rows, blocksize, seed, empty_indices, engine, bit_rate ): net = core.Net("bench") np.random.seed(seed) input_data = np.random.rand(num_rows, blocksize).astype(np.float32) if empty_indices: lengths = np.zeros(num_rows, dtype=np.int32) num_indices = 0 else: num_indices = np.random.randint(len(input_data)) # the number of indices per sample lengths_split = np.clip(num_indices // 2, 1, 10) lengths = ( np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split ) # readjust num_indices when lengths_split doesn't divide num_indices num_indices = num_indices // lengths_split * lengths_split # Use int32 here because int64 is covered by test_sparse_lengths_sum indices = np.random.randint( low=0, high=len(input_data), size=[num_indices], dtype=np.int32 ) op = core.CreateOperator( "FloatToFused" + str(bit_rate) + "BitRowwiseQuantized", "input_data", "quantized_data", engine=engine, ) net.Proto().op.extend([op]) op = core.CreateOperator( "Fused" + str(bit_rate) + "BitRowwiseQuantizedToFloat", "quantized_data", "dequantized_data", ) net.Proto().op.extend([op]) op = core.CreateOperator( "FloatToFused" + str(bit_rate) + "BitFakeRowwiseQuantized", "input_data", "fake_quantized_data", engine=engine, ) net.Proto().op.extend([op]) net.SparseLengthsMean( ["dequantized_data", "indices", "lengths"], "mean_reference" ) net.SparseLengthsMeanFused8BitRowwise( ["fake_quantized_data", "indices", "lengths"], "mean_fake_quantized" ) op = core.CreateOperator( "SparseLengthsMeanFused" + str(bit_rate) + "BitRowwise", ["quantized_data", "indices", "lengths"], "mean_quantized", ) net.Proto().op.extend([op]) net.Proto().external_input.extend(["input_data"]) workspace.FeedBlob("input_data", input_data) workspace.FeedBlob("indices", indices) workspace.FeedBlob("lengths", lengths) workspace.GlobalInit(["caffe2", "--caffe2_log_level=0"]) workspace.RunNetOnce(net) mean_reference = workspace.FetchBlob("mean_reference") mean_fake_quantized = workspace.FetchBlob("mean_fake_quantized") mean_quantized = workspace.FetchBlob("mean_quantized") np.testing.assert_array_almost_equal(mean_reference, mean_quantized) np.testing.assert_array_equal(mean_fake_quantized, mean_quantized) @given( num_rows=st.integers(1, 20), blocksize=st.sampled_from([8, 12, 16, 32, 64, 96, 128]), weighted=st.booleans(), empty_indices=st.booleans(), bit_rate=st.sampled_from([2, 4, 8]), indices_64bit=st.booleans(), ) def test_sparse_lengths_sum_rowwise_sparse( self, num_rows, blocksize, weighted, empty_indices, bit_rate, indices_64bit ): net = core.Net("bench") input_data = np.random.rand(num_rows, blocksize).astype(np.float32) if empty_indices: lengths = np.zeros(num_rows, dtype=np.int32) num_indices = 0 else: num_indices = np.random.randint(len(input_data)) # the number of indices per sample lengths_split = np.clip(num_indices // 2, 1, 10) lengths = ( np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split ) # readjust num_indices when lengths_split doesn't divide num_indices num_indices = num_indices // lengths_split * lengths_split # Use int32 here because int64 is covered by test_sparse_lengths_sum index_type = np.int64 if indices_64bit else np.int32 indices = np.random.randint( low=0, high=len(input_data), size=[num_indices], dtype=index_type ) weights = np.random.uniform(size=[len(indices)]).astype(np.float32) op = core.CreateOperator( "FloatToFused" + str(bit_rate) + "BitRowwiseQuantized", "input_data", "quantized_data", ) workspace.FeedBlob("input_data", input_data) workspace.RunOperatorOnce(op) quantized_data = workspace.FetchBlob("quantized_data") # Prune and generate mapping table sparsity = 0.7 mapping_table = np.zeros(num_rows, dtype=np.int32) num_compressed_rows = 0 unpruned_ids = [] for i in range(num_rows): if np.random.uniform() < sparsity: mapping_table[i] = -1 quantized_data[i, :] = 0 else: mapping_table[i] = num_compressed_rows num_compressed_rows += 1 unpruned_ids.append(i) pruned_quantized_data = quantized_data[unpruned_ids] inputs = ( ["quantized_data"] + (["weights"] if weighted else []) + ["indices", "lengths"] ) op = core.CreateOperator( "SparseLengths" + ("Weighted" if weighted else "") + "SumFused" + str(bit_rate) + "BitRowwise", inputs, "sum_reference", ) net.Proto().op.extend([op]) inputs[0] = "pruned_quantized_data" op = core.CreateOperator( "SparseLengths" + ("Weighted" if weighted else "") + "Sum" + str(bit_rate) + "BitRowwiseSparse", inputs + ["mapping_table"], "sum_pruned", ) net.Proto().op.extend([op]) op = core.CreateOperator( "SparseLengthsSumSparseLookup", ["indices", "lengths", "mapping_table"] + (["weights"] if weighted else []), ["new_indices", "new_lengths"] + (["new_weights"] if weighted else []), ) net.Proto().op.extend([op]) inputs = ( ["pruned_quantized_data"] + (["new_weights"] if weighted else []) + ["new_indices", "new_lengths"] ) op = core.CreateOperator( "SparseLengths" + ("Weighted" if weighted else "") + "SumFused" + str(bit_rate) + "BitRowwise", inputs, "sum_split", ) net.Proto().op.extend([op]) workspace.FeedBlob("quantized_data", quantized_data) workspace.FeedBlob("pruned_quantized_data", pruned_quantized_data) workspace.FeedBlob("weights", weights) workspace.FeedBlob("indices", indices) workspace.FeedBlob("lengths", lengths) workspace.FeedBlob("mapping_table", mapping_table) workspace.RunNetOnce(net) sum_reference = workspace.FetchBlob("sum_reference") sum_pruned = workspace.FetchBlob("sum_pruned") sum_split = workspace.FetchBlob("sum_split") np.testing.assert_array_equal(sum_reference, sum_pruned) np.testing.assert_array_equal(sum_reference, sum_split) @given( num_rows=st.integers(1, 20), blocksize=st.sampled_from([8, 12, 16, 32, 64, 96, 128]), seed=st.integers(0, 2 ** 32 - 1), empty_indices=st.booleans(), engine=st.sampled_from(["", "GREEDY"]), bit_rate=st.sampled_from([2, 4]), ) def test_sparse_lengths_mean_rowwise_sparse_with_skipped_pruning( self, num_rows, blocksize, seed, empty_indices, engine, bit_rate ): net = core.Net("bench") np.random.seed(seed) input_data = np.random.rand(num_rows, blocksize).astype(np.float32) if empty_indices: lengths = np.zeros(num_rows, dtype=np.int32) num_indices = 0 else: num_indices = np.random.randint(len(input_data)) # the number of indices per sample lengths_split = np.clip(num_indices // 2, 1, 10) lengths = ( np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split ) # readjust num_indices when lengths_split doesn't divide num_indices num_indices = num_indices // lengths_split * lengths_split # Use int32 here because int64 is covered by test_sparse_lengths_sum indices = np.random.randint( low=0, high=len(input_data), size=[num_indices], dtype=np.int32 ) op = core.CreateOperator( "FloatToFused" + str(bit_rate) + "BitRowwiseQuantized", "input_data", "quantized_data", engine=engine, ) net.Proto().op.extend([op]) op = core.CreateOperator( "Fused" + str(bit_rate) + "BitRowwiseQuantizedToFloat", "quantized_data", "dequantized_data", ) net.Proto().op.extend([op]) op = core.CreateOperator( "FloatToFused" + str(bit_rate) + "BitFakeRowwiseQuantized", "input_data", "fake_quantized_data", engine=engine, ) net.Proto().op.extend([op]) net.SparseLengthsMean( ["dequantized_data", "indices", "lengths"], "mean_reference" ) net.SparseLengthsMeanFused8BitRowwise( ["fake_quantized_data", "indices", "lengths"], "mean_fake_quantized" ) op1 = core.CreateOperator( "SparseLengthsMeanFused" + str(bit_rate) + "BitRowwise", ["quantized_data", "indices", "lengths"], "mean_quantized", ) op2 = core.CreateOperator( "SparseLengthsMean" + str(bit_rate) + "BitRowwiseSparse", ["quantized_data", "indices", "lengths"] + ["mapping_table"], "mean_quantized_pruned", ) net.Proto().op.extend([op1, op2]) net.Proto().external_input.extend(["input_data", "mapping_table"]) workspace.FeedBlob("input_data", input_data) workspace.FeedBlob("indices", indices) workspace.FeedBlob("lengths", lengths) mapping_table = np.array([0]).astype(dtype=np.int32) workspace.FeedBlob("mapping_table", mapping_table) workspace.GlobalInit(["caffe2", "--caffe2_log_level=0"]) workspace.RunNetOnce(net) mean_reference = workspace.FetchBlob("mean_reference") mean_fake_quantized = workspace.FetchBlob("mean_fake_quantized") mean_quantized = workspace.FetchBlob("mean_quantized") mean_quantized_pruned = workspace.FetchBlob("mean_quantized_pruned") np.testing.assert_array_almost_equal(mean_reference, mean_quantized) np.testing.assert_array_equal(mean_fake_quantized, mean_quantized) np.testing.assert_array_equal(mean_quantized_pruned, mean_quantized)
pytorch-master
caffe2/python/operator_test/lengths_reducer_fused_nbit_rowwise_ops_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestHyperbolicOps(serial.SerializedTestCase): def _test_hyperbolic_op(self, op_name, np_ref, X, in_place, engine, gc, dc): op = core.CreateOperator( op_name, ["X"], ["X"] if in_place else ["Y"], engine=engine,) def ref(X): return [np_ref(X)] self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=ref, ensure_outputs_are_inferred=True, ) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], ensure_outputs_are_inferred=True) @serial.given(X=hu.tensor(dtype=np.float32), **hu.gcs) def test_sinh(self, X, gc, dc): self._test_hyperbolic_op("Sinh", np.sinh, X, False, "", gc, dc) @serial.given(X=hu.tensor(dtype=np.float32), **hu.gcs) def test_cosh(self, X, gc, dc): self._test_hyperbolic_op("Cosh", np.cosh, X, False, "", gc, dc) @serial.given(X=hu.tensor(dtype=np.float32), in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_tanh(self, X, in_place, engine, gc, dc): self._test_hyperbolic_op("Tanh", np.tanh, X, in_place, engine, gc, dc)
pytorch-master
caffe2/python/operator_test/hyperbolic_ops_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import unittest import numpy as np def get_op(input_len, output_len, args): input_names = ['in_scores', 'in_boxes', 'in_batch_splits'] assert input_len <= len(input_names) input_names = input_names[:input_len] out_names = ['scores', 'boxes', 'classes', 'batch_splits', 'keeps', 'keeps_size'] assert output_len <= len(out_names) out_names = out_names[:output_len] op = core.CreateOperator( 'BoxWithNMSLimit', input_names, out_names, **args) return op HU_CONFIG = { 'gc': hu.gcs_cpu_only['gc'], } def gen_boxes(count, center): len = 10 len_half = len / 2.0 ret = np.tile( np.array( [center[0] - len_half, center[1] - len_half, center[0] + len_half, center[1] + len_half] ).astype(np.float32), (count, 1) ) return ret def gen_multiple_boxes(centers, scores, count, num_classes): ret_box = None ret_scores = None for cc, ss in zip(centers, scores): box = gen_boxes(count, cc) ret_box = np.vstack((ret_box, box)) if ret_box is not None else box cur_sc = np.ones((count, 1), dtype=np.float32) * ss ret_scores = np.vstack((ret_scores, cur_sc)) \ if ret_scores is not None else cur_sc ret_box = np.tile(ret_box, (1, num_classes)) ret_scores = np.tile(ret_scores, (1, num_classes)) assert ret_box.shape == (len(centers) * count, 4 * num_classes) assert ret_scores.shape == (len(centers) * count, num_classes) return ret_box, ret_scores class TestBoxWithNMSLimitOp(serial.SerializedTestCase): @given(**HU_CONFIG) @settings(deadline=10000) def test_simple(self, gc): in_centers = [(0, 0), (20, 20), (50, 50)] in_scores = [0.9, 0.8, 0.6] boxes, scores = gen_multiple_boxes(in_centers, in_scores, 10, 2) gt_boxes, gt_scores = gen_multiple_boxes(in_centers, in_scores, 1, 1) gt_classes = np.ones(gt_boxes.shape[0], dtype=np.float32) op = get_op(2, 3, {"score_thresh": 0.5, "nms": 0.9}) def ref(*args, **kwargs): return (gt_scores.flatten(), gt_boxes, gt_classes) self.assertReferenceChecks(gc, op, [scores, boxes], ref) @given(**HU_CONFIG) @settings(deadline=10000) def test_score_thresh(self, gc): in_centers = [(0, 0), (20, 20), (50, 50)] in_scores = [0.7, 0.85, 0.6] boxes, scores = gen_multiple_boxes(in_centers, in_scores, 10, 2) gt_centers = [(20, 20)] gt_scores = [0.85] gt_boxes, gt_scores = gen_multiple_boxes(gt_centers, gt_scores, 1, 1) gt_classes = np.ones(gt_boxes.shape[0], dtype=np.float32) op = get_op(2, 3, {"score_thresh": 0.8, "nms": 0.9}) def ref(*args, **kwargs): return (gt_scores.flatten(), gt_boxes, gt_classes) self.assertReferenceChecks(gc, op, [scores, boxes], ref) @given(det_per_im=st.integers(1, 3), **HU_CONFIG) @settings(deadline=10000) def test_detections_per_im(self, det_per_im, gc): in_centers = [(0, 0), (20, 20), (50, 50)] in_scores = [0.7, 0.85, 0.6] boxes, scores = gen_multiple_boxes(in_centers, in_scores, 10, 2) gt_centers = [(20, 20), (0, 0), (50, 50)][:det_per_im] gt_scores = [0.85, 0.7, 0.6][:det_per_im] gt_boxes, gt_scores = gen_multiple_boxes(gt_centers, gt_scores, 1, 1) gt_classes = np.ones(gt_boxes.shape[0], dtype=np.float32) op = get_op( 2, 3, {"score_thresh": 0.5, "nms": 0.9, "detections_per_im": det_per_im} ) def ref(*args, **kwargs): return (gt_scores.flatten(), gt_boxes, gt_classes) self.assertReferenceChecks(gc, op, [scores, boxes], ref) @given( num_classes=st.integers(2, 10), det_per_im=st.integers(1, 4), cls_agnostic_bbox_reg=st.booleans(), input_boxes_include_bg_cls=st.booleans(), output_classes_include_bg_cls=st.booleans(), **HU_CONFIG ) @settings(deadline=10000) def test_multiclass( self, num_classes, det_per_im, cls_agnostic_bbox_reg, input_boxes_include_bg_cls, output_classes_include_bg_cls, gc ): in_centers = [(0, 0), (20, 20), (50, 50)] in_scores = [0.7, 0.85, 0.6] boxes, scores = gen_multiple_boxes(in_centers, in_scores, 10, num_classes) if not input_boxes_include_bg_cls: # remove background class boxes = boxes[:, 4:] if cls_agnostic_bbox_reg: # only leave one class boxes = boxes[:, :4] # randomize un-used scores for background class scores_bg_class_id = 0 if input_boxes_include_bg_cls else -1 scores[:, scores_bg_class_id] = np.random.rand(scores.shape[0]).astype(np.float32) gt_centers = [(20, 20), (0, 0), (50, 50)][:det_per_im] gt_scores = [0.85, 0.7, 0.6][:det_per_im] gt_boxes, gt_scores = gen_multiple_boxes(gt_centers, gt_scores, 1, 1) # [1, 1, 1, 2, 2, 2, 3, 3, 3, ...] gt_classes = np.tile( np.array(range(1, num_classes), dtype=np.float32), (gt_boxes.shape[0], 1)).T.flatten() if not output_classes_include_bg_cls: # remove background class gt_classes -= 1 gt_boxes = np.tile(gt_boxes, (num_classes - 1, 1)) gt_scores = np.tile(gt_scores, (num_classes - 1, 1)).flatten() op = get_op( 2, 3, { "score_thresh": 0.5, "nms": 0.9, "detections_per_im": (num_classes - 1) * det_per_im, "cls_agnostic_bbox_reg": cls_agnostic_bbox_reg, "input_boxes_include_bg_cls": input_boxes_include_bg_cls, "output_classes_include_bg_cls": output_classes_include_bg_cls } ) def ref(*args, **kwargs): return (gt_scores, gt_boxes, gt_classes) self.assertReferenceChecks(gc, op, [scores, boxes], ref) @given(det_per_im=st.integers(1, 3), **HU_CONFIG) def test_detections_per_im_same_thresh(self, det_per_im, gc): in_centers = [(0, 0), (20, 20), (50, 50)] in_scores = [0.7, 0.7, 0.7] boxes, scores = gen_multiple_boxes(in_centers, in_scores, 10, 2) gt_centers = [(20, 20), (0, 0), (50, 50)][:det_per_im] gt_scores = [0.7, 0.7, 0.7][:det_per_im] gt_boxes, gt_scores = gen_multiple_boxes(gt_centers, gt_scores, 1, 1) gt_classes = np.ones(gt_boxes.shape[0], dtype=np.float32) op = get_op( 2, 3, {"score_thresh": 0.5, "nms": 0.9, "detections_per_im": det_per_im} ) # boxes output could be in any order def verify(inputs, outputs): # check scores np.testing.assert_allclose( outputs[0], gt_scores.flatten(), atol=1e-4, rtol=1e-4, ) # check classes np.testing.assert_allclose( outputs[2], gt_classes, atol=1e-4, rtol=1e-4, ) self.assertEqual(outputs[1].shape, gt_boxes.shape) self.assertValidationChecks(gc, op, [scores, boxes], verify, as_kwargs=False) @given(num_classes=st.integers(2, 10), **HU_CONFIG) def test_detections_per_im_same_thresh_multiclass(self, num_classes, gc): in_centers = [(0, 0), (20, 20), (50, 50)] in_scores = [0.6, 0.7, 0.7] boxes, scores = gen_multiple_boxes(in_centers, in_scores, 10, num_classes) det_per_im = 1 gt_centers = [(20, 20), (50, 50)] gt_scores = [0.7, 0.7] gt_boxes, gt_scores = gen_multiple_boxes(gt_centers, gt_scores, 1, 1) op = get_op( 2, 3, {"score_thresh": 0.5, "nms": 0.9, "detections_per_im": det_per_im} ) # boxes output could be in any order def verify(inputs, outputs): # check scores self.assertEqual(outputs[0].shape, (1,)) self.assertEqual(outputs[0][0], gt_scores[0]) # check boxes self.assertTrue( np.allclose(outputs[1], gt_boxes[0, :], atol=1e-4, rtol=1e-4) or np.allclose(outputs[1], gt_boxes[1, :], atol=1e-4, rtol=1e-4) ) # check class self.assertNotEqual(outputs[2][0], 0) self.assertValidationChecks(gc, op, [scores, boxes], verify, as_kwargs=False) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/box_with_nms_limit_op_test.py
import argparse import datetime import numpy as np from caffe2.python import core, workspace DTYPES = { "uint8": np.uint8, "uint8_fused": np.uint8, "float": np.float32, "float16": np.float16, } def benchmark_sparse_lengths_sum( dtype_str, categorical_limit, embedding_size, average_len, batch_size, iterations, flush_cache, ): print("Preparing lookup table. " + str(datetime.datetime.now())) # We will use a constant, but non-trivial value so we save initialization # time. data = np.ones([categorical_limit, embedding_size], dtype=np.float32) data *= 17.01 if dtype_str == "uint8": scale_bias = np.random.rand(categorical_limit, 2).astype(np.float32) workspace.FeedBlob("scale_bias", scale_bias.astype(np.float32)) elif dtype_str == "uint8_fused": scale_bias = np.random.randint(255, size=(categorical_limit, 8)) data = np.concatenate([data, scale_bias], axis=1) print("Data has shape {} {}".format(data.shape, datetime.datetime.now())) workspace.FeedBlob("X", data.astype(DTYPES[dtype_str])) # In order to produce truly random lengths and indices, we will embed a # Python operator in the net to generate them. def f(_, outputs): lengths = np.random.randint( int(np.round(average_len * 0.75)), int(np.round(average_len * 1.25)) + 1, batch_size, ).astype(np.int32) indices = np.random.randint(0, categorical_limit, np.sum(lengths)).astype( np.int64 ) outputs[0].feed(indices) outputs[1].feed(lengths) init_net = core.Net("init_net") init_net.Python(f)([], ["indices", "lengths"]) workspace.RunNetOnce(init_net) net = core.Net("mynet") if flush_cache: l3_cache_size = 30 * 2 ** 20 // 4 workspace.FeedBlob( "huge_blob", np.random.randn(l3_cache_size).astype(np.float32) ) net.Scale("huge_blob", "huge_blob_2x", value=2.0) if dtype_str == "uint8": net.SparseLengthsSum8BitsRowwise(["X", "indices", "lengths", "scale_bias"], "Y") elif dtype_str == "uint8_fused": net.SparseLengthsSumFused8BitRowwise(["X", "indices", "lengths"], "Y") else: net.SparseLengthsSum(["X", "indices", "lengths"], "Y") workspace.CreateNet(net) # Set random seed, so that repeated runs will keep the same sequence of # random indices. np.random.seed(1701) print("Preparation finished. " + str(datetime.datetime.now())) runtimes = workspace.BenchmarkNet(net.Name(), 1, iterations, True) print( "{} billion sums per cycle".format( embedding_size * workspace.FetchBlob("indices").size / runtimes[2 if flush_cache else 1] / 1e6 ) ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="minimal benchmark for sparse lengths sum." ) parser.add_argument( "-d", "--dtype", choices=list(DTYPES.keys()), default="float", help="The data type for the input lookup table.", ) parser.add_argument( "-e", "--embedding-size", type=int, default=6000000, help="Lookup table size." ) parser.add_argument( "--embedding-dim", type=int, default=128, help="Embedding dimension." ) parser.add_argument( "--average-len", type=int, default=27, help="Sparse feature average lengths, default is 27", ) parser.add_argument("--batch-size", type=int, default=100, help="The batch size.") parser.add_argument( "-i", "--iteration", type=int, default=100000, help="The number of iterations." ) parser.add_argument( "--flush-cache", action="store_true", help="If true, flush cache" ) args, extra_args = parser.parse_known_args() core.GlobalInit(["python"] + extra_args) benchmark_sparse_lengths_sum( args.dtype, args.embedding_size, args.embedding_dim, args.average_len, args.batch_size, args.iteration, args.flush_cache, )
pytorch-master
caffe2/python/operator_test/sparse_lengths_sum_benchmark.py
import functools import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np from caffe2.python import core from caffe2.python.operator_test.adagrad_test_helper import ( adagrad_sparse_test_helper, ref_adagrad, ) from hypothesis import HealthCheck, given, settings class TestAdagrad(serial.SerializedTestCase): @given( inputs=hu.tensors(n=3), lr=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), epsilon=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), weight_decay=st.sampled_from([0.0, 0.1]), **hu.gcs ) @settings(deadline=10000) def test_adagrad(self, inputs, lr, epsilon, weight_decay, gc, dc): param, momentum, grad = inputs momentum = np.abs(momentum) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Adagrad", ["param", "momentum", "grad", "lr"], ["param", "momentum"], epsilon=epsilon, weight_decay=weight_decay, device_option=gc, ) self.assertReferenceChecks( gc, op, [param, momentum, grad, lr], functools.partial(ref_adagrad, epsilon=epsilon, weight_decay=weight_decay), ) @given( inputs=hu.tensors(n=3), lr=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), epsilon=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), weight_decay=st.sampled_from([0.0, 0.1]), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_adagrad_output_effective_lr( self, inputs, lr, epsilon, weight_decay, gc, dc ): param, momentum, grad = inputs momentum = np.abs(momentum) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Adagrad", ["param", "momentum", "grad", "lr"], ["param", "momentum", "effective_lr"], epsilon=epsilon, weight_decay=weight_decay, device_option=gc, ) self.assertReferenceChecks( gc, op, [param, momentum, grad, lr], functools.partial( ref_adagrad, epsilon=epsilon, output_effective_lr=True, weight_decay=weight_decay, ), ) @given( inputs=hu.tensors(n=3), lr=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), epsilon=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_adagrad_output_effective_lr_and_update(self, inputs, lr, epsilon, gc, dc): param, momentum, grad = inputs momentum = np.abs(momentum) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Adagrad", ["param", "momentum", "grad", "lr"], ["param", "momentum", "effective_lr", "update"], epsilon=epsilon, device_option=gc, ) self.assertReferenceChecks( gc, op, [param, momentum, grad, lr], functools.partial( ref_adagrad, epsilon=epsilon, output_effective_lr_and_update=True ), ) # Suppress filter_too_much health check. # Likely caused by `assume` call falling through too often. @settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000) @given( inputs=hu.tensors(n=3), lr=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), epsilon=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), weight_decay=st.sampled_from([0.0, 0.1]), **hu.gcs ) def test_sparse_adagrad(self, inputs, lr, epsilon, weight_decay, gc, dc): adagrad_sparse_test_helper( self, inputs, lr, epsilon, None, ref_adagrad, gc, dc, weight_decay=weight_decay, ) @given( inputs=hu.tensors(n=2), lr=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), epsilon=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), **hu.gcs ) @settings(deadline=10000) def test_sparse_adagrad_empty(self, inputs, lr, epsilon, gc, dc): param, momentum = inputs grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32) ref_using_fp16_values = [False] if gc == hu.gpu_do: ref_using_fp16_values.append(True) for ref_using_fp16 in ref_using_fp16_values: if ref_using_fp16: print("test_sparse_adagrad_empty with half precision embedding") momentum_i = momentum.astype(np.float16) param_i = param.astype(np.float16) else: print("test_sparse_adagrad_empty with full precision embedding") momentum_i = momentum.astype(np.float32) param_i = param.astype(np.float32) adagrad_sparse_test_helper( self, [param_i, momentum_i, grad], lr, epsilon, None, ref_adagrad, gc, dc, ) # Suppress filter_too_much health check. # Likely caused by `assume` call falling through too often. @settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000) @given( inputs=hu.tensors(n=3), lr=st.sampled_from([0.01, 0.99]), epsilon=st.sampled_from([0.01, 0.99]), weight_decay=st.sampled_from([0.0, 0.1]), counter_halflife=st.sampled_from([-1, 5]), **hu.gcs ) def test_row_wise_sparse_adagrad( self, inputs, lr, epsilon, weight_decay, counter_halflife, gc, dc ): adagrad_sparse_test_helper( self, inputs, lr, epsilon, None, functools.partial(ref_adagrad, row_wise=True), gc, dc, row_wise=True, weight_decay=weight_decay, counter_halflife=counter_halflife, ) @given( inputs=hu.tensors(n=2), lr=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), epsilon=st.floats( min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False ), **hu.gcs ) @settings(deadline=None) def test_row_wise_sparse_adagrad_empty(self, inputs, lr, epsilon, gc, dc): param, momentum = inputs grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32) adagrad_sparse_test_helper( self, [param, momentum, grad], lr, epsilon, None, ref_adagrad, gc, dc, row_wise=True, )
pytorch-master
caffe2/python/operator_test/adagrad_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest class TestPad(serial.SerializedTestCase): @serial.given(pad_t=st.integers(-5, 0), pad_l=st.integers(-5, 0), pad_b=st.integers(-5, 0), pad_r=st.integers(-5, 0), mode=st.sampled_from(["constant", "reflect", "edge"]), size_w=st.integers(16, 128), size_h=st.integers(16, 128), size_c=st.integers(1, 4), size_n=st.integers(1, 4), **hu.gcs) def test_crop(self, pad_t, pad_l, pad_b, pad_r, mode, size_w, size_h, size_c, size_n, gc, dc): op = core.CreateOperator( "PadImage", ["X"], ["Y"], pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, ) X = np.random.rand( size_n, size_c, size_h, size_w).astype(np.float32) def ref(X): return (X[:, :, -pad_t:pad_b or None, -pad_l:pad_r or None],) self.assertReferenceChecks(gc, op, [X], ref) self.assertDeviceChecks(dc, op, [X], [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/pad_test.py
from caffe2.python import workspace, core, scope, gru_cell from caffe2.python.model_helper import ModelHelper from caffe2.python.rnn.rnn_cell_test_util import sigmoid, tanh, _prepare_rnn import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from caffe2.proto import caffe2_pb2 from functools import partial from hypothesis import given from hypothesis import settings as ht_settings import hypothesis.strategies as st import numpy as np import unittest def gru_unit(*args, **kwargs): ''' Implements one GRU unit, for one time step Shapes: hidden_t_prev.shape = (1, N, D) gates_out_t.shape = (1, N, G) seq_lenths.shape = (N,) ''' drop_states = kwargs.get('drop_states', False) sequence_lengths = kwargs.get('sequence_lengths', True) if sequence_lengths: hidden_t_prev, gates_out_t, seq_lengths, timestep = args else: hidden_t_prev, gates_out_t, timestep = args N = hidden_t_prev.shape[1] D = hidden_t_prev.shape[2] G = gates_out_t.shape[2] t = (timestep * np.ones(shape=(N, D))).astype(np.int32) assert t.shape == (N, D) assert G == 3 * D # Calculate reset, update, and output gates separately # because output gate depends on reset gate. gates_out_t = gates_out_t.reshape(N, 3, D) reset_gate_t = gates_out_t[:, 0, :].reshape(N, D) update_gate_t = gates_out_t[:, 1, :].reshape(N, D) output_gate_t = gates_out_t[:, 2, :].reshape(N, D) # Calculate gate outputs. reset_gate_t = sigmoid(reset_gate_t) update_gate_t = sigmoid(update_gate_t) output_gate_t = tanh(output_gate_t) if sequence_lengths: seq_lengths = (np.ones(shape=(N, D)) * seq_lengths.reshape(N, 1)).astype(np.int32) assert seq_lengths.shape == (N, D) valid = (t < seq_lengths).astype(np.int32) else: valid = np.ones(shape=(N, D)) assert valid.shape == (N, D) hidden_t = update_gate_t * hidden_t_prev + \ (1 - update_gate_t) * output_gate_t hidden_t = hidden_t * valid + hidden_t_prev * \ (1 - valid) * (1 - drop_states) hidden_t = hidden_t.reshape(1, N, D) return (hidden_t, ) def gru_reference(input, hidden_input, reset_gate_w, reset_gate_b, update_gate_w, update_gate_b, output_gate_w, output_gate_b, seq_lengths, drop_states=False, linear_before_reset=False): D = hidden_input.shape[hidden_input.ndim - 1] T = input.shape[0] N = input.shape[1] G = input.shape[2] print("Dimensions: T= ", T, " N= ", N, " G= ", G, " D= ", D) hidden = np.zeros(shape=(T + 1, N, D)) hidden[0, :, :] = hidden_input for t in range(T): input_t = input[t].reshape(1, N, G) hidden_t_prev = hidden[t].reshape(1, N, D) # Split input contributions for three gates. input_t = input_t.reshape(N, 3, D) input_reset = input_t[:, 0, :].reshape(N, D) input_update = input_t[:, 1, :].reshape(N, D) input_output = input_t[:, 2, :].reshape(N, D) reset_gate = np.dot(hidden_t_prev, reset_gate_w.T) + reset_gate_b reset_gate = reset_gate + input_reset update_gate = np.dot(hidden_t_prev, update_gate_w.T) + update_gate_b update_gate = update_gate + input_update if linear_before_reset: with_linear = np.dot( hidden_t_prev, output_gate_w.T) + output_gate_b output_gate = sigmoid(reset_gate) * with_linear else: with_reset = hidden_t_prev * sigmoid(reset_gate) output_gate = np.dot(with_reset, output_gate_w.T) + output_gate_b output_gate = output_gate + input_output gates_out_t = np.concatenate( (reset_gate, update_gate, output_gate), axis=2, ) print(reset_gate, update_gate, output_gate, gates_out_t, sep="\n") (hidden_t, ) = gru_unit( hidden_t_prev, gates_out_t, seq_lengths, t, drop_states=drop_states ) hidden[t + 1] = hidden_t return ( hidden[1:], hidden[-1].reshape(1, N, D), ) def gru_unit_op_input(): ''' Create input tensor where each dimension is from 1 to 4, ndim=3 and last dimension size is a factor of 3 hidden_t_prev.shape = (1, N, D) ''' dims_ = st.tuples( st.integers(min_value=1, max_value=1), # 1, one timestep st.integers(min_value=1, max_value=4), # n st.integers(min_value=1, max_value=4), # d ) def create_input(dims): dims = list(dims) dims[2] *= 3 return hu.arrays(dims) return dims_.flatmap(create_input) def gru_input(): ''' Create input tensor where each dimension is from 1 to 4, ndim=3 and last dimension size is a factor of 3 ''' dims_ = st.tuples( st.integers(min_value=1, max_value=4), # t st.integers(min_value=1, max_value=4), # n st.integers(min_value=1, max_value=4), # d ) def create_input(dims): dims = list(dims) dims[2] *= 3 return hu.arrays(dims) return dims_.flatmap(create_input) def _prepare_gru_unit_op(gc, n, d, outputs_with_grads, forward_only=False, drop_states=False, sequence_lengths=False, two_d_initial_states=None): print("Dims: (n,d) = ({},{})".format(n, d)) def generate_input_state(n, d): if two_d_initial_states: return np.random.randn(n, d).astype(np.float32) else: return np.random.randn(1, n, d).astype(np.float32) model = ModelHelper(name='external') with scope.NameScope("test_name_scope"): if sequence_lengths: hidden_t_prev, gates_t, seq_lengths, timestep = \ model.net.AddScopedExternalInputs( "hidden_t_prev", "gates_t", 'seq_lengths', "timestep", ) else: hidden_t_prev, gates_t, timestep = \ model.net.AddScopedExternalInputs( "hidden_t_prev", "gates_t", "timestep", ) workspace.FeedBlob( hidden_t_prev, generate_input_state(n, d).astype(np.float32), device_option=gc ) workspace.FeedBlob( gates_t, generate_input_state(n, 3 * d).astype(np.float32), device_option=gc ) if sequence_lengths: inputs = [hidden_t_prev, gates_t, seq_lengths, timestep] else: inputs = [hidden_t_prev, gates_t, timestep] hidden_t = model.net.GRUUnit( inputs, ['hidden_t'], forget_bias=0.0, drop_states=drop_states, sequence_lengths=sequence_lengths, ) model.net.AddExternalOutputs(hidden_t) workspace.RunNetOnce(model.param_init_net) if sequence_lengths: # 10 is used as a magic number to simulate some reasonable timestep # and generate some reasonable seq. lengths workspace.FeedBlob( seq_lengths, np.random.randint(1, 10, size=(n,)).astype(np.int32), device_option=gc ) workspace.FeedBlob( timestep, np.random.randint(1, 10, size=(1,)).astype(np.int32), device_option=core.DeviceOption(caffe2_pb2.CPU), ) print("Feed {}".format(timestep)) return hidden_t, model.net class GRUCellTest(serial.SerializedTestCase): # Test just for GRUUnitOp @serial.given( seed=st.integers(0, 2**32 - 1), input_tensor=gru_unit_op_input(), fwd_only=st.booleans(), drop_states=st.booleans(), sequence_lengths=st.booleans(), **hu.gcs ) def test_gru_unit_op(self, seed, input_tensor, fwd_only, drop_states, sequence_lengths, gc, dc): np.random.seed(seed) outputs_with_grads = [0] ref = gru_unit ref = partial(ref) t, n, d = input_tensor.shape assert d % 3 == 0 d = d // 3 ref = partial(ref, drop_states=drop_states, sequence_lengths=sequence_lengths) with core.DeviceScope(gc): net = _prepare_gru_unit_op(gc, n, d, outputs_with_grads=outputs_with_grads, forward_only=fwd_only, drop_states=drop_states, sequence_lengths=sequence_lengths)[1] # here we don't provide a real input for the net but just for one of # its ops (RecurrentNetworkOp). So have to hardcode this name workspace.FeedBlob("test_name_scope/external/recurrent/i2h", input_tensor, device_option=gc) print(str(net.Proto())) op = net._net.op[-1] inputs = [workspace.FetchBlob(name) for name in op.input] self.assertReferenceChecks( gc, op, inputs, ref, input_device_options={"test_name_scope/timestep": hu.cpu_do}, outputs_to_check=[0], ) # Checking for hidden_prev and gates gradients if not fwd_only: for param in range(2): print("Check param {}".format(param)) self.assertGradientChecks( device_option=gc, op=op, inputs=inputs, outputs_to_check=param, outputs_with_grads=outputs_with_grads, threshold=0.0001, stepsize=0.005, input_device_options={ "test_name_scope/timestep": hu.cpu_do}, ) @given( seed=st.integers(0, 2**32 - 1), input_tensor=gru_input(), fwd_only=st.booleans(), drop_states=st.booleans(), linear_before_reset=st.booleans(), **hu.gcs ) @ht_settings(max_examples=20, deadline=None) def test_gru_main(self, seed, **kwargs): np.random.seed(seed) for outputs_with_grads in [[0], [1], [0, 1]]: self.gru_base(gru_cell.GRU, gru_reference, outputs_with_grads=outputs_with_grads, **kwargs) def gru_base(self, create_rnn, ref, outputs_with_grads, input_tensor, fwd_only, drop_states, linear_before_reset, gc, dc): print("GRU test parameters: ", locals()) t, n, d = input_tensor.shape assert d % 3 == 0 d = d // 3 ref = partial(ref, drop_states=drop_states, linear_before_reset=linear_before_reset) with core.DeviceScope(gc): net = _prepare_rnn( t, n, d, create_rnn, outputs_with_grads=outputs_with_grads, memory_optim=False, forget_bias=0.0, forward_only=fwd_only, drop_states=drop_states, linear_before_reset=linear_before_reset, num_states=1, )[1] # here we don't provide a real input for the net but just for one of # its ops (RecurrentNetworkOp). So have to hardcode this name workspace.FeedBlob("test_name_scope/external/recurrent/i2h", input_tensor, device_option=gc) op = net._net.op[-1] inputs = [workspace.FetchBlob(name) for name in op.input] self.assertReferenceChecks( gc, op, inputs, ref, input_device_options={"test_name_scope/timestep": hu.cpu_do}, outputs_to_check=list(range(2)), ) # Checking for input, gates_t_w and gates_t_b gradients if not fwd_only: for param in range(2): print("Check param {}".format(param)) self.assertGradientChecks( device_option=gc, op=op, inputs=inputs, outputs_to_check=param, outputs_with_grads=outputs_with_grads, threshold=0.001, stepsize=0.005, input_device_options={ "test_name_scope/timestep": hu.cpu_do}, ) if __name__ == "__main__": workspace.GlobalInit([ 'caffe2', '--caffe2_log_level=0', ]) unittest.main()
pytorch-master
caffe2/python/operator_test/gru_test.py
import caffe2.python.hypothesis_test_util as hu import hypothesis import hypothesis.strategies as st import numpy as np from caffe2.python import core from hypothesis import HealthCheck, given, settings class TestSparseNormalize(hu.HypothesisTestCase): @staticmethod def ref_normalize(param_in, use_max_norm, norm): param_norm = np.linalg.norm(param_in) + 1e-12 if (use_max_norm and param_norm > norm) or not use_max_norm: param_in = param_in * norm / param_norm return param_in # Suppress filter_too_much health check. # Likely caused by `assume` call falling through too often. @settings(suppress_health_check=[HealthCheck.filter_too_much]) @given( inputs=hu.tensors(n=2, min_dim=2, max_dim=2), use_max_norm=st.booleans(), norm=st.floats(min_value=1.0, max_value=4.0), data_strategy=st.data(), use_fp16=st.booleans(), **hu.gcs_cpu_only ) def test_sparse_normalize( self, inputs, use_max_norm, norm, data_strategy, use_fp16, gc, dc ): param, grad = inputs param += 0.02 * np.sign(param) param[param == 0.0] += 0.02 if use_fp16: param = param.astype(np.float16) grad = grad.astype(np.float16) # Create an indexing array containing values that are lists of indices, # which index into param indices = data_strategy.draw( hu.tensor( dtype=np.int64, min_dim=1, max_dim=1, elements=st.sampled_from(np.arange(param.shape[0])), ) ) hypothesis.note("indices.shape: %s" % str(indices.shape)) # For now, the indices must be unique hypothesis.assume( np.array_equal(np.unique(indices.flatten()), np.sort(indices.flatten())) ) op1 = core.CreateOperator( "Float16SparseNormalize" if use_fp16 else "SparseNormalize", ["param", "indices"], ["param"], use_max_norm=use_max_norm, norm=norm, ) # Sparsify grad grad = grad[indices] op2 = core.CreateOperator( "Float16SparseNormalize" if use_fp16 else "SparseNormalize", ["param", "indices", "grad"], ["param"], use_max_norm=use_max_norm, norm=norm, ) def ref_sparse_normalize(param, indices, grad=None): param_out = np.copy(param) for _, index in enumerate(indices): param_out[index] = self.ref_normalize(param[index], use_max_norm, norm) return (param_out,) # self.assertDeviceChecks(dc, op, [param, indices], [0]) self.assertReferenceChecks( gc, op1, [param, indices], ref_sparse_normalize, threshold=1e-2 if use_fp16 else 1e-4, ) self.assertReferenceChecks( gc, op2, [param, indices, grad], ref_sparse_normalize, threshold=1e-2 if use_fp16 else 1e-4, )
pytorch-master
caffe2/python/operator_test/sparse_normalize_test.py
import hypothesis.strategies as st import numpy as np from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestArgOps(serial.SerializedTestCase): @given( X=hu.tensor(dtype=np.float32), axis=st.integers(-1, 5), keepdims=st.booleans(), **hu.gcs) @settings(deadline=None) def test_argmax(self, X, axis, keepdims, gc, dc): if axis >= len(X.shape): axis %= len(X.shape) op = core.CreateOperator( "ArgMax", ["X"], ["Indices"], axis=axis, keepdims=keepdims, device_option=gc) def argmax_ref(X): indices = np.argmax(X, axis=axis) if keepdims: out_dims = list(X.shape) out_dims[axis] = 1 indices = indices.reshape(tuple(out_dims)) return [indices] self.assertReferenceChecks(gc, op, [X], argmax_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given( X=hu.tensor(dtype=np.float32), axis=st.integers(-1, 5), keepdims=st.booleans(), **hu.gcs) @settings(deadline=None) def test_argmin(self, X, axis, keepdims, gc, dc): if axis >= len(X.shape): axis %= len(X.shape) op = core.CreateOperator( "ArgMin", ["X"], ["Indices"], axis=axis, keepdims=keepdims, device_option=gc) def argmin_ref(X): indices = np.argmin(X, axis=axis) if keepdims: out_dims = list(X.shape) out_dims[axis] = 1 indices = indices.reshape(tuple(out_dims)) return [indices] self.assertReferenceChecks(gc, op, [X], argmin_ref) self.assertDeviceChecks(dc, op, [X], [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/arg_ops_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np class TestLearningRateAdaption(serial.SerializedTestCase): @given(inputs=hu.tensors(n=2), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr_alpha=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) @settings(deadline=None, max_examples=50) def test_learning_rate_adaption_op_normalization(self, inputs, lr, lr_alpha, gc, dc): grad, effgrad = inputs lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( 'LearningRateAdaption', ['lr', 'grad', 'effgrad'], ['output_lr'], lr_alpha=lr_alpha) def ref(lr, grad, effgrad): flattened_grad = grad.flatten() flattened_effgrad = effgrad.flatten() x = np.dot(flattened_grad, flattened_effgrad) kEps = 1e-12 y = np.linalg.norm(flattened_grad, ord=2) y = np.maximum(y, kEps) z = np.linalg.norm(flattened_effgrad, ord=2) z = np.maximum(z, kEps) output_lr = lr output_lr[0] -= lr[0] * lr_alpha * float(x / (y * z)) return output_lr, self.assertReferenceChecks( gc, op, [lr, grad, effgrad], ref) @given(inputs=hu.tensors(n=2), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr_alpha=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) def test_learning_rate_adaption_op_without_normalization(self, inputs, lr, lr_alpha, gc, dc): grad, effgrad = inputs lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( 'LearningRateAdaption', ['lr', 'grad', 'effgrad'], ['output_lr'], lr_alpha=lr_alpha, normalized_lr_adaption=False) def ref(lr, grad, effgrad): flattened_grad = grad.flatten() flattened_effgrad = effgrad.flatten() x = np.dot(flattened_grad, flattened_effgrad) output_lr = lr output_lr[0] -= lr_alpha * x return output_lr, self.assertReferenceChecks( gc, op, [lr, grad, effgrad], ref)
pytorch-master
caffe2/python/operator_test/learning_rate_adaption_op_test.py
import numpy as np from caffe2.python import core, workspace from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import hypothesis.extra.numpy as hnp # Basic implementation of gather for axis == 0, shich is lookup of indices # in the outer dimension. Keeping it for reference here, although is similar # to more general function below. def ref_gather_axis0(): def inner(data, ind): if ind.size == 0 or data.shape[0] == 0: return [np.zeros((0, 10, 20)).astype(np.float32)] output = [data[i] for i in ind] return [output] return inner # Returns axis-based lookup. We just use numpy take() which handles different # axis values as we want. def ref_gather(axis): def inner(data, ind): if ind.size == 0 or data.shape[axis] == 0: shape = list(data.shape) shape[0] = 0 return [np.zeros(tuple(shape)).astype(np.float32)] # np.take() does axis lookup same as gather output = data.take(ind, axis).astype(np.float32) return [output] return inner # Gather(..., match_outer==True) def ref_gather_match_outer(axis=1): def inner(data, ind): if ind.size == 0 or data.shape[axis] == 0: shape = list(data.shape) shape[0] = 0 return [np.zeros(tuple(shape)).astype(np.float32)] input_shape = list(data.shape) output_shape = input_shape[:axis] + list(ind.shape[axis:]) + input_shape[axis + 1:] output = np.zeros(tuple(output_shape)).astype(np.float32) if axis == 1: for i in range(data.shape[0]): output[i] = data[i, ind[i], ] elif axis == 2: for i in range(data.shape[0]): for j in range(data.shape[1]): output[i, j] = data[i, j, ind[i, j], ] else: raise NotImplementedError return [output] return inner class TestGatherOps(serial.SerializedTestCase): @given(rows_num=st.integers(0, 10000), index_num=st.integers(0, 5000), **hu.gcs) @settings(deadline=10000) def test_gather_ops(self, rows_num, index_num, gc, dc): data = np.random.random((rows_num, 10, 20)).astype(np.float32) if rows_num > 0: ind = np.random.randint(rows_num, size=(index_num, )).astype('int32') else: ind = np.random.randint(10, size=(index_num, )).astype('int32') op = core.CreateOperator( 'Gather', ['data', 'ind'], ['output']) self.assertReferenceChecks(gc, op, [data, ind], ref_gather_axis0()) self.assertDeviceChecks(dc, op, [data, ind], [0]) return # Test axis == 2, this keeps outer dimension but will replace data # within axis by lookup of index array (repeated for each outer entry) @given(batch_num=st.integers(1, 4000), rows_num=st.integers(1, 6), index_num=st.integers(1, 20), **hu.gcs) def test_gather_ops_axis2(self, batch_num, rows_num, index_num, gc, dc): data = np.random.random((batch_num, rows_num, 5)).astype(np.float32) ind = np.random.randint(5, size=(index_num, )).astype('int32') op = core.CreateOperator( 'Gather', ['data', 'ind'], ['output'], axis=2) self.assertReferenceChecks(gc, op, [data, ind], ref_gather(axis=2)) self.assertDeviceChecks(dc, op, [data, ind], [0]) return # Test match_outer == true, the indices has the same outer dimensions as data @given(batch_num=st.integers(1, 40), rows_num=st.integers(1, 6), index_num=st.integers(1, 20), **hu.gcs_cpu_only) @settings(deadline=10000) def test_gather_ops_match_outer(self, batch_num, rows_num, index_num, gc, dc): data = np.random.random((batch_num, rows_num, 5)).astype(np.float32) ind = np.random.randint(rows_num, size=(batch_num, index_num)).astype('int32') op = core.CreateOperator( 'Gather', ['data', 'ind'], ['output'], axis=1, match_outer=True) self.assertReferenceChecks(gc, op, [data, ind], ref_gather_match_outer()) self.assertDeviceChecks(dc, op, [data, ind], [0]) self.assertGradientChecks(gc, op, [data, ind], 0, [0]) return # Test BatchGather with match_outer == true, the indices has the same outer dimensions as data # Note BatchGather is equivalent to Gather(..., axis=1) @given(batch_num=st.integers(1, 40), rows_num=st.integers(1, 6), index_num=st.integers(1, 20), **hu.gcs_cpu_only) @settings(deadline=10000) def test_batch_gather_op_match_outer(self, batch_num, rows_num, index_num, gc, dc): data = np.random.random((batch_num, rows_num, 5)).astype(np.float32) ind = np.random.randint(rows_num, size=(batch_num, index_num)).astype('int32') op = core.CreateOperator( 'BatchGather', ['data', 'ind'], ['output'], match_outer=True) self.assertReferenceChecks(gc, op, [data, ind], ref_gather_match_outer()) self.assertDeviceChecks(dc, op, [data, ind], [0]) self.assertGradientChecks(gc, op, [data, ind], 0, [0]) return # when the data is larger, # this test sometimes passes, sometimes fails, # test log here: https://fb.quip.com/SeiyAVWQXvsN (second run failed) # after some digging, this turns out to be numerical error, # the failed run has max|grad - estimated_grad| = 0.009 # so here we changed the gradient checking threshold to 0.02 for this test to pass @given(batch_num=st.integers(1, 30), rows_num=st.integers(1, 6), index_num=st.integers(1, 10), index_num2=st.integers(1, 10), axis2_num=st.integers(1, 10), **hu.gcs_cpu_only) @settings(deadline=None, max_examples=50) def test_gather_op_match_outer_axis2_data4D_ind4D( self, batch_num, rows_num, axis2_num, index_num, index_num2, gc, dc ): data = np.random.random((batch_num, rows_num, axis2_num, 5)).astype(np.float32) ind = np.random.randint(axis2_num, size=(batch_num, rows_num, index_num, index_num2)).astype('int32') op = core.CreateOperator( 'Gather', ['data', 'ind'], ['output'], axis=2, match_outer=True) self.assertReferenceChecks(gc, op, [data, ind], ref_gather_match_outer(axis=2)) self.assertDeviceChecks(dc, op, [data, ind], [0]) self.assertGradientChecks(gc, op, [data, ind], 0, [0], threshold=0.02) return # Generates data arrays of max dims 10x100x2 and indexing array up to rows_num @st.composite def _inputs(draw): batch_size = draw(st.integers(2, 10)) rows_num = draw(st.integers(1, 100)) block_size = draw(st.integers(1, 2)) index_num = draw(st.integers(1, 10)) return ( draw(hnp.arrays( np.float32, (batch_size, rows_num, block_size), elements=hu.floats(-10.0, 10.0), )), draw(hnp.arrays( np.int32, (index_num, 1), elements=st.integers(0, rows_num - 1), )), ) class TestBatchGatherOps(hu.HypothesisTestCase): @given(inputs=_inputs(), **hu.gcs) @settings(deadline=10000) def test_batch_gather_ops(self, inputs, gc, dc): data, ind = inputs op = core.CreateOperator( 'BatchGather', ['data', 'ind'], ['output']) self.assertReferenceChecks(gc, op, [data, ind], ref_gather(axis=1)) self.assertGradientChecks(gc, op, [data, ind], 0, [0]) class TestGatherFused8BitRowwise(hu.HypothesisTestCase): @given(rows_num=st.integers(1, 10000), cols_num=st.integers(1, 128), index_num=st.integers(0, 5000), **hu.gcs) @settings(deadline=10000) def test_batch_gather_ops(self, rows_num, cols_num, index_num, gc, dc): data = np.random.random((rows_num, cols_num)).astype(np.float32) ind = np.random.randint(rows_num, size=(index_num, )).astype('int32') net = core.Net("bench") quantized_data = net.FloatToFused8BitRowwiseQuantized( 'data', 'quantized_data') dequantized_data = net.Fused8BitRowwiseQuantizedToFloat( quantized_data, 'dequantized_data') net.Gather( [dequantized_data, 'ind'], 'gather_reference') net.GatherFused8BitRowwise( [quantized_data, 'ind'], 'gather_quantized') workspace.FeedBlob('data', data) workspace.FeedBlob('ind', ind) workspace.CreateNet(net) workspace.RunNetOnce(net) gather_reference = workspace.FetchBlob('gather_reference') gather_quantized = workspace.FetchBlob('gather_quantized') np.testing.assert_array_almost_equal(gather_reference, gather_quantized) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/gather_ops_test.py
import collections import functools import unittest import caffe2.python._import_c_extension as C import caffe2.python.hip_test_util as hiputl import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import brew, core, utils, workspace from caffe2.python.model_helper import ModelHelper from hypothesis import assume, given, settings def _cudnn_supports(dilation=False, nhwc=False, backward=False): """Return True if cuDNN supports this configuration.""" v = workspace.GetCuDNNVersion() if backward: if nhwc: # nhwc isn't supported in backward ops. return False else: # Forward mode. if dilation and v < 6000: # Dilation not supported until v6 return False if dilation and nhwc: # Dilation and NHWC not supported together return False return True def _cudnn_convolution_algo_count(direction): try: if direction == "fwd": return st.integers(0, C.cudnn_convolution_fwd_algo_count - 1) elif direction == "dgrad": return st.integers(0, C.cudnn_convolution_bwd_data_algo_count - 1) elif direction == "wgrad": return st.integers(0, C.cudnn_convolution_bwd_filter_algo_count - 1) else: assert False except Exception: return st.sampled_from([-1]) class TestConvolution(serial.SerializedTestCase): # CUDNN does NOT support different padding values and we skip it @given( op_type=st.sampled_from(["Conv", "Conv2D"]), stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_t=st.integers(0, 3), pad_l=st.integers(0, 3), pad_b=st.integers(0, 3), pad_r=st.integers(0, 3), kernel=st.integers(3, 5), size=st.integers(1, 8), input_channels=st.integers(1, 3), output_channels=st.integers(1, 3), batch_size=st.integers(0, 3), group=st.integers(1, 2), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "EIGEN"]), shared_buffer=st.booleans(), use_bias=st.booleans(), **hu.gcs ) @settings(deadline=None, max_examples=50) def test_convolution_separate_stride_pad_gradients( self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel, size, input_channels, output_channels, batch_size, group, order, engine, shared_buffer, use_bias, gc, dc, ): # TODO: Group conv in NHWC not implemented for GPU yet. assume(group == 1 or order == "NCHW" or gc.device_type == caffe2_pb2.CPU) if group != 1 and order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] # Group conv not implemented with EIGEN engine. assume(group == 1 or engine != "EIGEN") input_channels *= group output_channels *= group op = core.CreateOperator( op_type, ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride_h=stride_h, stride_w=stride_w, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, kernel=kernel, group=group, order=order, engine=engine, shared_buffer=int(shared_buffer), ) X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) w = ( np.random.rand( output_channels, kernel, kernel, int(input_channels / group) ).astype(np.float32) - 0.5 ) b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, w, b] if use_bias else [X, w] # Error handling path. if size + pad_r + pad_l < kernel or size + pad_t + pad_b < kernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) # CUDNN does NOT support different padding values and we skip it @given( op_type=st.sampled_from(["Conv", "Conv2D"]), stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_t=st.integers(0, 3), pad_l=st.integers(0, 3), pad_b=st.integers(0, 3), pad_r=st.integers(0, 3), kernel=st.integers(1, 5), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), engine=st.sampled_from(["", "EIGEN"]), use_bias=st.booleans(), **hu.gcs ) @settings(deadline=None) def test_convolution_separate_stride_pad_layout( self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel, size, input_channels, output_channels, batch_size, engine, use_bias, gc, dc, ): X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) w = ( np.random.rand(output_channels, kernel, kernel, input_channels).astype( np.float32 ) - 0.5 ) b = np.random.rand(output_channels).astype(np.float32) - 0.5 outputs = {} for order in ["NCHW", "NHWC"]: op = core.CreateOperator( op_type, ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride_h=stride_h, stride_w=stride_w, kernel=kernel, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, order=order, engine=engine, device_option=gc, ) if order == "NCHW": X_f = utils.NHWC2NCHW(X) w_f = utils.NHWC2NCHW(w) else: X_f = X w_f = w self.ws.create_blob("X").feed(X_f, device_option=gc) self.ws.create_blob("w").feed(w_f, device_option=gc) self.ws.create_blob("b").feed(b, device_option=gc) self.ws.run(op) outputs[order] = self.ws.blobs["Y"].fetch() np.testing.assert_allclose( outputs["NCHW"], utils.NHWC2NCHW(outputs["NHWC"]), atol=1e-4, rtol=1e-4 ) @given( op_type=st.sampled_from(["Conv", "Conv2D"]), stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), dilation=st.integers(1, 3), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), group=st.integers(1, 2), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "CUDNN", "MKLDNN"]), use_bias=st.booleans(), force_algo_fwd=_cudnn_convolution_algo_count("fwd"), force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"), force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"), **hu.gcs ) @settings(max_examples=20, deadline=None) def test_convolution_gradients( self, op_type, stride, pad, kernel, dilation, size, input_channels, output_channels, batch_size, group, order, engine, use_bias, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ): # TODO: Group conv in NHWC not implemented for GPU yet. assume( group == 1 or (order == "NCHW" or gc.device_type == caffe2_pb2.CPU) and engine != "MKLDNN" ) if group != 1 and order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] input_channels *= group output_channels *= group dkernel = dilation * (kernel - 1) + 1 if engine == "CUDNN": if hiputl.run_in_hip(gc, dc): assume((order == "NCHW") and not (dilation > 1 and group > 1)) else: assume( _cudnn_supports( dilation=(dilation > 1), nhwc=(order == "NHWC"), backward=True ) ) assume(engine != "MKLDNN" or use_bias is True) op = core.CreateOperator( op_type, ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, group=group, order=order, engine=engine, force_algo_fwd=force_algo_fwd, force_algo_dgrad=force_algo_dgrad, force_algo_wgrad=force_algo_wgrad, ) X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) w = ( np.random.rand( output_channels, kernel, kernel, int(input_channels / group) ).astype(np.float32) - 0.5 ) b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, w, b] if use_bias else [X, w] # Error handling path. if size + pad + pad < dkernel or size + pad + pad < dkernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return try: self.assertDeviceChecks(dc, op, inputs, [0]) except RuntimeError as e: es = str(e) # CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have # implementation if ( "status == CUDNN_STATUS_SUCCESS" not in es or "CUDNN_STATUS_NOT_SUPPORTED" not in es or force_algo_fwd == 0 ): raise e for i in range(len(inputs)): try: self.assertGradientChecks(gc, op, inputs, i, [0]) except RuntimeError as e: es = str(e) if ( "status == CUDNN_STATUS_SUCCESS" not in es or "CUDNN_STATUS_NOT_SUPPORTED" not in es ): raise e def _nd_convolution( self, n, input_channels_per_group, output_channels_per_group, batch_size, stride, size, kernel, dilation, pad, group, order, use_bias, engine, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ): # TODO: Group conv in NHWC not implemented for GPU yet. # TODO: Group 1D conv in NCHW not implemented for GPU yet. assume( group == 1 or (n != 1 and order == "NCHW") or gc.device_type == caffe2_pb2.CPU ) if group != 1 and (n == 1 or order == "NHWC"): dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] input_channels = group * input_channels_per_group output_channels = group * output_channels_per_group dkernel = dilation * (kernel - 1) + 1 for op_type in ["Conv", "Conv" + str(n) + "D"]: op = core.CreateOperator( op_type, ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], strides=[stride] * n, kernels=[kernel] * n, dilations=[dilation] * n, pads=[pad] * n * 2, group=group, order=order, engine=engine, force_algo_fwd=force_algo_fwd, force_algo_dgrad=force_algo_dgrad, force_algo_wgrad=force_algo_wgrad, ) input_dims = [batch_size, input_channels] input_dims.extend([size] * n) filter_dims = [output_channels, input_channels // group] filter_dims.extend([kernel] * n) X = np.random.rand(*input_dims).astype(np.float32) - 0.5 w = np.random.rand(*filter_dims).astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NHWC": X = utils.NCHW2NHWC(X) w = utils.NCHW2NHWC(w) inputs = [X, w, b] if use_bias else [X, w] if size + pad + pad < dkernel or size + pad + pad < dkernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) @given( input_channels=st.integers(1, 3), output_channels=st.integers(1, 2), batch_size=st.integers(0, 3), stride=st.integers(1, 3), size=st.integers(7, 10), kernel=st.integers(1, 2), dilation=st.integers(1, 3), pad=st.integers(0, 3), group=st.integers(1, 2), order=st.sampled_from(["NCHW", "NHWC"]), use_bias=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), force_algo_fwd=_cudnn_convolution_algo_count("fwd"), force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"), force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"), **hu.gcs ) @settings(deadline=10000) def test_1d_convolution( self, input_channels, output_channels, batch_size, stride, size, kernel, dilation, pad, group, order, use_bias, engine, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ): if hiputl.run_in_hip(gc, dc): # currently miopen only supports 2d conv assume(engine != "CUDNN") # CUDNN is aliased to MIOPEN for HIP # TODO: 1D conv in NHWC not implemented for GPU yet. assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU) if order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] self._nd_convolution( 1, input_channels, output_channels, batch_size, stride, size, kernel, dilation, pad, group, order, use_bias, engine, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ) @given( input_channels=st.integers(1, 2), output_channels=st.integers(1, 2), batch_size=st.integers(0, 2), stride=st.integers(1, 2), size=st.integers(4, 5), kernel=st.integers(1, 2), dilation=st.integers(1, 2), pad=st.integers(0, 2), group=st.integers(1, 2), order=st.sampled_from(["NCHW", "NHWC"]), use_bias=st.booleans(), engine=st.sampled_from(["", "MIOPEN"]), # TODO: add "CUDNN" force_algo_fwd=_cudnn_convolution_algo_count("fwd"), force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"), force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"), **hu.gcs ) @settings(max_examples=20, deadline=None) def test_3d_convolution( self, input_channels, output_channels, batch_size, stride, size, kernel, dilation, pad, group, order, use_bias, engine, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ): # TODO: 3D conv in NHWC not implemented for GPU yet. assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU) if order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] self._nd_convolution( 3, input_channels, output_channels, batch_size, stride, size, kernel, dilation, pad, group, order, use_bias, engine, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ) @given( op_type=st.sampled_from(["Conv", "Conv3D"]), batch_size=st.integers(0, 2), stride=st.integers(1, 2), size=st.integers(3, 5), kernel=st.integers(1, 2), dilation=st.integers(1, 2), pad=st.integers(0, 2), use_bias=st.booleans(), force_algo_fwd=_cudnn_convolution_algo_count("fwd"), force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"), force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"), **hu.gcs_no_hip ) # MIOPEN doesn't support 3D conv yet @settings(deadline=10000) def test_3d_convolution_cudnn_nchw( self, op_type, batch_size, stride, size, kernel, dilation, pad, use_bias, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ): input_channels = 1 output_channels = 1 n = 3 dkernel = dilation * (kernel - 1) + 1 order = "NCHW" op = core.CreateOperator( op_type, ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], strides=[stride] * n, kernels=[kernel] * n, dilations=[dilation] * n, pads=[pad] * n * 2, order=order, engine="CUDNN", force_algo_fwd=force_algo_fwd, force_algo_dgrad=force_algo_dgrad, force_algo_wgrad=force_algo_wgrad, ) input_dims = [batch_size, input_channels] input_dims.extend([size] * n) filter_dims = [output_channels, input_channels] filter_dims.extend([kernel] * n) X = np.random.rand(*input_dims).astype(np.float32) - 0.5 w = np.random.rand(*filter_dims).astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 inputs = [X, w, b] if use_bias else [X, w] if size + pad + pad < dkernel or size + pad + pad < dkernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return try: self.assertDeviceChecks(dc, op, inputs, [0]) except RuntimeError as e: es = str(e) # CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have # implementation if ( "status == CUDNN_STATUS_SUCCESS" not in es or "CUDNN_STATUS_NOT_SUPPORTED" not in es or force_algo_fwd == 0 ): raise e for i in range(len(inputs)): try: self.assertGradientChecks(gc, op, inputs, i, [0]) except RuntimeError as e: es = str(e) if ( "status == CUDNN_STATUS_SUCCESS" not in es or "CUDNN_STATUS_NOT_SUPPORTED" not in es ): raise e @given( op_type=st.sampled_from(["Conv", "Conv2D"]), stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), dilation=st.integers(1, 3), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), use_bias=st.booleans(), **hu.gcs ) @settings(deadline=None, max_examples=50) def test_convolution_layout( self, op_type, stride, pad, kernel, dilation, size, input_channels, output_channels, batch_size, use_bias, gc, dc, ): assume(size >= dilation * (kernel - 1) + 1) X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) w = ( np.random.rand(output_channels, kernel, kernel, input_channels).astype( np.float32 ) - 0.5 ) b = np.random.rand(output_channels).astype(np.float32) - 0.5 Output = collections.namedtuple("Output", ["Y", "engine", "order"]) outputs = [] for order in ["NCHW", "NHWC"]: engine_list = [""] if hiputl.run_in_hip(gc, dc): if order == "NCHW": engine_list.append("MIOPEN") else: if _cudnn_supports(dilation=(dilation > 1), nhwc=(order == "NHWC")): engine_list.append("CUDNN") for engine in engine_list: op = core.CreateOperator( op_type, ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, device_option=gc, exhaustive_search=True, ) if order == "NCHW": X_f = utils.NHWC2NCHW(X) w_f = utils.NHWC2NCHW(w) else: X_f = X w_f = w self.assertDeviceChecks( dc, op, [X_f, w_f, b] if use_bias else [X_f, w_f], [0] ) self.ws.create_blob("X").feed(X_f, device_option=gc) self.ws.create_blob("w").feed(w_f, device_option=gc) self.ws.create_blob("b").feed(b, device_option=gc) self.ws.run(op) outputs.append( Output(Y=self.ws.blobs["Y"].fetch(), engine=engine, order=order) ) def canonical(o): if o.order == "NHWC": return utils.NHWC2NCHW(o.Y) else: return o.Y for o in outputs: np.testing.assert_allclose( canonical(outputs[0]), canonical(o), atol=1e-4, rtol=1e-4 ) @given( num_workers=st.integers(1, 4), net_type=st.sampled_from( ["simple", "dag"] + ( ["async_dag"] if workspace.has_gpu_support else [] ) ), engine=st.sampled_from(["CUDNN", ""]), **hu.gcs_no_hip ) @settings(deadline=None) def test_convolution_sync(self, net_type, num_workers, engine, gc, dc): m = ModelHelper(name="test_model") n = 1 d = 2 depth = 3 iters = 5 h = 5 w = 5 workspace.ResetWorkspace() use_cudnn = engine == "CUDNN" np.random.seed(1701) # Build a binary tree of conv layers, summing at each node. for i in reversed(range(depth)): for j in range(2 ** i): bottom_1 = "{}_{}".format(i + 1, 2 * j) bottom_2 = "{}_{}".format(i + 1, 2 * j + 1) mid_1 = "{}_{}_m".format(i + 1, 2 * j) mid_2 = "{}_{}_m".format(i + 1, 2 * j + 1) top = "{}_{}".format(i, j) w1, b1, w2, b2 = np.random.randn(4).tolist() brew.conv( m, bottom_1, mid_1, dim_in=d, dim_out=d, kernel=3, weight_init=("ConstantFill", {"value": w1}), bias_init=("ConstantFill", {"value": b1}), cudnn_state=np.random.randint(0, 3), stride=1, pad=1, deterministic=1, use_cudnn=use_cudnn, engine=engine, ) brew.conv( m, bottom_2, mid_2, dim_in=d, dim_out=d, kernel=3, stride=1, pad=1, weight_init=("ConstantFill", {"value": w2}), bias_init=("ConstantFill", {"value": b2}), deterministic=1, cudnn_state=np.random.randint(0, 3), use_cudnn=use_cudnn, engine=engine, ) m.net.Sum([mid_1, mid_2], top) m.net.Flatten(["0_0"], ["0_0_flat"]) m.net.SquaredL2Distance(["0_0_flat", "label"], "xent") m.net.AveragedLoss("xent", "loss") input_to_grad = m.AddGradientOperators(["loss"]) m.Proto().device_option.CopyFrom(gc) m.param_init_net.Proto().device_option.CopyFrom(gc) m.Proto().type = net_type m.Proto().num_workers = num_workers self.ws.run(m.param_init_net) def run(): import numpy as np np.random.seed(1701) input_blobs = ["{}_{}".format(depth, j) for j in range(2 ** depth)] for input_blob in input_blobs: self.ws.create_blob(input_blob).feed( np.random.randn(n, d, h, w).astype(np.float32), device_option=gc ) self.ws.create_blob("label").feed( np.random.randn(n, d * h * w).astype(np.float32), device_option=gc ) self.ws.run(m.net) gradients = [ self.ws.blobs[str(input_to_grad[input_blob])].fetch() for input_blob in input_blobs ] return gradients outputs = [run() for _ in range(iters)] for output in outputs[1:]: np.testing.assert_array_equal(outputs[0], output) np.testing.assert_allclose( np.sum(np.square(output)), 1763719461732352.0, rtol=1e-5 ) def test_use_cudnn_engine_interactions(self): """Make sure the use_cudnn and engine kwargs work as expected.""" for model_default in [None, True, False]: arg_scope = {} if model_default is not None: arg_scope["use_cudnn"] = model_default else: model_default = True # the default model = ModelHelper(arg_scope=arg_scope) self.assertEqual(model.arg_scope["use_cudnn"], model_default) f = functools.partial(brew.conv, model, "conv_in", "conv_out", 10, 10, 5) for op_cudnn in [None, True, False]: for op_engine in [None, "", "CUDNN"]: kwargs = {} if op_cudnn is not None: kwargs["use_cudnn"] = op_cudnn else: op_cudnn = False # the default if op_engine is not None: kwargs["engine"] = op_engine calculated_cudnn = kwargs.get("use_cudnn", model_default) expected_engine = kwargs.get( "engine", "CUDNN" if calculated_cudnn else "" ) if (calculated_cudnn is False and op_engine == "CUDNN") or ( calculated_cudnn is True and op_engine == "" ): with self.assertRaises(ValueError): f(**kwargs) else: f(**kwargs) self.assertEqual(model.Proto().op[-1].engine, expected_engine) @given( op_type=st.sampled_from(["Conv", "Conv2D"]), N=st.integers(0, 3), G=st.integers(1, 3), DX=st.integers(1, 3), DY=st.integers(1, 3), H=st.integers(1, 3), W=st.integers(1, 3), use_bias=st.booleans(), order=st.sampled_from(["NCHW", "NHWC"]), force_algo_fwd=_cudnn_convolution_algo_count("fwd"), force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"), force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"), **hu.gcs ) @settings(deadline=10000) def test_1x1_conv( self, op_type, N, G, DX, DY, H, W, use_bias, order, force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc, ): if hiputl.run_in_hip(gc, dc): assume(order == "NCHW") if order == "NHWC": G = 1 C = G * DX M = G * DY op = core.CreateOperator( op_type, ["X", "filter", "bias"] if use_bias else ["X", "filter"], ["Y"], stride_h=1, stride_w=1, pad_t=0, pad_l=0, pad_b=0, pad_r=0, kernel=1, order=order, group=G, force_algo_fwd=force_algo_fwd, force_algo_dgrad=force_algo_dgrad, force_algo_wgrad=force_algo_wgrad, ) if order == "NCHW": X = np.random.randn(N, C, H, W).astype(np.float32) filter = np.random.randn(M, DX, 1, 1).astype(np.float32) else: X = np.random.randn(N, H, W, C).astype(np.float32) filter = np.random.randn(M, 1, 1, DX).astype(np.float32) bias = np.random.randn(M).astype(np.float32) inputs = [X, filter, bias] if use_bias else [X, filter] def conv_1x1_nchw_ref(X, filter, bias=None): if N == 0: Y = np.zeros(shape=(N, M, H, W), dtype=np.float32) return [Y] X = X.reshape(N, G, DX, -1) filter = filter.reshape(G, DY, DX) Y = np.zeros(shape=(N, G, DY, H * W), dtype=np.float32) for i in range(N): for j in range(G): Y[i, j, :, :] = np.dot(filter[j, :, :], X[i, j, :, :]) Y = Y.reshape(N, M, H, W) if bias is not None: bias = bias.reshape(1, M, 1, 1) Y = np.add(Y, bias) return [Y] def conv_1x1_nhwc_ref(X, filter, bias=None): if N == 0: Y = np.zeros(shape=(N, H, W, M), dtype=np.float32) return [Y] X = X.reshape(N, -1, G, DX) filter = filter.reshape(G, DY, DX) Y = np.zeros(shape=(N, H * W, G, DY), dtype=np.float32) for i in range(N): for j in range(G): Y[i, :, j, :] = np.dot(X[i, :, j, :], filter[j, :, :].transpose()) Y = Y.reshape(N, H, W, M) if bias is not None: bias = bias.reshape(1, 1, 1, M) Y = np.add(Y, bias) return [Y] if order == "NCHW": conv_1x1_ref = conv_1x1_nchw_ref else: conv_1x1_ref = conv_1x1_nhwc_ref self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=conv_1x1_ref ) self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/conv_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest def mux(select, left, right): return [np.vectorize(lambda c, x, y: x if c else y)(select, left, right)] def rowmux(select_vec, left, right): select = [[s] * len(left) for s in select_vec] return mux(select, left, right) class TestWhere(serial.SerializedTestCase): def test_reference(self): self.assertTrue(( np.array([1, 4]) == mux([True, False], [1, 2], [3, 4])[0] ).all()) self.assertTrue(( np.array([[1], [4]]) == mux([[True], [False]], [[1], [2]], [[3], [4]])[0] ).all()) @given(N=st.integers(min_value=1, max_value=10), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) @settings(deadline=10000) def test_where(self, N, gc, dc, engine): C = np.random.rand(N).astype(bool) X = np.random.rand(N).astype(np.float32) Y = np.random.rand(N).astype(np.float32) op = core.CreateOperator("Where", ["C", "X", "Y"], ["Z"], engine=engine) self.assertDeviceChecks(dc, op, [C, X, Y], [0]) self.assertReferenceChecks(gc, op, [C, X, Y], mux) @given(N=st.integers(min_value=1, max_value=10), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) @settings(deadline=10000) def test_where_dim2(self, N, gc, dc, engine): C = np.random.rand(N, N).astype(bool) X = np.random.rand(N, N).astype(np.float32) Y = np.random.rand(N, N).astype(np.float32) op = core.CreateOperator("Where", ["C", "X", "Y"], ["Z"], engine=engine) self.assertDeviceChecks(dc, op, [C, X, Y], [0]) self.assertReferenceChecks(gc, op, [C, X, Y], mux) class TestRowWhere(hu.HypothesisTestCase): def test_reference(self): self.assertTrue(( np.array([1, 2]) == rowmux([True], [1, 2], [3, 4])[0] ).all()) self.assertTrue(( np.array([[1, 2], [7, 8]]) == rowmux([True, False], [[1, 2], [3, 4]], [[5, 6], [7, 8]])[0] ).all()) @given(N=st.integers(min_value=1, max_value=10), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) def test_rowwhere(self, N, gc, dc, engine): C = np.random.rand(N).astype(bool) X = np.random.rand(N).astype(np.float32) Y = np.random.rand(N).astype(np.float32) op = core.CreateOperator( "Where", ["C", "X", "Y"], ["Z"], broadcast_on_rows=True, engine=engine, ) self.assertDeviceChecks(dc, op, [C, X, Y], [0]) self.assertReferenceChecks(gc, op, [C, X, Y], mux) @given(N=st.integers(min_value=1, max_value=10), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) def test_rowwhere_dim2(self, N, gc, dc, engine): C = np.random.rand(N).astype(bool) X = np.random.rand(N, N).astype(np.float32) Y = np.random.rand(N, N).astype(np.float32) op = core.CreateOperator( "Where", ["C", "X", "Y"], ["Z"], broadcast_on_rows=True, engine=engine, ) self.assertDeviceChecks(dc, op, [C, X, Y], [0]) self.assertReferenceChecks(gc, op, [C, X, Y], rowmux) class TestIsMemberOf(serial.SerializedTestCase): @given(N=st.integers(min_value=1, max_value=10), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) @settings(deadline=10000) def test_is_member_of(self, N, gc, dc, engine): X = np.random.randint(10, size=N).astype(np.int64) values = [0, 3, 4, 6, 8] op = core.CreateOperator( "IsMemberOf", ["X"], ["Y"], value=np.array(values), engine=engine, ) self.assertDeviceChecks(dc, op, [X], [0]) values = set(values) def test(x): return [np.vectorize(lambda x: x in values)(x)] self.assertReferenceChecks(gc, op, [X], test) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/elementwise_logical_ops_test.py
import unittest import caffe2.python.hypothesis_test_util as hu import numpy as np from caffe2.python import core, workspace class TestQuantile(hu.HypothesisTestCase): def _test_quantile(self, inputs, quantile, abs, tol): net = core.Net("test_net") net.Proto().type = "dag" input_tensors = [] for i, input in enumerate(inputs): workspace.FeedBlob("t_{}".format(i), input) input_tensors.append("t_{}".format(i)) net.Quantile( input_tensors, ["quantile_value"], quantile=quantile, abs=abs, tol=tol ) workspace.RunNetOnce(net) quantile_value_blob = workspace.FetchBlob("quantile_value") assert np.size(quantile_value_blob) == 1 quantile_value = quantile_value_blob[0] input_cat = np.concatenate([input.flatten() for input in inputs]) input_cat = np.abs(input_cat) if abs == 1 else input_cat target_cnt = np.ceil(np.size(input_cat) * quantile) actual_cnt = np.sum(input_cat <= quantile_value) # prune with return value will remove no less than # "quantile" portion of elements assert actual_cnt >= target_cnt # Expect that (hi-lo) < tol * (|lo| + |hi|) # if tol < 1.0 -> hi * lo > 0, then we are expecting # 1. if hi >0, # |hi|-|lo| < tol * (|lo| + |hi|) # hi - lo < (2 tol) /(1 + tol) |hi| < 2 tol |hi| # 2. if hi < 0, # |lo|- |hi| < tol * (|lo| + |hi|) # hi - lo < (2 tol) /(1 - tol) |hi| < 2.5 tol |hi| if tol < 0.2 quantile_value_lo = quantile_value - 2.5 * tol * np.abs(quantile_value) lo_cnt = np.sum(input_cat <= quantile_value_lo) # prune with a slightly smaller value will remove # less than "quantile" portion of elements assert lo_cnt <= target_cnt def test_quantile_1(self): inputs = [] num_tensors = 5 for i in range(num_tensors): dim = np.random.randint(5, 100) inputs.append(np.random.rand(dim)) self._test_quantile(inputs=inputs, quantile=0.2, abs=1, tol=1e-4) def test_quantile_2(self): inputs = [] num_tensors = 5 for i in range(num_tensors): dim = np.random.randint(5, 100) inputs.append(np.random.rand(dim)) self._test_quantile(inputs=inputs, quantile=1e-6, abs=0, tol=1e-3) def test_quantile_3(self): inputs = [] num_tensors = 5 for i in range(num_tensors): dim1 = np.random.randint(5, 100) dim2 = np.random.randint(5, 100) inputs.append(np.random.rand(dim1, dim2)) self._test_quantile(inputs=inputs, quantile=1 - 1e-6, abs=1, tol=1e-5) def test_quantile_4(self): inputs = [] num_tensors = 5 for i in range(num_tensors): dim1 = np.random.randint(5, 100) dim2 = np.random.randint(5, 100) inputs.append(np.random.rand(dim1, dim2)) inputs.append(np.random.rand(dim1)) self._test_quantile(inputs=inputs, quantile=0.168, abs=1, tol=1e-4) if __name__ == "__main__": global_options = ["caffe2"] core.GlobalInit(global_options) unittest.main()
pytorch-master
caffe2/python/operator_test/quantile_test.py
from functools import partial from hypothesis import given, settings import numpy as np import unittest import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial def sparse_lengths_sum_ref(D, I, L, normalize_by_lengths=False): R = np.zeros(shape=(L.size,) + D.shape[1:], dtype=np.float32) line = 0 for g in range(L.size): for _ in range(L[g]): if len(D.shape) > 1: R[g, :] += D[I[line], :] else: R[g] += D[I[line]] line += 1 if normalize_by_lengths and L[g] > 1: if len(D.shape) > 1: R[g, :] = R[g, :] / L[g] else: R[g] = R[g] / L[g] return [R] def sparse_lengths_mean_ref(D, I, L): return sparse_lengths_sum_ref(D, I, L, normalize_by_lengths=True) class TesterBase: def segment_reduce_op(self, data, segment_ids, reducer, indices=None): segments = self.split(data, segment_ids, indices) output = np.zeros((len(segments), ) + data.shape[1:]) for i, segment in enumerate(segments): if len(segment) > 0: output[i] = reducer(segment) else: output[i] = 0.0 return output def segment_reduce_grad_op( self, data, segment_ids, reducer_grad, grad_out, output, indices=None ): segments = self.split(data, segment_ids, indices) segment_grads = [ reducer_grad(grad_out[i], [output[i]], [segment]) for i, segment in enumerate(segments) ] return self.unsplit(data.shape[1:], segment_grads, segment_ids) def _test(self, prefix, input_strategy, refs, gpu=False, **kwargs): tester = self operator_args = kwargs.pop('operator_args', {}) threshold = kwargs.pop('threshold', 1e-4) grad_check = kwargs.pop('grad_check', True) @given(X=input_strategy, **hu.gcs) def test_segment_ops(self, X, gc, dc): if not gpu and gc.device_type > 0: return for op_name, ref, grad_ref in refs: inputs = ['input%d' % i for i in range(0, len(X))] op = core.CreateOperator( prefix + op_name, inputs, ['output'], **operator_args ) print('Operator %s, ' % op.type, gc.device_type) def seg_reduce(data, *args): indices, segments = ( args if len(args) == 2 else (None, args[0]) ) out = tester.segment_reduce_op( data=data, segment_ids=segments, indices=indices, reducer=ref ) return (out, ) def seg_reduce_grad(grad_out, outputs, inputs): data = inputs[0] args = inputs[1:] indices, segments = ( args if len(args) == 2 else (None, args[0]) ) # grad r.t. data grad_val = tester.segment_reduce_grad_op( data, segments, grad_ref, grad_out, outputs[0], indices ) # if sparse, include indices along with data gradient data_grad_slice = ( (grad_val, indices) if indices is not None else grad_val ) # other inputs don't have gradient return (data_grad_slice, ) + (None, ) * (len(inputs) - 1) kwargs = {} if grad_check: kwargs['output_to_grad'] = 'output' kwargs['grad_reference'] = seg_reduce_grad self.assertReferenceChecks( device_option=gc, op=op, inputs=X, reference=seg_reduce, threshold=threshold, **kwargs ) return test_segment_ops class SegmentsTester(TesterBase): def split(self, data, segment_ids, indices=None): """ Given: data[M1 x M2 x ... x Md] the input data indices[N] the index of each entry of segment_ids into data, where 0 <= index[i] < M1, with default indices=[0,1,...N] segment_ids[N] the segment_id for each entry of indices, returns K outputs, each one containing data entries corresponding to one of the segments present in `segment_ids`. """ if segment_ids.size == 0: return [] K = max(segment_ids) + 1 outputs = [ np.zeros( (np.count_nonzero(segment_ids == seg_id), ) + data.shape[1:], dtype=data.dtype ) for seg_id in range(0, K) ] counts = np.zeros(K, dtype=int) for i, seg_id in enumerate(segment_ids): data_idx = i if indices is None else indices[i] outputs[seg_id][counts[seg_id]] = data[data_idx] counts[seg_id] += 1 return outputs def unsplit(self, extra_shape, inputs, segment_ids): """ Inverse operation to `split`, with indices=None """ output = np.zeros((len(segment_ids), ) + extra_shape) if len(segment_ids) == 0: return output K = max(segment_ids) + 1 counts = np.zeros(K, dtype=int) for i, seg_id in enumerate(segment_ids): output[i] = inputs[seg_id][counts[seg_id]] counts[seg_id] += 1 return output class LengthsTester(TesterBase): def split(self, data, lengths, indices=None): K = len(lengths) outputs = [ np.zeros((lengths[seg_id], ) + data.shape[1:], dtype=data.dtype) for seg_id in range(0, K) ] start = 0 for i in range(0, K): for j in range(0, lengths[i]): data_index = start + j if indices is not None: data_index = indices[data_index] outputs[i][j] = data[data_index] start += lengths[i] return outputs def unsplit(self, extra_shape, inputs, lengths): N = sum(lengths) output = np.zeros((N, ) + extra_shape) K = len(lengths) assert len(inputs) == K current = 0 for i in range(0, K): for j in range(0, lengths[i]): output[current] = inputs[i][j] current += 1 return output def sum_grad(grad_out, outputs, inputs): return np.repeat( np.expand_dims(grad_out, axis=0), inputs[0].shape[0], axis=0 ) def logsumexp(x): return np.log(np.sum(np.exp(x), axis=0)) def logsumexp_grad(grad_out, outputs, inputs): sum_exps = np.sum(np.exp(inputs[0]), axis=0) return np.repeat( np.expand_dims(grad_out / sum_exps, 0), inputs[0].shape[0], axis=0 ) * np.exp(inputs[0]) def logmeanexp(x): return np.log(np.mean(np.exp(x), axis=0)) def mean(x): return np.mean(x, axis=0) def mean_grad(grad_out, outputs, inputs): return np.repeat( np.expand_dims(grad_out / inputs[0].shape[0], 0), inputs[0].shape[0], axis=0 ) def max_fwd(x): return np.amax(x, axis=0) def max_grad(grad_out, outputs, inputs): flat_inputs = inputs[0].flatten() flat_outputs = np.array(outputs[0]).flatten() flat_grad_in = np.zeros(flat_inputs.shape) flat_grad_out = np.array(grad_out).flatten() blocks = inputs[0].shape[0] if blocks == 0: return np.zeros(inputs[0].shape) block_size = flat_inputs.shape[0] // blocks for i in range(block_size): out_grad = flat_grad_out[i] out = flat_outputs[i] for j in range(blocks): idx = j * block_size + i # we can produce multiple outputs for max if out == flat_inputs[idx]: flat_grad_in[idx] = out_grad return np.resize(flat_grad_in, inputs[0].shape) REFERENCES_ALL = [ ('Sum', partial(np.sum, axis=0), sum_grad), ('Mean', partial(np.mean, axis=0), mean_grad), ] REFERENCES_SORTED = [ ('RangeSum', partial(np.sum, axis=0), sum_grad), ('RangeLogSumExp', logsumexp, logsumexp_grad), # gradient is the same as sum ('RangeLogMeanExp', logmeanexp, logsumexp_grad), ('RangeMean', mean, mean_grad), ('RangeMax', max_fwd, max_grad), ] REFERENCES_LENGTHS_ONLY = [ ('Max', partial(np.amax, axis=0), max_grad), ] def sparse_lengths_weighted_sum_ref(D, W, I, L): R = np.zeros(shape=(len(L), ) + D.shape[1:], dtype=D.dtype) line = 0 for g in range(len(L)): for _ in range(L[g]): if len(D.shape) > 1: R[g, :] += W[line] * D[I[line], :] else: R[g] += W[line] * D[I[line]] line += 1 return [R] def sparse_lengths_weighted_sum_grad_ref( GO, fwd_out, fwd_in, grad_on_weights=False): D, W, I, L = fwd_in GI = np.zeros(shape=(len(I), ) + D.shape[1:], dtype=D.dtype) GW = np.zeros(shape=W.shape, dtype=W.dtype) if grad_on_weights else None line = 0 for g in range(len(L)): for _ in range(L[g]): if len(GO.shape) > 1: GI[line, :] = W[line] * GO[g, :] else: GI[line] = W[line] * GO[g] if GW is not None: if len(GO.shape) > 1: GW[line] = np.dot(GO[g].flatten(), D[I[line], :].flatten()) else: GW[line] = np.dot(GO[g].flatten(), D[I[line]].flatten()) line += 1 print(GW) return [(GI, I), GW, None, None] class TestSegmentOps(hu.HypothesisTestCase): def test_sorted_segment_ops(self): SegmentsTester()._test( 'SortedSegment', hu.segmented_tensor( dtype=np.float32, is_sorted=True, allow_empty=True ), REFERENCES_ALL + REFERENCES_SORTED )(self) def test_unsorted_segment_ops(self): SegmentsTester()._test( 'UnsortedSegment', hu.segmented_tensor( dtype=np.float32, is_sorted=False, allow_empty=True ), REFERENCES_ALL, )(self) def test_unsorted_segment_ops_gpu(self): SegmentsTester()._test( 'UnsortedSegment', hu.segmented_tensor( dtype=np.float32, is_sorted=False, allow_empty=True, ), REFERENCES_ALL, gpu=workspace.has_gpu_support, grad_check=False, )(self) def test_sparse_sorted_segment_ops(self): SegmentsTester()._test( 'SparseSortedSegment', hu.sparse_segmented_tensor( dtype=np.float32, is_sorted=True, allow_empty=True ), REFERENCES_ALL )(self) def test_sparse_unsorted_segment_ops(self): SegmentsTester()._test( 'SparseUnsortedSegment', hu.sparse_segmented_tensor( dtype=np.float32, is_sorted=False, allow_empty=True ), REFERENCES_ALL )(self) def test_lengths_ops(self): LengthsTester()._test( 'Lengths', hu.lengths_tensor( dtype=np.float32, min_value=1, max_value=5, allow_empty=True ), REFERENCES_ALL + REFERENCES_LENGTHS_ONLY, )(self) def test_sparse_lengths_ops(self): for itype in [np.int32, np.int64]: LengthsTester()._test( 'SparseLengths', hu.sparse_lengths_tensor( dtype=np.float32, min_value=1, max_value=5, allow_empty=True, itype=itype, ), REFERENCES_ALL, )(self) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given(**hu.gcs) def test_unsorted_sums_large(self, gc, dc): X = np.random.rand(10000, 32, 12).astype(np.float32) segments = np.random.randint(0, 10000, size=10000).astype(np.int32) op = core.CreateOperator("UnsortedSegmentSum", ["X", "segments"], "out") self.assertDeviceChecks(dc, op, [X, segments], [0]) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given(**hu.gcs) def test_sorted_segment_range_mean(self, gc, dc): X = np.random.rand(6, 32, 12).astype(np.float32) segments = np.array([0, 0, 1, 1, 2, 3]).astype(np.int32) op = core.CreateOperator( "SortedSegmentRangeMean", ["X", "segments"], "out" ) self.assertDeviceChecks(dc, op, [X, segments], [0]) self.assertGradientChecks(gc, op, [X, segments], 0, [0]) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given(**hu.gcs) def test_sorted_segment_range_log_mean_exp(self, gc, dc): X = np.random.rand(7, 32, 12).astype(np.float32) segments = np.array([0, 0, 1, 1, 2, 2, 3]).astype(np.int32) op = core.CreateOperator( "SortedSegmentRangeLogMeanExp", ["X", "segments"], "out" ) self.assertDeviceChecks(dc, op, [X, segments], [0]) self.assertGradientChecks(gc, op, [X, segments], 0, [0]) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given(**hu.gcs) def test_unsorted_means_large(self, gc, dc): X = np.random.rand(10000, 31, 19).astype(np.float32) segments = np.random.randint(0, 10000, size=10000).astype(np.int32) op = core.CreateOperator("UnsortedSegmentMean", ["X", "segments"], "out") self.assertDeviceChecks(dc, op, [X, segments], [0]) @serial.given( inputs=hu.lengths_tensor( dtype=np.float32, min_value=1, max_value=5, allow_empty=True, ), **hu.gcs ) def test_lengths_sum(self, inputs, gc, dc): X, Y = inputs op = core.CreateOperator("LengthsSum", ["X", "Y"], "out") def ref(D, L): R = np.zeros(shape=(L.size, ) + D.shape[1:], dtype=D.dtype) line = 0 for g in range(L.size): for _ in range(L[g]): if len(D.shape) > 1: R[g, :] += D[line, :] else: R[g] += D[line] line += 1 return [R] self.assertReferenceChecks(gc, op, [X, Y], ref) self.assertDeviceChecks(dc, op, [X, Y], [0]) self.assertGradientChecks(gc, op, [X, Y], 0, [0]) @serial.given( inputs=hu.sparse_lengths_tensor( dtype=np.float32, min_value=1, max_value=5, allow_empty=True ), **hu.gcs ) def test_sparse_lengths_sum(self, inputs, gc, dc): X, Y, Z = inputs op = core.CreateOperator("SparseLengthsSum", ["X", "Y", "Z"], "out") def ref(D, I, L): R = np.zeros(shape=(L.size, ) + D.shape[1:], dtype=D.dtype) line = 0 for g in range(L.size): for _ in range(L[g]): if len(D.shape) > 1: R[g, :] += D[I[line], :] else: R[g] += D[I[line]] line += 1 return [R] self.assertReferenceChecks(gc, op, [X, Y, Z], ref) self.assertDeviceChecks(dc, op, [X, Y, Z], [0]) self.assertGradientChecks(gc, op, [X, Y, Z], 0, [0]) @serial.given( inputs=hu.lengths_tensor( dtype=np.float32, min_value=1, max_value=5, allow_empty=True, ), **hu.gcs ) def test_lengths_mean(self, inputs, gc, dc): X, Y = inputs op = core.CreateOperator("LengthsMean", ["X", "Y"], "out") def ref(D, L): R = np.zeros(shape=(L.size, ) + D.shape[1:], dtype=D.dtype) line = 0 for g in range(L.size): for _ in range(L[g]): if len(D.shape) > 1: R[g, :] += D[line, :] else: R[g] += D[line] line += 1 if L[g] > 1: if len(D.shape) > 1: R[g, :] = R[g, :] / L[g] else: R[g] = R[g] / L[g] return [R] self.assertReferenceChecks(gc, op, [X, Y], ref) self.assertDeviceChecks(dc, op, [X, Y], [0]) self.assertGradientChecks(gc, op, [X, Y], 0, [0]) @serial.given( inputs=hu.sparse_lengths_tensor( dtype=np.float32, min_value=1, max_value=5, allow_empty=True ), **hu.gcs ) def test_sparse_lengths_mean(self, inputs, gc, dc): X, Y, Z = inputs op = core.CreateOperator("SparseLengthsMean", ["X", "Y", "Z"], "out") def ref(D, I, L): R = np.zeros(shape=(L.size, ) + D.shape[1:], dtype=D.dtype) line = 0 for g in range(L.size): for _ in range(L[g]): if len(D.shape) > 1: R[g, :] += D[I[line], :] else: R[g] += D[I[line]] line += 1 if L[g] > 1: if len(D.shape) > 1: R[g, :] = R[g, :] / L[g] else: R[g] = R[g] / L[g] return [R] self.assertReferenceChecks(gc, op, [X, Y, Z], ref) self.assertDeviceChecks(dc, op, [X, Y, Z], [0]) self.assertGradientChecks(gc, op, [X, Y, Z], 0, [0]) @serial.given( grad_on_weights=st.booleans(), inputs=hu.sparse_lengths_tensor( dtype=np.float32, min_value=1, max_value=5, allow_empty=True ), seed=st.integers(min_value=0, max_value=100), **hu.gcs ) def test_sparse_lengths_weighted_sum( self, grad_on_weights, inputs, seed, gc, dc): D, I, L = inputs np.random.seed(int(seed)) W = np.random.rand(I.size).astype(np.float32) op = core.CreateOperator( "SparseLengthsWeightedSum", ["D", "W", "I", "L"], "out", grad_on_weights=grad_on_weights) self.assertDeviceChecks(dc, op, [D, W, I, L], [0]) self.assertReferenceChecks( device_option=gc, op=op, inputs=[D, W, I, L], reference=sparse_lengths_weighted_sum_ref, threshold=1e-4, output_to_grad='out', grad_reference=partial( sparse_lengths_weighted_sum_grad_ref, grad_on_weights=grad_on_weights), ) self.assertGradientChecks(gc, op, [D, W, I, L], 0, [0]) if grad_on_weights: self.assertGradientChecks(gc, op, [D, W, I, L], 1, [0]) @given(**hu.gcs) def test_sparse_lengths_indices_in_gradient_sum_gpu(self, gc, dc): X = np.random.rand(3, 3, 4, 5).astype(np.float32) Y = np.asarray([3, 3, 2]).astype(np.int32) Z = np.random.randint(0, 50, size=8).astype(np.int64) op = core.CreateOperator( "SparseLengthsIndicesInGradientSumGradient", ["X", "Y", "Z"], "out" ) self.assertDeviceChecks(dc, op, [X, Y, Z], [0]) @given(**hu.gcs) def test_sparse_lengths_indices_in_gradient_mean_gpu(self, gc, dc): X = np.random.rand(3, 3, 4, 5).astype(np.float32) Y = np.asarray([3, 3, 2]).astype(np.int32) Z = np.random.randint(0, 50, size=8).astype(np.int64) op = core.CreateOperator( "SparseLengthsIndicesInGradientMeanGradient", ["X", "Y", "Z"], "out" ) self.assertDeviceChecks(dc, op, [X, Y, Z], [0]) @given(**hu.gcs_cpu_only) def test_legacy_sparse_and_lengths_sum_gradient(self, gc, dc): X = np.random.rand(3, 64).astype(np.float32) Y = np.asarray([20, 20, 10]).astype(np.int32) workspace.FeedBlob("X", X) workspace.FeedBlob("Y", Y) test_net = core.Net("test_net") test_net.SparseLengthsSumGradient(["X", "Y"], "out1") test_net.LengthsSumGradient(["X", "Y"], "out2") workspace.RunNetOnce(test_net) out1 = workspace.FetchBlob("out1") out2 = workspace.FetchBlob("out2") self.assertTrue((out1 == out2).all()) @given(**hu.gcs) @settings(deadline=10000) def test_sparse_lengths_sum_invalid_index(self, gc, dc): D = np.random.rand(50, 3, 4, 5).astype(np.float32) I = (np.random.randint(0, 10000, size=10) + 10000).astype(np.int64) L = np.asarray([4, 4, 2]).astype(np.int32) op = core.CreateOperator( "SparseLengthsSum", ["D", "I", "L"], "out") workspace.FeedBlob('D', D) workspace.FeedBlob('I', I) workspace.FeedBlob('L', L) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) @serial.given(**hu.gcs_cpu_only) def test_sparse_lengths_positional_weighted_sum( self, gc, dc): D = np.random.rand(50, 3, 4, 5).astype(np.float32) W = np.random.rand(50).astype(np.float32) indices = np.random.randint(0, 50, size=10).astype(np.int64) L = np.asarray([4, 4, 2]).astype(np.int32) op = core.CreateOperator( "SparseLengthsPositionalWeightedSum", ["D", "W", "indices", "L"], "out") def ref_sparse(D, W, indices, L): workspace.FeedBlob("L", L) lengths_range_fill_op = core.CreateOperator( "LengthsRangeFill", ["L"], ["L_pos_seq"]) workspace.RunOperatorOnce(lengths_range_fill_op) workspace.FeedBlob("W", W) gather_op = core.CreateOperator( "Gather", ["W", "L_pos_seq"], ["W_gathered"]) workspace.RunOperatorOnce(gather_op) workspace.FeedBlob("D", D) workspace.FeedBlob("indices", indices) sparse_op = core.CreateOperator( "SparseLengthsWeightedSum", ["D", "W_gathered", "indices", "L"], "out_ref") workspace.RunOperatorOnce(sparse_op) return (workspace.FetchBlob("out_ref"),) self.assertReferenceChecks( gc, op, [D, W, indices, L], ref_sparse) @unittest.skipIf(not workspace.has_gpu_support, "No GPU support") @given( input=hu.tensor(min_dim=2, max_dim=2, max_value=20, dtype=np.float16), data_strategy=st.data(), is_mean=st.booleans(), **hu.gcs ) @settings(deadline=None) def test_sparse_lengths_fp16(self, input, data_strategy, is_mean, gc, dc): m = input.shape[0] lengths = data_strategy.draw( hu.tensor( max_dim=1, max_value=input.shape[0], dtype=np.int32, elements=st.integers(min_value=0, max_value=27), ) ) lengths_sum = int(np.sum(lengths).item()) indices = data_strategy.draw( hu.arrays( [lengths_sum], dtype=np.int64, elements=st.sampled_from(np.arange(m)) ) ) if is_mean: op = core.CreateOperator( "SparseLengthsMean", ["input", "indices", "lengths"], "out" ) self.assertReferenceChecks(gc, op, [input, indices, lengths], sparse_lengths_mean_ref) else: op = core.CreateOperator( "SparseLengthsSum", ["input", "indices", "lengths"], "out" ) self.assertReferenceChecks(gc, op, [input, indices, lengths], sparse_lengths_sum_ref) # @given( # inputs=hu.lengths_tensor( # dtype=np.float32, # min_value=1, # max_value=5, # min_dim=1, # max_dim=1, # allow_empty=False, # ), # **hu.gcs # ) # def test_lengths_max_gpu(self, inputs, gc, dc): # def lengths_max_ref(I, L): # R = np.zeros(shape=(len(L)), dtype=I.dtype) # line = 0 # for g in range(len(L)): # for i in range(L[g]): # if i == 0: # R[g] = I[line] # else: # R[g] = max(R[g], I[line]) # line += 1 # return [R] # X, lengths = inputs # op = core.CreateOperator("LengthsMax", ["X", "lengths"], "out") # self.assertDeviceChecks(dc, op, [X, lengths], [0]) # self.assertReferenceChecks( # device_option=gc, # op=op, # inputs=[X, lengths], # reference=lengths_max_ref, # threshold=1e-4, # output_to_grad='out', # ) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/segment_ops_test.py
import unittest import hypothesis.strategies as st from hypothesis import given import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu @unittest.skipIf(not core.IsOperator("PackedFC"), "PackedFC is not supported in this caffe2 build.") class PackedFCTest(hu.HypothesisTestCase): @given(seed=st.integers(0, 65536), M=st.integers(16, 32), K=st.integers(128, 1024), N=st.integers(128, 1024), **hu.gcs_cpu_only) @unittest.skipIf(not core.C.builtin_cpu_supports_avx2(), "Intel MKL sgemm_pack has a known numerical issue with " "non-avx2 machines that will be fixed in a later build.") def test_packed_fc(self, seed, M, K, N, gc, dc): np.random.seed(seed) X = np.random.rand(M, K).astype(np.float32) - 0.5 W = np.random.rand(N, K).astype(np.float32) - 0.5 b = np.random.rand(N).astype(np.float32) - 0.5 # If you are debugging, the following hard-coded ones might help. # X = np.ones((24, 256)).astype(np.float32) # W = np.ones((128, 256)).astype(np.float32) # b = np.zeros(128).astype(np.float32) def ref(X, W, b): return (np.dot(X, W.T) + b,) for name in ["FC", "PackedFC"]: op = core.CreateOperator( name, ["X", "W", "b"], ["Y"], ) self.assertReferenceChecks(gc, op, [X, W, b], ref) @unittest.skipIf(not core.C.builtin_cpu_supports_avx2(), "Intel MKL sgemm_pack has a known numerical issue with " "non-avx2 machines that will be fixed in a later build.") @given(axis=st.integers(min_value=1, max_value=4), num_output=st.integers(min_value=4, max_value=8), **hu.gcs_cpu_only) def test_packed_fc_axis(self, axis, num_output, gc, dc): np.random.seed(1701) X = np.random.randn(1, 2, 3, 2, 1).astype(np.float32) K = np.prod(X.shape[axis:]) N = num_output W = np.random.randn(N, K).astype(np.float32) b = np.random.randn(N).astype(np.float32) op = core.CreateOperator( "PackedFC", ["X", "W", "b"], ["Y"], axis=axis) def ref(X, W, b): output_axes = list(X.shape[:axis]) + [N] return ( np.dot(X.reshape(int(X.size / K), K), W.T).reshape(output_axes) + b,) self.assertReferenceChecks(gc, op, [X, W, b], ref) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/mkl_packed_fc_op_test.py
from caffe2.python import workspace, crf, brew from caffe2.python.model_helper import ModelHelper import numpy as np from scipy.special import logsumexp import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st from hypothesis import given, settings class TestCRFOp(hu.HypothesisTestCase): @given(num_tags=st.integers(2, 4), num_words=st.integers(2, 15)) @settings(deadline=10000) def test_crf_with_loss_op(self, num_tags, num_words): model = ModelHelper(name='external') embeddings_dim = 200 embeddings = np.random.randn(num_words, embeddings_dim).astype(np.float32) transitions = np.random.uniform( low=-1, high=1, size=(num_tags + 2, num_tags + 2) ).astype(np.float32) labels = np.random.randint(num_tags, size=(num_words)).astype(np.int64) embeddings_blob, labels_blob, transitions_blob = ( model.net.AddExternalInputs( 'embeddings_blob', 'labels_blob', 'crf_transitions') ) workspace.FeedBlob(str(embeddings_blob), embeddings) workspace.FeedBlob(str(labels_blob), labels) workspace.FeedBlob(str(transitions_blob), transitions) predictions_blob = brew.fc( model, embeddings_blob, "fc_0", embeddings_dim, num_tags, ('UniformFill', {'min': -1.0}, {'max': 1.0}), ('UniformFill', {'min': -1.0}, {'max': 1.0}) ) crf_layer = crf.CRFWithLoss(model, num_tags, transitions_blob) crf_loss = crf_layer.crf_loss(predictions_blob, labels_blob) model.net.AddGradientOperators([crf_loss]) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) loss = workspace.FetchBlob(str(crf_loss)) predictions = workspace.FetchBlob(str(predictions_blob)) np.testing.assert_allclose( loss, self._compute_loss_manual( predictions, num_tags, labels, transitions ), atol=0.001, rtol=0.001, err_msg='CRF LOSS is not matching the reference' ) @given(num_tags=st.integers(1, 4), num_words=st.integers(2, 4)) @settings(deadline=10000) def test_crf_gradient(self, num_tags, num_words): base_model = ModelHelper(name='base_model') transitions = np.random.randn( num_tags + 2, num_tags + 2 ).astype(np.float32) predictions = np.random.randn(num_words, 1, num_tags + 2).astype(np.float32) initial = np.random.randn(1, num_tags + 2).astype(np.float32) predictions_blob, transitions_blob, initial_blob = ( base_model.net.AddExternalInputs( 'predictions_blob', 'crf_transitions', 'inital_blob' ) ) workspace.FeedBlob(str(predictions_blob), predictions) workspace.FeedBlob(str(transitions_blob), transitions) workspace.FeedBlob(str(initial_blob), initial) crf_layer = crf.CRFWithLoss(base_model, num_tags, transitions_blob) crf_layer.build_crf_net( predictions_blob, initial_blob, transitions_blob ) op = base_model.net._net.op[-1] workspace.RunNetOnce(base_model.param_init_net) gradients_to_check = ( index for (index, input_name) in enumerate(op.input) if input_name != "crf_net/zero_segment_id" ) inputs = [workspace.FetchBlob(name) for name in op.input] for param in gradients_to_check: self.assertGradientChecks( device_option=hu.cpu_do, op=op, inputs=inputs, outputs_to_check=param, outputs_with_grads=[1], threshold=0.05, stepsize=0.001, ) def _compute_loss_manual(self, predictions, num_tags, labels, transitions): low_score = -1000 b_s = np.array( [[low_score] * num_tags + [0, low_score]] ).astype(np.float32) e_s = np.array( [[low_score] * num_tags + [low_score, 0]] ).astype(np.float32) predictions = np.concatenate( [predictions, low_score * np.ones((predictions.shape[0], 2))], axis=1 ) predictions = np.concatenate( [b_s, predictions, e_s], axis=0 ) b_id = np.array([num_tags], dtype=np.int32) e_id = np.array([num_tags + 1], dtype=np.int32) labels = np.concatenate( [b_id, labels, e_id], axis=0 ) curr_state = predictions[0] input_states = predictions[1:] for input_state in input_states: prev = np.expand_dims(curr_state, axis=1) curr_input = np.expand_dims(input_state, axis=0) curr_state = logsumexp(prev + curr_input + transitions, axis=0) total_score = logsumexp(curr_state, axis=0) # Compute best path score unary_scores = sum(w[labels[i]] for i, w in enumerate(predictions)) binary_scores = sum( transitions[a][b] for a, b in zip(labels[:-1], labels[1:]) ) loss = total_score - (binary_scores + unary_scores) return loss
pytorch-master
caffe2/python/operator_test/crf_test.py
from functools import partial import caffe2.python.hypothesis_test_util as hu import numpy as np from caffe2.python import core def ref_adagrad( param_in, mom_in, grad, lr, epsilon, using_fp16=False, output_effective_lr=False, output_effective_lr_and_update=False, decay=1.0, row_wise=False, weight_decay=0.0, counter_halflife=-1, count=None, # only used when counter_halflife != -1 ): mom_in_f32 = mom_in param_in_f32 = param_in if using_fp16: mom_in_f32 = mom_in.astype(np.float32) param_in_f32 = param_in.astype(np.float32) if count and count > 0 and counter_halflife > 0: weight_decay *= counter_halflife / count grad_temp = grad + weight_decay * param_in_f32 if row_wise: mom_out = decay * mom_in_f32 + np.mean(np.square(grad_temp)) else: mom_out = decay * mom_in_f32 + np.square(grad_temp) effective_lr = lr / (np.sqrt(mom_out) + epsilon) grad_adj = effective_lr * grad_temp param_out = param_in_f32 + grad_adj if output_effective_lr_and_update: if using_fp16: return ( param_out.astype(np.float16), mom_out.astype(np.float16), effective_lr.astype(np.float16), grad_adj.astype(np.float16), ) else: return ( param_out.astype(np.float32), mom_out.astype(np.float32), effective_lr.astype(np.float32), grad_adj.astype(np.float32), ) elif output_effective_lr: if using_fp16: return ( param_out.astype(np.float16), mom_out.astype(np.float16), effective_lr.astype(np.float16), ) else: return ( param_out.astype(np.float32), mom_out.astype(np.float32), effective_lr.astype(np.float32), ) if using_fp16: return (param_out.astype(np.float16), mom_out.astype(np.float16)) else: return (param_out.astype(np.float32), mom_out.astype(np.float32)) def adagrad_sparse_test_helper( parent_test, inputs, lr, epsilon, engine, ref_adagrad, gc, dc, row_wise=False, weight_decay=0.0, counter_halflife=-1, ): param, momentum, grad = inputs if row_wise: # For row-wise adagrad, only take the first element of each row momentum = momentum.reshape(momentum.shape[0], -1)[:, 0] momentum = np.abs(momentum) lr = np.array([lr], dtype=np.float32) count = None if counter_halflife != -1: count = np.random.rand(param.shape[0]) # Create an indexing array containing values that are lists of indices, # which index into grad if grad.size == 0: indices = np.empty(shape=(0,), dtype=np.int) else: indices = np.random.choice( np.arange(grad.shape[0]), size=np.random.randint(grad.shape[0]), replace=False, ) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "RowWiseSparseAdagrad" if row_wise else "SparseAdagrad", ["param", "momentum", "indices", "grad", "lr"] if count is None else ["param", "momentum", "indices", "grad", "lr", "count"], ["param", "momentum"], epsilon=epsilon, weight_decay=weight_decay, counter_halflife=counter_halflife, engine=engine, device_option=gc, ) def ref_sparse(param, momentum, indices, grad, lr, count=None, ref_using_fp16=False): param_out = np.copy(param) momentum_out = np.copy(momentum) # Need to do this because it's possible ref_adagrad's using_fp16 could # have been already specialized. ref_adagrad_temp = ( partial(ref_adagrad, using_fp16=ref_using_fp16) if ref_using_fp16 else ref_adagrad ) for i, index in enumerate(indices): param_out[index], momentum_out[index] = ref_adagrad_temp( param[index], momentum[index], grad[i], lr, epsilon, weight_decay=weight_decay, counter_halflife=counter_halflife, count=None if count is None else count[index], ) return (param_out, momentum_out) ref_using_fp16_values = [False] if gc == hu.gpu_do and not row_wise: ref_using_fp16_values.append(True) for ref_using_fp16 in ref_using_fp16_values: if ref_using_fp16: print("test_sparse_adagrad with half precision embedding") momentum_i = momentum.astype(np.float16) param_i = param.astype(np.float16) else: print("test_sparse_adagrad with full precision embedding") momentum_i = momentum.astype(np.float32) param_i = param.astype(np.float32) parent_test.assertReferenceChecks( gc, op, [param_i, momentum_i, indices, grad, lr, count, ref_using_fp16], ref_sparse )
pytorch-master
caffe2/python/operator_test/adagrad_test_helper.py
import functools import hypothesis from hypothesis import given import hypothesis.strategies as st import numpy as np import unittest from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu class TestAdam(hu.HypothesisTestCase): @staticmethod def ref_adam(param, mom1, mom2, grad, LR, ITER, beta1, beta2, epsilon, output_grad=False): t = ITER + 1 corrected_local_rate = np.sqrt(1 - np.power(beta2, t)) / \ (1 - np.power(beta1, t)) mom1_out = (beta1 * mom1) + (1 - beta1) * grad mom2_out = (beta2 * mom2) + (1 - beta2) * np.square(grad) grad_out = corrected_local_rate * mom1_out / \ (np.sqrt(mom2_out) + epsilon) param_out = param + LR * grad_out if output_grad: return param_out, mom1_out, mom2_out, grad_out else: return param_out, mom1_out, mom2_out @staticmethod def ref_smart_decay_adam(param, mom1, mom2, last_seen, grad, LR, ITER, beta1, beta2, epsilon): for name in ('param', 'mom1', 'mom2', 'last_seen', 'grad', 'LR', 'ITER', 'beta1', 'beta2', 'epsilon'): print("{} {} {}".format(name, locals()['name'], type(locals()['name']))) t = ITER + 1 k = t - last_seen k = k.flatten()[0] last_seen_out = t * np.ones_like(last_seen) # Make up for lost minibatches. mom2_out = (beta2**k * mom2) + (1 - beta2) * np.square(grad) param_out = param mom1_out = mom1 # For catchup assert k >= 1 for i in range(k): mom1_out *= beta1 if i == k - 1: mom1_out += grad * (1 - beta1) param_out += LR * mom1_out / (np.sqrt(mom2_out) + epsilon) grad_out = mom1_out / (np.sqrt(mom2_out) + epsilon) return param_out, mom1_out, mom2_out, last_seen_out @staticmethod def ref_row_wise_adam(param, mom1, mom2, grad, LR, ITER, beta1, beta2, epsilon, output_grad=False): t = ITER + 1 corrected_local_rate = np.sqrt(1 - np.power(beta2, t)) / \ (1 - np.power(beta1, t)) mom1_out = (beta1 * mom1) + (1 - beta1) * grad mom2_out = (beta2 * mom2) + (1 - beta2) * np.mean(np.square(grad)) grad_out = corrected_local_rate * mom1_out / (np.sqrt(mom2_out) + epsilon) param_out = param + LR * grad_out if output_grad: return param_out, mom1_out, mom2_out, grad_out else: return param_out, mom1_out, mom2_out @given(inputs=hu.tensors(n=4), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs) def test_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, gc, dc): param, mom1, mom2, grad = inputs mom2 = np.abs(mom2) ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) op = core.CreateOperator( "Adam", ["param", "mom1", "mom2", "grad", "lr", "iter"], ["output_param", "output_mom1", "output_mom2"], beta1=beta1, beta2=beta2, epsilon=epsilon) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [param, mom1, mom2, grad, LR, ITER], functools.partial( self.ref_adam, beta1=beta1, beta2=beta2, epsilon=epsilon), input_device_options=input_device_options) @given(inputs=hu.tensors(n=4), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) def test_adam_output_grad(self, inputs, ITER, LR, beta1, beta2, epsilon, gc, dc): param, mom1, mom2, grad = inputs mom2 = np.abs(mom2) ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) op = core.CreateOperator( "Adam", ["param", "mom1", "mom2", "grad", "lr", "iter"], ["output_param", "output_mom1", "output_mom2", "output_grad"], beta1=beta1, beta2=beta2, epsilon=epsilon) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [param, mom1, mom2, grad, LR, ITER], functools.partial( self.ref_adam, beta1=beta1, beta2=beta2, epsilon=epsilon, output_grad=True), input_device_options=input_device_options) @given(inputs=hu.tensors(n=4), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), data_strategy=st.data(), **hu.gcs) def test_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, data_strategy, gc, dc): param, mom1, mom2, grad = inputs mom2 = np.absolute(mom2) ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) # Create an indexing array containing values which index into grad indices = data_strategy.draw( hu.tensor( max_dim=1, min_value=1, max_value=grad.shape[0], dtype=np.int64, elements=st.sampled_from(np.arange(grad.shape[0])), ), ) # Verify that the generated indices are unique hypothesis.assume( np.array_equal( np.unique(indices.flatten()), np.sort(indices.flatten()))) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "SparseAdam", ["param", "mom1", "mom2", "indices", "grad", "lr", "iter"], ["param", "mom1", "mom2"], beta1=beta1, beta2=beta2, epsilon=epsilon) def ref_sparse(param, mom1, mom2, indices, grad, LR, ITER): param_out = np.copy(param) mom1_out = np.copy(mom1) mom2_out = np.copy(mom2) for i, index in enumerate(indices): param_out[index], mom1_out[index], mom2_out[index] = \ self.ref_adam(param[index], mom1[index], mom2[index], grad[i], LR, ITER, beta1, beta2, epsilon) return (param_out, mom1_out, mom2_out) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [param, mom1, mom2, indices, grad, LR, ITER], ref_sparse, input_device_options=input_device_options) @unittest.skipIf(not workspace.has_cuda_support, "no cuda support") @given(inputs=hu.tensors(n=4), ITER=st.integers(min_value=0, max_value=10), LR=st.floats(min_value=0.000001, max_value=0.1, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.0, max_value=0.99999, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.9, max_value=0.999999, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.00001, max_value=0.99, allow_nan=False, allow_infinity=False), data_strategy=st.data(), **hu.gcs) def test_smart_decay_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, data_strategy, gc, dc): param, mom1, mom2, grad = inputs mom2 = np.absolute(mom2) _iter, _lr = ITER, LR # Keep the scalar types for reference ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) # Here we will define the last_seen tensor as being randomly from 0 to ITER # (the value of t to be tested will be ITER+1) last_seen = data_strategy.draw( hypothesis.extra.numpy.arrays( dtype=np.int64, shape=(param.shape[0],), elements=st.integers(min_value=0, max_value=_iter), unique=False, ) ) # Create an indexing array containing values which index into grad indices = data_strategy.draw( hu.tensor( max_dim=1, min_value=1, max_value=grad.shape[0], dtype=np.int64, elements=st.sampled_from(np.arange(grad.shape[0])), ), ) # Verify that the generated indices are unique hypothesis.assume( np.array_equal( np.unique(indices.flatten()), np.sort(indices.flatten()))) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "SmartDecaySparseAdam", ["param", "mom1", "mom2", "last_seen", "indices", "grad", "lr", "iter"], ["param", "mom1", "mom2", "last_seen"], beta1=beta1, beta2=beta2, epsilon=epsilon) def ref_sparse(param, mom1, mom2, last_seen, indices, grad, LR, ITER): param_out = np.copy(param) mom1_out = np.copy(mom1) mom2_out = np.copy(mom2) last_seen_out = np.copy(last_seen) for i, index in enumerate(indices): param_out[index], mom1_out[index], mom2_out[index], last_seen_out[index] = \ self.ref_smart_decay_adam(param[index], mom1[index], mom2[index], last_seen[index], grad[i], LR, ITER, beta1, beta2, epsilon) return (param_out, mom1_out, mom2_out, last_seen_out) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [param, mom1, mom2, last_seen, indices, grad, LR, ITER], ref_sparse, input_device_options=input_device_options) @given(inputs=hu.tensors(n=4), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), data_strategy=st.data(), **hu.gcs) def test_sparse_adam_output_grad(self, inputs, ITER, LR, beta1, beta2, epsilon, data_strategy, gc, dc): param, mom1, mom2, grad = inputs mom2 = np.absolute(mom2) ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) # Create an indexing array containing values which index into grad indices = data_strategy.draw( hu.tensor( max_dim=1, min_value=1, max_value=grad.shape[0], dtype=np.int64, elements=st.sampled_from(np.arange(grad.shape[0])), ), ) # Verify that the generated indices are unique hypothesis.assume( np.array_equal( np.unique(indices.flatten()), np.sort(indices.flatten()))) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "SparseAdam", ["param", "mom1", "mom2", "indices", "grad", "lr", "iter"], ["param", "mom1", "mom2", "output_grad"], beta1=beta1, beta2=beta2, epsilon=epsilon) def ref_sparse_output_grad(param, mom1, mom2, indices, grad, LR, ITER, beta1, beta2, epsilon, output_grad): param_out = np.copy(param) mom1_out = np.copy(mom1) mom2_out = np.copy(mom2) grad_out = np.copy(grad) for i, index in enumerate(indices): param_out[index], mom1_out[index], mom2_out[index], grad_out[i] = \ self.ref_adam(param[index], mom1[index], mom2[index], grad[i], LR, ITER, beta1, beta2, epsilon, output_grad) return (param_out, mom1_out, mom2_out, grad_out) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [param, mom1, mom2, indices, grad, LR, ITER], functools.partial( ref_sparse_output_grad, beta1=beta1, beta2=beta2, epsilon=epsilon, output_grad=True), input_device_options=input_device_options) @given(inputs=hu.tensors(n=3), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), data_strategy=st.data(), **hu.gcs) def test_row_wise_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, data_strategy, gc, dc): param, mom1, grad = inputs ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) # Create a 1D row-wise average 2nd moment tensor. mom2 = data_strategy.draw( hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0], elements=hu.elements_of_type(dtype=np.float32)) ) mom2 = np.absolute(mom2) # Create an indexing array containing values which index into grad indices = data_strategy.draw( hu.tensor( max_dim=1, min_value=1, max_value=grad.shape[0], dtype=np.int64, elements=st.sampled_from(np.arange(grad.shape[0])), ), ) # Note that unlike SparseAdam, RowWiseSparseAdam uses a moment # tensor that is strictly 1-dimensional and equal in length to the # first dimension of the parameters, so indices must also be # 1-dimensional. indices = indices.flatten() hypothesis.note('indices.shape: %s' % str(indices.shape)) # Verify that the generated indices are unique hypothesis.assume(np.array_equal(np.unique(indices), np.sort(indices))) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "RowWiseSparseAdam", ["param", "mom1", "mom2", "indices", "grad", "lr", "iter"], ["param", "mom1", "mom2"], beta1=beta1, beta2=beta2, epsilon=epsilon) def ref_row_wise_sparse(param, mom1, mom2, indices, grad, LR, ITER): param_out = np.copy(param) mom1_out = np.copy(mom1) mom2_out = np.copy(mom2) for i, index in enumerate(indices): param_out[index], mom1_out[index], mom2_out[index] = \ self.ref_row_wise_adam(param[index], mom1[index], mom2[index], grad[i], LR, ITER, beta1, beta2, epsilon) return (param_out, mom1_out, mom2_out) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertDeviceChecks( dc, op, [param, mom1, mom2, indices, grad, LR, ITER], [0, 1, 2], input_device_options=input_device_options) self.assertReferenceChecks( gc, op, [param, mom1, mom2, indices, grad, LR, ITER], ref_row_wise_sparse, input_device_options=input_device_options) @given(inputs=hu.tensors(n=3), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), data_strategy=st.data(), **hu.gcs) def test_row_wise_sparse_adam_output_grad(self, inputs, ITER, LR, beta1, beta2, epsilon, data_strategy, gc, dc): param, mom1, grad = inputs ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) # Create a 1D row-wise average 2nd moment tensor. mom2 = data_strategy.draw( hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0], elements=hu.elements_of_type(dtype=np.float32)) ) mom2 = np.absolute(mom2) # Create an indexing array containing values which index into grad indices = data_strategy.draw( hu.tensor( max_dim=1, min_value=1, max_value=grad.shape[0], dtype=np.int64, elements=st.sampled_from(np.arange(grad.shape[0])), ), ) # Note that unlike SparseAdam, RowWiseSparseAdam uses a moment # tensor that is strictly 1-dimensional and equal in length to the # first dimension of the parameters, so indices must also be # 1-dimensional. indices = indices.flatten() hypothesis.note('indices.shape: %s' % str(indices.shape)) # Verify that the generated indices are unique hypothesis.assume(np.array_equal(np.unique(indices), np.sort(indices))) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "RowWiseSparseAdam", ["param", "mom1", "mom2", "indices", "grad", "lr", "iter"], ["param", "mom1", "mom2", "output_grad"], beta1=beta1, beta2=beta2, epsilon=epsilon) def ref_row_wise_sparse_output_grad(param, mom1, mom2, indices, grad, LR, ITER, beta1, beta2, epsilon, output_grad): param_out = np.copy(param) mom1_out = np.copy(mom1) mom2_out = np.copy(mom2) grad_out = np.copy(grad) for i, index in enumerate(indices): param_out[index], mom1_out[index], mom2_out[index], grad_out[i] = \ self.ref_row_wise_adam(param[index], mom1[index], mom2[index], grad[i], LR, ITER, beta1, beta2, epsilon, output_grad) return (param_out, mom1_out, mom2_out, grad_out) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertDeviceChecks( dc, op, [param, mom1, mom2, indices, grad, LR, ITER], [0, 1, 2, 3], input_device_options=input_device_options) self.assertReferenceChecks( gc, op, [param, mom1, mom2, indices, grad, LR, ITER], functools.partial( ref_row_wise_sparse_output_grad, beta1=beta1, beta2=beta2, epsilon=epsilon, output_grad=True), input_device_options=input_device_options) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/adam_test.py
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import functools from hypothesis import given import hypothesis.strategies as st import numpy as np class TestWeightScale(hu.HypothesisTestCase): @given(inputs=hu.tensors(n=1), ITER=st.integers(min_value=0, max_value=100), stepsize=st.integers(min_value=20, max_value=50), upper_bound_iter=st.integers(min_value=5, max_value=100), scale=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs) def test_weight_scale(self, inputs, ITER, stepsize, upper_bound_iter, scale, gc, dc): ITER = np.array([ITER], dtype=np.int64) op = core.CreateOperator( "WeightScale", ["w", "iter"], ["nw"], stepsize=stepsize, upper_bound_iter=upper_bound_iter, scale=scale) def ref_weight_scale(w, iter, stepsize, upper_bound_iter, scale): iter = iter + 1 return [w * scale if iter % stepsize == 0 and iter < upper_bound_iter else w] input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [inputs[0], ITER], functools.partial(ref_weight_scale, stepsize=stepsize, upper_bound_iter=upper_bound_iter, scale=scale), input_device_options=input_device_options )
pytorch-master
caffe2/python/operator_test/weight_scale_test.py
from caffe2.python import ( core, gradient_checker, rnn_cell, workspace, scope, utils ) from caffe2.python.attention import AttentionType from caffe2.python.model_helper import ModelHelper, ExtractPredictorNet from caffe2.python.rnn.rnn_cell_test_util import sigmoid, tanh, _prepare_rnn from caffe2.proto import caffe2_pb2 import caffe2.python.hypothesis_test_util as hu from functools import partial from hypothesis import assume, given from hypothesis import settings as ht_settings import hypothesis.strategies as st import numpy as np import unittest def lstm_unit(*args, **kwargs): forget_bias = kwargs.get('forget_bias', 0.0) drop_states = kwargs.get('drop_states', False) sequence_lengths = kwargs.get('sequence_lengths', True) if sequence_lengths: hidden_t_prev, cell_t_prev, gates, seq_lengths, timestep = args else: hidden_t_prev, cell_t_prev, gates, timestep = args D = cell_t_prev.shape[2] G = gates.shape[2] N = gates.shape[1] t = (timestep * np.ones(shape=(N, D))).astype(np.int32) assert t.shape == (N, D) assert G == 4 * D # Resize to avoid broadcasting inconsistencies with NumPy gates = gates.reshape(N, 4, D) cell_t_prev = cell_t_prev.reshape(N, D) i_t = gates[:, 0, :].reshape(N, D) f_t = gates[:, 1, :].reshape(N, D) o_t = gates[:, 2, :].reshape(N, D) g_t = gates[:, 3, :].reshape(N, D) i_t = sigmoid(i_t) f_t = sigmoid(f_t + forget_bias) o_t = sigmoid(o_t) g_t = tanh(g_t) if sequence_lengths: seq_lengths = (np.ones(shape=(N, D)) * seq_lengths.reshape(N, 1)).astype(np.int32) assert seq_lengths.shape == (N, D) valid = (t < seq_lengths).astype(np.int32) else: valid = np.ones(shape=(N, D)) assert valid.shape == (N, D) cell_t = ((f_t * cell_t_prev) + (i_t * g_t)) * (valid) + \ (1 - valid) * cell_t_prev * (1 - drop_states) assert cell_t.shape == (N, D) hidden_t = (o_t * tanh(cell_t)) * valid + hidden_t_prev * ( 1 - valid) * (1 - drop_states) hidden_t = hidden_t.reshape(1, N, D) cell_t = cell_t.reshape(1, N, D) return hidden_t, cell_t def layer_norm_with_scale_and_bias_ref(X, scale, bias, axis=-1, epsilon=1e-4): left = np.prod(X.shape[:axis]) reshaped = np.reshape(X, [left, -1]) mean = np.mean(reshaped, axis=1).reshape([left, 1]) stdev = np.sqrt( np.mean(np.square(reshaped), axis=1).reshape([left, 1]) - np.square(mean) + epsilon ) norm = (reshaped - mean) / stdev norm = np.reshape(norm, X.shape) adjusted = scale * norm + bias return adjusted def layer_norm_lstm_reference( input, hidden_input, cell_input, gates_w, gates_b, gates_t_norm_scale, gates_t_norm_bias, seq_lengths, forget_bias, drop_states=False ): T = input.shape[0] N = input.shape[1] G = input.shape[2] D = hidden_input.shape[hidden_input.ndim - 1] hidden = np.zeros(shape=(T + 1, N, D)) cell = np.zeros(shape=(T + 1, N, D)) assert hidden.shape[0] == T + 1 assert cell.shape[0] == T + 1 assert hidden.shape[1] == N assert cell.shape[1] == N cell[0, :, :] = cell_input hidden[0, :, :] = hidden_input for t in range(T): input_t = input[t].reshape(1, N, G) print(input_t.shape) hidden_t_prev = hidden[t].reshape(1, N, D) cell_t_prev = cell[t].reshape(1, N, D) gates = np.dot(hidden_t_prev, gates_w.T) + gates_b gates = gates + input_t gates = layer_norm_with_scale_and_bias_ref( gates, gates_t_norm_scale, gates_t_norm_bias ) hidden_t, cell_t = lstm_unit( hidden_t_prev, cell_t_prev, gates, seq_lengths, t, forget_bias=forget_bias, drop_states=drop_states, ) hidden[t + 1] = hidden_t cell[t + 1] = cell_t return ( hidden[1:], hidden[-1].reshape(1, N, D), cell[1:], cell[-1].reshape(1, N, D) ) def lstm_reference(input, hidden_input, cell_input, gates_w, gates_b, seq_lengths, forget_bias, drop_states=False): T = input.shape[0] N = input.shape[1] G = input.shape[2] D = hidden_input.shape[hidden_input.ndim - 1] hidden = np.zeros(shape=(T + 1, N, D)) cell = np.zeros(shape=(T + 1, N, D)) assert hidden.shape[0] == T + 1 assert cell.shape[0] == T + 1 assert hidden.shape[1] == N assert cell.shape[1] == N cell[0, :, :] = cell_input hidden[0, :, :] = hidden_input for t in range(T): input_t = input[t].reshape(1, N, G) hidden_t_prev = hidden[t].reshape(1, N, D) cell_t_prev = cell[t].reshape(1, N, D) gates = np.dot(hidden_t_prev, gates_w.T) + gates_b gates = gates + input_t hidden_t, cell_t = lstm_unit( hidden_t_prev, cell_t_prev, gates, seq_lengths, t, forget_bias=forget_bias, drop_states=drop_states, ) hidden[t + 1] = hidden_t cell[t + 1] = cell_t return ( hidden[1:], hidden[-1].reshape(1, N, D), cell[1:], cell[-1].reshape(1, N, D) ) def multi_lstm_reference(input, hidden_input_list, cell_input_list, i2h_w_list, i2h_b_list, gates_w_list, gates_b_list, seq_lengths, forget_bias, drop_states=False): num_layers = len(hidden_input_list) assert len(cell_input_list) == num_layers assert len(i2h_w_list) == num_layers assert len(i2h_b_list) == num_layers assert len(gates_w_list) == num_layers assert len(gates_b_list) == num_layers for i in range(num_layers): layer_input = np.dot(input, i2h_w_list[i].T) + i2h_b_list[i] h_all, h_last, c_all, c_last = lstm_reference( layer_input, hidden_input_list[i], cell_input_list[i], gates_w_list[i], gates_b_list[i], seq_lengths, forget_bias, drop_states=drop_states, ) input = h_all return h_all, h_last, c_all, c_last def compute_regular_attention_logits( hidden_t, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, attention_weighted_encoder_context_t_prev, weighted_prev_attention_context_w, weighted_prev_attention_context_b, attention_v, weighted_encoder_outputs, encoder_outputs_for_dot_product, coverage_prev, coverage_weights, ): weighted_hidden_t = np.dot( hidden_t, weighted_decoder_hidden_state_t_w.T, ) + weighted_decoder_hidden_state_t_b attention_v = attention_v.reshape([-1]) return np.sum( attention_v * np.tanh(weighted_encoder_outputs + weighted_hidden_t), axis=2, ) def compute_recurrent_attention_logits( hidden_t, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, attention_weighted_encoder_context_t_prev, weighted_prev_attention_context_w, weighted_prev_attention_context_b, attention_v, weighted_encoder_outputs, encoder_outputs_for_dot_product, coverage_prev, coverage_weights, ): weighted_hidden_t = np.dot( hidden_t, weighted_decoder_hidden_state_t_w.T, ) + weighted_decoder_hidden_state_t_b weighted_prev_attention_context = np.dot( attention_weighted_encoder_context_t_prev, weighted_prev_attention_context_w.T ) + weighted_prev_attention_context_b attention_v = attention_v.reshape([-1]) return np.sum( attention_v * np.tanh( weighted_encoder_outputs + weighted_hidden_t + weighted_prev_attention_context ), axis=2, ) def compute_dot_attention_logits( hidden_t, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, attention_weighted_encoder_context_t_prev, weighted_prev_attention_context_w, weighted_prev_attention_context_b, attention_v, weighted_encoder_outputs, encoder_outputs_for_dot_product, coverage_prev, coverage_weights, ): hidden_t_for_dot_product = np.transpose(hidden_t, axes=[1, 2, 0]) if ( weighted_decoder_hidden_state_t_w is not None and weighted_decoder_hidden_state_t_b is not None ): hidden_t_for_dot_product = np.matmul( weighted_decoder_hidden_state_t_w, hidden_t_for_dot_product, ) + np.expand_dims(weighted_decoder_hidden_state_t_b, axis=1) attention_logits_t = np.sum( np.matmul( encoder_outputs_for_dot_product, hidden_t_for_dot_product, ), axis=2, ) return np.transpose(attention_logits_t) def compute_coverage_attention_logits( hidden_t, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, attention_weighted_encoder_context_t_prev, weighted_prev_attention_context_w, weighted_prev_attention_context_b, attention_v, weighted_encoder_outputs, encoder_outputs_for_dot_product, coverage_prev, coverage_weights, ): weighted_hidden_t = np.dot( hidden_t, weighted_decoder_hidden_state_t_w.T, ) + weighted_decoder_hidden_state_t_b coverage_part = coverage_prev.T * coverage_weights encoder_part = weighted_encoder_outputs + coverage_part attention_v = attention_v.reshape([-1]) return np.sum( attention_v * np.tanh(encoder_part + weighted_hidden_t), axis=2, ) def lstm_with_attention_reference( input, initial_hidden_state, initial_cell_state, initial_attention_weighted_encoder_context, gates_w, gates_b, decoder_input_lengths, encoder_outputs_transposed, weighted_prev_attention_context_w, weighted_prev_attention_context_b, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, weighted_encoder_outputs, coverage_weights, attention_v, attention_zeros, compute_attention_logits, ): encoder_outputs = np.transpose(encoder_outputs_transposed, axes=[2, 0, 1]) encoder_outputs_for_dot_product = np.transpose( encoder_outputs_transposed, [0, 2, 1], ) decoder_input_length = input.shape[0] batch_size = input.shape[1] decoder_input_dim = input.shape[2] decoder_state_dim = initial_hidden_state.shape[2] encoder_output_dim = encoder_outputs.shape[2] hidden = np.zeros( shape=(decoder_input_length + 1, batch_size, decoder_state_dim)) cell = np.zeros( shape=(decoder_input_length + 1, batch_size, decoder_state_dim)) attention_weighted_encoder_context = np.zeros( shape=(decoder_input_length + 1, batch_size, encoder_output_dim)) cell[0, :, :] = initial_cell_state hidden[0, :, :] = initial_hidden_state attention_weighted_encoder_context[0, :, :] = ( initial_attention_weighted_encoder_context ) encoder_length = encoder_outputs.shape[0] coverage = np.zeros( shape=(decoder_input_length + 1, batch_size, encoder_length)) for t in range(decoder_input_length): input_t = input[t].reshape(1, batch_size, decoder_input_dim) hidden_t_prev = hidden[t].reshape(1, batch_size, decoder_state_dim) cell_t_prev = cell[t].reshape(1, batch_size, decoder_state_dim) attention_weighted_encoder_context_t_prev = ( attention_weighted_encoder_context[t].reshape( 1, batch_size, encoder_output_dim) ) gates_input = np.concatenate( (hidden_t_prev, attention_weighted_encoder_context_t_prev), axis=2, ) gates = np.dot(gates_input, gates_w.T) + gates_b gates = gates + input_t hidden_t, cell_t = lstm_unit(hidden_t_prev, cell_t_prev, gates, decoder_input_lengths, t) hidden[t + 1] = hidden_t cell[t + 1] = cell_t coverage_prev = coverage[t].reshape(1, batch_size, encoder_length) attention_logits_t = compute_attention_logits( hidden_t, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, attention_weighted_encoder_context_t_prev, weighted_prev_attention_context_w, weighted_prev_attention_context_b, attention_v, weighted_encoder_outputs, encoder_outputs_for_dot_product, coverage_prev, coverage_weights, ) attention_logits_t_exp = np.exp(attention_logits_t) attention_weights_t = ( attention_logits_t_exp / np.sum(attention_logits_t_exp, axis=0).reshape([1, -1]) ) coverage[t + 1, :, :] = coverage[t, :, :] + attention_weights_t.T attention_weighted_encoder_context[t + 1] = np.sum( ( encoder_outputs * attention_weights_t.reshape([-1, batch_size, 1]) ), axis=0, ) return ( hidden[1:], hidden[-1].reshape(1, batch_size, decoder_state_dim), cell[1:], cell[-1].reshape(1, batch_size, decoder_state_dim), attention_weighted_encoder_context[1:], attention_weighted_encoder_context[-1].reshape( 1, batch_size, encoder_output_dim, ) ) def lstm_with_regular_attention_reference( input, initial_hidden_state, initial_cell_state, initial_attention_weighted_encoder_context, gates_w, gates_b, decoder_input_lengths, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, weighted_encoder_outputs, attention_v, attention_zeros, encoder_outputs_transposed, ): return lstm_with_attention_reference( input=input, initial_hidden_state=initial_hidden_state, initial_cell_state=initial_cell_state, initial_attention_weighted_encoder_context=( initial_attention_weighted_encoder_context ), gates_w=gates_w, gates_b=gates_b, decoder_input_lengths=decoder_input_lengths, encoder_outputs_transposed=encoder_outputs_transposed, weighted_prev_attention_context_w=None, weighted_prev_attention_context_b=None, weighted_decoder_hidden_state_t_w=weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b=weighted_decoder_hidden_state_t_b, weighted_encoder_outputs=weighted_encoder_outputs, coverage_weights=None, attention_v=attention_v, attention_zeros=attention_zeros, compute_attention_logits=compute_regular_attention_logits, ) def lstm_with_recurrent_attention_reference( input, initial_hidden_state, initial_cell_state, initial_attention_weighted_encoder_context, gates_w, gates_b, decoder_input_lengths, weighted_prev_attention_context_w, weighted_prev_attention_context_b, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, weighted_encoder_outputs, attention_v, attention_zeros, encoder_outputs_transposed, ): return lstm_with_attention_reference( input=input, initial_hidden_state=initial_hidden_state, initial_cell_state=initial_cell_state, initial_attention_weighted_encoder_context=( initial_attention_weighted_encoder_context ), gates_w=gates_w, gates_b=gates_b, decoder_input_lengths=decoder_input_lengths, encoder_outputs_transposed=encoder_outputs_transposed, weighted_prev_attention_context_w=weighted_prev_attention_context_w, weighted_prev_attention_context_b=weighted_prev_attention_context_b, weighted_decoder_hidden_state_t_w=weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b=weighted_decoder_hidden_state_t_b, weighted_encoder_outputs=weighted_encoder_outputs, coverage_weights=None, attention_v=attention_v, attention_zeros=attention_zeros, compute_attention_logits=compute_recurrent_attention_logits, ) def lstm_with_dot_attention_reference( input, initial_hidden_state, initial_cell_state, initial_attention_weighted_encoder_context, gates_w, gates_b, decoder_input_lengths, encoder_outputs_transposed, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, ): return lstm_with_attention_reference( input=input, initial_hidden_state=initial_hidden_state, initial_cell_state=initial_cell_state, initial_attention_weighted_encoder_context=( initial_attention_weighted_encoder_context ), gates_w=gates_w, gates_b=gates_b, decoder_input_lengths=decoder_input_lengths, encoder_outputs_transposed=encoder_outputs_transposed, weighted_prev_attention_context_w=None, weighted_prev_attention_context_b=None, weighted_decoder_hidden_state_t_w=weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b=weighted_decoder_hidden_state_t_b, weighted_encoder_outputs=None, coverage_weights=None, attention_v=None, attention_zeros=None, compute_attention_logits=compute_dot_attention_logits, ) def lstm_with_dot_attention_reference_same_dim( input, initial_hidden_state, initial_cell_state, initial_attention_weighted_encoder_context, gates_w, gates_b, decoder_input_lengths, encoder_outputs_transposed, ): return lstm_with_dot_attention_reference( input=input, initial_hidden_state=initial_hidden_state, initial_cell_state=initial_cell_state, initial_attention_weighted_encoder_context=( initial_attention_weighted_encoder_context ), gates_w=gates_w, gates_b=gates_b, decoder_input_lengths=decoder_input_lengths, encoder_outputs_transposed=encoder_outputs_transposed, weighted_decoder_hidden_state_t_w=None, weighted_decoder_hidden_state_t_b=None, ) def lstm_with_dot_attention_reference_different_dim( input, initial_hidden_state, initial_cell_state, initial_attention_weighted_encoder_context, gates_w, gates_b, decoder_input_lengths, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, encoder_outputs_transposed, ): return lstm_with_dot_attention_reference( input=input, initial_hidden_state=initial_hidden_state, initial_cell_state=initial_cell_state, initial_attention_weighted_encoder_context=( initial_attention_weighted_encoder_context ), gates_w=gates_w, gates_b=gates_b, decoder_input_lengths=decoder_input_lengths, encoder_outputs_transposed=encoder_outputs_transposed, weighted_decoder_hidden_state_t_w=weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b=weighted_decoder_hidden_state_t_b, ) def lstm_with_coverage_attention_reference( input, initial_hidden_state, initial_cell_state, initial_attention_weighted_encoder_context, initial_coverage, gates_w, gates_b, decoder_input_lengths, weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b, weighted_encoder_outputs, coverage_weights, attention_v, attention_zeros, encoder_outputs_transposed, ): return lstm_with_attention_reference( input=input, initial_hidden_state=initial_hidden_state, initial_cell_state=initial_cell_state, initial_attention_weighted_encoder_context=( initial_attention_weighted_encoder_context ), gates_w=gates_w, gates_b=gates_b, decoder_input_lengths=decoder_input_lengths, encoder_outputs_transposed=encoder_outputs_transposed, weighted_prev_attention_context_w=None, weighted_prev_attention_context_b=None, weighted_decoder_hidden_state_t_w=weighted_decoder_hidden_state_t_w, weighted_decoder_hidden_state_t_b=weighted_decoder_hidden_state_t_b, weighted_encoder_outputs=weighted_encoder_outputs, coverage_weights=coverage_weights, attention_v=attention_v, attention_zeros=attention_zeros, compute_attention_logits=compute_coverage_attention_logits, ) def milstm_reference( input, hidden_input, cell_input, gates_w, gates_b, alpha, beta1, beta2, b, seq_lengths, forget_bias, drop_states=False): T = input.shape[0] N = input.shape[1] G = input.shape[2] D = hidden_input.shape[hidden_input.ndim - 1] hidden = np.zeros(shape=(T + 1, N, D)) cell = np.zeros(shape=(T + 1, N, D)) assert hidden.shape[0] == T + 1 assert cell.shape[0] == T + 1 assert hidden.shape[1] == N assert cell.shape[1] == N cell[0, :, :] = cell_input hidden[0, :, :] = hidden_input for t in range(T): input_t = input[t].reshape(1, N, G) hidden_t_prev = hidden[t].reshape(1, N, D) cell_t_prev = cell[t].reshape(1, N, D) gates = np.dot(hidden_t_prev, gates_w.T) + gates_b gates = (alpha * gates * input_t) + \ (beta1 * gates) + \ (beta2 * input_t) + \ b hidden_t, cell_t = lstm_unit( hidden_t_prev, cell_t_prev, gates, seq_lengths, t, forget_bias=forget_bias, drop_states=drop_states, ) hidden[t + 1] = hidden_t cell[t + 1] = cell_t return ( hidden[1:], hidden[-1].reshape(1, N, D), cell[1:], cell[-1].reshape(1, N, D) ) def layer_norm_milstm_reference( input, hidden_input, cell_input, gates_w, gates_b, alpha, beta1, beta2, b, gates_t_norm_scale, gates_t_norm_bias, seq_lengths, forget_bias, drop_states=False): T = input.shape[0] N = input.shape[1] G = input.shape[2] D = hidden_input.shape[hidden_input.ndim - 1] hidden = np.zeros(shape=(T + 1, N, D)) cell = np.zeros(shape=(T + 1, N, D)) assert hidden.shape[0] == T + 1 assert cell.shape[0] == T + 1 assert hidden.shape[1] == N assert cell.shape[1] == N cell[0, :, :] = cell_input hidden[0, :, :] = hidden_input for t in range(T): input_t = input[t].reshape(1, N, G) hidden_t_prev = hidden[t].reshape(1, N, D) cell_t_prev = cell[t].reshape(1, N, D) gates = np.dot(hidden_t_prev, gates_w.T) + gates_b gates = (alpha * gates * input_t) + \ (beta1 * gates) + \ (beta2 * input_t) + \ b gates = layer_norm_with_scale_and_bias_ref( gates, gates_t_norm_scale, gates_t_norm_bias ) hidden_t, cell_t = lstm_unit( hidden_t_prev, cell_t_prev, gates, seq_lengths, t, forget_bias=forget_bias, drop_states=drop_states, ) hidden[t + 1] = hidden_t cell[t + 1] = cell_t return ( hidden[1:], hidden[-1].reshape(1, N, D), cell[1:], cell[-1].reshape(1, N, D) ) def lstm_input(): ''' Create input tensor where each dimension is from 1 to 4, ndim=3 and last dimension size is a factor of 4 ''' dims_ = st.tuples( st.integers(min_value=1, max_value=4), # t st.integers(min_value=1, max_value=4), # n st.integers(min_value=1, max_value=4), # d ) def create_input(dims): dims = list(dims) dims[2] *= 4 return hu.arrays(dims) return dims_.flatmap(create_input) def _prepare_attention(t, n, dim_in, encoder_dim, forward_only=False, T=None, dim_out=None, residual=False, final_dropout=False): if dim_out is None: dim_out = [dim_in] print("Dims: t={} n={} dim_in={} dim_out={}".format(t, n, dim_in, dim_out)) model = ModelHelper(name='external') def generate_input_state(shape): return np.random.random(shape).astype(np.float32) initial_states = [] for layer_id, d in enumerate(dim_out): h, c = model.net.AddExternalInputs( "hidden_init_{}".format(layer_id), "cell_init_{}".format(layer_id), ) initial_states.extend([h, c]) workspace.FeedBlob(h, generate_input_state((1, n, d))) workspace.FeedBlob(c, generate_input_state((1, n, d))) awec_init = model.net.AddExternalInputs([ 'initial_attention_weighted_encoder_context', ]) initial_states.append(awec_init) workspace.FeedBlob( awec_init, generate_input_state((1, n, encoder_dim)), ) # Due to convoluted RNN scoping logic we make sure that things # work from a namescope with scope.NameScope("test_name_scope"): ( input_blob, seq_lengths, encoder_outputs, weighted_encoder_outputs, ) = model.net.AddScopedExternalInputs( 'input_blob', 'seq_lengths', 'encoder_outputs', 'weighted_encoder_outputs', ) layer_input_dim = dim_in cells = [] for layer_id, d in enumerate(dim_out): cell = rnn_cell.MILSTMCell( name='decoder_{}'.format(layer_id), forward_only=forward_only, input_size=layer_input_dim, hidden_size=d, forget_bias=0.0, memory_optimization=False, ) cells.append(cell) layer_input_dim = d decoder_cell = rnn_cell.MultiRNNCell( cells, name='decoder', residual_output_layers=range(1, len(cells)) if residual else None, ) attention_cell = rnn_cell.AttentionCell( encoder_output_dim=encoder_dim, encoder_outputs=encoder_outputs, encoder_lengths=None, decoder_cell=decoder_cell, decoder_state_dim=dim_out[-1], name='attention_decoder', attention_type=AttentionType.Recurrent, weighted_encoder_outputs=weighted_encoder_outputs, attention_memory_optimization=True, ) if final_dropout: # dropout ratio of 0.0 used to test mechanism but not interfere # with numerical tests attention_cell = rnn_cell.DropoutCell( internal_cell=attention_cell, dropout_ratio=0.0, name='dropout', forward_only=forward_only, is_test=False, ) attention_cell = ( attention_cell if T is None else rnn_cell.UnrolledCell(attention_cell, T) ) output_indices = decoder_cell.output_indices output_indices.append(2 * len(cells)) outputs_with_grads = [2 * i for i in output_indices] final_output, state_outputs = attention_cell.apply_over_sequence( model=model, inputs=input_blob, seq_lengths=seq_lengths, initial_states=initial_states, outputs_with_grads=outputs_with_grads, ) workspace.RunNetOnce(model.param_init_net) workspace.FeedBlob( seq_lengths, np.random.randint(1, t + 1, size=(n,)).astype(np.int32) ) return { 'final_output': final_output, 'net': model.net, 'initial_states': initial_states, 'input_blob': input_blob, 'encoder_outputs': encoder_outputs, 'weighted_encoder_outputs': weighted_encoder_outputs, 'outputs_with_grads': outputs_with_grads, } class MulCell(rnn_cell.RNNCell): def _apply(self, model, input_t, seq_lengths, states, timestep, extra_inputs): assert len(states) == 1 result = model.net.Mul([input_t, states[0]]) model.net.AddExternalOutput(result) return [result] def get_state_names(self): return [self.scope("state")] def prepare_mul_rnn(model, input_blob, shape, T, outputs_with_grad, num_layers): print("Shape: ", shape) t, n, d = shape cells = [MulCell(name="layer_{}".format(i)) for i in range(num_layers)] cell = rnn_cell.MultiRNNCell(name="multi_mul_rnn", cells=cells) if T is not None: cell = rnn_cell.UnrolledCell(cell, T=T) states = [ model.param_init_net.ConstantFill( [], "initial_state_{}".format(i), value=1.0, shape=[1, n, d]) for i in range(num_layers)] _, results = cell.apply_over_sequence( model=model, inputs=input_blob, initial_states=states, outputs_with_grads=[ x + 2 * (num_layers - 1) for x in outputs_with_grad ], seq_lengths=None, ) return results[-2:] class RNNCellTest(hu.HypothesisTestCase): @given( input_tensor=hu.tensor(min_dim=3, max_dim=3, max_value=3), num_layers=st.integers(1, 4), outputs_with_grad=st.sampled_from( [[0], [1], [0, 1]] ), ) @ht_settings(max_examples=10, deadline=None) def test_unroll_mul(self, input_tensor, num_layers, outputs_with_grad): outputs = [] nets = [] input_blob = None for T in [input_tensor.shape[0], None]: model = ModelHelper("rnn_mul_{}".format( "unroll" if T else "dynamic")) input_blob = model.net.AddExternalInputs("input_blob") outputs.append( prepare_mul_rnn(model, input_blob, input_tensor.shape, T, outputs_with_grad, num_layers)) workspace.RunNetOnce(model.param_init_net) nets.append(model.net) workspace.blobs[input_blob] = input_tensor gradient_checker.NetGradientChecker.CompareNets( nets, outputs, outputs_with_grad_ids=outputs_with_grad, inputs_with_grads=[input_blob], ) @given( input_tensor=hu.tensor(min_dim=3, max_dim=3, max_value=3), forget_bias=st.floats(-10.0, 10.0), drop_states=st.booleans(), dim_out=st.lists( elements=st.integers(min_value=1, max_value=3), min_size=1, max_size=3, ), outputs_with_grads=st.sampled_from( [[0], [1], [0, 1], [0, 2], [0, 1, 2, 3]] ) ) @ht_settings(max_examples=10, deadline=None) @utils.debug def test_unroll_lstm(self, input_tensor, dim_out, outputs_with_grads, **kwargs): lstms = [ _prepare_rnn( *input_tensor.shape, create_rnn=rnn_cell.LSTM, outputs_with_grads=outputs_with_grads, T=T, two_d_initial_states=False, dim_out=dim_out, **kwargs ) for T in [input_tensor.shape[0], None] ] outputs, nets, inputs = zip(*lstms) workspace.FeedBlob(inputs[0][-1], input_tensor) assert inputs[0] == inputs[1] gradient_checker.NetGradientChecker.CompareNets( nets, outputs, outputs_with_grads, inputs_with_grads=inputs[0], ) @given( input_tensor=hu.tensor(min_dim=3, max_dim=3, max_value=3), encoder_length=st.integers(min_value=1, max_value=3), encoder_dim=st.integers(min_value=1, max_value=3), hidden_units=st.integers(min_value=1, max_value=3), num_layers=st.integers(min_value=1, max_value=3), residual=st.booleans(), final_dropout=st.booleans(), ) @ht_settings(max_examples=10, deadline=None) @utils.debug def test_unroll_attention(self, input_tensor, encoder_length, encoder_dim, hidden_units, num_layers, residual, final_dropout): dim_out = [hidden_units] * num_layers encoder_tensor = np.random.random( (encoder_length, input_tensor.shape[1], encoder_dim), ).astype('float32') print('Decoder input shape: {}'.format(input_tensor.shape)) print('Encoder output shape: {}'.format(encoder_tensor.shape)) # Necessary because otherwise test fails for networks with fewer # layers than previous test. TODO: investigate why. workspace.ResetWorkspace() net, unrolled = [ _prepare_attention( t=input_tensor.shape[0], n=input_tensor.shape[1], dim_in=input_tensor.shape[2], encoder_dim=encoder_dim, T=T, dim_out=dim_out, residual=residual, final_dropout=final_dropout, ) for T in [input_tensor.shape[0], None] ] workspace.FeedBlob(net['input_blob'], input_tensor) workspace.FeedBlob(net['encoder_outputs'], encoder_tensor) workspace.FeedBlob( net['weighted_encoder_outputs'], np.random.random(encoder_tensor.shape).astype('float32'), ) for input_name in [ 'input_blob', 'encoder_outputs', 'weighted_encoder_outputs', ]: assert net[input_name] == unrolled[input_name] for state_name, unrolled_state_name in zip( net['initial_states'], unrolled['initial_states'], ): assert state_name == unrolled_state_name inputs_with_grads = net['initial_states'] + [ net['input_blob'], net['encoder_outputs'], net['weighted_encoder_outputs'], ] gradient_checker.NetGradientChecker.CompareNets( [net['net'], unrolled['net']], [[net['final_output']], [unrolled['final_output']]], [0], inputs_with_grads=inputs_with_grads, threshold=0.000001, ) @given( input_tensor=hu.tensor(min_dim=3, max_dim=3), forget_bias=st.floats(-10.0, 10.0), forward_only=st.booleans(), drop_states=st.booleans(), ) @ht_settings(max_examples=10, deadline=None) def test_layered_lstm(self, input_tensor, **kwargs): for outputs_with_grads in [[0], [1], [0, 1, 2, 3]]: for memory_optim in [False, True]: _, net, inputs = _prepare_rnn( *input_tensor.shape, create_rnn=rnn_cell.LSTM, outputs_with_grads=outputs_with_grads, memory_optim=memory_optim, **kwargs ) workspace.FeedBlob(inputs[-1], input_tensor) workspace.RunNetOnce(net) workspace.ResetWorkspace() def test_lstm(self): self.lstm_base(lstm_type=(rnn_cell.LSTM, lstm_reference)) def test_milstm(self): self.lstm_base(lstm_type=(rnn_cell.MILSTM, milstm_reference)) @unittest.skip("This is currently numerically unstable") def test_norm_lstm(self): self.lstm_base( lstm_type=(rnn_cell.LayerNormLSTM, layer_norm_lstm_reference), ) @unittest.skip("This is currently numerically unstable") def test_norm_milstm(self): self.lstm_base( lstm_type=(rnn_cell.LayerNormMILSTM, layer_norm_milstm_reference) ) @given( seed=st.integers(0, 2**32 - 1), input_tensor=lstm_input(), forget_bias=st.floats(-10.0, 10.0), fwd_only=st.booleans(), drop_states=st.booleans(), memory_optim=st.booleans(), outputs_with_grads=st.sampled_from([[0], [1], [0, 1, 2, 3]]), ) @ht_settings(max_examples=10, deadline=None) def lstm_base(self, seed, lstm_type, outputs_with_grads, memory_optim, input_tensor, forget_bias, fwd_only, drop_states): np.random.seed(seed) create_lstm, ref = lstm_type ref = partial(ref, forget_bias=forget_bias) t, n, d = input_tensor.shape assert d % 4 == 0 d = d // 4 ref = partial(ref, forget_bias=forget_bias, drop_states=drop_states) net = _prepare_rnn(t, n, d, create_lstm, outputs_with_grads=outputs_with_grads, memory_optim=memory_optim, forget_bias=forget_bias, forward_only=fwd_only, drop_states=drop_states)[1] # here we don't provide a real input for the net but just for one of # its ops (RecurrentNetworkOp). So have to hardcode this name workspace.FeedBlob("test_name_scope/external/recurrent/i2h", input_tensor) op = net._net.op[-1] inputs = [workspace.FetchBlob(name) for name in op.input] # Validate forward only mode is in effect if fwd_only: for arg in op.arg: self.assertFalse(arg.name == 'backward_step_net') self.assertReferenceChecks( hu.cpu_do, op, inputs, ref, outputs_to_check=list(range(4)), ) # Checking for input, gates_t_w and gates_t_b gradients if not fwd_only: for param in range(5): self.assertGradientChecks( device_option=hu.cpu_do, op=op, inputs=inputs, outputs_to_check=param, outputs_with_grads=outputs_with_grads, threshold=0.01, stepsize=0.005, ) def test_lstm_extract_predictor_net(self): model = ModelHelper(name="lstm_extract_test") with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)): output, _, _, _ = rnn_cell.LSTM( model=model, input_blob="input", seq_lengths="seqlengths", initial_states=("hidden_init", "cell_init"), dim_in=20, dim_out=40, scope="test", drop_states=True, return_last_layer_only=True, ) # Run param init net to get the shapes for all inputs shapes = {} workspace.RunNetOnce(model.param_init_net) for b in workspace.Blobs(): shapes[b] = workspace.FetchBlob(b).shape # But export in CPU (predict_net, export_blobs) = ExtractPredictorNet( net_proto=model.net.Proto(), input_blobs=["input"], output_blobs=[output], device=core.DeviceOption(caffe2_pb2.CPU, 1), ) # Create the net and run once to see it is valid # Populate external inputs with correctly shaped random input # and also ensure that the export_blobs was constructed correctly. workspace.ResetWorkspace() shapes['input'] = [10, 4, 20] shapes['cell_init'] = [1, 4, 40] shapes['hidden_init'] = [1, 4, 40] print(predict_net.Proto().external_input) self.assertTrue('seqlengths' in predict_net.Proto().external_input) for einp in predict_net.Proto().external_input: if einp == 'seqlengths': workspace.FeedBlob( "seqlengths", np.array([10] * 4, dtype=np.int32) ) else: workspace.FeedBlob( einp, np.zeros(shapes[einp]).astype(np.float32), ) if einp != 'input': self.assertTrue(einp in export_blobs) print(str(predict_net.Proto())) self.assertTrue(workspace.CreateNet(predict_net.Proto())) self.assertTrue(workspace.RunNet(predict_net.Proto().name)) # Validate device options set correctly for the RNNs for op in predict_net.Proto().op: if op.type == 'RecurrentNetwork': for arg in op.arg: if arg.name == "step_net": for step_op in arg.n.op: self.assertEqual(0, step_op.device_option.device_type) self.assertEqual(1, step_op.device_option.device_id) elif arg.name == 'backward_step_net': self.assertEqual(caffe2_pb2.NetDef(), arg.n) def test_lstm_params(self): model = ModelHelper(name="lstm_params_test") with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)): output, _, _, _ = rnn_cell.LSTM( model=model, input_blob="input", seq_lengths="seqlengths", initial_states=None, dim_in=20, dim_out=40, scope="test", drop_states=True, return_last_layer_only=True, ) for param in model.GetParams(): self.assertNotEqual(model.get_param_info(param), None) def test_milstm_params(self): model = ModelHelper(name="milstm_params_test") with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)): output, _, _, _ = rnn_cell.MILSTM( model=model, input_blob="input", seq_lengths="seqlengths", initial_states=None, dim_in=20, dim_out=[40, 20], scope="test", drop_states=True, return_last_layer_only=True, ) for param in model.GetParams(): self.assertNotEqual(model.get_param_info(param), None) def test_layer_norm_lstm_params(self): model = ModelHelper(name="layer_norm_lstm_params_test") with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)): output, _, _, _ = rnn_cell.LayerNormLSTM( model=model, input_blob="input", seq_lengths="seqlengths", initial_states=None, dim_in=20, dim_out=40, scope="test", drop_states=True, return_last_layer_only=True, ) for param in model.GetParams(): self.assertNotEqual(model.get_param_info(param), None) @given(encoder_output_length=st.integers(1, 3), encoder_output_dim=st.integers(1, 3), decoder_input_length=st.integers(1, 3), decoder_state_dim=st.integers(1, 3), batch_size=st.integers(1, 3), **hu.gcs) @ht_settings(max_examples=10, deadline=None) def test_lstm_with_regular_attention( self, encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, gc, dc, ): self.lstm_with_attention( partial( rnn_cell.LSTMWithAttention, attention_type=AttentionType.Regular, ), encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, lstm_with_regular_attention_reference, gc, ) @given(encoder_output_length=st.integers(1, 3), encoder_output_dim=st.integers(1, 3), decoder_input_length=st.integers(1, 3), decoder_state_dim=st.integers(1, 3), batch_size=st.integers(1, 3), **hu.gcs) @ht_settings(max_examples=10, deadline=None) def test_lstm_with_recurrent_attention( self, encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, gc, dc, ): self.lstm_with_attention( partial( rnn_cell.LSTMWithAttention, attention_type=AttentionType.Recurrent, ), encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, lstm_with_recurrent_attention_reference, gc, ) @given(encoder_output_length=st.integers(2, 2), encoder_output_dim=st.integers(4, 4), decoder_input_length=st.integers(3, 3), decoder_state_dim=st.integers(4, 4), batch_size=st.integers(5, 5), **hu.gcs) @ht_settings(max_examples=2, deadline=None) def test_lstm_with_dot_attention_same_dim( self, encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, gc, dc, ): self.lstm_with_attention( partial( rnn_cell.LSTMWithAttention, attention_type=AttentionType.Dot, ), encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, lstm_with_dot_attention_reference_same_dim, gc, ) @given(encoder_output_length=st.integers(1, 3), encoder_output_dim=st.integers(4, 4), decoder_input_length=st.integers(1, 3), decoder_state_dim=st.integers(5, 5), batch_size=st.integers(1, 3), **hu.gcs) @ht_settings(max_examples=2, deadline=None) def test_lstm_with_dot_attention_different_dim( self, encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, gc, dc, ): self.lstm_with_attention( partial( rnn_cell.LSTMWithAttention, attention_type=AttentionType.Dot, ), encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, lstm_with_dot_attention_reference_different_dim, gc, ) @given(encoder_output_length=st.integers(2, 3), encoder_output_dim=st.integers(1, 3), decoder_input_length=st.integers(1, 3), decoder_state_dim=st.integers(1, 3), batch_size=st.integers(1, 3), **hu.gcs) @ht_settings(max_examples=5, deadline=None) def test_lstm_with_coverage_attention( self, encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, gc, dc, ): self.lstm_with_attention( partial( rnn_cell.LSTMWithAttention, attention_type=AttentionType.SoftCoverage, ), encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, lstm_with_coverage_attention_reference, gc, ) def lstm_with_attention( self, create_lstm_with_attention, encoder_output_length, encoder_output_dim, decoder_input_length, decoder_state_dim, batch_size, ref, gc, ): model = ModelHelper(name='external') with core.DeviceScope(gc): ( encoder_outputs, decoder_inputs, decoder_input_lengths, initial_decoder_hidden_state, initial_decoder_cell_state, initial_attention_weighted_encoder_context, ) = model.net.AddExternalInputs( 'encoder_outputs', 'decoder_inputs', 'decoder_input_lengths', 'initial_decoder_hidden_state', 'initial_decoder_cell_state', 'initial_attention_weighted_encoder_context', ) create_lstm_with_attention( model=model, decoder_inputs=decoder_inputs, decoder_input_lengths=decoder_input_lengths, initial_decoder_hidden_state=initial_decoder_hidden_state, initial_decoder_cell_state=initial_decoder_cell_state, initial_attention_weighted_encoder_context=( initial_attention_weighted_encoder_context ), encoder_output_dim=encoder_output_dim, encoder_outputs=encoder_outputs, encoder_lengths=None, decoder_input_dim=decoder_state_dim, decoder_state_dim=decoder_state_dim, scope='external/LSTMWithAttention', ) op = model.net._net.op[-2] workspace.RunNetOnce(model.param_init_net) # This is original decoder_inputs after linear layer decoder_input_blob = op.input[0] workspace.FeedBlob( decoder_input_blob, np.random.randn( decoder_input_length, batch_size, decoder_state_dim * 4, ).astype(np.float32)) workspace.FeedBlob( 'external/LSTMWithAttention/encoder_outputs_transposed', np.random.randn( batch_size, encoder_output_dim, encoder_output_length, ).astype(np.float32), ) workspace.FeedBlob( 'external/LSTMWithAttention/weighted_encoder_outputs', np.random.randn( encoder_output_length, batch_size, encoder_output_dim, ).astype(np.float32), ) workspace.FeedBlob( 'external/LSTMWithAttention/coverage_weights', np.random.randn( encoder_output_length, batch_size, encoder_output_dim, ).astype(np.float32), ) workspace.FeedBlob( decoder_input_lengths, np.random.randint( 0, decoder_input_length + 1, size=(batch_size,) ).astype(np.int32)) workspace.FeedBlob( initial_decoder_hidden_state, np.random.randn(1, batch_size, decoder_state_dim).astype(np.float32) ) workspace.FeedBlob( initial_decoder_cell_state, np.random.randn(1, batch_size, decoder_state_dim).astype(np.float32) ) workspace.FeedBlob( initial_attention_weighted_encoder_context, np.random.randn( 1, batch_size, encoder_output_dim).astype(np.float32) ) workspace.FeedBlob( 'external/LSTMWithAttention/initial_coverage', np.zeros((1, batch_size, encoder_output_length)).astype(np.float32), ) inputs = [workspace.FetchBlob(name) for name in op.input] self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=ref, grad_reference=None, output_to_grad=None, outputs_to_check=list(range(6)), ) gradients_to_check = [ index for (index, input_name) in enumerate(op.input) if input_name != 'decoder_input_lengths' ] for param in gradients_to_check: self.assertGradientChecks( device_option=gc, op=op, inputs=inputs, outputs_to_check=param, outputs_with_grads=[0, 4], threshold=0.01, stepsize=0.001, ) @given(seed=st.integers(0, 2**32 - 1), n=st.integers(1, 10), d=st.integers(1, 10), t=st.integers(1, 10), dtype=st.sampled_from([np.float32, np.float16]), use_sequence_lengths=st.booleans(), **hu.gcs) @ht_settings(max_examples=10, deadline=None) def test_lstm_unit_recurrent_network( self, seed, n, d, t, dtype, dc, use_sequence_lengths, gc): np.random.seed(seed) if dtype == np.float16: # only supported with CUDA/HIP assume(gc.device_type == workspace.GpuDeviceType) dc = [do for do in dc if do.device_type == workspace.GpuDeviceType] if use_sequence_lengths: op_inputs = ['hidden_t_prev', 'cell_t_prev', 'gates_t', 'seq_lengths', 'timestep'] else: op_inputs = ['hidden_t_prev', 'cell_t_prev', 'gates_t', 'timestep'] op = core.CreateOperator( 'LSTMUnit', op_inputs, ['hidden_t', 'cell_t'], sequence_lengths=use_sequence_lengths, ) cell_t_prev = np.random.randn(1, n, d).astype(dtype) hidden_t_prev = np.random.randn(1, n, d).astype(dtype) gates = np.random.randn(1, n, 4 * d).astype(dtype) seq_lengths = np.random.randint(1, t + 1, size=(n,)).astype(np.int32) timestep = np.random.randint(0, t, size=(1,)).astype(np.int32) if use_sequence_lengths: inputs = [hidden_t_prev, cell_t_prev, gates, seq_lengths, timestep] else: inputs = [hidden_t_prev, cell_t_prev, gates, timestep] input_device_options = {'timestep': hu.cpu_do} self.assertDeviceChecks( dc, op, inputs, [0], input_device_options=input_device_options) kwargs = {} if dtype == np.float16: kwargs['threshold'] = 1e-1 # default is 1e-4 def lstm_unit_reference(*args, **kwargs): return lstm_unit(*args, sequence_lengths=use_sequence_lengths, **kwargs) self.assertReferenceChecks( gc, op, inputs, lstm_unit_reference, input_device_options=input_device_options, **kwargs) kwargs = {} if dtype == np.float16: kwargs['threshold'] = 0.5 # default is 0.005 for i in range(2): self.assertGradientChecks( gc, op, inputs, i, [0, 1], input_device_options=input_device_options, **kwargs) @given(input_length=st.integers(2, 5), dim_in=st.integers(1, 3), max_num_units=st.integers(1, 3), num_layers=st.integers(2, 3), batch_size=st.integers(1, 3)) @ht_settings(max_examples=10, deadline=None) def test_multi_lstm( self, input_length, dim_in, max_num_units, num_layers, batch_size, ): model = ModelHelper(name='external') ( input_sequence, seq_lengths, ) = model.net.AddExternalInputs( 'input_sequence', 'seq_lengths', ) dim_out = [ np.random.randint(1, max_num_units + 1) for _ in range(num_layers) ] h_all, h_last, c_all, c_last = rnn_cell.LSTM( model=model, input_blob=input_sequence, seq_lengths=seq_lengths, initial_states=None, dim_in=dim_in, dim_out=dim_out, # scope='test', outputs_with_grads=(0,), return_params=False, memory_optimization=False, forget_bias=0.0, forward_only=False, return_last_layer_only=True, ) workspace.RunNetOnce(model.param_init_net) seq_lengths_val = np.random.randint( 1, input_length + 1, size=(batch_size), ).astype(np.int32) input_sequence_val = np.random.randn( input_length, batch_size, dim_in, ).astype(np.float32) workspace.FeedBlob(seq_lengths, seq_lengths_val) workspace.FeedBlob(input_sequence, input_sequence_val) hidden_input_list = [] cell_input_list = [] i2h_w_list = [] i2h_b_list = [] gates_w_list = [] gates_b_list = [] for i in range(num_layers): hidden_input_list.append( workspace.FetchBlob( 'layer_{}/initial_hidden_state'.format(i)), ) cell_input_list.append( workspace.FetchBlob( 'layer_{}/initial_cell_state'.format(i)), ) # Input projection for the first layer is produced outside # of the cell ans thus not scoped prefix = 'layer_{}/'.format(i) if i > 0 else '' i2h_w_list.append( workspace.FetchBlob('{}i2h_w'.format(prefix)), ) i2h_b_list.append( workspace.FetchBlob('{}i2h_b'.format(prefix)), ) gates_w_list.append( workspace.FetchBlob('layer_{}/gates_t_w'.format(i)), ) gates_b_list.append( workspace.FetchBlob('layer_{}/gates_t_b'.format(i)), ) workspace.RunNetOnce(model.net) h_all_calc = workspace.FetchBlob(h_all) h_last_calc = workspace.FetchBlob(h_last) c_all_calc = workspace.FetchBlob(c_all) c_last_calc = workspace.FetchBlob(c_last) h_all_ref, h_last_ref, c_all_ref, c_last_ref = multi_lstm_reference( input_sequence_val, hidden_input_list, cell_input_list, i2h_w_list, i2h_b_list, gates_w_list, gates_b_list, seq_lengths_val, forget_bias=0.0, ) h_all_delta = np.abs(h_all_ref - h_all_calc).sum() h_last_delta = np.abs(h_last_ref - h_last_calc).sum() c_all_delta = np.abs(c_all_ref - c_all_calc).sum() c_last_delta = np.abs(c_last_ref - c_last_calc).sum() self.assertAlmostEqual(h_all_delta, 0.0, places=5) self.assertAlmostEqual(h_last_delta, 0.0, places=5) self.assertAlmostEqual(c_all_delta, 0.0, places=5) self.assertAlmostEqual(c_last_delta, 0.0, places=5) input_values = { 'input_sequence': input_sequence_val, 'seq_lengths': seq_lengths_val, } for param in model.GetParams(): value = workspace.FetchBlob(param) input_values[str(param)] = value output_sum = model.net.SumElements( [h_all], 'output_sum', average=True, ) fake_loss = model.net.Tanh( output_sum, ) for param in model.GetParams(): gradient_checker.NetGradientChecker.Check( model.net, outputs_with_grad=[fake_loss], input_values=input_values, input_to_check=str(param), print_net=False, step_size=0.0001, threshold=0.05, ) if __name__ == "__main__": workspace.GlobalInit([ 'caffe2', '--caffe2_log_level=0', ]) unittest.main()
pytorch-master
caffe2/python/operator_test/rnn_cell_test.py
from caffe2.proto import caffe2_pb2 from caffe2.python import model_helper, workspace, core, rnn_cell, test_util from caffe2.python.attention import AttentionType import numpy as np import unittest import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st from hypothesis import given, settings class TestRNNExecutor(test_util.TestCase): def setUp(self): super(TestRNNExecutor, self).setUp() self.batch_size = 8 self.input_dim = 20 self.hidden_dim = 30 self.encoder_dim = 40 @given( T=st.integers(10, 100), forward_only=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_lstm_with_attention_equal_simplenet(self, T, forward_only, gc, dc): self.Tseq = [T, T // 2, T // 2 + T // 4, T, T // 2 + 1] workspace.ResetWorkspace() with core.DeviceScope(gc): print("Run with device: {}, forward only: {}".format( gc, forward_only)) workspace.FeedBlob( "seq_lengths", np.array([T] * self.batch_size, dtype=np.int32) ) workspace.FeedBlob("target", np.random.rand( T, self.batch_size, self.hidden_dim).astype(np.float32)) workspace.FeedBlob("hidden_init", np.zeros( [1, self.batch_size, self.hidden_dim], dtype=np.float32 )) workspace.FeedBlob("cell_init", np.zeros( [1, self.batch_size, self.hidden_dim], dtype=np.float32 )) model = model_helper.ModelHelper(name="lstm") model.net.AddExternalInputs(["input"]) init_blobs = [] hidden_init, cell_init, encoder_outputs = model.net.AddExternalInputs( "hidden_init", "cell_init", "encoder_outputs" ) awec_init = model.net.AddExternalInputs([ 'initial_attention_weighted_encoder_context', ]) init_blobs.extend([hidden_init, cell_init]) workspace.FeedBlob( awec_init, np.random.rand(1, self.batch_size, self.encoder_dim).astype( np.float32), ) workspace.FeedBlob( encoder_outputs, np.random.rand(1, self.batch_size, self.encoder_dim).astype( np.float32), ) outputs = rnn_cell.LSTMWithAttention( model=model, decoder_inputs="input", decoder_input_lengths="seq_lengths", initial_decoder_hidden_state=hidden_init, initial_decoder_cell_state=cell_init, initial_attention_weighted_encoder_context=awec_init, encoder_output_dim=self.encoder_dim, encoder_outputs=encoder_outputs, encoder_lengths=None, decoder_input_dim=self.input_dim, decoder_state_dim=self.hidden_dim, scope="", attention_type=AttentionType.Recurrent, forward_only=forward_only, outputs_with_grads=[0], ) output = outputs[0] print(outputs) loss = model.AveragedLoss( model.SquaredL2Distance([output, "target"], "dist"), "loss" ) # Add gradient ops if not forward_only: model.AddGradientOperators([loss]) # init for init_blob in init_blobs: workspace.FeedBlob(init_blob, np.zeros( [1, self.batch_size, self.hidden_dim], dtype=np.float32 )) self._compare(model, forward_only) def init_lstm_model(self, T, num_layers, forward_only, use_loss=True): workspace.FeedBlob( "seq_lengths", np.array([T] * self.batch_size, dtype=np.int32) ) workspace.FeedBlob("target", np.random.rand( T, self.batch_size, self.hidden_dim).astype(np.float32)) workspace.FeedBlob("hidden_init", np.zeros( [1, self.batch_size, self.hidden_dim], dtype=np.float32 )) workspace.FeedBlob("cell_init", np.zeros( [1, self.batch_size, self.hidden_dim], dtype=np.float32 )) model = model_helper.ModelHelper(name="lstm") model.net.AddExternalInputs(["input"]) init_blobs = [] for i in range(num_layers): hidden_init, cell_init = model.net.AddExternalInputs( "hidden_init_{}".format(i), "cell_init_{}".format(i) ) init_blobs.extend([hidden_init, cell_init]) output, last_hidden, _, last_state = rnn_cell.LSTM( model=model, input_blob="input", seq_lengths="seq_lengths", initial_states=init_blobs, dim_in=self.input_dim, dim_out=[self.hidden_dim] * num_layers, scope="", drop_states=True, forward_only=forward_only, return_last_layer_only=True, ) if use_loss: loss = model.AveragedLoss( model.SquaredL2Distance([output, "target"], "dist"), "loss" ) # Add gradient ops if not forward_only: model.AddGradientOperators([loss]) # init for init_blob in init_blobs: workspace.FeedBlob(init_blob, np.zeros( [1, self.batch_size, self.hidden_dim], dtype=np.float32 )) return model, output def test_empty_sequence(self): ''' Test the RNN executor's handling of empty input sequences ''' Tseq = [0, 1, 2, 3, 0, 1] workspace.ResetWorkspace() with core.DeviceScope(caffe2_pb2.DeviceOption()): model, output = self.init_lstm_model( T=4, num_layers=1, forward_only=True, use_loss=False) workspace.RunNetOnce(model.param_init_net) self.enable_rnn_executor(model.net, 1, True) np.random.seed(10022015) first_call = True for seq_len in Tseq: input_shape = [seq_len, self.batch_size, self.input_dim] workspace.FeedBlob( "input", np.random.rand(*input_shape).astype(np.float32)) workspace.FeedBlob( "target", np.random.rand( seq_len, self.batch_size, self.hidden_dim ).astype(np.float32)) if first_call: workspace.CreateNet(model.net, overwrite=True) first_call = False workspace.RunNet(model.net.Proto().name) val = workspace.FetchBlob(output) self.assertEqual(val.shape[0], seq_len) @given( num_layers=st.integers(1, 8), T=st.integers(4, 100), forward_only=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_lstm_equal_simplenet(self, num_layers, T, forward_only, gc, dc): ''' Test that the RNN executor produces same results as the non-executor (i.e running step nets as sequence of simple nets). ''' self.Tseq = [T, T // 2, T // 2 + T // 4, T, T // 2 + 1] workspace.ResetWorkspace() with core.DeviceScope(gc): print("Run with device: {}, forward only: {}".format( gc, forward_only)) model, _ = self.init_lstm_model(T, num_layers, forward_only) self._compare(model, forward_only) def _compare(self, model, forward_only): # Store list of blobs that exist in the beginning workspace.RunNetOnce(model.param_init_net) init_ws = {k: workspace.FetchBlob(k) for k in workspace.Blobs()} # Run with executor for enable_executor in [0, 1]: self.enable_rnn_executor(model.net, enable_executor, forward_only) workspace.ResetWorkspace() # Reset original state for k, v in init_ws.items(): workspace.FeedBlob(k, v) np.random.seed(10022015) ws = {} for j in range(len(self.Tseq)): input_shape = [self.Tseq[j], self.batch_size, self.input_dim] workspace.FeedBlob( "input", np.random.rand(*input_shape).astype(np.float32)) workspace.FeedBlob( "target", np.random.rand( self.Tseq[j], self.batch_size, self.hidden_dim ).astype(np.float32)) if j == 0: workspace.CreateNet(model.net, overwrite=True) workspace.RunNet(model.net.Proto().name) # Store results for each iteration for k in workspace.Blobs(): ws[k + "." + str(j)] = workspace.FetchBlob(k) if enable_executor: rnn_exec_ws = ws else: non_exec_ws = ws # Test that all blobs are equal after running with executor # or without. self.assertEqual(list(non_exec_ws.keys()), list(rnn_exec_ws.keys())) mismatch = False for k in rnn_exec_ws.keys(): non_exec_v = non_exec_ws[k] rnn_exec_v = rnn_exec_ws[k] if type(non_exec_v) is np.ndarray: if not np.allclose(non_exec_v, rnn_exec_v): print("Mismatch: {}".format(k)) nv = non_exec_v.flatten() rv = rnn_exec_v.flatten() c = 0 for j in range(len(nv)): if rv[j] != nv[j]: print(j, rv[j], nv[j]) c += 1 if c == 10: break mismatch = True self.assertFalse(mismatch) def enable_rnn_executor(self, net, value, forward_only): num_found = 0 for op in net.Proto().op: if op.type.startswith("RecurrentNetwork"): for arg in op.arg: if arg.name == 'enable_rnn_executor': arg.i = value num_found += 1 # This sanity check is so that if someone changes the # enable_rnn_executor parameter name, the test will # start failing as this function will become defective. self.assertEqual(1 if forward_only else 2, num_found) if __name__ == "__main__": import random random.seed(2603) workspace.GlobalInit([ 'caffe2', '--caffe2_log_level=0', '--caffe2_rnn_executor=1']) unittest.main()
pytorch-master
caffe2/python/operator_test/recurrent_net_executor_test.py
import numpy as np import unittest from caffe2.proto import caffe2_pb2 from caffe2.python import workspace, core, model_helper, brew, test_util class CopyOpsTest(test_util.TestCase): def tearDown(self): # Reset workspace after each test # Otherwise, the multi-GPU test will use previously created tensors, # which may have been placed on the wrong device workspace.ResetWorkspace() def run_test_copy_gradient(self, device_opt): model = model_helper.ModelHelper(name="copy_test") with core.DeviceScope(device_opt): x = model.net.AddExternalInputs("x") y = model.Copy(x, "y") loss = model.AveragedLoss(y, "loss") gradient_map = model.AddGradientOperators([loss]) workspace.FeedBlob(x, np.random.rand(32).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) self.assertTrue(np.array_equal( workspace.FetchBlob(x), workspace.FetchBlob(y), )) self.assertTrue(np.array_equal( workspace.FetchBlob(gradient_map[x]), workspace.FetchBlob(gradient_map[y]), )) def test_copy_gradient_cpu(self): self.run_test_copy_gradient(core.DeviceOption(caffe2_pb2.CPU, 0)) @unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.") def test_copy_gradient_gpu(self): self.run_test_copy_gradient(core.DeviceOption(workspace.GpuDeviceType, 0)) @unittest.skipIf(workspace.NumGpuDevices() < 2, "Need at least 2 GPU.") def test_copy_gradient_multiple_gpus(self): model = model_helper.ModelHelper(name="copy_test") with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)): x_cpu = model.net.AddExternalInputs("x_cpu") with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType, 0)): x_gpu_1 = model.CopyCPUToGPU(x_cpu, "x_gpu_1") with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType, 1)): x_gpu_2 = model.Copy(x_gpu_1, "x_gpu_2") loss = model.AveragedLoss(x_gpu_2, "loss") gradient_map = model.AddGradientOperators([loss]) workspace.FeedBlob("x_cpu", np.random.rand(32).astype(np.float32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) self.assertTrue(np.array_equal( workspace.FetchBlob("x_gpu_1"), workspace.FetchBlob("x_gpu_2"), )) self.assertTrue(np.array_equal( workspace.FetchBlob(gradient_map["x_gpu_1"]), workspace.FetchBlob(gradient_map["x_gpu_2"]), )) def get_op_with_output(model, output_blob_name): for op in model.net.Proto().op: if len(op.output) == 1 and op.output[0] == output_blob_name: return op return None self.assertEqual( get_op_with_output(model, "x_gpu_2_grad").device_option, core.DeviceOption(workspace.GpuDeviceType, 1), ) self.assertEqual( get_op_with_output(model, "x_cpu_grad").device_option, core.DeviceOption(workspace.GpuDeviceType, 0), ) @unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.") def test_cpu2gpu_gpu2cpu_sparse_gradients(self): model = model_helper.ModelHelper(name="copy_test") v = model.param_init_net.UniformFill([], ["v"], shape=[16, 4]) indices = model.param_init_net.UniformFill([], ["v"], shape=[16, 4]) cpu_opt = core.DeviceOption(caffe2_pb2.CPU, 0) gpu_opt = core.DeviceOption(workspace.GpuDeviceType, 0) with core.DeviceScope(gpu_opt): vcpu = model.CopyGPUToCPU(v, "vcpu") with core.DeviceScope(cpu_opt): g = model.Gather([vcpu, indices], "g") with core.DeviceScope(gpu_opt): ggpu = model.CopyCPUToGPU(g, "ggpu") f = brew.fc(model, ggpu, "out", dim_in=4, dim_out=6) (softmax, loss) = model.SoftmaxWithLoss( [f, "label"], ["softmax", "loss"], ) gradient_map = model.AddGradientOperators([loss]) self.assertTrue("v" in gradient_map) self.assertTrue(isinstance(gradient_map['v'], core.GradientSlice)) @unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.") def test_cpu2gpu_gpu2cpu_gradients(self): model = model_helper.ModelHelper(name="copy_test") batch = 32 cpu_opt = core.DeviceOption(caffe2_pb2.CPU, 0) gpu_opt = core.DeviceOption(workspace.GpuDeviceType, 0) with core.NameScope("cpu"): with core.DeviceScope(cpu_opt): x_cpu = brew.fc(model, 'data', 'x_cpu', 16, 8) with core.NameScope("gpu_0"): with core.DeviceScope(gpu_opt): x_gpu = model.CopyCPUToGPU(x_cpu, "x_gpu") pred_gpu = brew.fc(model, x_gpu, "pred_gpu", 8, 4) pred_cpu = model.CopyGPUToCPU(pred_gpu, "pred_cpu") with core.DeviceScope(cpu_opt): with core.NameScope("cpu"): (softmax, loss) = model.SoftmaxWithLoss( [pred_cpu, "label"], ["softmax", "loss"], ) gradient_map = model.AddGradientOperators([loss]) # Add param updates (for cpu and gpu) init_net = model.param_init_net with core.DeviceScope(cpu_opt): with core.NameScope("cpu"): ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.) LR = init_net.ConstantFill([], "LR", shape=[1], value=-2.0) for param in model.GetParams(): model.WeightedSum( [param, ONE, gradient_map[param], LR], param, ) with core.NameScope("gpu_0"): with core.DeviceScope(gpu_opt): ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.) LR = init_net.ConstantFill([], "LR", shape=[1], value=-2.0) for param in model.GetParams(): model.WeightedSum( [param, ONE, gradient_map[param], LR], param, ) with core.DeviceScope(cpu_opt): workspace.FeedBlob( 'cpu/data', np.random.rand(batch, 16).astype(np.float32), ) workspace.FeedBlob( 'cpu/label', np.random.randint(4, size=batch).astype(np.int32), ) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) initial_params = {p: workspace.FetchBlob(p) for p in model.GetParams()} workspace.RunNet(model.net.Proto().name) updated_params = {p: workspace.FetchBlob(p) for p in model.GetParams()} for p in model.GetParams(): g = gradient_map[p] expected = initial_params[p] - 2.0 * workspace.FetchBlob(g) actual = updated_params[p] self.assertTrue( np.array_equal(expected, updated_params[p]), "Mismatch: {}: {}, {}".format(p, expected, actual), )
pytorch-master
caffe2/python/operator_test/copy_ops_test.py
pytorch-master
caffe2/python/operator_test/__init__.py
from caffe2.python import core, workspace from caffe2.python.dataset import Dataset from caffe2.python.schema import ( Struct, Map, Scalar, from_blob_list, NewRecord, FeedRecord) from caffe2.python.record_queue import RecordQueue from caffe2.python.test_util import TestCase import numpy as np class TestRecordQueue(TestCase): def test_record_queue(self): num_prod = 8 num_consume = 3 schema = Struct( ('floats', Map( Scalar(np.int32), Scalar(np.float32))), ) contents_raw = [ [1, 2, 3], # len [11, 21, 22, 31, 32, 33], # key [1.1, 2.1, 2.2, 3.1, 3.2, 3.3], # value ] contents = from_blob_list(schema, contents_raw) ds = Dataset(schema) net = core.Net('init') ds.init_empty(net) content_blobs = NewRecord(net, contents) FeedRecord(content_blobs, contents) writer = ds.writer(init_net=net) writer.write_record(net, content_blobs) reader = ds.reader(init_net=net) # prepare receiving dataset rec_dataset = Dataset(contents, name='rec') rec_dataset.init_empty(init_net=net) rec_dataset_writer = rec_dataset.writer(init_net=net) workspace.RunNetOnce(net) queue = RecordQueue(contents, num_threads=num_prod) def process(net, fields): new_fields = [] for f in fields.field_blobs(): new_f = net.Copy(f) new_fields.append(new_f) new_fields = from_blob_list(fields, new_fields) return new_fields q_reader, q_step, q_exit, fields = queue.build(reader, process) producer_step = core.execution_step('producer', [q_step, q_exit]) consumer_steps = [] for i in range(num_consume): name = 'queue_reader_' + str(i) net_consume = core.Net(name) should_stop, fields = q_reader.read_record(net_consume) step_consume = core.execution_step(name, net_consume) name = 'dataset_writer_' + str(i) net_dataset = core.Net(name) rec_dataset_writer.write(net_dataset, fields.field_blobs()) step_dataset = core.execution_step(name, net_dataset) step = core.execution_step( 'consumer_' + str(i), [step_consume, step_dataset], should_stop_blob=should_stop) consumer_steps.append(step) consumer_step = core.execution_step( 'consumers', consumer_steps, concurrent_substeps=True) work_steps = core.execution_step( 'work', [producer_step, consumer_step], concurrent_substeps=True) plan = core.Plan('test') plan.AddStep(work_steps) core.workspace.RunPlan(plan) data = workspace.FetchBlobs(rec_dataset.get_blobs()) self.assertEqual(6, sum(data[0])) self.assertEqual(150, sum(data[1])) self.assertAlmostEqual(15, sum(data[2]), places=5) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/record_queue_test.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np import tempfile class TestIndexOps(TestCase): def _test_index_ops(self, entries, dtype, index_create_op): workspace.RunOperatorOnce(core.CreateOperator( index_create_op, [], ['index'], max_elements=10)) my_entries = np.array( [entries[0], entries[1], entries[2]], dtype=dtype) workspace.FeedBlob('entries', my_entries) workspace.RunOperatorOnce(core.CreateOperator( 'IndexLoad', ['index', 'entries'], ['index'])) query1 = np.array( [entries[0], entries[3], entries[0], entries[4]], dtype=dtype) workspace.FeedBlob('query1', query1) workspace.RunOperatorOnce(core.CreateOperator( 'IndexGet', ['index', 'query1'], ['result1'])) result1 = workspace.FetchBlob('result1') np.testing.assert_array_equal([1, 4, 1, 5], result1) workspace.RunOperatorOnce(core.CreateOperator( 'IndexFreeze', ['index'], ['index'])) query2 = np.array( [entries[5], entries[4], entries[0], entries[6], entries[7]], dtype=dtype) workspace.FeedBlob('query2', query2) workspace.RunOperatorOnce(core.CreateOperator( 'IndexGet', ['index', 'query2'], ['result2'])) result2 = workspace.FetchBlob('result2') np.testing.assert_array_equal([0, 5, 1, 0, 0], result2) workspace.RunOperatorOnce(core.CreateOperator( 'IndexSize', ['index'], ['index_size'])) size = workspace.FetchBlob('index_size') self.assertEquals(size, 6) workspace.RunOperatorOnce(core.CreateOperator( 'IndexStore', ['index'], ['stored_entries'])) stored_actual = workspace.FetchBlob('stored_entries') new_entries = np.array([entries[3], entries[4]], dtype=dtype) expected = np.concatenate((my_entries, new_entries)) if dtype is str: # we'll always get bytes back from Caffe2 expected = np.array([ x.item().encode('utf-8') if isinstance(x, np.str_) else x for x in expected ], dtype=object) np.testing.assert_array_equal(expected, stored_actual) workspace.RunOperatorOnce(core.CreateOperator( index_create_op, [], ['index2'])) workspace.RunOperatorOnce(core.CreateOperator( 'IndexLoad', ['index2', 'stored_entries'], ['index2'], skip_first_entry=1)) workspace.RunOperatorOnce(core.CreateOperator( 'IndexSize', ['index2'], ['index2_size'])) index2_size = workspace.FetchBlob('index2_size') self.assertEquals(index2_size, 5) # test serde with tempfile.NamedTemporaryFile() as tmp: workspace.RunOperatorOnce(core.CreateOperator( 'Save', ['index'], [], absolute_path=1, db_type='minidb', db=tmp.name)) # frees up the blob workspace.FeedBlob('index', np.array([])) # reloads the index workspace.RunOperatorOnce(core.CreateOperator( 'Load', [], ['index'], absolute_path=1, db_type='minidb', db=tmp.name)) query3 = np.array( [entries[0], entries[3], entries[0], entries[4], entries[4]], dtype=dtype) workspace.FeedBlob('query3', query3) workspace.RunOperatorOnce(core.CreateOperator( 'IndexGet', ['index', 'query3'], ['result3'])) result3 = workspace.FetchBlob('result3') np.testing.assert_array_equal([1, 4, 1, 5, 5], result3) def test_string_index_ops(self): self._test_index_ops([ 'entry1', 'entry2', 'entry3', 'new_entry1', 'new_entry2', 'miss1', 'miss2', 'miss3', ], str, 'StringIndexCreate') def test_int_index_ops(self): self._test_index_ops(list(range(8)), np.int32, 'IntIndexCreate') def test_long_index_ops(self): self._test_index_ops(list(range(8)), np.int64, 'LongIndexCreate') if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/index_ops_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestElementwiseLinearOp(serial.SerializedTestCase): @serial.given(n=st.integers(2, 100), d=st.integers(2, 10), **hu.gcs) # @given(n=st.integers(2, 50), d=st.integers(2, 50), **hu.gcs_cpu_only) def test(self, n, d, gc, dc): X = np.random.rand(n, d).astype(np.float32) a = np.random.rand(d).astype(np.float32) b = np.random.rand(d).astype(np.float32) def ref_op(X, a, b): d = a.shape[0] return [np.multiply(X, a.reshape(1, d)) + b.reshape(1, d)] op = core.CreateOperator( "ElementwiseLinear", ["X", "a", "b"], ["Y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, a, b], reference=ref_op, ) # Check over multiple devices self.assertDeviceChecks(dc, op, [X, a, b], [0]) # Gradient check wrt X self.assertGradientChecks(gc, op, [X, a, b], 0, [0]) # Gradient check wrt a self.assertGradientChecks(gc, op, [X, a, b], 1, [0]) # # Gradient check wrt b self.assertGradientChecks(gc, op, [X, a, b], 2, [0])
pytorch-master
caffe2/python/operator_test/elementwise_linear_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest class TestMean(serial.SerializedTestCase): @serial.given( k=st.integers(1, 5), n=st.integers(1, 10), m=st.integers(1, 10), in_place=st.booleans(), seed=st.integers(0, 2**32 - 1), **hu.gcs ) def test_mean(self, k, n, m, in_place, seed, gc, dc): np.random.seed(seed) input_names = [] input_vars = [] for i in range(k): X_name = 'X' + str(i) input_names.append(X_name) var = np.random.randn(n, m).astype(np.float32) input_vars.append(var) def mean_ref(*args): return [np.mean(args, axis=0)] op = core.CreateOperator( "Mean", input_names, ['Y' if not in_place else 'X0'], ) self.assertReferenceChecks( device_option=gc, op=op, inputs=input_vars, reference=mean_ref, ) self.assertGradientChecks( device_option=gc, op=op, inputs=input_vars, outputs_to_check=0, outputs_with_grads=[0], ) self.assertDeviceChecks(dc, op, input_vars, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/mean_op_test.py
import unittest from caffe2.proto import caffe2_pb2 from caffe2.python import core import caffe2.python.hip_test_util as hiputl import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from hypothesis import given, assume, settings class TestSpecializedSegmentOps(hu.HypothesisTestCase): @given( batchsize=st.integers(1, 20), fptype=st.sampled_from([np.float16, np.float32]), fp16asint=st.booleans(), blocksize=st.sampled_from([8, 16, 32, 64, 85, 96, 128, 163]), normalize_by_lengths=st.booleans(), empty_indices=st.booleans(), **hu.gcs ) def test_sparse_lengths_sum_cpu( self, batchsize, fptype, fp16asint, blocksize, normalize_by_lengths, empty_indices, gc, dc, ): if fptype != np.float32: assume(gc.device_type == caffe2_pb2.CPU) assume(not hiputl.run_in_hip(gc, dc)) assume(caffe2_pb2.CUDA not in {d.device_type for d in dc}) if normalize_by_lengths: print("<test_sparse_lengths_sum_mean_cpu>") else: print("<test_sparse_lengths_sum_cpu>") tblsize = 300 if fptype == np.float32: Tbl = np.random.rand(tblsize, blocksize).astype(np.float32) atol = 1e-5 else: if fp16asint: Tbl = ( (10.0 * np.random.rand(tblsize, blocksize)) .round() .astype(np.float16) ) atol = 1e-3 else: Tbl = np.random.rand(tblsize, blocksize).astype(np.float16) atol = 1e-1 # array of each row length if empty_indices: Lengths = np.zeros(batchsize, dtype=np.int32) else: Lengths = np.random.randint(1, 30, size=batchsize, dtype=np.int32) # flat indices Indices = np.random.randint(0, tblsize, size=sum(Lengths), dtype=np.int64) op = core.CreateOperator( "SparseLengths" + ("Mean" if normalize_by_lengths else "Sum"), ["Tbl", "Indices", "Lengths"], "out", ) def sparse_lengths_sum_ref(Tbl, Indices, Lengths): rptr = np.cumsum(np.insert(Lengths, [0], [0])) out = np.zeros((len(Lengths), blocksize)) if normalize_by_lengths: for i in range(0, len(rptr[0:-1])): if Lengths[i] != 0: out[i] = ( Tbl[Indices[rptr[i] : rptr[i + 1]]].sum(axis=0) * 1.0 / float(Lengths[i]) ) else: for i in range(0, len(rptr[0:-1])): out[i] = Tbl[Indices[rptr[i] : rptr[i + 1]]].sum(axis=0) return [out.astype(np.float32)] self.assertReferenceChecks( gc, op, [Tbl, Indices, Lengths], sparse_lengths_sum_ref, threshold=1e-3, atol=atol, ) @given( batchsize=st.integers(1, 20), fptype=st.sampled_from([np.float16, np.float32]), fp16asint=st.booleans(), blocksize=st.sampled_from([8, 16, 32, 64, 85, 96, 128, 163]), empty_indices=st.booleans(), **hu.gcs ) def test_sparse_lengths_weightedsum_cpu( self, batchsize, fptype, fp16asint, blocksize, empty_indices, gc, dc ): if fptype != np.float32: assume(gc.device_type == caffe2_pb2.CPU) assume(not hiputl.run_in_hip(gc, dc)) assume(caffe2_pb2.CUDA not in {d.device_type for d in dc}) print("<test_sparse_lengths_weightedsum_cpu>") tblsize = 300 if fptype == np.float32: Tbl = np.random.rand(tblsize, blocksize).astype(np.float32) atol = 1e-5 else: if fp16asint: Tbl = ( (10.0 * np.random.rand(tblsize, blocksize)) .round() .astype(np.float16) ) atol = 1e-3 else: Tbl = np.random.rand(tblsize, blocksize).astype(np.float16) atol = 1e-1 # array of each row length if empty_indices: Lengths = np.zeros(batchsize, dtype=np.int32) else: Lengths = np.random.randint(1, 30, size=batchsize, dtype=np.int32) # flat indices Indices = np.random.randint(0, tblsize, size=sum(Lengths), dtype=np.int64) Weights = np.random.rand(sum(Lengths)).astype(np.float32) op = core.CreateOperator( "SparseLengthsWeightedSum", ["Tbl", "Weights", "Indices", "Lengths"], "out" ) def sparse_lengths_weightedsum_ref(Tbl, Weights, Indices, Lengths): rptr = np.cumsum(np.insert(Lengths, [0], [0])) out = np.zeros((len(Lengths), blocksize)) for i in range(0, len(rptr[0:-1])): w = Weights[rptr[i] : rptr[i + 1]] out[i] = (Tbl[Indices[rptr[i] : rptr[i + 1]]] * w[:, np.newaxis]).sum( axis=0 ) return [out.astype(np.float32)] self.assertReferenceChecks( gc, op, [Tbl, Weights, Indices, Lengths], sparse_lengths_weightedsum_ref, threshold=1e-3, atol=atol, ) @given( batchsize=st.integers(1, 20), blocksize=st.sampled_from([8, 16, 17, 26, 32, 64, 85, 96, 128, 148, 163]), normalize_by_lengths=st.booleans(), empty_indices=st.booleans(), **hu.gcs_cpu_only ) def test_sparse_lengths_weightedsum_8BitsRowwiseOp_cpu( self, batchsize, blocksize, normalize_by_lengths, empty_indices, gc, dc ): if normalize_by_lengths: print( "<test_sparse_lengths_weightedsum_SparseLengthsWeightedMean8BitsRowwise_cpu>" ) else: print( "<test_sparse_lengths_weightedsum_SparseLengthsWeightedSum8BitsRowwise_cpu>" ) tblsize = 300 Tbl = np.random.randint(7, size=(tblsize, blocksize), dtype=np.uint8) atol = 1e-5 # array of each row length if empty_indices: Lengths = np.zeros(batchsize, dtype=np.int32) else: Lengths = np.random.randint(1, 30, size=batchsize, dtype=np.int32) # flat indices Indices = np.random.randint(0, tblsize, size=sum(Lengths), dtype=np.int64) Weights = np.random.rand(sum(Lengths)).astype(np.float32) Scale_Bias = np.random.rand(tblsize, 2).astype(np.float32) op = core.CreateOperator( "SparseLengthsWeighted" + ("Mean" if normalize_by_lengths else "Sum") + "8BitsRowwise", ["Tbl", "Weights", "Indices", "Lengths", "Scale_Bias"], "out", ) def sparse_lengths_weightedsum_8BitsRowwiseOp_cpu_ref( Tbl, Weights, Indices, Lengths, Scale_Bias ): rptr = np.cumsum(np.insert(Lengths, [0], [0])) out = np.zeros((len(Lengths), blocksize)) for i in range(0, len(rptr[0:-1])): w = Weights[rptr[i] : rptr[i + 1]] s = Scale_Bias[Indices[rptr[i] : rptr[i + 1]], 0][:, np.newaxis] b = Scale_Bias[Indices[rptr[i] : rptr[i + 1]], 1][:, np.newaxis] f = 1.0 if normalize_by_lengths and Lengths[i] != 0: f = 1.0 / float(Lengths[i]) out[i] = ( w[:, np.newaxis] * (s * Tbl[Indices[rptr[i] : rptr[i + 1]]] + b) ).sum(axis=0) * f return [out.astype(np.float32)] self.assertReferenceChecks( gc, op, [Tbl, Weights, Indices, Lengths, Scale_Bias], sparse_lengths_weightedsum_8BitsRowwiseOp_cpu_ref, threshold=1e-3, atol=atol, ) @given( batchsize=st.integers(1, 20), blocksize=st.sampled_from([8, 16, 17, 26, 32, 64, 85, 96, 128, 148, 163]), normalize_by_lengths=st.booleans(), empty_indices=st.booleans(), **hu.gcs_cpu_only ) def test_sparse_lengths_sum_8BitsRowwiseOp_cpu( self, batchsize, blocksize, normalize_by_lengths, empty_indices, gc, dc ): if normalize_by_lengths: print("<test_sparse_lengths_sum_SparseLengthsMean8BitsRowwise_cpu>") else: print("<test_sparse_lengths_sum_SparseLengthsSum8BitsRowwise_cpu>") tblsize = 300 Tbl = np.random.randint(7, size=(tblsize, blocksize), dtype=np.uint8) atol = 1e-5 # array of each row length if empty_indices: Lengths = np.zeros(batchsize, dtype=np.int32) else: Lengths = np.random.randint(1, 30, size=batchsize, dtype=np.int32) # flat indices Indices = np.random.randint(0, tblsize, size=sum(Lengths), dtype=np.int64) Scale_Bias = np.random.rand(tblsize, 2).astype(np.float32) op = core.CreateOperator( "SparseLengths" + ("Mean" if normalize_by_lengths else "Sum") + "8BitsRowwise", ["Tbl", "Indices", "Lengths", "Scale_Bias"], "out", ) def sparse_lengths_sum_8BitsRowwiseOp_cpu_reg( Tbl, Indices, Lengths, Scale_Bias ): rptr = np.cumsum(np.insert(Lengths, [0], [0])) out = np.zeros((len(Lengths), blocksize)) for i in range(0, len(rptr[0:-1])): s = Scale_Bias[Indices[rptr[i] : rptr[i + 1]], 0][:, np.newaxis] b = Scale_Bias[Indices[rptr[i] : rptr[i + 1]], 1][:, np.newaxis] f = 1.0 if normalize_by_lengths and Lengths[i] != 0: f = 1.0 / float(Lengths[i]) out[i] = (s * Tbl[Indices[rptr[i] : rptr[i + 1]]] + b).sum(axis=0) * f return [out.astype(np.float32)] self.assertReferenceChecks( gc, op, [Tbl, Indices, Lengths, Scale_Bias], sparse_lengths_sum_8BitsRowwiseOp_cpu_reg, threshold=1e-3, atol=atol, ) @given( batchsize=st.integers(1, 20), blocksize=st.sampled_from([8, 16, 17, 26, 32, 64, 85, 96, 128, 148, 163]), normalize_by_lengths=st.booleans(), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_sparse_lengths_sum_8BitsRowwiseOp_cpu_invalid_index( self, batchsize, blocksize, normalize_by_lengths, gc, dc ): tblsize = 300 Tbl = np.random.randint(7, size=(tblsize, blocksize), dtype=np.uint8) # array of each row length Lengths = np.random.randint(1, 30, size=batchsize, dtype=np.int32) # flat indices Indices = np.random.randint(0, tblsize, size=sum(Lengths), dtype=np.int64) Indices[0] += 1000 Scale_Bias = np.random.rand(tblsize, 2).astype(np.float32) op = core.CreateOperator( "SparseLengths" + ("Mean" if normalize_by_lengths else "Sum") + "8BitsRowwise", ["Tbl", "Indices", "Lengths", "Scale_Bias"], "out", ) self.ws.create_blob("Tbl").feed(Tbl) self.ws.create_blob("Indices").feed(Indices) self.ws.create_blob("Lengths").feed(Lengths) self.ws.create_blob("Scale_Bias").feed(Scale_Bias) with self.assertRaises(RuntimeError): self.ws.run(op) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/specialized_segment_ops_test.py
from caffe2.python import core, workspace from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest class TestTransposeOp(serial.SerializedTestCase): @given( X=hu.tensor(dtype=np.float32), use_axes=st.booleans(), **hu.gcs) @settings(deadline=None, max_examples=50) def test_transpose(self, X, use_axes, gc, dc): ndim = len(X.shape) axes = np.arange(ndim) np.random.shuffle(axes) if (use_axes): op = core.CreateOperator( "Transpose", ["X"], ["Y"], axes=axes, device_option=gc) else: op = core.CreateOperator( "Transpose", ["X"], ["Y"], device_option=gc) def transpose_ref(X): if use_axes: return [np.transpose(X, axes=axes)] else: return [np.transpose(X)] self.assertReferenceChecks(gc, op, [X], transpose_ref) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(M=st.integers(10, 200), N=st.integers(10, 200), **hu.gcs) @settings(max_examples=10, deadline=None) def test_transpose_large_matrix(self, M, N, gc, dc): op = core.CreateOperator("Transpose", ["X"], ["Y"], device_option=gc) X = np.random.rand(M, N).astype(np.float32) - 0.5 def transpose_ref(X): return [np.transpose(X)] self.assertReferenceChecks(gc, op, [X], transpose_ref) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @unittest.skipIf(not workspace.has_cuda_support, "no cuda support") @given(X=hu.tensor(dtype=np.float32), use_axes=st.booleans(), **hu.gcs_cuda_only) def test_transpose_cudnn(self, X, use_axes, gc, dc): ndim = len(X.shape) axes = np.arange(ndim) np.random.shuffle(axes) if (use_axes): op = core.CreateOperator( "Transpose", ["X"], ["Y"], axes=axes, engine="CUDNN", device_option=hu.cuda_do) else: op = core.CreateOperator( "Transpose", ["X"], ["Y"], engine="CUDNN", device_option=hu.cuda_do) def transpose_ref(X): if use_axes: return [np.transpose(X, axes=axes)] else: return [np.transpose(X)] self.assertReferenceChecks(hu.gpu_do, op, [X], transpose_ref) self.assertGradientChecks(hu.gpu_do, op, [X], 0, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/transpose_op_test.py
import numpy as np from hypothesis import given import hypothesis.strategies as st from caffe2.python import core from caffe2.python import workspace import caffe2.python.hypothesis_test_util as hu class TestWeightedMultiSample(hu.HypothesisTestCase): @given( num_samples=st.integers(min_value=0, max_value=128), data_len=st.integers(min_value=0, max_value=10000), **hu.gcs_cpu_only ) def test_weighted_multi_sample(self, num_samples, data_len, gc, dc): weights = np.zeros((data_len)) expected_indices = [] if data_len > 0: weights[-1] = 1.5 expected_indices = np.repeat(data_len - 1, num_samples) workspace.FeedBlob("weights", weights.astype(np.float32)) op = core.CreateOperator( "WeightedMultiSampling", ["weights"], ["sample_indices"], num_samples=num_samples, ) workspace.RunOperatorOnce(op) result_indices = workspace.FetchBlob("sample_indices") np.testing.assert_allclose(expected_indices, result_indices) self.assertDeviceChecks( dc, op, [weights.astype(np.float32)], [0] ) # test shape input shape = np.zeros((num_samples)) workspace.FeedBlob("shape", shape) op2 = core.CreateOperator( "WeightedMultiSampling", ["weights", "shape"], ["sample_indices_2"] ) workspace.RunOperatorOnce(op2) result_indices_2 = workspace.FetchBlob("sample_indices_2") if data_len > 0: assert len(result_indices_2) == num_samples for i in range(num_samples): assert 0 <= result_indices_2[i] < data_len else: assert len(result_indices_2) == 0 self.assertDeviceChecks(dc, op2, [weights.astype(np.float32), shape], [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/weighted_multi_sample_test.py
import unittest import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, workspace from hypothesis import given, settings class TestSelfBinningHistogramBase(object): def __init__(self, bin_spacing, dtype, abs=False): self.bin_spacing = bin_spacing self.dtype = dtype self.abs = abs def _check_histogram(self, arrays, num_bins, expected_values=None, expected_counts=None): # Check that sizes match and counts add up. values = workspace.FetchBlob("histogram_values") counts = workspace.FetchBlob("histogram_counts") self.assertTrue(np.size(values) == num_bins) self.assertTrue(np.size(counts) == num_bins) self.assertTrue(np.sum(counts) == sum([np.size(array) for array in arrays])) # Check counts if expected_counts is None: # Check that counts are correct for the returned values if expected_counts is not given. expected_counts = np.zeros(num_bins, dtype='i') for array in arrays: for input_val in array: input_val = abs(input_val) if self.abs else input_val found = False for pos in range(np.size(values)): if values[pos] > input_val: found = True break self.assertTrue(found, f"input value must fit inside values array: " f"input={input_val}, last_value={values[-1]}") if self.bin_spacing == "linear": self.assertTrue(pos > 0, f"input should not be smaller than the first bin value: " f"input={input_val}, 1st bin value={values[pos]}") if pos == 0: self.assertEqual(self.bin_spacing, "logarithmic") expected_counts[pos] += 1 else: expected_counts[pos - 1] += 1 self.assertTrue(np.array_equal(expected_counts, counts), f"expected:{expected_counts}\ncounts:{counts}") # Check values if expected_values is not None: self.assertTrue(np.allclose(expected_values, values, rtol=1e-02, atol=1e-05), f"expected:{expected_values}\nvalues:{values}") # Ideally, the output values are sorted in a non-decreasing order. for idx in range(len(values) - 1): self.assertTrue(values[idx] <= values[idx + 1]) if self.abs: self.assertTrue(values[0] >= 0) def _run_single_op_net(self, arrays, num_bins, logspacing_start=None): for i in range(len(arrays)): workspace.FeedBlob( "X{}".format(i), arrays[i] ) net = core.Net("test_net") if logspacing_start is not None: net.SelfBinningHistogram( ["X{}".format(i) for i in range(len(arrays))], ["histogram_values", "histogram_counts"], num_bins=num_bins, bin_spacing=self.bin_spacing, logspacing_start=logspacing_start, abs=self.abs ) else: net.SelfBinningHistogram( ["X{}".format(i) for i in range(len(arrays))], ["histogram_values", "histogram_counts"], num_bins=num_bins, bin_spacing=self.bin_spacing, abs=self.abs ) workspace.RunNetOnce(net) @given(rows=st.integers(1, 1000), cols=st.integers(1, 1000), **hu.gcs_cpu_only) @settings(deadline=10000) def test_histogram_device_consistency(self, rows, cols, gc, dc): X = np.random.rand(rows, cols) op = core.CreateOperator( "SelfBinningHistogram", ["X"], ["histogram_values", "histogram_counts"], num_bins=1000, bin_spacing=self.bin_spacing, ) self.assertDeviceChecks(dc, op, [X], [0]) def test_histogram_bin_to_fewer(self): X = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype) if self.bin_spacing == 'linear': if not self.abs: expected_values = [-2., 0.2, 2.4, 4.6, 6.8, 9.] expected_counts = [5, 2, 2, 1, 1, 0] else: expected_values = [0., 1.8, 3.6, 5.4, 7.2, 9.] expected_counts = [4, 4, 1, 1, 1, 0] else: expected_values = [1.e-24, 9.8e-20, 9.6e-15, 9.4e-10, 9.2e-05, 9.] if not self.abs: expected_counts = [5, 0, 0, 0, 6, 0] else: expected_counts = [3, 0, 0, 0, 8, 0] self._run_single_op_net([X], 5) self._check_histogram( [X], 6, expected_values=expected_values, expected_counts=expected_counts ) def test_histogram_bin_to_more(self): X = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype) self._run_single_op_net([X], 100) self._check_histogram( [X], 101, ) def test_histogram_bin_to_two(self): """This test roughly tests [min,max+EPSILON] and [N,0]""" X = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype) if self.bin_spacing == 'linear': if not self.abs: expected_values = [-2., 9.] else: expected_values = [0., 9.] else: expected_values = [1.e-24, 9.] expected_counts = [11, 0] self._run_single_op_net([X], 1) self._check_histogram( [X], 2, expected_values=expected_values, expected_counts=expected_counts ) def test_histogram_min_max_equal(self): """This test uses exact value match, so is only relevant for float type.""" X = np.array([0., 0., 0., 0., 0.], dtype='f') logspacing_start = np.float(1e-24) self._run_single_op_net([X], 3, logspacing_start) if self.bin_spacing == "linear": self._check_histogram( [X], 4, expected_values=np.array([0., 0., 0., 0.], dtype='f'), expected_counts=[5, 0, 0, 0] ) else: self.assertEqual(self.bin_spacing, "logarithmic") self._check_histogram( [X], 4, expected_values=np.array([logspacing_start] * 4, dtype='f'), expected_counts=[5, 0, 0, 0], ) def test_histogram_min_max_equal_nonzero(self): X = np.array([1., 1., 1., 1., 1.], dtype=self.dtype) logspacing_start = 1e-24 self._run_single_op_net([X], 3, logspacing_start) self._check_histogram( [X], 4, expected_values=[1., 1., 1., 1.], expected_counts=[5, 0, 0, 0] ) def test_histogram_empty_input_tensor(self): X = np.array([], dtype=self.dtype) self._run_single_op_net([X], 1) self._check_histogram( [X], 2, expected_values=[0., 0.], expected_counts=[0, 0] ) self._run_single_op_net([X], 10) self._check_histogram( [X], 11, expected_values=[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], expected_counts=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) def test_histogram_multi_input(self): X1 = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype) X2 = np.array([-5.0, -3.0, 7, 7, 0.0, 1.0, 2.0, -3.0, 4.0, 6.0, 9.0], dtype=self.dtype) if self.bin_spacing == 'linear': if not self.abs: expected_values = [-5., -2.2, 0.6, 3.4, 6.2, 9.] expected_counts = [3, 6, 5, 4, 4, 0] else: expected_values = [0., 1.8, 3.6, 5.4, 7.2, 9.] expected_counts = [6, 7, 3, 4, 2, 0] else: expected_values = [1.e-24, 9.8e-20, 9.6e-15, 9.4e-10, 9.2e-05, 9.] if not self.abs: expected_counts = [9, 0, 0, 0, 13, 0] else: expected_counts = [4, 0, 0, 0, 18, 0] self._run_single_op_net([X1, X2], 5) self._check_histogram( [X1, X2], 6, expected_values=expected_values, expected_counts=expected_counts ) def test_histogram_very_small_range_for_stride_underflow(self): """Tests a large number of bins for a very small range of values. This test uses float type. 1-e302 is very small, and with 1M bins, it causes numeric underflow. This test is to show that this is handled. Note: this test was flaky due to how compiler and OS handls floats. Previously, 1-e38 does not induce overflow and cuases test error for some combinations of compiler and OS. Now 1-e302 should be small enough. """ X = np.array([0, 1e-302], dtype='f') large_bin_number = 1000000 self._run_single_op_net([X], large_bin_number) self._check_histogram( [X], large_bin_number + 1, expected_counts=[2] + [0] * large_bin_number # [2, 0, 0, ..., 0] ) def test_histogram_insufficient_bins(self): with self.assertRaisesRegex( RuntimeError, "Number of bins must be greater than or equal to 1." ): self._run_single_op_net([np.random.rand(111)], 0) class TestSelfBinningHistogramLinear(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='d') hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLogarithmic(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='d') hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLinearFloat(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='f') hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLogarithmicFloat(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='f') hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLinearWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='d', abs=True) hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLogarithmicWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='d', abs=True) hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLinearFloatWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='f', abs=True) hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLogarithmicFloatWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='f', abs=True) hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLinearWithNoneAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='d', abs=None) hu.HypothesisTestCase.__init__(self, *args, **kwargs) class TestSelfBinningHistogramLinearFloatWithNoneAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase): def __init__(self, *args, **kwargs): TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='f', abs=None) hu.HypothesisTestCase.__init__(self, *args, **kwargs) if __name__ == "__main__": global_options = ["caffe2"] core.GlobalInit(global_options) unittest.main()
pytorch-master
caffe2/python/operator_test/self_binning_histogram_test.py
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.extra.numpy as hnp import hypothesis.strategies as st import numpy as np @st.composite def id_list_batch(draw): batch_size = draw(st.integers(2, 2)) values_dtype = np.float32 inputs = [] sample_size = draw(st.integers(5, 10)) for _ in range(batch_size): values = draw(hnp.arrays(values_dtype, sample_size, st.integers(0, 1))) inputs += [values] return [np.array(inputs)] def dense_vector_to_id_list_ref(*arg): arg = arg[0] batch_size = len(arg) assert batch_size > 0 out_length = [] out_values = [] for row in arg: length = 0 for idx, entry in enumerate(row): if entry != 0: out_values += [idx] length += 1 out_length += [length] return (out_length, out_values) class TestDenseVectorToIdList(hu.HypothesisTestCase): def test_dense_vector_to_id_list_ref(self): # Verify that the reference implementation is correct! dense_input = np.array( [[1, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 0, 1]], dtype=np.float32) sparse_lengths, sparse_values = dense_vector_to_id_list_ref(dense_input) expected_lengths = np.array([3, 3, 3], dtype=np.int32) expected_values = np.array([0, 3, 7, 0, 2, 7, 1, 5, 7], dtype=np.int64) np.testing.assert_array_equal(sparse_lengths, expected_lengths) np.testing.assert_array_equal(sparse_values, expected_values) @given(inputs=id_list_batch(), **hu.gcs_cpu_only) def test_dense_vector_to_id_list_op(self, inputs, gc, dc): op = core.CreateOperator( "DenseVectorToIdList", ["values"], ["out_lengths", "out_values"] ) self.assertDeviceChecks(dc, op, inputs, [0]) self.assertReferenceChecks(gc, op, inputs, dense_vector_to_id_list_ref)
pytorch-master
caffe2/python/operator_test/dense_vector_to_id_list_op_test.py
from caffe2.python import core from hypothesis import given import hypothesis.strategies as st import caffe2.python.hypothesis_test_util as hu import numpy as np import unittest class TestGivenTensorFillOps(hu.HypothesisTestCase): @given(X=hu.tensor(min_dim=1, max_dim=4, dtype=np.int32), t=st.sampled_from([ (core.DataType.BOOL, np.bool_, "GivenTensorFill"), (core.DataType.INT32, np.int32, "GivenTensorFill"), (core.DataType.FLOAT, np.float32, "GivenTensorFill"), (core.DataType.INT16, np.int16, "GivenTensorInt16Fill"), (core.DataType.INT32, np.int32, "GivenTensorIntFill"), (core.DataType.INT64, np.int64, "GivenTensorInt64Fill"), (core.DataType.BOOL, np.bool_, "GivenTensorBoolFill"), (core.DataType.DOUBLE, np.double, "GivenTensorDoubleFill"), (core.DataType.INT32, np.double, "GivenTensorDoubleFill"), ]), **hu.gcs) def test_given_tensor_fill(self, X, t, gc, dc): X = X.astype(t[1]) print('X: ', str(X)) op = core.CreateOperator( t[2], [], ["Y"], shape=X.shape, dtype=t[0], values=X.reshape((1, X.size)), ) def constant_fill(*args, **kw): return [X] self.assertReferenceChecks(gc, op, [], constant_fill) self.assertDeviceChecks(dc, op, [], [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/given_tensor_fill_op_test.py
from caffe2.python import core, workspace, test_util import os import shutil import tempfile import unittest class CheckpointTest(test_util.TestCase): """A simple test case to make sure that the checkpoint behavior is correct. """ @unittest.skipIf("LevelDB" not in core.C.registered_dbs(), "Need LevelDB") def testCheckpoint(self): temp_root = tempfile.mkdtemp() net = core.Net("test_checkpoint") # Note(jiayq): I am being a bit lazy here and am using the old iter # convention that does not have an input. Optionally change it to the # new style if needed. net.Iter([], "iter") net.ConstantFill([], "value", shape=[1, 2, 3]) net.Checkpoint(["iter", "value"], [], db=os.path.join(temp_root, "test_checkpoint_at_%05d"), db_type="leveldb", every=10, absolute_path=True) self.assertTrue(workspace.CreateNet(net)) for i in range(100): self.assertTrue(workspace.RunNet("test_checkpoint")) for i in range(1, 10): # Print statements are only for debugging purposes. # print("Asserting %d" % i) # print(os.path.join(temp_root, "test_checkpoint_at_%05d" % (i * 10))) self.assertTrue(os.path.exists( os.path.join(temp_root, "test_checkpoint_at_%05d" % (i * 10)))) # Finally, clean up. shutil.rmtree(temp_root) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/checkpoint_test.py
import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given import hypothesis.strategies as st class TestBatchBucketize(serial.SerializedTestCase): @serial.given(**hu.gcs_cpu_only) def test_batch_bucketize_example(self, gc, dc): op = core.CreateOperator('BatchBucketize', ["FEATURE", "INDICES", "BOUNDARIES", "LENGTHS"], ["O"]) float_feature = np.array([[1.42, 2.07, 3.19, 0.55, 4.32], [4.57, 2.30, 0.84, 4.48, 3.09], [0.89, 0.26, 2.41, 0.47, 1.05], [0.03, 2.97, 2.43, 4.36, 3.11], [2.74, 5.77, 0.90, 2.63, 0.38]], dtype=np.float32) indices = np.array([0, 1, 4], dtype=np.int32) lengths = np.array([2, 3, 1], dtype=np.int32) boundaries = np.array([0.5, 1.0, 1.5, 2.5, 3.5, 2.5], dtype=np.float32) def ref(float_feature, indices, boundaries, lengths): output = np.array([[2, 1, 1], [2, 1, 1], [1, 0, 0], [0, 2, 1], [2, 3, 0]], dtype=np.int32) return (output,) self.assertReferenceChecks(gc, op, [float_feature, indices, boundaries, lengths], ref) @given( x=hu.tensor( min_dim=2, max_dim=2, dtype=np.float32, elements=hu.floats(min_value=0, max_value=5), min_value=5), seed=st.integers(min_value=2, max_value=1000), **hu.gcs_cpu_only) def test_batch_bucketize(self, x, seed, gc, dc): op = core.CreateOperator('BatchBucketize', ["FEATURE", "INDICES", "BOUNDARIES", "LENGTHS"], ['O']) np.random.seed(seed) d = x.shape[1] lens = np.random.randint(low=1, high=3, size=d - 3) indices = np.random.choice(range(d), d - 3, replace=False) indices.sort() boundaries = [] for i in range(d - 3): # add [0, 0] as duplicated boundary for duplicated bucketization if lens[i] > 2: cur_boundary = np.append( np.random.randn(lens[i] - 2) * 5, [0, 0]) else: cur_boundary = np.random.randn(lens[i]) * 5 cur_boundary.sort() boundaries += cur_boundary.tolist() lens = np.array(lens, dtype=np.int32) boundaries = np.array(boundaries, dtype=np.float32) indices = np.array(indices, dtype=np.int32) def ref(x, indices, boundaries, lens): output_dim = indices.shape[0] ret = np.zeros((x.shape[0], output_dim)).astype(np.int32) boundary_offset = 0 for i, l in enumerate(indices): temp_bound = boundaries[boundary_offset : lens[i] + boundary_offset] for j in range(x.shape[0]): for k, bound_val in enumerate(temp_bound): if k == len(temp_bound) - 1 and x[j, l] > bound_val: ret[j, i] = k + 1 elif x[j, l] > bound_val: continue else: ret[j, i] = k break boundary_offset += lens[i] return (ret,) self.assertReferenceChecks(gc, op, [x, indices, boundaries, lens], ref)
pytorch-master
caffe2/python/operator_test/batch_bucketize_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np class TestBatchMomentsOp(serial.SerializedTestCase): def batch_moments_nchw_ref(self, X): dims = X.shape N = dims[0] C = dims[1] X = X.reshape(N, C, -1) mu = np.mean(X, axis=(0, 2)) var = np.mean(np.square(X), axis=(0, 2)) return [mu, var] def batch_moments_nhwc_ref(self, X): dims = X.shape C = dims[-1] X = X.reshape(-1, C) mu = np.mean(X, axis=0) var = np.mean(np.square(X), axis=0) return [mu, var] @serial.given(N=st.integers(1, 5), C=st.integers(1, 5), H=st.integers(1, 5), W=st.integers(1, 5), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) def test_batch_moments_2d(self, N, C, H, W, order, gc, dc): op = core.CreateOperator( "BatchMoments", ["X"], ["mu", "var"], order=order, ) if order == "NCHW": X = np.random.randn(N, C, H, W).astype(np.float32) else: X = np.random.randn(N, H, W, C).astype(np.float32) def ref(X): if order == "NCHW": return self.batch_moments_nchw_ref(X) else: return self.batch_moments_nhwc_ref(X) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=ref, ) self.assertDeviceChecks(dc, op, [X], [0, 1]) self.assertGradientChecks(gc, op, [X], 0, [0, 1]) @given(N=st.integers(1, 5), C=st.integers(1, 5), T=st.integers(1, 3), H=st.integers(1, 3), W=st.integers(1, 3), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) @settings(deadline=10000) def test_batch_moments_3d(self, N, C, T, H, W, order, gc, dc): op = core.CreateOperator( "BatchMoments", ["X"], ["mu", "var"], order=order, ) if order == "NCHW": X = np.random.randn(N, C, T, H, W).astype(np.float32) else: X = np.random.randn(N, T, H, W, C).astype(np.float32) def ref(X): if order == "NCHW": return self.batch_moments_nchw_ref(X) else: return self.batch_moments_nhwc_ref(X) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=ref, ) self.assertDeviceChecks(dc, op, [X], [0, 1]) self.assertGradientChecks(gc, op, [X], 0, [0, 1])
pytorch-master
caffe2/python/operator_test/batch_moments_op_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np class TestFcOperator(hu.HypothesisTestCase): @given(n=st.integers(1, 10), k=st.integers(1, 5), use_length=st.booleans(), **hu.gcs_cpu_only) @settings(deadline=10000) def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc): lengths = np.random.randint(k, size=n).astype(np.int32) + 1 N = sum(lengths) indices = np.random.randint(5, size=N) values = np.random.rand(N, 2).astype(np.float32) default = np.random.rand(2).astype(np.float32) mask = np.arange(3) np.random.shuffle(mask) input_str = ['indices', 'values', 'default'] input_data = [indices, values, default] if use_length and n > 1: input_str.append('lengths') input_data.append(lengths) output_str = ['output'] op = core.CreateOperator( 'SparseToDenseMask', input_str, output_str, mask=mask, ) # Check over multiple devices self.assertDeviceChecks( dc, op, input_data, [0]) # Gradient check for values self.assertGradientChecks( gc, op, input_data, 1, [0]) @given(n=st.integers(1, 10), k=st.integers(1, 5), use_length=st.booleans(), **hu.gcs_cpu_only) @settings(deadline=10000) def test_sparse_to_dense_mask_with_int64(self, n, k, use_length, gc, dc): lengths = np.random.randint(k, size=n).astype(np.int32) + 1 N = sum(lengths) int64_mask = 10000000000 indices = np.random.randint(5, size=N) + int64_mask values = np.random.rand(N, 2).astype(np.float32) default = np.random.rand(2).astype(np.float32) mask = np.arange(3) + int64_mask np.random.shuffle(mask) input_str = ['indices', 'values', 'default'] input_data = [indices, values, default] if use_length and n > 1: input_str.append('lengths') input_data.append(lengths) output_str = ['output'] op = core.CreateOperator( 'SparseToDenseMask', input_str, output_str, mask=mask, ) # Check over multiple devices self.assertDeviceChecks( dc, op, input_data, [0]) # Gradient check for values self.assertGradientChecks( gc, op, input_data, 1, [0]) @given(n=st.integers(1, 10), k=st.integers(1, 5), dim=st.integers(1, 3), **hu.gcs_cpu_only) @settings(deadline=10000) def test_sparse_to_dense_mask_high_dim(self, n, k, dim, gc, dc): lengths = np.random.randint(k, size=n).astype(np.int32) + 1 N = sum(lengths) indices = np.random.randint(5, size=N) shape = np.random.randint(5, size=dim).astype(np.int32) + 1 values = np.random.rand(*((N,) + tuple(shape))).astype(np.float32) default = np.random.rand(*shape).astype(np.float32) mask = np.arange(3) np.random.shuffle(mask) op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=mask, ) # Check over multiple devices self.assertDeviceChecks( dc, op, [indices, values, default, lengths], [0]) # Gradient check for values self.assertGradientChecks( gc, op, [indices, values, default, lengths], 1, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/sparse_to_dense_mask_op_test.py
import unittest import hypothesis.strategies as st from hypothesis import given, settings import numpy as np from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.mkl_test_util as mu @unittest.skipIf(not workspace.C.has_mkldnn, "Skipping as we do not have mkldnn.") class MKLConvTest(hu.HypothesisTestCase): @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(3, 5), size=st.integers(8, 8), input_channels=st.integers(1, 3), output_channels=st.integers(1, 3), batch_size=st.integers(1, 3), **mu.gcs) @settings(max_examples=2, deadline=100) def test_mkl_convolution(self, stride, pad, kernel, size, input_channels, output_channels, batch_size, gc, dc): op = core.CreateOperator( "Conv", ["X", "w", "b"], ["Y"], stride=stride, pad=pad, kernel=kernel, ) X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 w = np.random.rand( output_channels, input_channels, kernel, kernel) \ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 inputs = [X, w, b] self.assertDeviceChecks(dc, op, inputs, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/mkl_conv_op_test.py
import numpy as np from hypothesis import assume, given, settings import hypothesis.strategies as st import os import unittest from caffe2.python import core, utils, workspace import caffe2.python.hip_test_util as hiputl import caffe2.python.hypothesis_test_util as hu class TestPooling(hu.HypothesisTestCase): # CUDNN does NOT support different padding values and we skip it @given(stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_t=st.integers(0, 3), pad_l=st.integers(0, 3), pad_b=st.integers(0, 3), pad_r=st.integers(0, 3), kernel=st.integers(3, 5), size=st.integers(7, 9), input_channels=st.integers(1, 3), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool", "MaxPool2D", "AveragePool2D"]), **hu.gcs) @settings(deadline=10000) def test_pooling_separate_stride_pad(self, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel, size, input_channels, batch_size, order, op_type, gc, dc): assume(np.max([pad_t, pad_l, pad_b, pad_r]) < kernel) op = core.CreateOperator( op_type, ["X"], ["Y"], stride_h=stride_h, stride_w=stride_w, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, kernel=kernel, order=order, ) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) if order == "NCHW": X = utils.NHWC2NCHW(X) self.assertDeviceChecks(dc, op, [X], [0]) if 'MaxPool' not in op_type: self.assertGradientChecks(gc, op, [X], 0, [0]) # This test is to check if CUDNN works for bigger batch size or not @unittest.skipIf(not os.getenv('CAFFE2_DEBUG'), "This is a test that reproduces a cudnn error. If you " "want to run it, set env variable CAFFE2_DEBUG=1.") @given(**hu.gcs_cuda_only) def test_pooling_big_batch(self, gc, dc): op = core.CreateOperator( "AveragePool", ["X"], ["Y"], stride=1, kernel=7, pad=0, order="NHWC", engine="CUDNN", ) X = np.random.rand(70000, 7, 7, 81).astype(np.float32) self.assertDeviceChecks(dc, op, [X], [0]) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), size=st.integers(7, 9), input_channels=st.integers(1, 3), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), op_type=st.sampled_from(["MaxPool", "AveragePool", "MaxPool1D", "AveragePool1D"]), **hu.gcs) @settings(deadline=10000) def test_pooling_1d(self, stride, pad, kernel, size, input_channels, batch_size, order, op_type, gc, dc): assume(pad < kernel) op = core.CreateOperator( op_type, ["X"], ["Y"], strides=[stride], kernels=[kernel], pads=[pad, pad], order=order, engine="", ) X = np.random.rand( batch_size, size, input_channels).astype(np.float32) if order == "NCHW": X = utils.NHWC2NCHW(X) self.assertDeviceChecks(dc, op, [X], [0]) if 'MaxPool' not in op_type: self.assertGradientChecks(gc, op, [X], 0, [0]) @given(stride=st.integers(1, 3), pad=st.integers(0, 2), kernel=st.integers(1, 6), size=st.integers(3, 5), input_channels=st.integers(1, 3), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), op_type=st.sampled_from(["MaxPool", "AveragePool", "MaxPool3D", "AveragePool3D"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=None, max_examples=50) def test_pooling_3d(self, stride, pad, kernel, size, input_channels, batch_size, order, op_type, engine, gc, dc): assume(pad < kernel) assume(size + pad + pad >= kernel) # Currently MIOpen Pooling only supports pooling with NCHW order. if hiputl.run_in_hip(gc, dc) and (workspace.GetHIPVersion() < 303 or order == "NHWC"): assume(engine != "CUDNN") # some case here could be calculated with global pooling, but instead # calculated with general implementation, slower but should still # be correct. op = core.CreateOperator( op_type, ["X"], ["Y"], strides=[stride] * 3, kernels=[kernel] * 3, pads=[pad] * 6, order=order, engine=engine, ) X = np.random.rand( batch_size, size, size, size, input_channels).astype(np.float32) if order == "NCHW": X = utils.NHWC2NCHW(X) self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001) if 'MaxPool' not in op_type: self.assertGradientChecks(gc, op, [X], 0, [0], threshold=0.001) @given(kernel=st.integers(3, 6), size=st.integers(3, 5), input_channels=st.integers(1, 3), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), op_type=st.sampled_from(["MaxPool", "AveragePool", "MaxPool3D", "AveragePool3D"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_global_pooling_3d(self, kernel, size, input_channels, batch_size, order, op_type, engine, gc, dc): # Currently MIOpen Pooling only supports pooling with NCHW order. if hiputl.run_in_hip(gc, dc) and (workspace.GetHIPVersion() < 303 or order == "NHWC"): assume(engine != "CUDNN") # pad and stride ignored because they will be inferred in global_pooling op = core.CreateOperator( op_type, ["X"], ["Y"], kernels=[kernel] * 3, order=order, global_pooling=True, engine=engine, ) X = np.random.rand( batch_size, size, size, size, input_channels).astype(np.float32) if order == "NCHW": X = utils.NHWC2NCHW(X) self.assertDeviceChecks(dc, op, [X], [0], threshold=0.001) if 'MaxPool' not in op_type: self.assertGradientChecks(gc, op, [X], 0, [0], threshold=0.001) @unittest.skipIf(not workspace.has_gpu_support, "No GPU support") @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), size=st.integers(7, 9), input_channels=st.integers(1, 3), batch_size=st.integers(0, 3), **hu.gcs_gpu_only) def test_pooling_with_index(self, stride, pad, kernel, size, input_channels, batch_size, gc, dc): assume(pad < kernel) op = core.CreateOperator( "MaxPoolWithIndex", ["X"], ["Y", "Y_index"], stride=stride, kernel=kernel, pad=pad, order="NCHW", deterministic=1, ) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) # transpose due to order = NCHW X = utils.NHWC2NCHW(X) self.assertDeviceChecks(dc, op, [X], [0]) @given(sz=st.integers(1, 20), batch_size=st.integers(0, 4), engine=st.sampled_from(["", "CUDNN"]), op_type=st.sampled_from(["AveragePool", "AveragePool2D"]), **hu.gcs) @settings(max_examples=3, deadline=None) def test_global_avg_pool_nchw(self, op_type, sz, batch_size, engine, gc, dc): ''' Special test to stress the fast path of NCHW average pool ''' op = core.CreateOperator( op_type, ["X"], ["Y"], stride=1, kernel=sz, pad=0, order="NCHW", engine=engine, ) X = np.random.rand( batch_size, 3, sz, sz).astype(np.float32) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(sz=st.integers(1, 20), batch_size=st.integers(0, 4), engine=st.sampled_from(["", "CUDNN"]), op_type=st.sampled_from(["MaxPool", "MaxPool2D"]), **hu.gcs) @settings(max_examples=3, deadline=None) def test_global_max_pool_nchw(self, op_type, sz, batch_size, engine, gc, dc): ''' Special test to stress the fast path of NCHW max pool ''' # CuDNN 5 does not support deterministic max pooling. assume(workspace.GetCuDNNVersion() >= 6000 or engine != "CUDNN") op = core.CreateOperator( op_type, ["X"], ["Y"], stride=1, kernel=sz, pad=0, order="NCHW", engine=engine, deterministic=1, ) np.random.seed(1234) X = np.random.rand( batch_size, 3, sz, sz).astype(np.float32) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=1e-4) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), size=st.integers(7, 9), input_channels=st.integers(1, 3), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool", "MaxPool2D", "AveragePool2D"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_pooling(self, stride, pad, kernel, size, input_channels, batch_size, order, op_type, engine, gc, dc): assume(pad < kernel) if hiputl.run_in_hip(gc, dc) and engine == "CUDNN": assume(order == "NCHW" and op_type != "LpPool") op = core.CreateOperator( op_type, ["X"], ["Y"], stride=stride, kernel=kernel, pad=pad, order=order, engine=engine, ) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) if order == "NCHW": X = utils.NHWC2NCHW(X) self.assertDeviceChecks(dc, op, [X], [0]) if 'MaxPool' not in op_type: self.assertGradientChecks(gc, op, [X], 0, [0]) @given(size=st.integers(7, 9), input_channels=st.integers(1, 3), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), op_type=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_global_pooling(self, size, input_channels, batch_size, order, op_type, engine, gc, dc): # CuDNN 5 does not support deterministic max pooling. assume(workspace.GetCuDNNVersion() >= 6000 or op_type != "MaxPool") if hiputl.run_in_hip(gc, dc) and engine == "CUDNN": assume(order == "NCHW" and op_type != "LpPool") op = core.CreateOperator( op_type, ["X"], ["Y"], order=order, engine=engine, global_pooling=True, ) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) if order == "NCHW": X = utils.NHWC2NCHW(X) self.assertDeviceChecks(dc, op, [X], [0]) if 'MaxPool' not in op_type: self.assertGradientChecks(gc, op, [X], 0, [0]) @given(op_type=st.sampled_from(["MaxPool", "MaxPoolND"]), dim=st.integers(1, 3), N=st.integers(1, 3), C=st.integers(1, 3), D=st.integers(3, 5), H=st.integers(3, 5), W=st.integers(3, 5), kernel=st.integers(1, 3), stride=st.integers(1, 3), pad=st.integers(0, 2), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=None, max_examples=50) def test_max_pool_grad( self, op_type, dim, N, C, D, H, W, kernel, stride, pad, order, engine, gc, dc): assume(pad < kernel) assume(dim > 1 or engine == "") if hiputl.run_in_hip(gc, dc): if dim != 2: assume(engine != "CUDNN") elif engine == "CUDNN": assume(order == "NCHW") if op_type.endswith("ND"): op_type = op_type.replace("N", str(dim)) op = core.CreateOperator( op_type, ["X"], ["Y"], kernels=[kernel] * dim, strides=[stride] * dim, pads=[pad] * dim * 2, order=order, engine=engine, ) if dim == 1: size = W dims = [N, C, W] axes = [0, 2, 1] elif dim == 2: size = H * W dims = [N, C, H, W] axes = [0, 2, 3, 1] else: size = D * H * W dims = [N, C, D, H, W] axes = [0, 2, 3, 4, 1] X = np.zeros((N * C, size)).astype(np.float32) for i in range(N * C): X[i, :] = np.arange(size, dtype=np.float32) / size np.random.shuffle(X[i, :]) X = X.reshape(dims) if order == "NHWC": X = np.transpose(X, axes) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks( gc, op, [X], 0, [0], threshold=0.05, stepsize=0.005) @given(op_type=st.sampled_from(["AveragePool", "AveragePoolND"]), dim=st.integers(1, 3), N=st.integers(1, 3), C=st.integers(1, 3), D=st.integers(3, 5), H=st.integers(3, 5), W=st.integers(3, 5), kernel=st.integers(1, 3), stride=st.integers(1, 3), pad=st.integers(0, 2), count_include_pad=st.booleans(), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_avg_pool_count_include_pad( self, op_type, dim, N, C, D, H, W, kernel, stride, pad, count_include_pad, order, engine, gc, dc): assume(pad < kernel) if hiputl.run_in_hip(gc, dc): if dim != 2: assume(engine != "CUDNN") elif engine == "CUDNN": assume(order == "NCHW") if op_type.endswith("ND"): op_type = op_type.replace("N", str(dim)) op = core.CreateOperator( op_type, ["X"], ["Y"], kernels=[kernel] * dim, strides=[stride] * dim, pads=[pad] * dim * 2, count_include_pad=count_include_pad, order=order, engine=engine, ) if dim == 1: dims = [N, C, W] axes = [0, 2, 1] elif dim == 2: dims = [N, C, H, W] axes = [0, 2, 3, 1] else: dims = [N, C, D, H, W] axes = [0, 2, 3, 4, 1] X = np.random.randn(*dims).astype(np.float32) if order == "NHWC": X = np.transpose(X, axes) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/pooling_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest class TestPiecewiseLinearTransform(serial.SerializedTestCase): def constrain(self, v, min_val, max_val): def constrain_internal(x): return min(max(x, min_val), max_val) return np.array([constrain_internal(x) for x in v]) def transform(self, x, bounds, slopes, intercepts): n = len(slopes) x_ = self.constrain(x, bounds[0], bounds[-1]) index = np.minimum( np.maximum( np.searchsorted(bounds, x_) - 1, 0 ), n - 1 ) y = slopes[index] * x_ + intercepts[index] return y @given(n=st.integers(1, 100), **hu.gcs_cpu_only) @settings(deadline=10000) def test_multi_predictions_params_from_arg(self, n, gc, dc): slopes = np.random.uniform(-1, 1, (2, n)).astype(np.float32) intercepts = np.random.uniform(-1, 1, (2, n)).astype(np.float32) bounds = np.random.uniform(0.1, 0.9, (2, n + 1)).astype(np.float32) bounds.sort() X = np.random.uniform(0, 1, (n, 2)).astype(np.float32) op = core.CreateOperator( "PiecewiseLinearTransform", ["X"], ["Y"], bounds=bounds.flatten().tolist(), slopes=slopes.flatten().tolist(), intercepts=intercepts.flatten().tolist(), ) def piecewise(x, *args, **kw): x_0 = self.transform( x[:, 0], bounds[0, :], slopes[0, :], intercepts[0, :]) x_1 = self.transform( x[:, 1], bounds[1, :], slopes[1, :], intercepts[1, :]) return [np.vstack((x_0, x_1)).transpose()] self.assertReferenceChecks(gc, op, [X], piecewise) self.assertDeviceChecks(dc, op, [X], [0]) @given(n=st.integers(1, 100), **hu.gcs_cpu_only) @settings(deadline=10000) def test_binary_predictions_params_from_arg(self, n, gc, dc): slopes = np.random.uniform(-1, 1, size=n).astype(np.float32) intercepts = np.random.uniform(-1, 1, size=n).astype(np.float32) bounds = np.random.uniform(0.1, 0.9, n + 1).astype(np.float32) bounds.sort() X = np.random.uniform(0, 1, (n, 2)).astype(np.float32) X[:, 0] = 1 - X[:, 1] op = core.CreateOperator( "PiecewiseLinearTransform", ["X"], ["Y"], bounds=bounds.flatten().tolist(), slopes=slopes.flatten().tolist(), intercepts=intercepts.flatten().tolist(), pieces=n, binary=True, ) def piecewise(x): x_ = self.transform(x[:, 1], bounds, slopes, intercepts) return [np.vstack((1 - x_, x_)).transpose()] self.assertReferenceChecks(gc, op, [X], piecewise) self.assertDeviceChecks(dc, op, [X], [0]) @given(n=st.integers(1, 100), **hu.gcs_cpu_only) @settings(deadline=10000) def test_multi_predictions_params_from_input(self, n, gc, dc): slopes = np.random.uniform(-1, 1, (2, n)).astype(np.float32) intercepts = np.random.uniform(-1, 1, (2, n)).astype(np.float32) bounds = np.random.uniform(0.1, 0.9, (2, n + 1)).astype(np.float32) bounds.sort() X = np.random.uniform(0, 1, (n, 2)).astype(np.float32) op = core.CreateOperator( "PiecewiseLinearTransform", ["X", "bounds", "slopes", "intercepts"], ["Y"], ) def piecewise(x, bounds, slopes, intercepts): x_0 = self.transform( x[:, 0], bounds[0, :], slopes[0, :], intercepts[0, :]) x_1 = self.transform( x[:, 1], bounds[1, :], slopes[1, :], intercepts[1, :]) return [np.vstack((x_0, x_1)).transpose()] self.assertReferenceChecks( gc, op, [X, bounds, slopes, intercepts], piecewise) self.assertDeviceChecks(dc, op, [X, bounds, slopes, intercepts], [0]) @given(n=st.integers(1, 100), **hu.gcs_cpu_only) @settings(deadline=10000) def test_binary_predictions_params_from_input(self, n, gc, dc): slopes = np.random.uniform(-1, 1, size=n).astype(np.float32) intercepts = np.random.uniform(-1, 1, size=n).astype(np.float32) bounds = np.random.uniform(0.1, 0.9, n + 1).astype(np.float32) bounds.sort() X = np.random.uniform(0, 1, (n, 2)).astype(np.float32) X[:, 0] = 1 - X[:, 1] op = core.CreateOperator( "PiecewiseLinearTransform", ["X", "bounds", "slopes", "intercepts"], ["Y"], binary=True, ) def piecewise(x, bounds, slopes, intercepts): x_ = self.transform(x[:, 1], bounds, slopes, intercepts) return [np.vstack((1 - x_, x_)).transpose()] self.assertReferenceChecks( gc, op, [X, bounds, slopes, intercepts], piecewise) self.assertDeviceChecks(dc, op, [X, bounds, slopes, intercepts], [0]) @given(n=st.integers(1, 100), **hu.gcs_cpu_only) @settings(deadline=10000) def test_1D_predictions_params_from_input(self, n, gc, dc): slopes = np.random.uniform(-1, 1, size=n).astype(np.float32) intercepts = np.random.uniform(-1, 1, size=n).astype(np.float32) bounds = np.random.uniform(0.1, 0.9, n + 1).astype(np.float32) bounds.sort() X = np.random.uniform(0, 1, size=n).astype(np.float32) op = core.CreateOperator( "PiecewiseLinearTransform", ["X", "bounds", "slopes", "intercepts"], ["Y"], binary=True, ) def piecewise(x, bounds, slopes, intercepts): x_ = self.transform(x, bounds, slopes, intercepts) return [x_] self.assertReferenceChecks( gc, op, [X, bounds, slopes, intercepts], piecewise) self.assertDeviceChecks(dc, op, [X, bounds, slopes, intercepts], [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/piecewise_linear_transform_test.py
from caffe2.python import core, workspace from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np import unittest class TestUniqueUniformFillOp(hu.HypothesisTestCase): @given( r=st.integers(1000, 10000), avoid=st.lists( st.integers(1, 1000), min_size=1, max_size=100, unique=True ), dtypes=st.sampled_from( [ (np.int32, core.DataType.INT32), (np.int64, core.DataType.INT64) ] ), s=st.integers(10, 500), **hu.gcs_cpu_only ) def test_unique_uniform_int_fill(self, r, avoid, dtypes, s, gc, dc): net = core.Net("net") workspace.FeedBlob("X", np.array([s], dtype=np.int64)) workspace.FeedBlob("AVOID", np.array(avoid, dtype=dtypes[0])) net.UniqueUniformFill( ["X", "AVOID"], ["Y"], min=1, max=r, input_as_shape=True, dtype=dtypes[1] ) workspace.RunNetOnce(net) y = workspace.FetchBlob("Y") self.assertEqual(s, len(y)) self.assertEqual(s, len(set(y))) self.assertEqual(s, len(set(y) - set(avoid))) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/unique_uniform_fill_op_test.py
#!/usr/bin/env python3 import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np import numpy.testing as npt from caffe2.python import core, workspace from hypothesis import given class TestUnsafeCoalesceOp(hu.HypothesisTestCase): @given( n=st.integers(1, 5), shape=st.lists(st.integers(0, 5), min_size=1, max_size=3), **hu.gcs ) def test_unsafe_coalesce_op(self, n, shape, dc, gc): workspace.ResetWorkspace() test_inputs = [(100 * np.random.random(shape)).astype(np.float32) for _ in range(n)] test_input_blobs = ["x_{}".format(i) for i in range(n)] coalesce_op = core.CreateOperator( "UnsafeCoalesce", test_input_blobs, test_input_blobs + ["shared_memory_blob"], device_option=gc, ) def reference_func(*args): self.assertEquals(len(args), n) return list(args) + [np.concatenate([x.flatten() for x in args])] self.assertReferenceChecks(gc, coalesce_op, test_inputs, reference_func) @given( n=st.integers(1, 5), shape=st.lists(st.integers(1, 5), min_size=1, max_size=3), seed=st.integers(0, 65535), **hu.gcs ) def test_unsafe_coalesce_op_blob_sharing(self, n, shape, seed, dc, gc): workspace.ResetWorkspace() # Can make debugging of the test more predictable np.random.seed(seed) test_inputs = [(np.random.random(shape)).astype(np.float32) for _ in range(n)] test_input_blobs = ["x_{}".format(i) for i in range(n)] coalesce_op = core.CreateOperator( "UnsafeCoalesce", test_input_blobs, test_input_blobs + ["shared_memory_blob"], device_option=gc, ) for name, value in zip(test_input_blobs, test_inputs): workspace.FeedBlob(name, value, device_option=gc) workspace.RunOperatorOnce(coalesce_op) blob_value = workspace.blobs["shared_memory_blob"] npt.assert_almost_equal( blob_value, np.concatenate([x.flatten() for x in test_inputs]), decimal=4 ) # np.random generates values in range [0, 1), so -2 is outside of range blob_value.fill(-2.0) self.assertTrue((blob_value != workspace.blobs["shared_memory_blob"]).all()) workspace.FeedBlob("shared_memory_blob", blob_value, device_option=gc) # All blobs preserved shape, but got overwritted to -2 for name, value in zip(test_input_blobs, test_inputs): self.assertEqual(value.shape, workspace.blobs[name].shape) self.assertTrue((value != workspace.blobs[name]).all()) self.assertTrue((workspace.blobs[name] == -2).all()) # It should be OK to reuse operator as long as it's blob shapes are not changing workspace.RunOperatorOnce(coalesce_op)
pytorch-master
caffe2/python/operator_test/unsafe_coalesce_test.py
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import numpy as np import unittest class TestGivenTensorByteStringToUInt8FillOps(hu.HypothesisTestCase): @given(X=hu.tensor(min_dim=1, max_dim=4, dtype=np.int32), **hu.gcs) def test_given_tensor_byte_string_to_uint8_fill(self, X, gc, dc): X = X.astype(np.uint8) print('X: ', str(X)) op = core.CreateOperator( "GivenTensorByteStringToUInt8Fill", [], ["Y"], shape=X.shape, dtype=core.DataType.STRING, values=[X.tobytes()], ) def constant_fill(*args, **kw): return [X] self.assertReferenceChecks(gc, op, [], constant_fill) self.assertDeviceChecks(dc, op, [], [0]) @given(**hu.gcs) def test_empty_given_tensor_byte_string_to_uint8_fill(self, gc, dc): X = np.array([], dtype=np.uint8) print('X: ', str(X)) op = core.CreateOperator( "GivenTensorByteStringToUInt8Fill", [], ["Y"], shape=X.shape, values=[X.tobytes()], ) def constant_fill(*args, **kw): return [X] self.assertReferenceChecks(gc, op, [], constant_fill) self.assertDeviceChecks(dc, op, [], [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/given_tensor_byte_string_to_uint8_fill_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from collections import OrderedDict from hypothesis import given, settings import numpy as np class TestFlexibleTopK(serial.SerializedTestCase): def flexible_top_k_ref(self, X, k): X_flat = X.reshape((-1, X.shape[-1])) indices_ref = np.ndarray(shape=sum(k), dtype=np.int32) values_ref = np.ndarray(shape=sum(k), dtype=np.float32) offset = 0 for i in range(X_flat.shape[0]): od = OrderedDict() for j in range(X_flat.shape[1]): val = X_flat[i, j] if val not in od: od[val] = [] od[val].append(j) k_ = 0 for val, idxs in sorted(od.items(), reverse=True): for idx in idxs: indices_ref[offset + k_] = idx values_ref[offset + k_] = val k_ += 1 if k_ >= k[i]: break if k_ >= k[i]: break offset += k[i] return (values_ref, indices_ref) @given(X=hu.tensor(min_dim=2), **hu.gcs_cpu_only) @settings(deadline=10000) def test_flexible_top_k(self, X, gc, dc): X = X.astype(dtype=np.float32) k_shape = (int(X.size / X.shape[-1]), ) k = np.random.randint(1, high=X.shape[-1] + 1, size=k_shape) output_list = ["Values", "Indices"] op = core.CreateOperator("FlexibleTopK", ["X", "k"], output_list, device_option=gc) def bind_ref(X_loc, k): ret = self.flexible_top_k_ref(X_loc, k) return ret self.assertReferenceChecks(gc, op, [X, k], bind_ref) @given(X=hu.tensor(min_dim=2), **hu.gcs_cpu_only) @settings(deadline=10000) def test_flexible_top_k_grad(self, X, gc, dc): X = X.astype(np.float32) k_shape = (int(X.size / X.shape[-1]), ) k = np.random.randint(1, high=X.shape[-1] + 1, size=k_shape) # this try to make sure adding stepsize (0.05) # will not change TopK selections at all # since dims max_value = 5 as defined in # caffe2/caffe2/python/hypothesis_test_util.py for i in range(X.shape[-1]): X[..., i] = i * 1.0 / X.shape[-1] op = core.CreateOperator( "FlexibleTopK", ["X", "k"], ["Values", "Indices"], device_option=gc ) self.assertGradientChecks(gc, op, [X, k], 0, [0])
pytorch-master
caffe2/python/operator_test/flexible_top_k_test.py
import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st from caffe2.python import core, utils from hypothesis import given, settings class OrderSwitchOpsTest(hu.HypothesisTestCase): @given( X=hu.tensor(min_dim=3, max_dim=5, min_value=1, max_value=5), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs ) @settings(deadline=10000) def test_nchw2nhwc(self, X, engine, gc, dc): op = core.CreateOperator("NCHW2NHWC", ["X"], ["Y"], engine=engine) def nchw2nhwc_ref(X): return (utils.NCHW2NHWC(X),) self.assertReferenceChecks(gc, op, [X], nchw2nhwc_ref) self.assertGradientChecks(gc, op, [X], 0, [0]) self.assertDeviceChecks(dc, op, [X], [0]) @given( X=hu.tensor(min_dim=3, max_dim=5, min_value=1, max_value=5), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs ) @settings(deadline=10000) def test_nhwc2nchw(self, X, engine, gc, dc): op = core.CreateOperator("NHWC2NCHW", ["X"], ["Y"], engine=engine) def nhwc2nchw_ref(X): return (utils.NHWC2NCHW(X),) self.assertReferenceChecks(gc, op, [X], nhwc2nchw_ref) self.assertGradientChecks(gc, op, [X], 0, [0]) self.assertDeviceChecks(dc, op, [X], [0])
pytorch-master
caffe2/python/operator_test/order_switch_test.py
import argparse import numpy as np from caffe2.python import core, workspace def benchmark_mul_gradient(args): workspace.FeedBlob("dC", np.random.rand(args.m, args.n).astype(np.float32)) workspace.FeedBlob("A", np.random.rand(args.m, args.n).astype(np.float32)) workspace.FeedBlob("B", np.random.rand(args.n).astype(np.float32)) net = core.Net("mynet") net.MulGradient( ["dC", "A", "B"], ["dC" if args.inplace else "dA", "dB"], broadcast=True, axis=1, allow_broadcast_fastpath=args.allow_broadcast_fastpath, ) workspace.CreateNet(net) workspace.BenchmarkNet(net.Name(), 1, args.iteration, True) if __name__ == "__main__": parser = argparse.ArgumentParser( description="benchmark for MulGradient.") parser.add_argument( '-m', type=int, default=9508, help="The number of rows of A") parser.add_argument( "-n", type=int, default=80, help="The number of columns of A") parser.add_argument( '-i', "--iteration", type=int, default=100, help="The number of iterations.") parser.add_argument( "--inplace", action='store_true', help="Whether to perform the op in-place.") parser.add_argument( "--allow-broadcast-fastpath", action='store_true', help="Whether the broadcast fastpath is enabled.") args, extra_args = parser.parse_known_args() core.GlobalInit(['python'] + extra_args) benchmark_mul_gradient(args)
pytorch-master
caffe2/python/operator_test/mul_gradient_benchmark.py
from hypothesis import given import hypothesis.strategies as st import numpy as np import unittest from caffe2.python import core, workspace, dyndep import caffe2.python.hypothesis_test_util as hu dyndep.InitOpsLibrary("@/caffe2/caffe2/mpi:mpi_ops") _has_mpi =False COMM = None RANK = 0 SIZE = 0 def SetupMPI(): try: # pyre-fixme[21]: undefined import from mpi4py import MPI global _has_mpi, COMM, RANK, SIZE _has_mpi = core.IsOperatorWithEngine("CreateCommonWorld", "MPI") COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.Get_size() except ImportError: _has_mpi = False @unittest.skipIf(not _has_mpi, "MPI is not available. Skipping.") class TestMPI(hu.HypothesisTestCase): @given(X=hu.tensor(), root=st.integers(min_value=0, max_value=SIZE - 1), device_option=st.sampled_from(hu.device_options), **hu.gcs) def test_broadcast(self, X, root, device_option, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) root = COMM.bcast(root) device_option = COMM.bcast(device_option) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) self.assertTrue(workspace.FeedBlob("X", X, device_option)) mpi_op = core.CreateOperator( "Broadcast", ["comm", "X"], "X", engine="MPI", root=root, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) new_X = workspace.FetchBlob("X") np.testing.assert_array_equal(new_X, root) workspace.ResetWorkspace() @given(X=hu.tensor(), root=st.integers(min_value=0, max_value=SIZE - 1), device_option=st.sampled_from(hu.device_options), **hu.gcs) def test_reduce(self, X, root, device_option, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) root = COMM.bcast(root) device_option = COMM.bcast(device_option) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) self.assertTrue(workspace.FeedBlob("X", X, device_option)) mpi_op = core.CreateOperator( "Reduce", ["comm", "X"], "X_reduced", engine="MPI", root=root, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) if (RANK == root): new_X = workspace.FetchBlob("X") np.testing.assert_array_equal(new_X, root) workspace.ResetWorkspace() @given(X=hu.tensor(), root=st.integers(min_value=0, max_value=SIZE - 1), device_option=st.sampled_from(hu.device_options), inplace=st.booleans(), **hu.gcs) def test_allreduce(self, X, root, device_option, inplace, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) root = COMM.bcast(root) device_option = COMM.bcast(device_option) inplace = COMM.bcast(inplace) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) # Use mpi4py's broadcast to make sure that all copies have the same # tensor size. X = COMM.bcast(X) X[:] = RANK self.assertTrue(workspace.FeedBlob("X", X, device_option)) mpi_op = core.CreateOperator( "Allreduce", ["comm", "X"], "X" if inplace else "X_reduced", engine="MPI", root=root, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) new_X = workspace.FetchBlob("X" if inplace else "X_reduced") np.testing.assert_array_equal(new_X, SIZE * (SIZE - 1) / 2) workspace.ResetWorkspace() @given(X=hu.tensor(), device_option=st.sampled_from(hu.device_options), specify_send_blob=st.booleans(), specify_recv_blob=st.booleans(), **hu.gcs) def test_sendrecv( self, X, device_option, specify_send_blob, specify_recv_blob, gc, dc): # Use mpi4py's broadcast to make sure that all nodes inherit the # same hypothesis test. X = COMM.bcast(X) device_option = COMM.bcast(device_option) specify_send_blob = COMM.bcast(specify_send_blob) specify_recv_blob = COMM.bcast(specify_recv_blob) X[:] = RANK self.assertTrue( workspace.RunOperatorOnce( core.CreateOperator( "CreateCommonWorld", [], "comm", engine="MPI", device_option=device_option))) self.assertTrue(workspace.FeedBlob("X", X, device_option)) for src in range(SIZE): for dst in range(SIZE): tag = src * SIZE + dst if src == dst: continue elif RANK == src: X[:] = RANK self.assertTrue(workspace.FeedBlob("X", X, device_option)) if specify_send_blob: self.assertTrue(workspace.FeedBlob( "dst", np.array(dst, dtype=np.int32))) self.assertTrue(workspace.FeedBlob( "tag", np.array(tag, dtype=np.int32))) mpi_op = core.CreateOperator( "SendTensor", ["comm", "X", "dst", "tag"], [], engine="MPI", raw_buffer=True, device_option=device_option) else: mpi_op = core.CreateOperator( "SendTensor", ["comm", "X"], [], engine="MPI", dst=dst, tag=tag, raw_buffer=True, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) elif RANK == dst: if specify_recv_blob: self.assertTrue(workspace.FeedBlob( "src", np.array(src, dtype=np.int32))) self.assertTrue(workspace.FeedBlob( "tag", np.array(tag, dtype=np.int32))) mpi_op = core.CreateOperator( "ReceiveTensor", ["comm", "X", "src", "tag"], ["X", "src", "tag"], engine="MPI", src=src, tag=tag, raw_buffer=True, device_option=device_option) else: mpi_op = core.CreateOperator( "ReceiveTensor", ["comm", "X"], ["X", "src", "tag"], engine="MPI", src=src, tag=tag, raw_buffer=True, device_option=device_option) self.assertTrue(workspace.RunOperatorOnce(mpi_op)) received = workspace.FetchBlob("X") np.testing.assert_array_equal(received, src) src_blob = workspace.FetchBlob("src") np.testing.assert_array_equal(src_blob, src) tag_blob = workspace.FetchBlob("tag") np.testing.assert_array_equal(tag_blob, tag) # simply wait for the guys to finish COMM.barrier() workspace.ResetWorkspace() if __name__ == "__main__": SetupMPI() import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/mpi_test.py
from caffe2.python import core from caffe2.python.test_util import rand_array import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np class TestScatterOps(serial.SerializedTestCase): # TODO(dzhulgakov): add test cases for failure scenarios @given(num_args=st.integers(1, 5), first_dim=st.integers(1, 20), index_dim=st.integers(1, 10), extra_dims=st.lists(st.integers(1, 4), min_size=0, max_size=3), ind_type=st.sampled_from([np.int32, np.int64]), data_type=st.sampled_from([np.float32, np.float64]), **hu.gcs) @settings(deadline=10000) def testScatterWeightedSum( self, num_args, first_dim, index_dim, extra_dims, ind_type, data_type, gc, dc): ins = ['data', 'w0', 'indices'] for i in range(1, num_args + 1): ins.extend(['x' + str(i), 'w' + str(i)]) op = core.CreateOperator( 'ScatterWeightedSum', ins, ['data'], device_option=gc) def ref(d, w0, ind, *args): r = d.copy() for i in ind: r[i] *= w0 for i in range(0, len(args), 2): x = args[i] w = args[i+1] for i, j in enumerate(ind): r[j] += w * x[i] return [r] d = rand_array(first_dim, *extra_dims) ind = np.random.randint(0, first_dim, index_dim).astype(ind_type) # ScatterWeightedSumOp only supports w0=1.0 in CUDAContext # And it only support float32 data in CUDAContext if(gc == hu.gpu_do or gc == hu.hip_do): w0 = np.array(1.0).astype(np.float32) data_type = np.float32 else: w0 = rand_array() d = d.astype(data_type) inputs = [d, w0, ind] for _ in range(1, num_args + 1): x = rand_array(index_dim, *extra_dims).astype(data_type) w = rand_array() inputs.extend([x,w]) self.assertReferenceChecks(gc, op, inputs, ref, threshold=1e-3) @given(first_dim=st.integers(1, 20), index_dim=st.integers(1, 10), extra_dims=st.lists(st.integers(1, 4), min_size=0, max_size=3), data_type=st.sampled_from([np.float16, np.float32, np.int32, np.int64]), ind_type=st.sampled_from([np.int32, np.int64]), **hu.gcs) @settings(deadline=10000) def testScatterAssign( self, first_dim, index_dim, extra_dims, data_type, ind_type, gc, dc): op = core.CreateOperator('ScatterAssign', ['data', 'indices', 'slices'], ['data']) def ref(d, ind, x): r = d.copy() r[ind] = x return [r] # let's have indices unique if first_dim < index_dim: first_dim, index_dim = index_dim, first_dim d = (rand_array(first_dim, *extra_dims) * 10).astype(data_type) ind = np.random.choice(first_dim, index_dim, replace=False).astype(ind_type) x = (rand_array(index_dim, *extra_dims) * 10).astype(data_type) self.assertReferenceChecks(gc, op, [d, ind, x], ref, threshold=1e-3, ensure_outputs_are_inferred=True) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/sparse_ops_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestWeightedSumOp(serial.SerializedTestCase): @given( n=st.integers(1, 8), m=st.integers(1, 10), d=st.integers(1, 4), in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), seed=st.integers(min_value=0, max_value=65535), **hu.gcs) @settings(deadline=10000) def test_weighted_sum( self, n, m, d, in_place, engine, seed, gc, dc): input_names = [] input_vars = [] np.random.seed(seed) for i in range(m): X_name = 'X' + str(i) w_name = 'w' + str(i) input_names.extend([X_name, w_name]) var = np.random.rand(n, d).astype(np.float32) vars()[X_name] = var input_vars.append(var) var = np.random.rand(1).astype(np.float32) vars()[w_name] = var input_vars.append(var) def weighted_sum_op_ref(*args): res = np.zeros((n, d)) for i in range(m): res = res + args[2 * i + 1] * args[2 * i] return (res, ) op = core.CreateOperator( "WeightedSum", input_names, [input_names[0]] if in_place else ['Y'], engine=engine, ) self.assertReferenceChecks( device_option=gc, op=op, inputs=input_vars, reference=weighted_sum_op_ref, ) self.assertDeviceChecks(dc, op, input_vars, [0]) @given(n=st.integers(1, 8), m=st.integers(1, 10), d=st.integers(1, 4), grad_on_w=st.booleans(), seed=st.integers(min_value=0, max_value=65535), **hu.gcs_cpu_only) @settings(deadline=10000) def test_weighted_sum_grad( self, n, m, d, grad_on_w, seed, gc, dc): input_names = [] input_vars = [] np.random.seed(seed) for i in range(m): X_name = 'X' + str(i) w_name = 'w' + str(i) input_names.extend([X_name, w_name]) var = np.random.rand(n, d).astype(np.float32) vars()[X_name] = var input_vars.append(var) var = np.random.rand(1).astype(np.float32) vars()[w_name] = var input_vars.append(var) op = core.CreateOperator( "WeightedSum", input_names, ['Y'], grad_on_w=grad_on_w, ) output_to_check_grad = ( range(2 * m) if grad_on_w else range(0, 2 * m, 2)) for i in output_to_check_grad: self.assertGradientChecks( device_option=gc, op=op, inputs=input_vars, outputs_to_check=i, outputs_with_grads=[0], ) if __name__ == "__main__": serial.testWithArgs()
pytorch-master
caffe2/python/operator_test/weighted_sum_test.py
import numpy as np import hypothesis.strategies as st import unittest import caffe2.python.hypothesis_test_util as hu from caffe2.python import core from caffe2.proto import caffe2_pb2 from hypothesis import assume, given, settings class TestResize(hu.HypothesisTestCase): @given(height_scale=st.floats(0.25, 4.0) | st.just(2.0), width_scale=st.floats(0.25, 4.0) | st.just(2.0), height=st.integers(4, 32), width=st.integers(4, 32), num_channels=st.integers(1, 4), batch_size=st.integers(1, 4), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) @settings(max_examples=10, deadline=None) def test_nearest(self, height_scale, width_scale, height, width, num_channels, batch_size, seed, order, gc, dc): assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU) # NHWC currently only supported for CPU. Ignore other devices. if order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] np.random.seed(seed) op = core.CreateOperator( "ResizeNearest", ["X"], ["Y"], width_scale=width_scale, height_scale=height_scale, order=order, ) X = np.random.rand( batch_size, num_channels, height, width).astype(np.float32) if order == "NHWC": X = X.transpose([0, 2, 3, 1]) def ref(X): output_height = np.int32(height * height_scale) output_width = np.int32(width * width_scale) output_h_idxs, output_w_idxs = np.meshgrid(np.arange(output_height), np.arange(output_width), indexing='ij') input_h_idxs = np.minimum( output_h_idxs / height_scale, height - 1).astype(np.int32) input_w_idxs = np.minimum( output_w_idxs / width_scale, width - 1).astype(np.int32) if order == "NCHW": Y = X[:, :, input_h_idxs, input_w_idxs] else: Y = X[:, input_h_idxs, input_w_idxs, :] return Y, self.assertReferenceChecks(gc, op, [X], ref) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=0.1, threshold=1e-2) @given(height_scale=st.floats(0.25, 4.0) | st.just(2.0), width_scale=st.floats(0.25, 4.0) | st.just(2.0), height=st.integers(4, 32), width=st.integers(4, 32), num_channels=st.integers(1, 4), batch_size=st.integers(1, 4), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) def test_nearest_grad(self, height_scale, width_scale, height, width, num_channels, batch_size, seed, order, gc, dc): assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU) # NHWC currently only supported for CPU. Ignore other devices. if order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] np.random.seed(seed) output_height = np.int32(height * height_scale) output_width = np.int32(width * width_scale) X = np.random.rand(batch_size, num_channels, height, width).astype(np.float32) dY = np.random.rand(batch_size, num_channels, output_height, output_width).astype(np.float32) if order == "NHWC": X = X.transpose([0, 2, 3, 1]) dY = dY.transpose([0, 2, 3, 1]) op = core.CreateOperator( "ResizeNearestGradient", ["dY", "X"], ["dX"], width_scale=width_scale, height_scale=height_scale, order=order, ) def ref(dY, X): dX = np.zeros_like(X) for i in range(output_height): for j in range(output_width): input_i = np.minimum(i / height_scale, height - 1).astype(np.int32) input_j = np.minimum(j / width_scale, width - 1).astype(np.int32) if order == "NCHW": dX[:, :, input_i, input_j] += dY[:, :, i, j] else: dX[:, input_i, input_j, :] += dY[:, i, j, :] return dX, self.assertDeviceChecks(dc, op, [dY, X], [0]) self.assertReferenceChecks(gc, op, [dY, X], ref) @given(height_scale=st.floats(0.25, 4.0) | st.just(2.0), width_scale=st.floats(0.25, 4.0) | st.just(2.0), height=st.integers(4, 8), width=st.integers(4, 8), num_channels=st.integers(1, 4), batch_size=st.integers(1, 4), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) @settings(deadline=10000) def test_nearest_onnx(self, height_scale, width_scale, height, width, num_channels, batch_size, seed, order, gc, dc): assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU) # NHWC currently only supported for CPU. Ignore other devices. if order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] np.random.seed(seed) op = core.CreateOperator( "ResizeNearest", ["X", "scales"], ["Y"], order=order, ) X = np.random.rand( batch_size, num_channels, height, width).astype(np.float32) if order == "NHWC": X = X.transpose([0, 2, 3, 1]) scales = np.array([height_scale, width_scale]).astype(np.float32) def ref(X, scales): output_height = np.int32(height * scales[0]) output_width = np.int32(width * scales[1]) output_h_idxs, output_w_idxs = np.meshgrid(np.arange(output_height), np.arange(output_width), indexing='ij') input_h_idxs = np.minimum( output_h_idxs / scales[0], height - 1).astype(np.int32) input_w_idxs = np.minimum( output_w_idxs / scales[1], width - 1).astype(np.int32) if order == "NCHW": Y = X[:, :, input_h_idxs, input_w_idxs] else: Y = X[:, input_h_idxs, input_w_idxs, :] return Y, self.assertReferenceChecks(gc, op, [X, scales], ref) self.assertDeviceChecks(dc, op, [X, scales], [0]) self.assertGradientChecks(gc, op, [X, scales], 0, [0], stepsize=0.1, threshold=1e-2) @given(height_scale=st.floats(0.25, 4.0) | st.just(2.0), width_scale=st.floats(0.25, 4.0) | st.just(2.0), height=st.integers(4, 8), width=st.integers(4, 8), num_channels=st.integers(1, 4), batch_size=st.integers(1, 4), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) def test_nearest_onnx_grad(self, height_scale, width_scale, height, width, num_channels, batch_size, seed, order, gc, dc): assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU) # NHWC currently only supported for CPU. Ignore other devices. if order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] np.random.seed(seed) output_height = np.int32(height * height_scale) output_width = np.int32(width * width_scale) X = np.random.rand(batch_size, num_channels, height, width).astype(np.float32) dY = np.random.rand(batch_size, num_channels, output_height, output_width).astype(np.float32) if order == "NHWC": X = X.transpose([0, 2, 3, 1]) dY = dY.transpose([0, 2, 3, 1]) scales = np.array([height_scale, width_scale]).astype(np.float32) op = core.CreateOperator( "ResizeNearestGradient", ["dY", "X", "scales"], ["dX"], order=order, ) def ref(dY, X, scales): dX = np.zeros_like(X) for i in range(output_height): for j in range(output_width): input_i = np.minimum(i / scales[0], height - 1).astype(np.int32) input_j = np.minimum(j / scales[1], width - 1).astype(np.int32) if order == "NCHW": dX[:, :, input_i, input_j] += dY[:, :, i, j] else: dX[:, input_i, input_j, :] += dY[:, i, j, :] return dX, self.assertDeviceChecks(dc, op, [dY, X, scales], [0]) self.assertReferenceChecks(gc, op, [dY, X, scales], ref) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/resize_op_test.py
from caffe2.python import workspace, core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np class TestNegateGradient(serial.SerializedTestCase): @given(X=hu.tensor(), inplace=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_forward(self, X, inplace, gc, dc): def neg_grad_ref(X): return (X,) op = core.CreateOperator("NegateGradient", ["X"], ["Y" if not inplace else "X"]) self.assertReferenceChecks(gc, op, [X], neg_grad_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(size=st.lists(st.integers(min_value=1, max_value=20), min_size=1, max_size=5)) def test_grad(self, size): X = np.random.random_sample(size) workspace.ResetWorkspace() workspace.FeedBlob("X", X.astype(np.float32)) net = core.Net("negate_grad_test") Y = net.NegateGradient(["X"], ["Y"]) grad_map = net.AddGradientOperators([Y]) workspace.RunNetOnce(net) # check X_grad == negate of Y_grad x_val, y_val = workspace.FetchBlobs(['X', 'Y']) x_grad_val, y_grad_val = workspace.FetchBlobs([grad_map['X'], grad_map['Y']]) np.testing.assert_array_equal(x_val, y_val) np.testing.assert_array_equal(x_grad_val, y_grad_val * (-1))
pytorch-master
caffe2/python/operator_test/negate_gradient_op_test.py
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import numpy as np class SparseItemwiseDropoutWithReplacementTest(hu.HypothesisTestCase): @given(**hu.gcs_cpu_only) def test_no_dropout(self, gc, dc): X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.int64) Lengths = np.array([2, 2, 2, 2, 2]).astype(np.int32) replacement_value = -1 self.ws.create_blob("X").feed(X) self.ws.create_blob("Lengths").feed(Lengths) sparse_dropout_op = core.CreateOperator( "SparseItemwiseDropoutWithReplacement", ["X", "Lengths"], ["Y", "LY"], ratio=0.0, replacement_value=replacement_value) self.ws.run(sparse_dropout_op) Y = self.ws.blobs["Y"].fetch() OutputLengths = self.ws.blobs["LY"].fetch() self.assertListEqual(X.tolist(), Y.tolist(), "Values should stay unchanged") self.assertListEqual(Lengths.tolist(), OutputLengths.tolist(), "Lengths should stay unchanged.") @given(**hu.gcs_cpu_only) def test_all_dropout(self, gc, dc): X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.int64) Lengths = np.array([2, 2, 2, 2, 2]).astype(np.int32) replacement_value = -1 self.ws.create_blob("X").feed(X) self.ws.create_blob("Lengths").feed(Lengths) sparse_dropout_op = core.CreateOperator( "SparseItemwiseDropoutWithReplacement", ["X", "Lengths"], ["Y", "LY"], ratio=1.0, replacement_value=replacement_value) self.ws.run(sparse_dropout_op) y = self.ws.blobs["Y"].fetch() lengths = self.ws.blobs["LY"].fetch() for elem in y: self.assertEqual(elem, replacement_value, "Expected all \ negative elements when dropout ratio is 1.") for length in lengths: self.assertEqual(length, 2) self.assertEqual(sum(lengths), len(y)) @given(**hu.gcs_cpu_only) def test_all_dropout_empty_input(self, gc, dc): X = np.array([]).astype(np.int64) Lengths = np.array([0]).astype(np.int32) replacement_value = -1 self.ws.create_blob("X").feed(X) self.ws.create_blob("Lengths").feed(Lengths) sparse_dropout_op = core.CreateOperator( "SparseItemwiseDropoutWithReplacement", ["X", "Lengths"], ["Y", "LY"], ratio=1.0, replacement_value=replacement_value) self.ws.run(sparse_dropout_op) y = self.ws.blobs["Y"].fetch() lengths = self.ws.blobs["LY"].fetch() self.assertEqual(len(y), 0, "Expected no dropout value") self.assertEqual(len(lengths), 1, "Expected single element \ in lengths array") self.assertEqual(lengths[0], 0, "Expected 0 as sole length") self.assertEqual(sum(lengths), len(y))
pytorch-master
caffe2/python/operator_test/sparse_itemwise_dropout_with_replacement_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np def entropy(p): q = 1. - p return -p * np.log(p) - q * np.log(q) def jsd(p, q): return [entropy(p / 2. + q / 2.) - entropy(p) / 2. - entropy(q) / 2.] def jsd_grad(go, o, pq_list): p, q = pq_list m = (p + q) / 2. return [np.log(p * (1 - m) / (1 - p) / m) / 2. * go, None] class TestJSDOps(serial.SerializedTestCase): @serial.given(n=st.integers(10, 100), **hu.gcs_cpu_only) def test_bernoulli_jsd(self, n, gc, dc): p = np.random.rand(n).astype(np.float32) q = np.random.rand(n).astype(np.float32) op = core.CreateOperator("BernoulliJSD", ["p", "q"], ["l"]) self.assertReferenceChecks( device_option=gc, op=op, inputs=[p, q], reference=jsd, output_to_grad='l', grad_reference=jsd_grad, )
pytorch-master
caffe2/python/operator_test/jsd_ops_test.py
import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import numpy as np from caffe2.python import core, workspace from hypothesis import given, settings, strategies as st def batched_boarders_and_data( data_min_size=5, data_max_size=10, examples_min_number=1, examples_max_number=4, example_min_size=1, example_max_size=3, dtype=np.float32, elements=None, ): dims_ = st.tuples( st.integers(min_value=data_min_size, max_value=data_max_size), st.integers(min_value=examples_min_number, max_value=examples_max_number), st.integers(min_value=example_min_size, max_value=example_max_size), ) return dims_.flatmap( lambda dims: st.tuples( hu.arrays( [dims[1], dims[2], 2], dtype=np.int32, elements=st.integers(min_value=0, max_value=dims[0]), ), hu.arrays([dims[0]], dtype, elements), ) ) @st.composite def _tensor_splits(draw): lengths = draw(st.lists(st.integers(1, 5), min_size=1, max_size=10)) batch_size = draw(st.integers(1, 5)) element_pairs = [ (batch, r) for batch in range(batch_size) for r in range(len(lengths)) ] perm = draw(st.permutations(element_pairs)) perm = perm[:-1] # skip one range ranges = [[(0, 0)] * len(lengths) for _ in range(batch_size)] offset = 0 for pair in perm: ranges[pair[0]][pair[1]] = (offset, lengths[pair[1]]) offset += lengths[pair[1]] data = draw( st.lists( st.floats(min_value=-1.0, max_value=1.0), min_size=offset, max_size=offset ) ) key = draw(st.permutations(range(offset))) return ( np.array(data).astype(np.float32), np.array(ranges), np.array(lengths), np.array(key).astype(np.int64), ) @st.composite def _bad_tensor_splits(draw): lengths = draw(st.lists(st.integers(4, 6), min_size=4, max_size=4)) batch_size = 4 element_pairs = [ (batch, r) for batch in range(batch_size) for r in range(len(lengths)) ] perm = draw(st.permutations(element_pairs)) ranges = [[(0, 0)] * len(lengths) for _ in range(batch_size)] offset = 0 # Inject some bad samples depending on the batch. # Batch 2: length is set to 0. This way, 25% of the samples are empty. # Batch 0-1: length is set to half the original length. This way, 50% of the # samples are of mismatched length. for pair in perm: if pair[0] == 2: length = 0 elif pair[0] <= 1: length = lengths[pair[1]] // 2 else: length = lengths[pair[1]] ranges[pair[0]][pair[1]] = (offset, length) offset += length data = draw( st.lists( st.floats(min_value=-1.0, max_value=1.0), min_size=offset, max_size=offset ) ) key = draw(st.permutations(range(offset))) return ( np.array(data).astype(np.float32), np.array(ranges), np.array(lengths), np.array(key).astype(np.int64), ) def gather_ranges(data, ranges): lengths = [] output = [] for example_ranges in ranges: length = 0 for range in example_ranges: assert len(range) == 2 output.extend(data[range[0] : range[0] + range[1]]) length += range[1] lengths.append(length) return output, lengths def gather_ranges_to_dense(data, ranges, lengths): outputs = [] assert len(ranges) batch_size = len(ranges) assert len(ranges[0]) num_ranges = len(ranges[0]) assert ranges.shape[2] == 2 for i in range(num_ranges): out = [] for j in range(batch_size): start, length = ranges[j][i] if not length: out.append([0] * lengths[i]) else: assert length == lengths[i] out.append(data[start : start + length]) outputs.append(np.array(out)) return outputs def gather_ranges_to_dense_with_key(data, ranges, key, lengths): outputs = [] assert len(ranges) batch_size = len(ranges) assert len(ranges[0]) num_ranges = len(ranges[0]) assert ranges.shape[2] == 2 for i in range(num_ranges): out = [] for j in range(batch_size): start, length = ranges[j][i] if not length: out.append([0] * lengths[i]) else: assert length == lengths[i] key_data_list = zip( key[start : start + length], data[start : start + length] ) sorted_key_data_list = sorted(key_data_list, key=lambda x: x[0]) sorted_data = [d for (k, d) in sorted_key_data_list] out.append(sorted_data) outputs.append(np.array(out)) return outputs class TestGatherRanges(serial.SerializedTestCase): @given(boarders_and_data=batched_boarders_and_data(), **hu.gcs_cpu_only) @settings(deadline=10000) def test_gather_ranges(self, boarders_and_data, gc, dc): boarders, data = boarders_and_data def boarders_to_range(boarders): assert len(boarders) == 2 boarders = sorted(boarders) return [boarders[0], boarders[1] - boarders[0]] ranges = np.apply_along_axis(boarders_to_range, 2, boarders) self.assertReferenceChecks( device_option=gc, op=core.CreateOperator( "GatherRanges", ["data", "ranges"], ["output", "lengths"] ), inputs=[data, ranges], reference=gather_ranges, ) @given(tensor_splits=_tensor_splits(), **hu.gcs_cpu_only) @settings(deadline=10000) def test_gather_ranges_split(self, tensor_splits, gc, dc): data, ranges, lengths, _ = tensor_splits self.assertReferenceChecks( device_option=gc, op=core.CreateOperator( "GatherRangesToDense", ["data", "ranges"], ["X_{}".format(i) for i in range(len(lengths))], lengths=lengths, ), inputs=[data, ranges, lengths], reference=gather_ranges_to_dense, ) @given(tensor_splits=_tensor_splits(), **hu.gcs_cpu_only) def test_gather_ranges_with_key_split(self, tensor_splits, gc, dc): data, ranges, lengths, key = tensor_splits self.assertReferenceChecks( device_option=gc, op=core.CreateOperator( "GatherRangesToDense", ["data", "ranges", "key"], ["X_{}".format(i) for i in range(len(lengths))], lengths=lengths, ), inputs=[data, ranges, key, lengths], reference=gather_ranges_to_dense_with_key, ) def test_shape_and_type_inference(self): with hu.temp_workspace("shape_type_inf_int32"): net = core.Net("test_net") net.ConstantFill([], "ranges", shape=[3, 5, 2], dtype=core.DataType.INT32) net.ConstantFill([], "values", shape=[64], dtype=core.DataType.INT64) net.GatherRanges(["values", "ranges"], ["values_output", "lengths_output"]) (shapes, types) = workspace.InferShapesAndTypes([net], {}) self.assertEqual(shapes["values_output"], [64]) self.assertEqual(types["values_output"], core.DataType.INT64) self.assertEqual(shapes["lengths_output"], [3]) self.assertEqual(types["lengths_output"], core.DataType.INT32) @given(tensor_splits=_bad_tensor_splits(), **hu.gcs_cpu_only) @settings(deadline=10000) def test_empty_range_check(self, tensor_splits, gc, dc): data, ranges, lengths, key = tensor_splits workspace.FeedBlob("data", data) workspace.FeedBlob("ranges", ranges) workspace.FeedBlob("key", key) def getOpWithThreshold( min_observation=2, max_mismatched_ratio=0.5, max_empty_ratio=None ): return core.CreateOperator( "GatherRangesToDense", ["data", "ranges", "key"], ["X_{}".format(i) for i in range(len(lengths))], lengths=lengths, min_observation=min_observation, max_mismatched_ratio=max_mismatched_ratio, max_empty_ratio=max_empty_ratio, ) workspace.RunOperatorOnce(getOpWithThreshold()) workspace.RunOperatorOnce( getOpWithThreshold(max_mismatched_ratio=0.3, min_observation=50) ) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce( getOpWithThreshold(max_mismatched_ratio=0.3, min_observation=5) ) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce( getOpWithThreshold(min_observation=50, max_empty_ratio=0.01) ) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/gather_ranges_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest @st.composite def _tensor_splits(draw, add_axis=False): """Generates (axis, split_info, tensor_splits) tuples.""" tensor = draw(hu.tensor(min_value=4)) # Each dim has at least 4 elements. axis = draw(st.integers(-len(tensor.shape), len(tensor.shape) - 1)) if add_axis: # Simple case: get individual slices along one axis, where each of them # is (N-1)-dimensional. The axis will be added back upon concatenation. return ( axis, np.ones(tensor.shape[axis], dtype=np.int32), [ np.array(tensor.take(i, axis=axis)) for i in range(tensor.shape[axis]) ] ) else: # General case: pick some (possibly consecutive, even non-unique) # indices at which we will split the tensor, along the given axis. splits = sorted(draw( st.lists(elements=st.integers(0, tensor.shape[axis]), max_size=4) ) + [0, tensor.shape[axis]]) return ( axis, np.array(np.diff(splits), dtype=np.int32), [ tensor.take(range(splits[i], splits[i + 1]), axis=axis) for i in range(len(splits) - 1) ], ) class TestConcatSplitOps(serial.SerializedTestCase): @serial.given(tensor_splits=_tensor_splits(), **hu.gcs) def test_concat(self, tensor_splits, gc, dc): axis, _, splits = tensor_splits op = core.CreateOperator( "Concat", ['X_{}'.format(i) for i in range(len(splits))], ['concat_result', 'split_info'], axis=axis ) self.assertReferenceChecks( gc, op, splits, lambda *splits: ( np.concatenate(splits, axis=axis), np.array([a.shape[axis] for a in splits]) ), ensure_outputs_are_inferred=True, ) self.assertDeviceChecks(dc, op, splits, [0, 1]) self.assertGradientChecks( gc, op, splits, 0, [0], ensure_outputs_are_inferred=True, ) @given(tensor_splits=_tensor_splits(add_axis=True), **hu.gcs) @settings(deadline=10000) def test_concat_add_axis(self, tensor_splits, gc, dc): axis, _, splits = tensor_splits op = core.CreateOperator( "Concat", ['X_{}'.format(i) for i in range(len(splits))], ['concat_result', 'split_info'], axis=axis, add_axis=1 ) self.assertReferenceChecks( gc, op, splits, lambda *splits: ( np.concatenate( [np.expand_dims(a, axis) for a in splits], axis=axis ), np.array([1] * len(splits)) ), ensure_outputs_are_inferred=True, ) self.assertDeviceChecks(dc, op, splits, [0, 1]) for i in range(len(splits)): self.assertGradientChecks( gc, op, splits, i, [0], ensure_outputs_are_inferred=True, ) @serial.given(tensor_splits=_tensor_splits(), split_as_arg=st.booleans(), **hu.gcs) def test_split(self, tensor_splits, split_as_arg, gc, dc): axis, split_info, splits = tensor_splits split_as_arg = True if split_as_arg: input_names = ['input'] input_tensors = [np.concatenate(splits, axis=axis)] kwargs = dict(axis=axis, split=split_info) else: input_names = ['input', 'split'] input_tensors = [np.concatenate(splits, axis=axis), split_info] kwargs = dict(axis=axis) op = core.CreateOperator( "Split", input_names, ['X_{}'.format(i) for i in range(len(split_info))], **kwargs ) def split_ref(input, split=split_info): s = np.cumsum([0] + list(split)) return [ np.array(input.take(np.arange(s[i], s[i + 1]), axis=axis)) for i in range(len(split)) ] outputs_with_grad = range(len(split_info)) self.assertReferenceChecks( gc, op, input_tensors, split_ref, ensure_outputs_are_inferred=True, ) self.assertDeviceChecks(dc, op, input_tensors, outputs_with_grad) self.assertGradientChecks( gc, op, input_tensors, 0, outputs_with_grad, ensure_outputs_are_inferred=True, ) @given( inputs=hu.lengths_tensor( dtype=np.float32, min_value=1, max_value=11, allow_empty=True, ), split_by_scaling_lengths=st.booleans(), **hu.gcs ) @settings(deadline=10000) def test_split_by_lengths(self, inputs, split_by_scaling_lengths, gc, dc): data, lengths = inputs len_len = len(lengths) def _find_factor_simple(x): for i in [2, 3, 5, 7, 9, 11]: if x % i == 0: return i return x num_output = _find_factor_simple(len_len) scaling_factor = 1 if split_by_scaling_lengths: sum_len = sum(lengths) sum_scaling_lengths = _find_factor_simple(sum_len) if sum_scaling_lengths != sum_len and sum_scaling_lengths >= num_output: scaling_lengths = [1] * (num_output - 1) + [sum_scaling_lengths - num_output + 1] len_len = len(scaling_lengths) lengths = np.array(scaling_lengths, dtype=np.int32) scaling_factor = (sum_len // sum_scaling_lengths) if sum_scaling_lengths else 1 axis = 0 op = core.CreateOperator( "SplitByLengths", ["data", "lengths"], ['X_{}'.format(i) for i in range(num_output)], axis=axis, use_scaling_lengths=split_by_scaling_lengths, ) def split_by_lengths_ref(data, lengths, num_output=num_output, axis=0): idxs = np.cumsum([0] + list(lengths)).astype(np.int32) return [ np.array( data.take( np.arange( scaling_factor * idxs[i * len_len // num_output], scaling_factor * idxs[(i + 1) * len_len // num_output] ), axis=axis ) ) for i in range(num_output) ] outputs_with_grad = range(num_output) input_tensors = [data, lengths] self.assertReferenceChecks( hu.cpu_do, op, input_tensors, split_by_lengths_ref) self.assertDeviceChecks(dc, op, input_tensors, outputs_with_grad) self.assertGradientChecks( hu.cpu_do, op, input_tensors, 0, outputs_with_grad, input_device_options={"lengths": hu.cpu_do}) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/concat_split_op_test.py
import numpy as np from hypothesis import given import hypothesis.strategies as st from caffe2.python import core from caffe2.python import workspace import caffe2.python.hypothesis_test_util as hu class TestWeightedSample(hu.HypothesisTestCase): @given( batch=st.integers(min_value=0, max_value=128), weights_len=st.integers(min_value=0, max_value=128), **hu.gcs ) def test_weighted_sample(self, batch, weights_len, gc, dc): weights = np.zeros((batch, weights_len)) values = np.zeros((batch, weights_len)) rand_indices = [] rand_values = [] if batch > 0 and weights_len > 0: for i in range(batch): rand_tmp = np.random.randint(0, weights_len) rand_val = np.random.rand() rand_indices.append(rand_tmp) rand_values.append(rand_val) weights[i, rand_tmp] = 1.0 values[i, rand_tmp] = rand_val rand_indices = np.array(rand_indices, dtype=np.float32) rand_values = np.array(rand_values, dtype=np.float32) workspace.FeedBlob("weights", weights.astype(np.float32)) workspace.FeedBlob("values", values.astype(np.float32)) # output both indices and values op = core.CreateOperator( "WeightedSample", ["weights", "values"], ["sample_indices", "sample_values"] ) workspace.RunOperatorOnce(op) result_indices = workspace.FetchBlob("sample_indices") result_values = workspace.FetchBlob("sample_values") if batch > 0 and weights_len > 0: for i in range(batch): np.testing.assert_allclose(rand_indices[i], result_indices[i]) np.testing.assert_allclose(rand_values[i], result_values[i]) else: np.testing.assert_allclose(rand_indices, result_indices) np.testing.assert_allclose(rand_values, result_values) self.assertDeviceChecks( dc, op, [weights.astype(np.float32), values.astype(np.float32)], [0, 1] ) # output indices only op2 = core.CreateOperator( "WeightedSample", ["weights"], ["sample_indices_2"] ) workspace.RunOperatorOnce(op2) result = workspace.FetchBlob("sample_indices_2") if batch > 0 and weights_len > 0: for i in range(batch): np.testing.assert_allclose(rand_indices[i], result[i]) else: np.testing.assert_allclose(rand_indices, result) self.assertDeviceChecks(dc, op2, [weights.astype(np.float32)], [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/weighted_sample_test.py
from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np def _fill_diagonal(shape, value): result = np.zeros(shape) np.fill_diagonal(result, value) return (result,) class TestFillerOperator(serial.SerializedTestCase): @given(**hu.gcs) @settings(deadline=10000) def test_shape_error(self, gc, dc): op = core.CreateOperator( 'GaussianFill', [], 'out', shape=32, # illegal parameter mean=0.0, std=1.0, ) exception = False try: workspace.RunOperatorOnce(op) except Exception: exception = True self.assertTrue(exception, "Did not throw exception on illegal shape") op = core.CreateOperator( 'ConstantFill', [], 'out', shape=[], # scalar value=2.0, ) exception = False self.assertTrue(workspace.RunOperatorOnce(op)) self.assertEqual(workspace.FetchBlob('out'), [2.0]) @given(**hu.gcs) @settings(deadline=10000) def test_int64_shape(self, gc, dc): large_dim = 2 ** 31 + 1 net = core.Net("test_shape_net") net.UniformFill( [], 'out', shape=[0, large_dim], min=0.0, max=1.0, ) self.assertTrue(workspace.CreateNet(net)) self.assertTrue(workspace.RunNet(net.Name())) self.assertEqual(workspace.blobs['out'].shape, (0, large_dim)) @given( shape=hu.dims().flatmap( lambda dims: hu.arrays( [dims], dtype=np.int64, elements=st.integers(min_value=0, max_value=20) ) ), a=st.integers(min_value=0, max_value=100), b=st.integers(min_value=0, max_value=100), **hu.gcs ) @settings(deadline=10000) def test_uniform_int_fill_op_blob_input(self, shape, a, b, gc, dc): net = core.Net('test_net') with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): shape_blob = net.Const(shape, dtype=np.int64) a_blob = net.Const(a, dtype=np.int32) b_blob = net.Const(b, dtype=np.int32) uniform_fill = net.UniformIntFill([shape_blob, a_blob, b_blob], 1, input_as_shape=1) workspace.RunNetOnce(net) blob_out = workspace.FetchBlob(uniform_fill) if b < a: new_shape = shape[:] new_shape[0] = 0 np.testing.assert_array_equal(new_shape, blob_out.shape) else: np.testing.assert_array_equal(shape, blob_out.shape) self.assertTrue((blob_out >= a).all()) self.assertTrue((blob_out <= b).all()) @given( **hu.gcs ) def test_uniform_fill_using_arg(self, gc, dc): net = core.Net('test_net') shape = [2**3, 5] # uncomment this to test filling large blob # shape = [2**30, 5] min_v = -100 max_v = 100 output_blob = net.UniformIntFill( [], ['output_blob'], shape=shape, min=min_v, max=max_v, ) workspace.RunNetOnce(net) output_data = workspace.FetchBlob(output_blob) np.testing.assert_array_equal(shape, output_data.shape) min_data = np.min(output_data) max_data = np.max(output_data) self.assertGreaterEqual(min_data, min_v) self.assertLessEqual(max_data, max_v) self.assertNotEqual(min_data, max_data) @serial.given( shape=st.sampled_from( [ [3, 3], [5, 5, 5], [7, 7, 7, 7], ] ), **hu.gcs ) def test_diagonal_fill_op_float(self, shape, gc, dc): value = 2.5 op = core.CreateOperator( 'DiagonalFill', [], 'out', shape=shape, # scalar value=value, ) for device_option in dc: op.device_option.CopyFrom(device_option) # Check against numpy reference self.assertReferenceChecks(gc, op, [shape, value], _fill_diagonal) @given(**hu.gcs) def test_diagonal_fill_op_int(self, gc, dc): value = 2 shape = [3, 3] op = core.CreateOperator( 'DiagonalFill', [], 'out', shape=shape, dtype=core.DataType.INT32, value=value, ) # Check against numpy reference self.assertReferenceChecks(gc, op, [shape, value], _fill_diagonal) @serial.given(lengths=st.lists(st.integers(min_value=0, max_value=10), min_size=0, max_size=10), **hu.gcs) def test_lengths_range_fill(self, lengths, gc, dc): op = core.CreateOperator( "LengthsRangeFill", ["lengths"], ["increasing_seq"]) def _len_range_fill(lengths): sids = [] for _, l in enumerate(lengths): sids.extend(list(range(l))) return (np.array(sids, dtype=np.int32), ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[np.array(lengths, dtype=np.int32)], reference=_len_range_fill) @given(**hu.gcs) def test_gaussian_fill_op(self, gc, dc): op = core.CreateOperator( 'GaussianFill', [], 'out', shape=[17, 3, 3], # sample odd dimensions mean=0.0, std=1.0, ) for device_option in dc: op.device_option.CopyFrom(device_option) assert workspace.RunOperatorOnce(op), "GaussianFill op did not run " "successfully" blob_out = workspace.FetchBlob('out') assert np.count_nonzero(blob_out) > 0, "All generated elements are " "zeros. Is the random generator functioning correctly?" @given(**hu.gcs) def test_msra_fill_op(self, gc, dc): op = core.CreateOperator( 'MSRAFill', [], 'out', shape=[15, 5, 3], # sample odd dimensions ) for device_option in dc: op.device_option.CopyFrom(device_option) assert workspace.RunOperatorOnce(op), "MSRAFill op did not run " "successfully" blob_out = workspace.FetchBlob('out') assert np.count_nonzero(blob_out) > 0, "All generated elements are " "zeros. Is the random generator functioning correctly?" @given( min=st.integers(min_value=0, max_value=5), range=st.integers(min_value=1, max_value=10), emb_size=st.sampled_from((10000, 20000, 30000)), dim_size=st.sampled_from((16, 32, 64)), **hu.gcs) @settings(deadline=None) def test_fp16_uniformfill_op(self, min, range, emb_size, dim_size, gc, dc): op = core.CreateOperator( 'Float16UniformFill', [], 'out', shape=[emb_size, dim_size], min=float(min), max=float(min + range), ) for device_option in dc: op.device_option.CopyFrom(device_option) assert workspace.RunOperatorOnce(op), "Float16UniformFill op did not run successfully" self.assertEqual(workspace.blobs['out'].shape, (emb_size, dim_size)) blob_out = workspace.FetchBlob('out') expected_type = "float16" expected_mean = min + range / 2.0 expected_var = range * range / 12.0 expected_min = min expected_max = min + range self.assertEqual(blob_out.dtype.name, expected_type) self.assertAlmostEqual(np.mean(blob_out, dtype=np.float32), expected_mean, delta=0.1) self.assertAlmostEqual(np.var(blob_out, dtype=np.float32), expected_var, delta=0.1) self.assertGreaterEqual(np.min(blob_out), expected_min) self.assertLessEqual(np.max(blob_out), expected_max) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/filler_ops_test.py
#!/usr/bin/env python3 import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, utils from hypothesis import given class TestAliasWithNameOp(hu.HypothesisTestCase): @given( shape=st.lists(st.integers(0, 5), min_size=1, max_size=3), dtype=st.sampled_from([np.float32, np.int64]), **hu.gcs ) def test_alias_with_name_op(self, shape, dtype, dc, gc): test_input = (100 * np.random.random(shape)).astype(dtype) test_inputs = [test_input] alias_op = core.CreateOperator( "AliasWithName", ["input"], ["output"], device_option=gc, ) alias_op.arg.add().CopyFrom(utils.MakeArgument("name", "whatever_name")) def reference_func(x): return (x,) self.assertReferenceChecks(gc, alias_op, test_inputs, reference_func)
pytorch-master
caffe2/python/operator_test/alias_with_name_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st from hypothesis import given, settings import numpy as np class TestFindOperator(serial.SerializedTestCase): @given(n=st.sampled_from([1, 4, 8, 31, 79, 150]), idxsize=st.sampled_from([2, 4, 8, 1000, 5000]), **hu.gcs) @settings(deadline=10000) def test_find(self, n, idxsize, gc, dc): maxval = 10 def findop(idx, X): res = [] for j in list(X.flatten()): i = np.where(idx == j)[0] if len(i) == 0: res.append(-1) else: res.append(i[-1]) print("Idx: {} X: {}".format(idx, X)) print("Res: {}".format(res)) return [np.array(res).astype(np.int32)] X = (np.random.rand(n) * maxval).astype(np.int32) idx = (np.random.rand(idxsize) * maxval).astype(np.int32) op = core.CreateOperator( "Find", ["idx", "X"], ["y"], ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[idx, X], reference=findop, )
pytorch-master
caffe2/python/operator_test/find_op_test.py
import numpy as np # Note we explicitly cast variables to np.float32 in a couple of places to avoid # the default casting in Python often resuling in double precision and to make # sure we're doing the same numerics as C++ code. def param_search_greedy(x, bit_rate, n_bins=200, ratio=0.16): xmin, xmax = np.min(x), np.max(x) stepsize = (xmax - xmin) / np.float32(n_bins) min_bins = np.float32(n_bins) * (np.float32(1) - np.float32(ratio)) xq, loss = _compress_uniform_simplified(x, bit_rate, xmin, xmax) solutions = [] # [(left, right, loss)] # local optima solution cur_min, cur_max, cur_loss = xmin, xmax, loss thr = min_bins * stepsize while cur_min + thr < cur_max: # move left xq, loss1 = _compress_uniform_simplified( x, bit_rate, cur_min + stepsize, cur_max ) # move right xq, loss2 = _compress_uniform_simplified( x, bit_rate, cur_min, cur_max - stepsize ) if cur_loss < loss1 and cur_loss < loss2: # found a local optima solutions.append((cur_min, cur_max, cur_loss)) if loss1 < loss2: cur_min, cur_max, cur_loss = cur_min + stepsize, cur_max, loss1 else: cur_min, cur_max, cur_loss = cur_min, cur_max - stepsize, loss2 if len(solutions): best = solutions[0] for solution in solutions: if solution[-1] < best[-1]: best = solution return best[0], best[1] return xmin, xmax def _compress_uniform_simplified(X, bit_rate, xmin, xmax, fp16_scale_bias=True): # affine transform to put Xq in [0,2**bit_rate - 1] # Xq = (2 ** bit_rate - 1) * (Xq - xmin) / data_range if fp16_scale_bias: xmin = xmin.astype(np.float16).astype(np.float32) data_range = xmax - xmin scale = np.where( data_range == 0, np.float32(1), data_range / np.float32(2 ** bit_rate - 1) ) if fp16_scale_bias: scale = scale.astype(np.float16).astype(np.float32) inverse_scale = np.float32(1) / scale Xq = np.clip(np.round((X - xmin) * inverse_scale), 0, np.float32(2 ** bit_rate - 1)) Xq = Xq * scale + xmin # Manually compute loss instead of using np.linalg.norm to use the same # accumulation order used by C++ code vlen = 8 loss_v = np.zeros(vlen).astype(np.float32) for i in range(len(Xq) // vlen * vlen): loss_v[i % vlen] += (X[i] - Xq[i]) * (X[i] - Xq[i]) loss = np.float32(0) for i in range(vlen): loss += loss_v[i] for i in range(len(Xq) // vlen * vlen, len(Xq)): loss += (X[i] - Xq[i]) * (X[i] - Xq[i]) loss = np.sqrt(loss) return Xq, loss
pytorch-master
caffe2/python/operator_test/fused_nbit_rowwise_test_helper.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class DistanceTest(serial.SerializedTestCase): @serial.given(n=st.integers(1, 3), dim=st.integers(4, 16), **hu.gcs) def test_cosine_similarity(self, n, dim, gc, dc): X = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) Y = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) self.ws.create_blob("X").feed(X) self.ws.create_blob("Y").feed(Y) kEps = 1e-12 cos_op = core.CreateOperator("CosineSimilarity", ["X", "Y"], ["cos"]) self.ws.run(cos_op) cos = np.divide(np.multiply(X, Y).sum(axis=1), np.multiply(np.linalg.norm(X, axis=1) + kEps, np.linalg.norm(Y, axis=1) + kEps)) np.testing.assert_allclose(self.ws.blobs[("cos")].fetch(), cos, rtol=1e-4, atol=1e-4) self.assertGradientChecks(gc, cos_op, [X, Y], 0, [0], stepsize=1e-2, threshold=1e-2) self.assertGradientChecks(gc, cos_op, [X, Y], 1, [0], stepsize=1e-2, threshold=1e-2) @serial.given(inputs=hu.tensors(n=2, min_dim=1, max_dim=2, dtype=np.float32), **hu.gcs) def test_dot_product(self, inputs, gc, dc): X, Y = inputs op = core.CreateOperator( 'DotProduct', ['X', 'Y'], ['DOT'], ) def dot_ref(X, Y): return ([np.dot(x, y) for x, y in zip(X, Y)],) # Check against numpy dot reference self.assertReferenceChecks(gc, op, [X, Y], dot_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X, Y], [0]) # Gradient check wrt X self.assertGradientChecks(gc, op, [X, Y], 0, [0]) # Gradient check wrt Y self.assertGradientChecks(gc, op, [X, Y], 1, [0]) @serial.given(n=st.integers(1, 3), dim=st.integers(4, 16), **hu.gcs) def test_L1_distance(self, n, dim, gc, dc): X = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) Y = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) # avoid kinks by moving away from 0 X += 0.02 * np.sign(X - Y) X[(X - Y) == 0.0] += 0.02 self.ws.create_blob("X").feed(X) self.ws.create_blob("Y").feed(Y) op = core.CreateOperator( 'L1Distance', ['X', 'Y'], ['l1_dist'], ) self.ws.run(op) np.testing.assert_allclose(self.ws.blobs[("l1_dist")].fetch(), [np.linalg.norm(x - y, ord=1) for x, y in zip(X, Y)], rtol=1e-4, atol=1e-4) self.assertDeviceChecks(dc, op, [X, Y], [0]) # Gradient check wrt X self.assertGradientChecks(gc, op, [X, Y], 0, [0], stepsize=1e-2, threshold=1e-2) # Gradient check wrt Y self.assertGradientChecks(gc, op, [X, Y], 1, [0], stepsize=1e-2, threshold=1e-2) @serial.given(n=st.integers(1, 3), dim=st.integers(4, 16), **hu.gcs) def test_L2_distance(self, n, dim, gc, dc): X = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) Y = np.random.uniform(-1, 1, (n, dim)).astype(np.float32) self.ws.create_blob("X").feed(X) self.ws.create_blob("Y").feed(Y) l2_op = core.CreateOperator("SquaredL2Distance", ["X", "Y"], ["l2_dist"]) self.ws.run(l2_op) np.testing.assert_allclose(self.ws.blobs[("l2_dist")].fetch(), np.square(X - Y).sum(axis=1) * 0.5, rtol=1e-4, atol=1e-4) self.assertGradientChecks(gc, l2_op, [X, Y], 0, [0], stepsize=1e-2, threshold=1e-2) self.assertGradientChecks(gc, l2_op, [X, Y], 1, [0], stepsize=1e-2, threshold=1e-2)
pytorch-master
caffe2/python/operator_test/distance_op_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np # The reference implementation is susceptible to numerical cancellation when # *lambda1* is small and *data* is near one. We leave it up to the caller to # truncate lambda to zero or bound data away from one. Unfortunately, the C++ # implementation may be using higher precision than the python version, which # could cause this test to fail. We bound inputs away from the critical values. # (Note that a tolerance of 1e-6 on _either_ parameter is typically sufficient # to avoid catastrophic cancellation when the other is far from zero/one.) TOLERANCE = 1e-3 @st.composite def _inputs(draw): N = draw(st.integers(min_value=0, max_value=5)) D = draw(st.integers(min_value=1, max_value=5)) # N, D, data, lambda1, lambda2 return ( N, D, draw(st.lists( min_size=N * D, max_size=N * D, elements=st.one_of( st.floats(min_value=-10, max_value=1 - TOLERANCE), st.floats(min_value=1 + TOLERANCE, max_value=10)) )), draw(st.lists( elements=st.one_of( st.floats(min_value=-2, max_value=-TOLERANCE), st.floats(min_value=TOLERANCE, max_value=2)), min_size=D, max_size=D, )), draw(st.lists( elements=st.floats(min_value=-2, max_value=2), min_size=D, max_size=D, )), ) class TestBatchBoxCox(serial.SerializedTestCase): @given( inputs=_inputs(), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_batch_box_cox(self, inputs, gc, dc): self.batch_box_cox(inputs, gc, dc) @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_lambda1_is_all_zero(self, gc, dc): inputs = (1, 1, [[2]], [0], [0]) self.batch_box_cox(inputs, gc, dc) inputs = (2, 1, [[2], [4]], [0], [0]) self.batch_box_cox(inputs, gc, dc) inputs = (1, 3, [[1, 2, 3]], [0, 0, 0], [0, 0, 0]) self.batch_box_cox(inputs, gc, dc) inputs = (2, 3, [[1, 2, 3], [4, 5, 6]], [0, 0, 0], [0, 0, 0]) self.batch_box_cox(inputs, gc, dc) @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_lambda1_is_partially_zero(self, gc, dc): inputs = (1, 5, [[1, 2, 3, 4, 5]], [0, -.5, 0, .5, 0], [0.1, 0.2, 0.3, 0.4, 0.5]) self.batch_box_cox(inputs, gc, dc) inputs = (3, 5, [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [1, 2, 3, 4, 5]], [0, -.5, 0, .5, 0], [0.1, 0.2, 0.3, 0.4, 0.5]) self.batch_box_cox(inputs, gc, dc) inputs = (2, 6, [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], [0, -.5, 0, .5, 0, 1], [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) self.batch_box_cox(inputs, gc, dc) inputs = (2, 7, [[1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14]], [0, -.5, 0, .5, 0, 1, 0], [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]) self.batch_box_cox(inputs, gc, dc) @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_bound_base_away_from_zero(self, gc, dc): inputs = (2, 3, [[1e-5, 1e-6, 1e-7], [1e-7, -1e-6, 1e-5]], [0, 0, 0], [0, 0, 1e-6]) self.batch_box_cox(inputs, gc, dc) def batch_box_cox(self, inputs, gc, dc): N, D, data, lambda1, lambda2 = inputs data = np.array(data, dtype=np.float32).reshape(N, D) lambda1 = np.array(lambda1, dtype=np.float32) lambda2 = np.array(lambda2, dtype=np.float32) # Bound data away from one. See comment in _inputs() above. base = data + lambda2 data[(base > 1 - TOLERANCE) & (base < 1 + TOLERANCE)] += 2 * TOLERANCE def ref(data, lambda1, lambda2): dim_1 = data.shape[1] output = np.copy(data) if data.size <= 0: return [output] for i in range(dim_1): output[:, i] = data[:, i] + lambda2[i] output[:, i] = np.maximum(output[:, i], 1e-6) if lambda1[i] == 0: output[:, i] = np.log(output[:, i]) else: output[:, i] =\ (np.power(output[:, i], lambda1[i]) - 1) / lambda1[i] return [output] for naive in [False, True]: op = core.CreateOperator( 'BatchBoxCox', ['data', 'lambda1', 'lambda2'], ['output'], naive=naive, # Note examples above with D=5, 6, 7. # A zero value falls back to the naive implementation. min_block_size=0 if naive else 6 ) self.assertReferenceChecks(gc, op, [data, lambda1, lambda2], ref) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/batch_box_cox_test.py
import numpy as np from hypothesis import given, assume, settings import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.mkl_test_util as mu import caffe2.python.serialized_test.serialized_test_util as serial from scipy.stats import norm import unittest class TestActivations(serial.SerializedTestCase): @given(X=hu.tensor(), in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **mu.gcs) @settings(deadline=10000) def test_relu(self, X, in_place, engine, gc, dc): if gc == mu.mkl_do: in_place = False op = core.CreateOperator( "Relu", ["X"], ["X"] if in_place else ["Y"], engine=engine, ) def relu_ref(X): return [np.maximum(X, 0.0)] # go away from the origin point to avoid kink problems X += 0.02 * np.sign(X) X[X == 0.0] += 0.02 self.assertReferenceChecks(gc, op, [X], relu_ref, ensure_outputs_are_inferred=True) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], ensure_outputs_are_inferred=True) @given(N=st.integers(1, 10), M=st.integers(1, 10), in_place=st.booleans(), **hu.gcs) def test_relu_empty_input(self, N, M, in_place, gc, dc): op = core.CreateOperator( "Relu", ["X"], ["X"] if in_place else ["Y"], ) def relu_ref(X): return [np.maximum(X, 0.0)] X = np.random.randn(0, N, M).astype(np.float32) self.assertReferenceChecks(gc, op, [X], relu_ref, ensure_outputs_are_inferred=True) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], ensure_outputs_are_inferred=True) @unittest.skipIf(not workspace.has_gpu_support, "Relu for float16 can only run on GPU now.") @given(X=hu.tensor(dtype=np.float16), in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_relu_fp16(self, X, in_place, engine, gc, dc): # fp16 is only supported on CUDA/HIP assume(core.IsGPUDeviceType(gc.device_type)) op = core.CreateOperator( "Relu", ["X"], ["X"] if in_place else ["Y"], engine=engine, ) def relu_ref(X): return [np.maximum(X, 0.0)] def relu_grad_ref(g_out, outputs, fwd_inputs): dY = g_out [Y] = outputs dX = dY dX[Y == 0] = 0 return [dX] # go away from the origin point to avoid kink problems X += 0.02 * np.sign(X) X[X == 0.0] += 0.02 self.assertReferenceChecks( gc, op, [X], relu_ref, output_to_grad="X" if in_place else "Y", grad_reference=relu_grad_ref) @serial.given(X=hu.tensor(elements=hu.floats(-3.0, 3.0)), n=hu.floats(min_value=0.5, max_value=2.0), in_place=st.booleans(), **hu.gcs) def test_relu_n(self, X, n, in_place, gc, dc): op = core.CreateOperator( "ReluN", ["X"], ["X"] if in_place else ["Y"], n=n, ) def relu_n_ref(X): return [np.minimum(np.maximum(X, 0.0), n)] # go away from 0 and n to avoid kink problems X += 0.04 * np.sign(X) X[X == 0.0] += 0.04 X -= n X += 0.02 * np.sign(X) X[X == 0.0] -= 0.02 X += n self.assertReferenceChecks(gc, op, [X], relu_n_ref, ensure_outputs_are_inferred=True) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=0.005, ensure_outputs_are_inferred=True) @serial.given(X=hu.tensor(), alpha=hu.floats(min_value=0.1, max_value=2.0), in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_elu(self, X, alpha, in_place, engine, gc, dc): op = core.CreateOperator( "Elu", ["X"], ["X"] if in_place else ["Y"], alpha=alpha, engine=engine, ) def elu_ref(X): Y = X Y[X < 0] = alpha * (np.exp(X[X < 0]) - 1.0) return [Y] # go away from the origin point to avoid kink problems X += 0.04 * np.sign(X) X[X == 0.0] += 0.04 self.assertReferenceChecks(gc, op, [X], elu_ref, ensure_outputs_are_inferred=True) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=1e-2, ensure_outputs_are_inferred=True) @given(X=hu.tensor(min_dim=4, max_dim=4), alpha=hu.floats(min_value=0.1, max_value=2.0), inplace=st.booleans(), shared=st.booleans(), order=st.sampled_from(["NCHW", "NHWC"]), seed=st.sampled_from([20, 100]), **hu.gcs) @settings(deadline=10000) def test_prelu(self, X, alpha, inplace, shared, order, seed, gc, dc): np.random.seed(seed) W = np.random.randn( X.shape[1] if order == "NCHW" else X.shape[3]).astype(np.float32) if shared: W = np.random.randn(1).astype(np.float32) # go away from the origin point to avoid kink problems X += 0.04 * np.sign(X) X[X == 0.0] += 0.04 def prelu_ref(X, W): Y = X.copy() W = W.reshape(1, -1, 1, 1) if order == "NCHW" \ else W.reshape(1, 1, 1, -1) assert len(X.shape) == 4 neg_indices = X <= 0 assert len(neg_indices.shape) == 4 assert X.shape == neg_indices.shape Y[neg_indices] = (Y * W)[neg_indices] return (Y,) op = core.CreateOperator( "PRelu", ["X", "W"], ["Y" if not inplace else "X"], alpha=alpha, order=order) self.assertReferenceChecks(gc, op, [X, W], prelu_ref, ensure_outputs_are_inferred=True) # Check over multiple devices self.assertDeviceChecks(dc, op, [X, W], [0]) if not inplace: # Gradient check wrt X self.assertGradientChecks(gc, op, [X, W], 0, [0], stepsize=1e-2, ensure_outputs_are_inferred=True) # Gradient check wrt W self.assertGradientChecks(gc, op, [X, W], 1, [0], stepsize=1e-2, ensure_outputs_are_inferred=True) @serial.given(X=hu.tensor(), alpha=hu.floats(min_value=0.1, max_value=2.0), inplace=st.booleans(), **hu.gcs) def test_leaky_relu(self, X, alpha, inplace, gc, dc): # go away from the origin point to avoid kink problems X += 0.04 * np.sign(X) X[X == 0.0] += 0.04 def leaky_relu_ref(X): Y = X.copy() neg_indices = X <= 0 Y[neg_indices] = Y[neg_indices] * alpha return (Y,) op = core.CreateOperator( "LeakyRelu", ["X"], ["Y" if not inplace else "X"], alpha=alpha) self.assertReferenceChecks(gc, op, [X], leaky_relu_ref, ensure_outputs_are_inferred=True) # Check over multiple devices self.assertDeviceChecks(dc, op, [X], [0]) @given(X=hu.tensor(), inplace=st.booleans(), **hu.gcs) def test_leaky_relu_default(self, X, inplace, gc, dc): # go away from the origin point to avoid kink problems X += 0.04 * np.sign(X) X[X == 0.0] += 0.04 def leaky_relu_ref(X): Y = X.copy() neg_indices = X <= 0 Y[neg_indices] = Y[neg_indices] * 0.01 return (Y,) op = core.CreateOperator( "LeakyRelu", ["X"], ["Y" if not inplace else "X"]) self.assertReferenceChecks(gc, op, [X], leaky_relu_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X], [0]) @given(X=hu.tensor(), fast_gelu=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_gelu(self, X, fast_gelu, gc, dc): op = core.CreateOperator( "Gelu", ["X"], ["Y"], fast_gelu=fast_gelu, ) def gelu_ref(X): return (X * norm.cdf(X),) tol = 1e-3 if fast_gelu else 1e-4 self.assertReferenceChecks(gc, op, [X], gelu_ref, threshold=tol, ensure_outputs_are_inferred=True) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0], ensure_outputs_are_inferred=True) @given(n=st.integers(0, 6), m=st.integers(4, 6), seed=st.integers(0, 1000), **hu.gcs_cpu_only) def test_mish(self, n, m, gc, dc, seed): np.random.seed(seed) X = np.random.rand(n, m).astype(np.float32) def mish_ref(X): return (X * np.tanh(np.log1p(np.exp(X))),) op = core.CreateOperator( "Mish", ["X"], ["Y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=mish_ref, ensure_outputs_are_inferred=True, ) self.assertGradientChecks( gc, op, [X], 0, [0], ensure_outputs_are_inferred=True) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/activation_ops_test.py
from caffe2.python import core from functools import partial from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest from caffe2.python import workspace def _gen_test_add_padding(with_pad_data=True, is_remove=False): def gen_with_size(args): lengths, inner_shape = args data_dim = [sum(lengths)] + inner_shape lengths = np.array(lengths, dtype=np.int32) if with_pad_data: return st.tuples( st.just(lengths), hu.arrays(data_dim), hu.arrays(inner_shape), hu.arrays(inner_shape)) else: return st.tuples(st.just(lengths), hu.arrays(data_dim)) min_len = 4 if is_remove else 0 lengths = st.lists( st.integers(min_value=min_len, max_value=10), min_size=0, max_size=5) inner_shape = st.lists( st.integers(min_value=1, max_value=3), min_size=0, max_size=2) return st.tuples(lengths, inner_shape).flatmap(gen_with_size) def _add_padding_ref( start_pad_width, end_pad_width, ret_lengths, data, lengths, start_padding=None, end_padding=None): if start_padding is None: start_padding = np.zeros(data.shape[1:], dtype=data.dtype) end_padding = ( end_padding if end_padding is not None else start_padding) out_size = data.shape[0] + ( start_pad_width + end_pad_width) * len(lengths) out = np.ndarray((out_size,) + data.shape[1:]) in_ptr = 0 out_ptr = 0 for length in lengths: out[out_ptr:(out_ptr + start_pad_width)] = start_padding out_ptr += start_pad_width out[out_ptr:(out_ptr + length)] = data[in_ptr:(in_ptr + length)] in_ptr += length out_ptr += length out[out_ptr:(out_ptr + end_pad_width)] = end_padding out_ptr += end_pad_width lengths_out = lengths + (start_pad_width + end_pad_width) if ret_lengths: return (out, lengths_out) else: return (out, ) def _remove_padding_ref(start_pad_width, end_pad_width, data, lengths): pad_width = start_pad_width + end_pad_width out_size = data.shape[0] - ( start_pad_width + end_pad_width) * len(lengths) out = np.ndarray((out_size,) + data.shape[1:]) in_ptr = 0 out_ptr = 0 for length in lengths: out_length = length - pad_width out[out_ptr:(out_ptr + out_length)] = data[ (in_ptr + start_pad_width):(in_ptr + length - end_pad_width)] in_ptr += length out_ptr += out_length lengths_out = lengths - (start_pad_width + end_pad_width) return (out, lengths_out) def _gather_padding_ref(start_pad_width, end_pad_width, data, lengths): start_padding = np.zeros(data.shape[1:], dtype=data.dtype) end_padding = np.zeros(data.shape[1:], dtype=data.dtype) pad_width = start_pad_width + end_pad_width ptr = 0 for length in lengths: for _ in range(start_pad_width): start_padding += data[ptr] ptr += 1 ptr += length - pad_width for _ in range(end_pad_width): end_padding += data[ptr] ptr += 1 return (start_padding, end_padding) class TestSequenceOps(serial.SerializedTestCase): @given(start_pad_width=st.integers(min_value=1, max_value=2), end_pad_width=st.integers(min_value=0, max_value=2), args=_gen_test_add_padding(with_pad_data=True), ret_lengths=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_add_padding( self, start_pad_width, end_pad_width, args, ret_lengths, gc, dc ): lengths, data, start_padding, end_padding = args start_padding = np.array(start_padding, dtype=np.float32) end_padding = np.array(end_padding, dtype=np.float32) outputs = ['output', 'lengths_out'] if ret_lengths else ['output'] op = core.CreateOperator( 'AddPadding', ['data', 'lengths', 'start_padding', 'end_padding'], outputs, padding_width=start_pad_width, end_padding_width=end_pad_width ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[data, lengths, start_padding, end_padding], reference=partial( _add_padding_ref, start_pad_width, end_pad_width, ret_lengths ) ) def _local_test_add_padding_shape_and_type( self, data, start_pad_width, end_pad_width, ret_lengths, lengths=None, ): if ret_lengths and lengths is None: return workspace.ResetWorkspace() workspace.FeedBlob("data", data) if lengths is not None: workspace.FeedBlob("lengths", np.array(lengths).astype(np.int32)) op = core.CreateOperator( 'AddPadding', ['data'] if lengths is None else ['data', 'lengths'], ['output', 'lengths_out'] if ret_lengths else ['output'], padding_width=start_pad_width, end_padding_width=end_pad_width ) add_padding_net = core.Net("add_padding_net") add_padding_net.Proto().op.extend([op]) assert workspace.RunNetOnce( add_padding_net ), "Failed to run the add_padding_net" shapes, types = workspace.InferShapesAndTypes( [add_padding_net], ) expected_shape = list(data.shape) expected_shape[0] += (1 if lengths is None else len(lengths)) * (start_pad_width + end_pad_width) self.assertEqual(shapes["output"], expected_shape) self.assertEqual(types["output"], core.DataType.FLOAT) if ret_lengths: if lengths is None: self.assertEqual(shapes["lengths_out"], [1]) else: self.assertEqual(shapes["lengths_out"], [len(lengths)]) self.assertEqual(types["lengths_out"], core.DataType.INT32) def test_add_padding_shape_and_type_3( self ): for start_pad_width in range(3): for end_pad_width in range(3): for ret_lengths in [True, False]: self._local_test_add_padding_shape_and_type( data=np.random.rand(1, 2).astype(np.float32), lengths=None, start_pad_width=start_pad_width, end_pad_width=end_pad_width, ret_lengths=ret_lengths, ) def test_add_padding_shape_and_type_4( self ): for start_pad_width in range(3): for end_pad_width in range(3): for ret_lengths in [True, False]: self._local_test_add_padding_shape_and_type( data=np.random.rand(3, 1, 2).astype(np.float32), lengths=[1, 1, 1], start_pad_width=start_pad_width, end_pad_width=end_pad_width, ret_lengths=ret_lengths, ) def test_add_padding_shape_and_type_5( self ): for start_pad_width in range(3): for end_pad_width in range(3): for ret_lengths in [True, False]: self._local_test_add_padding_shape_and_type( data=np.random.rand(3, 2, 1).astype(np.float32), lengths=None, start_pad_width=start_pad_width, end_pad_width=end_pad_width, ret_lengths=ret_lengths, ) @given(start_pad_width=st.integers(min_value=0, max_value=3), end_pad_width=st.integers(min_value=0, max_value=3), num_dims=st.integers(min_value=1, max_value=4), num_groups=st.integers(min_value=0, max_value=4), ret_lengths=st.booleans(), **hu.gcs) @settings(deadline=1000) def test_add_padding_shape_and_type( self, start_pad_width, end_pad_width, num_dims, num_groups, ret_lengths, gc, dc ): np.random.seed(666) lengths = [] for _ in range(num_groups): lengths.append(np.random.randint(0, 3)) if sum(lengths) == 0: lengths = [] data_shape = [] for _ in range(num_dims): data_shape.append(np.random.randint(1, 4)) if sum(lengths) > 0: data_shape[0] = sum(lengths) data = np.random.randn(*data_shape).astype(np.float32) self._local_test_add_padding_shape_and_type( data=data, lengths=lengths if len(lengths) else None, start_pad_width=start_pad_width, end_pad_width=end_pad_width, ret_lengths=ret_lengths, ) @given(start_pad_width=st.integers(min_value=1, max_value=2), end_pad_width=st.integers(min_value=0, max_value=2), args=_gen_test_add_padding(with_pad_data=False), **hu.gcs) def test_add_zero_padding(self, start_pad_width, end_pad_width, args, gc, dc): lengths, data = args op = core.CreateOperator( 'AddPadding', ['data', 'lengths'], ['output', 'lengths_out'], padding_width=start_pad_width, end_padding_width=end_pad_width) self.assertReferenceChecks( gc, op, [data, lengths], partial(_add_padding_ref, start_pad_width, end_pad_width, True)) @given(start_pad_width=st.integers(min_value=1, max_value=2), end_pad_width=st.integers(min_value=0, max_value=2), data=hu.tensor(min_dim=1, max_dim=3), **hu.gcs) def test_add_padding_no_length(self, start_pad_width, end_pad_width, data, gc, dc): op = core.CreateOperator( 'AddPadding', ['data'], ['output', 'output_lens'], padding_width=start_pad_width, end_padding_width=end_pad_width) self.assertReferenceChecks( gc, op, [data], partial( _add_padding_ref, start_pad_width, end_pad_width, True, lengths=np.array([data.shape[0]]))) # Uncomment the following seed to make this fail. # @seed(302934307671667531413257853548643485645) # See https://github.com/caffe2/caffe2/issues/1547 @unittest.skip("flaky test") @given(start_pad_width=st.integers(min_value=1, max_value=2), end_pad_width=st.integers(min_value=0, max_value=2), args=_gen_test_add_padding(with_pad_data=False, is_remove=True), **hu.gcs) def test_remove_padding(self, start_pad_width, end_pad_width, args, gc, dc): lengths, data = args op = core.CreateOperator( 'RemovePadding', ['data', 'lengths'], ['output', 'lengths_out'], padding_width=start_pad_width, end_padding_width=end_pad_width) self.assertReferenceChecks( device_option=gc, op=op, inputs=[data, lengths], reference=partial(_remove_padding_ref, start_pad_width, end_pad_width)) @given(start_pad_width=st.integers(min_value=0, max_value=2), end_pad_width=st.integers(min_value=0, max_value=2), args=_gen_test_add_padding(with_pad_data=True), **hu.gcs) @settings(deadline=10000) def test_gather_padding(self, start_pad_width, end_pad_width, args, gc, dc): lengths, data, start_padding, end_padding = args padded_data, padded_lengths = _add_padding_ref( start_pad_width, end_pad_width, True, data, lengths, start_padding, end_padding) op = core.CreateOperator( 'GatherPadding', ['data', 'lengths'], ['start_padding', 'end_padding'], padding_width=start_pad_width, end_padding_width=end_pad_width) self.assertReferenceChecks( device_option=gc, op=op, inputs=[padded_data, padded_lengths], reference=partial(_gather_padding_ref, start_pad_width, end_pad_width)) @given(data=hu.tensor(min_dim=3, max_dim=3, dtype=np.float32, elements=hu.floats(min_value=-np.inf, max_value=np.inf), min_value=1, max_value=10), **hu.gcs) @settings(deadline=10000) def test_reverse_packed_segs(self, data, gc, dc): max_length = data.shape[0] batch_size = data.shape[1] lengths = np.random.randint(max_length + 1, size=batch_size) op = core.CreateOperator( "ReversePackedSegs", ["data", "lengths"], ["reversed_data"]) def op_ref(data, lengths): rev_data = np.array(data, copy=True) for i in range(batch_size): seg_length = lengths[i] for j in range(seg_length): rev_data[j][i] = data[seg_length - 1 - j][i] return (rev_data,) def op_grad_ref(grad_out, outputs, inputs): return op_ref(grad_out, inputs[1]) + (None,) self.assertReferenceChecks( device_option=gc, op=op, inputs=[data, lengths], reference=op_ref, output_to_grad='reversed_data', grad_reference=op_grad_ref) @given(data=hu.tensor(min_dim=1, max_dim=3, dtype=np.float32, elements=hu.floats(min_value=-np.inf, max_value=np.inf), min_value=10, max_value=10), indices=st.lists(st.integers(min_value=0, max_value=9), min_size=0, max_size=10), **hu.gcs_cpu_only) @settings(deadline=10000) def test_remove_data_blocks(self, data, indices, gc, dc): indices = np.array(indices) op = core.CreateOperator( "RemoveDataBlocks", ["data", "indices"], ["shrunk_data"]) def op_ref(data, indices): unique_indices = np.unique(indices) if len(indices)>0 else np.array([],dtype=np.int64) sorted_indices = np.sort(unique_indices) shrunk_data = np.delete(data, sorted_indices, axis=0) return (shrunk_data,) self.assertReferenceChecks( device_option=gc, op=op, inputs=[data, indices], reference=op_ref) @given(elements=st.lists(st.integers(min_value=0, max_value=9), min_size=0, max_size=10), **hu.gcs_cpu_only) @settings(deadline=10000) def test_find_duplicate_elements(self, elements, gc, dc): mapping = { 0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 7: "h", 8: "i", 9: "j"} data = np.array([mapping[e] for e in elements], dtype='|S') op = core.CreateOperator( "FindDuplicateElements", ["data"], ["indices"]) def op_ref(data): unique_data = [] indices = [] for i, e in enumerate(data): if e in unique_data: indices.append(i) else: unique_data.append(e) return (np.array(indices, dtype=np.int64),) self.assertReferenceChecks( device_option=gc, op=op, inputs=[data], reference=op_ref) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/sequence_ops_test.py
from caffe2.python import core from functools import partial from hypothesis import strategies as st import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import math import numpy as np def _data_and_scale( data_min_size=4, data_max_size=10, examples_min_number=1, examples_max_number=4, dtype=np.float32, elements=None): params_ = st.tuples( st.integers(min_value=examples_min_number, max_value=examples_max_number), st.integers(min_value=data_min_size, max_value=data_max_size), st.sampled_from([np.float32, np.int32, np.int64]) ) return params_.flatmap( lambda param_: st.tuples( hu.arrays([param_[0], param_[1]], dtype=dtype), hu.arrays( [param_[0]], dtype=param_[2], elements=(hu.floats(0.0, 10000.0) if param_[2] in [np.float32] else st.integers(0, 10000)), ), ) ) def divide_by_square_root(data, scale): output = np.copy(data) num_examples = len(scale) assert num_examples == data.shape[0] assert len(data.shape) == 2 for i in range(0, num_examples): if scale[i] > 0: output[i] = np.multiply(data[i], 1 / math.sqrt(scale[i])) return (output, ) def grad(output_grad, ref_outputs, inputs): return (divide_by_square_root(output_grad, inputs[1])[0], None) class TestSquareRootDivide(serial.SerializedTestCase): @serial.given(data_and_scale=_data_and_scale(), **hu.gcs_cpu_only) def test_square_root_divide(self, data_and_scale, gc, dc): self.assertReferenceChecks( device_option=gc, op=core.CreateOperator("SquareRootDivide", ["data", "scale"], ["output"]), inputs=list(data_and_scale), reference=partial(divide_by_square_root), output_to_grad="output", grad_reference=grad, ) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/square_root_divide_op_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np def _string_lists(alphabet=None): return st.lists( elements=st.text(alphabet=alphabet) if alphabet else st.text(), min_size=0, max_size=3) class TestStringOps(serial.SerializedTestCase): @given(strings=_string_lists()) @settings(deadline=10000) def test_string_prefix(self, strings): length = 3 # although we are utf-8 encoding below to avoid python exceptions, # StringPrefix op deals with byte-length prefixes, which may produce # an invalid utf-8 string. The goal here is just to avoid python # complaining about the unicode -> str conversion. strings = np.array( [a.encode('utf-8') for a in strings], dtype=np.object ) def string_prefix_ref(strings): return ( np.array([a[:length] for a in strings], dtype=object), ) op = core.CreateOperator( 'StringPrefix', ['strings'], ['stripped'], length=length) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_prefix_ref) @given(strings=_string_lists()) @settings(deadline=10000) def test_string_suffix(self, strings): length = 3 strings = np.array( [a.encode('utf-8') for a in strings], dtype=np.object ) def string_suffix_ref(strings): return ( np.array([a[-length:] for a in strings], dtype=object), ) op = core.CreateOperator( 'StringSuffix', ['strings'], ['stripped'], length=length) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_suffix_ref) @given(strings=st.text(alphabet=['a', 'b'])) @settings(deadline=10000) def test_string_starts_with(self, strings): prefix = 'a' strings = np.array( [str(a) for a in strings], dtype=np.object ) def string_starts_with_ref(strings): return ( np.array([a.startswith(prefix) for a in strings], dtype=bool), ) op = core.CreateOperator( 'StringStartsWith', ['strings'], ['bools'], prefix=prefix) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_starts_with_ref) @given(strings=st.text(alphabet=['a', 'b'])) @settings(deadline=10000) def test_string_ends_with(self, strings): suffix = 'a' strings = np.array( [str(a) for a in strings], dtype=np.object ) def string_ends_with_ref(strings): return ( np.array([a.endswith(suffix) for a in strings], dtype=bool), ) op = core.CreateOperator( 'StringEndsWith', ['strings'], ['bools'], suffix=suffix) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_ends_with_ref) @given(strings=st.text(alphabet=['a', 'b'])) @settings(deadline=10000) def test_string_equals(self, strings): text = "" if strings: text = strings[0] strings = np.array( [str(a) for a in strings], dtype=np.object ) def string_equals_ref(strings): return ( np.array([a == text for a in strings], dtype=bool), ) op = core.CreateOperator( 'StringEquals', ['strings'], ['bools'], text=text) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_equals_ref) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/string_ops_test.py
import numpy as np from hypothesis import given, settings import hypothesis.strategies as st import unittest from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestNumpyTile(serial.SerializedTestCase): @given(ndim=st.integers(min_value=1, max_value=4), seed=st.integers(min_value=0, max_value=65536), **hu.gcs_cpu_only) @settings(deadline=10000) def test_numpy_tile(self, ndim, seed, gc, dc): np.random.seed(seed) input_dims = np.random.randint(1, 4, size=ndim) input = np.random.randn(*input_dims) repeats = np.random.randint(1, 5, size=ndim) op = core.CreateOperator( 'NumpyTile', ['input', 'repeats'], 'out', ) def tile_ref(input, repeats): tiled_data = np.tile(input, repeats) return (tiled_data,) # Check against numpy reference self.assertReferenceChecks(gc, op, [input, repeats], tile_ref) @given(ndim=st.integers(min_value=1, max_value=4), seed=st.integers(min_value=0, max_value=65536), **hu.gcs_cpu_only) @settings(deadline=10000) def test_numpy_tile_zero_dim(self, ndim, seed, gc, dc): np.random.seed(seed) input_dims = np.random.randint(0, 4, size=ndim) input = np.random.randn(*input_dims) repeats = np.random.randint(0, 5, size=ndim) op = core.CreateOperator( 'NumpyTile', ['input', 'repeats'], 'out', ) def tile_ref(input, repeats): tiled_data = np.tile(input, repeats) return (tiled_data,) # Check against numpy reference self.assertReferenceChecks(gc, op, [input, repeats], tile_ref) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/numpy_tile_op_test.py
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np import unittest def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def sigmoid_cross_entropy_with_logits(x, z): return np.maximum(x, 0) - x * z + np.log(1 + np.exp(-np.abs(x))) def sigmoid_cross_entropy_with_logits_grad(x, z): return z - sigmoid(x) def sigmoid_cross_entropy_with_logits_with_log_D_trick(x, z): return -(2 * z - 1.) * np.log(sigmoid(x)) def sigmoid_cross_entropy_with_logits_with_log_D_trick_grad(x, z): return (2 * z - 1.) * (1 - sigmoid(x)) def unjoined_sigmoid_cross_entropy(x, z): return -z * x + (1. - z) * np.maximum(x, 0) \ + (1. - z) * np.log(1 + np.exp(-np.abs(x))) def unjoined_sigmoid_cross_entropy_grad(x, z): return z - (1. - z) / (1. + np.exp(-x)) class TestCrossEntropyOps(hu.HypothesisTestCase): @given( inputs=st.lists( elements=st.integers(min_value=1, max_value=5), min_size=1, max_size=2, ).flatmap( lambda shape: st.tuples( hu.arrays( dims=shape, elements=st.one_of( hu.floats(min_value=-1.0, max_value=-0.1), hu.floats(min_value=0.1, max_value=1.0), )), hu.arrays( dims=shape, elements=st.sampled_from([0.0, 1.0]), ), ) ), options=st.one_of( st.tuples(st.just(True), st.just(False)), st.tuples(st.just(False), st.just(True)), st.tuples(st.just(False), st.just(False)) ), **hu.gcs ) def test_sigmoid_cross_entropy_with_logits( self, inputs, options, gc, dc ): logits, targets = inputs log_D_trick, unjoined_lr_loss = options def sigmoid_xentr_logit_ref(logits, targets): if unjoined_lr_loss: s = unjoined_sigmoid_cross_entropy(logits, targets) else: s = ( sigmoid_cross_entropy_with_logits(logits, targets) if not log_D_trick else sigmoid_cross_entropy_with_logits_with_log_D_trick( logits, targets ) ) m = np.mean(s, axis=len(logits.shape) - 1) return (m, ) def sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs): fwd_logits, fwd_targets = fwd_inputs inner_size = fwd_logits.shape[-1] if unjoined_lr_loss: m = unjoined_sigmoid_cross_entropy_grad(logits, targets) else: m = ( sigmoid_cross_entropy_with_logits_grad(fwd_logits, fwd_targets) if not log_D_trick else sigmoid_cross_entropy_with_logits_with_log_D_trick_grad( fwd_logits, fwd_targets ) ) # m = fwd_targets - sigmoid(fwd_logits) g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size return (g_in, None) op = core.CreateOperator( 'SigmoidCrossEntropyWithLogits', ['logits', 'targets'], ['xentropy'], log_D_trick=log_D_trick, unjoined_lr_loss=unjoined_lr_loss ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[logits, targets], reference=sigmoid_xentr_logit_ref, output_to_grad='xentropy', grad_reference=sigmoid_xentr_logit_grad_ref) @given( log_D_trick=st.just(False), **hu.gcs_cpu_only ) def test_cross_entropy_and_unjoied_cross_entropy_relation( self, log_D_trick, gc, dc ): logits = np.array([1.4720, 0.3500, -0.6529, -1.1908, 0.8357, -1.0774, -0.3395, -0.2469, 0.6708, -1.8332], dtype='f') targets = np.array([1., 1., 1., 1., 1., 1., 0., 0., 0., 0.], dtype='f') lr_size = targets.size unjoined_lr_loss = False def sigmoid_xentr_logit_ref(logits, targets): if unjoined_lr_loss: s = unjoined_sigmoid_cross_entropy(logits, targets) else: s = sigmoid_cross_entropy_with_logits(logits, targets) m = np.mean(s, axis=len(logits.shape) - 1) return (m, ) def sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs): fwd_logits, fwd_targets = fwd_inputs inner_size = fwd_logits.shape[-1] if unjoined_lr_loss: m = unjoined_sigmoid_cross_entropy_grad(logits, targets) else: m = sigmoid_cross_entropy_with_logits_grad( fwd_logits, fwd_targets) # m = fwd_targets - sigmoid(fwd_logits) g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size return (g_in, None) op = core.CreateOperator( 'SigmoidCrossEntropyWithLogits', ['logits', 'targets'], ['xentropy'], log_D_trick=log_D_trick, unjoined_lr_loss=unjoined_lr_loss ) output_lr = self.assertReferenceChecks( device_option=gc, op=op, inputs=[logits, targets], reference=sigmoid_xentr_logit_ref, output_to_grad='xentropy', grad_reference=sigmoid_xentr_logit_grad_ref) # Unjoined dataset where labels change later logits = np.array([1.4720, 0.3500, -0.6529, -1.1908, 0.8357, -1.0774, -0.3395, -0.2469, 0.6708, -1.8332, 1.4720, 0.3500, -0.6529, -1.1908, 0.8357, -1.0774], dtype='f') targets = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.], dtype='f') unjoined_lr_loss = True unjoined_lr_size = targets.size op = core.CreateOperator( 'SigmoidCrossEntropyWithLogits', ['logits', 'targets'], ['xentropy'], log_D_trick=log_D_trick, unjoined_lr_loss=unjoined_lr_loss ) outputs_unjoined_lr = self.assertReferenceChecks( device_option=gc, op=op, inputs=[logits, targets], reference=sigmoid_xentr_logit_ref, output_to_grad='xentropy', grad_reference=sigmoid_xentr_logit_grad_ref) self.assertAlmostEqual( output_lr[0].item(0) * lr_size / unjoined_lr_size, outputs_unjoined_lr[0].item(0), delta=0.0001) @given( inputs=st.lists( elements=st.integers(min_value=1, max_value=5), min_size=1, max_size=2, ).flatmap( lambda shape: st.tuples( hu.arrays( dims=shape, elements=st.one_of( hu.floats(min_value=-1.0, max_value=-0.1), hu.floats(min_value=0.1, max_value=1.0), )), hu.arrays( dims=shape, elements=st.sampled_from([0.0, 1.0]), ), hu.arrays( dims=shape, elements=hu.floats(min_value=0.1, max_value=1.0), ), ) ), **hu.gcs ) def test_weighted_sigmoid_cross_entropy_with_logits(self, inputs, gc, dc): logits, targets, weights = inputs def weighted_sigmoid_xentr_logit_ref(logits, targets, weights): s = sigmoid_cross_entropy_with_logits(logits, targets) s = np.multiply(s, weights) m = np.mean(s, axis=len(logits.shape) - 1) return (m, ) def weighted_sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs): fwd_logits, fwd_targets, fwd_weights = fwd_inputs inner_size = fwd_logits.shape[-1] m = fwd_targets - sigmoid(fwd_logits) m = np.multiply(m, weights) g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size return (g_in, None, None) op = core.CreateOperator( 'WeightedSigmoidCrossEntropyWithLogits', ['logits', 'targets', 'weights'], ['xentropy']) self.assertReferenceChecks( device_option=gc, op=op, inputs=[logits, targets, weights], reference=weighted_sigmoid_xentr_logit_ref, output_to_grad='xentropy', grad_reference=weighted_sigmoid_xentr_logit_grad_ref) @given(n=st.integers(2, 10), b=st.integers(1, 5), **hu.gcs_cpu_only) def test_soft_label_cross_entropy(self, n, b, gc, dc): # Initialize X and add 1e-2 for numerical stability X = np.random.rand(b, n).astype(np.float32) X = X + 1e-2 for i in range(b): X[i] = X[i] / np.sum(X[i]) # Initialize label label = np.random.rand(b, n).astype(np.float32) for i in range(b): label[i] = label[i] / np.sum(label[i]) # Reference implementation of cross entropy with soft labels def soft_label_xentr_ref(X, label): xent = [np.sum((-label[j][i] * np.log(max(X[j][i], 1e-20)) for i in range(len(X[0])))) for j in range(b)] return (xent,) op = core.CreateOperator("CrossEntropy", ["X", "label"], ["Y"]) # TODO(surya) Once CrossEntropyOp is ported to GPU, add the respective # tests to this unit test. self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, label], reference=soft_label_xentr_ref, ) self.assertGradientChecks( gc, op, [X, label], 0, [0], stepsize=1e-4, threshold=1e-2) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/cross_entropy_ops_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestUnmaskOp(serial.SerializedTestCase): @serial.given(N=st.integers(min_value=2, max_value=20), dtype=st.sampled_from([ np.bool_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.float16, np.float32, np.float64]), **hu.gcs) def test(self, N, dtype, gc, dc): if dtype is np.bool_: all_value = np.random.choice(a=[True, False], size=N) else: all_value = (np.random.rand(N) * N).astype(dtype) M = np.random.randint(1, N) split = sorted(np.random.randint(1, N, size=M)) indices = np.random.permutation(N) pieces = np.split(indices, split) def ref(*args, **kwargs): return (all_value,) inputs = [] inputs_names = [] for i, piece in enumerate(pieces): piece.sort() mask = np.zeros(N, dtype=np.bool_) mask[piece] = True values = all_value[piece] inputs.extend([mask, values]) inputs_names.extend(["mask%d" % i, "value%d" % i]) op = core.CreateOperator( 'BooleanUnmask', inputs_names, 'output') self.assertReferenceChecks(gc, op, inputs, ref) self.assertDeviceChecks(dc, op, inputs, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/boolean_unmask_test.py
import numpy as np from caffe2.python import core, workspace from caffe2.python.test_util import TestCase from caffe2.proto import caffe2_pb2 class TestPrependDim(TestCase): def _test_fwd_bwd(self): old_shape = (128, 2, 4) new_shape = (8, 16, 2, 4) X = np.random.rand(*old_shape).astype(np.float32) Y = np.random.rand(*new_shape).astype(np.float32) net = core.Net('net') net.GivenTensorFill([], 'X', shape=old_shape, values=X.flatten()) net.GivenTensorFill([], 'Y', shape=new_shape, values=Y.flatten()) net.PrependDim(['X'], ['X_out'], dim_size=8) net.DotProduct(['X_out', 'Y'], 'Z') net.AddGradientOperators(['Z']) workspace.RunNetOnce(net) X_out = workspace.FetchBlob('X_out') X_grad = workspace.FetchBlob('X_grad') Y_grad = workspace.FetchBlob('Y_grad') # Check the shape of the gradient np.testing.assert_array_equal(X_out.shape, Y.shape) np.testing.assert_array_equal(X_grad.shape, X.shape) np.testing.assert_array_equal(Y_grad.shape, Y.shape) def test_prepend_dim(self): devices = [core.DeviceOption(caffe2_pb2.CPU, 0)] if workspace.NumGpuDevices() > 0: devices.append(core.DeviceOption(workspace.GpuDeviceType, 0)) for device_opt in devices: with core.DeviceScope(device_opt): self._test_fwd_bwd() if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/prepend_dim_test.py
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest class TestUpSample(serial.SerializedTestCase): @given(height_scale=st.floats(1.0, 4.0) | st.just(2.0), width_scale=st.floats(1.0, 4.0) | st.just(2.0), height=st.integers(4, 32), width=st.integers(4, 32), num_channels=st.integers(1, 4), batch_size=st.integers(1, 4), seed=st.integers(0, 65535), **hu.gcs) @settings(max_examples=50, deadline=None) def test_upsample(self, height_scale, width_scale, height, width, num_channels, batch_size, seed, gc, dc): np.random.seed(seed) X = np.random.rand( batch_size, num_channels, height, width).astype(np.float32) scales = np.array([height_scale, width_scale]).astype(np.float32) ops = [ ( core.CreateOperator( "UpsampleBilinear", ["X"], ["Y"], width_scale=width_scale, height_scale=height_scale, ), [X], ), ( core.CreateOperator( "UpsampleBilinear", ["X", "scales"], ["Y"], ), [X, scales], ), ] for op, inputs in ops: def ref(X, scales=None): output_height = np.int32(height * height_scale) output_width = np.int32(width * width_scale) Y = np.random.rand( batch_size, num_channels, output_height, output_width).astype(np.float32) rheight = ((height - 1) / (output_height - 1) if output_height > 1 else float(0)) rwidth = ((width - 1) / (output_width - 1) if output_width > 1 else float(0)) for i in range(output_height): h1r = rheight * i h1 = int(h1r) h1p = 1 if h1 < height - 1 else 0 h1lambda = h1r - h1 h0lambda = float(1) - h1lambda for j in range(output_width): w1r = rwidth * j w1 = int(w1r) w1p = 1 if w1 < width - 1 else 0 w1lambda = w1r - w1 w0lambda = float(1) - w1lambda Y[:, :, i, j] = (h0lambda * ( w0lambda * X[:, :, h1, w1] + w1lambda * X[:, :, h1, w1 + w1p]) + h1lambda * (w0lambda * X[:, :, h1 + h1p, w1] + w1lambda * X[:, :, h1 + h1p, w1 + w1p])) return Y, self.assertReferenceChecks(gc, op, inputs, ref) self.assertDeviceChecks(dc, op, inputs, [0]) self.assertGradientChecks(gc, op, inputs, 0, [0], stepsize=0.1, threshold=1e-2) @given(height_scale=st.floats(1.0, 4.0) | st.just(2.0), width_scale=st.floats(1.0, 4.0) | st.just(2.0), height=st.integers(4, 32), width=st.integers(4, 32), num_channels=st.integers(1, 4), batch_size=st.integers(1, 4), seed=st.integers(0, 65535), **hu.gcs) @settings(deadline=10000) def test_upsample_grad(self, height_scale, width_scale, height, width, num_channels, batch_size, seed, gc, dc): np.random.seed(seed) output_height = np.int32(height * height_scale) output_width = np.int32(width * width_scale) X = np.random.rand(batch_size, num_channels, height, width).astype(np.float32) dY = np.random.rand(batch_size, num_channels, output_height, output_width).astype(np.float32) scales = np.array([height_scale, width_scale]).astype(np.float32) ops = [ ( core.CreateOperator( "UpsampleBilinearGradient", ["dY", "X"], ["dX"], width_scale=width_scale, height_scale=height_scale, ), [dY, X], ), ( core.CreateOperator( "UpsampleBilinearGradient", ["dY", "X", "scales"], ["dX"], ), [dY, X, scales], ), ] for op, inputs in ops: def ref(dY, X, scales=None): dX = np.zeros_like(X) rheight = ((height - 1) / (output_height - 1) if output_height > 1 else float(0)) rwidth = ((width - 1) / (output_width - 1) if output_width > 1 else float(0)) for i in range(output_height): h1r = rheight * i h1 = int(h1r) h1p = 1 if h1 < height - 1 else 0 h1lambda = h1r - h1 h0lambda = float(1) - h1lambda for j in range(output_width): w1r = rwidth * j w1 = int(w1r) w1p = 1 if w1 < width - 1 else 0 w1lambda = w1r - w1 w0lambda = float(1) - w1lambda dX[:, :, h1, w1] += ( h0lambda * w0lambda * dY[:, :, i, j]) dX[:, :, h1, w1 + w1p] += ( h0lambda * w1lambda * dY[:, :, i, j]) dX[:, :, h1 + h1p, w1] += ( h1lambda * w0lambda * dY[:, :, i, j]) dX[:, :, h1 + h1p, w1 + w1p] += ( h1lambda * w1lambda * dY[:, :, i, j]) return dX, self.assertDeviceChecks(dc, op, inputs, [0]) self.assertReferenceChecks(gc, op, inputs, ref) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/upsample_op_test.py
import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np import numpy.testing as npt from caffe2.python import core, workspace from hypothesis import given class TestEnsureClipped(hu.HypothesisTestCase): @given( X=hu.arrays(dims=[5, 10], elements=hu.floats(min_value=-1.0, max_value=1.0)), in_place=st.booleans(), sparse=st.booleans(), indices=hu.arrays(dims=[5], elements=st.booleans()), **hu.gcs_cpu_only ) def test_ensure_clipped(self, X, in_place, sparse, indices, gc, dc): if (not in_place) and sparse: return param = X.astype(np.float32) m, n = param.shape indices = np.array(np.nonzero(indices)[0], dtype=np.int64) grad = np.random.rand(len(indices), n) workspace.FeedBlob("indices", indices) workspace.FeedBlob("grad", grad) workspace.FeedBlob("param", param) input = ["param", "indices", "grad"] if sparse else ["param"] output = "param" if in_place else "output" op = core.CreateOperator("EnsureClipped", input, output, min=0.0) workspace.RunOperatorOnce(op) def ref(): return ( np.array( [np.clip(X[i], 0, None) if i in indices else X[i] for i in range(m)] ) if sparse else np.clip(X, 0, None) ) npt.assert_allclose(workspace.blobs[output], ref(), rtol=1e-3)
pytorch-master
caffe2/python/operator_test/ensure_clipped_test.py
import numpy as np from caffe2.python import core, workspace from caffe2.python.test_util import TestCase class TestSplitOpCost(TestCase): def _verify_cost(self, workspace, split_op): flops, bytes_written, bytes_read = workspace.GetOperatorCost( split_op, split_op.input ) self.assertEqual(flops, 0) self.assertEqual( bytes_read, sum(workspace.FetchBlob(b).nbytes for b in split_op.input), ) self.assertEqual( bytes_written, sum(workspace.FetchBlob(b).nbytes for b in split_op.output), ) def test_columnwise_equal_outputSplit(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2", "output_3"], ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (2, 1)) np.testing.assert_array_equal(output_1, [[1], [4]]) output_2 = workspace.FetchBlob("output_2") np.testing.assert_array_equal(output_2, [[2], [5]]) output_3 = workspace.FetchBlob("output_3") np.testing.assert_array_equal(output_3, [[3], [6]]) self._verify_cost(workspace, split_op) def test_rowwise_equal_outputSplit(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2"], axis=0, ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (1, 3)) np.testing.assert_array_equal(output_1, [[1, 2, 3]]) output_2 = workspace.FetchBlob("output_2") np.testing.assert_array_equal(output_2, [[4, 5, 6]]) self._verify_cost(workspace, split_op) def test_columnwise_equal_outputSplit_columnRemoved(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) # To be able to use 'add_axis' (which should have been called 'remove_axis') on 'axis', # the dimensions of split tensors must match on 'axis' split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2", "output_3"], axis=1, add_axis=1, ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (2,)) np.testing.assert_array_equal(output_1, [1, 4]) output_2 = workspace.FetchBlob("output_2") np.testing.assert_array_equal(output_2, [2, 5]) output_3 = workspace.FetchBlob("output_3") np.testing.assert_array_equal(output_3, [3, 6]) self._verify_cost(workspace, split_op) def test_rowwise_equal_outputSplit_rowRemoved(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2"], axis=0, add_axis=1, ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (3,)) np.testing.assert_array_equal(output_1, [1, 2, 3]) output_2 = workspace.FetchBlob("output_2") np.testing.assert_array_equal(output_2, [4, 5, 6]) self._verify_cost(workspace, split_op) def test_rowwise_unequal_argSplit(self): workspace.ResetWorkspace() workspace.FeedBlob( "input", np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) ) split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2"], axis=0, split=[1, 2], ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (1, 3)) np.testing.assert_array_equal(output_1, [[1, 2, 3]]) output_2 = workspace.FetchBlob("output_2") self.assertTupleEqual(output_2.shape, (2, 3)) np.testing.assert_array_equal(output_2, [[4, 5, 6], [7, 8, 9]]) self._verify_cost(workspace, split_op) def test_rowwise_unequal_argSplit_rowRemoved(self): workspace.ResetWorkspace() workspace.FeedBlob( "input", np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) ) split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2", "output_3"], axis=0, split=[1, 1, 1], add_axis=1, ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (3,)) np.testing.assert_array_equal(output_1, [1, 2, 3]) output_2 = workspace.FetchBlob("output_2") np.testing.assert_array_equal(output_2, [4, 5, 6]) output_3 = workspace.FetchBlob("output_3") np.testing.assert_array_equal(output_3, [7, 8, 9]) self._verify_cost(workspace, split_op) def test_rowwise_unequal_blobSplit(self): workspace.ResetWorkspace() workspace.FeedBlob( "input", np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) ) workspace.FeedBlob("split", np.array([1, 2], dtype=np.int32)) split_op = core.CreateOperator( "Split", ["input", "split"], ["output_1", "output_2"], axis=0, ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (1, 3)) np.testing.assert_array_equal(output_1, [[1, 2, 3]]) output_2 = workspace.FetchBlob("output_2") self.assertTupleEqual(output_2.shape, (2, 3)) np.testing.assert_array_equal(output_2, [[4, 5, 6], [7, 8, 9]]) self._verify_cost(workspace, split_op) def test_columnwise_unequal_argSplit(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2"], axis=1, split=[1, 2], ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (2, 1)) np.testing.assert_array_equal(output_1, [[1], [4]]) output_2 = workspace.FetchBlob("output_2") self.assertTupleEqual(output_2.shape, (2, 2)) np.testing.assert_array_equal(output_2, [[2, 3], [5, 6]]) self._verify_cost(workspace, split_op) def test_columnWise_unequal_blobSplit_columnRemoved(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) workspace.FeedBlob("split", np.array([1, 1, 1], dtype=np.int32)) split_op = core.CreateOperator( "Split", ["input", "split"], ["output_1", "output_2", "output_3"], axis=1, add_axis=1, ) workspace.RunOperatorOnce(split_op) output_1 = workspace.FetchBlob("output_1") self.assertTupleEqual(output_1.shape, (2,)) np.testing.assert_array_equal(output_1, [1, 4]) output_2 = workspace.FetchBlob("output_2") np.testing.assert_array_equal(output_2, [2, 5]) output_3 = workspace.FetchBlob("output_3") np.testing.assert_array_equal(output_3, [3, 6]) self._verify_cost(workspace, split_op) def test_equal_outputSplit_NHWC(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.random.rand(2, 5, 7, 9).astype(np.int32)) split_op = core.CreateOperator( "Split", ["input"], ["output_1", "output_2", "output_3"], order="NHWC", ) workspace.RunOperatorOnce(split_op) for b in split_op.output: self.assertTupleEqual(workspace.FetchBlob(b).shape, (2, 5, 7, 3)) self._verify_cost(workspace, split_op)
pytorch-master
caffe2/python/operator_test/split_op_cost_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestLengthSplitOperator(serial.SerializedTestCase): def _length_split_op_ref(self, input_lengths, n_split_array): output = [] n_split = n_split_array[0] for x in input_lengths: mod = x % n_split val = x // n_split + 1 for _ in range(n_split): if mod > 0: output.append(val) mod -= 1 else: output.append(val - 1) return [np.array(output).astype(np.int32)] @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_length_split_edge(self, gc, dc): input_lengths = np.array([3, 4, 5]).astype(np.int32) n_split_ = np.array([5]).astype(np.int32) # Expected output: # [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1] op = core.CreateOperator( 'LengthsSplit', ['input_lengths', 'n_split'], ['Y'], ) # Check against numpy reference self.assertReferenceChecks( device_option=gc, op=op, inputs=[input_lengths, n_split_], reference=self._length_split_op_ref, ) # Check over multiple devices self.assertDeviceChecks(dc, op, [input_lengths, n_split_], [0]) @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_length_split_arg(self, gc, dc): input_lengths = np.array([9, 4, 5]).astype(np.int32) n_split = 3 # Expected output: # [3, 3, 3, 2, 1, 1, 2, 2, 1] op = core.CreateOperator( 'LengthsSplit', ['input_lengths'], ['Y'], n_split=n_split ) # Check against numpy reference self.assertReferenceChecks( device_option=gc, op=op, inputs=[input_lengths], reference=lambda x : self._length_split_op_ref(x, [n_split]), ) # Check over multiple devices self.assertDeviceChecks(dc, op, [input_lengths], [0]) @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_length_split_override_arg(self, gc, dc): input_lengths = np.array([9, 4, 5]).astype(np.int32) n_split_ignored = 2 n_split_used = np.array([3]).astype(np.int32) op = core.CreateOperator( 'LengthsSplit', ['input_lengths', 'n_split'], ['Y'], n_split=n_split_ignored ) # Check against numpy reference self.assertReferenceChecks( device_option=gc, op=op, inputs=[input_lengths, n_split_used], reference=self._length_split_op_ref, ) # Check over multiple devices self.assertDeviceChecks(dc, op, [input_lengths, n_split_used], [0]) @given(m=st.integers(1, 100), n_split=st.integers(1, 20), **hu.gcs_cpu_only) @settings(deadline=10000) def test_length_split_even_divide(self, m, n_split, gc, dc): # multiples of n_split input_lengths = np.random.randint(100, size=m).astype(np.int32) * n_split n_split_ = np.array([n_split]).astype(np.int32) op = core.CreateOperator( 'LengthsSplit', ['input_lengths', 'n_split'], ['Y'], ) # Check against numpy reference self.assertReferenceChecks( device_option=gc, op=op, inputs=[input_lengths, n_split_], reference=self._length_split_op_ref, ) # Check over multiple devices self.assertDeviceChecks(dc, op, [input_lengths, n_split_], [0]) @given(m=st.integers(1, 100), n_split=st.integers(1, 20), **hu.gcs_cpu_only) @settings(deadline=10000) def test_length_split_random(self, m, n_split, gc, dc): input_lengths = np.random.randint(100, size=m).astype(np.int32) n_split_ = np.array([n_split]).astype(np.int32) op = core.CreateOperator( 'LengthsSplit', ['input_lengths', 'n_split'], ['Y'], ) # Check against numpy reference self.assertReferenceChecks( device_option=gc, op=op, inputs=[input_lengths, n_split_], reference=self._length_split_op_ref, ) # Check over multiple devices self.assertDeviceChecks(dc, op, [input_lengths, n_split_], [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/length_split_op_test.py
from caffe2.python import core from hypothesis import given, settings import hypothesis.strategies as st import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import numpy as np import unittest class TestThresholdedRelu(serial.SerializedTestCase): # test case 1 - default alpha - we do reference and dc checks. # test case 2 does dc and reference checks over range of alphas. # test case 3 does gc over range of alphas. @serial.given(input=hu.tensor(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_thresholded_relu_1(self, input, gc, dc, engine): X = input op = core.CreateOperator("ThresholdedRelu", ["X"], ["Y"], engine=engine) def defaultRef(X): Y = np.copy(X) Y[Y <= 1.0] = 0.0 return (Y,) self.assertDeviceChecks(dc, op, [X], [0]) self.assertReferenceChecks(gc, op, [X], defaultRef) @given(input=hu.tensor(), alpha=st.floats(min_value=1.0, max_value=5.0), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_thresholded_relu_2(self, input, alpha, gc, dc, engine): X = input op = core.CreateOperator("ThresholdedRelu", ["X"], ["Y"], alpha=alpha, engine=engine) def ref(X): Y = np.copy(X) Y[Y <= alpha] = 0.0 return (Y,) self.assertDeviceChecks(dc, op, [X], [0]) self.assertReferenceChecks(gc, op, [X], ref) @given(input=hu.tensor(), alpha=st.floats(min_value=1.1, max_value=5.0), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_thresholded_relu_3(self, input, alpha, gc, dc, engine): X = TestThresholdedRelu.fix_input(input) op = core.CreateOperator("ThresholdedRelu", ["X"], ["Y"], alpha=float(alpha), engine=engine) self.assertGradientChecks(gc, op, [X], 0, [0]) @staticmethod def fix_input(input): # go away from alpha to avoid derivative discontinuities input += 0.02 * np.sign(input) return input if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/thresholded_relu_op_test.py
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np class TestLars(hu.HypothesisTestCase): @given(offset=st.floats(min_value=0, max_value=100), lr_min=st.floats(min_value=1e-8, max_value=1e-6), **hu.gcs) def test_lars(self, offset, lr_min, dc, gc): X = np.random.rand(6, 7, 8, 9).astype(np.float32) dX = np.random.rand(6, 7, 8, 9).astype(np.float32) wd = np.array([1e-4]).astype(np.float32) trust = np.random.rand(1).astype(np.float32) lr_max = np.random.rand(1).astype(np.float32) def ref_lars(X, dX, wd, trust, lr_max): rescale_factor = \ trust / (np.linalg.norm(dX) / np.linalg.norm(X) + wd + offset) rescale_factor = np.minimum(rescale_factor, lr_max) rescale_factor = np.maximum(rescale_factor, lr_min) return [rescale_factor] op = core.CreateOperator( "Lars", ["X", "dX", "wd", "trust", "lr_max"], ["rescale_factor"], offset=offset, lr_min=lr_min, ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, dX, wd, trust, lr_max], reference=ref_lars )
pytorch-master
caffe2/python/operator_test/lars_test.py
import math from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import numpy as np import unittest class TestErfOp(serial.SerializedTestCase): @given( X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)), **hu.gcs) @settings(deadline=10000) def test_erf(self, X, gc, dc): op = core.CreateOperator('Erf', ["X"], ["Y"]) self.assertReferenceChecks(gc, op, [X], lambda x: (np.vectorize(math.erf)(X),)) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/erf_op_test.py
from collections import namedtuple import numpy as np from caffe2.python import core, workspace from caffe2.python.test_util import TestCase class TestConcatOpCost(TestCase): def test_columnwise_concat(self): def _test_columnwise_concat_for_type(dtype): workspace.ResetWorkspace() workspace.FeedBlob("input_1", np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype)) workspace.FeedBlob("input_2", np.array([[7], [8]], dtype=dtype)) concat_op = core.CreateOperator( "Concat", ["input_1", "input_2"], ["output", "split_info"], ) workspace.RunOperatorOnce(concat_op) output = workspace.FetchBlob("output") self.assertTupleEqual(output.shape, (2, 4)) np.testing.assert_array_equal(output, [[1, 2, 3, 7], [4, 5, 6, 8]]) flops, bytes_written, bytes_read = workspace.GetOperatorCost( concat_op, concat_op.input ) self.assertEqual(flops, 0) self.assertEqual( bytes_read, sum(workspace.FetchBlob(b).nbytes for b in concat_op.input), ) self.assertEqual( bytes_written, sum(workspace.FetchBlob(b).nbytes for b in concat_op.output), ) [ _test_columnwise_concat_for_type(t) for t in [np.int64, np.float, np.half, np.int8] ] def test_split_then_concat(self): workspace.ResetWorkspace() workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) workspace.FeedBlob("split", np.array([1, 1, 1], dtype=np.int32)) split_op = core.CreateOperator( "Split", ["input", "split"], ["output_1", "output_2", "output_3"], axis=1, add_axis=1, ) workspace.RunOperatorOnce(split_op) concat_op = core.CreateOperator( "Concat", ["output_1", "output_2", "output_3"], ["output", "split_info"], axis=1, add_axis=1, ) workspace.RunOperatorOnce(concat_op) np.testing.assert_array_equal( workspace.FetchBlob("input"), workspace.FetchBlob("output") ) split_cost = workspace.GetOperatorCost(split_op, split_op.input) self.assertTupleEqual( split_cost, namedtuple("expected_cost", ["flops", "bytes_written", "bytes_read"])( 0, 24, 36 ), ) concat_cost = workspace.GetOperatorCost(concat_op, concat_op.input) self.assertTupleEqual( concat_cost, namedtuple("expected_cost", ["flops", "bytes_written", "bytes_read"])( 0, 36, 24 ), )
pytorch-master
caffe2/python/operator_test/concat_op_cost_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu from hypothesis import given, settings import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest class TestChannelBackpropStats(serial.SerializedTestCase): @given( size=st.integers(7, 10), inputChannels=st.integers(1, 10), batchSize=st.integers(1, 3), **hu.gcs ) @settings(deadline=10000) def testChannelBackpropStats(self, size, inputChannels, batchSize, gc, dc): op = core.CreateOperator( "ChannelBackpropStats", ["X", "mean", "invStdDev", "outputGrad"], ["scaleGrad", "biasGrad"], ) def referenceChannelBackpropStatsTest(X, mean, invStdDev, outputGrad): scaleGrad = np.zeros(inputChannels) biasGrad = np.zeros(inputChannels) for n in range(batchSize): for c in range(inputChannels): for h in range(size): for w in range(size): biasGrad[c] += outputGrad[n, c, h, w] scaleGrad[c] += ( X[n, c, h, w] - mean[c] ) * invStdDev[c] * outputGrad[n, c, h, w] return scaleGrad, biasGrad X = np.random.rand(batchSize, inputChannels, size, size)\ .astype(np.float32) - 0.5 sums = np.sum(X, axis=(0, 2, 3), keepdims=False) numPixels = size * size * batchSize mean = sums / numPixels sumsq = np.sum(X**2, axis=(0, 2, 3), keepdims=False) var = ((sumsq - (sums * sums) / numPixels) / numPixels).astype(np.float32) invStdDev = 1 / np.sqrt(var) outputGrad = np.random.rand(batchSize, inputChannels, size, size)\ .astype(np.float32) - 0.5 self.assertReferenceChecks( gc, op, [X, mean, invStdDev, outputGrad], referenceChannelBackpropStatsTest ) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/channel_backprop_stats_op_test.py
import numpy as np from hypothesis import assume, given, settings import hypothesis.strategies as st from caffe2.proto import caffe2_pb2 from caffe2.python import core, utils import caffe2.python.hypothesis_test_util as hu import caffe2.python.hip_test_util as hiputl class TestConvolutionTranspose(hu.HypothesisTestCase): @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), adj=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), engine=st.sampled_from(["", "CUDNN", "BLOCK"]), shared_buffer=st.booleans(), use_bias=st.booleans(), **hu.gcs) def test_convolution_transpose_layout_legacy_args( self, stride, pad, kernel, adj, size, input_channels, output_channels, batch_size, engine, shared_buffer, use_bias, gc, dc): assume(adj < stride) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, output_channels)\ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 outputs = {} for order in ["NCHW", "NHWC"]: # MIOPEN doesn't work with NHWC, fallback to use normal hip if hiputl.run_in_hip(gc, dc) and order == "NHWC": tmp_engine = "" else: tmp_engine = engine op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride=stride, kernel=kernel, pad=pad, adj=adj, order=order, engine=tmp_engine, shared_buffer=int(shared_buffer), device_option=gc, ) if order == "NCHW": X_f = utils.NHWC2NCHW(X) w_f = utils.NHWC2NCHW(w) else: X_f = X w_f = w self.assertDeviceChecks( dc, op, [X_f, w_f, b] if use_bias else [X_f, w_f], [0]) self.ws.create_blob("X").feed(X_f, device_option=gc) self.ws.create_blob("w").feed(w_f, device_option=gc) self.ws.create_blob("b").feed(b, device_option=gc) self.ws.run(op) outputs[order] = self.ws.blobs["Y"].fetch() output_size = (size - 1) * stride + kernel + adj - 2 * pad self.assertEqual( outputs["NCHW"].shape, (batch_size, output_channels, output_size, output_size)) np.testing.assert_allclose( outputs["NCHW"], utils.NHWC2NCHW(outputs["NHWC"]), atol=1e-4, rtol=1e-4) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), adj=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), engine=st.sampled_from(["", "CUDNN", "BLOCK"]), shared_buffer=st.booleans(), use_bias=st.booleans(), **hu.gcs) def test_convolution_transpose_layout( self, stride, pad, kernel, adj, size, input_channels, output_channels, batch_size, engine, shared_buffer, use_bias, gc, dc): assume(adj < stride) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, output_channels)\ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 outputs = {} for order in ["NCHW", "NHWC"]: if hiputl.run_in_hip(gc, dc) and order == "NHWC": # MIOPEN doesn't work with NHWC, fallback to use normal hip tmp_engine = "" else: tmp_engine = engine op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], strides=[stride] * 2, kernels=[kernel] * 2, pads=[pad] * 4, adjs=[adj] * 2, order=order, engine=tmp_engine, shared_buffer=int(shared_buffer), device_option=gc, ) if order == "NCHW": X_f = utils.NHWC2NCHW(X) w_f = utils.NHWC2NCHW(w) else: X_f = X w_f = w self.assertDeviceChecks( dc, op, [X_f, w_f, b] if use_bias else [X_f, w_f], [0]) self.ws.create_blob("X").feed(X_f, device_option=gc) self.ws.create_blob("w").feed(w_f, device_option=gc) self.ws.create_blob("b").feed(b, device_option=gc) self.ws.run(op) outputs[order] = self.ws.blobs["Y"].fetch() output_size = (size - 1) * stride + kernel + adj - 2 * pad self.assertEqual( outputs["NCHW"].shape, (batch_size, output_channels, output_size, output_size)) np.testing.assert_allclose( outputs["NCHW"], utils.NHWC2NCHW(outputs["NHWC"]), atol=1e-4, rtol=1e-4) # CUDNN does not support separate stride and pad so we skip it. @given(stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_t=st.integers(0, 3), pad_l=st.integers(0, 3), pad_b=st.integers(0, 3), pad_r=st.integers(0, 3), kernel=st.integers(1, 5), adj_h=st.integers(0, 2), adj_w=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), engine=st.sampled_from(["", "BLOCK"]), use_bias=st.booleans(), **hu.gcs) def test_convolution_transpose_separate_stride_pad_adj_layout( self, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel, adj_h, adj_w, size, input_channels, output_channels, batch_size, engine, use_bias, gc, dc): assume(adj_h < stride_h) assume(adj_w < stride_w) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, output_channels)\ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 outputs = {} for order in ["NCHW", "NHWC"]: op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride_h=stride_h, stride_w=stride_w, kernel=kernel, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, adj_h=adj_h, adj_w=adj_w, order=order, engine=engine, device_option=gc, ) if order == "NCHW": X_f = utils.NHWC2NCHW(X) w_f = utils.NHWC2NCHW(w) else: X_f = X w_f = w self.assertDeviceChecks( dc, op, [X_f, w_f, b] if use_bias else [X_f, w_f], [0]) self.ws.create_blob("X").feed(X_f, device_option=gc) self.ws.create_blob("w").feed(w_f, device_option=gc) self.ws.create_blob("b").feed(b, device_option=gc) self.ws.run(op) outputs[order] = self.ws.blobs["Y"].fetch() output_h = (size - 1) * stride_h + kernel + adj_h - pad_t - pad_b output_w = (size - 1) * stride_w + kernel + adj_w - pad_l - pad_r self.assertEqual( outputs["NCHW"].shape, (batch_size, output_channels, output_h, output_w)) np.testing.assert_allclose( outputs["NCHW"], utils.NHWC2NCHW(outputs["NHWC"]), atol=1e-4, rtol=1e-4) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), adj=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "CUDNN", "BLOCK"]), use_bias=st.booleans(), compute_dX=st.booleans(), **hu.gcs) @settings(max_examples=2, deadline=None) def test_convolution_transpose_gradients(self, stride, pad, kernel, adj, size, input_channels, output_channels, batch_size, order, engine, use_bias, compute_dX, gc, dc): assume(adj < stride) if hiputl.run_in_hip(gc, dc) and engine == "CUDNN": assume(order == "NCHW") X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, output_channels)\ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride=stride, kernel=kernel, pad=pad, adj=adj, order=order, engine=engine, no_gradient_to_input=not compute_dX, ) if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, w, b] if use_bias else [X, w] self.assertDeviceChecks(dc, op, inputs, [0]) if use_bias and compute_dX: # w, b, X outputs_to_check = [1, 2, 0] elif use_bias: # w, b outputs_to_check = [1, 2] elif compute_dX: # w, X outputs_to_check = [1, 0] else: # w outputs_to_check = [1] for i in outputs_to_check: self.assertGradientChecks(gc, op, inputs, i, [0]) # CUDNN does not support separate stride and pad so we skip it. @given(stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_t=st.integers(0, 3), pad_l=st.integers(0, 3), pad_b=st.integers(0, 3), pad_r=st.integers(0, 3), kernel=st.integers(1, 5), adj_h=st.integers(0, 2), adj_w=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 3), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "BLOCK"]), use_bias=st.booleans(), compute_dX=st.booleans(), **hu.gcs) @settings(max_examples=2, deadline=None) def test_convolution_transpose_separate_stride_pad_adj_gradient( self, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel, adj_h, adj_w, size, input_channels, output_channels, batch_size, order, engine, use_bias, compute_dX, gc, dc): assume(adj_h < stride_h) assume(adj_w < stride_w) X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, output_channels)\ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride_h=stride_h, stride_w=stride_w, kernel=kernel, pad_t=pad_t, pad_l=pad_l, pad_b=pad_b, pad_r=pad_r, adj_h=adj_h, adj_w=adj_w, order=order, engine=engine, no_gradient_to_input=not compute_dX, ) if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, w, b] if use_bias else [X, w] self.assertDeviceChecks(dc, op, inputs, [0]) if use_bias and compute_dX: # w, b, X outputs_to_check = [1, 2, 0] elif use_bias: # w, b outputs_to_check = [1, 2] elif compute_dX: # w, X outputs_to_check = [1, 0] else: # w outputs_to_check = [1] for i in outputs_to_check: self.assertGradientChecks(gc, op, inputs, i, [0]) @given(stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 3), adj=st.integers(0, 2), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(0, 4), group=st.integers(1, 4), order=st.sampled_from(["NCHW", "NHWC"]), engine=st.sampled_from(["", "CUDNN", "BLOCK"]), shared_buffer=st.booleans(), use_bias=st.booleans(), **hu.gcs) @settings(max_examples=2, deadline=None) def test_convolution_transpose_with_group( self, stride, pad, kernel, adj, size, input_channels, output_channels, batch_size, group, order, engine, shared_buffer, use_bias, gc, dc): assume(adj < stride) # TODO: Group conv_transpose in NHWC not implemented for GPU yet. assume(group == 1 or order == "NCHW" or gc.device_type == caffe2_pb2.CPU) if group != 1 and order == "NHWC": dc = [d for d in dc if d.device_type == caffe2_pb2.CPU] if hiputl.run_in_hip(gc, dc) and order == "NHWC": engine = "" op = core.CreateOperator( "ConvTranspose", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y"], stride=stride, kernel=kernel, pad=pad, adj=adj, group=group, order=order, engine=engine, shared_buffer=int(shared_buffer), device_option=gc, ) input_channels *= group output_channels *= group X = np.random.rand( batch_size, size, size, input_channels).astype(np.float32) - 0.5 w = np.random.rand( input_channels, kernel, kernel, int(output_channels / group)) \ .astype(np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, w, b] if use_bias else [X, w] self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/conv_transpose_test.py
import functools import hypothesis from hypothesis import given, settings, HealthCheck import hypothesis.strategies as st import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestAdadelta(serial.SerializedTestCase): @staticmethod def ref_adadelta(param_in, mom_in, mom_delta_in, grad, lr, epsilon, decay, using_fp16=False): param_in_f32 = param_in mom_in_f32 = mom_in mom_delta_in_f32 = mom_delta_in if(using_fp16): param_in_f32 = param_in.astype(np.float32) mom_in_f32 = mom_in.astype(np.float32) mom_delta_in_f32 = mom_delta_in.astype(np.float32) mom_out = decay * mom_in_f32 + (1.0 - decay) * grad * grad new_grad = (np.sqrt(mom_delta_in_f32 + epsilon) / np.sqrt(mom_out + epsilon)) * grad param_out = param_in_f32 + lr * new_grad mom_delta_out = decay * mom_delta_in_f32 + (1.0 - decay ) * new_grad * new_grad if(using_fp16): return (param_out.astype(np.float16), mom_out.astype(np.float16), mom_delta_out.astype(np.float16)) else: return (param_out.astype(np.float32), mom_out.astype(np.float32), mom_delta_out.astype(np.float32)) @given(inputs=hu.tensors(n=4), lr=hu.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=hu.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), decay=hu.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs) @settings(deadline=10000) def test_adadelta(self, inputs, lr, epsilon, decay, gc, dc): param, moment, moment_delta, grad = inputs moment = np.abs(moment) moment_delta = np.abs(moment_delta) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Adadelta", ["param", "moment", "moment_delta", "grad", "lr"], ["param", "moment", "moment_delta"], epsilon=epsilon, decay=decay, device_option=gc, ) self.assertReferenceChecks( gc, op, [param, moment, moment_delta, grad, lr], functools.partial(self.ref_adadelta, epsilon=epsilon, decay=decay)) # Suppress filter_too_much health check. # Likely caused by `assume` call falling through too often. @settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000) @given(inputs=hu.tensors(n=4), lr=hu.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=hu.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), decay=hu.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs) def test_sparse_adadelta(self, inputs, lr, epsilon, decay, gc, dc): param, moment, moment_delta, grad = inputs moment = np.abs(moment) moment_delta = np.abs(moment_delta) lr = np.array([lr], dtype=np.float32) # Create an indexing array containing values that are lists of indices, # which index into grad indices = np.random.choice(np.arange(grad.shape[0]), size=np.random.randint(grad.shape[0]), replace=False) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "SparseAdadelta", ["param", "moment", "moment_delta", "indices", "grad", "lr"], ["param", "moment", "moment_delta"], epsilon=epsilon, decay=decay, device_option=gc) def ref_sparse(param, moment, moment_delta, indices, grad, lr, decay, ref_using_fp16): param_out = np.copy(param) moment_out = np.copy(moment) moment_delta_out = np.copy(moment_delta) for i, index in enumerate(indices): param_out[index], moment_out[index], moment_delta_out[ index] = self.ref_adadelta(param[index], moment[index], moment_delta[index], grad[i], lr, epsilon, decay, ref_using_fp16) return (param_out, moment_out, moment_delta_out) ref_using_fp16_values = [False] if gc == hu.gpu_do: ref_using_fp16_values.append(True) for ref_using_fp16 in ref_using_fp16_values: moment_i = None moment_delta_i = None param_i = None if(ref_using_fp16): moment_i = moment.astype(np.float16) moment_delta_i = moment_delta.astype(np.float16) param_i = param.astype(np.float16) else: moment_i = moment.astype(np.float32) moment_delta_i = moment_delta.astype(np.float32) param_i = param.astype(np.float32) self.assertReferenceChecks(gc, op, [ param_i, moment_i, moment_delta_i, indices, grad, lr, decay, ref_using_fp16 ], ref_sparse) @given(inputs=hu.tensors(n=3), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), decay=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs) @settings(deadline=None) def test_sparse_adadelta_empty(self, inputs, lr, epsilon, decay, gc, dc): param, moment, moment_delta = inputs moment = np.abs(moment) lr = np.array([lr], dtype=np.float32) grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32) indices = np.empty(shape=(0,), dtype=np.int64) hypothesis.note('indices.shape: %s' % str(indices.shape)) op = core.CreateOperator( "SparseAdadelta", ["param", "moment", "moment_delta", "indices", "grad", "lr"], ["param", "moment", "moment_delta"], epsilon=epsilon, decay=decay, device_option=gc) def ref_sparse_empty(param, moment, moment_delta, indices, grad, lr, decay): param_out = np.copy(param) moment_out = np.copy(moment) moment_delta_out = np.copy(moment_delta) return (param_out, moment_out, moment_delta_out) ref_using_fp16_values = [False] if gc == hu.gpu_do: ref_using_fp16_values.append(True) for ref_using_fp16 in ref_using_fp16_values: moment_i = None moment_delta_i = None param_i = None if(ref_using_fp16): moment_i = moment.astype(np.float16) moment_delta_i = moment_delta.astype(np.float16) param_i = param.astype(np.float16) else: moment_i = moment.astype(np.float32) moment_delta_i = moment_delta.astype(np.float32) param_i = param.astype(np.float32) self.assertReferenceChecks( gc, op, [param_i, moment_i, moment_delta_i, indices, grad, lr, decay], ref_sparse_empty )
pytorch-master
caffe2/python/operator_test/adadelta_test.py
import numpy as np from numpy.testing import assert_array_equal from caffe2.python import core, workspace from caffe2.python.test_util import TestCase from caffe2.proto import caffe2_pb2 class TestLengthsToShapeOps(TestCase): def test_lengths_to_shape_ops(self): workspace.FeedBlob('l', np.array([200, 200, 200], dtype=np.int32)) workspace.RunOperatorOnce(core.CreateOperator( 'LengthsToShape', ['l'], ['s'])) workspace.FeedBlob('res', np.array([3, 200], dtype=np.int32)) assert_array_equal(workspace.FetchBlob('s'), workspace.FetchBlob('res')) def test_reshape_ops(self): workspace.FeedBlob('res', np.array([[0, 0, 0, 0]], dtype=np.float32)) workspace.FeedBlob('shape', np.array([1, 4], dtype=np.int32)) workspace.FeedBlob('input', np.zeros((2, 2), dtype=np.float32)) workspace.RunOperatorOnce(core.CreateOperator( 'Reshape', ['input', 'shape'], ['output', 'old_shape'])) assert_array_equal(workspace.FetchBlob('output'), workspace.FetchBlob('res')) def test_basic_reshape(self): _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(2, 4)) _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(2, 4), arg_shape=False) def test_missing_dim(self): _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(-1, 8)) _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(-1, 8), arg_shape=False) def test_in_place(self): _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(-1, 8), in_place=True) _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(-1, 8), in_place=True, arg_shape=False) def test_zero_dim(self): _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(0, 0, 0), expected_shape=(4, 2, 1)) _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(0, 0, 0), expected_shape=(4, 2, 1), arg_shape=False) _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(0, 2, 1), expected_shape=(4, 2, 1)) _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(0, 2, 1), expected_shape=(4, 2, 1), arg_shape=False) _test_reshape_output_and_gradient(old_shape=(0, 0), new_shape=(0, 0, 0), expected_shape=(0, 0, 0), arg_shape=False) def test_zero_dim_and_missing_dim(self): _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(0, -1, 0), expected_shape=(4, 2, 1)) _test_reshape_output_and_gradient(old_shape=(4, 2, 1), new_shape=(0, -1, 0), expected_shape=(4, 2, 1), arg_shape=False) _test_reshape_output_and_gradient(old_shape=(4, 3, 2), new_shape=(-1, 0), expected_shape=(8, 3)) _test_reshape_output_and_gradient(old_shape=(4, 3, 2), new_shape=(-1, 0), expected_shape=(8, 3), arg_shape=False) # empty tensor will just have -1 dim = 0 _test_reshape_output_and_gradient( old_shape=(2, 0), new_shape=(-1, 0), expected_shape=(0, 0), arg_shape=False ) def test_backprop(self): old_shape = (4, 2, 1) new_shape = (1, 8) X = np.random.rand(*old_shape).astype(np.float32) Y = np.random.rand(*new_shape).astype(np.float32) net = core.Net('net') net.GivenTensorFill([], 'X', shape=old_shape, values=X.flatten()) net.GivenTensorFill([], 'Y', shape=new_shape, values=Y.flatten()) net.Reshape(['X'], ['X_out', 'old_shape'], shape=new_shape) net.DotProduct(['X_out', 'Y'], 'Z') net.AddGradientOperators(['Z']) workspace.RunNetOnce(net) Z = workspace.FetchBlob('Z') X_grad = workspace.FetchBlob('X_grad') # Check forward computation np.testing.assert_allclose( Z.squeeze(), X.reshape(new_shape).dot(Y.T).squeeze(), rtol=1e-5) # Check the shape of the gradient np.testing.assert_array_equal(X_grad.shape, X.shape) # Check the gradient np.testing.assert_allclose(X_grad, Y.reshape(old_shape), rtol=1e-5) def test_input_shape_changes(self): workspace.FeedBlob( 'input_blob', np.array(np.random.rand(10, 20, 10), dtype=np.float32)) net = core.Net('mynet') z, _ = net.Reshape('input_blob', ['z_reshape', 'dummy_size'], shape=(-1, 10)) workspace.CreateNet(net) workspace.RunNet(net) workspace.FeedBlob( 'input_blob', np.array(np.random.rand(10, 40, 10), dtype=np.float32)) workspace.RunNet(net) def test_nonempty_tensor_gradient(self): old_shape = [4, 2] new_shape = [1, 2, -1] expected_new_shape = [1, 2, 4] _test_reshape_output_and_gradient( old_shape=old_shape, new_shape=new_shape, expected_shape=expected_new_shape, expected_gradient=np.ones(shape=old_shape) ) def test_empty_tensor(self): old_shape = [4, 0] new_shape = [1, -1] expected_new_shape = [1, 0] _test_reshape_output_and_gradient( old_shape=old_shape, new_shape=new_shape, expected_shape=expected_new_shape, expected_gradient=np.empty(shape=old_shape) ) def test_one_dim_empty_tensor_gradient(self): old_shape = (0,) new_shape = [1, -1] expected_new_shape = [1, 0] _test_reshape_output_and_gradient( old_shape=old_shape, new_shape=new_shape, expected_shape=expected_new_shape, expected_gradient=np.empty(shape=old_shape) ) def test_one_dim_and_empty_tensor(self): old_shape = (0,) new_shape = [0, -1] expected_new_shape = [0, 0] _test_reshape_output_and_gradient(old_shape=old_shape, new_shape=new_shape, expected_shape=expected_new_shape) def test_scalar_to_tensor(self): old_shape = () new_shape = [1, -1] expected_new_shape = [1, 1] _test_reshape_output_and_gradient(old_shape=old_shape, new_shape=new_shape, expected_shape=expected_new_shape) def _test_reshape_output_and_gradient( old_shape, new_shape, expected_shape=None, arg_shape=True, in_place=False, expected_gradient=None ): devices = [core.DeviceOption(caffe2_pb2.CPU, 0)] if workspace.NumGpuDevices() > 0: devices.append(core.DeviceOption(workspace.GpuDeviceType, 0)) for device_opt in devices: with core.DeviceScope(device_opt): if expected_shape is None: expected_shape = new_shape net = core.Net('net') if len(old_shape) == 0: # scalar, convert to tensor before feeding to blob X = np.atleast_1d(np.random.rand(*old_shape)) else: X = np.random.rand(*old_shape).astype(np.float32) blob_in = 'X' blob_out = blob_in if in_place else blob_in + '_out' if arg_shape: out, _ = net.Reshape([blob_in], [blob_out, 'old_shape'], shape=new_shape) else: out, _ = net.Reshape([blob_in, 'new_shape'], [blob_out, 'old_shape']) workspace.FeedBlob('new_shape', np.asarray(new_shape)) workspace.FeedBlob(blob_in, X) if expected_gradient is not None: net.AddGradientOperators([out]) workspace.CreateNet(net) workspace.RunNetOnce(net) Y = workspace.FetchBlob(blob_out) np.testing.assert_allclose(Y, X.reshape(expected_shape)) if expected_gradient is not None: data_grad = workspace.FetchBlob(blob_in + '_grad') np.testing.assert_array_equal(data_grad, expected_gradient) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/reshape_ops_test.py
import os import shutil import sys import tempfile import unittest import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import model_helper, workspace try: import lmdb except ImportError: raise unittest.SkipTest("python-lmdb is not installed") class VideoInputOpTest(unittest.TestCase): def create_a_list(self, output_file, line, n): # create a list that repeat a line n times # used for creating a list file for simple test input with open(output_file, "w") as file: for _i in range(n): file.write(line) def create_video_db(self, list_file, output_file, use_list=False): # Write to lmdb database... LMDB_MAP_SIZE = 1 << 40 # MODIFY env = lmdb.open(output_file, map_size=LMDB_MAP_SIZE) total_size = 0 file_name = [] start_frame = [] label = [] index = 0 with env.begin(write=True) as txn: with open(list_file, "r") as data: for line in data: p = line.split() file_name = p[0] start_frame = int(p[1]) label = int(p[2]) if not use_list: with open(file_name, mode="rb") as file: video_data = file.read() else: video_data = file_name tensor_protos = caffe2_pb2.TensorProtos() video_tensor = tensor_protos.protos.add() video_tensor.data_type = 4 # string data video_tensor.string_data.append(video_data) label_tensor = tensor_protos.protos.add() label_tensor.data_type = 2 label_tensor.int32_data.append(label) start_frame_tensor = tensor_protos.protos.add() start_frame_tensor.data_type = 2 start_frame_tensor.int32_data.append(start_frame) txn.put( "{}".format(index).encode("ascii"), tensor_protos.SerializeToString(), ) index = index + 1 total_size = total_size + len(video_data) + sys.getsizeof(int) return total_size # sample one clip randomly from the video def test_rgb_with_temporal_jittering(self): random_label = np.random.randint(0, 100) VIDEO = "/mnt/vol/gfsdataswarm-oregon/users/trandu/sample.avi" if not os.path.exists(VIDEO): raise unittest.SkipTest("Missing data") temp_list = tempfile.NamedTemporaryFile(delete=False).name line_str = "{} 0 {}\n".format(VIDEO, random_label) self.create_a_list(temp_list, line_str, 16) video_db_dir = tempfile.mkdtemp() self.create_video_db(temp_list, video_db_dir) model = model_helper.ModelHelper(name="Video Loader from LMDB") reader = model.CreateDB("sample", db=video_db_dir, db_type="lmdb") # build the model model.net.VideoInput( reader, ["data", "label"], name="data", batch_size=16, clip_per_video=1, crop_size=112, scale_w=171, scale_h=128, length_rgb=8, sampling_rate_rgb=1, decode_type=0, video_res_type=0, # scale by scale_h and scale_w ) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) data = workspace.FetchBlob("data") label = workspace.FetchBlob("label") np.testing.assert_equal(label, random_label) np.testing.assert_equal(data.shape, [16, 3, 8, 112, 112]) os.remove(temp_list) shutil.rmtree(video_db_dir) # sample multiple clips uniformly from the video def test_rgb_with_uniform_sampling(self): random_label = np.random.randint(0, 100) clip_per_video = np.random.randint(2, 11) VIDEO = "/mnt/vol/gfsdataswarm-oregon/users/trandu/sample.avi" if not os.path.exists(VIDEO): raise unittest.SkipTest("Missing data") temp_list = tempfile.NamedTemporaryFile(delete=False).name line_str = "{} 0 {}\n".format(VIDEO, random_label) self.create_a_list(temp_list, line_str, 16) video_db_dir = tempfile.mkdtemp() self.create_video_db(temp_list, video_db_dir) model = model_helper.ModelHelper(name="Video Loader from LMDB") reader = model.CreateDB("sample", db=video_db_dir, db_type="lmdb") # build the model model.net.VideoInput( reader, ["data", "label"], name="data", batch_size=3, clip_per_video=clip_per_video, crop_size=112, scale_w=171, scale_h=128, length_rgb=8, sampling_rate_rgb=1, decode_type=1, video_res_type=0, ) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) data = workspace.FetchBlob("data") label = workspace.FetchBlob("label") np.testing.assert_equal(label, random_label) np.testing.assert_equal(data.shape, [3 * clip_per_video, 3, 8, 112, 112]) os.remove(temp_list) shutil.rmtree(video_db_dir) # test optical flow def test_optical_flow_with_temporal_jittering(self): random_label = np.random.randint(0, 100) VIDEO = "/mnt/vol/gfsdataswarm-oregon/users/trandu/sample.avi" if not os.path.exists(VIDEO): raise unittest.SkipTest("Missing data") temp_list = tempfile.NamedTemporaryFile(delete=False).name line_str = "{} 0 {}\n".format(VIDEO, random_label) self.create_a_list(temp_list, line_str, 16) video_db_dir = tempfile.mkdtemp() self.create_video_db(temp_list, video_db_dir) model = model_helper.ModelHelper(name="Video Loader from LMDB") reader = model.CreateDB("sample", db=video_db_dir, db_type="lmdb") model.net.VideoInput( reader, ["data", "label"], name="data", batch_size=16, clip_per_video=1, crop_size=112, scale_w=171, scale_h=128, length_of=8, sampling_rate_of=1, frame_gap_of=1, decode_type=0, video_res_type=0, get_rgb=False, get_optical_flow=True, ) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) data = workspace.FetchBlob("data") label = workspace.FetchBlob("label") np.testing.assert_equal(label, random_label) np.testing.assert_equal(data.shape, [16, 2, 8, 112, 112]) os.remove(temp_list) shutil.rmtree(video_db_dir) # test rgb output VideoResType is # USE_SHORTER_EDGE def test_rgb_use_shorter_edge(self): batch_size = 16 random_label = np.random.randint(0, 100) VIDEO = "/mnt/vol/gfsdataswarm-oregon/users/trandu/sample.avi" if not os.path.exists(VIDEO): raise unittest.SkipTest("Missing data") temp_list = tempfile.NamedTemporaryFile(delete=False).name line_str = "{} 0 {}\n".format(VIDEO, random_label) self.create_a_list(temp_list, line_str, batch_size) video_db_dir = tempfile.mkdtemp() self.create_video_db(temp_list, video_db_dir) model = model_helper.ModelHelper(name="Video Loader from LMDB") reader = model.CreateDB("sample", db=video_db_dir, db_type="lmdb") model.net.VideoInput( reader, ["data", "label"], name="data", batch_size=batch_size, clip_per_video=1, crop_size=112, scale_w=171, scale_h=128, length_of=8, frame_gap_of=1, decode_type=0, video_res_type=1, # use shorter edge get_rgb=True, length_rgb=8, short_edge=112, ) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) data = workspace.FetchBlob("data") label = workspace.FetchBlob("label") np.testing.assert_equal(label.shape, [batch_size]) for i in range(batch_size): np.testing.assert_equal(label[i], random_label) np.testing.assert_equal(data.shape, [batch_size, 3, 8, 112, 112]) os.remove(temp_list) shutil.rmtree(video_db_dir) # test optical flow output VideoResType is # USE_SHORTER_EDGE def test_optical_flow_use_shorter_edge(self): batch_size = 16 random_label = np.random.randint(0, 100) VIDEO = "/mnt/vol/gfsdataswarm-oregon/users/trandu/sample.avi" if not os.path.exists(VIDEO): raise unittest.SkipTest("Missing data") temp_list = tempfile.NamedTemporaryFile(delete=False).name line_str = "{} 0 {}\n".format(VIDEO, random_label) self.create_a_list(temp_list, line_str, batch_size) video_db_dir = tempfile.mkdtemp() self.create_video_db(temp_list, video_db_dir) model = model_helper.ModelHelper(name="Video Loader from LMDB") reader = model.CreateDB("sample", db=video_db_dir, db_type="lmdb") model.net.VideoInput( reader, ["data", "label"], name="data", batch_size=batch_size, clip_per_video=1, crop_size=112, scale_w=171, scale_h=128, length_of=8, sampling_rate_of=1, frame_gap_of=1, decode_type=0, video_res_type=1, # use shorter edge get_rgb=False, get_optical_flow=True, short_edge=112, ) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) data = workspace.FetchBlob("data") label = workspace.FetchBlob("label") np.testing.assert_equal(label.shape, [batch_size]) for i in range(batch_size): np.testing.assert_equal(label[i], random_label) np.testing.assert_equal(data.shape, [batch_size, 2, 8, 112, 112]) os.remove(temp_list) shutil.rmtree(video_db_dir) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/video_input_op_test.py
import numpy from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np @st.composite def _data(draw): return draw( hu.tensor( dtype=np.int64, elements=st.integers( min_value=np.iinfo(np.int64).min, max_value=np.iinfo(np.int64).max ) ) ) class TestMod(hu.HypothesisTestCase): @settings(deadline=None) @given( data=_data(), divisor=st.integers( min_value=np.iinfo(np.int64).min, max_value=np.iinfo(np.int64).max ), inplace=st.booleans(), sign_follow_divisor=st.booleans(), **hu.gcs ) def test_mod( self, data, divisor, inplace, sign_follow_divisor, gc, dc ): if divisor == 0: # invalid test case return None def ref(data): if sign_follow_divisor: output = data % divisor else: output = numpy.fmod(data, divisor) return [output] op = core.CreateOperator( 'Mod', ['data'], ['data' if inplace else 'output'], divisor=divisor, sign_follow_divisor=sign_follow_divisor ) self.assertReferenceChecks(gc, op, [data], ref) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/mod_op_test.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np class TestPutOps(TestCase): def test_default_value(self): magnitude_expand = int(1e12) stat_name = "stat".encode('ascii') sum_postfix = "/stat_value/sum".encode("ascii") count_postfix = "/stat_value/count".encode("ascii") default_value = 16.0 workspace.FeedBlob("value", np.array([], dtype=np.float)) workspace.RunOperatorOnce(core.CreateOperator( "AveragePut", "value", [], stat_name=stat_name, magnitude_expand=magnitude_expand, bound=True, default_value=default_value)) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['k', 'v', 't'])) k = workspace.FetchBlob('k') v = workspace.FetchBlob('v') stat_dict = dict(zip(k, v)) self.assertIn(stat_name + sum_postfix, stat_dict) self.assertIn(stat_name + count_postfix, stat_dict) self.assertEquals(stat_dict[stat_name + sum_postfix], default_value * magnitude_expand) self.assertEquals(stat_dict[stat_name + count_postfix], 1) def test_clamp(self): put_value = 10 magnitude_expand = int(1e18) stat_name = "stat".encode('ascii') sum_postfix = "/stat_value/sum".encode("ascii") count_postfix = "/stat_value/count".encode("ascii") workspace.FeedBlob("value", np.array([put_value], dtype=np.float)) workspace.RunOperatorOnce(core.CreateOperator( "AveragePut", "value", [], stat_name=stat_name, magnitude_expand=magnitude_expand, bound=True)) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['k', 'v', 't'])) k = workspace.FetchBlob('k') v = workspace.FetchBlob('v') stat_dict = dict(zip(k, v)) self.assertIn(stat_name + sum_postfix, stat_dict) self.assertIn(stat_name + count_postfix, stat_dict) self.assertEquals(stat_dict[stat_name + sum_postfix], 9223372036854775807) self.assertEquals(stat_dict[stat_name + count_postfix], 1) def test_clamp_with_out_of_bounds(self): put_value = float(1e20) magnitude_expand = 1000000000000 stat_name = "stat".encode('ascii') sum_postfix = "/stat_value/sum".encode("ascii") count_postfix = "/stat_value/count".encode("ascii") workspace.FeedBlob("value", np.array([put_value], dtype=np.float)) workspace.RunOperatorOnce(core.CreateOperator( "AveragePut", "value", [], stat_name=stat_name, magnitude_expand=magnitude_expand, bound=True)) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['k', 'v', 't'])) k = workspace.FetchBlob('k') v = workspace.FetchBlob('v') stat_dict = dict(zip(k, v)) self.assertIn(stat_name + sum_postfix, stat_dict) self.assertIn(stat_name + count_postfix, stat_dict) self.assertEquals(stat_dict[stat_name + sum_postfix], 9223372036854775807) self.assertEquals(stat_dict[stat_name + count_postfix], 1) def test_avg_put_ops(self): put_value = 15.1111 magnitude_expand = 10000 stat_name = "a1".encode('ascii') sum_postfix = "/stat_value/sum".encode("ascii") count_postfix = "/stat_value/count".encode("ascii") workspace.FeedBlob("value", np.array([put_value], dtype=np.float)) workspace.RunOperatorOnce(core.CreateOperator( "AveragePut", "value", [], stat_name=stat_name, magnitude_expand=magnitude_expand)) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['k', 'v', 't'])) k = workspace.FetchBlob('k') v = workspace.FetchBlob('v') stat_dict = dict(zip(k, v)) self.assertIn(stat_name + sum_postfix, stat_dict) self.assertIn(stat_name + count_postfix, stat_dict) self.assertEquals(stat_dict[stat_name + sum_postfix], put_value * magnitude_expand) self.assertEquals(stat_dict[stat_name + count_postfix], 1) def test_increment_put_ops(self): put_value = 15.1111 magnitude_expand = 10000 stat_name = "i1".encode('ascii') member_postfix = "/stat_value".encode("ascii") workspace.FeedBlob("value", np.array([put_value], dtype=np.float)) workspace.RunOperatorOnce(core.CreateOperator( "IncrementPut", "value", [], stat_name=stat_name, magnitude_expand=magnitude_expand)) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['k', 'v', 't'])) k = workspace.FetchBlob('k') v = workspace.FetchBlob('v') stat_dict = dict(zip(k, v)) self.assertIn(stat_name + member_postfix, stat_dict) self.assertEquals(stat_dict[stat_name + member_postfix], put_value * magnitude_expand) def test_stddev_put_ops(self): put_value = 15.1111 magnitude_expand = 10000 stat_name = "s1".encode('ascii') sum_postfix = "/stat_value/sum".encode("ascii") count_postfix = "/stat_value/count".encode("ascii") sumoffset_postfix = "/stat_value/sumoffset".encode("ascii") sumsqoffset_postfix = "/stat_value/sumsqoffset".encode("ascii") workspace.FeedBlob("value", np.array([put_value], dtype=np.float)) workspace.RunOperatorOnce(core.CreateOperator( "StdDevPut", "value", [], stat_name=stat_name, magnitude_expand=magnitude_expand)) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['k', 'v', 't'])) k = workspace.FetchBlob('k') v = workspace.FetchBlob('v') stat_dict = dict(zip(k, v)) self.assertIn(stat_name + sum_postfix, stat_dict) self.assertIn(stat_name + count_postfix, stat_dict) self.assertIn(stat_name + sumoffset_postfix, stat_dict) self.assertIn(stat_name + sumsqoffset_postfix, stat_dict) self.assertEquals(stat_dict[stat_name + sum_postfix], put_value * magnitude_expand) self.assertEquals(stat_dict[stat_name + count_postfix], 1)
pytorch-master
caffe2/python/operator_test/stats_put_ops_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import assume, given, settings import hypothesis.strategies as st import numpy as np class TestBooleanMaskOp(serial.SerializedTestCase): @given(x=hu.tensor1d(min_len=1, max_len=100, elements=hu.floats(min_value=0.5, max_value=1.0)), **hu.gcs_cpu_only) @settings(deadline=10000) def test_boolean_mask_gradient(self, x, gc, dc): op = core.CreateOperator("BooleanMask", ["data", "mask"], "masked_data") mask = np.random.choice(a=[True, False], size=x.shape[0]) expected_gradient = np.copy(mask).astype(int) self.assertDeviceChecks(dc, op, [x, mask], [0]) self.assertGradientChecks(gc, op, [x, mask], 0, [0]) @given(x=hu.tensor1d(min_len=1, max_len=5, elements=hu.floats(min_value=0.5, max_value=1.0)), **hu.gcs) @settings(deadline=10000) def test_boolean_mask(self, x, gc, dc): op = core.CreateOperator("BooleanMask", ["data", "mask"], "masked_data") mask = np.random.choice(a=[True, False], size=x.shape[0]) def ref(x, mask): return (x[mask],) self.assertReferenceChecks(gc, op, [x, mask], ref) self.assertDeviceChecks(dc, op, [x, mask], [0]) @given(x=hu.tensor1d(min_len=1, max_len=5, elements=hu.floats(min_value=0.5, max_value=1.0)), **hu.gcs) def test_boolean_mask_indices(self, x, gc, dc): op = core.CreateOperator("BooleanMask", ["data", "mask"], ["masked_data", "masked_indices"]) mask = np.random.choice(a=[True, False], size=x.shape[0]) def ref(x, mask): return (x[mask], np.where(mask)[0]) self.assertReferenceChecks(gc, op, [x, mask], ref) self.assertDeviceChecks(dc, op, [x, mask], [0]) @staticmethod def _dtype_conversion(x, dtype, gc, dc): """SequenceMask only supports fp16 with CUDA/ROCm.""" if dtype == np.float16: assume(core.IsGPUDeviceType(gc.device_type)) dc = [d for d in dc if core.IsGPUDeviceType(d.device_type)] x = x.astype(dtype) return x, dc @given(x=hu.tensor(min_dim=2, max_dim=5, elements=hu.floats(min_value=0.5, max_value=1.0)), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) def test_sequence_mask_with_lengths(self, x, dtype, gc, dc): x, dc = self._dtype_conversion(x, dtype, gc, dc) # finite fill value needed for gradient check fill_val = 1e-3 if dtype == np.float16 else 1e-9 op = core.CreateOperator("SequenceMask", ["data", "lengths"], ["masked_data"], mode="sequence", axis=len(x.shape) - 1, fill_val=fill_val) elem_dim = x.shape[-1] leading_dim = 1 for dim in x.shape[:-1]: leading_dim *= dim lengths = np.random.randint(0, elem_dim, [leading_dim])\ .astype(np.int32) def ref(x, lengths): ref = np.reshape(x, [leading_dim, elem_dim]) for i in range(leading_dim): for j in range(elem_dim): if j >= lengths[i]: ref[i, j] = fill_val return [ref.reshape(x.shape)] self.assertReferenceChecks(gc, op, [x, lengths], ref) self.assertDeviceChecks(dc, op, [x, lengths], [0]) @given(x=hu.tensor(min_dim=2, max_dim=5, elements=hu.floats(min_value=0.5, max_value=1.0)), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) @settings(deadline=10000) def test_sequence_mask_with_window(self, x, dtype, gc, dc): x, dc = self._dtype_conversion(x, dtype, gc, dc) # finite fill value needed for gradient check fill_val = 1e-3 if dtype == np.float16 else 1e-9 radius = 2 op = core.CreateOperator("SequenceMask", ["data", "centers"], ["masked_data"], mode="window", radius=radius, axis=len(x.shape) - 1, fill_val=fill_val) elem_dim = x.shape[-1] leading_dim = 1 for dim in x.shape[:-1]: leading_dim *= dim centers = np.random.randint(0, elem_dim, [leading_dim])\ .astype(np.int32) def ref(x, centers): ref = np.reshape(x, [leading_dim, elem_dim]) for i in range(leading_dim): for j in range(elem_dim): if j > centers[i] + radius or j < centers[i] - radius: ref[i, j] = fill_val return [ref.reshape(x.shape)] self.assertReferenceChecks(gc, op, [x, centers], ref) self.assertDeviceChecks(dc, op, [x, centers], [0]) # Gradient check with np.float16 is found to be flakey, disable for now # with high threshold (to repro, set threshold to 0.4). threshold = 1.0 if dtype == np.float16 else 0.005 self.assertGradientChecks(gc, op, [x, centers], 0, [0], threshold=threshold) @given(x=hu.tensor(min_dim=2, max_dim=5, elements=hu.floats(min_value=0.5, max_value=1.0)), mode=st.sampled_from(['upper', 'lower', 'upperdiag', 'lowerdiag']), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) @settings(deadline=10000) def test_sequence_mask_triangle(self, x, mode, dtype, gc, dc): x, dc = self._dtype_conversion(x, dtype, gc, dc) # finite fill value needed for gradient check fill_val = 1e-3 if dtype == np.float16 else 1e-9 op = core.CreateOperator("SequenceMask", ["data"], ["masked_data"], mode=mode, axis=len(x.shape) - 1, fill_val=fill_val) elem_dim = x.shape[-1] leading_dim = 1 for dim in x.shape[:-1]: leading_dim *= dim if mode == 'upper': def compare(i, j): return j > i elif mode == 'lower': def compare(i, j): return j < i elif mode == 'upperdiag': def compare(i, j): return j >= i elif mode == 'lowerdiag': def compare(i, j): return j <= i def ref(x): ref = np.reshape(x, [leading_dim, elem_dim]) for i in range(leading_dim): for j in range(elem_dim): if compare(i, j): ref[i, j] = fill_val return [ref.reshape(x.shape)] self.assertReferenceChecks(gc, op, [x], ref) self.assertDeviceChecks(dc, op, [x], [0]) # Gradient check with np.float16 is found to be flakey, disable for now # with high threshold (to repro, set threshold to 0.4). threshold = 1.0 if dtype == np.float16 else 0.005 stepsize = 0.1 if dtype == np.float16 else 0.05 self.assertGradientChecks(gc, op, [x], 0, [0], threshold=threshold, stepsize=stepsize) @given(x=hu.tensor(min_dim=2, max_dim=5, elements=hu.floats(min_value=0.5, max_value=1.0)), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) @settings(deadline=10000) def test_sequence_mask_batching_lengths(self, x, dtype, gc, dc): x, dc = self._dtype_conversion(x, dtype, gc, dc) # finite fill value needed for gradient check fill_val = 1e-3 if dtype == np.float16 else 1e-9 # choose _different_ batch and axis dimensions, w/ axis != 0. axis = 0 batch = 0 while axis == 0 or axis < batch: inds = np.arange(len(x.shape)) np.random.shuffle(inds) batch = inds[0] axis = inds[1] op = core.CreateOperator("SequenceMask", ["data", "lengths"], ["masked_data"], mode='sequence', axis=axis, fill_val=fill_val, batch=batch) before = int(np.prod(x.shape[:batch + 1])) between = int(np.prod(x.shape[batch + 1:axis])) after = int(np.prod(x.shape[axis:])) lengths = np.random.randint(0, after, [between])\ .astype(np.int32) def ref(z, l): w = np.reshape(z, [before, between, after]) for b in range(before): r = w[b, :, :] for i in range(between): for j in range(after): if j >= l[i]: r[i, j] = fill_val return [w.reshape(z.shape)] self.assertReferenceChecks(gc, op, [x, lengths], ref) self.assertDeviceChecks(dc, op, [x, lengths], [0]) # Gradient check with np.float16 is found to be flakey, disable for now # with high threshold (to repro, set threshold to 0.4). threshold = 1.0 if dtype == np.float16 else 0.005 self.assertGradientChecks(gc, op, [x, lengths], 0, [0], threshold=threshold) @given(x=hu.tensor(min_dim=4, max_dim=4, elements=hu.floats(min_value=0.5, max_value=1.0)), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) @settings(deadline=10000) def test_sequence_mask_batching_window(self, x, dtype, gc, dc): x, dc = self._dtype_conversion(x, dtype, gc, dc) # finite fill value needed for gradient check fill_val = 1e-3 if dtype == np.float16 else 1e-9 radius = 1 # choose _different_ batch and axis dimensions, w/ axis != 0. axis = 0 batch = 0 while axis == 0 or axis < batch: inds = np.arange(len(x.shape)) np.random.shuffle(inds) batch = inds[0] axis = inds[1] op = core.CreateOperator("SequenceMask", ["data", "centers"], ["masked_data"], mode='window', radius=radius, axis=axis, fill_val=fill_val, batch=batch) before = int(np.prod(x.shape[:batch + 1])) between = int(np.prod(x.shape[batch + 1:axis])) after = int(np.prod(x.shape[axis:])) centers = np.random.randint(0, after, [between])\ .astype(np.int32) def ref(z, c): w = np.reshape(z, [before, between, after]) for b in range(before): r = w[b, :, :] for i in range(between): for j in range(after): if j > c[i] + radius or j < c[i] - radius: r[i, j] = fill_val return [w.reshape(z.shape)] self.assertReferenceChecks(gc, op, [x, centers], ref) self.assertDeviceChecks(dc, op, [x, centers], [0]) # Gradient check with np.float16 is found to be flakey, disable for now # with high threshold (to repro, set threshold to 0.4). threshold = 1.0 if dtype == np.float16 else 0.005 self.assertGradientChecks(gc, op, [x, centers], 0, [0], threshold=threshold) @given(x=hu.tensor(min_dim=3, max_dim=5, elements=hu.floats(min_value=0.5, max_value=1.0)), mode=st.sampled_from(['upper', 'lower', 'upperdiag', 'lowerdiag']), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) @settings(deadline=10000) def test_sequence_mask_batching_triangle(self, x, mode, dtype, gc, dc): x, dc = self._dtype_conversion(x, dtype, gc, dc) # finite fill value needed for gradient check fill_val = 1e-3 if dtype == np.float16 else 1e-9 # choose _different_ batch and axis dimensions, w/ axis != 0. axis = 0 batch = 0 while axis == 0 or axis < batch: inds = np.arange(len(x.shape)) np.random.shuffle(inds) batch = inds[0] axis = inds[1] op = core.CreateOperator("SequenceMask", ["data"], ["masked_data"], mode=mode, axis=axis, fill_val=fill_val, batch=batch) if mode == 'upper': def compare(i, j): return j > i elif mode == 'lower': def compare(i, j): return j < i elif mode == 'upperdiag': def compare(i, j): return j >= i elif mode == 'lowerdiag': def compare(i, j): return j <= i def ref(z): before = int(np.prod(z.shape[:batch + 1])) between = int(np.prod(z.shape[batch + 1:axis])) after = int(np.prod(z.shape[axis:])) w = np.reshape(z, [before, between, after]) for b in range(before): r = w[b, :, :] for i in range(between): for j in range(after): if compare(i, j): r[i, j] = fill_val return [w.reshape(z.shape)] self.assertReferenceChecks(gc, op, [x], ref) self.assertDeviceChecks(dc, op, [x], [0]) # Gradient check with np.float16 is found to be flakey, disable for now # with high threshold (to repro, set threshold to 0.4). threshold = 1.0 if dtype == np.float16 else 0.005 stepsize = 0.1 if dtype == np.float16 else 0.05 self.assertGradientChecks(gc, op, [x], 0, [0], threshold=threshold, stepsize=stepsize) @given(x=hu.tensor(min_dim=3, max_dim=5, elements=hu.floats(min_value=0.5, max_value=1.0)), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) def test_sequence_mask_repeated(self, x, dtype, gc, dc): x, dc = self._dtype_conversion(x, dtype, gc, dc) # finite fill value needed for gradient check fill_val = 1e-3 if dtype == np.float16 else 1e-9 op = core.CreateOperator("SequenceMask", ["data", "lengths"], ["masked_data"], mode="sequence", axis=len(x.shape) - 2, repeat_from_axis=-1, fill_val=fill_val) elem_dim = x.shape[-2] leading_dim = 1 for dim in x.shape[:-2]: leading_dim *= dim lengths = np.random.randint(0, elem_dim, [leading_dim])\ .astype(np.int32) def ref(x, lengths): ref = np.reshape(x, [leading_dim, elem_dim, -1]) for i in range(leading_dim): for j in range(elem_dim): if j >= lengths[i]: ref[i, j, :] = fill_val return [ref.reshape(x.shape)] self.assertReferenceChecks(gc, op, [x, lengths], ref) self.assertDeviceChecks(dc, op, [x, lengths], [0])
pytorch-master
caffe2/python/operator_test/boolean_mask_test.py