python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Module for defining "primitive" operations executable by the nvFuser. This # list exists to decouple main set of primitives from the ones that provide a # lowering of the op to nvFuser’s Python interface. Mostly torch.ops.nvprims is # a subset of the primitives in torch.ops.prims, but some additional primitives # can be added in the future for the corresponding higher-level torch/aten # functions. from typing import Any, Dict import torch from torch._prims_common import ( DimsSequenceType, getnvFuserDtype, ShapeType, TensorLikeType, ) from torch._prims_common.wrappers import backwards_not_supported nvprim_namespace = "nvprims" nvprim = torch.library.Library(nvprim_namespace, "DEF") nvprim_impl = torch.library.Library( nvprim_namespace, "IMPL", "CompositeExplicitAutograd" ) nvprim_autograd_impl = torch.library.Library(nvprim_namespace, "IMPL", "Autograd") nvprim_meta_impl = torch.library.Library(nvprim_namespace, "IMPL", "Meta") nvprim_names = [ "abs", "acos", "asin", "atan", "atanh", "cos", "cosh", "bitwise_not", "ceil", "erf", "erfc", "exp", "expm1", "floor", "imag", "isfinite", "lgamma", "log", "log1p", "log2", "log10", "real", "reciprocal", "neg", "round", "rsqrt", "sign", "sin", "sinh", "sqrt", "tan", "tanh", "trunc", "add", "atan2", "bitwise_and", "bitwise_or", "bitwise_xor", "div", "eq", "fmod", "ge", "gt", "le", "lt", "mul", "ne", "pow", "remainder", "sub", "broadcast_in_dim", "where", "convert_element_type", "sum", "var", "amax", "amin", ] _nvfuser_impls: Dict[str, Any] = {} _nvfuser_unary_ops = { "abs", "acos", "asin", "atan", "atanh", "cos", "cosh", "bitwise_not", "ceil", "erf", "erfc", "exp", "expm1", "floor", "imag", "isfinite", "lgamma", "log", "log1p", "log2", "log10", "reciprocal", "neg", "real", "round", "rsqrt", "sign", "sin", "sinh", "sqrt", "tan", "tanh", "trunc", } def _assert_nvfuser_op_exists(fname: str): try: from torch._C._nvfuser import FusionDefinition as fd # type: ignore[import] assert getattr(fd.Operators, fname) except ImportError: # Not all PyTorch builds have nvfuser pass for fname in _nvfuser_unary_ops: exec( f""" # Ensure that the nvfuser implementation exists _assert_nvfuser_op_exists("{fname}") def _{fname}_nvfuser(fd, a): return fd.ops.{fname}(a) # type: ignore[attr-defined] _nvfuser_impls["{fname}"] = _{fname}_nvfuser """ ) _nvfuser_binary_ops = { "add", "atan2", "bitwise_and", "bitwise_or", "bitwise_xor", "div", "eq", "fmod", "ge", "gt", "le", "lt", "mul", "ne", "pow", "remainder", "sub", } for fname in _nvfuser_binary_ops: exec( f""" # Ensure that the nvfuser implementation exists _assert_nvfuser_op_exists("{fname}") def _{fname}_nvfuser(fd, a, b): return fd.ops.{fname}(a, b) # type: ignore[attr-defined] _nvfuser_impls["{fname}"] = _{fname}_nvfuser """ ) _nvfuser_ternary_ops = { "where", } for fname in _nvfuser_ternary_ops: exec( f""" # Ensure that the nvfuser implementation exists _assert_nvfuser_op_exists("{fname}") def _{fname}_nvfuser(fd, a, b, c): return fd.ops.{fname}(a, b, c) # type: ignore[attr-defined] _nvfuser_impls["{fname}"] = _{fname}_nvfuser """ ) def _broadcast_in_dim_nvfuser( fd: Any, a: TensorLikeType, shape: ShapeType, broadcast_dimensions: ShapeType, ): return fd.ops.broadcast_in_dim(a, shape, broadcast_dimensions) # type: ignore[attr-defined] def _convert_element_type_nvfuser(fd: Any, a: TensorLikeType, dtype: torch.dtype): nvfuser_dtype = getnvFuserDtype(dtype) return fd.ops.cast(a, nvfuser_dtype) # type: ignore[attr-defined] def _sum_nvfuser( fd: Any, a: TensorLikeType, dims: DimsSequenceType, ): keep_dims = False output_dtype = torch._C._nvfuser.DataType.Null return fd.ops.sum(a, dims, keep_dims, output_dtype) def _var_nvfuser( fd: Any, a: TensorLikeType, dims: DimsSequenceType, *, correction: int, ): keep_dims = False return fd.ops.var(a, dims, correction, keep_dims) def _amax_nvfuser( fd: Any, a: TensorLikeType, dims: DimsSequenceType, ): keep_dims = False return fd.ops.max(a, dims, keep_dims) def _amin_nvfuser( fd: Any, a: TensorLikeType, dims: DimsSequenceType, ): keep_dims = False return fd.ops.min(a, dims, keep_dims) _nvfuser_impls["broadcast_in_dim"] = _broadcast_in_dim_nvfuser _nvfuser_impls["convert_element_type"] = _convert_element_type_nvfuser _nvfuser_impls["sum"] = _sum_nvfuser _nvfuser_impls["var"] = _var_nvfuser _nvfuser_impls["amax"] = _amax_nvfuser _nvfuser_impls["amin"] = _amin_nvfuser def register_nvprims(): """Registers all nvFuser primitives in the torch.ops.nvprims module.""" for name in nvprim_names: main_prim = getattr(torch.ops.prims, name) nvprim.define(main_prim.schema) nvprim_impl.impl(name, main_prim.prim_impl) nvprim_meta_impl.impl(name, main_prim.prim_meta_impl) prim_packet = getattr(torch.ops.nvprims, name) prim = prim_packet.default nvprim_autograd_impl.impl(name, backwards_not_supported(prim)) for p in (prim_packet, prim): p.__doc__ = main_prim.__doc__ p.impl_nvfuser = _nvfuser_impls[name] p.return_type = main_prim.return_type # type: ignore[attr-defined]
pytorch-master
torch/_prims/nvfuser_prims.py
from typing import Callable from torch._prims.context import NvfuserPrimsMode, TorchRefsMode from torch._prims.nvfuser_executor import nvfuser_execute, nvfuser_execute_partitioned from torch.fx import GraphModule from torch.fx.experimental.proxy_tensor import make_fx, wrapper_and_args_for_make_fx def execute(gm: GraphModule, *args, executor: str = "aten"): """ Prototype ATen executor. Just executes the context's graph. """ if executor == "aten": return gm.forward(*args) elif executor == "nvfuser": return nvfuser_execute_partitioned(gm, *args) elif executor == "strictly_nvfuser": return nvfuser_execute(gm, *args) msg = "Received unexpected value for 'executor': {0}. Allowed values are: aten, nvfuser.".format( executor ) raise ValueError(msg) def make_traced(fn: Callable): """ Returns a function that, when called, will trace its torch operations to prims and then execute those prims on the requested trace executor (possibly lowering them to that trace executor first). Only supports the torch operations defined in _torch_to_reference_map in context.py and operations with positional args. All args must be tensors. In the near future all these restrictions will be lifted. Example usage: def foo(a, b): return torch.add(a, b) traced_foo = make_traced(foo) a = torch.randn((1, 2, 3, 4, 5), device='cuda') b = torch.randn((1, 2, 3, 4, 5), device='cuda') result = traced_foo(a, b, executor='nvfuser') Executor may be either 'aten' or 'nvfuser'. """ def _traced(*args, executor="aten", **kwargs): # TODO: caching wrapped, all_args = wrapper_and_args_for_make_fx(fn, args, kwargs) with NvfuserPrimsMode(), TorchRefsMode(): gm = make_fx(wrapped)(all_args) return execute(gm, all_args, executor=executor) return _traced
pytorch-master
torch/_prims/executor.py
# this is imported by test_deploy to do some checks in python import sys import subprocess from pathlib import Path # we've taken steps to clear out the embedded python environment, # so we have to go searching for real python to figure out where its libraries are installed. def python_path(cpath): for maybe in cpath.split(':'): candidate = Path(maybe) / "python" if candidate.exists(): cmd = [str(candidate), '-c', 'import sys; print(":".join(sys.path))'] return subprocess.check_output(cmd).decode('utf-8').strip('\n').split(':') raise RuntimeError('could not find real python') def setup(path): sys.path.extend(python_path(path)) sys.path.append('build/lib') # for our test python extension # smoke test the numpy extension loading works def numpy_test(x): import numpy as np xs = [np.array([x, x]), np.array([x, x])] for i in range(10): xs.append(xs[-1] + xs[-2]) return int(xs[-1][0])
pytorch-master
torch/csrc/deploy/test_deploy_python.py
from libfb.py import testutil import test_deploy_python_ext class TestDeployFromPython(testutil.BaseFacebookTestCase): def test_deploy_from_python(self): self.assertTrue(test_deploy_python_ext.run())
pytorch-master
torch/csrc/deploy/test_deploy_from_python.py
import numpy as np import scipy from scipy import linalg print("Hello, torch::deploy unity!") print(f"np.random.rand(5): {np.random.rand(5)}") print(f"scipy {scipy}") mat_a = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [1, 2, 1, 0], [1, 3, 3, 1]]) mat_b = linalg.inv(mat_a) print(mat_b)
pytorch-master
torch/csrc/deploy/unity/example.py
import torch from torch import nn class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.fc = nn.Linear(256, 64) self.fc2 = nn.Linear(64, 10) def forward(self, X): X = self.fc(X) X = torch.relu(X) X = self.fc2(X) X = torch.softmax(X, dim=-1) return X
pytorch-master
torch/csrc/deploy/unity/tests/simple_model.py
def func(*vlist): return sum(vlist) import sys print("byebye!", file=sys.stderr)
pytorch-master
torch/csrc/deploy/unity/tests/sum.py
# used by the benchmarking program to wrap cpu models for GPU use import torch from copy import deepcopy def to_device(i, d): if isinstance(i, torch.Tensor): return i.to(device=d) elif isinstance(i, (tuple, list)): return tuple(to_device(e, d) for e in i) else: raise RuntimeError('inputs are weird') class GPUWrapper(torch.nn.Module): def __init__(self, root): super().__init__() self.models = [] self.streams = {} for i in range(torch.cuda.device_count()): m = deepcopy(root) if i != 0 else root d = f'cuda:{i}' m.to(device=d) self.models.append((m, d)) def __getstate__(self): return self.models def __setstate__(self, models): super().__init__() self.models = models self.streams = {} for m, d in models: torch.cuda.synchronize(d) # roi_align, 2210 count, ROIAlign_cuda.cu: add threadsync: problem goes away, return rand problem goes away, # use different streams here, problem goes away. def forward(self, tid, *args): m, d = self.models[tid % len(self.models)] if tid not in self.streams: self.streams[tid] = torch.cuda.Stream(d) s = self.streams[tid] with torch.cuda.stream(s): iput = to_device(args, d) r = to_device(m(*iput), 'cpu') return r if __name__ == '__main__': def check_close(a, b): if isinstance(a, (list, tuple)): for ae, be in zip(a, b): check_close(ae, be) else: print(torch.max(torch.abs(a - b))) assert torch.allclose(a, b) import sys from torch.package import PackageImporter i = PackageImporter(sys.argv[1]) torch.version.interp = 0 model = i.loadPickle('model', 'model.pkl') eg = i.loadPickle('model', 'example.pkl') r = model(*eg) gpu_model = GPUWrapper(model) r2 = gpu_model(*eg) check_close(r, r2)
pytorch-master
torch/csrc/deploy/example/gpu_wrapper.py
from typing import List, Any import pickle import torch class TestTRTModule(torch.nn.Module): def __init__(self, engine, input_names=None, output_names=None, fp16_output=False): super(TestTRTModule, self).__init__() self.engine = engine self.input_names = input_names self.output_names = output_names # Indicate output is in fp16 self.fp16_output = fp16_output def forward(self, *inputs): batch_size = inputs[0].shape[0] contiguous_inputs: List[torch.Tensor] = [i.contiguous() for i in inputs] bindings: List[Any] = [None] * (len(self.input_names) + len(self.output_names)) # create output tensors outputs: List[torch.Tensor] = [] for _, output_name in enumerate(self.output_names): idx: int = self.engine.get_binding_index(output_name) shape = (batch_size,) + tuple(self.engine.get_binding_shape(idx)) output = torch.empty(size=shape, dtype=torch.float32, device="cuda") outputs.append(output) bindings[idx] = output.data_ptr() for i, input_name in enumerate(self.input_names): idx = self.engine.get_binding_index(input_name) bindings[idx] = contiguous_inputs[i].data_ptr() context = self.engine.create_execution_context() context.execute_async( batch_size, bindings, torch.cuda.current_stream().cuda_stream ) if len(outputs) == 1: return outputs[0] return tuple(outputs) def make_trt_module(): import tensorrt as trt logger = trt.Logger(trt.Logger.WARNING) builder = trt.Builder(logger) network = builder.create_network() x = network.add_input("x", shape=(1, 2, 3), dtype=trt.float32) layer = network.add_elementwise(x, x, trt.ElementWiseOperation.SUM) layer.name = "add" output = layer.get_output(0) output.name = "output" network.mark_output(output) output.dtype = trt.float32 builder.max_batch_size = 1024 builder_config = builder.create_builder_config() builder_config.max_workspace_size = 1 << 25 # Test engine can be serialized and loaded correctly. serialized_engine = pickle.dumps(builder.build_engine(network, builder_config)) return TestTRTModule(pickle.loads(serialized_engine), ["x"], ["output"])
pytorch-master
torch/csrc/deploy/example/tensorrt_example.py
from typing import Tuple, List, Dict import torch import torch.nn as nn from torch import Tensor class Simple(torch.nn.Module): def __init__(self, N, M): super().__init__() self.weight = torch.nn.Parameter(torch.rand(N, M)) def forward(self, input): output = self.weight + input return output def load_library(): torch.ops.load_library("my_so.so") def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): super(ResNet, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) class BatchedModel(nn.Module): def forward(self, input1: Tensor, input2: Tensor) -> Tuple[Tensor, Tensor]: return (input1 * -1, input2 * -1) def make_prediction( self, input: List[Tuple[Tensor, Tensor]] ) -> List[Tuple[Tensor, Tensor]]: return [self.forward(i[0], i[1]) for i in input] def make_batch( self, mega_batch: List[Tuple[Tensor, Tensor, int]], goals: Dict[str, str] ) -> List[List[Tuple[Tensor, Tensor, int]]]: max_bs = int(goals["max_bs"]) return [ mega_batch[start_idx : start_idx + max_bs] for start_idx in range(0, len(mega_batch), max_bs) ] class MultiReturn(torch.nn.Module): def __init__(self): super(MultiReturn, self).__init__() def forward(self, t: Tuple[Tensor, Tensor]) -> Tuple[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor]]: a, b = t result = ((a.masked_fill_(b, 0.1), b), (torch.ones_like(a), b)) return result multi_return_metadata = r""" { "metadata_container": { "forward": { "named_input_metadata": { "t": { "argument_type": { "tuple": { "tuple_elements": [ { "tensor": 1 }, { "tensor": 6 } ] } }, "optional_argument": false, "metadata": { "dense_features": { "feature_desc": [ { "feature_name": "test_feature_1", "feature_id": 1 } ], "expected_shape": { "dims": [ -1, 1 ], "unknown_rank": false }, "data_type": 1, "feature_store_feature_type": 0 } } } }, "positional_output_metadata": [ { "argument_type": { "tuple": { "tuple_elements": [ { "tensor": 1 }, { "tensor": 6 } ] } }, "optional_argument": false, "metadata": { "dense_features": { "feature_desc": [ { "feature_name": "test_feature_1", "feature_id": 1 } ], "expected_shape": { "dims": [ -1, 1 ], "unknown_rank": false }, "data_type": 1, "feature_store_feature_type": 0 } } }, { "argument_type": { "tuple": { "tuple_elements": [ { "tensor": 1 }, { "tensor": 6 } ] } }, "optional_argument": false, "metadata": { "dense_features": { "feature_desc": [ { "feature_name": "test_feature_3", "feature_id": 3 } ], "expected_shape": { "dims": [ -1, 1 ], "unknown_rank": false }, "data_type": 1, "feature_store_feature_type": 0 } } } ] } } } """
pytorch-master
torch/csrc/deploy/example/examples.py
""" Generate the example files that torchpy_test uses. """ import argparse from pathlib import Path import torch from torch.package import PackageExporter from torch.fx import symbolic_trace try: from .examples import Simple, resnet18, MultiReturn, multi_return_metadata, load_library, BatchedModel except ImportError: from examples import Simple, resnet18, MultiReturn, multi_return_metadata, load_library, BatchedModel try: from .fx.examples import SimpleWithLeaf except ImportError: from fx.examples import SimpleWithLeaf try: from .tensorrt_example import make_trt_module except ImportError: from tensorrt_example import make_trt_module def generate_fx_example(): name = 'simple_leaf' model = SimpleWithLeaf(5, 10) graph_module : torch.fx.GraphModule = symbolic_trace(model) with PackageExporter(str(p / (name + "_fx"))) as e: e.intern("**") e.save_pickle("model", "model.pkl", graph_module) model_jit = torch.jit.script(model) model_jit.save(str(p / (name + "_jit"))) def save(name, model, model_jit=None, eg=None, featurestore_meta=None): with PackageExporter(str(p / name)) as e: e.mock("iopath.**") e.intern("**") e.save_pickle("model", "model.pkl", model) if eg: e.save_pickle("model", "example.pkl", eg) if featurestore_meta: # TODO(whc) can this name come from buck somehow, # so it's consistent with predictor_config_constants::METADATA_FILE_NAME()? e.save_text("extra_files", "metadata.json", featurestore_meta) if model_jit: model_jit.save(str(p / (name + "_jit"))) parser = argparse.ArgumentParser(description="Generate Examples") parser.add_argument("--install_dir", help="Root directory for all output files") if __name__ == "__main__": args = parser.parse_args() if args.install_dir is None: p = Path(__file__).parent / "generated" p.mkdir(exist_ok=True) else: p = Path(args.install_dir) resnet = resnet18() resnet.eval() resnet_eg = torch.rand(1, 3, 224, 224) resnet_traced = torch.jit.trace(resnet, resnet_eg) save("resnet", resnet, resnet_traced, (resnet_eg,)) simple = Simple(10, 20) save("simple", simple, torch.jit.script(simple), (torch.rand(10, 20),)) multi_return = MultiReturn() save("multi_return", multi_return, torch.jit.script(multi_return), (torch.rand(10, 20),), multi_return_metadata) # used for torch deploy/package tests in predictor batched_model = BatchedModel() save("batched_model", batched_model) with PackageExporter(str(p / "load_library")) as e: e.mock("iopath.**") e.intern("**") e.save_pickle("fn", "fn.pkl", load_library) generate_fx_example() with PackageExporter(p / "uses_distributed") as e: e.save_source_string("uses_distributed", "import torch.distributed; assert torch.distributed.is_available()") with PackageExporter(str(p / "make_trt_module")) as e: e.extern("tensorrt") e.add_dependency("tensorrt") e.mock("iopath.**") e.intern("**") e.save_pickle("make_trt_module", "model.pkl", make_trt_module)
pytorch-master
torch/csrc/deploy/example/generate_examples.py
import torch.fx try: from .some_dependency import a_non_torch_leaf except ImportError: from some_dependency import a_non_torch_leaf torch.fx.wrap('a_non_torch_leaf') class SimpleWithLeaf(torch.nn.Module): def __init__(self, N, M): super().__init__() self.weight = torch.nn.Parameter(torch.rand(N, M)) def forward(self, input): output = self.weight + a_non_torch_leaf(1, input) return output
pytorch-master
torch/csrc/deploy/example/fx/examples.py
# dependency for torch package def a_non_torch_leaf(a: int, b): return a * b
pytorch-master
torch/csrc/deploy/example/fx/some_dependency.py
#!/usr/bin/env python3 import argparse from torchgen.gen import parse_native_yaml, FileManager import torchgen.model as model def num_leading_spaces(line: str) -> int: return len(line) - len(line.lstrip()) def deindent(code: str) -> str: lines = code.split('\n') min_leading_spaces = min(map(num_leading_spaces, lines)) lines = [line[min_leading_spaces:] for line in lines] return '\n'.join(lines) def gen_external(native_functions_path, tags_path, external_path): native_functions = parse_native_yaml(native_functions_path, tags_path) func_decls = [] func_registrations = [] for func in native_functions: schema = func.func name = schema.name.name.base args = schema.arguments # Only supports extern calls for functions with out variants if not schema.is_out_fn(): continue # Doesn't currently support functions with more than one out parameter if len(args.out) > 1: continue # Doesn't currently support kwarg arguments if len(args.pre_tensor_options_kwarg_only) > 0 or len(args.post_tensor_options_kwarg_only) > 0: continue self_arg = [args.self_arg.argument] if args.self_arg is not None else [] args = list(args.pre_self_positional) + self_arg + list(args.post_self_positional) tensor_args = [arg for arg in args if isinstance(arg.type, model.BaseType) and arg.type.name == model.BaseTy.Tensor] if len(tensor_args) != len(args): continue arg_names = [None] * len(args) tensor_decls = [] for idx, arg in enumerate(tensor_args): s = f"const at::Tensor& {arg.name} = tensors[{idx + 1}];" tensor_decls.append(s) arg_names[idx] = arg.name nl = '\n' # print(tensor_decls, name, arg_names) func_decl = f"""\ void nnc_aten_{name}( int64_t bufs_num, void** buf_data, int64_t* buf_ranks, int64_t* buf_dims, int64_t* buf_strides, int8_t* buf_dtypes, int64_t args_num, int64_t* extra_args) {{ std::vector<at::Tensor> tensors = constructTensors(bufs_num, buf_data, buf_ranks, buf_dims, buf_strides, buf_dtypes); at::Tensor& r = tensors[0]; {nl.join(tensor_decls)} try {{ at::{name}_out({', '.join(['r'] + arg_names)}); }} catch (...) {{ }} }}""" func_registration = f"""\ const static RegisterNNCExternalFunction nnc_{name}( "nnc_aten_{name}", nnc_aten_{name});""" func_decls.append(func_decl) func_registrations.append(func_registration) fm = FileManager(install_dir='.', template_dir='.', dry_run=False) fm.write_with_template('external_functions_codegen.cpp', external_path, lambda: {'external_registrations': func_registrations, 'external_functions': func_decls}) def main() -> None: parser = argparse.ArgumentParser( description='Generate annotated_fn_args script') parser.add_argument('--native_functions', help='path to native_functions.yaml', default='../../../../aten/src/ATen/native/native_functions.yaml') parser.add_argument('--tags', help='path to tags.yaml', default='../../../../aten/src/ATen/native/tags.yaml') parser.add_argument('--template_path', help='path to external_functions_codegen_template.cpp', default='../../../../tools/jit/templates/external_functions_codegen_template.cpp') args = parser.parse_args() gen_external(args.native_functions, args.tags, args.template_path) if __name__ == '__main__': main()
pytorch-master
torch/csrc/jit/tensorexpr/codegen_external.py
import subprocess import click def test(cmd, limit): print(f"Testing PYTORCH_JIT_OPT_LIMIT=tensorexpr_fuser={limit} {cmd}") p = subprocess.run( f"PYTORCH_JIT_OPT_LIMIT=tensorexpr_fuser={limit} {cmd}", shell=True, capture_output=True, encoding="utf-8", ) print(p.stdout) f = "INTERNAL ASSERT FAILED" if f in p.stdout or f in p.stderr: print("skip") return -1 if p.returncode == 0: print("good") return 1 print("bad") return 0 @click.command() @click.option("--cmd") def bisect(cmd): last_good = 0 first_bad = 10000 skips = set() # Test if there are any unskipped commits in (last_good, first_bad) def keep_going(): for limit in range(last_good + 1, first_bad): if limit not in skips: return True return False while keep_going(): test_limit = test_mid = (last_good + first_bad) // 2 val = -1 # Scan forward from mid towards bad. while test_limit <= first_bad and val == -1: val = test(cmd, test_limit) if val == -1: skips.add(test_limit) test_limit = test_limit + 1 # If everything in [mid, bad] skipped, scan back towards good. if val == -1: test_limit = test_mid - 1 while test_limit >= last_good and val == -1: val = test(cmd, test_limit) if val == -1: skips.add(test_limit) test_limit = test_limit - 1 if val == 0: first_bad = test_limit elif val == 1: last_good = test_limit print(f"last good: {last_good}, first bad: {first_bad}") if __name__ == "__main__": bisect()
pytorch-master
torch/csrc/jit/tensorexpr/scripts/bisect.py
# Generates a C++ header files embedding the original input as a string literal import argparse import pathlib from datetime import datetime arg_parser = argparse.ArgumentParser( description='Converts source files to C++ string literals', allow_abbrev=False) arg_parser.add_argument('-i', '--input', required=True, help='Input source file') arg_parser.add_argument('-o', '--output', required=True, help='Name of the generated header file') args = arg_parser.parse_args() # msvc string literal maximum length 16380 # https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2026?view=msvc-170 MAX_STRING_LITERAL = 16000 with open(args.input, 'r') as fin: with open(args.output, 'w') as fout: literal_name = f'{pathlib.Path(args.input).stem}_cu' fout.write(f'// Generated from "{args.input}"\n') fout.write(f'// {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n\n') fout.write('namespace nvfuser_resources {\n\n') fout.write(f'constexpr const char* {literal_name} = R"(\n') accumulated_chars = 0 for line in fin: accumulated_chars = accumulated_chars + len(line) + 1 if accumulated_chars >= MAX_STRING_LITERAL: fout.write(')"\n') fout.write('R"(\n') fout.write(line) accumulated_chars = len(line) + 1 else: fout.write(line) fout.write(')";\n') fout.write('\n} // namespace nvfuser_resources\n')
pytorch-master
torch/csrc/jit/codegen/cuda/tools/stringify_file.py
import torch from torch._C._nvfuser import Fusion, FusionDefinition, DataType # Construct and Define Fusion fusion = Fusion() with FusionDefinition(fusion) as fd : t0 = fd.define_tensor(2, DataType.Double) t1 = fd.define_tensor(2, DataType.Double) t0h = fd.ops.cast(t0, DataType.Half) t1h = fd.ops.cast(t1, DataType.Half) t2 = fd.ops.add(t0h, t1h) t3 = fd.ops.relu(t2) fd.add_output(t3) fusion.print_ir() # Execute Fusion input1 = torch.ones(2, 4, device='cuda', dtype=torch.float64) input2 = torch.ones(2, 4, device='cuda', dtype=torch.float64) # Kernel compilation should be cached for the 2nd iteration # with input tensors of the same shape for _ in range(5) : outputs = fusion.execute([input1, input2]) print(outputs[0])
pytorch-master
torch/csrc/jit/codegen/cuda/python_frontend/examples/double_half_cast.py
import torch from torch._C._nvfuser import Fusion, FusionDefinition, DataType # Construct and Define Fusion fusion = Fusion() with FusionDefinition(fusion) as fd : t0 = fd.define_tensor(3, DataType.Half) t1 = fd.define_tensor(1, DataType.Half) s0 = fd.define_scalar() c0 = fd.define_constant(3.0) t2 = fd.ops.add(t0, t1) t3 = fd.ops.mul(t2, c0) t4 = fd.ops.mul(t3, s0) t5 = fd.ops.relu(t4) t6 = fd.ops.sum(t5, [-1], False, DataType.Float) t7 = fd.ops.cast(t6, DataType.Half) fd.add_output(t7) fusion.print_ir() # Execute Fusion input1 = torch.ones(2, 4, 8, device='cuda', dtype=torch.float16) input2 = torch.ones(8, device='cuda', dtype=torch.float16) # Kernel compilation should be cached for the 2nd iteration # with input tensors of the same shape for _ in range(5) : outputs = fusion.execute([input1, input2, 2.0]) print(outputs[0])
pytorch-master
torch/csrc/jit/codegen/cuda/python_frontend/examples/python_example_fp16.py
import torch from torch._C._nvfuser import Fusion, FusionDefinition, DataType # Construct and Define Fusion fusion = Fusion() with FusionDefinition(fusion) as fd : t0 = fd.define_tensor(3) t1 = fd.define_tensor(3) s0 = fd.define_scalar() c0 = fd.define_constant(3.0) t2 = fd.ops.add(t0, t1) t3 = fd.ops.mul(t2, c0) t4 = fd.ops.atan2(t3, s0) t5 = fd.ops.relu(t4) t6 = fd.ops.sum(t5, [-1], False, DataType.Float) t7 = fd.ops.isfinite(t6) fd.add_output(t6) fd.add_output(t7) fusion.print_ir() # Execute Fusion input1 = torch.ones(2, 4, 8, device='cuda') input2 = torch.ones(2, 4, 8, device='cuda') # Kernel compilation should be cached for the 2nd iteration # with input tensors of the same shape for _ in range(5) : outputs = fusion.execute([input1, input2, 2.0]) print(outputs[0]) print(outputs[1])
pytorch-master
torch/csrc/jit/codegen/cuda/python_frontend/examples/python_example.py
import torch from torch._C._nvfuser import Fusion, FusionDefinition import torch._prims as prims import torch._refs as refs # Construct and Define Fusion fusion1 = Fusion() with FusionDefinition(fusion1) as fd : t0 = fd.define_tensor(1) t1 = fd.define_tensor(3) t0_b = fd.ops.broadcast_in_dim(t0, [2, 3, 4], [1]) t2 = fd.ops.add(t0_b, t1) fd.add_output(t2) fusion1.print_ir() # Execute Fusion input1 = torch.randn(3, device='cuda') input2 = torch.randn(2, 3, 4, device='cuda') # Kernel compilation should be cached for the 2nd iteration # with input tensors of the same shape for _ in range(5) : o = fusion1.execute([input1, input2])[0] assert(o.shape == torch.Size([2, 3, 4])) # Reference in prim torch ref_o = refs.add(prims.broadcast_in_dim(input1, [2, 3, 4], [1]), input2) assert(ref_o.allclose(o)) assert(ref_o.shape == o.shape) fusion2 = Fusion() input1 = torch.randn(1, 1, 4, device='cuda') input2 = torch.randn(2, 3, 4, device='cuda') with FusionDefinition(fusion2) as fd : t0 = fd.define_tensor(sizes=input1.size(), strides=input1.stride()) t1 = fd.define_tensor(sizes=input2.size(), strides=input2.stride()) t0_b = fd.ops.broadcast_in_dim(t0, [2, 3, 4], [0, 1, 2]) t2 = fd.ops.add(t0_b, t1) fd.add_output(t2) fusion2.print_ir() # Kernel compilation should be cached for the 2nd iteration # with input tensors of the same shape for _ in range(5) : o = fusion2.execute([input1, input2])[0] assert(o.shape == torch.Size([2, 3, 4])) # Reference in prim torch ref_o = refs.add(prims.broadcast_in_dim(input1, [2, 3, 4], [0, 1, 2]), input2) assert(ref_o.allclose(o)) assert(ref_o.shape == o.shape) # Construct and Define Fusion fusion3 = Fusion() with FusionDefinition(fusion3) as fd : # t0 = fd.define_tensor(2) t0 = fd.define_tensor([3, 1], [1, 1]) t1 = fd.define_tensor(1) t1_b = fd.ops.broadcast_in_dim(t1, [3, 3], [0]) # 1 -> 0 t2 = fd.ops.add(t0, t1_b) fd.add_output(t2) fusion3.print_ir() # Execute Fusion input1 = torch.randn(3, 1, device='cuda') input2 = torch.randn(3, device='cuda') # Kernel compilation should be cached for the 2nd iteration # with input tensors of the same shape for _ in range(5) : o = fusion3.execute([input1, input2])[0] assert(o.shape == torch.Size([3, 3])) # Reference in prim torch ref_o = refs.add(input1, prims.broadcast_in_dim(input2, [3, 3], [0])) assert(ref_o.allclose(o)) assert(ref_o.shape == o.shape)
pytorch-master
torch/csrc/jit/codegen/cuda/python_frontend/examples/python_example_broadcast_in_dim.py
import torch from torch._C._nvfuser import Fusion, FusionDefinition, DataType # Construct and Define Fusion fusion = Fusion() with FusionDefinition(fusion) as fd : t0 = fd.define_tensor(2, DataType.Half) t1 = fd.define_tensor(2, DataType.Double) t2 = fd.ops.add(t0, t1) t5 = fd.ops.relu(t2) fd.add_output(t5) fusion.print_ir() # Execute Fusion input1 = torch.ones(2, 4, device='cuda', dtype=torch.float16) input2 = torch.ones(2, 4, device='cuda', dtype=torch.float64) # Kernel compilation should be cached for the 2nd iteration # with input tensors of the same shape for _ in range(5) : outputs = fusion.execute([input1, input2]) print(outputs[0])
pytorch-master
torch/csrc/jit/codegen/cuda/python_frontend/examples/half_double_cast.py
import torch import nvfuser_extension # noqa: F401 t = torch.randn((5, 5), device='cuda') expected = torch.sinh(t) output = torch.ops.myop.sinh_nvfuser(t) print("Expected:", expected) print("Output:", output) assert torch.allclose(output, expected) print("They match!")
pytorch-master
torch/csrc/jit/codegen/cuda/examples/sinh_extension/test.py
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='nvfuser_extension', ext_modules=[ CUDAExtension( name='nvfuser_extension', pkg='nvfuser_extension', sources=['main.cpp']) ], cmdclass={ 'build_ext': BuildExtension })
pytorch-master
torch/csrc/jit/codegen/cuda/examples/sinh_extension/setup.py
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import os from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR import torch._lazy import torch._lazy.ts_backend import torch._lazy.metrics torch._lazy.ts_backend.init() class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(log_interval, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad(set_to_none=True) output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() torch._lazy.mark_step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if __name__ == '__main__': bsz = 64 device = 'lazy' epochs = 14 log_interval = 10 lr = 1 gamma = 0.7 train_kwargs = {'batch_size': bsz} # if we want to use CUDA if "LTC_TS_CUDA" in os.environ: cuda_kwargs = {'num_workers': 1, 'pin_memory': True, 'shuffle': True, 'batch_size': bsz} train_kwargs.update(cuda_kwargs) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) dataset1 = datasets.MNIST('./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=lr) scheduler = StepLR(optimizer, step_size=1, gamma=gamma) for epoch in range(1, epochs + 1): train(log_interval, model, device, train_loader, optimizer, epoch) scheduler.step()
pytorch-master
torch/csrc/lazy/test_mnist.py
from torch._C._monitor import * # noqa: F403 from typing import TYPE_CHECKING if TYPE_CHECKING: from torch.utils.tensorboard import SummaryWriter STAT_EVENT = "torch.monitor.Stat" class TensorboardEventHandler: """ TensorboardEventHandler is an event handler that will write known events to the provided SummaryWriter. This currently only supports ``torch.monitor.Stat`` events which are logged as scalars. >>> from torch.utils.tensorboard import SummaryWriter >>> from torch.monitor import TensorboardEventHandler, register_event_handler >>> writer = SummaryWriter("log_dir") >>> register_event_handler(TensorboardEventHandler(writer)) """ def __init__(self, writer: "SummaryWriter") -> None: """ Constructs the ``TensorboardEventHandler``. """ self._writer = writer def __call__(self, event: Event) -> None: if event.name == STAT_EVENT: for k, v in event.data.items(): self._writer.add_scalar(k, v, walltime=event.timestamp.timestamp())
pytorch-master
torch/monitor/__init__.py
import weakref import torch from torch.multiprocessing.reductions import StorageWeakRef from torch.utils._mode_utils import no_dispatch def safe_is_leaf(t): try: return t.is_leaf except RuntimeError: # inference mode can trigger this return False # torch.Tensors cannot be used as a key in a dictionary # because they define a custom __eq__ function which when used # to resolve hash collisions will throw when comparing tensors: # "RuntimeError: bool value of Tensor with more than one value is ambiguous." # To avoid that, we use an object which will hold a Tensor and use # its id for both hashing and equality. # In order to use this as a weak key reference, we cannot # simply use weakref.WeakKeyDictionary because the newly constructed # WeakTensorRefKey only use would be a dictionary so it would have no strong # references. # To get around this issue, we can use it as a normal key, and then set # `weakref.finalize` to delete the key when its contained tensor dies. class WeakTensorRefKey(object): def __init__(self, ten): self.ten = weakref.ref(ten) # store id since as soon as ten is deallocated # the old id will no longer be recoverable, and # we need to be able to remove the WeakTensorRefKey # from the dictionary by hashing it to the same # value it had when ten was alive self.id = id(self.ten()) def __hash__(self): return self.id def __eq__(self, other): if id(self) == id(other): return True return self.id == other.id # This is a class for converting multiple tensors into meta tensors which # share the same view/storage structure. The operation model is you allocate # one of these, and then call it repeatedly on all the tensors you want to # convert. It's important to use the same object for tensors you want to # share storage because this is how we correlate shared storages to the same # meta storages. This class will hold weak references to cached tenosrs # and tensor storages. class MetaConverter: def __init__(self): self.storage_memo = {} self.tensor_memo = {} self.maybe_storages_to_delete = [] self.check_expired_frequency = 128 self.check_expired_count = 0 self.hit = 0 self.miss = 0 self.del_hook = None def successful(self): return self.hit > 0 and self.miss == 0 def check_for_expired_weak_storages(self): new_li = [] stor_to_delete = [] for obj in self.maybe_storages_to_delete: if not obj.expired(): new_li.append(obj) else: stor_to_delete.append(obj) for obj in stor_to_delete: self.storage_memo.pop(obj, None) self.maybe_storages_to_delete = new_li # if for some reason we have aquired many storages which have not expired # even though a tensor with their storage has expired (aliasing or otherwise) # check for expired storages less often so as to bound the amount of work we # do checking for expired storages self.check_expired_frequency = max( self.check_expired_frequency, len(self.maybe_storages_to_delete) ) def get_tensor_memo(self, t): return self.tensor_memo.get(WeakTensorRefKey(t), None) def set_tensor_memo(self, t, v): # hold a weak ref to self, otherwise it will be kept alive # by the del_ten closure self_weak_ref = weakref.ref(self) if t.is_sparse: weak_st = None else: weak_st = StorageWeakRef(t.storage()) tensor_ref_key = WeakTensorRefKey(t) def del_ten(): # tensor outlives the converter self_ref = self_weak_ref() if self_ref is None: return # on shutdown, tensor_ref_key may not be in memo self_ref.tensor_memo.pop(tensor_ref_key, None) if weak_st and weak_st.expired(): self_ref.storage_memo.pop(weak_st, None) elif weak_st is not None: # [expired-storages] # NB: even though the tensor has died, # the deallocation of its storage can take longer, # even when the storage has no other uses/views. # In this case, the StorageWeakRef object will be kept alive # longer than it needs to be, however the storage itself # will be deallocated. We retain the possibly dead storages # and periodically check if any of them are expired and # can be freed. self_ref.maybe_storages_to_delete.append(weak_st) weakref.finalize(t, del_ten) self.tensor_memo[tensor_ref_key] = v # NB: doesn't actually return a storage, because meta storage is # not supported def meta_storage(self, s): # NB: TypedStorage is freshly allocated and cannot be used as hash # key index. # Use a Weak Ref to s in order to not leak memory swr = StorageWeakRef(s) if swr not in self.storage_memo: self.storage_memo[swr] = torch.empty(s.size(), dtype=s.dtype, device="meta") return self.storage_memo[swr] # This function assumes that it's possible to do the conversion def meta_tensor(self, t): # see expired-storages self.check_expired_count += 1 if self.check_expired_count >= self.check_expired_frequency: self.check_for_expired_weak_storages() self.check_expired_count = 0 if self.get_tensor_memo(t) is None: with torch.inference_mode(t.is_inference()): if t.is_sparse: is_leaf = safe_is_leaf(t) r = torch.ops.aten._sparse_coo_tensor_with_dims( t.sparse_dim(), t.dense_dim(), t.shape, dtype=t.dtype, layout=torch.sparse_coo, device="meta", ) r._coalesced_(t.is_coalesced()) if t.requires_grad: r.requires_grad = True if t.requires_grad and not is_leaf: with torch.enable_grad(): r = r.clone() r._coalesced_(t.is_coalesced()) elif t._is_view(): # Construct views in two steps: recursively meta-fy their # base, and then create the view off that. NB: doing it # directly from storage is WRONG because this won't cause # version counters to get shared. assert t._is_view() base = self.meta_tensor(t._base) def is_c_of_r(complex_dtype, real_dtype): return ( utils.is_complex_dtype(complex_dtype) and utils.corresponding_real_dtype(complex_dtype) == real_dtype ) if base.dtype == t.dtype: pass elif is_c_of_r(base.dtype, t.dtype): base = torch.view_as_real(base) elif is_c_of_r(t.dtype, base.dtype): base = torch.view_as_complex(base) else: # This is not guaranteed to succeed. If it fails, it # means there is another dtype-converting view function # that hasn't been handled here base = base.view(t.dtype) with torch.enable_grad(): r = base.as_strided(t.size(), t.stride(), t.storage_offset()) else: is_leaf = safe_is_leaf(t) # Fake up some autograd history. if t.requires_grad: r = torch.empty( (0,), dtype=t.dtype, device="meta", requires_grad=True ) if not is_leaf: with torch.enable_grad(): # The backward function here will be wrong, but # that's OK; our goal is just to get the metadata # looking as close as possible; we're not going to # actually try to backward() on these produced # metas. TODO: would be safer to install some # sort of unsupported grad_fn here r = r.clone() else: r = torch.empty((0,), dtype=t.dtype, device="meta") # As long as meta storage is not supported, need to prevent # redispatching on set_(Storage, ...) which will choke with # meta storage s = self.meta_storage(t.storage()) with no_dispatch(): with torch.no_grad(): r.set_(s, t.storage_offset(), t.size(), t.stride()) torch._C._set_conj(r, t.is_conj()) torch._C._set_neg(r, t.is_neg()) self.set_tensor_memo(t, r) return self.get_tensor_memo(t) def __call__(self, t): # TODO: zero tensors? We appear to have eliminated them by # excluding complex for now if type(t) is torch.Tensor or type(t) is torch.nn.Parameter: if any( [ t.is_sparse_csr, t.layout in [torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc], t.is_mkldnn, t.is_quantized, t.is_nested, t._is_view() and t._base is not None and t._base.is_sparse, torch._is_functional_tensor(t), # these are supported in meta conversion but the fallbacks # don't work t.is_neg(), t.is_conj(), t.device.type in ("lazy", "meta"), # We need a way to test if a tensor is batched but there # is no official APi to do it # torch._C._is_batched(t), ] ): # TODO: sparse should support meta # NB technically to('meta') does work but our logging # instrumentation will see the meta conversions and the # tests all break so we just exclude this. In any case # the to conversion isn't really right anyhow. self.miss += 1 return t else: self.hit += 1 r = self.meta_tensor(t) if type(t) is torch.nn.Parameter: r = torch.nn.Parameter(r, requires_grad=r.requires_grad) return r elif torch.overrides.is_tensor_like(t): # Blindly converting tensor subclasses to meta can cause # unpredictable problems; e.g., FX tests will trace meta # tensors into their trace / some subclasses don't correctly # support meta. Trying to YOLO this is more trouble than it's # worth. self.miss += 1 return t else: # non-Tensor types don't count as hit or miss return t import torch._prims_common as utils
pytorch-master
torch/_subclasses/meta_utils.py
import torch from torch._subclasses.fake_tensor import ( DynamicOutputShapeException, FakeTensor, FakeTensorMode, UnsupportedFakeTensorException, ) __all__ = [ "FakeTensor", "FakeTensorMode", "UnsupportedFakeTensorException", "DynamicOutputShapeException", ]
pytorch-master
torch/_subclasses/__init__.py
import contextlib import functools import itertools import weakref from dataclasses import dataclass from functools import partial from typing import Callable, Union import torch import torch.fx.experimental.symbolic_shapes as symbolic_shapes from torch._ops import OpOverload from torch._subclasses.meta_utils import MetaConverter, WeakTensorRefKey from torch.fx.operator_schemas import normalize_function from torch.overrides import TorchFunctionMode from torch.utils._mode_utils import no_dispatch from torch.utils._python_dispatch import enable_torch_dispatch_mode, TorchDispatchMode from torch.utils._pytree import tree_flatten, tree_map aten = torch.ops.aten @dataclass class UnsupportedFakeTensorException(RuntimeError): reason: str @dataclass class DynamicOutputShapeException(RuntimeError): func: OpOverload _device_not_kwarg_ops = ( aten._resize_output_.default, aten.nested_tensor.default, aten.nested_tensor.out, aten.pin_memory.default, aten.is_pinned.default, aten.to.device, aten.to.prim_Device, aten._pin_memory.default, aten._pin_memory.out, aten._resize_output.default, aten._resize_output.out, ) # this op is never actually used _non_kwarg_device_constructors = (aten._list_to_tensor,) def contains_tensor_types(type): tensor_type = torch._C.TensorType.get() return type.isSubtypeOf(tensor_type) or any( contains_tensor_types(e) for e in type.containedTypes() ) _like_tensor_constructors = ( aten.empty_like.default, aten.empty_like.out, aten.full_like.default, aten.full_like.out, aten.ones_like.default, aten.ones_like.out, aten.rand_like.default, aten.rand_like.out, aten.randn_like.default, aten.randn_like.out, aten.randint_like.default, aten.randint_like.out, aten.randint_like.low_dtype, aten.randint_like.low_dtype_out, aten.zeros_like.default, aten.zeros_like.out, aten.new_empty.default, aten.new_empty.out, aten.new_empty_strided.default, aten.new_empty_strided.out, aten.new_full.default, aten.new_full.out, aten.new_zeros.default, aten.new_zeros.out, aten.new_ones.default, aten.new_ones.out, ) @functools.lru_cache(None) def _is_tensor_constructor(func: OpOverload): assert isinstance(func, OpOverload) schema = func._schema if any(contains_tensor_types(arg.type) for arg in schema.arguments): return False # TODO: no real reason to restrict multiple outputs return ( len(schema.returns) == 1 and schema.returns[0].type is torch._C.TensorType.get() ) # Similar to `MetaConverter`, this is a class for converting # multiple tensors into fake tensors which share the same view/storage # structure. Like `MetaConverter`, it uses `WeakTensorRefKey` to # hold a weak reference for all memoized tensors. class FakeTensorConverter(object): tensor_memo: weakref.WeakValueDictionary meta_converter: MetaConverter def __init__(self): # FakeTensors store the FakeTensorMode which in turn stores a # FakeTensor, so we need to hold a weak reference to the FakeTensor # otherwise we would induce a circular reference self.tensor_memo = weakref.WeakValueDictionary() self.meta_converter = MetaConverter() def _get_memo(self, t): if WeakTensorRefKey(t) in self.tensor_memo: out = self.tensor_memo[WeakTensorRefKey(t)] out._fix_weakref() return out return None def set_tensor_memo(self, t, v): th = WeakTensorRefKey(t) # hold a weak ref to self, otherwise it will be kept alive # by the del_ten closure self_weak_ref = weakref.ref(self) def del_ten(): self_ref = self_weak_ref() if self_ref is None: return # on shutdown, th may not be in memo self_ref.tensor_memo.pop(th, None) weakref.finalize(t, del_ten) self.tensor_memo[th] = v def from_real_tensor(self, fake_mode, t): maybe_memo = self._get_memo(t) if maybe_memo is not None: return maybe_memo existing_device = t.device # not yet supported in metatensors if t.is_quantized: raise UnsupportedFakeTensorException("quantized nyi in meta tensors") with no_dispatch(): meta_t = self.meta_converter(t) if meta_t.device.type != "meta": raise UnsupportedFakeTensorException("meta converter nyi") out = FakeTensor(fake_mode, meta_t, existing_device) if type(t) is torch.nn.Parameter: out = torch.nn.Parameter(out, requires_grad=out.requires_grad) # type: ignore[assignment] if t.grad is not None: out.grad = self.from_real_tensor(fake_mode, t.grad) self.set_tensor_memo(t, out) return out def from_meta_and_device(self, fake_mode, t, device): maybe_memo = self._get_memo(t) if maybe_memo is not None: return maybe_memo out = FakeTensor(fake_mode, t, device) self.set_tensor_memo(t, out) return out # There are two ways to call this. First, you can have manually constructed # a meta tensor and you need to turn it into a fake tensor. In that case, # pass a meta tensor and a device argument. Alternately, you can have a # real tensor that you need to convert into a fake tensor; in that case, # omit the device. # # The disallowed case: if you specify the device, it MUST be a meta tensor. # However, you're allowed to pass a meta tensor to be turned into a fake # tensor; although an odd thing to do, this can occur if you're doing # cross ref testing and the inner test is already operating on meta tensors def __call__(self, fake_mode, t, device=None): if device is None: return self.from_real_tensor(fake_mode, t) else: assert t.device.type == "meta" return self.from_meta_and_device(fake_mode, t, device) op_implementations = [] def register_op_impl(run_impl_check: Union[Callable[[OpOverload], bool], OpOverload]): def impl_decorator(op_impl): global op_implementations if isinstance(run_impl_check, OpOverload): op_implementations.append((lambda func: func == run_impl_check, op_impl)) else: op_implementations.append((run_impl_check, op_impl)) return op_impl return impl_decorator @register_op_impl( lambda func: (_is_tensor_constructor(func) or func in _like_tensor_constructors) ) def constructors(fake_mode, func, *args, **kwargs): assert func not in _non_kwarg_device_constructors _, new_kwargs = normalize_function( func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) if func in _like_tensor_constructors: default_device = new_kwargs["input"].device # TODO: file issue args = (new_kwargs.pop("input"),) else: # cpu is default device if none is specified default_device = torch.device("cpu") args = () out_device = new_kwargs.pop("device", None) out_device = out_device if out_device is not None else default_device new_kwargs["device"] = torch.device("meta") r = func(*args, **new_kwargs) return FakeTensor(fake_mode, r, out_device) @register_op_impl(lambda func: func in (aten.to.prim_Device, aten.to.device)) def non_kwarg_to(fake_mode, func, *args, **kwargs): _, new_kwargs = normalize_function( func, args, kwargs, normalize_to_only_use_kwargs=True ) input_device = new_kwargs["device"] out_device = input_device if input_device else new_kwargs["input"].device new_kwargs["device"] = torch.device("meta") r = func(*args, **new_kwargs) return fake_mode.fake_tensor_converter(fake_mode, r, out_device) # Dont default to default device handling, # since the device of `the_template` is ignored @register_op_impl(aten.resize_as_.default) def resize_as_(fake_mode, func, *args, **kwargs): return func(*args, **kwargs) @register_op_impl(aten._sparse_coo_tensor_with_dims_and_tensors.default) def _sparse_coo_tensor_with_dims_and_tensors(fake_mode, func, *args, **kwargs): # TODO: remove me return constructors(fake_mode, func, *args, **kwargs) # _to_copy fails when run with FakeTensors to cuda device # TODO: debug @register_op_impl(aten._to_copy.default) def to_copy(fake_mode, func, *args, **kwargs): _, new_kwargs = normalize_function( func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) input_device = new_kwargs.pop("device", None) out_device = input_device if input_device else new_kwargs["input"].device with no_dispatch(): input = new_kwargs.pop("input").to("meta") return FakeTensor(fake_mode, aten._to_copy(input, **new_kwargs), out_device) @register_op_impl(aten.clone.default) def clone(fake_mode, func, input, memory_format=None): out_device = input.device with no_dispatch(): out = aten._to_copy(input.to("meta"), memory_format=memory_format) return FakeTensor(fake_mode, out, out_device) # index.Tensor data-dependent in only some conditions @register_op_impl( lambda func: torch.Tag.dynamic_output_shape in func.tags # type: ignore[attr-defined] and func != aten.index.Tensor ) def data_dep_op(fake_mode, func, *args, **kwargs): raise DynamicOutputShapeException(func) # Bool Indices get Expanded as Masks # See: IndexingUtils.h:expandTensors def check_no_bool_index_tensors(func, self, indices): for index in indices: if index is not None and index.dtype in (torch.bool, torch.uint8): raise DynamicOutputShapeException(func) def run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs): _, new_kwargs = normalize_function( func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) out_device = new_kwargs["input"].device with in_kernel_invocation_manager(fake_mode): out = func(*args, **kwargs) return FakeTensor(fake_mode, out, out_device) # Dont default to default device handling, # Since op can take in non-zero sized cpu # index tensors with cuda self @register_op_impl(aten.index.Tensor) def index_tensor(fake_mode, func, *args, **kwargs): # dynamic shape op if indices are bool/uint8 check_no_bool_index_tensors(func, *args, **kwargs) return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs) # takes in multiple-devices, dont default to default device handling @register_op_impl(aten.index_put.default) def index_put(fake_mode, func, *args, **kwargs): return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs) # same with index_put, but return the input @register_op_impl(aten.index_put_.default) def index_put_(fake_mode, func, *args, **kwargs): with in_kernel_invocation_manager(fake_mode): out = func(*args, **kwargs) _, new_kwargs = normalize_function( func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) return new_kwargs["input"] # Meta tensors give you the ability to run PyTorch code without having to # actually do computation through tensors allocated on a `meta` device. # Because the device is `meta`, meta tensors do not model device propagation. # FakeTensor extends MetaTensors to also carry an additional `fake_device` # which tracks devices that would have been used. @contextlib.contextmanager def in_kernel_invocation_manager(fake_mode): fake_mode.in_kernel_invocation = True # See: note [Fake Tensor Dispatch Keys] torch._C._add_meta_to_tls_dispatch_include() try: yield finally: fake_mode.in_kernel_invocation = False torch._C._remove_meta_from_tls_dispatch_include() class FakeTensor(torch.Tensor): fake_device: torch.device fake_mode: "FakeTensorMode" has_sym_ints: bool # Note: [Fake Tensor Dispatch Keys] # In order to model the behavior of device-specific autocast # and autograd logic, we update the dispatch keys of FakeTensors # to reflect their fake device. This includes the BackendComponent # (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent # related Autocast and Autograd keys. __torch__dispatch__ sits below # Autocast and Autograd, and is only invoked when we are at the # kernel for the BackendComponent. Then, we add Meta to the # thread-local dispatch include set to hit the meta kernel # instead of the kernel of the BackendComponent for the fake device. # The `device_for_backend_keys` does that below @staticmethod def __new__(cls, fake_mode, elem, device): return torch.Tensor._make_subclass( cls, elem, elem.requires_grad, dispatch_device=True, device_for_backend_keys=device, ) def __init__(self, fake_mode, elem, device: Union[torch.device, str]): assert elem.device.type == "meta", elem.device.type device = device if isinstance(device, torch.device) else torch.device(device) # NB: it is fine, if a little confusing, for device to be meta # (we are faking a meta tensor in that case). However, it often # indicates some sort of confusion (e.g., you accidentally passed # in a meta tensor when you should have passed in the real tensor). # So by default we disallow meta, and if you are working in a situation # where it is helpful (e.g., crossref testing) you can turn it back # on if not fake_mode.allow_meta: assert device.type != "meta" # normalize cuda device. if device.type == "cuda" and device.index is None: device = torch.device(f"cuda:{torch.cuda.current_device()}") self.fake_device = device self.fake_mode = fake_mode self.has_sym_ints = symbolic_shapes.has_symbolic_sizes_strides(elem) @staticmethod def from_tensor(t, fake_mode): existing_device = t.device # TODO: this should use meta converter return FakeTensor(fake_mode, t.to(device="meta"), existing_device) # TODO: resolve error in default __repr__ def __repr__(self): with in_kernel_invocation_manager(self.fake_mode): self_repr = super().__repr__() return f"FakeTensor({self.fake_mode}, {self_repr}, {self.fake_device})" def stride(self): if self.has_sym_ints: # TODO: As we currently don't support symbolic strides, we'll assume contiguous strides # The reason this needs to be here instead of __torch_dispatch__ is that # when aten.stride goes into __torch_dispatch__, it expects a list of # concrete ints to be returned. So we need to short-circuit that entirely return symbolic_shapes.create_contiguous(self.shape) return super().stride() def new(self, *args, **kwargs): # torch.Tensor.new does not go through the normal dispatcher pattern # so in order to use the same pattern as normal invocation of # returning meta device within the kernel we need to intercept # the call here # because it doesn't go through the dispatcher, we run into errors # when attempting to compute an output in meta, so # we compute the real tensor then convert to meta out_device = self.fake_device with no_dispatch(): real_out = super().new(*args, **kwargs) assert not isinstance(real_out, FakeTensor), real_out assert real_out.device.type != "meta", real_out.device with no_dispatch(): meta_out = MetaConverter()(real_out) return FakeTensor(self.fake_mode, meta_out, out_device) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): # need to handle here to avoid infinite recursion # see [in_kernel_invocation] if func == torch.ops.prim.device.default: assert len(args) == 1 and isinstance(args[0], FakeTensor) if args[0].fake_mode.in_kernel_invocation: return torch.device("meta") else: return args[0].fake_device # Need this to handle infinite recursion with sparse tensors. # Sparse tensors have custom stride policy which means that # they will dispatch here on dispatch, and we need to trigger # the default behavior. # TODO: when we get other tensor types online they will also # need to get entries here. elif func == torch.ops.aten.stride.default: return None # Because fake mode can return NotImplemented (if it sees a subclass # it doesn't know how to deal with), this test here is important # because the next dispatch after a fake mode will attempt to use # subclasses of tensors to dispatch, and any FakeTensor arguments # will be considered eligible. if any(not issubclass(t, FakeTensor) and t is not torch.Tensor for t in types): return NotImplemented fake_mode = None for arg in itertools.chain(tree_flatten(args)[0], tree_flatten(kwargs)[0]): if isinstance(arg, FakeTensor): if fake_mode is None: fake_mode = arg.fake_mode else: assert fake_mode is arg.fake_mode, "Mixing modes NYI" with enable_torch_dispatch_mode(fake_mode): return func(*args, **kwargs) @staticmethod def _find_common_device(func, args, kwargs): # cpu - zero-dim tensors can be called in cuda kernels, # so overwrite the common_device if it the only existing # device comes from a cpu zero-dim tensor common_device = None is_cpu_zero_dim = None def cpu_zero_dim(t): return t.device.type == "cpu" and t.dim() == 0 def merge_devices(t): nonlocal common_device nonlocal is_cpu_zero_dim if not isinstance(t, FakeTensor): return if common_device is None: common_device = t.device is_cpu_zero_dim = cpu_zero_dim(t) return t_is_cpu_zero_dim = cpu_zero_dim(t) if t.device == common_device: if is_cpu_zero_dim: is_cpu_zero_dim = t_is_cpu_zero_dim return # mismatching devices ! # if current tensor is cpu 0 dim, defer to existing device if t_is_cpu_zero_dim: return # current device is from cpu 0 dim tensor, overwrite if is_cpu_zero_dim: common_device = t.device is_cpu_zero_dim = t_is_cpu_zero_dim return # mismatching devices of non-zero dim tensors, throw # This might be valid behavior and need to be explicitly modeled, e.g. reshape_as raise RuntimeError( f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}" ) tree_map(merge_devices, args) tree_map(merge_devices, kwargs) assert common_device is not None, f"Could not find common device for {func}" return common_device __torch_function__ = torch._C._disabled_torch_function_impl # We keep one instantiation of `fake_tensor_converter` active # for the duration of `with torch_enable_mode(FakeTensorMode)`. # This allows accurate storage aliasing across invocation of # different operators. While this will keep all freshly allocated # tensors alive during `FakeTensorMode`, there will no be no # new allocations of Tensors which have non-meta storage so # memory should not significantly incraese. class FakeTensorMode(TorchDispatchMode): def __init__(self, *, allow_fallback_kernels=True, allow_meta=False): self.allow_fallback_kernels = allow_fallback_kernels self.fake_tensor_converter = FakeTensorConverter() self.allow_meta = allow_meta # [in_kernel_invocation] # when FakeTensor is invoked in user code, .device should return # the fake_device of the tensor so that code such as as `if x.is_cuda` # or torch.zeros([10, 10], device=x.device) continues to execute as if # the FakeTensor were real. However, within kernel execution, we return # the `Meta` device because all computation within the kernels should # behave as if the Tensors are on meta devices. Kernels should allocate # new tensors on meta devices, and checks like `is_meta` should return true. # within python refs, we always return the real device by defining # the device property self.in_kernel_invocation = False def __torch_dispatch__(self, func, types, args=(), kwargs=None): kwargs = kwargs if kwargs else {} if func == torch.ops.prim.device.default: assert len(args) == 1 and isinstance(args[0], FakeTensor) if args[0].fake_mode.in_kernel_invocation: return torch.device("meta") else: return args[0].fake_device flat_arg_tensors = [ i for i in tree_flatten((args, kwargs))[0] if isinstance(i, FakeTensor) ] has_symbolic_sizes = any([i.has_sym_ints for i in flat_arg_tensors]) if has_symbolic_sizes: # TODO: Find better approach for this # Avoid circular import from torch._decomp import decomposition_table from torch._meta_registrations import meta_table # TODO: hack, doesn't actually work. # see https://github.com/pytorch/pytorch/pull/81598#issuecomment-1192030435 with enable_torch_dispatch_mode( self ), torch.overrides.enable_reentrant_dispatch(): if func in meta_table: r = meta_table[func](*args, **kwargs) return r if func in decomposition_table: return decomposition_table[func](*args, **kwargs) with no_dispatch(): if symbolic_shapes.is_symbolic_op(func): return symbolic_shapes.handle_symbolic_op(func, args, kwargs) if func == aten.size.default: raise RuntimeError( "Trying to call aten.size on a tensor with symbolic shapes. " "It's likely that this is from calling tensor.shape in C++" ) # prims already wrap FakeTensor inputs to FakeTensor outputs # and do device logic, we dont need do anything but run them # and ensure that Meta kernels are dispatched to (see) # Fake Tensor Dispatch Keys if "prims::" in func._schema.name and len(flat_arg_tensors) != 0: try: torch._C._add_meta_to_tls_dispatch_include() with no_dispatch(): return func(*args, **kwargs) finally: torch._C._remove_meta_from_tls_dispatch_include() if has_symbolic_sizes: constructors = [aten.empty.SymInt] if func not in constructors: raise RuntimeError( f"{func} - couldn't find symbolic meta function/decomposition" ) with no_dispatch(): # TODO: apply as no_dispatch decorator converter = self.fake_tensor_converter # if we are in the dispatch mode, we will enter this function even if the inputs # are not FakeTensors. For now, throw if any non-Fake Tensor inputs # and just support constructors. TODO: extend more broadly conversion_made = False subclass_seen = False def check_non_fake_tensor(x): nonlocal conversion_made, subclass_seen conversion_made = conversion_made or ( isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor) ) subclass_seen = subclass_seen or ( isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor) and type(x) is not torch.Tensor and type(x) is not torch.nn.Parameter ) tree_map(check_non_fake_tensor, args) tree_map(check_non_fake_tensor, kwargs) # Suppose we enable fake tensor mode. This means that fake tensor # mode will run first. But what if we do an operation that # involves a tensor subclass that will desugar into normal tensor # operations? Without this line, fake tensor mode will run first, # decide that a conversion was made (since there was a non fake # tensor argument), and report an error that converting non # fake tensor is not supported. What we actually wanted to happen # was to give the subclass a chance to figure out what it wants to # before erroring out. Returning NotImplemented here allows this. # # NB: If you're seeing a mysterious infinite loop involving fake # tensor, it might be related to this line. Though I'm not sure # how you'll know to read this comment, as this line won't show up # in the stack trace. if subclass_seen: return NotImplemented # this is generated from torch.tensor(), which does not use the # dispatcher, to allow wrapper subclasses to wrap the new tensor # we need to handle before error checking if func in [ aten.lift_fresh.default, aten.lift_fresh_copy.default, ]: assert ( len(kwargs) == 0 and len(args) == 1 and type(args[0]) is torch.Tensor ), f"{args} {kwargs}" with no_dispatch(): return converter(self, args[0]) if conversion_made: raise Exception( "Invoking operators with non-Fake Tensor inputs in FakeTensorMode is not yet supported. " f"Please convert all Tensors to FakeTensors first. Found in {func}(*{args}, **{kwargs})" ) for run_impl_check, op_impl in op_implementations: if run_impl_check(func): return op_impl(self, func, *args, **kwargs) try: with in_kernel_invocation_manager(self): r = func(*args, **kwargs) except NotImplementedError as not_implemented_error: if not self.allow_fallback_kernels: raise not_implemented_error return run_fallback_kernel( self, func, args, kwargs, not_implemented_error ) # TODO: handle non-kwarg devices assert func not in _device_not_kwarg_ops, f"NYI: {func}" # Lazily initialized, in case there are no tensor returns common_device = None def wrap(e, device=None): nonlocal common_device if isinstance(e, torch.Tensor) and not isinstance(e, FakeTensor): if common_device is None: common_device = FakeTensor._find_common_device( func, args, kwargs ) return converter(self, e, device or common_device) else: return e # if device is specified, use that if kwargs.get("device", None): return tree_map(partial(wrap, device=kwargs["device"]), r) return tree_map(partial(wrap), r) def from_tensor(self, tensor): return self.fake_tensor_converter(self, tensor) # NB: returns fake tensors def run_fallback_kernel(fake_mode, func, args, kwargs, orig_not_implemented_exception): # these should all be supported, just to be safe # avoid fallback for operators which inplace modify metadata # because the input fake tensors would be umodified if torch.Tag.inplace_view in func.tags: # type: ignore[attr-defined] raise orig_not_implemented_exception with no_dispatch(): inp_impls = {} def to_real_tensor(e): if isinstance(e, FakeTensor): out = torch.zeros_like(e, device=e.fake_device) if e.is_sparse: out._coalesced_(e.is_coalesced()) inp_impls[id(out)] = e return out return e args = tree_map(to_real_tensor, args) kwargs = tree_map(to_real_tensor, kwargs) r = func(*args, **kwargs) tensor_impls = set() storages = set() for e in tree_flatten((args, kwargs))[0]: if isinstance(e, torch.Tensor): if not e.is_sparse: storages.add(e.storage()._cdata) # TODO: also check metadata change on inputs # proper aliasing/metadata relationship between outputs and inputs will # not be set up, bc of conversion to device, unless we can reuse an # input impl for e in tree_flatten(r)[0]: if id(e) not in inp_impls and ( isinstance(e, torch.Tensor) and not e.is_sparse and e.storage()._cdata in storages ): raise orig_not_implemented_exception def map_out(e): if isinstance(e, torch.Tensor): if id(e) in inp_impls: return inp_impls[id(e)] else: return fake_mode.fake_tensor_converter(fake_mode, e) else: return e return tree_map(map_out, r) # Just for use to allow copying a module to fake tensors, # does not apply elsewhere class FakeCopyMode(TorchFunctionMode): def __init__(self, fake_mode): self.fake_mode = fake_mode def __torch_function__(self, func, types, args=(), kwargs=None): kwargs = kwargs if kwargs else {} # clone will get called in Parameter deepcopy if func == torch._C._TensorBase.clone: return func(self.fake_mode.from_tensor(args[0]), **kwargs) elif func == torch.Tensor.__deepcopy__: assert len(args) == 2 and len(kwargs) == 0 tensor, memo = args if id(tensor) in memo: return memo[id(tensor)] out = self.fake_mode.from_tensor(tensor) memo[id(tensor)] = out return out else: with torch._C.DisableTorchFunction(): return func(*args, **kwargs)
pytorch-master
torch/_subclasses/fake_tensor.py
from __future__ import annotations from typing import cast, Callable, Generic, List, Optional, Type, TypeVar, Union import torch __all__ = ['Future', 'collect_all', 'wait_all'] T = TypeVar("T") S = TypeVar("S") class _PyFutureMeta(type(torch._C.Future), type(Generic)): # type: ignore[misc, no-redef] pass class Future(torch._C.Future, Generic[T], metaclass=_PyFutureMeta): r""" Wrapper around a ``torch._C.Future`` which encapsulates an asynchronous execution of a callable, e.g. :meth:`~torch.distributed.rpc.rpc_async`. It also exposes a set of APIs to add callback functions and set results. .. warning:: GPU support is a beta feature, subject to changes. """ def __init__(self, *, devices: Optional[List[Union[int, str, torch.device]]] = None): r""" Create an empty unset ``Future``. If the future is intended to hold values containing CUDA tensors, (a superset of) their CUDA devices must be specified at construction. (This is only supported if ``torch.cuda.is_available()`` returns ``True``). This is needed to ensure proper CUDA stream synchronization. The child futures, returned by the ``then`` method, will inherit these devices. Args: devices(``List[Union[int, str, torch.device]]``, optional): the set of devices on which tensors contained in this future's value are allowed to reside and on which callbacks are allowed to operate. """ if devices is None: devices = [] super().__init__([torch.device(d) for d in devices]) def done(self) -> bool: r""" Return ``True`` if this ``Future`` is done. A ``Future`` is done if it has a result or an exception. If the value contains tensors that reside on GPUs, ``Future.done()`` will return ``True`` even if the asynchronous kernels that are populating those tensors haven't yet completed running on the device, because at such stage the result is already usable, provided one performs the appropriate synchronizations (see :meth:`wait`). """ return super().done() def wait(self) -> T: r""" Block until the value of this ``Future`` is ready. If the value contains tensors that reside on GPUs, then an additional synchronization is performed with the kernels (executing on the device) which may be asynchronously populating those tensors. Such sync is non-blocking, which means that ``wait()`` will insert the necessary instructions in the current streams to ensure that further operations enqueued on those streams will be properly scheduled after the async kernels but, once that is done, ``wait()`` will return, even if those kernels are still running. No further synchronization is required when accessing and using the values, as long as one doesn't change streams. Returns: The value held by this ``Future``. If the function (callback or RPC) creating the value has thrown an error, this ``wait`` method will also throw an error. """ return super().wait() def value(self) -> T: r""" Obtain the value of an already-completed future. This method should only be called after a call to :meth:`wait` has completed, or inside a callback function passed to :meth:`then`. In other cases this ``Future`` may not yet hold a value and calling ``value()`` could fail. If the value contains tensors that reside on GPUs, then this method will *not* perform any additional synchronization. This should be done beforehand, separately, through a call to :meth:`wait` (except within callbacks, for which it's already being taken care of by :meth:`then`). Returns: The value held by this ``Future``. If the function (callback or RPC) creating the value has thrown an error, this ``value()`` method will also throw an error. """ return super().value() def then(self, callback: Callable[[Future[T]], S]) -> Future[S]: r""" Append the given callback function to this ``Future``, which will be run when the ``Future`` is completed. Multiple callbacks can be added to the same ``Future``, but the order in which they will be executed cannot be guaranteed (to enforce a certain order consider chaining: ``fut.then(cb1).then(cb2)``). The callback must take one argument, which is the reference to this ``Future``. The callback function can use the :meth:`value` method to get the value. Note that if this ``Future`` is already completed, the given callback will be run immediately inline. If the ``Future``'s value contains tensors that reside on GPUs, the callback might be invoked while the async kernels that are populating those tensors haven't yet finished executing on the device. However, the callback will be invoked with some dedicated streams set as current (fetched from a global pool) which will be synchronized with those kernels. Hence any operation performed by the callback on these tensors will be scheduled on the device after the kernels complete. In other words, as long as the callback doesn't switch streams, it can safely manipulate the result without any additional synchronization. This is similar to the non-blocking behavior of :meth:`wait`. Similarly, if the callback returns a value that contains tensors that reside on a GPU, it can do so even if the kernels that are producing these tensors are still running on the device, as long as the callback didn't change streams during its execution. If one wants to change streams, one must be careful to re-synchronize them with the original streams, that is, those that were current when the callback was invoked. Args: callback(``Callable``): a ``Callable`` that takes this ``Future`` as the only argument. Returns: A new ``Future`` object that holds the return value of the ``callback`` and will be marked as completed when the given ``callback`` finishes. .. note:: Note that if the callback function throws, either through the original future being completed with an exception and calling ``fut.wait()``, or through other code in the callback, the future returned by ``then`` will be marked appropriately with the encountered error. However, if this callback later completes additional futures, those futures are not marked as completed with an error and the user is responsible for handling completion/waiting on those futures independently. Example:: >>> def callback(fut): ... print(f"RPC return value is {fut.wait()}.") >>> fut = torch.futures.Future() >>> # The inserted callback will print the return value when >>> # receiving the response from "worker1" >>> cb_fut = fut.then(callback) >>> chain_cb_fut = cb_fut.then( ... lambda x : print(f"Chained cb done. {x.wait()}") ... ) >>> fut.set_result(5) RPC return value is 5. Chained cb done. None """ return cast(Future[S], super().then(callback)) def add_done_callback(self, callback: Callable[[Future[T]], None]) -> None: r""" Append the given callback function to this ``Future``, which will be run when the ``Future`` is completed. Multiple callbacks can be added to the same ``Future``, but the order in which they will be executed cannot be guaranteed. The callback must take one argument, which is the reference to this ``Future``. The callback function can use the :meth:`value` method to get the value. Note that if this ``Future`` is already completed, the given callback will be run inline. We recommend that you use the :meth:`then` method as it provides a way to synchronize after your callback has completed. ``add_done_callback`` can be cheaper if your callback does not return anything. But both :meth:`then` and ``add_done_callback`` use the same callback registration API under the hood. With respect to GPU tensors, this method behaves in the same way as :meth:`then`. Args: callback(``Future``): a ``Callable`` that takes in one argument, which is the reference to this ``Future``. .. note:: Note that if the callback function throws, either through the original future being completed with an exception and calling ``fut.wait()``, or through other code in the callback, error handling must be carefully taken care of. For example, if this callback later completes additional futures, those futures are not marked as completed with an error and the user is responsible for handling completion/waiting on those futures independently. Example:: >>> def callback(fut): ... print(f"This will run after the future has finished.") ... print(fut.wait()) >>> fut = torch.futures.Future() >>> fut.add_done_callback(callback) >>> fut.set_result(5) This will run after the future has finished. 5 """ super().add_done_callback(callback) def set_result(self, result: T) -> None: r""" Set the result for this ``Future``, which will mark this ``Future`` as completed and trigger all attached callbacks. Note that a ``Future`` cannot be marked completed twice. If the result contains tensors that reside on GPUs, this method can be called even if the asynchronous kernels that are populating those tensors haven't yet completed running on the device, provided that the streams on which those kernels were enqueued are set as the current ones when this method is called. Put simply, it's safe to call this method immediately after launching those kernels, without any additional synchronization, as long as one doesn't change streams in between. This method will record events on all the relevant current streams and will use them to ensure proper scheduling for all the consumers of this ``Future``. Args: result (object): the result object of this ``Future``. Example:: >>> import threading >>> import time >>> def slow_set_future(fut, value): ... time.sleep(0.5) ... fut.set_result(value) >>> fut = torch.futures.Future() >>> t = threading.Thread( ... target=slow_set_future, ... args=(fut, torch.ones(2) * 3) ... ) >>> t.start() >>> print(fut.wait()) tensor([3., 3.]) >>> t.join() """ super().set_result(result) def set_exception(self, result: T) -> None: r""" Set an exception for this ``Future``, which will mark this ``Future`` as completed with an error and trigger all attached callbacks. Note that when calling wait()/value() on this ``Future``, the exception set here will be raised inline. Args: result (BaseException): the exception for this ``Future``. Example:: >>> fut = torch.futures.Future() >>> fut.set_exception(ValueError("foo")) >>> fut.wait() Traceback (most recent call last): ... ValueError: foo """ assert isinstance(result, Exception), f"{result} is of type {type(result)}, not an Exception." def raise_error(fut_result): raise fut_result super()._set_unwrap_func(raise_error) self.set_result(result) # type: ignore[arg-type] def collect_all(futures: List[Future]) -> Future[List[Future]]: r""" Collects the provided :class:`~torch.futures.Future` objects into a single combined :class:`~torch.futures.Future` that is completed when all of the sub-futures are completed. Args: futures (list): a list of :class:`~torch.futures.Future` objects. Returns: Returns a :class:`~torch.futures.Future` object to a list of the passed in Futures. Example:: >>> fut0 = torch.futures.Future() >>> fut1 = torch.futures.Future() >>> fut = torch.futures.collect_all([fut0, fut1]) >>> fut0.set_result(0) >>> fut1.set_result(1) >>> fut_list = fut.wait() >>> print(f"fut0 result = {fut_list[0].wait()}") fut0 result = 0 >>> print(f"fut1 result = {fut_list[1].wait()}") fut1 result = 1 """ return cast(Future[List[Future]], torch._C._collect_all(cast(List[torch._C.Future], futures))) def wait_all(futures: List[Future]) -> List: r""" Waits for all provided futures to be complete, and returns the list of completed values. If any of the futures encounters an error, the method will exit early and report the error not waiting for other futures to complete. Args: futures (list): a list of :class:`~torch.futures.Future` object. Returns: A list of the completed :class:`~torch.futures.Future` results. This method will throw an error if ``wait`` on any :class:`~torch.futures.Future` throws. """ return [fut.wait() for fut in torch._C._collect_all(cast(List[torch._C.Future], futures)).wait()]
pytorch-master
torch/futures/__init__.py
# -*- coding: utf-8 -*- import sys import torch from torch._C import _add_docstr, _linalg # type: ignore[attr-defined] LinAlgError = torch._C._LinAlgError # type: ignore[attr-defined] Tensor = torch.Tensor common_notes = { "experimental_warning": """This function is "experimental" and it may change in a future PyTorch release.""", "sync_note": "When inputs are on a CUDA device, this function synchronizes that device with the CPU.", "sync_note_ex": r"When the inputs are on a CUDA device, this function synchronizes only when :attr:`check_errors`\ `= True`.", "sync_note_has_ex": ("When inputs are on a CUDA device, this function synchronizes that device with the CPU. " "For a version of this function that does not synchronize, see :func:`{}`.") } # Note: This not only adds doc strings for functions in the linalg namespace, but # also connects the torch.linalg Python namespace to the torch._C._linalg builtins. cross = _add_docstr(_linalg.linalg_cross, r""" linalg.cross(input, other, *, dim=-1, out=None) -> Tensor Computes the cross product of two 3-dimensional vectors. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of vectors, for which it computes the product along the dimension :attr:`dim`. In this case, the output has the same batch dimensions as the inputs broadcast to a common shape. Args: input (Tensor): the first input tensor. other (Tensor): the second input tensor. dim (int, optional): the dimension along which to take the cross-product. Default: `-1`. Keyword args: out (Tensor, optional): the output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: If after broadcasting :attr:`input`\ `.size(\ `:attr:`dim`\ `) != 3` or :attr:`other`\ `.size(\ `:attr:`dim`\ `) != 3`. Example: >>> a = torch.randn(4, 3) >>> a tensor([[-0.3956, 1.1455, 1.6895], [-0.5849, 1.3672, 0.3599], [-1.1626, 0.7180, -0.0521], [-0.1339, 0.9902, -2.0225]]) >>> b = torch.randn(4, 3) >>> b tensor([[-0.0257, -1.4725, -1.2251], [-1.1479, -0.7005, -1.9757], [-1.3904, 0.3726, -1.1836], [-0.9688, -0.7153, 0.2159]]) >>> torch.linalg.cross(a, b) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) >>> a = torch.randn(1, 3) # a is broadcast to match shape of b >>> a tensor([[-0.9941, -0.5132, 0.5681]]) >>> torch.linalg.cross(a, b) tensor([[ 1.4653, -1.2325, 1.4507], [ 1.4119, -2.6163, 0.1073], [ 0.3957, -1.9666, -1.0840], [ 0.2956, -0.3357, 0.2139]]) """) cholesky = _add_docstr(_linalg.linalg_cholesky, r""" linalg.cholesky(A, *, upper=False, out=None) -> Tensor Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **Cholesky decomposition** of a complex Hermitian or real symmetric positive-definite matrix :math:`A \in \mathbb{K}^{n \times n}` is defined as .. math:: A = LL^{\text{H}}\mathrlap{\qquad L \in \mathbb{K}^{n \times n}} where :math:`L` is a lower triangular matrix with real positive diagonal (even in the complex case) and :math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, and the transpose when :math:`L` is real-valued. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. seealso:: :func:`torch.linalg.cholesky_ex` for a version of this operation that skips the (slow) error checking by default and instead returns the debug information. This makes it a faster way to check if a matrix is positive-definite. :func:`torch.linalg.eigh` for a different decomposition of a Hermitian matrix. The eigenvalue decomposition gives more information about the matrix but it slower to compute than the Cholesky decomposition. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of symmetric or Hermitian positive-definite matrices. Keyword args: upper (bool, optional): whether to return an upper triangular matrix. The tensor returned with upper=True is the conjugate transpose of the tensor returned with upper=False. out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: if the :attr:`A` matrix or any matrix in a batched :attr:`A` is not Hermitian (resp. symmetric) positive-definite. If :attr:`A` is a batch of matrices, the error message will include the batch index of the first matrix that fails to meet this condition. Examples:: >>> A = torch.randn(2, 2, dtype=torch.complex128) >>> A = A @ A.T.conj() + torch.eye(2) # creates a Hermitian positive-definite matrix >>> A tensor([[2.5266+0.0000j, 1.9586-2.0626j], [1.9586+2.0626j, 9.4160+0.0000j]], dtype=torch.complex128) >>> L = torch.linalg.cholesky(A) >>> L tensor([[1.5895+0.0000j, 0.0000+0.0000j], [1.2322+1.2976j, 2.4928+0.0000j]], dtype=torch.complex128) >>> torch.dist(L @ L.T.conj(), A) tensor(4.4692e-16, dtype=torch.float64) >>> A = torch.randn(3, 2, 2, dtype=torch.float64) >>> A = A @ A.mT + torch.eye(2) # batch of symmetric positive-definite matrices >>> L = torch.linalg.cholesky(A) >>> torch.dist(L @ L.mT, A) tensor(5.8747e-16, dtype=torch.float64) """) cholesky_ex = _add_docstr(_linalg.linalg_cholesky_ex, r""" linalg.cholesky_ex(A, *, upper=False, check_errors=False, out=None) -> (Tensor, Tensor) Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix. This function skips the (slow) error checking and error message construction of :func:`torch.linalg.cholesky`, instead directly returning the LAPACK error codes as part of a named tuple ``(L, info)``. This makes this function a faster way to check if a matrix is positive-definite, and it provides an opportunity to handle decomposition errors more gracefully or performantly than :func:`torch.linalg.cholesky` does. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. If :attr:`A` is not a Hermitian positive-definite matrix, or if it's a batch of matrices and one or more of them is not a Hermitian positive-definite matrix, then ``info`` stores a positive integer for the corresponding matrix. The positive integer indicates the order of the leading minor that is not positive-definite, and the decomposition could not be completed. ``info`` filled with zeros indicates that the decomposition was successful. If ``check_errors=True`` and ``info`` contains positive integers, then a RuntimeError is thrown. """ + fr""" .. note:: {common_notes["sync_note_ex"]} .. warning:: {common_notes["experimental_warning"]} """ + r""" .. seealso:: :func:`torch.linalg.cholesky` is a NumPy compatible variant that always checks for errors. Args: A (Tensor): the Hermitian `n \times n` matrix or the batch of such matrices of size `(*, n, n)` where `*` is one or more batch dimensions. Keyword args: upper (bool, optional): whether to return an upper triangular matrix. The tensor returned with upper=True is the conjugate transpose of the tensor returned with upper=False. check_errors (bool, optional): controls whether to check the content of ``infos``. Default: `False`. out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.randn(2, 2, dtype=torch.complex128) >>> A = A @ A.t().conj() # creates a Hermitian positive-definite matrix >>> L, info = torch.linalg.cholesky_ex(A) >>> A tensor([[ 2.3792+0.0000j, -0.9023+0.9831j], [-0.9023-0.9831j, 0.8757+0.0000j]], dtype=torch.complex128) >>> L tensor([[ 1.5425+0.0000j, 0.0000+0.0000j], [-0.5850-0.6374j, 0.3567+0.0000j]], dtype=torch.complex128) >>> info tensor(0, dtype=torch.int32) """) inv = _add_docstr(_linalg.linalg_inv, r""" linalg.inv(A, *, out=None) -> Tensor Computes the inverse of a square matrix if it exists. Throws a `RuntimeError` if the matrix is not invertible. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, for a matrix :math:`A \in \mathbb{K}^{n \times n}`, its **inverse matrix** :math:`A^{-1} \in \mathbb{K}^{n \times n}` (if it exists) is defined as .. math:: A^{-1}A = AA^{-1} = \mathrm{I}_n where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix. The inverse matrix exists if and only if :math:`A` is `invertible`_. In this case, the inverse is unique. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. note:: Consider using :func:`torch.linalg.solve` if possible for multiplying a matrix on the left by the inverse, as:: linalg.solve(A, B) == linalg.inv(A) @ B # When B is a matrix It is always prefered to use :func:`~solve` when possible, as it is faster and more numerically stable than computing the inverse explicitly. .. seealso:: :func:`torch.linalg.pinv` computes the pseudoinverse (Moore-Penrose inverse) of matrices of any shape. :func:`torch.linalg.solve` computes :attr:`A`\ `.inv() @ \ `:attr:`B` with a numerically stable algorithm. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of invertible matrices. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: if the matrix :attr:`A` or any matrix in the batch of matrices :attr:`A` is not invertible. Examples:: >>> A = torch.randn(4, 4) >>> Ainv = torch.linalg.inv(A) >>> torch.dist(A @ Ainv, torch.eye(4)) tensor(1.1921e-07) >>> A = torch.randn(2, 3, 4, 4) # Batch of matrices >>> Ainv = torch.linalg.inv(A) >>> torch.dist(A @ Ainv, torch.eye(4)) tensor(1.9073e-06) >>> A = torch.randn(4, 4, dtype=torch.complex128) # Complex matrix >>> Ainv = torch.linalg.inv(A) >>> torch.dist(A @ Ainv, torch.eye(4)) tensor(7.5107e-16, dtype=torch.float64) .. _invertible: https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem """) solve_ex = _add_docstr(_linalg.linalg_solve_ex, r""" linalg.solve_ex(A, B, *, left=True, check_errors=False, out=None) -> (Tensor, Tensor) A version of :func:`~solve` that does not perform error checks unless :attr:`check_errors`\ `= True`. It also returns the :attr:`info` tensor returned by `LAPACK's getrf`_. """ + fr""" .. note:: {common_notes["sync_note_ex"]} .. warning:: {common_notes["experimental_warning"]} """ + r""" Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions. Keyword args: left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`. check_errors (bool, optional): controls whether to check the content of ``infos`` and raise an error if it is non-zero. Default: `False`. out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`. Returns: A named tuple `(result, info)`. Examples:: >>> A = torch.randn(3, 3) >>> Ainv, info = torch.linalg.solve_ex(A) >>> torch.dist(torch.linalg.inv(A), Ainv) tensor(0.) >>> info tensor(0, dtype=torch.int32) .. _LAPACK's getrf: https://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga0019443faea08275ca60a734d0593e60.html """) inv_ex = _add_docstr(_linalg.linalg_inv_ex, r""" linalg.inv_ex(A, *, check_errors=False, out=None) -> (Tensor, Tensor) Computes the inverse of a square matrix if it is invertible. Returns a namedtuple ``(inverse, info)``. ``inverse`` contains the result of inverting :attr:`A` and ``info`` stores the LAPACK error codes. If :attr:`A` is not an invertible matrix, or if it's a batch of matrices and one or more of them is not an invertible matrix, then ``info`` stores a positive integer for the corresponding matrix. The positive integer indicates the diagonal element of the LU decomposition of the input matrix that is exactly zero. ``info`` filled with zeros indicates that the inversion was successful. If ``check_errors=True`` and ``info`` contains positive integers, then a RuntimeError is thrown. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. """ + fr""" .. note:: {common_notes["sync_note_ex"]} .. warning:: {common_notes["experimental_warning"]} """ + r""" .. seealso:: :func:`torch.linalg.inv` is a NumPy compatible variant that always checks for errors. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of square matrices. check_errors (bool, optional): controls whether to check the content of ``info``. Default: `False`. Keyword args: out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.randn(3, 3) >>> Ainv, info = torch.linalg.inv_ex(A) >>> torch.dist(torch.linalg.inv(A), Ainv) tensor(0.) >>> info tensor(0, dtype=torch.int32) """) det = _add_docstr(_linalg.linalg_det, r""" linalg.det(A, *, out=None) -> Tensor Computes the determinant of a square matrix. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. .. seealso:: :func:`torch.linalg.slogdet` computes the sign (resp. angle) and natural logarithm of the absolute value of the determinant of real-valued (resp. complex) square matrices. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.randn(3, 3) >>> torch.linalg.det(A) tensor(0.0934) >>> A = torch.randn(3, 2, 2) >>> torch.linalg.det(A) tensor([1.1990, 0.4099, 0.7386]) """) slogdet = _add_docstr(_linalg.linalg_slogdet, r""" linalg.slogdet(A, *, out=None) -> (Tensor, Tensor) Computes the sign and natural logarithm of the absolute value of the determinant of a square matrix. For complex :attr:`A`, it returns the angle and the natural logarithm of the modulus of the determinant, that is, a logarithmic polar decomposition of the determinant. The determinant can be recovered as `sign * exp(logabsdet)`. When a matrix has a determinant of zero, it returns `(0, -inf)`. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. .. seealso:: :func:`torch.linalg.det` computes the determinant of square matrices. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions. Keyword args: out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`. Returns: A named tuple `(sign, logabsdet)`. `sign` will have the same dtype as :attr:`A`. `logabsdet` will always be real-valued, even when :attr:`A` is complex. Examples:: >>> A = torch.randn(3, 3) >>> A tensor([[ 0.0032, -0.2239, -1.1219], [-0.6690, 0.1161, 0.4053], [-1.6218, -0.9273, -0.0082]]) >>> torch.linalg.det(A) tensor(-0.7576) >>> torch.logdet(A) tensor(nan) >>> torch.linalg.slogdet(A) torch.return_types.linalg_slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776)) """) eig = _add_docstr(_linalg.linalg_eig, r""" linalg.eig(A, *, out=None) -> (Tensor, Tensor) Computes the eigenvalue decomposition of a square matrix if it exists. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **eigenvalue decomposition** of a square matrix :math:`A \in \mathbb{K}^{n \times n}` (if it exists) is defined as .. math:: A = V \operatorname{diag}(\Lambda) V^{-1}\mathrlap{\qquad V \in \mathbb{C}^{n \times n}, \Lambda \in \mathbb{C}^n} This decomposition exists if and only if :math:`A` is `diagonalizable`_. This is the case when all its eigenvalues are different. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. .. note:: The eigenvalues and eigenvectors of a real matrix may be complex. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. warning:: This function assumes that :attr:`A` is `diagonalizable`_ (for example, when all the eigenvalues are different). If it is not diagonalizable, the returned eigenvalues will be correct but :math:`A \neq V \operatorname{diag}(\Lambda)V^{-1}`. .. warning:: The returned eigenvectors are normalized to have norm `1`. Even then, the eigenvectors of a matrix are not unique, nor are they continuous with respect to :attr:`A`. Due to this lack of uniqueness, different hardware and software may compute different eigenvectors. This non-uniqueness is caused by the fact that multiplying an eigenvector by by :math:`e^{i \phi}, \phi \in \mathbb{R}` produces another set of valid eigenvectors of the matrix. For this reason, the loss function shall not depend on the phase of the eigenvectors, as this quantity is not well-defined. This is checked when computing the gradients of this function. As such, when inputs are on a CUDA device, this function synchronizes that device with the CPU when computing the gradients. This is checked when computing the gradients of this function. As such, when inputs are on a CUDA device, the computation of the gradients of this function synchronizes that device with the CPU. .. warning:: Gradients computed using the `eigenvectors` tensor will only be finite when :attr:`A` has distinct eigenvalues. Furthermore, if the distance between any two eigenvalues is close to zero, the gradient will be numerically unstable, as it depends on the eigenvalues :math:`\lambda_i` through the computation of :math:`\frac{1}{\min_{i \neq j} \lambda_i - \lambda_j}`. .. seealso:: :func:`torch.linalg.eigvals` computes only the eigenvalues. Unlike :func:`torch.linalg.eig`, the gradients of :func:`~eigvals` are always numerically stable. :func:`torch.linalg.eigh` for a (faster) function that computes the eigenvalue decomposition for Hermitian and symmetric matrices. :func:`torch.linalg.svd` for a function that computes another type of spectral decomposition that works on matrices of any shape. :func:`torch.linalg.qr` for another (much faster) decomposition that works on matrices of any shape. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of diagonalizable matrices. Keyword args: out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`. Returns: A named tuple `(eigenvalues, eigenvectors)` which corresponds to :math:`\Lambda` and :math:`V` above. `eigenvalues` and `eigenvectors` will always be complex-valued, even when :attr:`A` is real. The eigenvectors will be given by the columns of `eigenvectors`. Examples:: >>> A = torch.randn(2, 2, dtype=torch.complex128) >>> A tensor([[ 0.9828+0.3889j, -0.4617+0.3010j], [ 0.1662-0.7435j, -0.6139+0.0562j]], dtype=torch.complex128) >>> L, V = torch.linalg.eig(A) >>> L tensor([ 1.1226+0.5738j, -0.7537-0.1286j], dtype=torch.complex128) >>> V tensor([[ 0.9218+0.0000j, 0.1882-0.2220j], [-0.0270-0.3867j, 0.9567+0.0000j]], dtype=torch.complex128) >>> torch.dist(V @ torch.diag(L) @ torch.linalg.inv(V), A) tensor(7.7119e-16, dtype=torch.float64) >>> A = torch.randn(3, 2, 2, dtype=torch.float64) >>> L, V = torch.linalg.eig(A) >>> torch.dist(V @ torch.diag_embed(L) @ torch.linalg.inv(V), A) tensor(3.2841e-16, dtype=torch.float64) .. _diagonalizable: https://en.wikipedia.org/wiki/Diagonalizable_matrix#Definition """) eigvals = _add_docstr(_linalg.linalg_eigvals, r""" linalg.eigvals(A, *, out=None) -> Tensor Computes the eigenvalues of a square matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **eigenvalues** of a square matrix :math:`A \in \mathbb{K}^{n \times n}` are defined as the roots (counted with multiplicity) of the polynomial `p` of degree `n` given by .. math:: p(\lambda) = \operatorname{det}(A - \lambda \mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{C}} where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. .. note:: The eigenvalues of a real matrix may be complex, as the roots of a real polynomial may be complex. The eigenvalues of a matrix are always well-defined, even when the matrix is not diagonalizable. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. seealso:: :func:`torch.linalg.eig` computes the full eigenvalue decomposition. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Returns: A complex-valued tensor cointaining the eigenvalues even when :attr:`A` is real. Examples:: >>> A = torch.randn(2, 2, dtype=torch.complex128) >>> L = torch.linalg.eigvals(A) >>> L tensor([ 1.1226+0.5738j, -0.7537-0.1286j], dtype=torch.complex128) >>> torch.dist(L, torch.linalg.eig(A).eigenvalues) tensor(2.4576e-07) """) eigh = _add_docstr(_linalg.linalg_eigh, r""" linalg.eigh(A, UPLO='L', *, out=None) -> (Tensor, Tensor) Computes the eigenvalue decomposition of a complex Hermitian or real symmetric matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **eigenvalue decomposition** of a complex Hermitian or real symmetric matrix :math:`A \in \mathbb{K}^{n \times n}` is defined as .. math:: A = Q \operatorname{diag}(\Lambda) Q^{\text{H}}\mathrlap{\qquad Q \in \mathbb{K}^{n \times n}, \Lambda \in \mathbb{R}^n} where :math:`Q^{\text{H}}` is the conjugate transpose when :math:`Q` is complex, and the transpose when :math:`Q` is real-valued. :math:`Q` is orthogonal in the real case and unitary in the complex case. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. :attr:`A` is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead: - If :attr:`UPLO`\ `= 'L'` (default), only the lower triangular part of the matrix is used in the computation. - If :attr:`UPLO`\ `= 'U'`, only the upper triangular part of the matrix is used. The eigenvalues are returned in ascending order. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. note:: The eigenvalues of real symmetric or complex Hermitian matrices are always real. .. warning:: The eigenvectors of a symmetric matrix are not unique, nor are they continuous with respect to :attr:`A`. Due to this lack of uniqueness, different hardware and software may compute different eigenvectors. This non-uniqueness is caused by the fact that multiplying an eigenvector by `-1` in the real case or by :math:`e^{i \phi}, \phi \in \mathbb{R}` in the complex case produces another set of valid eigenvectors of the matrix. For this reason, the loss function shall not depend on the phase of the eigenvectors, as this quantity is not well-defined. This is checked for complex inputs when computing the gradients of this function. As such, when inputs are complex and are on a CUDA device, the computation of the gradients of this function synchronizes that device with the CPU. .. warning:: Gradients computed using the `eigenvectors` tensor will only be finite when :attr:`A` has distinct eigenvalues. Furthermore, if the distance between any two eigenvalues is close to zero, the gradient will be numerically unstable, as it depends on the eigenvalues :math:`\lambda_i` through the computation of :math:`\frac{1}{\min_{i \neq j} \lambda_i - \lambda_j}`. .. seealso:: :func:`torch.linalg.eigvalsh` computes only the eigenvalues of a Hermitian matrix. Unlike :func:`torch.linalg.eigh`, the gradients of :func:`~eigvalsh` are always numerically stable. :func:`torch.linalg.cholesky` for a different decomposition of a Hermitian matrix. The Cholesky decomposition gives less information about the matrix but is much faster to compute than the eigenvalue decomposition. :func:`torch.linalg.eig` for a (slower) function that computes the eigenvalue decomposition of a not necessarily Hermitian square matrix. :func:`torch.linalg.svd` for a (slower) function that computes the more general SVD decomposition of matrices of any shape. :func:`torch.linalg.qr` for another (much faster) decomposition that works on general matrices. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of symmetric or Hermitian matrices. UPLO ('L', 'U', optional): controls whether to use the upper or lower triangular part of :attr:`A` in the computations. Default: `'L'`. Keyword args: out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`. Returns: A named tuple `(eigenvalues, eigenvectors)` which corresponds to :math:`\Lambda` and :math:`Q` above. `eigenvalues` will always be real-valued, even when :attr:`A` is complex. It will also be ordered in ascending order. `eigenvectors` will have the same dtype as :attr:`A` and will contain the eigenvectors as its columns. Examples:: >>> A = torch.randn(2, 2, dtype=torch.complex128) >>> A = A + A.T.conj() # creates a Hermitian matrix >>> A tensor([[2.9228+0.0000j, 0.2029-0.0862j], [0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128) >>> L, Q = torch.linalg.eigh(A) >>> L tensor([0.3277, 2.9415], dtype=torch.float64) >>> Q tensor([[-0.0846+-0.0000j, -0.9964+0.0000j], [ 0.9170+0.3898j, -0.0779-0.0331j]], dtype=torch.complex128) >>> torch.dist(Q @ torch.diag(L.cdouble()) @ Q.T.conj(), A) tensor(6.1062e-16, dtype=torch.float64) >>> A = torch.randn(3, 2, 2, dtype=torch.float64) >>> A = A + A.mT # creates a batch of symmetric matrices >>> L, Q = torch.linalg.eigh(A) >>> torch.dist(Q @ torch.diag_embed(L) @ Q.mH, A) tensor(1.5423e-15, dtype=torch.float64) """) eigvalsh = _add_docstr(_linalg.linalg_eigvalsh, r""" linalg.eigvalsh(A, UPLO='L', *, out=None) -> Tensor Computes the eigenvalues of a complex Hermitian or real symmetric matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **eigenvalues** of a complex Hermitian or real symmetric matrix :math:`A \in \mathbb{K}^{n \times n}` are defined as the roots (counted with multiplicity) of the polynomial `p` of degree `n` given by .. math:: p(\lambda) = \operatorname{det}(A - \lambda \mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{R}} where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix. The eigenvalues of a real symmetric or complex Hermitian matrix are always real. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. The eigenvalues are returned in ascending order. :attr:`A` is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead: - If :attr:`UPLO`\ `= 'L'` (default), only the lower triangular part of the matrix is used in the computation. - If :attr:`UPLO`\ `= 'U'`, only the upper triangular part of the matrix is used. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. seealso:: :func:`torch.linalg.eigh` computes the full eigenvalue decomposition. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of symmetric or Hermitian matrices. UPLO ('L', 'U', optional): controls whether to use the upper or lower triangular part of :attr:`A` in the computations. Default: `'L'`. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Returns: A real-valued tensor cointaining the eigenvalues even when :attr:`A` is complex. The eigenvalues are returned in ascending order. Examples:: >>> A = torch.randn(2, 2, dtype=torch.complex128) >>> A = A + A.T.conj() # creates a Hermitian matrix >>> A tensor([[2.9228+0.0000j, 0.2029-0.0862j], [0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128) >>> torch.linalg.eigvalsh(A) tensor([0.3277, 2.9415], dtype=torch.float64) >>> A = torch.randn(3, 2, 2, dtype=torch.float64) >>> A = A + A.mT # creates a batch of symmetric matrices >>> torch.linalg.eigvalsh(A) tensor([[ 2.5797, 3.4629], [-4.1605, 1.3780], [-3.1113, 2.7381]], dtype=torch.float64) """) householder_product = _add_docstr(_linalg.linalg_householder_product, r""" householder_product(A, tau, *, out=None) -> Tensor Computes the first `n` columns of a product of Householder matrices. Let :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, and let :math:`V \in \mathbb{K}^{m \times n}` be a matrix with columns :math:`v_i \in \mathbb{K}^m` for :math:`i=1,\ldots,m` with :math:`m \geq n`. Denote by :math:`w_i` the vector resulting from zeroing out the first :math:`i-1` compontents of :math:`v_i` and setting to `1` the :math:`i`-th. For a vector :math:`\tau \in \mathbb{K}^k` with :math:`k \leq n`, this function computes the first :math:`n` columns of the matrix .. math:: H_1H_2 ... H_k \qquad\text{with}\qquad H_i = \mathrm{I}_m - \tau_i w_i w_i^{\text{H}} where :math:`\mathrm{I}_m` is the `m`-dimensional identity matrix and :math:`w^{\text{H}}` is the conjugate transpose when :math:`w` is complex, and the transpose when :math:`w` is real-valued. The output matrix is the same size as the input matrix :attr:`A`. See `Representation of Orthogonal or Unitary Matrices`_ for further details. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. .. seealso:: :func:`torch.geqrf` can be used together with this function to form the `Q` from the :func:`~qr` decomposition. :func:`torch.ormqr` is a related function that computes the matrix multiplication of a product of Householder matrices with another matrix. However, that function is not supported by autograd. .. warning:: Gradient computations are only well-defined if :math:`tau_i \neq \frac{1}{||v_i||^2}`. If this condition is not met, no error will be thrown, but the gradient produced may contain `NaN`. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. tau (Tensor): tensor of shape `(*, k)` where `*` is zero or more batch dimensions. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: if :attr:`A` doesn't satisfy the requirement `m >= n`, or :attr:`tau` doesn't satisfy the requirement `n >= k`. Examples:: >>> A = torch.randn(2, 2) >>> h, tau = torch.geqrf(A) >>> Q = torch.linalg.householder_product(h, tau) >>> torch.dist(Q, torch.linalg.qr(A).Q) tensor(0.) >>> h = torch.randn(3, 2, 2, dtype=torch.complex128) >>> tau = torch.randn(3, 1, dtype=torch.complex128) >>> Q = torch.linalg.householder_product(h, tau) >>> Q tensor([[[ 1.8034+0.4184j, 0.2588-1.0174j], [-0.6853+0.7953j, 2.0790+0.5620j]], [[ 1.4581+1.6989j, -1.5360+0.1193j], [ 1.3877-0.6691j, 1.3512+1.3024j]], [[ 1.4766+0.5783j, 0.0361+0.6587j], [ 0.6396+0.1612j, 1.3693+0.4481j]]], dtype=torch.complex128) .. _Representation of Orthogonal or Unitary Matrices: https://www.netlib.org/lapack/lug/node128.html """) ldl_factor = _add_docstr(_linalg.linalg_ldl_factor, r""" linalg.ldl_factor(A, *, hermitian=False, out=None) -> (Tensor, Tensor) Computes a compact representation of the LDL factorization of a Hermitian or symmetric (possibly indefinite) matrix. When :attr:`A` is complex valued it can be Hermitian (:attr:`hermitian`\ `= True`) or symmetric (:attr:`hermitian`\ `= False`). The factorization is of the form the form :math:`A = L D L^T`. If :attr:`hermitian` is `True` then transpose operation is the conjugate transpose. :math:`L` (or :math:`U`) and :math:`D` are stored in compact form in ``LD``. They follow the format specified by `LAPACK's sytrf`_ function. These tensors may be used in :func:`torch.linalg.ldl_solve` to solve linear systems. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. """ + fr""" .. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.ldl_factor_ex")} """ + r""" Args: A (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions consisting of symmetric or Hermitian matrices. `(*, n, n)` where `*` is one or more batch dimensions. Keyword args: hermitian (bool, optional): whether to consider the input to be Hermitian or symmetric. For real-valued matrices, this switch has no effect. Default: `False`. out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`. Returns: A named tuple `(LD, pivots)`. Examples:: >>> A = torch.randn(3, 3) >>> A = A @ A.mT # make symmetric >>> A tensor([[7.2079, 4.2414, 1.9428], [4.2414, 3.4554, 0.3264], [1.9428, 0.3264, 1.3823]]) >>> LD, pivots = torch.linalg.ldl_factor(A) >>> LD tensor([[ 7.2079, 0.0000, 0.0000], [ 0.5884, 0.9595, 0.0000], [ 0.2695, -0.8513, 0.1633]]) >>> pivots tensor([1, 2, 3], dtype=torch.int32) .. _LAPACK's sytrf: https://www.netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gad91bde1212277b3e909eb6af7f64858a.html """) ldl_factor_ex = _add_docstr(_linalg.linalg_ldl_factor_ex, r""" linalg.ldl_factor_ex(A, *, hermitian=False, check_errors=False, out=None) -> (Tensor, Tensor, Tensor) This is a version of :func:`~ldl_factor` that does not perform error checks unless :attr:`check_errors`\ `= True`. It also returns the :attr:`info` tensor returned by `LAPACK's sytrf`_. ``info`` stores integer error codes from the backend library. A positive integer indicates the diagonal element of :math:`D` that is zero. Division by 0 will occur if the result is used for solving a system of linear equations. ``info`` filled with zeros indicates that the factorization was successful. If ``check_errors=True`` and ``info`` contains positive integers, then a `RuntimeError` is thrown. """ + fr""" .. note:: {common_notes["sync_note_ex"]} .. warning:: {common_notes["experimental_warning"]} """ + r""" Args: A (Tensor): tensor of shape (*, n, n) where * is zero or more batch dimensions consisting of symmetric or Hermitian matrices. `(*, n, n)` where `*` is one or more batch dimensions. Keyword args: hermitian (bool, optional): whether to consider the input to be Hermitian or symmetric. For real-valued matrices, this switch has no effect. Default: `False`. check_errors (bool, optional): controls whether to check the content of ``info`` and raise an error if it is non-zero. Default: `False`. out (tuple, optional): tuple of three tensors to write the output to. Ignored if `None`. Default: `None`. Returns: A named tuple `(LD, pivots, info)`. Examples:: >>> A = torch.randn(3, 3) >>> A = A @ A.mT # make symmetric >>> A tensor([[7.2079, 4.2414, 1.9428], [4.2414, 3.4554, 0.3264], [1.9428, 0.3264, 1.3823]]) >>> LD, pivots, info = torch.linalg.ldl_factor_ex(A) >>> LD tensor([[ 7.2079, 0.0000, 0.0000], [ 0.5884, 0.9595, 0.0000], [ 0.2695, -0.8513, 0.1633]]) >>> pivots tensor([1, 2, 3], dtype=torch.int32) >>> info tensor(0, dtype=torch.int32) .. _LAPACK's sytrf: https://www.netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gad91bde1212277b3e909eb6af7f64858a.html """) ldl_solve = _add_docstr(_linalg.linalg_ldl_solve, r""" linalg.ldl_solve(LD, pivots, B, *, hermitian=False, out=None) -> Tensor Computes the solution of a system of linear equations using the LDL factorization. :attr:`LD` and :attr:`pivots` are the compact representation of the LDL factorization and are expected to be computed by :func:`torch.linalg.ldl_factor_ex`. :attr:`hermitian` argument to this function should be the same as the corresponding argumens in :func:`torch.linalg.ldl_factor_ex`. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. """ + fr""" .. warning:: {common_notes["experimental_warning"]} """ + r""" Args: LD (Tensor): the `n \times n` matrix or the batch of such matrices of size `(*, n, n)` where `*` is one or more batch dimensions. pivots (Tensor): the pivots corresponding to the LDL factorization of :attr:`LD`. B (Tensor): right-hand side tensor of shape `(*, n, k)`. Keyword args: hermitian (bool, optional): whether to consider the decomposed matrix to be Hermitian or symmetric. For real-valued matrices, this switch has no effect. Default: `False`. out (tuple, optional): output tensor. `B` may be passed as `out` and the result is computed in-place on `B`. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.randn(2, 3, 3) >>> A = A @ A.mT # make symmetric >>> LD, pivots, info = torch.linalg.ldl_factor_ex(A) >>> B = torch.randn(2, 3, 4) >>> X = torch.linalg.ldl_solve(LD, pivots, B) >>> torch.linalg.norm(A @ X - B) >>> tensor(0.0001) """) lstsq = _add_docstr(_linalg.linalg_lstsq, r""" torch.linalg.lstsq(A, B, rcond=None, *, driver=None) -> (Tensor, Tensor, Tensor, Tensor) Computes a solution to the least squares problem of a system of linear equations. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **least squares problem** for a linear system :math:`AX = B` with :math:`A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{m \times k}` is defined as .. math:: \min_{X \in \mathbb{K}^{n \times k}} \|AX - B\|_F where :math:`\|-\|_F` denotes the Frobenius norm. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. :attr:`driver` chooses the LAPACK/MAGMA function that will be used. For CPU inputs the valid values are `'gels'`, `'gelsy'`, `'gelsd`, `'gelss'`. For CUDA input, the only valid driver is `'gels'`, which assumes that :attr:`A` is full-rank. To choose the best driver on CPU consider: - If :attr:`A` is well-conditioned (its `condition number`_ is not too large), or you do not mind some precision loss. - For a general matrix: `'gelsy'` (QR with pivoting) (default) - If :attr:`A` is full-rank: `'gels'` (QR) - If :attr:`A` is not well-conditioned. - `'gelsd'` (tridiagonal reduction and SVD) - But if you run into memory issues: `'gelss'` (full SVD). See also the `full description of these drivers`_ :attr:`rcond` is used to determine the effective rank of the matrices in :attr:`A` when :attr:`driver` is one of (`'gelsy'`, `'gelsd'`, `'gelss'`). In this case, if :math:`\sigma_i` are the singular values of `A` in decreasing order, :math:`\sigma_i` will be rounded down to zero if :math:`\sigma_i \leq \text{rcond} \cdot \sigma_1`. If :attr:`rcond`\ `= None` (default), :attr:`rcond` is set to the machine precision of the dtype of :attr:`A` times `max(m, n)`. This function returns the solution to the problem and some extra information in a named tuple of four tensors `(solution, residuals, rank, singular_values)`. For inputs :attr:`A`, :attr:`B` of shape `(*, m, n)`, `(*, m, k)` respectively, it cointains - `solution`: the least squares solution. It has shape `(*, n, k)`. - `residuals`: the squared residuals of the solutions, that is, :math:`\|AX - B\|_F^2`. It has shape equal to the batch dimensions of :attr:`A`. It is computed when `m > n` and every matrix in :attr:`A` is full-rank, otherwise, it is an empty tensor. If :attr:`A` is a batch of matrices and any matrix in the batch is not full rank, then an empty tensor is returned. This behavior may change in a future PyTorch release. - `rank`: tensor of ranks of the matrices in :attr:`A`. It has shape equal to the batch dimensions of :attr:`A`. It is computed when :attr:`driver` is one of (`'gelsy'`, `'gelsd'`, `'gelss'`), otherwise it is an empty tensor. - `singular_values`: tensor of singular values of the matrices in :attr:`A`. It has shape `(*, min(m, n))`. It is computed when :attr:`driver` is one of (`'gelsd'`, `'gelss'`), otherwise it is an empty tensor. .. note:: This function computes `X = \ `:attr:`A`\ `.pinverse() @ \ `:attr:`B` in a faster and more numerically stable way than performing the computations separately. .. warning:: The default value of :attr:`rcond` may change in a future PyTorch release. It is therefore recommended to use a fixed value to avoid potential breaking changes. Args: A (Tensor): lhs tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. B (Tensor): rhs tensor of shape `(*, m, k)` where `*` is zero or more batch dimensions. rcond (float, optional): used to determine the effective rank of :attr:`A`. If :attr:`rcond`\ `= None`, :attr:`rcond` is set to the machine precision of the dtype of :attr:`A` times `max(m, n)`. Default: `None`. Keyword args: driver (str, optional): name of the LAPACK/MAGMA method to be used. If `None`, `'gelsy'` is used for CPU inputs and `'gels'` for CUDA inputs. Default: `None`. Returns: A named tuple `(solution, residuals, rank, singular_values)`. Examples:: >>> A = torch.tensor([[[10, 2, 3], [3, 10, 5], [5, 6, 12]]], dtype=torch.float) # shape (1, 3, 3) >>> B = torch.tensor([[[2, 5, 1], [3, 2, 1], [5, 1, 9]], [[4, 2, 9], [2, 0, 3], [2, 5, 3]]], dtype=torch.float) # shape (2, 3, 3) >>> X = torch.linalg.lstsq(A, B).solution # A is broadcasted to shape (2, 3, 3) >>> torch.dist(X, torch.linalg.pinv(A) @ B) tensor(2.0862e-07) >>> S = torch.linalg.lstsq(A, B, driver='gelsd').singular_values >>> torch.dist(S, torch.linalg.svdvals(A)) tensor(5.7220e-06) >>> A[:, 0].zero_() # Decrease the rank of A >>> rank = torch.linalg.lstsq(A, B).rank >>> rank tensor([2]) .. _condition number: https://pytorch.org/docs/master/linalg.html#torch.linalg.cond .. _full description of these drivers: https://www.netlib.org/lapack/lug/node27.html """) matrix_power = _add_docstr(_linalg.linalg_matrix_power, r""" matrix_power(A, n, *, out=None) -> Tensor Computes the `n`-th power of a square matrix for an integer `n`. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. If :attr:`n`\ `= 0`, it returns the identity matrix (or batch) of the same shape as :attr:`A`. If :attr:`n` is negative, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`. .. note:: Consider using :func:`torch.linalg.solve` if possible for multiplying a matrix on the left by a negative power as, if :attr:`n`\ `> 0`:: matrix_power(torch.linalg.solve(A, B), n) == matrix_power(A, -n) @ B It is always prefered to use :func:`~solve` when possible, as it is faster and more numerically stable than computing :math:`A^{-n}` explicitly. .. seealso:: :func:`torch.linalg.solve` computes :attr:`A`\ `.inverse() @ \ `:attr:`B` with a numerically stable algorithm. Args: A (Tensor): tensor of shape `(*, m, m)` where `*` is zero or more batch dimensions. n (int): the exponent. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: if :attr:`n`\ `< 0` and the matrix :attr:`A` or any matrix in the batch of matrices :attr:`A` is not invertible. Examples:: >>> A = torch.randn(3, 3) >>> torch.linalg.matrix_power(A, 0) tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> torch.linalg.matrix_power(A, 3) tensor([[ 1.0756, 0.4980, 0.0100], [-1.6617, 1.4994, -1.9980], [-0.4509, 0.2731, 0.8001]]) >>> torch.linalg.matrix_power(A.expand(2, -1, -1), -2) tensor([[[ 0.2640, 0.4571, -0.5511], [-1.0163, 0.3491, -1.5292], [-0.4899, 0.0822, 0.2773]], [[ 0.2640, 0.4571, -0.5511], [-1.0163, 0.3491, -1.5292], [-0.4899, 0.0822, 0.2773]]]) """) matrix_rank = _add_docstr(_linalg.linalg_matrix_rank, r""" linalg.matrix_rank(A, *, atol=None, rtol=None, hermitian=False, out=None) -> Tensor Computes the numerical rank of a matrix. The matrix rank is computed as the number of singular values (or eigenvalues in absolute value when :attr:`hermitian`\ `= True`) that are greater than :math:`\max(\text{atol}, \sigma_1 * \text{rtol})` threshold, where :math:`\sigma_1` is the largest singular value (or eigenvalue). Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. If :attr:`hermitian`\ `= True`, :attr:`A` is assumed to be Hermitian if complex or symmetric if real, but this is not checked internally. Instead, just the lower triangular part of the matrix is used in the computations. If :attr:`rtol` is not specified and :attr:`A` is a matrix of dimensions `(m, n)`, the relative tolerance is set to be :math:`\text{rtol} = \max(m, n) \varepsilon` and :math:`\varepsilon` is the epsilon value for the dtype of :attr:`A` (see :class:`.finfo`). If :attr:`rtol` is not specified and :attr:`atol` is specified to be larger than zero then :attr:`rtol` is set to zero. If :attr:`atol` or :attr:`rtol` is a :class:`torch.Tensor`, its shape must be broadcastable to that of the singular values of :attr:`A` as returned by :func:`torch.linalg.svdvals`. .. note:: This function has NumPy compatible variant `linalg.matrix_rank(A, tol, hermitian=False)`. However, use of the positional argument :attr:`tol` is deprecated in favor of :attr:`atol` and :attr:`rtol`. """ + fr""" .. note:: The matrix rank is computed using a singular value decomposition :func:`torch.linalg.svdvals` if :attr:`hermitian`\ `= False` (default) and the eigenvalue decomposition :func:`torch.linalg.eigvalsh` when :attr:`hermitian`\ `= True`. {common_notes["sync_note"]} """ + r""" Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. tol (float, Tensor, optional): [NumPy Compat] Alias for :attr:`atol`. Default: `None`. Keyword args: atol (float, Tensor, optional): the absolute tolerance value. When `None` it's considered to be zero. Default: `None`. rtol (float, Tensor, optional): the relative tolerance value. See above for the value it takes when `None`. Default: `None`. hermitian(bool): indicates whether :attr:`A` is Hermitian if complex or symmetric if real. Default: `False`. out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.eye(10) >>> torch.linalg.matrix_rank(A) tensor(10) >>> B = torch.eye(10) >>> B[0, 0] = 0 >>> torch.linalg.matrix_rank(B) tensor(9) >>> A = torch.randn(4, 3, 2) >>> torch.linalg.matrix_rank(A) tensor([2, 2, 2, 2]) >>> A = torch.randn(2, 4, 2, 3) >>> torch.linalg.matrix_rank(A) tensor([[2, 2, 2, 2], [2, 2, 2, 2]]) >>> A = torch.randn(2, 4, 3, 3, dtype=torch.complex64) >>> torch.linalg.matrix_rank(A) tensor([[3, 3, 3, 3], [3, 3, 3, 3]]) >>> torch.linalg.matrix_rank(A, hermitian=True) tensor([[3, 3, 3, 3], [3, 3, 3, 3]]) >>> torch.linalg.matrix_rank(A, atol=1.0, rtol=0.0) tensor([[3, 2, 2, 2], [1, 2, 1, 2]]) >>> torch.linalg.matrix_rank(A, atol=1.0, rtol=0.0, hermitian=True) tensor([[2, 2, 2, 1], [1, 2, 2, 2]]) """) norm = _add_docstr(_linalg.linalg_norm, r""" linalg.norm(A, ord=None, dim=None, keepdim=False, *, out=None, dtype=None) -> Tensor Computes a vector or matrix norm. Supports input of float, double, cfloat and cdouble dtypes. Whether this function computes a vector or matrix norm is determined as follows: - If :attr:`dim` is an `int`, the vector norm will be computed. - If :attr:`dim` is a `2`-`tuple`, the matrix norm will be computed. - If :attr:`dim`\ `= None` and :attr:`ord`\ `= None`, :attr:`A` will be flattened to 1D and the `2`-norm of the resulting vector will be computed. - If :attr:`dim`\ `= None` and :attr:`ord` `!= None`, :attr:`A` must be 1D or 2D. :attr:`ord` defines the norm that is computed. The following norms are supported: ====================== ========================= ======================================================== :attr:`ord` norm for matrices norm for vectors ====================== ========================= ======================================================== `None` (default) Frobenius norm `2`-norm (see below) `'fro'` Frobenius norm -- not supported -- `'nuc'` nuclear norm -- not supported -- `inf` `max(sum(abs(x), dim=1))` `max(abs(x))` `-inf` `min(sum(abs(x), dim=1))` `min(abs(x))` `0` -- not supported -- `sum(x != 0)` `1` `max(sum(abs(x), dim=0))` as below `-1` `min(sum(abs(x), dim=0))` as below `2` largest singular value as below `-2` smallest singular value as below other `int` or `float` -- not supported -- `sum(abs(x)^{ord})^{(1 / ord)}` ====================== ========================= ======================================================== where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object. .. seealso:: :func:`torch.linalg.vector_norm` computes a vector norm. :func:`torch.linalg.matrix_norm` computes a matrix norm. The above functions are often clearer and more flexible than using :func:`torch.linalg.norm`. For example, `torch.linalg.norm(A, ord=1, dim=(0, 1))` always computes a matrix norm, but with `torch.linalg.vector_norm(A, ord=1, dim=(0, 1))` it is possible to compute a vector norm over the two dimensions. Args: A (Tensor): tensor of shape `(*, n)` or `(*, m, n)` where `*` is zero or more batch dimensions ord (int, float, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `None` dim (int, Tuple[int], optional): dimensions over which to compute the vector or matrix norm. See above for the behavior when :attr:`dim`\ `= None`. Default: `None` keepdim (bool, optional): If set to `True`, the reduced dimensions are retained in the result as dimensions with size one. Default: `False` Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. dtype (:class:`torch.dtype`, optional): If specified, the input tensor is cast to :attr:`dtype` before performing the operation, and the returned tensor's type will be :attr:`dtype`. Default: `None` Returns: A real-valued tensor, even when :attr:`A` is complex. Examples:: >>> from torch import linalg as LA >>> a = torch.arange(9, dtype=torch.float) - 4 >>> a tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) >>> B = a.reshape((3, 3)) >>> B tensor([[-4., -3., -2.], [-1., 0., 1.], [ 2., 3., 4.]]) >>> LA.norm(a) tensor(7.7460) >>> LA.norm(B) tensor(7.7460) >>> LA.norm(B, 'fro') tensor(7.7460) >>> LA.norm(a, float('inf')) tensor(4.) >>> LA.norm(B, float('inf')) tensor(9.) >>> LA.norm(a, -float('inf')) tensor(0.) >>> LA.norm(B, -float('inf')) tensor(2.) >>> LA.norm(a, 1) tensor(20.) >>> LA.norm(B, 1) tensor(7.) >>> LA.norm(a, -1) tensor(0.) >>> LA.norm(B, -1) tensor(6.) >>> LA.norm(a, 2) tensor(7.7460) >>> LA.norm(B, 2) tensor(7.3485) >>> LA.norm(a, -2) tensor(0.) >>> LA.norm(B.double(), -2) tensor(1.8570e-16, dtype=torch.float64) >>> LA.norm(a, 3) tensor(5.8480) >>> LA.norm(a, -3) tensor(0.) Using the :attr:`dim` argument to compute vector norms:: >>> c = torch.tensor([[1., 2., 3.], ... [-1, 1, 4]]) >>> LA.norm(c, dim=0) tensor([1.4142, 2.2361, 5.0000]) >>> LA.norm(c, dim=1) tensor([3.7417, 4.2426]) >>> LA.norm(c, ord=1, dim=1) tensor([6., 6.]) Using the :attr:`dim` argument to compute matrix norms:: >>> A = torch.arange(8, dtype=torch.float).reshape(2, 2, 2) >>> LA.norm(A, dim=(1,2)) tensor([ 3.7417, 11.2250]) >>> LA.norm(A[0, :, :]), LA.norm(A[1, :, :]) (tensor(3.7417), tensor(11.2250)) """) vector_norm = _add_docstr(_linalg.linalg_vector_norm, r""" linalg.vector_norm(x, ord=2, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor Computes a vector norm. If :attr:`x` is complex valued, it computes the norm of :attr:`x`\ `.abs()` Supports input of float, double, cfloat and cdouble dtypes. This function does not necessarily treat multidimensonal :attr:`x` as a batch of vectors, instead: - If :attr:`dim`\ `= None`, :attr:`x` will be flattened before the norm is computed. - If :attr:`dim` is an `int` or a `tuple`, the norm will be computed over these dimensions and the other dimensions will be treated as batch dimensions. This behavior is for consistency with :func:`torch.linalg.norm`. :attr:`ord` defines the vector norm that is computed. The following norms are supported: ====================== =============================== :attr:`ord` vector norm ====================== =============================== `2` (default) `2`-norm (see below) `inf` `max(abs(x))` `-inf` `min(abs(x))` `0` `sum(x != 0)` other `int` or `float` `sum(abs(x)^{ord})^{(1 / ord)}` ====================== =============================== where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object. :attr:`dtype` may be used to perform the computation in a more precise dtype. It is semantically equivalent to calling ``linalg.vector_norm(x.to(dtype))`` but it is faster in some cases. .. seealso:: :func:`torch.linalg.matrix_norm` computes a matrix norm. Args: x (Tensor): tensor, flattened by default, but this behavior can be controlled using :attr:`dim`. ord (int, float, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `2` dim (int, Tuple[int], optional): dimensions over which to compute the norm. See above for the behavior when :attr:`dim`\ `= None`. Default: `None` keepdim (bool, optional): If set to `True`, the reduced dimensions are retained in the result as dimensions with size one. Default: `False` Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. dtype (:class:`torch.dtype`, optional): type used to perform the accumulation and the return. If specified, :attr:`x` is cast to :attr:`dtype` before performing the operation, and the returned tensor’s type will be :attr:`dtype` if real and of its real counterpart if complex. :attr:`dtype` may be complex if :attr:`x` is complex, otherwise it must be real. :attr:`x` should be convertible without narrowing to :attr:`dtype`. Default: None Returns: A real-valued tensor, even when :attr:`x` is complex. Examples:: >>> from torch import linalg as LA >>> a = torch.arange(9, dtype=torch.float) - 4 >>> a tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) >>> B = a.reshape((3, 3)) >>> B tensor([[-4., -3., -2.], [-1., 0., 1.], [ 2., 3., 4.]]) >>> LA.vector_norm(a, ord=3.5) tensor(5.4345) >>> LA.vector_norm(B, ord=3.5) tensor(5.4345) """) matrix_norm = _add_docstr(_linalg.linalg_matrix_norm, r""" linalg.matrix_norm(A, ord='fro', dim=(-2, -1), keepdim=False, *, dtype=None, out=None) -> Tensor Computes a matrix norm. If :attr:`A` is complex valued, it computes the norm of :attr:`A`\ `.abs()` Support input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices: the norm will be computed over the dimensions specified by the 2-tuple :attr:`dim` and the other dimensions will be treated as batch dimensions. The output will have the same batch dimensions. :attr:`ord` defines the matrix norm that is computed. The following norms are supported: ====================== ======================================================== :attr:`ord` matrix norm ====================== ======================================================== `'fro'` (default) Frobenius norm `'nuc'` nuclear norm `inf` `max(sum(abs(x), dim=1))` `-inf` `min(sum(abs(x), dim=1))` `1` `max(sum(abs(x), dim=0))` `-1` `min(sum(abs(x), dim=0))` `2` largest singular value `-2` smallest singular value ====================== ======================================================== where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object. Args: A (Tensor): tensor with two or more dimensions. By default its shape is interpreted as `(*, m, n)` where `*` is zero or more batch dimensions, but this behavior can be controlled using :attr:`dim`. ord (int, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `'fro'` dim (Tuple[int, int], optional): dimensions over which to compute the norm. Default: `(-2, -1)` keepdim (bool, optional): If set to `True`, the reduced dimensions are retained in the result as dimensions with size one. Default: `False` Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. dtype (:class:`torch.dtype`, optional): If specified, the input tensor is cast to :attr:`dtype` before performing the operation, and the returned tensor's type will be :attr:`dtype`. Default: `None` Returns: A real-valued tensor, even when :attr:`A` is complex. Examples:: >>> from torch import linalg as LA >>> A = torch.arange(9, dtype=torch.float).reshape(3, 3) >>> A tensor([[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]) >>> LA.matrix_norm(A) tensor(14.2829) >>> LA.matrix_norm(A, ord=-1) tensor(9.) >>> B = A.expand(2, -1, -1) >>> B tensor([[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]], [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]) >>> LA.matrix_norm(B) tensor([14.2829, 14.2829]) >>> LA.matrix_norm(B, dim=(0, 2)) tensor([ 3.1623, 10.0000, 17.2627]) """) matmul = _add_docstr(_linalg.linalg_matmul, r""" linalg.matmul(input, other, *, out=None) -> Tensor Alias for :func:`torch.matmul` """) diagonal = _add_docstr(_linalg.linalg_diagonal, r""" linalg.diagonal(A, *, offset=0, dim1=-2, dim2=-1) -> Tensor Alias for :func:`torch.diagonal` with defaults :attr:`dim1`\ `= -2`, :attr:`dim2`\ `= -1`. """) multi_dot = _add_docstr(_linalg.linalg_multi_dot, r""" linalg.multi_dot(tensors, *, out=None) Efficiently multiplies two or more matrices by reordering the multiplications so that the fewest arithmetic operations are performed. Supports inputs of float, double, cfloat and cdouble dtypes. This function does not support batched inputs. Every tensor in :attr:`tensors` must be 2D, except for the first and last which may be 1D. If the first tensor is a 1D vector of shape `(n,)` it is treated as a row vector of shape `(1, n)`, similarly if the last tensor is a 1D vector of shape `(n,)` it is treated as a column vector of shape `(n, 1)`. If the first and last tensors are matrices, the output will be a matrix. However, if either is a 1D vector, then the output will be a 1D vector. Differences with `numpy.linalg.multi_dot`: - Unlike `numpy.linalg.multi_dot`, the first and last tensors must either be 1D or 2D whereas NumPy allows them to be nD .. warning:: This function does not broadcast. .. note:: This function is implemented by chaining :func:`torch.mm` calls after computing the optimal matrix multiplication order. .. note:: The cost of multiplying two matrices with shapes `(a, b)` and `(b, c)` is `a * b * c`. Given matrices `A`, `B`, `C` with shapes `(10, 100)`, `(100, 5)`, `(5, 50)` respectively, we can calculate the cost of different multiplication orders as follows: .. math:: \begin{align*} \operatorname{cost}((AB)C) &= 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500 \\ \operatorname{cost}(A(BC)) &= 10 \times 100 \times 50 + 100 \times 5 \times 50 = 75000 \end{align*} In this case, multiplying `A` and `B` first followed by `C` is 10 times faster. Args: tensors (Sequence[Tensor]): two or more tensors to multiply. The first and last tensors may be 1D or 2D. Every other tensor must be 2D. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Examples:: >>> from torch.linalg import multi_dot >>> multi_dot([torch.tensor([1, 2]), torch.tensor([2, 3])]) tensor(8) >>> multi_dot([torch.tensor([[1, 2]]), torch.tensor([2, 3])]) tensor([8]) >>> multi_dot([torch.tensor([[1, 2]]), torch.tensor([[2], [3]])]) tensor([[8]]) >>> A = torch.arange(2 * 3).view(2, 3) >>> B = torch.arange(3 * 2).view(3, 2) >>> C = torch.arange(2 * 2).view(2, 2) >>> multi_dot((A, B, C)) tensor([[ 26, 49], [ 80, 148]]) """) svd = _add_docstr(_linalg.linalg_svd, r""" linalg.svd(A, full_matrices=True, *, driver=None, out=None) -> (Tensor, Tensor, Tensor) Computes the singular value decomposition (SVD) of a matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **full SVD** of a matrix :math:`A \in \mathbb{K}^{m \times n}`, if `k = min(m,n)`, is defined as .. math:: A = U \operatorname{diag}(S) V^{\text{H}} \mathrlap{\qquad U \in \mathbb{K}^{m \times m}, S \in \mathbb{R}^k, V \in \mathbb{K}^{n \times n}} where :math:`\operatorname{diag}(S) \in \mathbb{K}^{m \times n}`, :math:`V^{\text{H}}` is the conjugate transpose when :math:`V` is complex, and the transpose when :math:`V` is real-valued. The matrices :math:`U`, :math:`V` (and thus :math:`V^{\text{H}}`) are orthogonal in the real case, and unitary in the complex case. When `m > n` (resp. `m < n`) we can drop the last `m - n` (resp. `n - m`) columns of `U` (resp. `V`) to form the **reduced SVD**: .. math:: A = U \operatorname{diag}(S) V^{\text{H}} \mathrlap{\qquad U \in \mathbb{K}^{m \times k}, S \in \mathbb{R}^k, V \in \mathbb{K}^{k \times n}} where :math:`\operatorname{diag}(S) \in \mathbb{K}^{k \times k}`. In this case, :math:`U` and :math:`V` also have orthonormal columns. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. The returned decomposition is a named tuple `(U, S, Vh)` which corresponds to :math:`U`, :math:`S`, :math:`V^{\text{H}}` above. The singular values are returned in descending order. The parameter :attr:`full_matrices` chooses between the full (default) and reduced SVD. The :attr:`driver` kwarg may be used in CUDA with a cuSOLVER backend to choose the algorithm used to compute the SVD. The choice of a driver is a trade-off between accuracy and speed. - If :attr:`A` is well-conditioned (its `condition number`_ is not too large), or you do not mind some precision loss. - For a general matrix: `'gesvdj'` (Jacobi method) - If :attr:`A` is tall or wide (`m >> n` or `m << n`): `'gesvda'` (Approximate method) - If :attr:`A` is not well-conditioned or precision is relevant: `'gesvd'` (QR based) By default (:attr:`driver`\ `= None`), we call `'gesvdj'` and, if it fails, we fallback to `'gesvd'`. Differences with `numpy.linalg.svd`: - Unlike `numpy.linalg.svd`, this function always returns a tuple of three tensors and it doesn't support `compute_uv` argument. Please use :func:`torch.linalg.svdvals`, which computes only the singular values, instead of `compute_uv=False`. .. note:: When :attr:`full_matrices`\ `= True`, the gradients with respect to `U[..., :, min(m, n):]` and `Vh[..., min(m, n):, :]` will be ignored, as those vectors can be arbitrary bases of the corresponding subspaces. .. warning:: The returned tensors `U` and `V` are not unique, nor are they continuous with respect to :attr:`A`. Due to this lack of uniqueness, different hardware and software may compute different singular vectors. This non-uniqueness is caused by the fact that multiplying any pair of singular vectors :math:`u_k, v_k` by `-1` in the real case or by :math:`e^{i \phi}, \phi \in \mathbb{R}` in the complex case produces another two valid singular vectors of the matrix. For this reason, the loss function shall not depend on this :math:`e^{i \phi}` quantity, as it is not well-defined. This is checked for complex inputs when computing the gradients of this function. As such, when inputs are complex and are on a CUDA device, the computation of the gradients of this function synchronizes that device with the CPU. .. warning:: Gradients computed using `U` or `Vh` will only be finite when :attr:`A` does not have repeated singular values. If :attr:`A` is rectangular, additionally, zero must also not be one of its singular values. Furthermore, if the distance between any two singular values is close to zero, the gradient will be numerically unstable, as it depends on the singular values :math:`\sigma_i` through the computation of :math:`\frac{1}{\min_{i \neq j} \sigma_i^2 - \sigma_j^2}`. In the rectangular case, the gradient will also be numerically unstable when :attr:`A` has small singular values, as it also depends on the computation of :math:`\frac{1}{\sigma_i}`. .. seealso:: :func:`torch.linalg.svdvals` computes only the singular values. Unlike :func:`torch.linalg.svd`, the gradients of :func:`~svdvals` are always numerically stable. :func:`torch.linalg.eig` for a function that computes another type of spectral decomposition of a matrix. The eigendecomposition works just on square matrices. :func:`torch.linalg.eigh` for a (faster) function that computes the eigenvalue decomposition for Hermitian and symmetric matrices. :func:`torch.linalg.qr` for another (much faster) decomposition that works on general matrices. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. full_matrices (bool, optional): controls whether to compute the full or reduced SVD, and consequently, the shape of the returned tensors `U` and `Vh`. Default: `True`. Keyword args: driver (str, optional): name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs. Available options are: `None`, `gesvd`, `gesvdj`, and `gesvda`. Default: `None`. out (tuple, optional): output tuple of three tensors. Ignored if `None`. Returns: A named tuple `(U, S, Vh)` which corresponds to :math:`U`, :math:`S`, :math:`V^{\text{H}}` above. `S` will always be real-valued, even when :attr:`A` is complex. It will also be ordered in descending order. `U` and `Vh` will have the same dtype as :attr:`A`. The left / right singular vectors will be given by the columns of `U` and the rows of `Vh` respectively. Examples:: >>> A = torch.randn(5, 3) >>> U, S, Vh = torch.linalg.svd(A, full_matrices=False) >>> U.shape, S.shape, Vh.shape (torch.Size([5, 3]), torch.Size([3]), torch.Size([3, 3])) >>> torch.dist(A, U @ torch.diag(S) @ Vh) tensor(1.0486e-06) >>> U, S, Vh = torch.linalg.svd(A) >>> U.shape, S.shape, Vh.shape (torch.Size([5, 5]), torch.Size([3]), torch.Size([3, 3])) >>> torch.dist(A, U[:, :3] @ torch.diag(S) @ Vh) tensor(1.0486e-06) >>> A = torch.randn(7, 5, 3) >>> U, S, Vh = torch.linalg.svd(A, full_matrices=False) >>> torch.dist(A, U @ torch.diag_embed(S) @ Vh) tensor(3.0957e-06) .. _condition number: https://pytorch.org/docs/master/linalg.html#torch.linalg.cond .. _the resulting vectors will span the same subspace: https://en.wikipedia.org/wiki/Singular_value_decomposition#Singular_values,_singular_vectors,_and_their_relation_to_the_SVD """) svdvals = _add_docstr(_linalg.linalg_svdvals, r""" linalg.svdvals(A, *, driver=None, out=None) -> Tensor Computes the singular values of a matrix. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. The singular values are returned in descending order. .. note:: This function is equivalent to NumPy's `linalg.svd(A, compute_uv=False)`. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. seealso:: :func:`torch.linalg.svd` computes the full singular value decomposition. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. Keyword args: driver (str, optional): name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs. Available options are: `None`, `gesvd`, `gesvdj`, and `gesvda`. Check :func:`torch.linalg.svd` for details. Default: `None`. out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Returns: A real-valued tensor, even when :attr:`A` is complex. Examples:: >>> A = torch.randn(5, 3) >>> S = torch.linalg.svdvals(A) >>> S tensor([2.5139, 2.1087, 1.1066]) >>> torch.dist(S, torch.linalg.svd(A, full_matrices=False).S) tensor(2.4576e-07) """) cond = _add_docstr(_linalg.linalg_cond, r""" linalg.cond(A, p=None, *, out=None) -> Tensor Computes the condition number of a matrix with respect to a matrix norm. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **condition number** :math:`\kappa` of a matrix :math:`A \in \mathbb{K}^{n \times n}` is defined as .. math:: \kappa(A) = \|A\|_p\|A^{-1}\|_p The condition number of :attr:`A` measures the numerical stability of the linear system `AX = B` with respect to a matrix norm. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. :attr:`p` defines the matrix norm that is computed. The following norms are supported: ========= ================================= :attr:`p` matrix norm ========= ================================= `None` `2`-norm (largest singular value) `'fro'` Frobenius norm `'nuc'` nuclear norm `inf` `max(sum(abs(x), dim=1))` `-inf` `min(sum(abs(x), dim=1))` `1` `max(sum(abs(x), dim=0))` `-1` `min(sum(abs(x), dim=0))` `2` largest singular value `-2` smallest singular value ========= ================================= where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object. For :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`, this function uses :func:`torch.linalg.norm` and :func:`torch.linalg.inv`. As such, in this case, the matrix (or every matrix in the batch) :attr:`A` has to be square and invertible. For :attr:`p` in `(2, -2)`, this function can be computed in terms of the singular values :math:`\sigma_1 \geq \ldots \geq \sigma_n` .. math:: \kappa_2(A) = \frac{\sigma_1}{\sigma_n}\qquad \kappa_{-2}(A) = \frac{\sigma_n}{\sigma_1} In these cases, it is computed using :func:`torch.linalg.svdvals`. For these norms, the matrix (or every matrix in the batch) :attr:`A` may have any shape. .. note :: When inputs are on a CUDA device, this function synchronizes that device with the CPU if :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`. .. seealso:: :func:`torch.linalg.solve` for a function that solves linear systems of square matrices. :func:`torch.linalg.lstsq` for a function that solves linear systems of general matrices. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions for :attr:`p` in `(2, -2)`, and of shape `(*, n, n)` where every matrix is invertible for :attr:`p` in `('fro', 'nuc', inf, -inf, 1, -1)`. p (int, inf, -inf, 'fro', 'nuc', optional): the type of the matrix norm to use in the computations (see above). Default: `None` Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Returns: A real-valued tensor, even when :attr:`A` is complex. Raises: RuntimeError: if :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)` and the :attr:`A` matrix or any matrix in the batch :attr:`A` is not square or invertible. Examples:: >>> A = torch.randn(3, 4, 4, dtype=torch.complex64) >>> torch.linalg.cond(A) >>> A = torch.tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]]) >>> torch.linalg.cond(A) tensor([1.4142]) >>> torch.linalg.cond(A, 'fro') tensor(3.1623) >>> torch.linalg.cond(A, 'nuc') tensor(9.2426) >>> torch.linalg.cond(A, float('inf')) tensor(2.) >>> torch.linalg.cond(A, float('-inf')) tensor(1.) >>> torch.linalg.cond(A, 1) tensor(2.) >>> torch.linalg.cond(A, -1) tensor(1.) >>> torch.linalg.cond(A, 2) tensor([1.4142]) >>> torch.linalg.cond(A, -2) tensor([0.7071]) >>> A = torch.randn(2, 3, 3) >>> torch.linalg.cond(A) tensor([[9.5917], [3.2538]]) >>> A = torch.randn(2, 3, 3, dtype=torch.complex64) >>> torch.linalg.cond(A) tensor([[4.6245], [4.5671]]) """) pinv = _add_docstr(_linalg.linalg_pinv, r""" linalg.pinv(A, *, atol=None, rtol=None, hermitian=False, out=None) -> Tensor Computes the pseudoinverse (Moore-Penrose inverse) of a matrix. The pseudoinverse may be `defined algebraically`_ but it is more computationally convenient to understand it `through the SVD`_ Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. If :attr:`hermitian`\ `= True`, :attr:`A` is assumed to be Hermitian if complex or symmetric if real, but this is not checked internally. Instead, just the lower triangular part of the matrix is used in the computations. The singular values (or the norm of the eigenvalues when :attr:`hermitian`\ `= True`) that are below :math:`\max(\text{atol}, \sigma_1 \cdot \text{rtol})` threshold are treated as zero and discarded in the computation, where :math:`\sigma_1` is the largest singular value (or eigenvalue). If :attr:`rtol` is not specified and :attr:`A` is a matrix of dimensions `(m, n)`, the relative tolerance is set to be :math:`\text{rtol} = \max(m, n) \varepsilon` and :math:`\varepsilon` is the epsilon value for the dtype of :attr:`A` (see :class:`.finfo`). If :attr:`rtol` is not specified and :attr:`atol` is specified to be larger than zero then :attr:`rtol` is set to zero. If :attr:`atol` or :attr:`rtol` is a :class:`torch.Tensor`, its shape must be broadcastable to that of the singular values of :attr:`A` as returned by :func:`torch.linalg.svd`. .. note:: This function uses :func:`torch.linalg.svd` if :attr:`hermitian`\ `= False` and :func:`torch.linalg.eigh` if :attr:`hermitian`\ `= True`. For CUDA inputs, this function synchronizes that device with the CPU. .. note:: Consider using :func:`torch.linalg.lstsq` if possible for multiplying a matrix on the left by the pseudoinverse, as:: torch.linalg.lstsq(A, B).solution == A.pinv() @ B It is always prefered to use :func:`~lstsq` when possible, as it is faster and more numerically stable than computing the pseudoinverse explicitly. .. note:: This function has NumPy compatible variant `linalg.pinv(A, rcond, hermitian=False)`. However, use of the positional argument :attr:`rcond` is deprecated in favor of :attr:`rtol`. .. warning:: This function uses internally :func:`torch.linalg.svd` (or :func:`torch.linalg.eigh` when :attr:`hermitian`\ `= True`), so its derivative has the same problems as those of these functions. See the warnings in :func:`torch.linalg.svd` and :func:`torch.linalg.eigh` for more details. .. seealso:: :func:`torch.linalg.inv` computes the inverse of a square matrix. :func:`torch.linalg.lstsq` computes :attr:`A`\ `.pinv() @ \ `:attr:`B` with a numerically stable algorithm. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. rcond (float, Tensor, optional): [NumPy Compat]. Alias for :attr:`rtol`. Default: `None`. Keyword args: atol (float, Tensor, optional): the absolute tolerance value. When `None` it's considered to be zero. Default: `None`. rtol (float, Tensor, optional): the relative tolerance value. See above for the value it takes when `None`. Default: `None`. hermitian(bool, optional): indicates whether :attr:`A` is Hermitian if complex or symmetric if real. Default: `False`. out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.randn(3, 5) >>> A tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132], [-1.1143, -0.3662, 0.3042, 1.6374, -0.9294], [-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]]) >>> torch.linalg.pinv(A) tensor([[ 0.0600, -0.1933, -0.2090], [-0.0903, -0.0817, -0.4752], [-0.7124, -0.1631, -0.2272], [ 0.1356, 0.3933, -0.5023], [-0.0308, -0.1725, -0.5216]]) >>> A = torch.randn(2, 6, 3) >>> Apinv = torch.linalg.pinv(A) >>> torch.dist(Apinv @ A, torch.eye(3)) tensor(8.5633e-07) >>> A = torch.randn(3, 3, dtype=torch.complex64) >>> A = A + A.T.conj() # creates a Hermitian matrix >>> Apinv = torch.linalg.pinv(A, hermitian=True) >>> torch.dist(Apinv @ A, torch.eye(3)) tensor(1.0830e-06) .. _defined algebraically: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Existence_and_uniqueness .. _through the SVD: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Singular_value_decomposition_(SVD) """) matrix_exp = _add_docstr(_linalg.linalg_matrix_exp, r""" linalg.matrix_exp(A) -> Tensor Computes the matrix exponential of a square matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, this function computes the **matrix exponential** of :math:`A \in \mathbb{K}^{n \times n}`, which is defined as .. math:: \mathrm{matrix_exp}(A) = \sum_{k=0}^\infty \frac{1}{k!}A^k \in \mathbb{K}^{n \times n}. If the matrix :math:`A` has eigenvalues :math:`\lambda_i \in \mathbb{C}`, the matrix :math:`\mathrm{matrix_exp}(A)` has eigenvalues :math:`e^{\lambda_i} \in \mathbb{C}`. Supports input of bfloat16, float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions. Example:: >>> A = torch.empty(2, 2, 2) >>> A[0, :, :] = torch.eye(2, 2) >>> A[1, :, :] = 2 * torch.eye(2, 2) >>> A tensor([[[1., 0.], [0., 1.]], [[2., 0.], [0., 2.]]]) >>> torch.linalg.matrix_exp(A) tensor([[[2.7183, 0.0000], [0.0000, 2.7183]], [[7.3891, 0.0000], [0.0000, 7.3891]]]) >>> import math >>> A = torch.tensor([[0, math.pi/3], [-math.pi/3, 0]]) # A is skew-symmetric >>> torch.linalg.matrix_exp(A) # matrix_exp(A) = [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]] tensor([[ 0.5000, 0.8660], [-0.8660, 0.5000]]) """) solve = _add_docstr(_linalg.linalg_solve, r""" linalg.solve(A, B, *, left=True, out=None) -> Tensor Computes the solution of a square system of linear equations with a unique solution. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system** associated to :math:`A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times k}`, which is defined as .. math:: AX = B If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that solves the system .. math:: XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.} This system of linear equations has one solution if and only if :math:`A` is `invertible`_. This function assumes that :math:`A` is invertible. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. Letting `*` be zero or more batch dimensions, - If :attr:`A` has shape `(*, n, n)` and :attr:`B` has shape `(*, n)` (a batch of vectors) or shape `(*, n, k)` (a batch of matrices or "multiple right-hand sides"), this function returns `X` of shape `(*, n)` or `(*, n, k)` respectively. - Otherwise, if :attr:`A` has shape `(*, n, n)` and :attr:`B` has shape `(n,)` or `(n, k)`, :attr:`B` is broadcasted to have shape `(*, n)` or `(*, n, k)` respectively. This function then returns the solution of the resulting batch of systems of linear equations. .. note:: This function computes `X = \ `:attr:`A`\ `.inverse() @ \ `:attr:`B` in a faster and more numerically stable way than performing the computations separately. .. note:: It is possible to compute the solution of the system :math:`XA = B` by passing the inputs :attr:`A` and :attr:`B` transposed and transposing the output returned by this function. """ + fr""" .. note:: {common_notes["sync_note"]} """ + r""" .. seealso:: :func:`torch.linalg.solve_triangular` computes the solution of a triangular system of linear equations with a unique solution. Args: A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions. B (Tensor): right-hand side tensor of shape `(*, n)` or `(*, n, k)` or `(n,)` or `(n, k)` according to the rules described above Keyword args: left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`. out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: if the :attr:`A` matrix is not invertible or any matrix in a batched :attr:`A` is not invertible. Examples:: >>> A = torch.randn(3, 3) >>> b = torch.randn(3) >>> x = torch.linalg.solve(A, b) >>> torch.allclose(A @ x, b) True >>> A = torch.randn(2, 3, 3) >>> B = torch.randn(2, 3, 4) >>> X = torch.linalg.solve(A, B) >>> X.shape torch.Size([2, 3, 4]) >>> torch.allclose(A @ X, B) True >>> A = torch.randn(2, 3, 3) >>> b = torch.randn(3, 1) >>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3, 1) >>> x.shape torch.Size([2, 3, 1]) >>> torch.allclose(A @ x, b) True >>> b = torch.randn(3) >>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3) >>> x.shape torch.Size([2, 3]) >>> Ax = A @ x.unsqueeze(-1) >>> torch.allclose(Ax, b.unsqueeze(-1).expand_as(Ax)) True .. _invertible: https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem """) solve_triangular = _add_docstr(_linalg.linalg_solve_triangular, r""" linalg.solve_triangular(A, B, *, upper, left=True, unitriangular=False, out=None) -> Tensor Computes the solution of a triangular system of linear equations with a unique solution. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system** associated to the triangular matrix :math:`A \in \mathbb{K}^{n \times n}` without zeros on the diagonal (that is, it is `invertible`_) and the rectangular matrix , :math:`B \in \mathbb{K}^{n \times k}`, which is defined as .. math:: AX = B The argument :attr:`upper` signals whether :math:`A` is upper or lower triangular. If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that solves the system .. math:: XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.} If :attr:`upper`\ `= True` (resp. `False`) just the upper (resp. lower) triangular half of :attr:`A` will be accessed. The elements below the main diagonal will be considered to be zero and will not be accessed. If :attr:`unitriangular`\ `= True`, the diagonal of :attr:`A` is assumed to be ones and will not be accessed. The result may contain `NaN` s if the diagonal of :attr:`A` contains zeros or elements that are very close to zero and :attr:`unitriangular`\ `= False` (default) or if the input matrix has very small eigenvalues. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. .. seealso:: :func:`torch.linalg.solve` computes the solution of a general square system of linear equations with a unique solution. Args: A (Tensor): tensor of shape `(*, n, n)` (or `(*, k, k)` if :attr:`left`\ `= True`) where `*` is zero or more batch dimensions. B (Tensor): right-hand side tensor of shape `(*, n, k)`. Keyword args: upper (bool): whether :attr:`A` is an upper or lower triangular matrix. left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`. unitriangular (bool, optional): if `True`, the diagonal elements of :attr:`A` are assumed to be all equal to `1`. Default: `False`. out (Tensor, optional): output tensor. `B` may be passed as `out` and the result is computed in-place on `B`. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.randn(3, 3).triu_() >>> b = torch.randn(3, 4) >>> X = torch.linalg.solve_triangular(A, B, upper=True) >>> torch.allclose(A @ X, B) True >>> A = torch.randn(2, 3, 3).tril_() >>> B = torch.randn(2, 3, 4) >>> X = torch.linalg.solve_triangular(A, B, upper=False) >>> torch.allclose(A @ X, B) True >>> A = torch.randn(2, 4, 4).tril_() >>> B = torch.randn(2, 3, 4) >>> X = torch.linalg.solve_triangular(A, B, upper=False, left=False) >>> torch.allclose(X @ A, B) True .. _invertible: https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem """) lu_factor = _add_docstr(_linalg.linalg_lu_factor, r""" linalg.lu_factor(A, *, bool pivot=True, out=None) -> (Tensor, Tensor) Computes a compact representation of the LU factorization with partial pivoting of a matrix. This function computes a compact representation of the decomposition given by :func:`torch.linalg.lu`. If the matrix is square, this representation may be used in :func:`torch.linalg.lu_solve` to solve system of linear equations that share the matrix :attr:`A`. The returned decomposition is represented as a named tuple `(LU, pivots)`. The ``LU`` matrix has the same shape as the input matrix ``A``. Its upper and lower triangular parts encode the non-constant elements of ``L`` and ``U`` of the LU decomposition of ``A``. The returned permutation matrix is represented by a 1-indexed vector. `pivots[i] == j` represents that in the `i`-th step of the algorithm, the `i`-th row was permuted with the `j-1`-th row. On CUDA, one may use :attr:`pivot`\ `= False`. In this case, this function returns the LU decomposition without pivoting if it exists. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. """ + fr""" .. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.lu_factor_ex")} """ + r""" .. warning:: The LU decomposition is almost never unique, as often there are different permutation matrices that can yield different LU decompositions. As such, different platforms, like SciPy, or inputs on different devices, may produce different valid decompositions. Gradient computations are only supported if the input matrix is full-rank. If this condition is not met, no error will be thrown, but the gradient may not be finite. This is because the LU decomposition with pivoting is not differentiable at these points. .. seealso:: :func:`torch.linalg.lu_solve` solves a system of linear equations given the output of this function provided the input matrix was square and invertible. :func:`torch.lu_unpack` unpacks the tensors returned by :func:`~lu_factor` into the three matrices `P, L, U` that form the decomposition. :func:`torch.linalg.lu` computes the LU decomposition with partial pivoting of a possibly non-square matrix. It is a composition of :func:`~lu_factor` and :func:`torch.lu_unpack`. :func:`torch.linalg.solve` solves a system of linear equations. It is a composition of :func:`~lu_factor` and :func:`~lu_solve`. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. Keyword args: pivot (bool, optional): Whether to compute the LU decomposition with partial pivoting, or the regular LU decomposition. :attr:`pivot`\ `= False` not supported on CPU. Default: `True`. out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`. Returns: A named tuple `(LU, pivots)`. Raises: RuntimeError: if the :attr:`A` matrix is not invertible or any matrix in a batched :attr:`A` is not invertible. Examples:: >>> A = torch.randn(2, 3, 3) >>> B1 = torch.randn(2, 3, 4) >>> B2 = torch.randn(2, 3, 7) >>> A_factor = torch.linalg.lu_factor(A) >>> X1 = torch.linalg.lu_solve(A_factor, B1) >>> X2 = torch.linalg.lu_solve(A_factor, B2) >>> torch.allclose(A @ X1, B1) True >>> torch.allclose(A @ X2, B2) True .. _invertible: https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem """) lu_factor_ex = _add_docstr(_linalg.linalg_lu_factor_ex, r""" linalg.lu_factor_ex(A, *, pivot=True, check_errors=False, out=None) -> (Tensor, Tensor, Tensor) This is a version of :func:`~lu_factor` that does not perform error checks unless :attr:`check_errors`\ `= True`. It also returns the :attr:`info` tensor returned by `LAPACK's getrf`_. """ + fr""" .. note:: {common_notes["sync_note_ex"]} .. warning:: {common_notes["experimental_warning"]} """ + r""" Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. Keyword args: pivot (bool, optional): Whether to compute the LU decomposition with partial pivoting, or the regular LU decomposition. :attr:`pivot`\ `= False` not supported on CPU. Default: `True`. check_errors (bool, optional): controls whether to check the content of ``infos`` and raise an error if it is non-zero. Default: `False`. out (tuple, optional): tuple of three tensors to write the output to. Ignored if `None`. Default: `None`. Returns: A named tuple `(LU, pivots, info)`. .. _LAPACK's getrf: https://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga0019443faea08275ca60a734d0593e60.html """) lu_solve = _add_docstr(_linalg.linalg_lu_solve, r""" linalg.lu_solve(LU, pivots, B, *, left=True, adjoint=False, out=None) -> Tensor Computes the solution of a square system of linear equations with a unique solution given an LU decomposition. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system** associated to :math:`A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times k}`, which is defined as .. math:: AX = B where :math:`A` is given factorized as returned by :func:`~lu_factor`. If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that solves the system .. math:: XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.} If :attr:`adjoint`\ `= True` (and :attr:`left`\ `= True), given an LU factorization of :math:`A` this function function returns the :math:`X \in \mathbb{K}^{n \times k}` that solves the system .. math:: A^{\text{H}}X = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.} where :math:`A^{\text{H}}` is the conjugate transpose when :math:`A` is complex, and the transpose when :math:`A` is real-valued. The :attr:`left`\ `= False` case is analogous. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. Args: LU (Tensor): tensor of shape `(*, n, n)` (or `(*, k, k)` if :attr:`left`\ `= True`) where `*` is zero or more batch dimensions as returned by :func:`~lu_factor`. pivots (Tensor): tensor of shape `(*, n)` (or `(*, k)` if :attr:`left`\ `= True`) where `*` is zero or more batch dimensions as returned by :func:`~lu_factor`. B (Tensor): right-hand side tensor of shape `(*, n, k)`. Keyword args: left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`. adjoint (bool, optional): whether to solve the system :math:`AX=B` or :math:`A^{\text{H}}X = B`. Default: `False`. out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Examples:: >>> A = torch.randn(3, 3) >>> LU, pivots = torch.linalg.lu_factor(A) >>> B = torch.randn(3, 2) >>> X = torch.linalg.lu_solve(LU, pivots, B) >>> torch.allclose(A @ X, B) True >>> B = torch.randn(3, 3, 2) # Broadcasting rules apply: A is broadcasted >>> X = torch.linalg.lu_solve(LU, pivots, B) >>> torch.allclose(A @ X, B) True >>> B = torch.randn(3, 5, 3) >>> X = torch.linalg.lu_solve(LU, pivots, B, left=False) >>> torch.allclose(X @ A, B) True >>> B = torch.randn(3, 3, 4) # Now solve for A^T >>> X = torch.linalg.lu_solve(LU, pivots, B, adjoint=True) >>> torch.allclose(A.mT @ X, B) True .. _invertible: https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem """) lu = _add_docstr(_linalg.linalg_lu, r""" lu(A, *, pivot=True, out=None) -> (Tensor, Tensor, Tensor) Computes the LU decomposition with partial pivoting of a matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **LU decomposition with partial pivoting** of a matrix :math:`A \in \mathbb{K}^{m \times n}` is defined as .. math:: A = PLU\mathrlap{\qquad P \in \mathbb{K}^{m \times m}, L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}} where `k = min(m,n)`, :math:`P` is a `permutation matrix`_, :math:`L` is lower triangular with ones on the diagonal and :math:`U` is upper triangular. If :attr:`pivot`\ `= False` and :attr:`A` is on GPU, then the **LU decomposition without pivoting** is computed .. math:: A = LU\mathrlap{\qquad L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}} When :attr:`pivot`\ `= False`, the returned matrix :attr:`P` will be empty. The LU decomposition without pivoting `may not exist`_ if any of the principal minors of :attr:`A` is singular. In this case, the output matrix may contain `inf` or `NaN`. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. .. seealso:: :func:`torch.linalg.solve` solves a system of linear equations using the LU decomposition with partial pivoting. .. warning:: The LU decomposition is almost never unique, as often there are different permutation matrices that can yield different LU decompositions. As such, different platforms, like SciPy, or inputs on different devices, may produce different valid decompositions. .. warning:: Gradient computations are only supported if the input matrix is full-rank. If this condition is not met, no error will be thrown, but the gradient may not be finite. This is because the LU decomposition with pivoting is not differentiable at these points. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. pivot (bool, optional): Controls whether to compute the LU decomposition with partial pivoting or no pivoting. Default: `True`. Keyword args: out (tuple, optional): output tuple of three tensors. Ignored if `None`. Default: `None`. Returns: A named tuple `(P, L, U)`. Examples:: >>> A = torch.randn(3, 2) >>> P, L, U = torch.linalg.lu(A) >>> P tensor([[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]]) >>> L tensor([[1.0000, 0.0000], [0.5007, 1.0000], [0.0633, 0.9755]]) >>> U tensor([[0.3771, 0.0489], [0.0000, 0.9644]]) >>> torch.dist(A, P @ L @ U) tensor(5.9605e-08) >>> A = torch.randn(2, 5, 7, device="cuda") >>> P, L, U = torch.linalg.lu(A, pivot=False) >>> P tensor([], device='cuda:0') >>> torch.dist(A, L @ U) tensor(1.0376e-06, device='cuda:0') .. _permutation matrix: https://en.wikipedia.org/wiki/Permutation_matrix .. _may not exist: https://en.wikipedia.org/wiki/LU_decomposition#Definitions """) tensorinv = _add_docstr(_linalg.linalg_tensorinv, r""" linalg.tensorinv(A, ind=2, *, out=None) -> Tensor Computes the multiplicative inverse of :func:`torch.tensordot`. If `m` is the product of the first :attr:`ind` dimensions of :attr:`A` and `n` is the product of the rest of the dimensions, this function expects `m` and `n` to be equal. If this is the case, it computes a tensor `X` such that `tensordot(\ `:attr:`A`\ `, X, \ `:attr:`ind`\ `)` is the identity matrix in dimension `m`. `X` will have the shape of :attr:`A` but with the first :attr:`ind` dimensions pushed back to the end .. code:: text X.shape == A.shape[ind:] + A.shape[:ind] Supports input of float, double, cfloat and cdouble dtypes. .. note:: When :attr:`A` is a `2`-dimensional tensor and :attr:`ind`\ `= 1`, this function computes the (multiplicative) inverse of :attr:`A` (see :func:`torch.linalg.inv`). .. note:: Consider using :func:`torch.linalg.tensorsolve` if possible for multiplying a tensor on the left by the tensor inverse, as:: linalg.tensorsolve(A, B) == torch.tensordot(linalg.tensorinv(A), B) # When B is a tensor with shape A.shape[:B.ndim] It is always prefered to use :func:`~tensorsolve` when possible, as it is faster and more numerically stable than computing the pseudoinverse explicitly. .. seealso:: :func:`torch.linalg.tensorsolve` computes `torch.tensordot(tensorinv(\ `:attr:`A`\ `), \ `:attr:`B`\ `)`. Args: A (Tensor): tensor to invert. Its shape must satisfy `prod(\ `:attr:`A`\ `.shape[:\ `:attr:`ind`\ `]) == prod(\ `:attr:`A`\ `.shape[\ `:attr:`ind`\ `:])`. ind (int): index at which to compute the inverse of :func:`torch.tensordot`. Default: `2`. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: if the reshaped :attr:`A` is not invertible or the product of the first :attr:`ind` dimensions is not equal to the product of the rest. Examples:: >>> A = torch.eye(4 * 6).reshape((4, 6, 8, 3)) >>> Ainv = torch.linalg.tensorinv(A, ind=2) >>> Ainv.shape torch.Size([8, 3, 4, 6]) >>> B = torch.randn(4, 6) >>> torch.allclose(torch.tensordot(Ainv, B), torch.linalg.tensorsolve(A, B)) True >>> A = torch.randn(4, 4) >>> Atensorinv = torch.linalg.tensorinv(A, ind=1) >>> Ainv = torch.linalg.inverse(A) >>> torch.allclose(Atensorinv, Ainv) True """) tensorsolve = _add_docstr(_linalg.linalg_tensorsolve, r""" linalg.tensorsolve(A, B, dims=None, *, out=None) -> Tensor Computes the solution `X` to the system `torch.tensordot(A, X) = B`. If `m` is the product of the first :attr:`B`\ `.ndim` dimensions of :attr:`A` and `n` is the product of the rest of the dimensions, this function expects `m` and `n` to be equal. The returned tensor `x` satisfies `tensordot(\ `:attr:`A`\ `, x, dims=x.ndim) == \ `:attr:`B`. `x` has shape :attr:`A`\ `[B.ndim:]`. If :attr:`dims` is specified, :attr:`A` will be reshaped as .. code:: text A = movedim(A, dims, range(len(dims) - A.ndim + 1, 0)) Supports inputs of float, double, cfloat and cdouble dtypes. .. seealso:: :func:`torch.linalg.tensorinv` computes the multiplicative inverse of :func:`torch.tensordot`. Args: A (Tensor): tensor to solve for. Its shape must satisfy `prod(\ `:attr:`A`\ `.shape[:\ `:attr:`B`\ `.ndim]) == prod(\ `:attr:`A`\ `.shape[\ `:attr:`B`\ `.ndim:])`. B (Tensor): tensor of shape :attr:`A`\ `.shape[:\ `:attr:`B`\ `.ndim]`. dims (Tuple[int], optional): dimensions of :attr:`A` to be moved. If `None`, no dimensions are moved. Default: `None`. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Raises: RuntimeError: if the reshaped :attr:`A`\ `.view(m, m)` with `m` as above is not invertible or the product of the first :attr:`ind` dimensions is not equal to the product of the rest of the dimensions. Examples:: >>> A = torch.eye(2 * 3 * 4).reshape((2 * 3, 4, 2, 3, 4)) >>> B = torch.randn(2 * 3, 4) >>> X = torch.linalg.tensorsolve(A, B) >>> X.shape torch.Size([2, 3, 4]) >>> torch.allclose(torch.tensordot(A, X, dims=X.ndim), B) True >>> A = torch.randn(6, 4, 4, 3, 2) >>> B = torch.randn(4, 3, 2) >>> X = torch.linalg.tensorsolve(A, B, dims=(0, 2)) >>> X.shape torch.Size([6, 4]) >>> A = A.permute(1, 3, 4, 0, 2) >>> A.shape[B.ndim:] torch.Size([6, 4]) >>> torch.allclose(torch.tensordot(A, X, dims=X.ndim), B, atol=1e-6) True """) qr = _add_docstr(_linalg.linalg_qr, r""" qr(A, mode='reduced', *, out=None) -> (Tensor, Tensor) Computes the QR decomposition of a matrix. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the **full QR decomposition** of a matrix :math:`A \in \mathbb{K}^{m \times n}` is defined as .. math:: A = QR\mathrlap{\qquad Q \in \mathbb{K}^{m \times m}, R \in \mathbb{K}^{m \times n}} where :math:`Q` is orthogonal in the real case and unitary in the complex case, and :math:`R` is upper triangular with real diagonal (even in the complex case). When `m > n` (tall matrix), as `R` is upper triangular, its last `m - n` rows are zero. In this case, we can drop the last `m - n` columns of `Q` to form the **reduced QR decomposition**: .. math:: A = QR\mathrlap{\qquad Q \in \mathbb{K}^{m \times n}, R \in \mathbb{K}^{n \times n}} The reduced QR decomposition agrees with the full QR decomposition when `n >= m` (wide matrix). Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :attr:`A` is a batch of matrices then the output has the same batch dimensions. The parameter :attr:`mode` chooses between the full and reduced QR decomposition. If :attr:`A` has shape `(*, m, n)`, denoting `k = min(m, n)` - :attr:`mode`\ `= 'reduced'` (default): Returns `(Q, R)` of shapes `(*, m, k)`, `(*, k, n)` respectively. It is always differentiable. - :attr:`mode`\ `= 'complete'`: Returns `(Q, R)` of shapes `(*, m, m)`, `(*, m, n)` respectively. It is differentiable for `m <= n`. - :attr:`mode`\ `= 'r'`: Computes only the reduced `R`. Returns `(Q, R)` with `Q` empty and `R` of shape `(*, k, n)`. It is never differentiable. Differences with `numpy.linalg.qr`: - :attr:`mode`\ `= 'raw'` is not implemented. - Unlike `numpy.linalg.qr`, this function always returns a tuple of two tensors. When :attr:`mode`\ `= 'r'`, the `Q` tensor is an empty tensor. .. warning:: The elements in the diagonal of `R` are not necessarily positive. As such, the returned QR decomposition is only unique up to the sign of the diagonal of `R`. Therefore, different platforms, like NumPy, or inputs on different devices, may produce different valid decompositions. .. warning:: The QR decomposition is only well-defined if the first `k = min(m, n)` columns of every matrix in :attr:`A` are linearly independent. If this condition is not met, no error will be thrown, but the QR produced may be incorrect and its autodiff may fail or produce incorrect results. Args: A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. mode (str, optional): one of `'reduced'`, `'complete'`, `'r'`. Controls the shape of the returned tensors. Default: `'reduced'`. Keyword args: out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`. Returns: A named tuple `(Q, R)`. Examples:: >>> A = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = torch.linalg.qr(A) >>> Q tensor([[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [ 0.2857, -0.1714, 0.9429]]) >>> R tensor([[ -14.0000, -21.0000, 14.0000], [ 0.0000, -175.0000, 70.0000], [ 0.0000, 0.0000, -35.0000]]) >>> (Q @ R).round() tensor([[ 12., -51., 4.], [ 6., 167., -68.], [ -4., 24., -41.]]) >>> (Q.T @ Q).round() tensor([[ 1., 0., 0.], [ 0., 1., -0.], [ 0., -0., 1.]]) >>> Q2, R2 = torch.linalg.qr(A, mode='r') >>> Q2 tensor([]) >>> torch.equal(R, R2) True >>> A = torch.randn(3, 4, 5) >>> Q, R = torch.linalg.qr(A, mode='complete') >>> torch.dist(Q @ R, A) tensor(1.6099e-06) >>> torch.dist(Q.mT @ Q, torch.eye(4)) tensor(6.2158e-07) """) vander = _add_docstr(_linalg.linalg_vander, r""" vander(x, N=None) -> Tensor Generates a Vandermonde matrix. Returns the Vandermonde matrix :math:`V` .. math:: V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{N-1}\\ 1 & x_2 & x_2^2 & \dots & x_2^{N-1}\\ 1 & x_3 & x_3^2 & \dots & x_3^{N-1}\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{N-1} \end{pmatrix}. for `N > 1`. If :attr:`N`\ `= None`, then `N = x.size(-1)` so that the output is a square matrix. Supports inputs of float, double, cfloat, cdouble, and integral dtypes. Also supports batches of vectors, and if :attr:`x` is a batch of vectors then the output has the same batch dimensions. Differences with `numpy.vander`: - Unlike `numpy.vander`, this function returns the powers of :attr:`x` in ascending order. To get them in the reverse order call ``linalg.vander(x, N).flip(-1)``. Args: x (Tensor): tensor of shape `(*, n)` where `*` is zero or more batch dimensions consisting of vectors. Keyword args: N (int, optional): Number of columns in the output. Default: `x.size(-1)` Example:: >>> x = torch.tensor([1, 2, 3, 5]) >>> linalg.vander(x) tensor([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) >>> linalg.vander(x, N=3) tensor([[ 1, 1, 1], [ 1, 2, 4], [ 1, 3, 9], [ 1, 5, 25]]) """) vecdot = _add_docstr(_linalg.linalg_vecdot, r""" linalg.vecdot(x, y, *, dim=-1, out=None) -> Tensor Computes the dot product of two batches of vectors along a dimension. In symbols, this function computes .. math:: \sum_{i=1}^n \overline{x_i}y_i. over the dimension :attr:`dim` where :math:`\overline{x_i}` denotes the conjugate for complex vectors, and it is the identity for real vectors. Supports input of half, bfloat16, float, double, cfloat, cdouble and integral dtypes. It also supports broadcasting. Args: x (Tensor): first batch of vectors of shape `(*, n)`. y (Tensor): second batch of vectors of shape `(*, n)`. Keyword args: dim (int): Dimension along which to compute the dot product. Default: `-1`. out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Examples:: >>> v1 = torch.randn(3, 2) >>> v2 = torch.randn(3, 2) >>> linalg.vecdot(v1, v2) tensor([ 0.3223, 0.2815, -0.1944]) >>> torch.vdot(v1[0], v2[0]) tensor(0.3223) """)
pytorch-master
torch/linalg/__init__.py
from typing import TypeVar, Union, Tuple, Optional from .. import Tensor # Create some useful type aliases # Template for arguments which can be supplied as a tuple, or which can be a scalar which PyTorch will internally # broadcast to a tuple. # Comes in several variants: A tuple of unknown size, and a fixed-size tuple for 1d, 2d, or 3d operations. T = TypeVar('T') _scalar_or_tuple_any_t = Union[T, Tuple[T, ...]] _scalar_or_tuple_1_t = Union[T, Tuple[T]] _scalar_or_tuple_2_t = Union[T, Tuple[T, T]] _scalar_or_tuple_3_t = Union[T, Tuple[T, T, T]] _scalar_or_tuple_4_t = Union[T, Tuple[T, T, T, T]] _scalar_or_tuple_5_t = Union[T, Tuple[T, T, T, T, T]] _scalar_or_tuple_6_t = Union[T, Tuple[T, T, T, T, T, T]] # For arguments which represent size parameters (eg, kernel size, padding) _size_any_t = _scalar_or_tuple_any_t[int] _size_1_t = _scalar_or_tuple_1_t[int] _size_2_t = _scalar_or_tuple_2_t[int] _size_3_t = _scalar_or_tuple_3_t[int] _size_4_t = _scalar_or_tuple_4_t[int] _size_5_t = _scalar_or_tuple_5_t[int] _size_6_t = _scalar_or_tuple_6_t[int] # For arguments which represent optional size parameters (eg, adaptive pool parameters) _size_any_opt_t = _scalar_or_tuple_any_t[Optional[int]] _size_2_opt_t = _scalar_or_tuple_2_t[Optional[int]] _size_3_opt_t = _scalar_or_tuple_3_t[Optional[int]] # For arguments that represent a ratio to adjust each dimension of an input with (eg, upsampling parameters) _ratio_2_t = _scalar_or_tuple_2_t[float] _ratio_3_t = _scalar_or_tuple_3_t[float] _ratio_any_t = _scalar_or_tuple_any_t[float] _tensor_list_t = _scalar_or_tuple_any_t[Tensor] # For the return value of max pooling operations that may or may not return indices. # With the proposed 'Literal' feature to Python typing, it might be possible to # eventually eliminate this. _maybe_indices_t = _scalar_or_tuple_2_t[Tensor]
pytorch-master
torch/nn/common_types.py
from .modules import * # noqa: F403 from .parameter import ( Parameter as Parameter, UninitializedParameter as UninitializedParameter, UninitializedBuffer as UninitializedBuffer, ) from .parallel import DataParallel as DataParallel from . import init from . import functional from . import utils def factory_kwargs(kwargs): r""" Given kwargs, returns a canonicalized dict of factory kwargs that can be directly passed to factory functions like torch.empty, or errors if unrecognized kwargs are present. This function makes it simple to write code like this:: class MyModule(nn.Module): def __init__(self, **kwargs): factory_kwargs = torch.nn.factory_kwargs(kwargs) self.weight = Parameter(torch.empty(10, **factory_kwargs)) Why should you use this function instead of just passing `kwargs` along directly? 1. This function does error validation, so if there are unexpected kwargs we will immediately report an error, instead of deferring it to the factory call 2. This function supports a special `factory_kwargs` argument, which can be used to explicitly specify a kwarg to be used for factory functions, in the event one of the factory kwargs conflicts with an already existing argument in the signature (e.g. in the signature ``def f(dtype, **kwargs)``, you can specify ``dtype`` for factory functions, as distinct from the dtype argument, by saying ``f(dtype1, factory_kwargs={"dtype": dtype2})``) """ if kwargs is None: return {} simple_keys = {"device", "dtype", "memory_format"} expected_keys = simple_keys | {"factory_kwargs"} if not kwargs.keys() <= expected_keys: raise TypeError(f"unexpected kwargs {kwargs.keys() - expected_keys}") # guarantee no input kwargs is untouched r = dict(kwargs.get("factory_kwargs", {})) for k in simple_keys: if k in kwargs: if k in r: raise TypeError(f"{k} specified twice, in **kwargs and in factory_kwargs") r[k] = kwargs[k] return r
pytorch-master
torch/nn/__init__.py
from typing import Optional import warnings # NB: Keep this file in sync with enums in aten/src/ATen/core/Reduction.h def get_enum(reduction: str) -> int: if reduction == 'none': ret = 0 elif reduction == 'mean': ret = 1 elif reduction == 'elementwise_mean': warnings.warn("reduction='elementwise_mean' is deprecated, please use reduction='mean' instead.") ret = 1 elif reduction == 'sum': ret = 2 else: ret = -1 # TODO: remove once JIT exceptions support control flow raise ValueError("{} is not a valid value for reduction".format(reduction)) return ret # In order to support previous versions, accept boolean size_average and reduce # and convert them into the new constants for now # We use these functions in torch/legacy as well, in which case we'll silence the warning def legacy_get_string(size_average: Optional[bool], reduce: Optional[bool], emit_warning: bool = True) -> str: warning = "size_average and reduce args will be deprecated, please use reduction='{}' instead." if size_average is None: size_average = True if reduce is None: reduce = True if size_average and reduce: ret = 'mean' elif reduce: ret = 'sum' else: ret = 'none' if emit_warning: warnings.warn(warning.format(ret)) return ret def legacy_get_enum(size_average: Optional[bool], reduce: Optional[bool], emit_warning: bool = True) -> int: return get_enum(legacy_get_string(size_average, reduce, emit_warning))
pytorch-master
torch/nn/_reduction.py
"""Functionality for Python <-> C++ frontend inter-op.""" from torch import nn class OrderedDictWrapper(object): """ A wrapper around a C++ OrderedDict that dynamically evaluates the OrderedDict getter on a bound C++ module, such that new changes on the C++ side are picked up. Otherwise accessing e.g. ``cpp_module._parameters`` just once would get a frozen copy of the parameters at the time of access. ``torch.nn.Module`` accesses ``_parameters`` et al. via ``self.__dict__`` so using properties does not work. """ def __init__(self, cpp_module, attr): self.cpp_module = cpp_module self.attr = attr @property def cpp_dict(self): return getattr(self.cpp_module, self.attr) # Magic methods cannot be assigned dynamically and bypass ``getattr``, so we # must manually override them. def items(self): return self.cpp_dict.items() def keys(self): return self.cpp_dict.keys() def values(self): return self.cpp_dict.values() def __iter__(self): return self.cpp_dict.__iter__() def __len__(self): return self.cpp_dict.__len__() def __contains__(self, key): return self.cpp_dict.__contains__(key) def __getitem__(self, key): return self.cpp_dict.__getitem__(key) class ModuleWrapper(nn.Module): """ A subclass of ``torch.nn.Module`` that wraps a C++ frontend module and delegates all access. """ def __init__(self, cpp_module): # Assign before the super class constructor so ``self.training`` can be # assigned to in the super class constructor. self.cpp_module = cpp_module super(ModuleWrapper, self).__init__() self._parameters = OrderedDictWrapper(cpp_module, "_parameters") # type: ignore[assignment] self._buffers: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_buffers") # type: ignore[assignment] self._modules: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_modules") # type: ignore[assignment] for attr in dir(cpp_module): # Skip magic methods and the three attributes above. if not attr.startswith("_"): setattr(self, attr, getattr(self.cpp_module, attr)) def _apply(self, fn): for param in self.parameters(): # Tensors stored in modules are graph leaves, and we don't # want to create copy nodes, so we have to unpack the data. param.data = fn(param.data) if param._grad is not None: param._grad.data = fn(param._grad.data) for buf in self.buffers(): buf.data = fn(buf.data) return self # nn.Module defines training as a boolean @property # type: ignore[override] def training(self): return self.cpp_module.training @training.setter def training(self, mode): self.cpp_module.train(mode) def __repr__(self): return self.cpp_module.__repr__()
pytorch-master
torch/nn/cpp.py
r"""Functional interface""" from typing import Callable, List, Optional, Tuple, Union import math import warnings import torch from torch import _VF from torch._C import _infer_size, _add_docstr from torch._torch_docs import reproducibility_notes, tf32_notes # A workaround to support both TorchScript and MyPy: from typing import TYPE_CHECKING if TYPE_CHECKING: from torch.types import _dtype as DType else: # The JIT doesn't understand Union, nor torch.dtype here DType = int from .._jit_internal import boolean_dispatch, _overload, BroadcastingList1, BroadcastingList2, BroadcastingList3 from ..overrides import ( has_torch_function, has_torch_function_unary, has_torch_function_variadic, handle_torch_function) from . import _reduction as _Reduction from . import grad # noqa: F401 from .modules import utils from .modules.utils import _single, _pair, _triple, _list_with_default Tensor = torch.Tensor conv1d = _add_docstr( torch.conv1d, r""" conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor Applies a 1D convolution over an input signal composed of several input planes. {tf32_note} See :class:`~torch.nn.Conv1d` for details and output shape. Note: {cudnn_reproducibility_note} Note: This operator supports complex data types i.e. ``complex32, complex64, complex128``. """.format( **reproducibility_notes, **tf32_notes ) + r""" Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)` bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None`` stride: the stride of the convolving kernel. Can be a single number or a one-element tuple `(sW,)`. Default: 1 padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, single number or a one-element tuple `(padW,)`. Default: 0 ``padding='valid'`` is the same as no padding. ``padding='same'`` pads the input so the output has the same shape as the input. However, this mode doesn't support any stride values other than 1. .. warning:: For ``padding='same'``, if the ``weight`` is even-length and ``dilation`` is odd in any dimension, a full :func:`pad` operation may be needed internally. Lowering performance. dilation: the spacing between kernel elements. Can be a single number or a one-element tuple `(dW,)`. Default: 1 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 Examples:: >>> inputs = torch.randn(33, 16, 30) >>> filters = torch.randn(20, 16, 5) >>> F.conv1d(inputs, filters) """, ) conv2d = _add_docstr( torch.conv2d, r""" conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor Applies a 2D convolution over an input image composed of several input planes. {tf32_note} See :class:`~torch.nn.Conv2d` for details and output shape. Note: {cudnn_reproducibility_note} Note: This operator supports complex data types i.e. ``complex32, complex64, complex128``. """.format( **reproducibility_notes, **tf32_notes ) + r""" Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)` bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None`` stride: the stride of the convolving kernel. Can be a single number or a tuple `(sH, sW)`. Default: 1 padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, single number or a tuple `(padH, padW)`. Default: 0 ``padding='valid'`` is the same as no padding. ``padding='same'`` pads the input so the output has the same shape as the input. However, this mode doesn't support any stride values other than 1. .. warning:: For ``padding='same'``, if the ``weight`` is even-length and ``dilation`` is odd in any dimension, a full :func:`pad` operation may be needed internally. Lowering performance. dilation: the spacing between kernel elements. Can be a single number or a tuple `(dH, dW)`. Default: 1 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 Examples:: >>> # With square kernels and equal stride >>> filters = torch.randn(8, 4, 3, 3) >>> inputs = torch.randn(1, 4, 5, 5) >>> F.conv2d(inputs, filters, padding=1) """, ) # noqa: E501 conv3d = _add_docstr( torch.conv3d, r""" conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor Applies a 3D convolution over an input image composed of several input planes. {tf32_note} See :class:`~torch.nn.Conv3d` for details and output shape. Note: {cudnn_reproducibility_note} Note: This operator supports complex data types i.e. ``complex32, complex64, complex128``. """.format( **reproducibility_notes, **tf32_notes ) + r""" Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)` weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kT , kH , kW)` bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None stride: the stride of the convolving kernel. Can be a single number or a tuple `(sT, sH, sW)`. Default: 1 padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, single number or a tuple `(padT, padH, padW)`. Default: 0 ``padding='valid'`` is the same as no padding. ``padding='same'`` pads the input so the output has the same shape as the input. However, this mode doesn't support any stride values other than 1. .. warning:: For ``padding='same'``, if the ``weight`` is even-length and ``dilation`` is odd in any dimension, a full :func:`pad` operation may be needed internally. Lowering performance. dilation: the spacing between kernel elements. Can be a single number or a tuple `(dT, dH, dW)`. Default: 1 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 Examples:: >>> filters = torch.randn(33, 16, 3, 3, 3) >>> inputs = torch.randn(20, 16, 50, 10, 20) >>> F.conv3d(inputs, filters) """, ) # noqa: E501 conv_transpose1d = _add_docstr( torch.conv_transpose1d, r""" conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution". {tf32_note} See :class:`~torch.nn.ConvTranspose1d` for details and output shape. Note: {cudnn_reproducibility_note} """.format( **reproducibility_notes, **tf32_notes ) + r""" Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)` bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None stride: the stride of the convolving kernel. Can be a single number or a tuple ``(sW,)``. Default: 1 padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple ``(padW,)``. Default: 0 output_padding: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 dilation: the spacing between kernel elements. Can be a single number or a tuple ``(dW,)``. Default: 1 Examples:: >>> inputs = torch.randn(20, 16, 50) >>> weights = torch.randn(16, 33, 5) >>> F.conv_transpose1d(inputs, weights) """, ) conv_transpose2d = _add_docstr( torch.conv_transpose2d, r""" conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution". {tf32_note} See :class:`~torch.nn.ConvTranspose2d` for details and output shape. Note: {cudnn_reproducibility_note} """.format( **reproducibility_notes, **tf32_notes ) + r""" Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)` bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None stride: the stride of the convolving kernel. Can be a single number or a tuple ``(sH, sW)``. Default: 1 padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple ``(padH, padW)``. Default: 0 output_padding: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple ``(out_padH, out_padW)``. Default: 0 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 dilation: the spacing between kernel elements. Can be a single number or a tuple ``(dH, dW)``. Default: 1 Examples:: >>> # With square kernels and equal stride >>> inputs = torch.randn(1, 4, 5, 5) >>> weights = torch.randn(4, 8, 3, 3) >>> F.conv_transpose2d(inputs, weights, padding=1) """, ) # noqa: E501 conv_transpose3d = _add_docstr( torch.conv_transpose3d, r""" conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor Applies a 3D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution" {tf32_note} See :class:`~torch.nn.ConvTranspose3d` for details and output shape. Note: {cudnn_reproducibility_note} """.format( **reproducibility_notes, **tf32_notes ) + r""" Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)` weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kT , kH , kW)` bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None stride: the stride of the convolving kernel. Can be a single number or a tuple ``(sT, sH, sW)``. Default: 1 padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple ``(padT, padH, padW)``. Default: 0 output_padding: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple ``(out_padT, out_padH, out_padW)``. Default: 0 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 dilation: the spacing between kernel elements. Can be a single number or a tuple `(dT, dH, dW)`. Default: 1 Examples:: >>> inputs = torch.randn(20, 16, 50, 10, 20) >>> weights = torch.randn(16, 33, 3, 3, 3) >>> F.conv_transpose3d(inputs, weights) """, ) # noqa: E501 conv_tbc = _add_docstr( torch.conv_tbc, r""" Applies a 1-dimensional sequence convolution over an input sequence. Input and output dimensions are (Time, Batch, Channels) - hence TBC. Args: input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})` weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`) bias: bias of shape (:math:`\text{out\_channels}`) pad: number of timesteps to pad. Default: 0 """, ) # Pooling avg_pool1d = _add_docstr( torch.avg_pool1d, r""" avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor Applies a 1D average pooling over an input signal composed of several input planes. See :class:`~torch.nn.AvgPool1d` for details and output shape. Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` kernel_size: the size of the window. Can be a single number or a tuple `(kW,)` stride: the stride of the window. Can be a single number or a tuple `(sW,)`. Default: :attr:`kernel_size` padding: implicit zero paddings on both sides of the input. Can be a single number or a tuple `(padW,)`. Default: 0 ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape. Default: ``False`` count_include_pad: when True, will include the zero-padding in the averaging calculation. Default: ``True`` Examples:: >>> # pool of square window of size=3, stride=2 >>> input = torch.tensor([[[1, 2, 3, 4, 5, 6, 7]]], dtype=torch.float32) >>> F.avg_pool1d(input, kernel_size=3, stride=2) tensor([[[ 2., 4., 6.]]]) """, ) avg_pool2d = _add_docstr( torch._C._nn.avg_pool2d, r""" avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size :math:`sH \times sW` steps. The number of output features is equal to the number of input planes. See :class:`~torch.nn.AvgPool2d` for details and output shape. Args: input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` kernel_size: size of the pooling region. Can be a single number or a tuple `(kH, kW)` stride: stride of the pooling operation. Can be a single number or a tuple `(sH, sW)`. Default: :attr:`kernel_size` padding: implicit zero paddings on both sides of the input. Can be a single number or a tuple `(padH, padW)`. Default: 0 ceil_mode: when True, will use `ceil` instead of `floor` in the formula to compute the output shape. Default: ``False`` count_include_pad: when True, will include the zero-padding in the averaging calculation. Default: ``True`` divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None """, ) avg_pool3d = _add_docstr( torch._C._nn.avg_pool3d, r""" avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor Applies 3D average-pooling operation in :math:`kT \times kH \times kW` regions by step size :math:`sT \times sH \times sW` steps. The number of output features is equal to :math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`. See :class:`~torch.nn.AvgPool3d` for details and output shape. Args: input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iT \times iH , iW)` kernel_size: size of the pooling region. Can be a single number or a tuple `(kT, kH, kW)` stride: stride of the pooling operation. Can be a single number or a tuple `(sT, sH, sW)`. Default: :attr:`kernel_size` padding: implicit zero paddings on both sides of the input. Can be a single number or a tuple `(padT, padH, padW)`, Default: 0 ceil_mode: when True, will use `ceil` instead of `floor` in the formula to compute the output shape count_include_pad: when True, will include the zero-padding in the averaging calculation divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None """, ) def fractional_max_pool2d_with_indices( input: Tensor, kernel_size: BroadcastingList2[int], output_size: Optional[BroadcastingList2[int]] = None, output_ratio: Optional[BroadcastingList2[float]] = None, return_indices: bool = False, _random_samples: Optional[Tensor] = None ) -> Tuple[Tensor, Tensor]: r"""Applies 2D fractional max pooling over an input signal composed of several input planes. Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes. Args: kernel_size: the size of the window to take a max over. Can be a single number :math:`k` (for a square kernel of :math:`k \times k`) or a tuple `(kH, kW)` output_size: the target output size of the image of the form :math:`oH \times oW`. Can be a tuple `(oH, oW)` or a single number :math:`oH` for a square image :math:`oH \times oH` output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1) return_indices: if ``True``, will return the indices along with the outputs. Useful to pass to :func:`~torch.nn.functional.max_unpool2d`. Examples:: >>> input = torch.randn(20, 16, 50, 32) >>> # pool of square window of size=3, and target output size 13x12 >>> F.fractional_max_pool2d(input, 3, output_size=(13, 12)) >>> # pool of square window and target output size being half of input image size >>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5)) .. _Fractional MaxPooling: http://arxiv.org/abs/1412.6071 """ if has_torch_function_variadic(input, _random_samples): return handle_torch_function( fractional_max_pool2d_with_indices, (input, _random_samples), input, kernel_size, output_size=output_size, output_ratio=output_ratio, return_indices=return_indices, _random_samples=_random_samples, ) if output_size is None and output_ratio is None: raise ValueError("fractional_max_pool2d requires specifying either " "an output_size or an output_ratio") if output_size is None: assert output_ratio is not None _output_ratio = _pair(output_ratio) output_size = [int(input.size(-2) * _output_ratio[0]), int(input.size(-1) * _output_ratio[1])] if _random_samples is None: n_batch = 1 if input.dim() == 3 else input.size(0) _random_samples = torch.rand(n_batch, input.size(-3), 2, dtype=input.dtype, device=input.device) return torch._C._nn.fractional_max_pool2d(input, kernel_size, output_size, _random_samples) def _fractional_max_pool2d( input: Tensor, kernel_size: BroadcastingList2[int], output_size: Optional[BroadcastingList2[int]] = None, output_ratio: Optional[BroadcastingList2[float]] = None, return_indices: bool = False, _random_samples: Optional[Tensor] = None ) -> Tensor: if has_torch_function_variadic(input, _random_samples): return handle_torch_function( fractional_max_pool2d, (input, _random_samples), input, kernel_size, output_size=output_size, output_ratio=output_ratio, return_indices=return_indices, _random_samples=_random_samples, ) return fractional_max_pool2d_with_indices( input, kernel_size, output_size, output_ratio, return_indices, _random_samples )[0] fractional_max_pool2d = boolean_dispatch( arg_name="return_indices", arg_index=4, default=False, if_true=fractional_max_pool2d_with_indices, if_false=_fractional_max_pool2d, module_name=__name__, func_name="fractional_max_pool2d", ) def fractional_max_pool3d_with_indices( input: Tensor, kernel_size: BroadcastingList3[int], output_size: Optional[BroadcastingList3[int]] = None, output_ratio: Optional[BroadcastingList3[float]] = None, return_indices: bool = False, _random_samples: Optional[Tensor] = None ) -> Tuple[Tensor, Tensor]: r"""Applies 3D fractional max pooling over an input signal composed of several input planes. Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes. Args: kernel_size: the size of the window to take a max over. Can be a single number :math:`k` (for a square kernel of :math:`k \times k \times k`) or a tuple `(kT, kH, kW)` output_size: the target output size of the form :math:`oT \times oH \times oW`. Can be a tuple `(oT, oH, oW)` or a single number :math:`oH` for a cubic output :math:`oH \times oH \times oH` output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1) return_indices: if ``True``, will return the indices along with the outputs. Useful to pass to :func:`~torch.nn.functional.max_unpool3d`. Shape: - Input: :math:`(N, C, T_{in}, H_{in}, W_{in})` or :math:`(C, T_{in}, H_{in}, W_{in})`. - Output: :math:`(N, C, T_{out}, H_{out}, W_{out})` or :math:`(C, T_{out}, H_{out}, W_{out})`, where :math:`(T_{out}, H_{out}, W_{out})=\text{output\_size}` or :math:`(T_{out}, H_{out}, W_{out})=\text{output\_ratio} \times (T_{in}, H_{in}, W_{in})` Examples:: >>> input = torch.randn(20, 16, 50, 32, 16) >>> # pool of cubic window of size=3, and target output size 13x12x11 >>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11)) >>> # pool of cubic window and target output size being half of input size >>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5)) .. _Fractional MaxPooling: http://arxiv.org/abs/1412.6071 """ if has_torch_function_variadic(input, _random_samples): return handle_torch_function( fractional_max_pool3d_with_indices, (input, _random_samples), input, kernel_size, output_size=output_size, output_ratio=output_ratio, return_indices=return_indices, _random_samples=_random_samples, ) if output_size is None and output_ratio is None: raise ValueError("fractional_max_pool3d requires specifying either " "an output_size or an output_ratio") if output_size is None: assert output_ratio is not None _output_ratio = _triple(output_ratio) output_size = [ int(input.size(-3) * _output_ratio[0]), int(input.size(-2) * _output_ratio[1]), int(input.size(-1) * _output_ratio[2]), ] if _random_samples is None: n_batch = 1 if input.dim() == 4 else input.size(0) _random_samples = torch.rand(n_batch, input.size(-4), 3, dtype=input.dtype, device=input.device) return torch._C._nn.fractional_max_pool3d(input, kernel_size, output_size, _random_samples) def _fractional_max_pool3d( input: Tensor, kernel_size: BroadcastingList3[int], output_size: Optional[BroadcastingList3[int]] = None, output_ratio: Optional[BroadcastingList3[float]] = None, return_indices: bool = False, _random_samples: Optional[Tensor] = None ) -> Tensor: if has_torch_function_variadic(input, _random_samples): return handle_torch_function( fractional_max_pool3d, (input, _random_samples), input, kernel_size, output_size=output_size, output_ratio=output_ratio, return_indices=return_indices, _random_samples=_random_samples, ) return fractional_max_pool3d_with_indices( input, kernel_size, output_size, output_ratio, return_indices, _random_samples )[0] fractional_max_pool3d = boolean_dispatch( arg_name="return_indices", arg_index=4, default=False, if_true=fractional_max_pool3d_with_indices, if_false=_fractional_max_pool3d, module_name=__name__, func_name="fractional_max_pool3d", ) def max_pool1d_with_indices( input: Tensor, kernel_size: BroadcastingList1[int], stride: Optional[BroadcastingList1[int]] = None, padding: BroadcastingList1[int] = 0, dilation: BroadcastingList1[int] = 1, ceil_mode: bool = False, return_indices: bool = False ) -> Tuple[Tensor, Tensor]: r""" max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) Applies a 1D max pooling over an input signal composed of several input planes. .. note:: The order of :attr:`ceil_mode` and :attr:`return_indices` is different from what seen in :class:`~torch.nn.MaxPool1d`, and will change in a future release. See :class:`~torch.nn.MaxPool1d` for details. Args: input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`, minibatch dim optional. kernel_size: the size of the window. Can be a single number or a tuple `(kW,)` stride: the stride of the window. Can be a single number or a tuple `(sW,)`. Default: :attr:`kernel_size` padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. dilation: The stride between elements within a sliding window, must be > 0. ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This ensures that every element in the input tensor is covered by a sliding window. return_indices: If ``True``, will return the argmax along with the max values. Useful for :class:`torch.nn.functional.max_unpool1d` later """ if has_torch_function_unary(input): return handle_torch_function( max_pool1d_with_indices, (input,), input, kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=return_indices, ) if stride is None: stride = torch.jit.annotate(List[int], []) return torch.max_pool1d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode) def _max_pool1d( input: Tensor, kernel_size: BroadcastingList1[int], stride: Optional[BroadcastingList1[int]] = None, padding: BroadcastingList1[int] = 0, dilation: BroadcastingList1[int] = 1, ceil_mode: bool = False, return_indices: bool = False ) -> Tensor: if has_torch_function_unary(input): return handle_torch_function( max_pool1d, (input,), input, kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=return_indices, ) if stride is None: stride = torch.jit.annotate(List[int], []) return torch.max_pool1d(input, kernel_size, stride, padding, dilation, ceil_mode) max_pool1d = boolean_dispatch( arg_name="return_indices", arg_index=6, default=False, if_true=max_pool1d_with_indices, if_false=_max_pool1d, module_name=__name__, func_name="max_pool1d", ) def max_pool2d_with_indices( input: Tensor, kernel_size: BroadcastingList2[int], stride: Optional[BroadcastingList2[int]] = None, padding: BroadcastingList2[int] = 0, dilation: BroadcastingList2[int] = 1, ceil_mode: bool = False, return_indices: bool = False ) -> Tuple[Tensor, Tensor]: r""" max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) Applies a 2D max pooling over an input signal composed of several input planes. .. note:: The order of :attr:`ceil_mode` and :attr:`return_indices` is different from what seen in :class:`~torch.nn.MaxPool2d`, and will change in a future release. See :class:`~torch.nn.MaxPool2d` for details. Args: input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`, minibatch dim optional. kernel_size: size of the pooling region. Can be a single number or a tuple `(kH, kW)` stride: stride of the pooling operation. Can be a single number or a tuple `(sH, sW)`. Default: :attr:`kernel_size` padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. dilation: The stride between elements within a sliding window, must be > 0. ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This ensures that every element in the input tensor is covered by a sliding window. return_indices: If ``True``, will return the argmax along with the max values. Useful for :class:`torch.nn.functional.max_unpool2d` later """ if has_torch_function_unary(input): return handle_torch_function( max_pool2d_with_indices, (input,), input, kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=return_indices, ) if stride is None: stride = torch.jit.annotate(List[int], []) return torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode) def _max_pool2d( input: Tensor, kernel_size: BroadcastingList2[int], stride: Optional[BroadcastingList2[int]] = None, padding: BroadcastingList2[int] = 0, dilation: BroadcastingList2[int] = 1, ceil_mode: bool = False, return_indices: bool = False ) -> Tensor: if has_torch_function_unary(input): return handle_torch_function( max_pool2d, (input,), input, kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=return_indices, ) if stride is None: stride = torch.jit.annotate(List[int], []) return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode) max_pool2d = boolean_dispatch( arg_name="return_indices", arg_index=6, default=False, if_true=max_pool2d_with_indices, if_false=_max_pool2d, module_name=__name__, func_name="max_pool2d", ) def max_pool3d_with_indices( input: Tensor, kernel_size: BroadcastingList3[int], stride: Optional[BroadcastingList3[int]] = None, padding: BroadcastingList3[int] = 0, dilation: BroadcastingList3[int] = 1, ceil_mode: bool = False, return_indices: bool = False ) -> Tuple[Tensor, Tensor]: r""" max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) Applies a 3D max pooling over an input signal composed of several input planes. .. note:: The order of :attr:`ceil_mode` and :attr:`return_indices` is different from what seen in :class:`~torch.nn.MaxPool3d`, and will change in a future release. See :class:`~torch.nn.MaxPool3d` for details. Args: input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iD, iH , iW)`, minibatch dim optional. kernel_size: size of the pooling region. Can be a single number or a tuple `(kT, kH, kW)` stride: stride of the pooling operation. Can be a single number or a tuple `(sT, sH, sW)`. Default: :attr:`kernel_size` padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. dilation: The stride between elements within a sliding window, must be > 0. ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This ensures that every element in the input tensor is covered by a sliding window. return_indices: If ``True``, will return the argmax along with the max values. Useful for :class:`torch.nn.functional.max_unpool3d` later """ if has_torch_function_unary(input): return handle_torch_function( max_pool3d_with_indices, (input,), input, kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=return_indices, ) if stride is None: stride = torch.jit.annotate(List[int], []) return torch._C._nn.max_pool3d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode) def _max_pool3d( input: Tensor, kernel_size: BroadcastingList3[int], stride: Optional[BroadcastingList3[int]] = None, padding: BroadcastingList3[int] = 0, dilation: BroadcastingList3[int] = 1, ceil_mode: bool = False, return_indices: bool = False ) -> Tensor: if has_torch_function_unary(input): return handle_torch_function( max_pool3d, (input,), input, kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=return_indices, ) if stride is None: stride = torch.jit.annotate(List[int], []) return torch.max_pool3d(input, kernel_size, stride, padding, dilation, ceil_mode) max_pool3d = boolean_dispatch( arg_name="return_indices", arg_index=6, default=False, if_true=max_pool3d_with_indices, if_false=_max_pool3d, module_name=__name__, func_name="max_pool3d", ) def _unpool_output_size( input: Tensor, kernel_size: List[int], stride: List[int], padding: List[int], output_size: Optional[List[int]] ) -> List[int]: input_size = input.size() default_size = torch.jit.annotate(List[int], []) for d in range(len(kernel_size)): default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d] + kernel_size[d] - 2 * padding[d]) if output_size is None: ret = default_size else: if len(output_size) == len(kernel_size) + 2: output_size = output_size[2:] if len(output_size) != len(kernel_size): raise ValueError( "output_size should be a sequence containing " "{} or {} elements, but it has a length of '{}'".format( len(kernel_size), len(kernel_size) + 2, len(output_size) ) ) for d in range(len(kernel_size)): min_size = default_size[d] - stride[d] max_size = default_size[d] + stride[d] if not (min_size < output_size[d] < max_size): raise ValueError( 'invalid output_size "{}" (dim {} must be between {} and {})'.format( output_size, d, min_size, max_size ) ) ret = output_size return ret def max_unpool1d( input: Tensor, indices: Tensor, kernel_size: BroadcastingList1[int], stride: Optional[BroadcastingList1[int]] = None, padding: BroadcastingList1[int] = 0, output_size: Optional[BroadcastingList1[int]] = None ) -> Tensor: r"""Computes a partial inverse of :class:`MaxPool1d`. See :class:`~torch.nn.MaxUnpool1d` for details. """ if has_torch_function_unary(input): return handle_torch_function( max_unpool1d, (input,), input, indices, kernel_size, stride=stride, padding=padding, output_size=output_size, ) kernel_size = _single(kernel_size) if stride is not None: _stride = _single(stride) else: _stride = kernel_size padding = _single(padding) output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size) if isinstance(output_size, list): output_size = output_size + [1] else: output_size = output_size + (1,) return torch._C._nn.max_unpool2d(input.unsqueeze(-1), indices.unsqueeze(-1), output_size).squeeze(-1) def max_unpool2d( input: Tensor, indices: Tensor, kernel_size: BroadcastingList2[int], stride: Optional[BroadcastingList2[int]] = None, padding: BroadcastingList2[int] = 0, output_size: Optional[BroadcastingList2[int]] = None ) -> Tensor: r"""Computes a partial inverse of :class:`MaxPool2d`. See :class:`~torch.nn.MaxUnpool2d` for details. """ if has_torch_function_unary(input): return handle_torch_function( max_unpool2d, (input,), input, indices, kernel_size, stride=stride, padding=padding, output_size=output_size, ) kernel_size = _pair(kernel_size) if stride is not None: _stride = _pair(stride) else: _stride = kernel_size padding = _pair(padding) output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size) return torch._C._nn.max_unpool2d(input, indices, output_size) def max_unpool3d( input: Tensor, indices: Tensor, kernel_size: BroadcastingList3[int], stride: Optional[BroadcastingList3[int]] = None, padding: BroadcastingList3[int] = 0, output_size: Optional[BroadcastingList3[int]] = None ) -> Tensor: r"""Computes a partial inverse of :class:`MaxPool3d`. See :class:`~torch.nn.MaxUnpool3d` for details. """ if has_torch_function_unary(input): return handle_torch_function( max_unpool3d, (input,), input, indices, kernel_size, stride=stride, padding=padding, output_size=output_size, ) kernel_size = _triple(kernel_size) if stride is not None: _stride = _triple(stride) else: _stride = kernel_size padding = _triple(padding) output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size) return torch._C._nn.max_unpool3d(input, indices, output_size, _stride, padding) def lp_pool2d( input: Tensor, norm_type: Union[int, float], kernel_size: BroadcastingList2[int], stride: Optional[BroadcastingList2[int]] = None, ceil_mode: bool = False ) -> Tensor: r"""Applies a 2D power-average pooling over an input signal composed of several input planes. If the sum of all inputs to the power of `p` is zero, the gradient is set to zero as well. See :class:`~torch.nn.LPPool2d` for details. """ if has_torch_function_unary(input): return handle_torch_function( lp_pool2d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode ) kw, kh = utils._pair(kernel_size) if stride is not None: out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode) else: out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode) return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1.0 / norm_type) def lp_pool1d( input: Tensor, norm_type: Union[int, float], kernel_size: int, stride: Optional[BroadcastingList1[int]] = None, ceil_mode: bool = False ) -> Tensor: r"""Applies a 1D power-average pooling over an input signal composed of several input planes. If the sum of all inputs to the power of `p` is zero, the gradient is set to zero as well. See :class:`~torch.nn.LPPool1d` for details. """ if has_torch_function_unary(input): return handle_torch_function( lp_pool1d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode ) if stride is not None: out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode) else: out = avg_pool1d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode) return (torch.sign(out) * relu(torch.abs(out))).mul(kernel_size).pow(1.0 / norm_type) def adaptive_max_pool1d_with_indices( input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False ) -> Tuple[Tensor, Tensor]: r"""Applies a 1D adaptive max pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape. Args: output_size: the target output size (single integer) return_indices: whether to return pooling indices. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function( adaptive_max_pool1d_with_indices, (input,), input, output_size, return_indices=return_indices ) return torch.adaptive_max_pool1d(input, output_size) def _adaptive_max_pool1d(input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False) -> Tensor: if has_torch_function_unary(input): return handle_torch_function( adaptive_max_pool1d, (input,), input, output_size, return_indices=return_indices ) return adaptive_max_pool1d_with_indices(input, output_size)[0] adaptive_max_pool1d = boolean_dispatch( arg_name="return_indices", arg_index=2, default=False, if_true=adaptive_max_pool1d_with_indices, if_false=_adaptive_max_pool1d, module_name=__name__, func_name="adaptive_max_pool1d", ) def adaptive_max_pool2d_with_indices( input: Tensor, output_size: BroadcastingList2[int], return_indices: bool = False ) -> Tuple[Tensor, Tensor]: r"""Applies a 2D adaptive max pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape. Args: output_size: the target output size (single integer or double-integer tuple) return_indices: whether to return pooling indices. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function( adaptive_max_pool2d_with_indices, (input,), input, output_size, return_indices=return_indices ) output_size = _list_with_default(output_size, input.size()) return torch._C._nn.adaptive_max_pool2d(input, output_size) def _adaptive_max_pool2d(input: Tensor, output_size: BroadcastingList2[int], return_indices: bool = False) -> Tensor: if has_torch_function_unary(input): return handle_torch_function( adaptive_max_pool2d, (input,), input, output_size, return_indices=return_indices ) return adaptive_max_pool2d_with_indices(input, output_size)[0] adaptive_max_pool2d = boolean_dispatch( arg_name="return_indices", arg_index=2, default=False, if_true=adaptive_max_pool2d_with_indices, if_false=_adaptive_max_pool2d, module_name=__name__, func_name="adaptive_max_pool2d", ) def adaptive_max_pool3d_with_indices( input: Tensor, output_size: BroadcastingList3[int], return_indices: bool = False ) -> Tuple[Tensor, Tensor]: r"""Applies a 3D adaptive max pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape. Args: output_size: the target output size (single integer or triple-integer tuple) return_indices: whether to return pooling indices. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function( adaptive_max_pool3d_with_indices, (input,), input, output_size, return_indices=return_indices ) output_size = _list_with_default(output_size, input.size()) return torch._C._nn.adaptive_max_pool3d(input, output_size) def _adaptive_max_pool3d(input: Tensor, output_size: BroadcastingList3[int], return_indices: bool = False) -> Tensor: if has_torch_function_unary(input): return handle_torch_function( adaptive_max_pool3d, (input,), input, output_size, return_indices=return_indices ) return adaptive_max_pool3d_with_indices(input, output_size)[0] adaptive_max_pool3d = boolean_dispatch( arg_name="return_indices", arg_index=2, default=False, if_true=adaptive_max_pool3d_with_indices, if_false=_adaptive_max_pool3d, module_name=__name__, func_name="adaptive_max_pool3d", ) adaptive_avg_pool1d = _add_docstr( torch.adaptive_avg_pool1d, r""" adaptive_avg_pool1d(input, output_size) -> Tensor Applies a 1D adaptive average pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape. Args: output_size: the target output size (single integer) """, ) def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: r""" Applies a 2D adaptive average pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape. Args: output_size: the target output size (single integer or double-integer tuple) """ if has_torch_function_unary(input): return handle_torch_function(adaptive_avg_pool2d, (input,), input, output_size) _output_size = _list_with_default(output_size, input.size()) return torch._C._nn.adaptive_avg_pool2d(input, _output_size) def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList3[int]) -> Tensor: r""" Applies a 3D adaptive average pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape. Args: output_size: the target output size (single integer or triple-integer tuple) """ if has_torch_function_unary(input): return handle_torch_function(adaptive_avg_pool3d, (input,), input, output_size) _output_size = _list_with_default(output_size, input.size()) return torch._C._nn.adaptive_avg_pool3d(input, _output_size) # Activation functions def dropout(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: r""" During training, randomly zeroes some of the elements of the input tensor with probability :attr:`p` using samples from a Bernoulli distribution. See :class:`~torch.nn.Dropout` for details. Args: p: probability of an element to be zeroed. Default: 0.5 training: apply dropout if is ``True``. Default: ``True`` inplace: If set to ``True``, will do this operation in-place. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function(dropout, (input,), input, p=p, training=training, inplace=inplace) if p < 0.0 or p > 1.0: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training) def alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor: r"""Applies alpha dropout to the input. See :class:`~torch.nn.AlphaDropout` for details. """ if has_torch_function_unary(input): return handle_torch_function(alpha_dropout, (input,), input, p=p, training=training, inplace=inplace) if p < 0.0 or p > 1.0: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) return _VF.alpha_dropout_(input, p, training) if inplace else _VF.alpha_dropout(input, p, training) def dropout1d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: r""" Randomly zero out entire channels (a channel is a 1D feature map, e.g., the :math:`j`-th channel of the :math:`i`-th sample in the batched input is a 1D tensor :math:`\text{input}[i, j]`) of the input tensor). Each channel will be zeroed out independently on every forward call with probability :attr:`p` using samples from a Bernoulli distribution. See :class:`~torch.nn.Dropout1d` for details. Args: p: probability of a channel to be zeroed. Default: 0.5 training: apply dropout if is ``True``. Default: ``True`` inplace: If set to ``True``, will do this operation in-place. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function(dropout1d, (input,), input, p=p, training=training, inplace=inplace) if p < 0.0 or p > 1.0: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) inp_dim = input.dim() if inp_dim not in (2, 3): raise RuntimeError(f"dropout1d: Expected 2D or 3D input, but received a {inp_dim}D input. " "Note that dropout1d exists to provide channel-wise dropout on inputs with 1 " "spatial dimension, a channel dimension, and an optional batch dimension " "(i.e. 2D or 3D inputs).") is_batched = inp_dim == 3 if not is_batched: input = input.unsqueeze_(0) if inplace else input.unsqueeze(0) result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training) if not is_batched: result = result.squeeze_(0) if inplace else result.squeeze(0) return result def dropout2d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: r""" Randomly zero out entire channels (a channel is a 2D feature map, e.g., the :math:`j`-th channel of the :math:`i`-th sample in the batched input is a 2D tensor :math:`\text{input}[i, j]`) of the input tensor). Each channel will be zeroed out independently on every forward call with probability :attr:`p` using samples from a Bernoulli distribution. See :class:`~torch.nn.Dropout2d` for details. Args: p: probability of a channel to be zeroed. Default: 0.5 training: apply dropout if is ``True``. Default: ``True`` inplace: If set to ``True``, will do this operation in-place. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function(dropout2d, (input,), input, p=p, training=training, inplace=inplace) if p < 0.0 or p > 1.0: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) inp_dim = input.dim() if inp_dim not in (3, 4): warn_msg = (f"dropout2d: Received a {inp_dim}-D input to dropout2d, which is deprecated " "and will result in an error in a future release. To retain the behavior " "and silence this warning, please use dropout instead. Note that dropout2d " "exists to provide channel-wise dropout on inputs with 2 spatial dimensions, " "a channel dimension, and an optional batch dimension (i.e. 3D or 4D inputs).") warnings.warn(warn_msg) # TODO: Properly support no-batch-dim inputs. For now, these are NOT supported; passing # a 3D input will perform dropout1d behavior instead. This was done historically and the # behavior is maintained here for now. # See https://github.com/pytorch/pytorch/issues/77081 if inp_dim == 3: warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise " "1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C " "is the channel dim. This behavior will change in a future release to interpret the " "input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D " "channel-wise dropout behavior, please switch to using dropout1d instead.") result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training) return result def dropout3d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: r""" Randomly zero out entire channels (a channel is a 3D feature map, e.g., the :math:`j`-th channel of the :math:`i`-th sample in the batched input is a 3D tensor :math:`\text{input}[i, j]`) of the input tensor). Each channel will be zeroed out independently on every forward call with probability :attr:`p` using samples from a Bernoulli distribution. See :class:`~torch.nn.Dropout3d` for details. Args: p: probability of a channel to be zeroed. Default: 0.5 training: apply dropout if is ``True``. Default: ``True`` inplace: If set to ``True``, will do this operation in-place. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function(dropout3d, (input,), input, p=p, training=training, inplace=inplace) if p < 0.0 or p > 1.0: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) inp_dim = input.dim() if inp_dim not in (4, 5): warn_msg = (f"dropout3d: Received a {inp_dim}-D input to dropout3d, which is deprecated " "and will result in an error in a future release. To retain the behavior " "and silence this warning, please use dropout instead. Note that dropout3d " "exists to provide channel-wise dropout on inputs with 3 spatial dimensions, " "a channel dimension, and an optional batch dimension (i.e. 4D or 5D inputs).") warnings.warn(warn_msg) is_batched = inp_dim == 5 if not is_batched: input = input.unsqueeze_(0) if inplace else input.unsqueeze(0) result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training) if not is_batched: result = result.squeeze_(0) if inplace else result.squeeze(0) return result def feature_alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor: r""" Randomly masks out entire channels (a channel is a feature map, e.g. the :math:`j`-th channel of the :math:`i`-th sample in the batch input is a tensor :math:`\text{input}[i, j]`) of the input tensor). Instead of setting activations to zero, as in regular Dropout, the activations are set to the negative saturation value of the SELU activation function. Each element will be masked independently on every forward call with probability :attr:`p` using samples from a Bernoulli distribution. The elements to be masked are randomized on every forward call, and scaled and shifted to maintain zero mean and unit variance. See :class:`~torch.nn.FeatureAlphaDropout` for details. Args: p: dropout probability of a channel to be zeroed. Default: 0.5 training: apply dropout if is ``True``. Default: ``True`` inplace: If set to ``True``, will do this operation in-place. Default: ``False`` """ if has_torch_function_unary(input): return handle_torch_function( feature_alpha_dropout, (input,), input, p=p, training=training, inplace=inplace ) if p < 0.0 or p > 1.0: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) return _VF.feature_alpha_dropout_(input, p, training) if inplace else _VF.feature_alpha_dropout(input, p, training) def _threshold(input: Tensor, threshold: float, value: float, inplace: bool = False) -> Tensor: r"""Thresholds each element of the input Tensor. See :class:`~torch.nn.Threshold` for more details. """ if has_torch_function_unary(input): return handle_torch_function(_threshold, (input,), input, threshold, value, inplace=inplace) if inplace: result = _VF.threshold_(input, threshold, value) else: result = _VF.threshold(input, threshold, value) return result # We define this function as _threshold because it takes an argument # named threshold, which clobbers the recursive reference to the # function needed for __torch_function__ support threshold = _threshold threshold_ = _add_docstr( _VF.threshold_, r""" threshold_(input, threshold, value) -> Tensor In-place version of :func:`~threshold`. """, ) def relu(input: Tensor, inplace: bool = False) -> Tensor: r"""relu(input, inplace=False) -> Tensor Applies the rectified linear unit function element-wise. See :class:`~torch.nn.ReLU` for more details. """ if has_torch_function_unary(input): return handle_torch_function(relu, (input,), input, inplace=inplace) if inplace: result = torch.relu_(input) else: result = torch.relu(input) return result relu_ = _add_docstr( torch.relu_, r""" relu_(input) -> Tensor In-place version of :func:`~relu`. """, ) def glu(input: Tensor, dim: int = -1) -> Tensor: r""" glu(input, dim=-1) -> Tensor The gated linear unit. Computes: .. math :: \text{GLU}(a, b) = a \otimes \sigma(b) where `input` is split in half along `dim` to form `a` and `b`, :math:`\sigma` is the sigmoid function and :math:`\otimes` is the element-wise product between matrices. See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_. Args: input (Tensor): input tensor dim (int): dimension on which to split the input. Default: -1 """ if has_torch_function_unary(input): return handle_torch_function(glu, (input,), input, dim=dim) if input.dim() == 0: raise RuntimeError("glu does not support scalars because halving size must be even") return torch._C._nn.glu(input, dim) def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor: r""" hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Tensor Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more details. """ if has_torch_function_unary(input): return handle_torch_function(hardtanh, (input,), input, min_val=min_val, max_val=max_val, inplace=inplace) if inplace: result = torch._C._nn.hardtanh_(input, min_val, max_val) else: result = torch._C._nn.hardtanh(input, min_val, max_val) return result hardtanh_ = _add_docstr( torch._C._nn.hardtanh_, r""" hardtanh_(input, min_val=-1., max_val=1.) -> Tensor In-place version of :func:`~hardtanh`. """, ) def relu6(input: Tensor, inplace: bool = False) -> Tensor: r"""relu6(input, inplace=False) -> Tensor Applies the element-wise function :math:`\text{ReLU6}(x) = \min(\max(0,x), 6)`. See :class:`~torch.nn.ReLU6` for more details. """ if has_torch_function_unary(input): return handle_torch_function(relu6, (input,), input, inplace=inplace) if inplace: result = torch._C._nn.relu6_(input) else: result = torch._C._nn.relu6(input) return result def elu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor: r"""Applies the Exponential Linear Unit (ELU) function element-wise. See :class:`~torch.nn.ELU` for more details. """ if has_torch_function_unary(input): return handle_torch_function(elu, (input,), input, alpha=alpha, inplace=inplace) if inplace: result = torch._C._nn.elu_(input, alpha) else: result = torch._C._nn.elu(input, alpha) return result elu_ = _add_docstr( torch._C._nn.elu_, r""" elu_(input, alpha=1.) -> Tensor In-place version of :func:`~elu`. """, ) def selu(input: Tensor, inplace: bool = False) -> Tensor: r"""selu(input, inplace=False) -> Tensor Applies element-wise, :math:`\text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))`, with :math:`\alpha=1.6732632423543772848170429916717` and :math:`scale=1.0507009873554804934193349852946`. See :class:`~torch.nn.SELU` for more details. """ if has_torch_function_unary(input): return handle_torch_function(selu, (input,), input, inplace=inplace) if inplace: result = torch.selu_(input) else: result = torch.selu(input) return result selu_ = _add_docstr( torch.selu_, r""" selu_(input) -> Tensor In-place version of :func:`~selu`. """, ) def celu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor: r"""celu(input, alpha=1., inplace=False) -> Tensor Applies element-wise, :math:`\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`. See :class:`~torch.nn.CELU` for more details. """ if has_torch_function_unary(input): return handle_torch_function(celu, (input,), input, alpha=alpha, inplace=inplace) if inplace: result = torch.celu_(input, alpha) else: result = torch.celu(input, alpha) return result celu_ = _add_docstr( torch.celu_, r""" celu_(input, alpha=1.) -> Tensor In-place version of :func:`~celu`. """, ) def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False) -> Tensor: r""" leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor Applies element-wise, :math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)` See :class:`~torch.nn.LeakyReLU` for more details. """ if has_torch_function_unary(input): return handle_torch_function(leaky_relu, (input,), input, negative_slope=negative_slope, inplace=inplace) if inplace: result = torch._C._nn.leaky_relu_(input, negative_slope) else: result = torch._C._nn.leaky_relu(input, negative_slope) return result leaky_relu_ = _add_docstr( torch._C._nn.leaky_relu_, r""" leaky_relu_(input, negative_slope=0.01) -> Tensor In-place version of :func:`~leaky_relu`. """, ) prelu = _add_docstr( torch.prelu, r"""prelu(input, weight) -> Tensor Applies element-wise the function :math:`\text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x)` where weight is a learnable parameter. .. note:: `weight` is expected to be a scalar or 1-D tensor. If `weight` is 1-D, its size must match the number of input channels, determined by `input.size(1)` when `input.dim() >= 2`, otherwise 1. In the 1-D case, note that when `input` has dim > 2, `weight` can be expanded to the shape of `input` in a way that is not possible using normal :ref:`broadcasting semantics<broadcasting-semantics>`. See :class:`~torch.nn.PReLU` for more details. """) def rrelu( input: Tensor, lower: float = 1.0 / 8, upper: float = 1.0 / 3, training: bool = False, inplace: bool = False ) -> Tensor: r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Tensor Randomized leaky ReLU. See :class:`~torch.nn.RReLU` for more details. """ if has_torch_function_unary(input): return handle_torch_function( rrelu, (input,), input, lower=lower, upper=upper, training=training, inplace=inplace ) if inplace: result = torch.rrelu_(input, lower, upper, training) else: result = torch.rrelu(input, lower, upper, training) return result rrelu_ = _add_docstr( torch.rrelu_, r""" rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor In-place version of :func:`~rrelu`. """, ) logsigmoid = _add_docstr( torch._C._nn.log_sigmoid, r""" logsigmoid(input) -> Tensor Applies element-wise :math:`\text{LogSigmoid}(x_i) = \log \left(\frac{1}{1 + \exp(-x_i)}\right)` See :class:`~torch.nn.LogSigmoid` for more details. """, ) gelu = _add_docstr( torch._C._nn.gelu, r""" gelu(input, approximate = 'none') -> Tensor When the approximate argument is 'none', it applies element-wise the function :math:`\text{GELU}(x) = x * \Phi(x)` where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. When the approximate argument is 'tanh', Gelu is estimated with: :math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt(2 / \pi) * (x + 0.044715 * x^3))) See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_. """) hardshrink = _add_docstr( torch.hardshrink, r""" hardshrink(input, lambd=0.5) -> Tensor Applies the hard shrinkage function element-wise See :class:`~torch.nn.Hardshrink` for more details. """) def tanhshrink(input): r"""tanhshrink(input) -> Tensor Applies element-wise, :math:`\text{Tanhshrink}(x) = x - \text{Tanh}(x)` See :class:`~torch.nn.Tanhshrink` for more details. """ if has_torch_function_unary(input): return handle_torch_function(tanhshrink, (input,), input) return input - input.tanh() def softsign(input): r"""softsign(input) -> Tensor Applies element-wise, the function :math:`\text{SoftSign}(x) = \frac{x}{1 + |x|}` See :class:`~torch.nn.Softsign` for more details. """ if has_torch_function_unary(input): return handle_torch_function(softsign, (input,), input) return input / (input.abs() + 1) softplus = _add_docstr( torch._C._nn.softplus, r""" softplus(input, beta=1, threshold=20) -> Tensor Applies element-wise, the function :math:`\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))`. For numerical stability the implementation reverts to the linear function when :math:`input \times \beta > threshold`. See :class:`~torch.nn.Softplus` for more details. """, ) def _get_softmax_dim(name: str, ndim: int, stacklevel: int) -> int: warnings.warn( "Implicit dimension choice for {} has been deprecated. " "Change the call to include dim=X as an argument.".format(name), stacklevel=stacklevel, ) if ndim == 0 or ndim == 1 or ndim == 3: ret = 0 else: ret = 1 return ret def softmin(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor: r"""Applies a softmin function. Note that :math:`\text{Softmin}(x) = \text{Softmax}(-x)`. See softmax definition for mathematical formula. See :class:`~torch.nn.Softmin` for more details. Args: input (Tensor): input dim (int): A dimension along which softmin will be computed (so every slice along dim will sum to 1). dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. """ if has_torch_function_unary(input): return handle_torch_function(softmin, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) if dim is None: dim = _get_softmax_dim("softmin", input.dim(), _stacklevel) if dtype is None: ret = (-input).softmax(dim) else: ret = (-input).softmax(dim, dtype=dtype) return ret def softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor: r"""Applies a softmax function. Softmax is defined as: :math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}` It is applied to all slices along dim, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~torch.nn.Softmax` for more details. Args: input (Tensor): input dim (int): A dimension along which softmax will be computed. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. .. note:: This function doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use log_softmax instead (it's faster and has better numerical properties). """ if has_torch_function_unary(input): return handle_torch_function(softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) if dim is None: dim = _get_softmax_dim("softmax", input.dim(), _stacklevel) if dtype is None: ret = input.softmax(dim) else: ret = input.softmax(dim, dtype=dtype) return ret def gumbel_softmax(logits: Tensor, tau: float = 1, hard: bool = False, eps: float = 1e-10, dim: int = -1) -> Tensor: r""" Samples from the Gumbel-Softmax distribution (`Link 1`_ `Link 2`_) and optionally discretizes. Args: logits: `[..., num_features]` unnormalized log probabilities tau: non-negative scalar temperature hard: if ``True``, the returned samples will be discretized as one-hot vectors, but will be differentiated as if it is the soft sample in autograd dim (int): A dimension along which softmax will be computed. Default: -1. Returns: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution. If ``hard=True``, the returned samples will be one-hot, otherwise they will be probability distributions that sum to 1 across `dim`. .. note:: This function is here for legacy reasons, may be removed from nn.Functional in the future. .. note:: The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft` It achieves two things: - makes the output value exactly one-hot (since we add then subtract y_soft value) - makes the gradient equal to y_soft gradient (since we strip all other gradients) Examples:: >>> logits = torch.randn(20, 32) >>> # Sample soft categorical using reparametrization trick: >>> F.gumbel_softmax(logits, tau=1, hard=False) >>> # Sample hard categorical using "Straight-through" trick: >>> F.gumbel_softmax(logits, tau=1, hard=True) .. _Link 1: https://arxiv.org/abs/1611.00712 .. _Link 2: https://arxiv.org/abs/1611.01144 """ if has_torch_function_unary(logits): return handle_torch_function(gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim) if eps != 1e-10: warnings.warn("`eps` parameter is deprecated and has no effect.") gumbels = ( -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log() ) # ~Gumbel(0,1) gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) y_soft = gumbels.softmax(dim) if hard: # Straight through. index = y_soft.max(dim, keepdim=True)[1] y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) ret = y_hard - y_soft.detach() + y_soft else: # Reparametrization trick. ret = y_soft return ret def log_softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor: r"""Applies a softmax followed by a logarithm. While mathematically equivalent to log(softmax(x)), doing these two operations separately is slower and numerically unstable. This function uses an alternative formulation to compute the output and gradient correctly. See :class:`~torch.nn.LogSoftmax` for more details. Args: input (Tensor): input dim (int): A dimension along which log_softmax will be computed. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is cast to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. """ if has_torch_function_unary(input): return handle_torch_function(log_softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) if dim is None: dim = _get_softmax_dim("log_softmax", input.dim(), _stacklevel) if dtype is None: ret = input.log_softmax(dim) else: ret = input.log_softmax(dim, dtype=dtype) return ret softshrink = _add_docstr( torch._C._nn.softshrink, r""" softshrink(input, lambd=0.5) -> Tensor Applies the soft shrinkage function elementwise See :class:`~torch.nn.Softshrink` for more details. """, ) def tanh(input): r"""tanh(input) -> Tensor Applies element-wise, :math:`\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}` See :class:`~torch.nn.Tanh` for more details. """ warnings.warn("nn.functional.tanh is deprecated. Use torch.tanh instead.") return input.tanh() def sigmoid(input): r"""sigmoid(input) -> Tensor Applies the element-wise function :math:`\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}` See :class:`~torch.nn.Sigmoid` for more details. """ warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.") return input.sigmoid() def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: r"""Applies the element-wise function .. math:: \text{Hardsigmoid}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ 1 & \text{if~} x \ge +3, \\ x / 6 + 1 / 2 & \text{otherwise} \end{cases} Args: inplace: If set to ``True``, will do this operation in-place. Default: ``False`` See :class:`~torch.nn.Hardsigmoid` for more details. """ if has_torch_function_unary(input): return handle_torch_function(hardsigmoid, (input,), input, inplace=inplace) if inplace: return torch._C._nn.hardsigmoid_(input) return torch._C._nn.hardsigmoid(input) linear = _add_docstr( torch._C._nn.linear, r""" linear(input, weight, bias=None) -> Tensor Applies a linear transformation to the incoming data: :math:`y = xA^T + b`. This operator supports :ref:`TensorFloat32<tf32_on_ampere>`. Shape: - Input: :math:`(*, in\_features)` where `*` means any number of additional dimensions, including none - Weight: :math:`(out\_features, in\_features)` or :math:`(in\_features)` - Bias: :math:`(out\_features)` or :math:`()` - Output: :math:`(*, out\_features)` or :math:`(*)`, based on the shape of the weight """) bilinear = _add_docstr( torch.bilinear, r""" bilinear(input1, input2, weight, bias=None) -> Tensor Applies a bilinear transformation to the incoming data: :math:`y = x_1^T A x_2 + b` Shape: - input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and :math:`*` means any number of additional dimensions. All but the last dimension of the inputs should be the same. - input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}` - weight: :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})` - bias: :math:`(\text{out\_features})` - output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}` and all but the last dimension are the same shape as the input. """) def silu(input: Tensor, inplace: bool = False) -> Tensor: r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiLU function is also known as the swish function. .. math:: \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.} .. note:: See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_ where the SiLU (Sigmoid Linear Unit) was originally coined, and see `Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish: a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_ where the SiLU was experimented with later. See :class:`~torch.nn.SiLU` for more details. """ if has_torch_function_unary(input): return handle_torch_function(silu, (input,), input, inplace=inplace) if inplace: return torch._C._nn.silu_(input) return torch._C._nn.silu(input) def mish(input: Tensor, inplace: bool = False) -> Tensor: r"""Applies the Mish function, element-wise. Mish: A Self Regularized Non-Monotonic Neural Activation Function. .. math:: \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) .. note:: See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_ See :class:`~torch.nn.Mish` for more details. """ if has_torch_function_unary(input): return handle_torch_function(mish, (input,), input, inplace=inplace) if inplace: return torch._C._nn.mish_(input) return torch._C._nn.mish(input) def hardswish(input: Tensor, inplace: bool = False) -> Tensor: r"""Applies the hardswish function, element-wise, as described in the paper: `Searching for MobileNetV3`_. .. math:: \text{Hardswish}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ x & \text{if~} x \ge +3, \\ x \cdot (x + 3) /6 & \text{otherwise} \end{cases} See :class:`~torch.nn.Hardswish` for more details. .. _`Searching for MobileNetV3`: https://arxiv.org/abs/1905.02244 """ if has_torch_function_unary(input): return handle_torch_function(hardswish, (input,), input, inplace=inplace) if inplace: return torch._C._nn.hardswish_(input) return torch._C._nn.hardswish(input) def _no_grad_embedding_renorm_(weight: Tensor, input: Tensor, max_norm: float, norm_type: float) -> Tuple[Tensor, Tensor]: torch.embedding_renorm_(weight.detach(), input, max_norm, norm_type) def embedding( input: Tensor, weight: Tensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, ) -> Tensor: r"""A simple lookup table that looks up embeddings in a fixed dictionary and size. This module is often used to retrieve word embeddings using indices. The input to the module is a list of indices, and the embedding matrix, and the output is the corresponding word embeddings. See :class:`torch.nn.Embedding` for more details. Args: input (LongTensor): Tensor containing indices into the embedding matrix weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1, and number of columns equal to the embedding size padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated during training, i.e. it remains as a fixed "pad". max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` is renormalized to have norm :attr:`max_norm`. Note: this will modify :attr:`weight` in-place. norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``. scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default ``False``. sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under :class:`torch.nn.Embedding` for more details regarding sparse gradients. Shape: - Input: LongTensor of arbitrary shape containing the indices to extract - Weight: Embedding matrix of floating point type with shape `(V, embedding_dim)`, where V = maximum index + 1 and embedding_dim = the embedding size - Output: `(*, embedding_dim)`, where `*` is the input shape Examples:: >>> # a batch of 2 samples of 4 indices each >>> input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]]) >>> # an embedding matrix containing 10 tensors of size 3 >>> embedding_matrix = torch.rand(10, 3) >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> F.embedding(input, embedding_matrix) tensor([[[ 0.8490, 0.9625, 0.6753], [ 0.9666, 0.7761, 0.6108], [ 0.6246, 0.9751, 0.3618], [ 0.4161, 0.2419, 0.7383]], [[ 0.6246, 0.9751, 0.3618], [ 0.0237, 0.7794, 0.0528], [ 0.9666, 0.7761, 0.6108], [ 0.3385, 0.8612, 0.1867]]]) >>> # example with padding_idx >>> weights = torch.rand(10, 3) >>> weights[0, :].zero_() >>> embedding_matrix = weights >>> input = torch.tensor([[0,2,0,5]]) >>> F.embedding(input, embedding_matrix, padding_idx=0) tensor([[[ 0.0000, 0.0000, 0.0000], [ 0.5609, 0.5384, 0.8720], [ 0.0000, 0.0000, 0.0000], [ 0.6262, 0.2438, 0.7471]]]) """ if has_torch_function_variadic(input, weight): return handle_torch_function( embedding, (input, weight), input, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse, ) if padding_idx is not None: if padding_idx > 0: assert padding_idx < weight.size(0), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert padding_idx >= -weight.size(0), "Padding_idx must be within num_embeddings" padding_idx = weight.size(0) + padding_idx else: padding_idx = -1 if max_norm is not None: # Note [embedding_renorm contiguous] # `embedding_renorm_` will call .contiguous() on input anyways, so we # call it here and take advantage of the improved locality in the # `embedding` call below too. input = input.contiguous() # Note [embedding_renorm set_grad_enabled] # XXX: equivalent to # with torch.no_grad(): # torch.embedding_renorm_ # remove once script supports set_grad_enabled _no_grad_embedding_renorm_(weight, input, max_norm, norm_type) return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) def embedding_bag( input: Tensor, weight: Tensor, offsets: Optional[Tensor] = None, max_norm: Optional[float] = None, norm_type: float = 2, scale_grad_by_freq: bool = False, mode: str = "mean", sparse: bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: bool = False, padding_idx: Optional[int] = None, ) -> Tensor: r"""Computes sums, means or maxes of `bags` of embeddings, without instantiating the intermediate embeddings. See :class:`torch.nn.EmbeddingBag` for more details. Note: {backward_reproducibility_note} Args: input (LongTensor): Tensor containing bags of indices into the embedding matrix weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1, and number of columns equal to the embedding size offsets (LongTensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines the starting index position of each bag (sequence) in :attr:`input`. max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` is renormalized to have norm :attr:`max_norm`. Note: this will modify :attr:`weight` in-place. norm_type (float, optional): The ``p`` in the ``p``-norm to compute for the :attr:`max_norm` option. Default ``2``. scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default ``False``. Note: this option is not supported when ``mode="max"``. mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag. Default: ``"mean"`` sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under :class:`torch.nn.Embedding` for more details regarding sparse gradients. Note: this option is not supported when ``mode="max"``. per_sample_weights (Tensor, optional): a tensor of float / double weights, or None to indicate all weights should be taken to be 1. If specified, :attr:`per_sample_weights` must have exactly the same shape as input and is treated as having the same :attr:`offsets`, if those are not None. include_last_offset (bool, optional): if ``True``, the size of offsets is equal to the number of bags + 1. The last element is the size of the input, or the ending index position of the last bag (sequence). padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated during training, i.e. it remains as a fixed "pad". Note that the embedding vector at :attr:`padding_idx` is excluded from the reduction. Shape: - :attr:`input` (LongTensor) and :attr:`offsets` (LongTensor, optional) - If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences) each of fixed length ``N``, and this will return ``B`` values aggregated in a way depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case. - If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing the starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`, :attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have returned vectors filled by zeros. - :attr:`weight` (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)` - :attr:`per_sample_weights` (Tensor, optional). Has the same shape as :attr:`input`. - :attr:`output`: aggregated embedding values of shape `(B, embedding_dim)` Examples:: >>> # an Embedding module containing 10 tensors of size 3 >>> embedding_matrix = torch.rand(10, 3) >>> # a batch of 2 samples of 4 indices each >>> input = torch.tensor([1,2,4,5,4,3,2,9]) >>> offsets = torch.tensor([0,4]) >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> F.embedding_bag(input, embedding_matrix, offsets) tensor([[ 0.3397, 0.3552, 0.5545], [ 0.5893, 0.4386, 0.5882]]) >>> # example with padding_idx >>> embedding_matrix = torch.rand(10, 3) >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9]) >>> offsets = torch.tensor([0,4]) >>> F.embedding_bag(input, embedding_matrix, offsets, padding_idx=2, mode='sum') tensor([[ 0.0000, 0.0000, 0.0000], [-0.7082, 3.2145, -2.6251]]) """ if has_torch_function_variadic(input, weight, offsets, per_sample_weights): return handle_torch_function( embedding_bag, (input, weight, offsets, per_sample_weights), input, weight, offsets=offsets, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, mode=mode, sparse=sparse, per_sample_weights=per_sample_weights, include_last_offset=include_last_offset, padding_idx=padding_idx, ) # Check for backward compatibility. # Used to be embedding_bag(weight, input, ...) # Now is embedding_bag(input, weight, ...) if weight.dtype == torch.long and input.is_floating_point(): warnings.warn( "Argument order of nn.functional.embedding_bag was changed. " "Usage `embedding_bag(weight, input, ...)` is deprecated, " "and should now be `embedding_bag(input, weight, ...)`." ) weight, input = input, weight if per_sample_weights is not None and input.size() != per_sample_weights.size(): raise ValueError( "embedding_bag: If per_sample_weights ({}) is not None, " "then it must have the same shape as the input ({})".format(per_sample_weights.shape, input.shape) ) if input.dim() == 2: if offsets is not None: type_str = "<unknown>" # TODO: Remove this once script supports type() calls if not torch.jit.is_scripting(): type_str = str(type(offsets)) raise ValueError( "if input is 2D, then offsets has to be None" ", as input is treated is a mini-batch of" " fixed length sequences. However, found " "offsets of type {}".format(type_str) ) offsets = torch.arange(0, input.numel(), input.size(1), dtype=input.dtype, device=input.device) input = input.reshape(-1) if per_sample_weights is not None: per_sample_weights = per_sample_weights.reshape(-1) elif input.dim() == 1: if offsets is None: raise ValueError("offsets has to be a 1D Tensor but got None") if offsets.dim() != 1: raise ValueError("offsets has to be a 1D Tensor") else: raise ValueError("input has to be 1D or 2D Tensor," " but got Tensor of dimension {}".format(input.dim())) if mode == "sum": mode_enum = 0 elif mode == "mean": mode_enum = 1 elif mode == "max": mode_enum = 2 if scale_grad_by_freq: raise ValueError("max mode does not support scaling the gradient by the frequency") if sparse: raise ValueError("max mode does not support sparse weights") else: raise ValueError("mode has to be one of sum, mean or max") if max_norm is not None: # XXX: equivalent to # with torch.no_grad(): # torch.nembedding_renorm_ # remove once script supports set_grad_enabled _no_grad_embedding_renorm_(weight, input, max_norm, norm_type) if per_sample_weights is not None and mode != "sum": raise NotImplementedError( "embedding_bag: per_sample_weights was not None. " "per_sample_weights is only supported for mode='sum' " "(got mode='{}'). Please open a feature request on GitHub.".format(mode) ) ret, _, _, _ = torch.embedding_bag( weight, input, offsets, scale_grad_by_freq, mode_enum, sparse, per_sample_weights, include_last_offset, padding_idx ) return ret if embedding_bag.__doc__: embedding_bag.__doc__ = embedding_bag.__doc__.format(**reproducibility_notes) def _verify_batch_size(size: List[int]) -> None: # XXX: JIT script does not support the reduce from functools, and mul op is a # builtin, which cannot be used as a value to a func yet, so rewrite this size # check to a simple equivalent for loop # # TODO: make use of reduce like below when JIT is ready with the missing features: # from operator import mul # from functools import reduce # # if reduce(mul, size[2:], size[0]) == 1 size_prods = size[0] for i in range(len(size) - 2): size_prods *= size[i + 2] if size_prods == 1: raise ValueError("Expected more than 1 value per channel when training, got input size {}".format(size)) def batch_norm( input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.1, eps: float = 1e-5, ) -> Tensor: r"""Applies Batch Normalization for each channel across a batch of data. See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`, :class:`~torch.nn.BatchNorm3d` for details. """ if has_torch_function_variadic(input, running_mean, running_var, weight, bias): return handle_torch_function( batch_norm, (input, running_mean, running_var, weight, bias), input, running_mean, running_var, weight=weight, bias=bias, training=training, momentum=momentum, eps=eps, ) if training: _verify_batch_size(input.size()) return torch.batch_norm( input, weight, bias, running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled ) def _verify_spatial_size(size: List[int]) -> None: # Verify that there is > 1 spatial element for instance norm calculation. size_prods = 1 for i in range(2, len(size)): size_prods *= size[i] if size_prods == 1: raise ValueError("Expected more than 1 spatial element when training, got input size {}".format(size)) def instance_norm( input: Tensor, running_mean: Optional[Tensor] = None, running_var: Optional[Tensor] = None, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, use_input_stats: bool = True, momentum: float = 0.1, eps: float = 1e-5, ) -> Tensor: r"""Applies Instance Normalization for each channel in each data sample in a batch. See :class:`~torch.nn.InstanceNorm1d`, :class:`~torch.nn.InstanceNorm2d`, :class:`~torch.nn.InstanceNorm3d` for details. """ if has_torch_function_variadic(input, running_mean, running_var, weight, bias): return handle_torch_function( instance_norm, (input, running_mean, running_var, weight, bias), input, running_mean=running_mean, running_var=running_var, weight=weight, bias=bias, use_input_stats=use_input_stats, momentum=momentum, eps=eps, ) if use_input_stats: _verify_spatial_size(input.size()) return torch.instance_norm( input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, torch.backends.cudnn.enabled ) def layer_norm( input: Tensor, normalized_shape: List[int], weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5, ) -> Tensor: r"""Applies Layer Normalization for last certain number of dimensions. See :class:`~torch.nn.LayerNorm` for details. """ if has_torch_function_variadic(input, weight, bias): return handle_torch_function( layer_norm, (input, weight, bias), input, normalized_shape, weight=weight, bias=bias, eps=eps ) return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled) def group_norm( input: Tensor, num_groups: int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5 ) -> Tensor: r"""Applies Group Normalization for last certain number of dimensions. See :class:`~torch.nn.GroupNorm` for details. """ if has_torch_function_variadic(input, weight, bias): return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps) _verify_batch_size([input.size(0) * input.size(1) // num_groups, num_groups] + list(input.size()[2:])) return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled) def local_response_norm(input: Tensor, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.0) -> Tensor: r"""Applies local response normalization over an input signal composed of several input planes, where channels occupy the second dimension. Applies normalization across channels. See :class:`~torch.nn.LocalResponseNorm` for details. """ if has_torch_function_unary(input): return handle_torch_function(local_response_norm, (input,), input, size, alpha=alpha, beta=beta, k=k) dim = input.dim() if dim < 3: raise ValueError( "Expected 3D or higher dimensionality \ input (got {} dimensions)".format( dim ) ) if input.numel() == 0: return input div = input.mul(input).unsqueeze(1) if dim == 3: div = pad(div, (0, 0, size // 2, (size - 1) // 2)) div = avg_pool2d(div, (size, 1), stride=1).squeeze(1) else: sizes = input.size() div = div.view(sizes[0], 1, sizes[1], sizes[2], -1) div = pad(div, (0, 0, 0, 0, size // 2, (size - 1) // 2)) div = avg_pool3d(div, (size, 1, 1), stride=1).squeeze(1) div = div.view(sizes) div = div.mul(alpha).add(k).pow(beta) return input / div # loss def ctc_loss( log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = 0, reduction: str = "mean", zero_infinity: bool = False, ) -> Tensor: r"""The Connectionist Temporal Classification loss. See :class:`~torch.nn.CTCLoss` for details. Note: {cudnn_reproducibility_note} Note: {backward_reproducibility_note} Args: log_probs: :math:`(T, N, C)` or :math:`(T, C)` where `C = number of characters in alphabet including blank`, `T = input length`, and `N = batch size`. The logarithmized probabilities of the outputs (e.g. obtained with :func:`torch.nn.functional.log_softmax`). targets: :math:`(N, S)` or `(sum(target_lengths))`. Targets cannot be blank. In the second form, the targets are assumed to be concatenated. input_lengths: :math:`(N)` or :math:`()`. Lengths of the inputs (must each be :math:`\leq T`) target_lengths: :math:`(N)` or :math:`()`. Lengths of the targets blank (int, optional): Blank label. Default :math:`0`. reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the output losses will be divided by the target lengths and then the mean over the batch is taken, ``'sum'``: the output will be summed. Default: ``'mean'`` zero_infinity (bool, optional): Whether to zero infinite losses and the associated gradients. Default: ``False`` Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Example:: >>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_() >>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long) >>> input_lengths = torch.full((16,), 50, dtype=torch.long) >>> target_lengths = torch.randint(10,30,(16,), dtype=torch.long) >>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths) >>> loss.backward() """ if has_torch_function_variadic(log_probs, targets, input_lengths, target_lengths): return handle_torch_function( ctc_loss, (log_probs, targets, input_lengths, target_lengths), log_probs, targets, input_lengths, target_lengths, blank=blank, reduction=reduction, zero_infinity=zero_infinity ) return torch.ctc_loss( log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction), zero_infinity ) if ctc_loss.__doc__: ctc_loss.__doc__ = ctc_loss.__doc__.format(**reproducibility_notes) def nll_loss( input: Tensor, target: Tensor, weight: Optional[Tensor] = None, size_average: Optional[bool] = None, ignore_index: int = -100, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""The negative log likelihood loss. See :class:`~torch.nn.NLLLoss` for details. Args: input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)` in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K \geq 1` in the case of K-dimensional loss. `input` is expected to be log-probabilities. target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`, or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for K-dimensional loss. weight (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size `C` size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when reduce is ``False``. Default: ``True`` ignore_index (int, optional): Specifies a target value that is ignored and does not contribute to the input gradient. When :attr:`size_average` is ``True``, the loss is averaged over non-ignored targets. Default: -100 reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`. Default: ``True`` reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` Example:: >>> # input is of size N x C = 3 x 5 >>> input = torch.randn(3, 5, requires_grad=True) >>> # each element in target has to have 0 <= value < C >>> target = torch.tensor([1, 0, 4]) >>> output = F.nll_loss(F.log_softmax(input), target) >>> output.backward() """ if has_torch_function_variadic(input, target, weight): return handle_torch_function( nll_loss, (input, target, weight), input, target, weight=weight, size_average=size_average, ignore_index=ignore_index, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) return torch._C._nn.nll_loss_nd(input, target, weight, _Reduction.get_enum(reduction), ignore_index) def poisson_nll_loss( input: Tensor, target: Tensor, log_input: bool = True, full: bool = False, size_average: Optional[bool] = None, eps: float = 1e-8, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""Poisson negative log likelihood loss. See :class:`~torch.nn.PoissonNLLLoss` for details. Args: input: expectation of underlying Poisson distribution. target: random sample :math:`target \sim \text{Poisson}(input)`. log_input: if ``True`` the loss is computed as :math:`\exp(\text{input}) - \text{target} * \text{input}`, if ``False`` then loss is :math:`\text{input} - \text{target} * \log(\text{input}+\text{eps})`. Default: ``True`` full: whether to compute full loss, i. e. to add the Stirling approximation term. Default: ``False`` :math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`. size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when reduce is ``False``. Default: ``True`` eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when :attr:`log_input`\ =\ ``False``. Default: 1e-8 reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`. Default: ``True`` reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` """ if has_torch_function_variadic(input, target): return handle_torch_function( poisson_nll_loss, (input, target), input, target, log_input=log_input, full=full, size_average=size_average, eps=eps, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) if reduction != "none" and reduction != "mean" and reduction != "sum": ret = input raise ValueError(reduction + " is not valid") ret = torch.poisson_nll_loss(input, target, log_input, full, eps, _Reduction.get_enum(reduction)) return ret def gaussian_nll_loss( input: Tensor, target: Tensor, var: Tensor, full: bool = False, eps: float = 1e-6, reduction: str = "mean", ) -> Tensor: r"""Gaussian negative log likelihood loss. See :class:`~torch.nn.GaussianNLLLoss` for details. Args: input: expectation of the Gaussian distribution. target: sample from the Gaussian distribution. var: tensor of positive variance(s), one for each of the expectations in the input (heteroscedastic), or a single one (homoscedastic). full (bool, optional): include the constant term in the loss calculation. Default: ``False``. eps (float, optional): value added to var, for stability. Default: 1e-6. reduction (str, optional): specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the output is the average of all batch member losses, ``'sum'``: the output is the sum of all batch member losses. Default: ``'mean'``. """ if has_torch_function_variadic(input, target, var): return handle_torch_function( gaussian_nll_loss, (input, target, var), input, target, var, full=full, eps=eps, reduction=reduction, ) # Check var size # If var.size == input.size, the case is heteroscedastic and no further checks are needed. # Otherwise: if var.size() != input.size(): # If var is one dimension short of input, but the sizes match otherwise, then this is a homoscedastic case. # e.g. input.size = (10, 2, 3), var.size = (10, 2) # -> unsqueeze var so that var.shape = (10, 2, 1) # this is done so that broadcasting can happen in the loss calculation if input.size()[:-1] == var.size(): var = torch.unsqueeze(var, -1) # This checks if the sizes match up to the final dimension, and the final dimension of var is of size 1. # This is also a homoscedastic case. # e.g. input.size = (10, 2, 3), var.size = (10, 2, 1) elif input.size()[:-1] == var.size()[:-1] and var.size(-1) == 1: # Heteroscedastic case pass # If none of the above pass, then the size of var is incorrect. else: raise ValueError("var is of incorrect size") # Check validity of reduction mode if reduction != 'none' and reduction != 'mean' and reduction != 'sum': raise ValueError(reduction + " is not valid") # Entries of var must be non-negative if torch.any(var < 0): raise ValueError("var has negative entry/entries") # Clamp for stability var = var.clone() with torch.no_grad(): var.clamp_(min=eps) # Calculate the loss loss = 0.5 * (torch.log(var) + (input - target)**2 / var) if full: loss += 0.5 * math.log(2 * math.pi) if reduction == 'mean': return loss.mean() elif reduction == 'sum': return loss.sum() else: return loss def kl_div( input: Tensor, target: Tensor, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", log_target: bool = False, ) -> Tensor: r"""The `Kullback-Leibler divergence Loss <https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`__ See :class:`~torch.nn.KLDivLoss` for details. Args: input: Tensor of arbitrary shape in log-probabilities. target: Tensor of the same shape as input. See :attr:`log_target` for the target's interpretation. size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when reduce is ``False``. Default: ``True`` reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`. Default: ``True`` reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``. ``'none'``: no reduction will be applied ``'batchmean'``: the sum of the output will be divided by the batchsize ``'sum'``: the output will be summed ``'mean'``: the output will be divided by the number of elements in the output Default: ``'mean'`` log_target (bool): A flag indicating whether ``target`` is passed in the log space. It is recommended to pass certain distributions (like ``softmax``) in the log space to avoid numerical issues caused by explicit ``log``. Default: ``False`` .. note:: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. .. note:: :attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use :attr:`reduction` = ``'batchmean'`` which aligns with KL math definition. In the next major release, ``'mean'`` will be changed to be the same as 'batchmean'. """ if has_torch_function_variadic(input, target): return handle_torch_function( kl_div, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction, log_target=log_target, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: if reduction == "mean": warnings.warn( "reduction: 'mean' divides the total loss by both the batch size and the support size." "'batchmean' divides only by the batch size, and aligns with the KL div math definition." "'mean' will be changed to behave the same as 'batchmean' in the next major release." ) # special case for batchmean if reduction == "batchmean": reduction_enum = _Reduction.get_enum("sum") else: reduction_enum = _Reduction.get_enum(reduction) reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target) if reduction == "batchmean" and input.dim() != 0: reduced = reduced / input.size()[0] return reduced def cross_entropy( input: Tensor, target: Tensor, weight: Optional[Tensor] = None, size_average: Optional[bool] = None, ignore_index: int = -100, reduce: Optional[bool] = None, reduction: str = "mean", label_smoothing: float = 0.0, ) -> Tensor: r"""This criterion computes the cross entropy loss between input logits and target. See :class:`~torch.nn.CrossEntropyLoss` for details. Args: input (Tensor) : Predicted unnormalized logits; see Shape section below for supported shapes. target (Tensor) : Ground truth class indices or class probabilities; see Shape section below for supported shapes. weight (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size `C` size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when reduce is ``False``. Default: ``True`` ignore_index (int, optional): Specifies a target value that is ignored and does not contribute to the input gradient. When :attr:`size_average` is ``True``, the loss is averaged over non-ignored targets. Note that :attr:`ignore_index` is only applicable when the target contains class indices. Default: -100 reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`. Default: ``True`` reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets become a mixture of the original ground truth and a uniform distribution as described in `Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`. Shape: - Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of `K`-dimensional loss. - Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`. If containing class probabilities, same shape as the input and each value should be between :math:`[0, 1]`. where: .. math:: \begin{aligned} C ={} & \text{number of classes} \\ N ={} & \text{batch size} \\ \end{aligned} Examples:: >>> # Example of target with class indices >>> input = torch.randn(3, 5, requires_grad=True) >>> target = torch.randint(5, (3,), dtype=torch.int64) >>> loss = F.cross_entropy(input, target) >>> loss.backward() >>> >>> # Example of target with class probabilities >>> input = torch.randn(3, 5, requires_grad=True) >>> target = torch.randn(3, 5).softmax(dim=1) >>> loss = F.cross_entropy(input, target) >>> loss.backward() """ if has_torch_function_variadic(input, target, weight): return handle_torch_function( cross_entropy, (input, target, weight), input, target, weight=weight, size_average=size_average, ignore_index=ignore_index, reduce=reduce, reduction=reduction, label_smoothing=label_smoothing, ) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) def binary_cross_entropy( input: Tensor, target: Tensor, weight: Optional[Tensor] = None, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""Function that measures the Binary Cross Entropy between the target and input probabilities. See :class:`~torch.nn.BCELoss` for details. Args: input: Tensor of arbitrary shape as probabilities. target: Tensor of the same shape as input with values between 0 and 1. weight (Tensor, optional): a manual rescaling weight if provided it's repeated to match input tensor shape size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when reduce is ``False``. Default: ``True`` reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`. Default: ``True`` reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` Examples:: >>> input = torch.randn(3, 2, requires_grad=True) >>> target = torch.rand(3, 2, requires_grad=False) >>> loss = F.binary_cross_entropy(torch.sigmoid(input), target) >>> loss.backward() """ if has_torch_function_variadic(input, target, weight): return handle_torch_function( binary_cross_entropy, (input, target, weight), input, target, weight=weight, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) if target.size() != input.size(): raise ValueError( "Using a target size ({}) that is different to the input size ({}) is deprecated. " "Please ensure they have the same size.".format(target.size(), input.size()) ) if weight is not None: new_size = _infer_size(target.size(), weight.size()) weight = weight.expand(new_size) return torch._C._nn.binary_cross_entropy(input, target, weight, reduction_enum) def binary_cross_entropy_with_logits( input: Tensor, target: Tensor, weight: Optional[Tensor] = None, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", pos_weight: Optional[Tensor] = None, ) -> Tensor: r"""Function that measures Binary Cross Entropy between target and input logits. See :class:`~torch.nn.BCEWithLogitsLoss` for details. Args: input: Tensor of arbitrary shape as unnormalized scores (often referred to as logits). target: Tensor of the same shape as input with values between 0 and 1 weight (Tensor, optional): a manual rescaling weight if provided it's repeated to match input tensor shape size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when reduce is ``False``. Default: ``True`` reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`. Default: ``True`` reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` pos_weight (Tensor, optional): a weight of positive examples. Must be a vector with length equal to the number of classes. Examples:: >>> input = torch.randn(3, requires_grad=True) >>> target = torch.empty(3).random_(2) >>> loss = F.binary_cross_entropy_with_logits(input, target) >>> loss.backward() """ if has_torch_function_variadic(input, target, weight, pos_weight): return handle_torch_function( binary_cross_entropy_with_logits, (input, target, weight, pos_weight), input, target, weight=weight, size_average=size_average, reduce=reduce, reduction=reduction, pos_weight=pos_weight, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) if not (target.size() == input.size()): raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size())) return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum) def smooth_l1_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", beta: float = 1.0, ) -> Tensor: r"""Function that uses a squared term if the absolute element-wise error falls below beta and an L1 term otherwise. See :class:`~torch.nn.SmoothL1Loss` for details. """ if has_torch_function_variadic(input, target): return handle_torch_function( smooth_l1_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction, beta=beta, ) if not (target.size() == input.size()): warnings.warn( "Using a target size ({}) that is different to the input size ({}). " "This will likely lead to incorrect results due to broadcasting. " "Please ensure they have the same size.".format(target.size(), input.size()), stacklevel=2, ) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) expanded_input, expanded_target = torch.broadcast_tensors(input, target) return torch._C._nn.smooth_l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), beta) def huber_loss( input: Tensor, target: Tensor, reduction: str = 'mean', delta: float = 1.0, ) -> Tensor: r"""Function that uses a squared term if the absolute element-wise error falls below delta and a delta-scaled L1 term otherwise. See :class:`~torch.nn.HuberLoss` for details. """ if has_torch_function_variadic(input, target): return handle_torch_function( huber_loss, (input, target), input, target, reduction=reduction, delta=delta, ) if not (target.size() == input.size()): warnings.warn("Using a target size ({}) that is different to the input size ({}). " "This will likely lead to incorrect results due to broadcasting. " "Please ensure they have the same size.".format(target.size(), input.size()), stacklevel=2) expanded_input, expanded_target = torch.broadcast_tensors(input, target) return torch._C._nn.huber_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), delta) def l1_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor Function that takes the mean element-wise absolute value difference. See :class:`~torch.nn.L1Loss` for details. """ if has_torch_function_variadic(input, target): return handle_torch_function( l1_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction ) if not (target.size() == input.size()): warnings.warn( "Using a target size ({}) that is different to the input size ({}). " "This will likely lead to incorrect results due to broadcasting. " "Please ensure they have the same size.".format(target.size(), input.size()), stacklevel=2, ) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) expanded_input, expanded_target = torch.broadcast_tensors(input, target) return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) def mse_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor Measures the element-wise mean squared error. See :class:`~torch.nn.MSELoss` for details. """ if has_torch_function_variadic(input, target): return handle_torch_function( mse_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction ) if not (target.size() == input.size()): warnings.warn( "Using a target size ({}) that is different to the input size ({}). " "This will likely lead to incorrect results due to broadcasting. " "Please ensure they have the same size.".format(target.size(), input.size()), stacklevel=2, ) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) expanded_input, expanded_target = torch.broadcast_tensors(input, target) return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) def margin_ranking_loss( input1: Tensor, input2: Tensor, target: Tensor, margin: float = 0, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor See :class:`~torch.nn.MarginRankingLoss` for details. """ if has_torch_function_variadic(input1, input2, target): return handle_torch_function( margin_ranking_loss, (input1, input2, target), input1, input2, target, margin=margin, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) if (input1.dim() != input2.dim() or input1.dim() != target.dim()): raise RuntimeError( ( "margin_ranking_loss : All input tensors should have same dimension but got sizes: " "input1: {}, input2: {}, target: {} ".format(input1.size(), input2.size(), target.size()) ) ) return torch.margin_ranking_loss(input1, input2, target, margin, reduction_enum) def hinge_embedding_loss( input: Tensor, target: Tensor, margin: float = 1.0, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""hinge_embedding_loss(input, target, margin=1.0, size_average=None, reduce=None, reduction='mean') -> Tensor See :class:`~torch.nn.HingeEmbeddingLoss` for details. """ if has_torch_function_variadic(input, target): return handle_torch_function( hinge_embedding_loss, (input, target), input, target, margin=margin, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) return torch.hinge_embedding_loss(input, target, margin, reduction_enum) def multilabel_margin_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor See :class:`~torch.nn.MultiLabelMarginLoss` for details. """ if has_torch_function_variadic(input, target): return handle_torch_function( multilabel_margin_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) return torch._C._nn.multilabel_margin_loss(input, target, reduction_enum) def soft_margin_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor See :class:`~torch.nn.SoftMarginLoss` for details. """ if has_torch_function_variadic(input, target): return handle_torch_function( soft_margin_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) return torch._C._nn.soft_margin_loss(input, target, reduction_enum) def multilabel_soft_margin_loss( input: Tensor, target: Tensor, weight: Optional[Tensor] = None, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""multilabel_soft_margin_loss(input, target, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details. """ if has_torch_function_variadic(input, target, weight): return handle_torch_function( multilabel_soft_margin_loss, (input, target, weight), input, target, weight=weight, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) loss = -(target * logsigmoid(input) + (1 - target) * logsigmoid(-input)) if weight is not None: loss = loss * weight class_dim = input.dim() - 1 C = input.size(class_dim) loss = loss.sum(dim=class_dim) / C # only return N loss values if reduction == "none": ret = loss elif reduction == "mean": ret = loss.mean() elif reduction == "sum": ret = loss.sum() else: ret = input raise ValueError(reduction + " is not valid") return ret def cosine_embedding_loss( input1: Tensor, input2: Tensor, target: Tensor, margin: float = 0, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor See :class:`~torch.nn.CosineEmbeddingLoss` for details. """ if has_torch_function_variadic(input1, input2, target): return handle_torch_function( cosine_embedding_loss, (input1, input2, target), input1, input2, target, margin=margin, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) return torch.cosine_embedding_loss(input1, input2, target, margin, reduction_enum) def multi_margin_loss( input: Tensor, target: Tensor, p: int = 1, margin: float = 1.0, weight: Optional[Tensor] = None, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor See :class:`~torch.nn.MultiMarginLoss` for details. """ if has_torch_function_variadic(input, target, weight): return handle_torch_function( multi_margin_loss, (input, target, weight), input, target, p=p, margin=margin, weight=weight, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) if p != 1 and p != 2: raise ValueError("only p == 1 and p == 2 supported") if weight is not None: if weight.dim() != 1: raise ValueError("weight must be one-dimensional") return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, reduction_enum) pixel_shuffle = _add_docstr( torch.pixel_shuffle, r""" pixel_shuffle(input, upscale_factor) -> Tensor Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is the :attr:`upscale_factor`. See :class:`~torch.nn.PixelShuffle` for details. Args: input (Tensor): the input tensor upscale_factor (int): factor to increase spatial resolution by Examples:: >>> input = torch.randn(1, 9, 4, 4) >>> output = torch.nn.functional.pixel_shuffle(input, 3) >>> print(output.size()) torch.Size([1, 1, 12, 12]) """, ) pixel_unshuffle = _add_docstr( torch.pixel_unshuffle, r""" pixel_unshuffle(input, downscale_factor) -> Tensor Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape :math:`(*, C \times r^2, H, W)`, where r is the :attr:`downscale_factor`. See :class:`~torch.nn.PixelUnshuffle` for details. Args: input (Tensor): the input tensor downscale_factor (int): factor to increase spatial resolution by Examples:: >>> input = torch.randn(1, 1, 12, 12) >>> output = torch.nn.functional.pixel_unshuffle(input, 3) >>> print(output.size()) torch.Size([1, 9, 4, 4]) """, ) channel_shuffle = _add_docstr( torch.channel_shuffle, r""" channel_shuffle(input, groups) -> Tensor Divide the channels in a tensor of shape :math:`(*, C , H, W)` into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`, while keeping the original tensor shape. See :class:`~torch.nn.ChannelShuffle` for details. Args: input (Tensor): the input tensor groups (int): number of groups to divide channels in and rearrange. Examples:: >>> input = torch.randn(1, 4, 2, 2) >>> print(input) [[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]], [[13, 14], [15, 16]], ]] >>> output = torch.nn.functional.channel_shuffle(input, 2) >>> print(output) [[[[1, 2], [3, 4]], [[9, 10], [11, 12]], [[5, 6], [7, 8]], [[13, 14], [15, 16]], ]] """, ) native_channel_shuffle = _add_docstr( torch.native_channel_shuffle, r""" native_channel_shuffle(input, groups) -> Tensor Native kernel level implementation of the `channel_shuffle`. This function might become private in future releases, use with caution. Divide the channels in a tensor of shape :math:`(*, C , H, W)` into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`, while keeping the original tensor shape. See :class:`~torch.nn.ChannelShuffle` for details. Args: input (Tensor): the input tensor groups (int): number of groups to divide channels in and rearrange. Examples:: >>> input = torch.randn(1, 4, 2, 2) >>> print(input) [[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]], [[13, 14], [15, 16]], ]] >>> output = torch.nn.functional.native_channel_shuffle(input, 2) >>> print(output) [[[[1, 2], [3, 4]], [[9, 10], [11, 12]], [[5, 6], [7, 8]], [[13, 14], [15, 16]], ]] """, ) @_overload # noqa: F811 def upsample(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def upsample(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811 pass def upsample(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # noqa: F811 r"""Upsamples the input to either the given :attr:`size` or the given :attr:`scale_factor` .. warning:: This function is deprecated in favor of :func:`torch.nn.functional.interpolate`. This is equivalent with ``nn.functional.interpolate(...)``. Note: {backward_reproducibility_note} The algorithm used for upsampling is determined by :attr:`mode`. Currently temporal, spatial and volumetric upsampling are supported, i.e. expected inputs are 3-D, 4-D or 5-D in shape. The input dimensions are interpreted in the form: `mini-batch x channels x [optional depth] x [optional height] x width`. The modes available for upsampling are: `nearest`, `linear` (3D-only), `bilinear`, `bicubic` (4D-only), `trilinear` (5D-only) Args: input (Tensor): the input tensor size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): output spatial size. scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple. mode (str): algorithm used for upsampling: ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | ``'trilinear'``. Default: ``'nearest'`` align_corners (bool, optional): Geometrically, we consider the pixels of the input and output as squares rather than points. If set to ``True``, the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to ``False``, the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation *independent* of input size when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``. Default: ``False`` .. note:: With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce negative values or values greater than 255 for images. Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot when displaying the image. .. warning:: With ``align_corners = True``, the linearly interpolating modes (`linear`, `bilinear`, and `trilinear`) don't proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1. Since then, the default behavior is ``align_corners = False``. See :class:`~torch.nn.Upsample` for concrete examples on how this affects the outputs. """ warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") return interpolate(input, size, scale_factor, mode, align_corners) if upsample.__doc__: upsample.__doc__ = upsample.__doc__.format(**reproducibility_notes) @_overload # noqa: F811 def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def interpolate(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def interpolate( # noqa: F811 input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False, ) -> Tensor: # noqa: F811 pass def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811 r"""Down/up samples the input to either the given :attr:`size` or the given :attr:`scale_factor` The algorithm used for interpolation is determined by :attr:`mode`. Currently temporal, spatial and volumetric sampling are supported, i.e. expected inputs are 3-D, 4-D or 5-D in shape. The input dimensions are interpreted in the form: `mini-batch x channels x [optional depth] x [optional height] x width`. The modes available for resizing are: `nearest`, `linear` (3D-only), `bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`, `nearest-exact` Args: input (Tensor): the input tensor size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): output spatial size. scale_factor (float or Tuple[float]): multiplier for spatial size. If `scale_factor` is a tuple, its length has to match the number of spatial dimensions; `input.dim() - 2`. mode (str): algorithm used for upsampling: ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | ``'trilinear'`` | ``'area'`` | ``'nearest-exact'``. Default: ``'nearest'`` align_corners (bool, optional): Geometrically, we consider the pixels of the input and output as squares rather than points. If set to ``True``, the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to ``False``, the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation *independent* of input size when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``. Default: ``False`` recompute_scale_factor (bool, optional): recompute the scale_factor for use in the interpolation calculation. If `recompute_scale_factor` is ``True``, then `scale_factor` must be passed in and `scale_factor` is used to compute the output `size`. The computed output `size` will be used to infer new scales for the interpolation. Note that when `scale_factor` is floating-point, it may differ from the recomputed `scale_factor` due to rounding and precision issues. If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will be used directly for interpolation. Default: ``None``. antialias (bool, optional): flag to apply anti-aliasing. Default: ``False``. Using anti-alias option together with ``align_corners=False``, interpolation result would match Pillow result for downsampling operation. Supported modes: ``'bilinear'``, ``'bicubic'``. .. note:: With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce negative values or values greater than 255 for images. Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot when displaying the image. .. note:: Mode ``mode='nearest-exact'`` matches Scikit-Image and PIL nearest neighbours interpolation algorithms and fixes known issues with ``mode='nearest'``. This mode is introduced to keep backward compatibility. Mode ``mode='nearest'`` matches buggy OpenCV's ``INTER_NEAREST`` interpolation algorithm. Note: {backward_reproducibility_note} """ if has_torch_function_unary(input): return handle_torch_function( interpolate, (input,), input, size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias ) if mode in ("nearest", "area", "nearest-exact"): if align_corners is not None: raise ValueError( "align_corners option can only be set with the " "interpolating modes: linear | bilinear | bicubic | trilinear" ) else: if align_corners is None: align_corners = False dim = input.dim() - 2 # Number of spatial dimensions. # Process size and scale_factor. Validate that exactly one is set. # Validate its length if it is a list, or expand it if it is a scalar. # After this block, exactly one of output_size and scale_factors will # be non-None, and it will be a list (or tuple). if size is not None and scale_factor is not None: raise ValueError("only one of size or scale_factor should be defined") elif size is not None: assert scale_factor is None scale_factors = None if isinstance(size, (list, tuple)): if len(size) != dim: raise ValueError( "Input and output must have the same number of spatial dimensions, but got " f"input with with spatial dimensions of {list(input.shape[2:])} and output size of {size}. " "Please provide input tensor in (N, C, d1, d2, ...,dK) format and " "output size in (o1, o2, ...,oK) format." ) output_size = size else: output_size = [size for _ in range(dim)] elif scale_factor is not None: assert size is None output_size = None if isinstance(scale_factor, (list, tuple)): if len(scale_factor) != dim: raise ValueError( "Input and scale_factor must have the same number of spatial dimensions, but " f"got input with spatial dimensions of {list(input.shape[2:])} and " f"scale_factor of shape {scale_factor}. " "Please provide input tensor in (N, C, d1, d2, ...,dK) format and " "scale_factor in (s1, s2, ...,sK) format." ) scale_factors = scale_factor else: scale_factors = [scale_factor for _ in range(dim)] else: raise ValueError("either size or scale_factor should be defined") if recompute_scale_factor is not None and recompute_scale_factor and size is not None: raise ValueError("recompute_scale_factor is not meaningful with an explicit size.") # "area" mode always requires an explicit size rather than scale factor. # Re-use the recompute_scale_factor code path. if mode == "area" and output_size is None: recompute_scale_factor = True if recompute_scale_factor is not None and recompute_scale_factor: # We compute output_size here, then un-set scale_factors. # The C++ code will recompute it based on the (integer) output size. if not torch.jit.is_scripting() and torch._C._get_tracing_state(): # make scale_factor a tensor in tracing so constant doesn't get baked in output_size = [ (torch.floor((input.size(i + 2).float() * torch.tensor(scale_factors[i], dtype=torch.float32)).float())) for i in range(dim) ] else: assert scale_factors is not None output_size = [int(math.floor(float(input.size(i + 2)) * scale_factors[i])) for i in range(dim)] scale_factors = None if antialias and not (mode in ("bilinear", "bicubic") and input.ndim == 4): raise ValueError("Anti-alias option is only supported for bilinear and bicubic modes") if input.dim() == 3 and mode == "nearest": return torch._C._nn.upsample_nearest1d(input, output_size, scale_factors) if input.dim() == 4 and mode == "nearest": return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors) if input.dim() == 5 and mode == "nearest": return torch._C._nn.upsample_nearest3d(input, output_size, scale_factors) if input.dim() == 3 and mode == "nearest-exact": return torch._C._nn._upsample_nearest_exact1d(input, output_size, scale_factors) if input.dim() == 4 and mode == "nearest-exact": return torch._C._nn._upsample_nearest_exact2d(input, output_size, scale_factors) if input.dim() == 5 and mode == "nearest-exact": return torch._C._nn._upsample_nearest_exact3d(input, output_size, scale_factors) if input.dim() == 3 and mode == "area": assert output_size is not None return adaptive_avg_pool1d(input, output_size) if input.dim() == 4 and mode == "area": assert output_size is not None return adaptive_avg_pool2d(input, output_size) if input.dim() == 5 and mode == "area": assert output_size is not None return adaptive_avg_pool3d(input, output_size) if input.dim() == 3 and mode == "linear": assert align_corners is not None return torch._C._nn.upsample_linear1d(input, output_size, align_corners, scale_factors) if input.dim() == 4 and mode == "bilinear": assert align_corners is not None if antialias: return torch._C._nn._upsample_bilinear2d_aa(input, output_size, align_corners, scale_factors) return torch._C._nn.upsample_bilinear2d(input, output_size, align_corners, scale_factors) if input.dim() == 5 and mode == "trilinear": assert align_corners is not None return torch._C._nn.upsample_trilinear3d(input, output_size, align_corners, scale_factors) if input.dim() == 4 and mode == "bicubic": assert align_corners is not None if antialias: return torch._C._nn._upsample_bicubic2d_aa(input, output_size, align_corners, scale_factors) return torch._C._nn.upsample_bicubic2d(input, output_size, align_corners, scale_factors) if input.dim() == 3 and mode == "bilinear": raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input") if input.dim() == 3 and mode == "trilinear": raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input") if input.dim() == 4 and mode == "linear": raise NotImplementedError("Got 4D input, but linear mode needs 3D input") if input.dim() == 4 and mode == "trilinear": raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input") if input.dim() == 5 and mode == "linear": raise NotImplementedError("Got 5D input, but linear mode needs 3D input") if input.dim() == 5 and mode == "bilinear": raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input") raise NotImplementedError( "Input Error: Only 3D, 4D and 5D input Tensors supported" " (got {}D) for the modes: nearest | linear | bilinear | bicubic | trilinear | area | nearest-exact" " (got {})".format(input.dim(), mode) ) if interpolate.__doc__: interpolate.__doc__ = interpolate.__doc__.format(**reproducibility_notes) @_overload # noqa: F811 def upsample_nearest(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def upsample_nearest(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811 pass def upsample_nearest(input, size=None, scale_factor=None): # noqa: F811 r"""Upsamples the input, using nearest neighbours' pixel values. .. warning:: This function is deprecated in favor of :func:`torch.nn.functional.interpolate`. This is equivalent with ``nn.functional.interpolate(..., mode='nearest')``. Currently spatial and volumetric upsampling are supported (i.e. expected inputs are 4 or 5 dimensional). Args: input (Tensor): input size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia size. scale_factor (int): multiplier for spatial size. Has to be an integer. Note: {backward_reproducibility_note} """ # DeprecationWarning is ignored by default warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.") return interpolate(input, size, scale_factor, mode="nearest") if upsample_nearest.__doc__: upsample_nearest.__doc__ = upsample_nearest.__doc__.format(**reproducibility_notes) @_overload # noqa: F811 def upsample_bilinear( input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None ) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def upsample_bilinear( # noqa: F811 input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None ) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def upsample_bilinear( # noqa: F811 input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None ) -> Tensor: # noqa: F811 pass @_overload # noqa: F811 def upsample_bilinear( # noqa: F811 input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None ) -> Tensor: # noqa: F811 pass def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811 r"""Upsamples the input, using bilinear upsampling. .. warning:: This function is deprecated in favor of :func:`torch.nn.functional.interpolate`. This is equivalent with ``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``. Expected inputs are spatial (4 dimensional). Use `upsample_trilinear` fo volumetric (5 dimensional) inputs. Args: input (Tensor): input size (int or Tuple[int, int]): output spatial size. scale_factor (int or Tuple[int, int]): multiplier for spatial size Note: {backward_reproducibility_note} """ # DeprecationWarning is ignored by default warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.") return interpolate(input, size, scale_factor, mode="bilinear", align_corners=True) if upsample_bilinear.__doc__: upsample_bilinear.__doc__ = upsample_bilinear.__doc__.format(**reproducibility_notes) GRID_SAMPLE_INTERPOLATION_MODES = { "bilinear": 0, "nearest": 1, "bicubic": 2, } GRID_SAMPLE_PADDING_MODES = { "zeros": 0, "border": 1, "reflection": 2, } def grid_sample( input: Tensor, grid: Tensor, mode: str = "bilinear", padding_mode: str = "zeros", align_corners: Optional[bool] = None, ) -> Tensor: r"""Given an :attr:`input` and a flow-field :attr:`grid`, computes the ``output`` using :attr:`input` values and pixel locations from :attr:`grid`. Currently, only spatial (4-D) and volumetric (5-D) :attr:`input` are supported. In the spatial (4-D) case, for :attr:`input` with shape :math:`(N, C, H_\text{in}, W_\text{in})` and :attr:`grid` with shape :math:`(N, H_\text{out}, W_\text{out}, 2)`, the output will have shape :math:`(N, C, H_\text{out}, W_\text{out})`. For each output location ``output[n, :, h, w]``, the size-2 vector ``grid[n, h, w]`` specifies :attr:`input` pixel locations ``x`` and ``y``, which are used to interpolate the output value ``output[n, :, h, w]``. In the case of 5D inputs, ``grid[n, d, h, w]`` specifies the ``x``, ``y``, ``z`` pixel locations for interpolating ``output[n, :, d, h, w]``. :attr:`mode` argument specifies ``nearest`` or ``bilinear`` interpolation method to sample the input pixels. :attr:`grid` specifies the sampling pixel locations normalized by the :attr:`input` spatial dimensions. Therefore, it should have most values in the range of ``[-1, 1]``. For example, values ``x = -1, y = -1`` is the left-top pixel of :attr:`input`, and values ``x = 1, y = 1`` is the right-bottom pixel of :attr:`input`. If :attr:`grid` has values outside the range of ``[-1, 1]``, the corresponding outputs are handled as defined by :attr:`padding_mode`. Options are * ``padding_mode="zeros"``: use ``0`` for out-of-bound grid locations, * ``padding_mode="border"``: use border values for out-of-bound grid locations, * ``padding_mode="reflection"``: use values at locations reflected by the border for out-of-bound grid locations. For location far away from the border, it will keep being reflected until becoming in bound, e.g., (normalized) pixel location ``x = -3.5`` reflects by border ``-1`` and becomes ``x' = 1.5``, then reflects by border ``1`` and becomes ``x'' = -0.5``. Note: This function is often used in conjunction with :func:`affine_grid` to build `Spatial Transformer Networks`_ . Note: When using the CUDA backend, this operation may induce nondeterministic behaviour in its backward pass that is not easily switched off. Please see the notes on :doc:`/notes/randomness` for background. Note: NaN values in :attr:`grid` would be interpreted as ``-1``. Args: input (Tensor): input of shape :math:`(N, C, H_\text{in}, W_\text{in})` (4-D case) or :math:`(N, C, D_\text{in}, H_\text{in}, W_\text{in})` (5-D case) grid (Tensor): flow-field of shape :math:`(N, H_\text{out}, W_\text{out}, 2)` (4-D case) or :math:`(N, D_\text{out}, H_\text{out}, W_\text{out}, 3)` (5-D case) mode (str): interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'`` | ``'bicubic'``. Default: ``'bilinear'`` Note: ``mode='bicubic'`` supports only 4-D input. When ``mode='bilinear'`` and the input is 5-D, the interpolation mode used internally will actually be trilinear. However, when the input is 4-D, the interpolation mode will legitimately be bilinear. padding_mode (str): padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``. Default: ``'zeros'`` align_corners (bool, optional): Geometrically, we consider the pixels of the input as squares rather than points. If set to ``True``, the extrema (``-1`` and ``1``) are considered as referring to the center points of the input's corner pixels. If set to ``False``, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. This option parallels the ``align_corners`` option in :func:`interpolate`, and so whichever option is used here should also be used there to resize the input image before grid sampling. Default: ``False`` Returns: output (Tensor): output Tensor .. _`Spatial Transformer Networks`: https://arxiv.org/abs/1506.02025 .. warning:: When ``align_corners = True``, the grid positions depend on the pixel size relative to the input image size, and so the locations sampled by :func:`grid_sample` will differ for the same input given at different resolutions (that is, after being upsampled or downsampled). The default behavior up to version 1.2.0 was ``align_corners = True``. Since then, the default behavior has been changed to ``align_corners = False``, in order to bring it in line with the default for :func:`interpolate`. .. note:: ``mode='bicubic'`` is implemented using the `cubic convolution algorithm`_ with :math:`\alpha=-0.75`. The constant :math:`\alpha` might be different from packages to packages. For example, `PIL`_ and `OpenCV`_ use -0.5 and -0.75 respectively. This algorithm may "overshoot" the range of values it's interpolating. For example, it may produce negative values or values greater than 255 when interpolating input in [0, 255]. Clamp the results with :func: `torch.clamp` to ensure they are within the valid range. .. _`cubic convolution algorithm`: https://en.wikipedia.org/wiki/Bicubic_interpolation .. _`PIL`: https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/src/libImaging/Resample.c#L51 .. _`OpenCV`: https://github.com/opencv/opencv/blob/f345ed564a06178670750bad59526cfa4033be55/modules/imgproc/src/resize.cpp#L908 """ if has_torch_function_variadic(input, grid): return handle_torch_function( grid_sample, (input, grid), input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners ) if mode != "bilinear" and mode != "nearest" and mode != "bicubic": raise ValueError( "nn.functional.grid_sample(): expected mode to be " "'bilinear', 'nearest' or 'bicubic', but got: '{}'".format(mode) ) if padding_mode != "zeros" and padding_mode != "border" and padding_mode != "reflection": raise ValueError( "nn.functional.grid_sample(): expected padding_mode " "to be 'zeros', 'border', or 'reflection', " "but got: '{}'".format(padding_mode) ) if mode == "bilinear": mode_enum = 0 elif mode == "nearest": mode_enum = 1 else: # mode == 'bicubic' mode_enum = 2 if padding_mode == "zeros": padding_mode_enum = 0 elif padding_mode == "border": padding_mode_enum = 1 else: # padding_mode == 'reflection' padding_mode_enum = 2 if align_corners is None: warnings.warn( "Default grid_sample and affine_grid behavior has changed " "to align_corners=False since 1.3.0. Please specify " "align_corners=True if the old behavior is desired. " "See the documentation of grid_sample for details." ) align_corners = False return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum, align_corners) def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[bool] = None) -> Tensor: r"""Generates a 2D or 3D flow field (sampling grid), given a batch of affine matrices :attr:`theta`. .. note:: This function is often used in conjunction with :func:`grid_sample` to build `Spatial Transformer Networks`_ . Args: theta (Tensor): input batch of affine matrices with shape (:math:`N \times 2 \times 3`) for 2D or (:math:`N \times 3 \times 4`) for 3D size (torch.Size): the target output image size. (:math:`N \times C \times H \times W` for 2D or :math:`N \times C \times D \times H \times W` for 3D) Example: torch.Size((32, 3, 24, 24)) align_corners (bool, optional): if ``True``, consider ``-1`` and ``1`` to refer to the centers of the corner pixels rather than the image corners. Refer to :func:`grid_sample` for a more complete description. A grid generated by :func:`affine_grid` should be passed to :func:`grid_sample` with the same setting for this option. Default: ``False`` Returns: output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`) .. _`Spatial Transformer Networks`: https://arxiv.org/abs/1506.02025 .. warning:: When ``align_corners = True``, the grid positions depend on the pixel size relative to the input image size, and so the locations sampled by :func:`grid_sample` will differ for the same input given at different resolutions (that is, after being upsampled or downsampled). The default behavior up to version 1.2.0 was ``align_corners = True``. Since then, the default behavior has been changed to ``align_corners = False``, in order to bring it in line with the default for :func:`interpolate`. .. warning:: When ``align_corners = True``, 2D affine transforms on 1D data and 3D affine transforms on 2D data (that is, when one of the spatial dimensions has unit size) are ill-defined, and not an intended use case. This is not a problem when ``align_corners = False``. Up to version 1.2.0, all grid points along a unit dimension were considered arbitrarily to be at ``-1``. From version 1.3.0, under ``align_corners = True`` all grid points along a unit dimension are considered to be at ``0`` (the center of the input image). """ if has_torch_function_unary(theta): return handle_torch_function(affine_grid, (theta,), theta, size, align_corners=align_corners) if align_corners is None: warnings.warn( "Default grid_sample and affine_grid behavior has changed " "to align_corners=False since 1.3.0. Please specify " "align_corners=True if the old behavior is desired. " "See the documentation of grid_sample for details." ) align_corners = False # enforce floating point dtype on theta if not theta.is_floating_point(): raise ValueError("Expected theta to have floating point type, but got {}".format(theta.dtype)) # check that shapes and sizes match if len(size) == 4: if theta.dim() != 3 or theta.shape[-2] != 2 or theta.shape[-1] != 3: raise ValueError( "Expected a batch of 2D affine matrices of shape Nx2x3 " "for size {}. Got {}.".format(size, theta.shape) ) spatial_size = size[-2:] # spatial dimension sizes elif len(size) == 5: if theta.dim() != 3 or theta.shape[-2] != 3 or theta.shape[-1] != 4: raise ValueError( "Expected a batch of 3D affine matrices of shape Nx3x4 " "for size {}. Got {}.".format(size, theta.shape) ) spatial_size = size[-3:] # spatial dimension sizes else: raise NotImplementedError( "affine_grid only supports 4D and 5D sizes, " "for 2D and 3D affine transforms, respectively. " "Got size {}.".format(size) ) # check for empty span if align_corners and min(spatial_size) == 1: warnings.warn( "Since version 1.3.0, affine_grid behavior has changed " "for unit-size grids when align_corners=True. " "This is not an intended use case of affine_grid. " "See the documentation of affine_grid for details." ) elif min(size) <= 0: raise ValueError("Expected non-zero, positive output size. Got {}".format(size)) return torch.affine_grid_generator(theta, size, align_corners) pad = _add_docstr( torch._C._nn.pad, r""" pad(input, pad, mode="constant", value=None) -> Tensor Pads tensor. Padding size: The padding size by which to pad some dimensions of :attr:`input` are described starting from the last dimension and moving forward. :math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions of ``input`` will be padded. For example, to pad only the last dimension of the input tensor, then :attr:`pad` has the form :math:`(\text{padding\_left}, \text{padding\_right})`; to pad the last 2 dimensions of the input tensor, then use :math:`(\text{padding\_left}, \text{padding\_right},` :math:`\text{padding\_top}, \text{padding\_bottom})`; to pad the last 3 dimensions, use :math:`(\text{padding\_left}, \text{padding\_right},` :math:`\text{padding\_top}, \text{padding\_bottom}` :math:`\text{padding\_front}, \text{padding\_back})`. Padding mode: See :class:`torch.nn.ConstantPad2d`, :class:`torch.nn.ReflectionPad2d`, and :class:`torch.nn.ReplicationPad2d` for concrete examples on how each of the padding modes works. Constant padding is implemented for arbitrary dimensions. Replicate and reflection padding are implemented for padding the last 3 dimensions of a 4D or 5D input tensor, the last 2 dimensions of a 3D or 4D input tensor, or the last dimension of a 2D or 3D input tensor. Note: When using the CUDA backend, this operation may induce nondeterministic behaviour in its backward pass that is not easily switched off. Please see the notes on :doc:`/notes/randomness` for background. Args: input (Tensor): N-dimensional tensor pad (tuple): m-elements tuple, where :math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even. mode: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'constant'`` value: fill value for ``'constant'`` padding. Default: ``0`` Examples:: >>> t4d = torch.empty(3, 3, 4, 2) >>> p1d = (1, 1) # pad last dim by 1 on each side >>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding >>> print(out.size()) torch.Size([3, 3, 4, 4]) >>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2) >>> out = F.pad(t4d, p2d, "constant", 0) >>> print(out.size()) torch.Size([3, 3, 8, 4]) >>> t4d = torch.empty(3, 3, 4, 2) >>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3) >>> out = F.pad(t4d, p3d, "constant", 0) >>> print(out.size()) torch.Size([3, 9, 7, 3]) """) # TODO: Fix via https://github.com/pytorch/pytorch/issues/75798 pad.__module__ = "torch.nn.functional" # distance pairwise_distance = _add_docstr( torch.pairwise_distance, r""" pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False) -> Tensor See :class:`torch.nn.PairwiseDistance` for details """) pdist = _add_docstr( torch.pdist, r""" pdist(input, p=2) -> Tensor Computes the p-norm distance between every pair of row vectors in the input. This is identical to the upper triangular portion, excluding the diagonal, of `torch.norm(input[:, None] - input, dim=2, p=p)`. This function will be faster if the rows are contiguous. If input has shape :math:`N \times M` then the output will have shape :math:`\frac{1}{2} N (N - 1)`. This function is equivalent to ``scipy.spatial.distance.pdist(input, 'minkowski', p=p)`` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to ``scipy.spatial.distance.pdist(input, 'hamming') * M``. When :math:`p = \infty`, the closest scipy function is ``scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())``. Args: input: input tensor of shape :math:`N \times M`. p: p value for the p-norm distance to calculate between each vector pair :math:`\in [0, \infty]`. """, ) cosine_similarity = _add_docstr( torch.cosine_similarity, r""" cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor Returns cosine similarity between ``x1`` and ``x2``, computed along dim. ``x1`` and ``x2`` must be broadcastable to a common shape. ``dim`` refers to the dimension in this common shape. Dimension ``dim`` of the output is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 fewer dimension. .. math :: \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)} Supports :ref:`type promotion <type-promotion-doc>`. Args: x1 (Tensor): First input. x2 (Tensor): Second input. dim (int, optional): Dimension along which cosine similarity is computed. Default: 1 eps (float, optional): Small value to avoid division by zero. Default: 1e-8 Example:: >>> input1 = torch.randn(100, 128) >>> input2 = torch.randn(100, 128) >>> output = F.cosine_similarity(input1, input2) >>> print(output) """, ) one_hot = _add_docstr( torch._C._nn.one_hot, r""" one_hot(tensor, num_classes=-1) -> LongTensor Takes LongTensor with index values of shape ``(*)`` and returns a tensor of shape ``(*, num_classes)`` that have zeros everywhere except where the index of last dimension matches the corresponding value of the input tensor, in which case it will be 1. See also `One-hot on Wikipedia`_ . .. _One-hot on Wikipedia: https://en.wikipedia.org/wiki/One-hot Arguments: tensor (LongTensor): class values of any shape. num_classes (int): Total number of classes. If set to -1, the number of classes will be inferred as one greater than the largest class value in the input tensor. Returns: LongTensor that has one more dimension with 1 values at the index of last dimension indicated by the input, and 0 everywhere else. Examples: >>> F.one_hot(torch.arange(0, 5) % 3) tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]]) >>> F.one_hot(torch.arange(0, 5) % 3, num_classes=5) tensor([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]]) >>> F.one_hot(torch.arange(0, 6).view(3,2) % 3) tensor([[[1, 0, 0], [0, 1, 0]], [[0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 0, 1]]]) """, ) def triplet_margin_loss( anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = 1.0, p: float = 2, eps: float = 1e-6, swap: bool = False, size_average: Optional[bool] = None, reduce: Optional[bool] = None, reduction: str = "mean", ) -> Tensor: r""" See :class:`~torch.nn.TripletMarginLoss` for details """ if has_torch_function_variadic(anchor, positive, negative): return handle_torch_function( triplet_margin_loss, (anchor, positive, negative), anchor, positive, negative, margin=margin, p=p, eps=eps, swap=swap, size_average=size_average, reduce=reduce, reduction=reduction, ) if size_average is not None or reduce is not None: reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) else: reduction_enum = _Reduction.get_enum(reduction) return torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction_enum) def triplet_margin_with_distance_loss( anchor: Tensor, positive: Tensor, negative: Tensor, *, distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None, margin: float = 1.0, swap: bool = False, reduction: str = "mean" ) -> Tensor: r""" See :class:`~torch.nn.TripletMarginWithDistanceLoss` for details. """ if torch.jit.is_scripting(): raise NotImplementedError( "F.triplet_margin_with_distance_loss does not support JIT scripting: " "functions requiring Callables cannot be scripted." ) if has_torch_function_variadic(anchor, positive, negative): return handle_torch_function( triplet_margin_with_distance_loss, (anchor, positive, negative), anchor, positive, negative, distance_function=distance_function, margin=margin, swap=swap, reduction=reduction, ) distance_function = distance_function if distance_function is not None else pairwise_distance positive_dist = distance_function(anchor, positive) negative_dist = distance_function(anchor, negative) if swap: swap_dist = distance_function(positive, negative) negative_dist = torch.min(negative_dist, swap_dist) output = torch.clamp(positive_dist - negative_dist + margin, min=0.0) reduction_enum = _Reduction.get_enum(reduction) if reduction_enum == 1: return output.mean() elif reduction_enum == 2: return output.sum() else: return output def normalize(input: Tensor, p: float = 2.0, dim: int = 1, eps: float = 1e-12, out: Optional[Tensor] = None) -> Tensor: r"""Performs :math:`L_p` normalization of inputs over specified dimension. For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each :math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as .. math:: v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}. With the default arguments it uses the Euclidean norm over vectors along dimension :math:`1` for normalization. Args: input: input tensor of any shape p (float): the exponent value in the norm formulation. Default: 2 dim (int): the dimension to reduce. Default: 1 eps (float): small value to avoid division by zero. Default: 1e-12 out (Tensor, optional): the output tensor. If :attr:`out` is used, this operation won't be differentiable. """ if has_torch_function_variadic(input, out): return handle_torch_function(normalize, (input, out), input, p=p, dim=dim, eps=eps, out=out) if out is None: denom = input.norm(p, dim, keepdim=True).clamp_min(eps).expand_as(input) return input / denom else: denom = input.norm(p, dim, keepdim=True).clamp_min_(eps).expand_as(input) return torch.div(input, denom, out=out) def assert_int_or_pair(arg: List[int], arg_name: str, message: str) -> None: assert isinstance(arg, int) or len(arg) == 2, message.format(arg_name) def unfold( input: Tensor, kernel_size: BroadcastingList2[int], dilation: BroadcastingList2[int] = 1, padding: BroadcastingList2[int] = 0, stride: BroadcastingList2[int] = 1 ) -> Tensor: r"""Extracts sliding local blocks from a batched input tensor. .. warning:: Currently, only 4-D input tensors (batched image-like tensors) are supported. .. warning:: More than one element of the unfolded tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensor, please clone it first. See :class:`torch.nn.Unfold` for details """ if has_torch_function_unary(input): return handle_torch_function( unfold, (input,), input, kernel_size, dilation=dilation, padding=padding, stride=stride ) if input.dim() == 4: msg = "{} must be int or 2-tuple for 4D input" assert_int_or_pair(kernel_size, "kernel_size", msg) assert_int_or_pair(dilation, "dilation", msg) assert_int_or_pair(padding, "padding", msg) assert_int_or_pair(stride, "stride", msg) return torch._C._nn.im2col(input, _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride)) else: raise NotImplementedError("Input Error: Only 4D input Tensors are supported (got {}D)".format(input.dim())) def fold( input: Tensor, output_size: BroadcastingList2[int], kernel_size: BroadcastingList2[int], dilation: BroadcastingList2[int] = 1, padding: BroadcastingList2[int] = 0, stride: BroadcastingList2[int] = 1 ) -> Tensor: r"""Combines an array of sliding local blocks into a large containing tensor. .. warning:: Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported. See :class:`torch.nn.Fold` for details """ if has_torch_function_unary(input): return handle_torch_function( fold, (input,), input, output_size, kernel_size, dilation=dilation, padding=padding, stride=stride ) if input.dim() == 3 or input.dim() == 2: msg = "{} must be int or 2-tuple for 3D input" assert_int_or_pair(output_size, "output_size", msg) assert_int_or_pair(kernel_size, "kernel_size", msg) assert_int_or_pair(dilation, "dilation", msg) assert_int_or_pair(padding, "padding", msg) assert_int_or_pair(stride, "stride", msg) return torch._C._nn.col2im( input, _pair(output_size), _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride) ) else: raise NotImplementedError("Input Error: Only unbatched (2D) or batched (3D) input Tensors" f"are supported (got {input.dim()}D)") # # multihead attention # def _in_projection_packed( q: Tensor, k: Tensor, v: Tensor, w: Tensor, b: Optional[Tensor] = None, ) -> List[Tensor]: r""" Performs the in-projection step of the attention operation, using packed weights. Output is a triple containing projection tensors for query, key and value. Args: q, k, v: query, key and value tensors to be projected. For self-attention, these are typically the same tensor; for encoder-decoder attention, k and v are typically the same tensor. (We take advantage of these identities for performance if they are present.) Regardless, q, k and v must share a common embedding dimension; otherwise their shapes may vary. w: projection weights for q, k and v, packed into a single tensor. Weights are packed along dimension 0, in q, k, v order. b: optional projection biases for q, k and v, packed into a single tensor in q, k, v order. Shape: Inputs: - q: :math:`(..., E)` where E is the embedding dimension - k: :math:`(..., E)` where E is the embedding dimension - v: :math:`(..., E)` where E is the embedding dimension - w: :math:`(E * 3, E)` where E is the embedding dimension - b: :math:`E * 3` where E is the embedding dimension Output: - in output list :math:`[q', k', v']`, each output tensor will have the same shape as the corresponding input tensor. """ E = q.size(-1) if k is v: if q is k: # self-attention return linear(q, w, b).chunk(3, dim=-1) else: # encoder-decoder attention w_q, w_kv = w.split([E, E * 2]) if b is None: b_q = b_kv = None else: b_q, b_kv = b.split([E, E * 2]) return (linear(q, w_q, b_q),) + linear(k, w_kv, b_kv).chunk(2, dim=-1) else: w_q, w_k, w_v = w.chunk(3) if b is None: b_q = b_k = b_v = None else: b_q, b_k, b_v = b.chunk(3) return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) def _in_projection( q: Tensor, k: Tensor, v: Tensor, w_q: Tensor, w_k: Tensor, w_v: Tensor, b_q: Optional[Tensor] = None, b_k: Optional[Tensor] = None, b_v: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor, Tensor]: r""" Performs the in-projection step of the attention operation. This is simply a triple of linear projections, with shape constraints on the weights which ensure embedding dimension uniformity in the projected outputs. Output is a triple containing projection tensors for query, key and value. Args: q, k, v: query, key and value tensors to be projected. w_q, w_k, w_v: weights for q, k and v, respectively. b_q, b_k, b_v: optional biases for q, k and v, respectively. Shape: Inputs: - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any number of leading dimensions. - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any number of leading dimensions. - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any number of leading dimensions. - w_q: :math:`(Eq, Eq)` - w_k: :math:`(Eq, Ek)` - w_v: :math:`(Eq, Ev)` - b_q: :math:`(Eq)` - b_k: :math:`(Eq)` - b_v: :math:`(Eq)` Output: in output triple :math:`(q', k', v')`, - q': :math:`[Qdims..., Eq]` - k': :math:`[Kdims..., Eq]` - v': :math:`[Vdims..., Eq]` """ Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1) assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}" assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}" assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}" assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}" assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}" assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}" return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) def _scaled_dot_product_attention( q: Tensor, k: Tensor, v: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: float = 0.0, ) -> Tuple[Tensor, Tensor]: r""" Computes scaled dot product attention on query, key and value tensors, using an optional attention mask if passed, and applying dropout if a probability greater than 0.0 is specified. Returns a tensor pair containing attended values and attention weights. Args: q, k, v: query, key and value tensors. See Shape section for shape details. attn_mask: optional tensor containing mask values to be added to calculated attention. May be 2D or 3D; see Shape section for details. dropout_p: dropout probability. If greater than 0.0, dropout is applied. Shape: - q: :math:`(B, Nt, E)` where B is batch size, Nt is the target sequence length, and E is embedding dimension. - key: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, and E is embedding dimension. - value: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, and E is embedding dimension. - attn_mask: either a 3D tensor of shape :math:`(B, Nt, Ns)` or a 2D tensor of shape :math:`(Nt, Ns)`. - Output: attention values have shape :math:`(B, Nt, E)`; attention weights have shape :math:`(B, Nt, Ns)` """ B, Nt, E = q.shape q = q / math.sqrt(E) # (B, Nt, E) x (B, E, Ns) -> (B, Nt, Ns) if attn_mask is not None: attn = torch.baddbmm(attn_mask, q, k.transpose(-2, -1)) else: attn = torch.bmm(q, k.transpose(-2, -1)) attn = softmax(attn, dim=-1) if dropout_p > 0.0: attn = dropout(attn, p=dropout_p) # (B, Nt, Ns) x (B, Ns, E) -> (B, Nt, E) output = torch.bmm(attn, v) return output, attn def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int): # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask` # and returns if the input is batched or not. # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor. # Shape check. if query.dim() == 3: # Batched Inputs is_batched = True assert key.dim() == 3 and value.dim() == 3, \ ("For batched (3-D) `query`, expected `key` and `value` to be 3-D" f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") if key_padding_mask is not None: assert key_padding_mask.dim() == 2, \ ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D" f" but found {key_padding_mask.dim()}-D tensor instead") if attn_mask is not None: assert attn_mask.dim() in (2, 3), \ ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" f" but found {attn_mask.dim()}-D tensor instead") elif query.dim() == 2: # Unbatched Inputs is_batched = False assert key.dim() == 2 and value.dim() == 2, \ ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D" f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") if key_padding_mask is not None: assert key_padding_mask.dim() == 1, \ ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D" f" but found {key_padding_mask.dim()}-D tensor instead") if attn_mask is not None: assert attn_mask.dim() in (2, 3), \ ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" f" but found {attn_mask.dim()}-D tensor instead") if attn_mask.dim() == 3: expected_shape = (num_heads, query.shape[0], key.shape[0]) assert attn_mask.shape == expected_shape, \ (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}") else: raise AssertionError( f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor") return is_batched def multi_head_attention_forward( query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Optional[Tensor], in_proj_bias: Optional[Tensor], bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Optional[Tensor], training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, average_attn_weights: bool = True, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect when ``need_weights=True.``. Default: True Shape: Inputs: - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`. """ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v, average_attn_weights=average_attn_weights, ) is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads) # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input # is batched, run the computation and before returning squeeze the # batch dimension so that the output doesn't carry this temporary batch dimension. if not is_batched: # unsqueeze if the input is unbatched query = query.unsqueeze(1) key = key.unsqueeze(1) value = value.unsqueeze(1) if key_padding_mask is not None: key_padding_mask = key_padding_mask.unsqueeze(0) # set up shape vars tgt_len, bsz, embed_dim = query.shape src_len, _, _ = key.shape assert embed_dim == embed_dim_to_check, \ f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}" if isinstance(embed_dim, torch.Tensor): # embed_dim can be a tensor when JIT tracing head_dim = embed_dim.div(num_heads, rounding_mode='trunc') else: head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}" if use_separate_proj_weight: # allow MHA to have different embedding dimensions when separate projection weights are used assert key.shape[:2] == value.shape[:2], \ f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}" else: assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}" # # compute in-projection # if not use_separate_proj_weight: assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None" q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias) else: assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None" assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None" assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None" if in_proj_bias is None: b_q = b_k = b_v = None else: b_q, b_k, b_v = in_proj_bias.chunk(3) q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v) # prep attention mask if attn_mask is not None: if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) else: assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \ f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}" # ensure attn_mask's dim is 3 if attn_mask.dim() == 2: correct_2d_size = (tgt_len, src_len) if attn_mask.shape != correct_2d_size: raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.") attn_mask = attn_mask.unsqueeze(0) elif attn_mask.dim() == 3: correct_3d_size = (bsz * num_heads, tgt_len, src_len) if attn_mask.shape != correct_3d_size: raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.") else: raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported") # prep key padding mask if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) # add bias along batch dimension (currently second) if bias_k is not None and bias_v is not None: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert bias_k is None assert bias_v is None # # reshape q, k, v for multihead attention and make em batch first # q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if static_k is None: k = k.contiguous().view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1) else: # TODO finish disentangling control flow so we don't do in-projections when statics are passed assert static_k.size(0) == bsz * num_heads, \ f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}" assert static_k.size(2) == head_dim, \ f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}" k = static_k if static_v is None: v = v.contiguous().view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1) else: # TODO finish disentangling control flow so we don't do in-projections when statics are passed assert static_v.size(0) == bsz * num_heads, \ f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}" assert static_v.size(2) == head_dim, \ f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}" v = static_v # add zero attention along batch dimension (now first) if add_zero_attn: zero_attn_shape = (bsz * num_heads, 1, head_dim) k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) # update source sequence length after adjustments src_len = k.size(1) # merge key padding and attention masks if key_padding_mask is not None: assert key_padding_mask.shape == (bsz, src_len), \ f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}" key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \ expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len) if attn_mask is None: attn_mask = key_padding_mask elif attn_mask.dtype == torch.bool: attn_mask = attn_mask.logical_or(key_padding_mask) else: attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf")) # convert mask to float if attn_mask is not None and attn_mask.dtype == torch.bool: new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) new_attn_mask.masked_fill_(attn_mask, float("-inf")) attn_mask = new_attn_mask # adjust dropout probability if not training: dropout_p = 0.0 # # (deep breath) calculate attention and out projection # attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p) attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) if need_weights: # optionally average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) if average_attn_weights: attn_output_weights = attn_output_weights.sum(dim=1) / num_heads if not is_batched: # squeeze the output if input was unbatched attn_output = attn_output.squeeze(1) attn_output_weights = attn_output_weights.squeeze(0) return attn_output, attn_output_weights else: if not is_batched: # squeeze the output if input was unbatched attn_output = attn_output.squeeze(1) return attn_output, None
pytorch-master
torch/nn/functional.py
import math import warnings from torch import Tensor import torch # These no_grad_* functions are necessary as wrappers around the parts of these # functions that use `with torch.no_grad()`. The JIT doesn't support context # managers, so these need to be implemented as builtins. Using these wrappers # lets us keep those builtins small and re-usable. def _no_grad_uniform_(tensor, a, b): with torch.no_grad(): return tensor.uniform_(a, b) def _no_grad_normal_(tensor, mean, std): with torch.no_grad(): return tensor.normal_(mean, std) def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def _no_grad_fill_(tensor, val): with torch.no_grad(): return tensor.fill_(val) def _no_grad_zero_(tensor): with torch.no_grad(): return tensor.zero_() def calculate_gain(nonlinearity, param=None): r"""Return the recommended gain value for the given nonlinearity function. The values are as follows: ================= ==================================================== nonlinearity gain ================= ==================================================== Linear / Identity :math:`1` Conv{1,2,3}D :math:`1` Sigmoid :math:`1` Tanh :math:`\frac{5}{3}` ReLU :math:`\sqrt{2}` Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}` SELU :math:`\frac{3}{4}` ================= ==================================================== .. warning:: In order to implement `Self-Normalizing Neural Networks`_ , you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``. This gives the initial weights a variance of ``1 / N``, which is necessary to induce a stable fixed point in the forward pass. In contrast, the default gain for ``SELU`` sacrifices the normalisation effect for more stable gradient flow in rectangular layers. Args: nonlinearity: the non-linear function (`nn.functional` name) param: optional parameter for the non-linear function Examples: >>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2 .. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html """ linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] if nonlinearity in linear_fns or nonlinearity == 'sigmoid': return 1 elif nonlinearity == 'tanh': return 5.0 / 3 elif nonlinearity == 'relu': return math.sqrt(2.0) elif nonlinearity == 'leaky_relu': if param is None: negative_slope = 0.01 elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError("negative_slope {} not a valid number".format(param)) return math.sqrt(2.0 / (1 + negative_slope ** 2)) elif nonlinearity == 'selu': return 3.0 / 4 # Value found empirically (https://github.com/pytorch/pytorch/pull/50664) else: raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) def uniform_(tensor: Tensor, a: float = 0., b: float = 1.) -> Tensor: r"""Fills the input Tensor with values drawn from the uniform distribution :math:`\mathcal{U}(a, b)`. Args: tensor: an n-dimensional `torch.Tensor` a: the lower bound of the uniform distribution b: the upper bound of the uniform distribution Examples: >>> w = torch.empty(3, 5) >>> nn.init.uniform_(w) """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function(uniform_, (tensor,), tensor=tensor, a=a, b=b) return _no_grad_uniform_(tensor, a, b) def normal_(tensor: Tensor, mean: float = 0., std: float = 1.) -> Tensor: r"""Fills the input Tensor with values drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution Examples: >>> w = torch.empty(3, 5) >>> nn.init.normal_(w) """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function(normal_, (tensor,), tensor=tensor, mean=mean, std=std) return _no_grad_normal_(tensor, mean, std) def trunc_normal_(tensor: Tensor, mean: float = 0., std: float = 1., a: float = -2., b: float = 2.) -> Tensor: r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def constant_(tensor: Tensor, val: float) -> Tensor: r"""Fills the input Tensor with the value :math:`\text{val}`. Args: tensor: an n-dimensional `torch.Tensor` val: the value to fill the tensor with Examples: >>> w = torch.empty(3, 5) >>> nn.init.constant_(w, 0.3) """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function(constant_, (tensor,), tensor=tensor, val=val) return _no_grad_fill_(tensor, val) def ones_(tensor: Tensor) -> Tensor: r"""Fills the input Tensor with the scalar value `1`. Args: tensor: an n-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.ones_(w) """ return _no_grad_fill_(tensor, 1.) def zeros_(tensor: Tensor) -> Tensor: r"""Fills the input Tensor with the scalar value `0`. Args: tensor: an n-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.zeros_(w) """ return _no_grad_zero_(tensor) def eye_(tensor): r"""Fills the 2-dimensional input `Tensor` with the identity matrix. Preserves the identity of the inputs in `Linear` layers, where as many inputs are preserved as possible. Args: tensor: a 2-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.eye_(w) """ if tensor.ndimension() != 2: raise ValueError("Only tensors with 2 dimensions are supported") with torch.no_grad(): torch.eye(*tensor.shape, out=tensor, requires_grad=tensor.requires_grad) return tensor def dirac_(tensor, groups=1): r"""Fills the {3, 4, 5}-dimensional input `Tensor` with the Dirac delta function. Preserves the identity of the inputs in `Convolutional` layers, where as many input channels are preserved as possible. In case of groups>1, each group of channels preserves identity Args: tensor: a {3, 4, 5}-dimensional `torch.Tensor` groups (int, optional): number of groups in the conv layer (default: 1) Examples: >>> w = torch.empty(3, 16, 5, 5) >>> nn.init.dirac_(w) >>> w = torch.empty(3, 24, 5, 5) >>> nn.init.dirac_(w, 3) """ dimensions = tensor.ndimension() if dimensions not in [3, 4, 5]: raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported") sizes = tensor.size() if sizes[0] % groups != 0: raise ValueError('dim 0 must be divisible by groups') out_chans_per_grp = sizes[0] // groups min_dim = min(out_chans_per_grp, sizes[1]) with torch.no_grad(): tensor.zero_() for g in range(groups): for d in range(min_dim): if dimensions == 3: # Temporal convolution tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1 elif dimensions == 4: # Spatial convolution tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2, tensor.size(3) // 2] = 1 else: # Volumetric convolution tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2, tensor.size(3) // 2, tensor.size(4) // 2] = 1 return tensor def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.dim() if dimensions < 2: raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions") num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: # math.prod is not always available, accumulate the product manually # we could use functools.reduce but that is not supported by TorchScript for s in tensor.shape[2:]: receptive_field_size *= s fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out def xavier_uniform_(tensor: Tensor, gain: float = 1.) -> Tensor: r"""Fills the input `Tensor` with values according to the method described in `Understanding the difficulty of training deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010), using a uniform distribution. The resulting tensor will have values sampled from :math:`\mathcal{U}(-a, a)` where .. math:: a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}} Also known as Glorot initialization. Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor Examples: >>> w = torch.empty(3, 5) >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu')) """ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation return _no_grad_uniform_(tensor, -a, a) def xavier_normal_(tensor: Tensor, gain: float = 1.) -> Tensor: r"""Fills the input `Tensor` with values according to the method described in `Understanding the difficulty of training deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010), using a normal distribution. The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where .. math:: \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}} Also known as Glorot initialization. Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor Examples: >>> w = torch.empty(3, 5) >>> nn.init.xavier_normal_(w) """ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) return _no_grad_normal_(tensor, 0., std) def _calculate_correct_fan(tensor, mode): mode = mode.lower() valid_modes = ['fan_in', 'fan_out'] if mode not in valid_modes: raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) return fan_in if mode == 'fan_in' else fan_out def kaiming_uniform_( tensor: Tensor, a: float = 0, mode: str = 'fan_in', nonlinearity: str = 'leaky_relu' ): r"""Fills the input `Tensor` with values according to the method described in `Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification` - He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from :math:`\mathcal{U}(-\text{bound}, \text{bound})` where .. math:: \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} Also known as He initialization. Args: tensor: an n-dimensional `torch.Tensor` a: the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``) mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. nonlinearity: the non-linear function (`nn.functional` name), recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default). Examples: >>> w = torch.empty(3, 5) >>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu') """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function( kaiming_uniform_, (tensor,), tensor=tensor, a=a, mode=mode, nonlinearity=nonlinearity) if 0 in tensor.shape: warnings.warn("Initializing zero-element tensors is a no-op") return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain(nonlinearity, a) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation with torch.no_grad(): return tensor.uniform_(-bound, bound) def kaiming_normal_( tensor: Tensor, a: float = 0, mode: str = 'fan_in', nonlinearity: str = 'leaky_relu' ): r"""Fills the input `Tensor` with values according to the method described in `Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification` - He, K. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where .. math:: \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}} Also known as He initialization. Args: tensor: an n-dimensional `torch.Tensor` a: the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``) mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. nonlinearity: the non-linear function (`nn.functional` name), recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default). Examples: >>> w = torch.empty(3, 5) >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu') """ if 0 in tensor.shape: warnings.warn("Initializing zero-element tensors is a no-op") return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain(nonlinearity, a) std = gain / math.sqrt(fan) with torch.no_grad(): return tensor.normal_(0, std) def orthogonal_(tensor, gain=1): r"""Fills the input `Tensor` with a (semi) orthogonal matrix, as described in `Exact solutions to the nonlinear dynamics of learning in deep linear neural networks` - Saxe, A. et al. (2013). The input tensor must have at least 2 dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened. Args: tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2` gain: optional scaling factor Examples: >>> # xdoctest: +REQUIRES(--lapack) >>> w = torch.empty(3, 5) >>> nn.init.orthogonal_(w) """ if tensor.ndimension() < 2: raise ValueError("Only tensors with 2 or more dimensions are supported") if tensor.numel() == 0: # no-op return tensor rows = tensor.size(0) cols = tensor.numel() // rows flattened = tensor.new(rows, cols).normal_(0, 1) if rows < cols: flattened.t_() # Compute the qr factorization q, r = torch.linalg.qr(flattened) # Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf d = torch.diag(r, 0) ph = d.sign() q *= ph if rows < cols: q.t_() with torch.no_grad(): tensor.view_as(q).copy_(q) tensor.mul_(gain) return tensor def sparse_(tensor, sparsity, std=0.01): r"""Fills the 2D input `Tensor` as a sparse matrix, where the non-zero elements will be drawn from the normal distribution :math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via Hessian-free optimization` - Martens, J. (2010). Args: tensor: an n-dimensional `torch.Tensor` sparsity: The fraction of elements in each column to be set to zero std: the standard deviation of the normal distribution used to generate the non-zero values Examples: >>> w = torch.empty(3, 5) >>> nn.init.sparse_(w, sparsity=0.1) """ if tensor.ndimension() != 2: raise ValueError("Only tensors with 2 dimensions are supported") rows, cols = tensor.shape num_zeros = int(math.ceil(sparsity * rows)) with torch.no_grad(): tensor.normal_(0, std) for col_idx in range(cols): row_indices = torch.randperm(rows) zero_indices = row_indices[:num_zeros] tensor[zero_indices, col_idx] = 0 return tensor # for backward compatibility def _make_deprecate(meth): new_name = meth.__name__ old_name = new_name[:-1] def deprecated_init(*args, **kwargs): warnings.warn("nn.init.{} is now deprecated in favor of nn.init.{}." .format(old_name, new_name), stacklevel=2) return meth(*args, **kwargs) deprecated_init.__doc__ = r""" {old_name}(...) .. warning:: This method is now deprecated in favor of :func:`torch.nn.init.{new_name}`. See :func:`~torch.nn.init.{new_name}` for details.""".format( old_name=old_name, new_name=new_name) deprecated_init.__name__ = old_name return deprecated_init uniform = _make_deprecate(uniform_) normal = _make_deprecate(normal_) constant = _make_deprecate(constant_) eye = _make_deprecate(eye_) dirac = _make_deprecate(dirac_) xavier_uniform = _make_deprecate(xavier_uniform_) xavier_normal = _make_deprecate(xavier_normal_) kaiming_uniform = _make_deprecate(kaiming_uniform_) kaiming_normal = _make_deprecate(kaiming_normal_) orthogonal = _make_deprecate(orthogonal_) sparse = _make_deprecate(sparse_)
pytorch-master
torch/nn/init.py
"""Gradient interface""" import torch from .modules.utils import _single, _pair, _triple def conv1d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv1d with respect to the input of the convolution. This is same as the 1D transposed convolution operator under the hood but requires the shape of the gradient w.r.t. input to be specified explicitly. Args: input_size : Shape of the input gradient tensor weight: weight tensor (out_channels x in_channels/groups x kW) grad_output : output gradient tensor (minibatch x out_channels x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3, requires_grad=True) >>> weight = torch.randn(1,1,1, requires_grad=True) >>> output = F.conv1d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_input = torch.autograd.grad(output, input, grad_output) >>> F.grad.conv1d_input(input.shape, weight, grad_output) """ input = grad_output.new_empty(1).expand(input_size) return torch.ops.aten.convolution_backward(grad_output, input, weight, None, _single(stride), _single(padding), _single(dilation), False, [0], groups, (True, False, False))[0] def conv1d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv1d with respect to the weight of the convolution. Args: input: input tensor of shape (minibatch x in_channels x iW) weight_size : Shape of the weight gradient tensor grad_output : output gradient tensor (minibatch x out_channels x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3, requires_grad=True) >>> weight = torch.randn(1,1,1, requires_grad=True) >>> output = F.conv1d(input, weight) >>> grad_output = torch.randn(output.shape) >>> # xdoctest: +SKIP >>> grad_weight = torch.autograd.grad(output, filter, grad_output) >>> F.grad.conv1d_weight(input, weight.shape, grad_output) """ weight = grad_output.new_empty(1).expand(weight_size) return torch.ops.aten.convolution_backward(grad_output, input, weight, None, _single(stride), _single(padding), _single(dilation), False, [0], groups, (False, True, False))[1] def conv2d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv2d with respect to the input of the convolution. This is same as the 2D transposed convolution operator under the hood but requires the shape of the gradient w.r.t. input to be specified explicitly. Args: input_size : Shape of the input gradient tensor weight: weight tensor (out_channels x in_channels/groups x kH x kW) grad_output : output gradient tensor (minibatch x out_channels x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3,3, requires_grad=True) >>> weight = torch.randn(1,1,1,2, requires_grad=True) >>> output = F.conv2d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_input = torch.autograd.grad(output, input, grad_output) >>> F.grad.conv2d_input(input.shape, weight, grad_output) """ input = grad_output.new_empty(1).expand(input_size) return torch.ops.aten.convolution_backward(grad_output, input, weight, None, _pair(stride), _pair(padding), _pair(dilation), False, [0], groups, (True, False, False))[0] def conv2d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv2d with respect to the weight of the convolution. Args: input: input tensor of shape (minibatch x in_channels x iH x iW) weight_size : Shape of the weight gradient tensor grad_output : output gradient tensor (minibatch x out_channels x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(1,1,3,3, requires_grad=True) >>> weight = torch.randn(1,1,1,2, requires_grad=True) >>> output = F.conv2d(input, weight) >>> grad_output = torch.randn(output.shape) >>> # xdoctest: +SKIP >>> grad_weight = torch.autograd.grad(output, filter, grad_output) >>> F.grad.conv2d_weight(input, weight.shape, grad_output) """ weight = grad_output.new_empty(1).expand(weight_size) return torch.ops.aten.convolution_backward(grad_output, input, weight, None, _pair(stride), _pair(padding), _pair(dilation), False, [0], groups, (False, True, False))[1] def conv3d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv3d with respect to the input of the convolution. This is same as the 3D transposed convolution operator under the hood but requires the shape of the gradient w.r.t. input to be specified explicitly. Args: input_size : Shape of the input gradient tensor weight: weights tensor (out_channels x in_channels/groups x kT x kH x kW) grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True) >>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True) >>> output = F.conv3d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_input = torch.autograd.grad(output, input, grad_output) >>> F.grad.conv3d_input(input.shape, weight, grad_output) """ input = grad_output.new_empty(1).expand(input_size) return torch.ops.aten.convolution_backward(grad_output, input, weight, None, _triple(stride), _triple(padding), _triple(dilation), False, [0], groups, (True, False, False))[0] def conv3d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1): r""" Computes the gradient of conv3d with respect to the weight of the convolution. Args: input: input tensor of shape (minibatch x in_channels x iT x iH x iW) weight_size : Shape of the weight gradient tensor grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW) stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 Examples:: >>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True) >>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True) >>> output = F.conv3d(input, weight) >>> grad_output = torch.randn(output.shape) >>> grad_weight = torch.autograd.grad(output, weight, grad_output) >>> F.grad.conv3d_weight(input, weight.shape, grad_output) """ weight = grad_output.new_empty(1).expand(weight_size) return torch.ops.aten.convolution_backward(grad_output, input, weight, None, _triple(stride), _triple(padding), _triple(dilation), False, [0], groups, (False, True, False))[1]
pytorch-master
torch/nn/grad.py
import torch from torch._C import _disabled_torch_function_impl from collections import OrderedDict # Metaclass to combine _TensorMeta and the instance check override for Parameter. class _ParameterMeta(torch._C._TensorMeta): # Make `isinstance(t, Parameter)` return True for custom tensor instances that have the _is_param flag. def __instancecheck__(self, instance): return super().__instancecheck__(instance) or ( isinstance(instance, torch.Tensor) and getattr(instance, '_is_param', False)) class Parameter(torch.Tensor, metaclass=_ParameterMeta): r"""A kind of Tensor that is to be considered a module parameter. Parameters are :class:`~torch.Tensor` subclasses, that have a very special property when used with :class:`Module` s - when they're assigned as Module attributes they are automatically added to the list of its parameters, and will appear e.g. in :meth:`~Module.parameters` iterator. Assigning a Tensor doesn't have such effect. This is because one might want to cache some temporary state, like last hidden state of the RNN, in the model. If there was no such class as :class:`Parameter`, these temporaries would get registered too. Args: data (Tensor): parameter tensor. requires_grad (bool, optional): if the parameter requires gradient. See :ref:`locally-disable-grad-doc` for more details. Default: `True` """ def __new__(cls, data=None, requires_grad=True): if data is None: data = torch.empty(0) if type(data) is torch.Tensor or type(data) is Parameter: # For ease of BC maintenance, keep this path for standard Tensor. # Eventually (tm), we should change the behavior for standard Tensor to match. return torch.Tensor._make_subclass(cls, data, requires_grad) # Path for custom tensors: set a flag on the instance to indicate parameter-ness. t = data.detach().requires_grad_(requires_grad) if type(t) is not type(data): raise RuntimeError(f"Creating a Parameter from an instance of type {type(data).__name__} " "requires that detach() returns an instance of the same type, but return " f"type {type(t).__name__} was found instead. To use the type as a " "Parameter, please correct the detach() semantics defined by " "its __torch_dispatch__() implementation.") t._is_param = True return t # Note: the 3 methods below only apply to standard Tensor. Parameters of custom tensor types # are still considered that custom tensor type and these methods will not be called for them. def __deepcopy__(self, memo): if id(self) in memo: return memo[id(self)] else: result = type(self)(self.data.clone(memory_format=torch.preserve_format), self.requires_grad) memo[id(self)] = result return result def __repr__(self): return 'Parameter containing:\n' + super(Parameter, self).__repr__() def __reduce_ex__(self, proto): # See Note [Don't serialize hooks] return ( torch._utils._rebuild_parameter, (self.data, self.requires_grad, OrderedDict()) ) __torch_function__ = _disabled_torch_function_impl class UninitializedTensorMixin: _allowed_methods = [ torch.Tensor.__hash__, torch.Tensor.size, torch.Tensor.copy_, torch.Tensor.is_floating_point, torch.Tensor.half, torch.Tensor.float, torch.Tensor.double, torch.Tensor.char, torch.Tensor.short, torch.Tensor.int, torch.Tensor.long, torch.Tensor.cuda, torch.Tensor.cpu, torch.Tensor.to, torch.Tensor.get_device, torch._has_compatible_shallow_copy_type, ] def materialize(self, shape, device=None, dtype=None): r"""Create a Parameter or Tensor with the same properties of the uninitialized one. Given a shape, it materializes a parameter in the same device and with the same `dtype` as the current one or the specified ones in the arguments. Args: shape : (tuple): the shape for the materialized tensor. device (:class:`torch.device`): the desired device of the parameters and buffers in this module. Optional. dtype (:class:`torch.dtype`): the desired floating point type of the floating point parameters and buffers in this module. Optional. """ if device is None: device = self.data.device if dtype is None: dtype = self.data.dtype self.data = torch.empty(shape, device=device, dtype=dtype) self.__class__ = self.cls_to_become @property def shape(self): raise RuntimeError( 'Can\'t access the shape of an uninitialized parameter or buffer. ' 'This error usually happens in `load_state_dict` when trying to load ' 'an uninitialized parameter into an initialized one. ' 'Call `forward` to initialize the parameters before accessing their attributes.') def share_memory_(self): raise RuntimeError( 'Can\'t share memory on an uninitialized parameter or buffer. ' 'Call `forward` to initialize the parameters before calling ' '`module.share_memory()`.') def __repr__(self): return f'<{self.__class__.__name__}>' def __reduce_ex__(self, proto): # See Note [Don't serialize hooks] return ( self.__class__, (self.requires_grad,) ) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): # method-wrapper is to detect access to Tensor properties that are # wrapped in descriptors if func in cls._allowed_methods or func.__class__.__name__ == 'method-wrapper': if kwargs is None: kwargs = {} return super().__torch_function__(func, types, args, kwargs) raise ValueError( 'Attempted to use an uninitialized parameter in {}. ' 'This error happens when you are using a `LazyModule` or ' 'explicitly manipulating `torch.nn.parameter.{}` ' 'objects. When using LazyModules Call `forward` with a dummy batch ' 'to initialize the parameters before calling torch functions'.format(func, cls.__name__)) def is_lazy(param): return isinstance(param, UninitializedTensorMixin) class UninitializedParameter(UninitializedTensorMixin, Parameter): r"""A parameter that is not initialized. Unitialized Parameters are a a special case of :class:`torch.nn.Parameter` where the shape of the data is still unknown. Unlike a :class:`torch.nn.Parameter`, uninitialized parameters hold no data and attempting to access some properties, like their shape, will throw a runtime error. The only operations that can be performed on a uninitialized parameter are changing its datatype, moving it to a different device and converting it to a regular :class:`torch.nn.Parameter`. The default device or dtype to use when the parameter is materialized can be set during construction using e.g. ``device='cuda'``. """ cls_to_become = Parameter def __new__(cls, requires_grad=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} data = torch.empty(0, **factory_kwargs) return torch.Tensor._make_subclass(cls, data, requires_grad) class UninitializedBuffer(UninitializedTensorMixin, torch.Tensor): r"""A buffer that is not initialized. Unitialized Buffer is a a special case of :class:`torch.Tensor` where the shape of the data is still unknown. Unlike a :class:`torch.Tensor`, uninitialized parameters hold no data and attempting to access some properties, like their shape, will throw a runtime error. The only operations that can be performed on a uninitialized parameter are changing its datatype, moving it to a different device and converting it to a regular :class:`torch.Tensor`. The default device or dtype to use when the buffer is materialized can be set during construction using e.g. ``device='cuda'``. """ cls_to_become = torch.Tensor def __new__(cls, requires_grad=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} data = torch.empty(0, **factory_kwargs) return torch.Tensor._make_subclass(cls, data, requires_grad)
pytorch-master
torch/nn/parameter.py
from contextlib import contextmanager _DDP_WITH_REPLICATED_TENSOR = False @contextmanager def _ddp_replicated_tensor(val): """ A context manager to tag tensors in the forward pass of DDP to be ``ReplicatedTensor``. This can be used by ReplicatedTensor inter-op during the forward pass to perform appropriate optimizations. This context manager needs to wrap DDP creation and modifying the underlying module passed into DDP after leaving this context manager would cause inconsitencies and the changes will not be picked up during the forward pass. """ global _DDP_WITH_REPLICATED_TENSOR old_val = _DDP_WITH_REPLICATED_TENSOR _DDP_WITH_REPLICATED_TENSOR = val try: yield finally: _DDP_WITH_REPLICATED_TENSOR = old_val def _ddp_with_replicated_tensor_enabled(): global _DDP_WITH_REPLICATED_TENSOR return _DDP_WITH_REPLICATED_TENSOR def _set_ddp_with_replicated_tensor(value): global _DDP_WITH_REPLICATED_TENSOR _DDP_WITH_REPLICATED_TENSOR = value
pytorch-master
torch/nn/parallel/_replicated_tensor_ddp_utils.py
import threading import torch from torch.cuda._utils import _get_device_index from torch.cuda.amp import autocast from torch._utils import ExceptionWrapper def get_a_var(obj): if isinstance(obj, torch.Tensor): return obj if isinstance(obj, list) or isinstance(obj, tuple): for result in map(get_a_var, obj): if isinstance(result, torch.Tensor): return result if isinstance(obj, dict): for result in map(get_a_var, obj.items()): if isinstance(result, torch.Tensor): return result return None def parallel_apply(modules, inputs, kwargs_tup=None, devices=None): r"""Applies each `module` in :attr:`modules` in parallel on arguments contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword) on each of :attr:`devices`. Args: modules (Module): modules to be parallelized inputs (tensor): inputs to the modules devices (list of int or torch.device): CUDA devices :attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and :attr:`devices` (if given) should all have same length. Moreover, each element of :attr:`inputs` can either be a single object as the only argument to a module, or a collection of positional arguments. """ assert len(modules) == len(inputs) if kwargs_tup is not None: assert len(modules) == len(kwargs_tup) else: kwargs_tup = ({},) * len(modules) if devices is not None: assert len(modules) == len(devices) else: devices = [None] * len(modules) devices = [_get_device_index(x, True) for x in devices] streams = [torch.cuda.current_stream(x) for x in devices] lock = threading.Lock() results = {} grad_enabled, autocast_enabled = torch.is_grad_enabled(), torch.is_autocast_enabled() def _worker(i, module, input, kwargs, device=None, stream=None): torch.set_grad_enabled(grad_enabled) if device is None: device = get_a_var(input).get_device() if stream is None: stream = torch.cuda.current_stream(device) try: with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled): # this also avoids accidental slicing of `input` if it is a Tensor if not isinstance(input, (list, tuple)): input = (input,) output = module(*input, **kwargs) with lock: results[i] = output except Exception: with lock: results[i] = ExceptionWrapper( where="in replica {} on device {}".format(i, device)) if len(modules) > 1: threads = [threading.Thread(target=_worker, args=(i, module, input, kwargs, device, stream)) for i, (module, input, kwargs, device, stream) in enumerate(zip(modules, inputs, kwargs_tup, devices, streams))] for thread in threads: thread.start() for thread in threads: thread.join() else: _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0], streams[0]) outputs = [] for i in range(len(inputs)): output = results[i] if isinstance(output, ExceptionWrapper): output.reraise() outputs.append(output) return outputs
pytorch-master
torch/nn/parallel/parallel_apply.py
import warnings import torch from torch.cuda import nccl from torch._utils import _take_tensors, _flatten_dense_tensors, \ _unflatten_dense_tensors, _reorder_tensors_as, _get_device_index, _handle_complex from typing import List def broadcast(tensor, devices=None, *, out=None): r"""Broadcasts a tensor to specified GPU devices. Args: tensor (Tensor): tensor to broadcast. Can be on CPU or GPU. devices (Iterable[torch.device, str or int], optional): an iterable of GPU devices, among which to broadcast. out (Sequence[Tensor], optional, keyword-only): the GPU tensors to store output results. .. note:: Exactly one of :attr:`devices` and :attr:`out` must be specified. Returns: - If :attr:`devices` is specified, a tuple containing copies of :attr:`tensor`, placed on :attr:`devices`. - If :attr:`out` is specified, a tuple containing :attr:`out` tensors, each containing a copy of :attr:`tensor`. """ tensor = _handle_complex(tensor) if not ((devices is None) ^ (out is None)): raise RuntimeError( "Exactly one of 'devices' and 'out' must be specified, but got " "devices={} and out={}".format(devices, out)) if devices is not None: devices = [_get_device_index(d) for d in devices] return torch._C._broadcast(tensor, devices) else: return torch._C._broadcast_out(tensor, out) def broadcast_coalesced(tensors, devices, buffer_size=10485760): """Broadcasts a sequence tensors to the specified GPUs. Small tensors are first coalesced into a buffer to reduce the number of synchronizations. Args: tensors (sequence): tensors to broadcast. Must be on the same device, either CPU or GPU. devices (Iterable[torch.device, str or int]): an iterable of GPU devices, among which to broadcast. buffer_size (int): maximum size of the buffer used for coalescing Returns: A tuple containing copies of :attr:`tensor`, placed on :attr:`devices`. """ devices = [_get_device_index(d) for d in devices] tensors = [_handle_complex(t) for t in tensors] return torch._C._broadcast_coalesced(tensors, devices, buffer_size) def reduce_add(inputs, destination=None): """Sums tensors from multiple GPUs. All inputs should have matching shapes, dtype, and layout. The output tensor will be of the same shape, dtype, and layout. Args: inputs (Iterable[Tensor]): an iterable of tensors to add. destination (int, optional): a device on which the output will be placed (default: current device). Returns: A tensor containing an elementwise sum of all inputs, placed on the :attr:`destination` device. """ destination = _get_device_index(destination, optional=True) input_size = inputs[0].size() root_index = None # index of input tensor that already is on the correct device for i, inp in enumerate(inputs): assert inp.device.type != "cpu", "reduce_add expects all inputs to be on GPUs" if inp.get_device() == destination: root_index = i if inp.size() != input_size: got = 'x'.join(str(x) for x in inp.size()) expected = 'x'.join(str(x) for x in input_size) raise ValueError("input {} has invalid size: got {}, but expected " "{}".format(i, got, expected)) if root_index is None: raise RuntimeError("reduce_add expects destination to be on the same GPU with one of the tensors") if len(inputs) == 1: return inputs[0] if nccl.is_available(inputs): result = torch.empty_like(inputs[root_index]) nccl.reduce(inputs, output=result, root=root_index) else: destination_device = torch.device(inputs[root_index].device.type, destination) nonroot = [t for i, t in enumerate(inputs) if i != root_index] # make a new tensor w/o clone result = inputs[root_index] + nonroot[0].to(device=destination_device, non_blocking=True) for other in nonroot[1:]: result.add_(other.to(device=destination_device, non_blocking=True)) return result def reduce_add_coalesced(inputs, destination=None, buffer_size=10485760): """Sums tensors from multiple GPUs. Small tensors are first coalesced into a buffer to reduce the number of synchronizations. Args: inputs (Iterable[Iterable[Tensor]]): iterable of iterables that contain tensors from a single device. destination (int, optional): a device on which the output will be placed (default: current device). buffer_size (int): maximum size of the buffer used for coalescing Returns: A tuple of tensors containing an elementwise sum of each group of inputs, placed on the ``destination`` device. """ # TODO: When `len(inputs) == 1` and all inputs are on `destination`, just # return `inputs`. dense_tensors: List[List] = [[] for _ in inputs] # shape (num_gpus, num_tensors) output = [] ref_order = [] # process sparse ones first since they may have different sizes on different gpus for tensor_at_gpus in zip(*inputs): if all(t.is_sparse for t in tensor_at_gpus): result = reduce_add(tensor_at_gpus, destination) # this will be sparse too output.append(result) ref_order.append(tensor_at_gpus[0]) else: for coll, t in zip(dense_tensors, tensor_at_gpus): coll.append(t.to_dense() if t.is_sparse else t) ref_order.append(dense_tensors[0][-1]) itrs = [_take_tensors(tensors, buffer_size) for tensors in dense_tensors] # now the dense ones, which have consistent sizes for chunks in zip(*itrs): flat_tensors = [_flatten_dense_tensors(chunk) for chunk in chunks] # (num_gpus,) flat_result = reduce_add(flat_tensors, destination) for t in _unflatten_dense_tensors(flat_result, chunks[0]): # The unflattened tensors do not share storage, and we don't expose # base flat tensor anyways, so give them different version counters. # See NOTE [ Version Counter in comm.*_coalesced ] output.append(t.data) return tuple(_reorder_tensors_as(output, ref_order)) def scatter(tensor, devices=None, chunk_sizes=None, dim=0, streams=None, *, out=None): """Scatters tensor across multiple GPUs. Args: tensor (Tensor): tensor to scatter. Can be on CPU or GPU. devices (Iterable[torch.device, str or int], optional): an iterable of GPU devices, among which to scatter. chunk_sizes (Iterable[int], optional): sizes of chunks to be placed on each device. It should match :attr:`devices` in length and sums to ``tensor.size(dim)``. If not specified, :attr:`tensor` will be divided into equal chunks. dim (int, optional): A dimension along which to chunk :attr:`tensor`. Default: ``0``. streams (Iterable[Stream], optional): an iterable of Streams, among which to execute the scatter. If not specified, the default stream will be utilized. out (Sequence[Tensor], optional, keyword-only): the GPU tensors to store output results. Sizes of these tensors must match that of :attr:`tensor`, except for :attr:`dim`, where the total size must sum to ``tensor.size(dim)``. .. note:: Exactly one of :attr:`devices` and :attr:`out` must be specified. When :attr:`out` is specified, :attr:`chunk_sizes` must not be specified and will be inferred from sizes of :attr:`out`. Returns: - If :attr:`devices` is specified, a tuple containing chunks of :attr:`tensor`, placed on :attr:`devices`. - If :attr:`out` is specified, a tuple containing :attr:`out` tensors, each containing a chunk of :attr:`tensor`. """ tensor = _handle_complex(tensor) if out is None: devices = [_get_device_index(d) for d in devices] return tuple(torch._C._scatter(tensor, devices, chunk_sizes, dim, streams)) else: if devices is not None: raise RuntimeError( "'devices' must not be specified when 'out' is specified, but " "got devices={}".format(devices)) if chunk_sizes is not None: raise RuntimeError( "'chunk_sizes' must not be specified when 'out' is specified, " "but got chunk_sizes={}".format(chunk_sizes)) return tuple(torch._C._scatter_out(tensor, out, dim, streams)) def gather(tensors, dim=0, destination=None, *, out=None): r"""Gathers tensors from multiple GPU devices. Args: tensors (Iterable[Tensor]): an iterable of tensors to gather. Tensor sizes in all dimensions other than :attr:`dim` have to match. dim (int, optional): a dimension along which the tensors will be concatenated. Default: ``0``. destination (torch.device, str, or int, optional): the output device. Can be CPU or CUDA. Default: the current CUDA device. out (Tensor, optional, keyword-only): the tensor to store gather result. Its sizes must match those of :attr:`tensors`, except for :attr:`dim`, where the size must equal ``sum(tensor.size(dim) for tensor in tensors)``. Can be on CPU or CUDA. .. note:: :attr:`destination` must not be specified when :attr:`out` is specified. Returns: - If :attr:`destination` is specified, a tensor located on :attr:`destination` device, that is a result of concatenating :attr:`tensors` along :attr:`dim`. - If :attr:`out` is specified, the :attr:`out` tensor, now containing results of concatenating :attr:`tensors` along :attr:`dim`. """ tensors = [_handle_complex(t) for t in tensors] if out is None: if destination == -1: warnings.warn( 'Using -1 to represent CPU tensor is deprecated. Please use a ' 'device object or string instead, e.g., "cpu".') destination = _get_device_index(destination, allow_cpu=True, optional=True) return torch._C._gather(tensors, dim, destination) else: if destination is not None: raise RuntimeError( "'destination' must not be specified when 'out' is specified, but " "got destination={}".format(destination)) return torch._C._gather_out(tensors, out, dim)
pytorch-master
torch/nn/parallel/comm.py
import torch from ._functions import Scatter, Gather import warnings __all__ = ['scatter', 'scatter_kwargs', 'gather'] def is_namedtuple(obj): # Check if type was created from collections.namedtuple or a typing.NamedTuple. warnings.warn("is_namedtuple is deprecated, please use the python checks instead") return _is_namedtuple(obj) def _is_namedtuple(obj): # Check if type was created from collections.namedtuple or a typing.NamedTuple. return ( isinstance(obj, tuple) and hasattr(obj, "_asdict") and hasattr(obj, "_fields") ) def scatter(inputs, target_gpus, dim=0): r""" Slices tensors into approximately equal chunks and distributes them across given GPUs. Duplicates references to objects that are not tensors. """ def scatter_map(obj): if isinstance(obj, torch.Tensor): return Scatter.apply(target_gpus, None, dim, obj) if _is_namedtuple(obj): return [type(obj)(*args) for args in zip(*map(scatter_map, obj))] if isinstance(obj, tuple) and len(obj) > 0: return list(zip(*map(scatter_map, obj))) if isinstance(obj, list) and len(obj) > 0: return [list(i) for i in zip(*map(scatter_map, obj))] if isinstance(obj, dict) and len(obj) > 0: return [type(obj)(i) for i in zip(*map(scatter_map, obj.items()))] return [obj for targets in target_gpus] # After scatter_map is called, a scatter_map cell will exist. This cell # has a reference to the actual function scatter_map, which has references # to a closure that has a reference to the scatter_map cell (because the # fn is recursive). To avoid this reference cycle, we set the function to # None, clearing the cell try: res = scatter_map(inputs) finally: scatter_map = None return res def scatter_kwargs(inputs, kwargs, target_gpus, dim=0): r"""Scatter with support for kwargs dictionary""" inputs = scatter(inputs, target_gpus, dim) if inputs else [] kwargs = scatter(kwargs, target_gpus, dim) if kwargs else [] if len(inputs) < len(kwargs): inputs.extend(() for _ in range(len(kwargs) - len(inputs))) elif len(kwargs) < len(inputs): kwargs.extend({} for _ in range(len(inputs) - len(kwargs))) inputs = tuple(inputs) kwargs = tuple(kwargs) return inputs, kwargs def gather(outputs, target_device, dim=0): r""" Gathers tensors from different GPUs on a specified device. Use 'cpu' for CPU to avoid a deprecation warning. """ def gather_map(outputs): out = outputs[0] if isinstance(out, torch.Tensor): return Gather.apply(target_device, dim, *outputs) if out is None: return None if isinstance(out, dict): if not all(len(out) == len(d) for d in outputs): raise ValueError('All dicts must have the same number of keys') return type(out)((k, gather_map([d[k] for d in outputs])) for k in out) if _is_namedtuple(out): return type(out)._make(map(gather_map, zip(*outputs))) return type(out)(map(gather_map, zip(*outputs))) # Recursive function calls like this create reference cycles. # Setting the function to None clears the refcycle. try: res = gather_map(outputs) finally: gather_map = None return res
pytorch-master
torch/nn/parallel/scatter_gather.py
from . import comm from torch._utils import _get_device_index from collections import OrderedDict def _is_script_module(module): import torch.jit return isinstance(module, torch.jit.ScriptModule) def _is_script_method(module): import torch.jit return isinstance(module, torch._C.ScriptMethod) def _init_script_module(): import torch.jit return torch.jit.ScriptModule() def _is_jit_enabled(): import torch.jit return torch.jit._state._enabled # Check if we can safely replicate the module. # there are two types of module: # 1. python modules # 2. ScriptModule # # currently a module cannot be replicated properly if the descendants of # any ScriptModule contains python module (type 1 above) def _replicatable_module(module, memo=None): # module.modules() contains module itself as the first element def descendant_modules(module): gen = module.modules() next(gen) return gen if not _is_jit_enabled(): return True if memo is None: memo = set() # memoize visited modules memo.add(module) if _is_script_module(module): memo.update(descendant_modules(module)) return all(_is_script_module(descendant) for descendant in descendant_modules(module)) for child in module.children(): # since any unreplicatable module will cause the check to return # False early, visited modules here can be safely ignored. if child in memo: continue if not _replicatable_module(child, memo): return False return True def _broadcast_coalesced_reshape(tensors, devices, detach=False): from ._functions import Broadcast if detach: return comm.broadcast_coalesced(tensors, devices) else: # Use the autograd function to broadcast if not detach if len(tensors) > 0: tensor_copies = Broadcast.apply(devices, *tensors) return [tensor_copies[i:i + len(tensors)] for i in range(0, len(tensor_copies), len(tensors))] else: return [] def replicate(network, devices, detach=False): if not _replicatable_module(network): raise RuntimeError("Cannot replicate network where python modules are " "childrens of ScriptModule") if not devices: return [] devices = [_get_device_index(x, True) for x in devices] num_replicas = len(devices) params = list(network.parameters()) param_indices = {param: idx for idx, param in enumerate(params)} param_copies = _broadcast_coalesced_reshape(params, devices, detach) buffers = list(network.buffers()) buffers_rg = [] buffers_not_rg = [] for buf in buffers: if buf.requires_grad and not detach: buffers_rg.append(buf) else: buffers_not_rg.append(buf) buffer_indices_rg = {buf: idx for idx, buf in enumerate(buffers_rg)} buffer_indices_not_rg = {buf: idx for idx, buf in enumerate(buffers_not_rg)} buffer_copies_rg = _broadcast_coalesced_reshape(buffers_rg, devices, detach=detach) buffer_copies_not_rg = _broadcast_coalesced_reshape(buffers_not_rg, devices, detach=True) modules = list(network.modules()) module_copies = [[] for device in devices] module_indices = {} for i, module in enumerate(modules): module_indices[module] = i for j in range(num_replicas): replica = module._replicate_for_data_parallel() # This is a temporary fix for DDP. DDP needs to access the # replicated model parameters. It used to do so through # `mode.parameters()`. The fix added in #33907 for DP stops the # `parameters()` API from exposing the replicated parameters. # Hence, we add a `_former_parameters` dict here to support DDP. replica._former_parameters = OrderedDict() module_copies[j].append(replica) for i, module in enumerate(modules): for key, child in module._modules.items(): if child is None: for j in range(num_replicas): replica = module_copies[j][i] replica._modules[key] = None else: module_idx = module_indices[child] for j in range(num_replicas): replica = module_copies[j][i] setattr(replica, key, module_copies[j][module_idx]) for key, param in module._parameters.items(): if param is None: for j in range(num_replicas): replica = module_copies[j][i] replica._parameters[key] = None else: param_idx = param_indices[param] for j in range(num_replicas): replica = module_copies[j][i] param = param_copies[j][param_idx] # parameters in replicas are no longer leaves, # so setattr them as non-parameter attributes setattr(replica, key, param) # expose the parameter for DDP replica._former_parameters[key] = param for key, buf in module._buffers.items(): if buf is None: for j in range(num_replicas): replica = module_copies[j][i] replica._buffers[key] = None else: if buf.requires_grad and not detach: buffer_copies = buffer_copies_rg buffer_idx = buffer_indices_rg[buf] else: buffer_copies = buffer_copies_not_rg buffer_idx = buffer_indices_not_rg[buf] for j in range(num_replicas): replica = module_copies[j][i] setattr(replica, key, buffer_copies[j][buffer_idx]) return [module_copies[j][0] for j in range(num_replicas)]
pytorch-master
torch/nn/parallel/replicate.py
import warnings import torch from . import comm from torch.autograd import Function from torch._utils import _get_device_index from typing import List, Optional class Broadcast(Function): @staticmethod def forward(ctx, target_gpus, *inputs): assert all(i.device.type != 'cpu' for i in inputs), ( 'Broadcast function not implemented for CPU tensors' ) target_gpus = [_get_device_index(x, True) for x in target_gpus] ctx.target_gpus = target_gpus if len(inputs) == 0: return tuple() ctx.num_inputs = len(inputs) ctx.input_device = inputs[0].get_device() outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus) non_differentiables = [] for idx, input_requires_grad in enumerate(ctx.needs_input_grad[1:]): if not input_requires_grad: for output in outputs: non_differentiables.append(output[idx]) ctx.mark_non_differentiable(*non_differentiables) return tuple([t for tensors in outputs for t in tensors]) @staticmethod def backward(ctx, *grad_outputs): return (None,) + ReduceAddCoalesced.apply(ctx.input_device, ctx.num_inputs, *grad_outputs) class ReduceAddCoalesced(Function): @staticmethod def forward(ctx, destination, num_inputs, *grads): ctx.target_gpus = [grads[i].get_device() for i in range(0, len(grads), num_inputs)] grads_ = [grads[i:i + num_inputs] for i in range(0, len(grads), num_inputs)] return comm.reduce_add_coalesced(grads_, destination) @staticmethod def backward(ctx, *grad_outputs): return (None, None,) + Broadcast.apply(ctx.target_gpus, *grad_outputs) class Gather(Function): @staticmethod def forward(ctx, target_device, dim, *inputs): assert all(i.device.type != 'cpu' for i in inputs), ( 'Gather function not implemented for CPU tensors' ) if (target_device == 'cpu'): ctx.target_device = 'cpu' else: target_device = _get_device_index(target_device, True) ctx.target_device = target_device ctx.dim = dim ctx.input_gpus = tuple(i.get_device() for i in inputs) if all(t.dim() == 0 for t in inputs) and dim == 0: inputs = tuple(t.view(1) for t in inputs) warnings.warn('Was asked to gather along dimension 0, but all ' 'input tensors were scalars; will instead unsqueeze ' 'and return a vector.') ctx.unsqueezed_scalar = True else: ctx.unsqueezed_scalar = False ctx.input_sizes = tuple(i.size(ctx.dim) for i in inputs) return comm.gather(inputs, ctx.dim, ctx.target_device) @staticmethod def backward(ctx, grad_output): scattered_grads = Scatter.apply(ctx.input_gpus, ctx.input_sizes, ctx.dim, grad_output) if ctx.unsqueezed_scalar: scattered_grads = tuple(g[0] for g in scattered_grads) return (None, None) + scattered_grads class Scatter(Function): @staticmethod def forward(ctx, target_gpus, chunk_sizes, dim, input): target_gpus = [_get_device_index(x, True) for x in target_gpus] ctx.dim = dim ctx.input_device = input.get_device() if input.device.type != "cpu" else -1 streams = None if torch.cuda.is_available() and ctx.input_device == -1: # Perform CPU to GPU copies in a background stream streams = [_get_stream(device) for device in target_gpus] outputs = comm.scatter(input, target_gpus, chunk_sizes, ctx.dim, streams) # Synchronize with the copy stream if streams is not None: for i, output in enumerate(outputs): with torch.cuda.device(target_gpus[i]): main_stream = torch.cuda.current_stream() main_stream.wait_stream(streams[i]) output.record_stream(main_stream) return outputs @staticmethod def backward(ctx, *grad_output): return None, None, None, Gather.apply(ctx.input_device, ctx.dim, *grad_output) # background streams used for copying _streams: Optional[List[Optional[torch.cuda.Stream]]] = None def _get_stream(device: int): """Gets a background stream for copying between CPU and GPU""" global _streams if device == -1: return None if _streams is None: _streams = [None] * torch.cuda.device_count() if _streams[device] is None: _streams[device] = torch.cuda.Stream(device) return _streams[device]
pytorch-master
torch/nn/parallel/_functions.py
import operator import torch import warnings from itertools import chain from ..modules import Module from .scatter_gather import scatter_kwargs, gather from .replicate import replicate from .parallel_apply import parallel_apply from torch._utils import ( _get_all_device_indices, _get_available_device_type, _get_device_index, _get_devices_properties ) __all__ = ['DataParallel', 'data_parallel'] def _check_balance(device_ids): imbalance_warn = """ There is an imbalance between your GPUs. You may want to exclude GPU {} which has less than 75% of the memory or cores of GPU {}. You can do so by setting the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES environment variable.""" device_ids = [_get_device_index(x, True) for x in device_ids] dev_props = _get_devices_properties(device_ids) def warn_imbalance(get_prop): values = [get_prop(props) for props in dev_props] min_pos, min_val = min(enumerate(values), key=operator.itemgetter(1)) max_pos, max_val = max(enumerate(values), key=operator.itemgetter(1)) if min_val / max_val < 0.75: warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) return True return False if warn_imbalance(lambda props: props.total_memory): return if warn_imbalance(lambda props: props.multi_processor_count): return class DataParallel(Module): r"""Implements data parallelism at the module level. This container parallelizes the application of the given :attr:`module` by splitting the input across the specified devices by chunking in the batch dimension (other objects will be copied once per device). In the forward pass, the module is replicated on each device, and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. The batch size should be larger than the number of GPUs used. .. warning:: It is recommended to use :class:`~torch.nn.parallel.DistributedDataParallel`, instead of this class, to do multi-GPU training, even if there is only a single node. See: :ref:`cuda-nn-ddp-instead` and :ref:`ddp`. Arbitrary positional and keyword inputs are allowed to be passed into DataParallel but some types are specially handled. tensors will be **scattered** on dim specified (default 0). tuple, list and dict types will be shallow copied. The other types will be shared among different threads and can be corrupted if written to in the model's forward pass. The parallelized :attr:`module` must have its parameters and buffers on ``device_ids[0]`` before running this :class:`~torch.nn.DataParallel` module. .. warning:: In each forward, :attr:`module` is **replicated** on each device, so any updates to the running module in ``forward`` will be lost. For example, if :attr:`module` has a counter attribute that is incremented in each ``forward``, it will always stay at the initial value because the update is done on the replicas which are destroyed after ``forward``. However, :class:`~torch.nn.DataParallel` guarantees that the replica on ``device[0]`` will have its parameters and buffers sharing storage with the base parallelized :attr:`module`. So **in-place** updates to the parameters or buffers on ``device[0]`` will be recorded. E.g., :class:`~torch.nn.BatchNorm2d` and :func:`~torch.nn.utils.spectral_norm` rely on this behavior to update the buffers. .. warning:: Forward and backward hooks defined on :attr:`module` and its submodules will be invoked ``len(device_ids)`` times, each with inputs located on a particular device. Particularly, the hooks are only guaranteed to be executed in correct order with respect to operations on corresponding devices. For example, it is not guaranteed that hooks set via :meth:`~torch.nn.Module.register_forward_pre_hook` be executed before `all` ``len(device_ids)`` :meth:`~torch.nn.Module.forward` calls, but that each such hook be executed before the corresponding :meth:`~torch.nn.Module.forward` call of that device. .. warning:: When :attr:`module` returns a scalar (i.e., 0-dimensional tensor) in :func:`forward`, this wrapper will return a vector of length equal to number of devices used in data parallelism, containing the result from each device. .. note:: There is a subtlety in using the ``pack sequence -> recurrent network -> unpack sequence`` pattern in a :class:`~torch.nn.Module` wrapped in :class:`~torch.nn.DataParallel`. See :ref:`pack-rnn-unpack-with-data-parallelism` section in FAQ for details. Args: module (Module): module to be parallelized device_ids (list of int or torch.device): CUDA devices (default: all devices) output_device (int or torch.device): device location of output (default: device_ids[0]) Attributes: module (Module): the module to be parallelized Example:: >>> # xdoctest: +SKIP >>> net = torch.nn.DataParallel(model, device_ids=[0, 1, 2]) >>> output = net(input_var) # input_var can be on any device, including CPU """ # TODO: update notes/cuda.rst when this class handles 8+ GPUs well def __init__(self, module, device_ids=None, output_device=None, dim=0): super(DataParallel, self).__init__() torch._C._log_api_usage_once("torch.nn.parallel.DataParallel") device_type = _get_available_device_type() if device_type is None: self.module = module self.device_ids = [] return if device_ids is None: device_ids = _get_all_device_indices() if output_device is None: output_device = device_ids[0] self.dim = dim self.module = module self.device_ids = [_get_device_index(x, True) for x in device_ids] self.output_device = _get_device_index(output_device, True) self.src_device_obj = torch.device(device_type, self.device_ids[0]) _check_balance(self.device_ids) if len(self.device_ids) == 1: self.module.to(self.src_device_obj) def forward(self, *inputs, **kwargs): with torch.autograd.profiler.record_function("DataParallel.forward"): if not self.device_ids: return self.module(*inputs, **kwargs) for t in chain(self.module.parameters(), self.module.buffers()): if t.device != self.src_device_obj: raise RuntimeError("module must have its parameters and buffers " "on device {} (device_ids[0]) but found one of " "them on device: {}".format(self.src_device_obj, t.device)) inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) # for forward function without any inputs, empty list and dict will be created # so the module can be executed on one device which is the first one in device_ids if not inputs and not kwargs: inputs = ((),) kwargs = ({},) if len(self.device_ids) == 1: return self.module(*inputs[0], **kwargs[0]) replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) outputs = self.parallel_apply(replicas, inputs, kwargs) return self.gather(outputs, self.output_device) def replicate(self, module, device_ids): return replicate(module, device_ids, not torch.is_grad_enabled()) def scatter(self, inputs, kwargs, device_ids): return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim) def parallel_apply(self, replicas, inputs, kwargs): return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) def gather(self, outputs, output_device): return gather(outputs, output_device, dim=self.dim) def data_parallel(module, inputs, device_ids=None, output_device=None, dim=0, module_kwargs=None): r"""Evaluates module(input) in parallel across the GPUs given in device_ids. This is the functional version of the DataParallel module. Args: module (Module): the module to evaluate in parallel inputs (Tensor): inputs to the module device_ids (list of int or torch.device): GPU ids on which to replicate module output_device (list of int or torch.device): GPU location of the output Use -1 to indicate the CPU. (default: device_ids[0]) Returns: a Tensor containing the result of module(input) located on output_device """ if not isinstance(inputs, tuple): inputs = (inputs,) if inputs is not None else () device_type = _get_available_device_type() if device_ids is None: device_ids = _get_all_device_indices() if output_device is None: output_device = device_ids[0] device_ids = [_get_device_index(x, True) for x in device_ids] output_device = _get_device_index(output_device, True) src_device_obj = torch.device(device_type, device_ids[0]) for t in chain(module.parameters(), module.buffers()): if t.device != src_device_obj: raise RuntimeError("module must have its parameters and buffers " "on device {} (device_ids[0]) but found one of " "them on device: {}".format(src_device_obj, t.device)) inputs, module_kwargs = scatter_kwargs(inputs, module_kwargs, device_ids, dim) # for module without any inputs, empty list and dict will be created # so the module can be executed on one device which is the first one in device_ids if not inputs and not module_kwargs: inputs = ((),) module_kwargs = ({},) if len(device_ids) == 1: return module(*inputs[0], **module_kwargs[0]) used_device_ids = device_ids[:len(inputs)] replicas = replicate(module, used_device_ids) outputs = parallel_apply(replicas, inputs, module_kwargs, used_device_ids) return gather(outputs, output_device, dim)
pytorch-master
torch/nn/parallel/data_parallel.py
from .parallel_apply import parallel_apply from .replicate import replicate from .data_parallel import DataParallel, data_parallel from .scatter_gather import scatter, gather from .distributed import DistributedDataParallel __all__ = ['replicate', 'scatter', 'parallel_apply', 'gather', 'data_parallel', 'DataParallel', 'DistributedDataParallel'] def DistributedDataParallelCPU(*args, **kwargs): import warnings warnings.warn("torch.nn.parallel.DistributedDataParallelCPU is deprecated, " "please use torch.nn.parallel.DistributedDataParallel instead.") return DistributedDataParallel(*args, **kwargs)
pytorch-master
torch/nn/parallel/__init__.py
import sys import copy from dataclasses import dataclass from typing import Callable, Any, Type from enum import Enum, auto import inspect import itertools import logging import os import warnings from contextlib import contextmanager import torch import torch.distributed as dist from torch.autograd import Function, Variable from torch.distributed.algorithms.join import ( Join, Joinable, JoinHook, ) from torch.utils._pytree import tree_flatten, tree_unflatten RPC_AVAILABLE = False if dist.is_available(): from torch.distributed.utils import ( _verify_param_shape_across_processes, _sync_module_states, _to_kwargs, ) from torch.distributed.distributed_c10d import ReduceOp, _get_default_group if torch.distributed.rpc.is_available(): RPC_AVAILABLE = True from torch.distributed.rpc import RRef from torch._utils import _get_device_index from ..modules import Module from ._replicated_tensor_ddp_utils import _ddp_with_replicated_tensor_enabled from .scatter_gather import gather, is_namedtuple, scatter_kwargs # noqa: F401 __all__ = ['DistributedDataParallel'] logger = logging.getLogger(__name__) def _tree_flatten_with_rref(output): output_is_rref = RPC_AVAILABLE and isinstance(output, RRef) if output_is_rref: output_tensor_list, treespec = tree_flatten(output.local_value()) else: output_tensor_list, treespec = tree_flatten(output) # Need to return flattened tensors, spec to re-pack them, as well # as if the return type was actually an RRef to reconstruct. return output_tensor_list, treespec, output_is_rref def _tree_unflatten_with_rref(output, treespec, output_is_rref): output = tree_unflatten(output, treespec) if output_is_rref: output = RRef(output) return output def _find_tensors(obj): r""" Recursively find all tensors contained in the specified object. """ if RPC_AVAILABLE and isinstance(obj, RRef): # If the current node is the owner of the RRef, unwrap it and try to # find Tensors. # TODO: Expand to remote RRefs. if obj.is_owner(): return _find_tensors(obj.local_value()) if isinstance(obj, torch.Tensor): return [obj] if isinstance(obj, (list, tuple)): return itertools.chain(*map(_find_tensors, obj)) if isinstance(obj, dict): return itertools.chain(*map(_find_tensors, obj.values())) return [] def _dump_DDP_relevant_env_vars(): relevant_env_vars = [ "RANK", "LOCAL_RANK", "WORLD_SIZE", "MASTER_PORT", "MASTER_ADDR", "CUDA_VISIBLE_DEVICES", "GLOO_SOCKET_IFNAME", "GLOO_DEVICE_TRANSPORT", "NCCL_SOCKET_IFNAME", "NCCL_BLOCKING_WAIT", "NCCL_DEBUG", "NCCL_DEBUG_SUBSYS", "NCCL_IB_DISABLE", # More NCCL env vars: "NCCL_P2P_DISABLE", "NCCL_P2P_LEVEL", "NCCL_SHM_DISABLE", "NCCL_SOCKET_NTHREADS", "NCCL_NSOCKS_PERTHREAD", "NCCL_BUFFSIZE", "NCCL_NTHREADS", "NCCL_RINGS", "NCCL_MAX_NCHANNELS", "NCCL_MIN_NCHANNELS", "NCCL_CHECKS_DISABLE", "NCCL_CHECK_POINTERS", "NCCL_LAUNCH_MODE", "NCCL_IB_HCA", "NCCL_IB_TIMEOUT", "NCCL_IB_RETRY_CNT", "NCCL_IB_GID_INDEX", "NCCL_IB_SL", "NCCL_IB_TC", "NCCL_IB_AR_THRESHOLD", "NCCL_IB_CUDA_SUPPORT", "NCCL_NET_GDR_LEVEL", "NCCL_NET_GDR_READ", "NCCL_SINGLE_RING_THRESHOLD", "NCCL_LL_THRESHOLD", "NCCL_TREE_THRESHOLD", "NCCL_ALGO", "NCCL_PROTO", "NCCL_IGNORE_CPU_AFFINITY", "NCCL_DEBUG_FILE", "NCCL_COLLNET_ENABLE", "NCCL_TOPO_FILE", "NCCL_TOPO_DUMP_FILE", "NCCL_ASYNC_ERROR_HANDLING", ] formatted_output = "" for var in relevant_env_vars: value = os.environ[var] if var in os.environ else "N/A" formatted_output += "env:%s=%s\n" % (var, value) print(formatted_output) class _BufferCommHookLocation(Enum): PRE_FORWARD = auto() POST_FORWARD = auto() @dataclass class _BufferCommHook: buffer_comm_hook: Callable buffer_comm_hook_state: Any buffer_comm_hook_location: _BufferCommHookLocation # Add a DDPSink to run various functions when backwards starts, such as # queueing call back of out-most backward/graph task, # this helps call back is fired after all gradients' calculation # is completed. class _DDPSink(Function): @staticmethod def forward(ctx, reducer, state_dict, *inputs): # set_materialize_grads(False) will ensure that None gradients stay as # None and are not filled with zeros. ctx.set_materialize_grads(False) ctx.reducer = reducer ctx.state_dict = state_dict ret = tuple( inp.clone() if isinstance(inp, torch.Tensor) else inp for inp in inputs ) return ret @staticmethod def backward(ctx, *grad_outputs): state_dict = ctx.state_dict # Enqueue delay allreduce for static graph training on the first # iteration. if ctx.state_dict['static_graph'] and ctx.state_dict['num_iterations'] == 1: Variable._execution_engine.queue_callback(ctx.reducer._delay_all_reduce) return (None, None, *grad_outputs) class _DDPJoinHook(JoinHook): def __init__(self, ddp, divide_by_initial_world_size): """ Sets config variables for internal usage. """ assert isinstance(ddp, DistributedDataParallel), ( "DDP join hook requires passing in a DistributedDataParallel " "instance as the state" ) ddp.logger._set_uneven_input_join() self.ddp = ddp self.ddp._divide_by_initial_world_size = divide_by_initial_world_size super().__init__() def main_hook(self): """ Shadows the DDP collective communication operations in the forward and backward passes. """ ddp = self.ddp # Buckets are rebuilt only once during a training period ddp.reducer._rebuild_buckets() # Schedule a broadcast if we are syncing module buffers in the # forward pass # TODO: make DDP uneven inputs context manager support buffer # comm hook (https://github.com/pytorch/pytorch/issues/65436) ddp._check_and_sync_module_buffers() # Check if need to sync in the backward pass work = ddp._check_global_requires_backward_grad_sync(is_joined_rank=True) work.wait() should_sync_backwards = work.result()[0].item() != 0 # Forward parameter sync is disabled in the next iteration if we # are skipping gradient sync this iteration, so set # `require_forward_param_sync` accordingly ddp.require_forward_param_sync = should_sync_backwards if not should_sync_backwards: return # Schedule one allreduce per gradient bucket to match the backward # pass allreduce ddp._match_all_reduce_for_bwd_pass() # Check if we need to allreduce locally unused parameters if ddp.find_unused_parameters: ddp._match_unused_params_allreduce() # Rebuilt parameters are pushed only once during a training period ddp.reducer._push_all_rebuilt_params() def post_hook(self, is_last_joiner: bool): """ Syncs the final model to ensure that the model is the same across all processes. """ self.ddp._sync_final_model(is_last_joiner) class DistributedDataParallel(Module, Joinable): r"""Implements distributed data parallelism that is based on ``torch.distributed`` package at the module level. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. The module is replicated on each machine and each device, and each such replica handles a portion of the input. During the backwards pass, gradients from each node are averaged. The batch size should be larger than the number of GPUs used locally. See also: :ref:`distributed-basics` and :ref:`cuda-nn-ddp-instead`. The same constraints on input as in :class:`torch.nn.DataParallel` apply. Creation of this class requires that ``torch.distributed`` to be already initialized, by calling :func:`torch.distributed.init_process_group`. ``DistributedDataParallel`` is proven to be significantly faster than :class:`torch.nn.DataParallel` for single-node multi-GPU data parallel training. To use ``DistributedDataParallel`` on a host with N GPUs, you should spawn up ``N`` processes, ensuring that each process exclusively works on a single GPU from 0 to N-1. This can be done by either setting ``CUDA_VISIBLE_DEVICES`` for every process or by calling: >>> # xdoctest: +SKIP("undefined variables") >>> torch.cuda.set_device(i) where i is from 0 to N-1. In each process, you should refer the following to construct this module: >>> # xdoctest: +SKIP("undefined variables") >>> torch.distributed.init_process_group( >>> backend='nccl', world_size=N, init_method='...' >>> ) >>> model = DistributedDataParallel(model, device_ids=[i], output_device=i) In order to spawn up multiple processes per node, you can use either ``torch.distributed.launch`` or ``torch.multiprocessing.spawn``. .. note:: Please refer to `PyTorch Distributed Overview <https://pytorch.org/tutorials/beginner/dist_overview.html>`__ for a brief introduction to all features related to distributed training. .. note:: ``DistributedDataParallel`` can be used in conjunction with :class:`torch.distributed.optim.ZeroRedundancyOptimizer` to reduce per-rank optimizer states memory footprint. Please refer to `ZeroRedundancyOptimizer recipe <https://pytorch.org/tutorials/recipes/zero_redundancy_optimizer.html>`__ for more details. .. note:: ``nccl`` backend is currently the fastest and highly recommended backend when using GPUs. This applies to both single-node and multi-node distributed training. .. note:: This module also supports mixed-precision distributed training. This means that your model can have different types of parameters such as mixed types of ``fp16`` and ``fp32``, the gradient reduction on these mixed types of parameters will just work fine. .. note:: If you use ``torch.save`` on one process to checkpoint the module, and ``torch.load`` on some other processes to recover it, make sure that ``map_location`` is configured properly for every process. Without ``map_location``, ``torch.load`` would recover the module to devices where the module was saved from. .. note:: When a model is trained on ``M`` nodes with ``batch=N``, the gradient will be ``M`` times smaller when compared to the same model trained on a single node with ``batch=M*N`` if the loss is summed (NOT averaged as usual) across instances in a batch (because the gradients between different nodes are averaged). You should take this into consideration when you want to obtain a mathematically equivalent training process compared to the local training counterpart. But in most cases, you can just treat a DistributedDataParallel wrapped model, a DataParallel wrapped model and an ordinary model on a single GPU as the same (E.g. using the same learning rate for equivalent batch size). .. note:: Parameters are never broadcast between processes. The module performs an all-reduce step on gradients and assumes that they will be modified by the optimizer in all processes in the same way. Buffers (e.g. BatchNorm stats) are broadcast from the module in process of rank 0, to all other replicas in the system in every iteration. .. note:: If you are using DistributedDataParallel in conjunction with the :ref:`distributed-rpc-framework`, you should always use :meth:`torch.distributed.autograd.backward` to compute gradients and :class:`torch.distributed.optim.DistributedOptimizer` for optimizing parameters. .. note:: DistributedDataParallel currently offers limited support for gradient checkpointing with :meth:`torch.utils.checkpoint`. DDP will work as expected when there are no unused parameters in the model and each layer is checkpointed at most once (make sure you are not passing `find_unused_parameters=True` to DDP). We currently do not support the case where a layer is checkpointed multiple times, or when there unused parameters in the checkpointed model. Example:: >>> # xdoctest: +SKIP("undefined variables") >>> import torch.distributed.autograd as dist_autograd >>> from torch.nn.parallel import DistributedDataParallel as DDP >>> import torch >>> from torch import optim >>> from torch.distributed.optim import DistributedOptimizer >>> import torch.distributed.rpc as rpc >>> from torch.distributed.rpc import RRef >>> >>> t1 = torch.rand((3, 3), requires_grad=True) >>> t2 = torch.rand((3, 3), requires_grad=True) >>> rref = rpc.remote("worker1", torch.add, args=(t1, t2)) >>> ddp_model = DDP(my_model) >>> >>> # Setup optimizer >>> optimizer_params = [rref] >>> for param in ddp_model.parameters(): >>> optimizer_params.append(RRef(param)) >>> >>> dist_optim = DistributedOptimizer( >>> optim.SGD, >>> optimizer_params, >>> lr=0.05, >>> ) >>> >>> with dist_autograd.context() as context_id: >>> pred = ddp_model(rref.to_here()) >>> loss = loss_func(pred, target) >>> dist_autograd.backward(context_id, [loss]) >>> dist_optim.step(context_id) .. note:: To let a non-DDP model load a state dict from a DDP model, :meth:`~torch.nn.modules.utils.consume_prefix_in_state_dict_if_present` needs to be applied to strip the prefix "module." in the DDP state dict before loading. .. warning:: Constructor, forward method, and differentiation of the output (or a function of the output of this module) are distributed synchronization points. Take that into account in case different processes might be executing different code. .. warning:: This module assumes all parameters are registered in the model by the time it is created. No parameters should be added nor removed later. Same applies to buffers. .. warning:: This module assumes all parameters are registered in the model of each distributed processes are in the same order. The module itself will conduct gradient ``allreduce`` following the reverse order of the registered parameters of the model. In other words, it is users' responsibility to ensure that each distributed process has the exact same model and thus the exact same parameter registration order. .. warning:: This module allows parameters with non-rowmajor-contiguous strides. For example, your model may contain some parameters whose :class:`torch.memory_format` is ``torch.contiguous_format`` and others whose format is ``torch.channels_last``. However, corresponding parameters in different processes must have the same strides. .. warning:: This module doesn't work with :func:`torch.autograd.grad` (i.e. it will only work if gradients are to be accumulated in ``.grad`` attributes of parameters). .. warning:: If you plan on using this module with a ``nccl`` backend or a ``gloo`` backend (that uses Infiniband), together with a DataLoader that uses multiple workers, please change the multiprocessing start method to ``forkserver`` (Python 3 only) or ``spawn``. Unfortunately Gloo (that uses Infiniband) and NCCL2 are not fork safe, and you will likely experience deadlocks if you don't change this setting. .. warning:: You should never try to change your model's parameters after wrapping up your model with ``DistributedDataParallel``. Because, when wrapping up your model with ``DistributedDataParallel``, the constructor of ``DistributedDataParallel`` will register the additional gradient reduction functions on all the parameters of the model itself at the time of construction. If you change the model's parameters afterwards, gradient redunction functions no longer match the correct set of parameters. .. warning:: Using ``DistributedDataParallel`` in conjunction with the :ref:`distributed-rpc-framework` is experimental and subject to change. Args: module (Module): module to be parallelized device_ids (list of int or torch.device): CUDA devices. 1) For single-device modules, ``device_ids`` can contain exactly one device id, which represents the only CUDA device where the input module corresponding to this process resides. Alternatively, ``device_ids`` can also be ``None``. 2) For multi-device modules and CPU modules, ``device_ids`` must be ``None``. When ``device_ids`` is ``None`` for both cases, both the input data for the forward pass and the actual module must be placed on the correct device. (default: ``None``) output_device (int or torch.device): Device location of output for single-device CUDA modules. For multi-device modules and CPU modules, it must be ``None``, and the module itself dictates the output location. (default: ``device_ids[0]`` for single-device modules) broadcast_buffers (bool): Flag that enables syncing (broadcasting) buffers of the module at beginning of the ``forward`` function. (default: ``True``) process_group: The process group to be used for distributed data all-reduction. If ``None``, the default process group, which is created by :func:`torch.distributed.init_process_group`, will be used. (default: ``None``) bucket_cap_mb: ``DistributedDataParallel`` will bucket parameters into multiple buckets so that gradient reduction of each bucket can potentially overlap with backward computation. :attr:`bucket_cap_mb` controls the bucket size in MegaBytes (MB). (default: 25) find_unused_parameters (bool): Traverse the autograd graph from all tensors contained in the return value of the wrapped module's ``forward`` function. Parameters that don't receive gradients as part of this graph are preemptively marked as being ready to be reduced. In addition, parameters that may have been used in the wrapped module's ``forward`` function but were not part of loss computation and thus would also not receive gradients are preemptively marked as ready to be reduced. (default: ``False``) check_reduction: This argument is deprecated. gradient_as_bucket_view (bool): When set to ``True``, gradients will be views pointing to different offsets of ``allreduce`` communication buckets. This can reduce peak memory usage, where the saved memory size will be equal to the total gradients size. Moreover, it avoids the overhead of copying between gradients and ``allreduce`` communication buckets. When gradients are views, ``detach_()`` cannot be called on the gradients. If hitting such errors, please fix it by referring to the :meth:`~torch.optim.Optimizer.zero_grad` function in ``torch/optim/optimizer.py`` as a solution. Note that gradients will be views after first iteration, so the peak memory saving should be checked after first iteration. static_graph (bool): When set to ``True``, DDP knows the trained graph is static. Static graph means 1) The set of used and unused parameters will not change during the whole training loop; in this case, it does not matter whether users set ``find_unused_parameters = True`` or not. 2) How the graph is trained will not change during the whole training loop (meaning there is no control flow depending on iterations). When static_graph is set to be ``True``, DDP will support cases that can not be supported in the past: 1) Reentrant backwards. 2) Activation checkpointing multiple times. 3) Activation checkpointing when model has unused parameters. 4) There are model parameters that are outside of forward function. 5) Potentially improve performance when there are unused parameters, as DDP will not search graph in each iteraton to detect unused parameters when static_graph is set to be ``True``. To check whether you can set static_graph to be ``True``, one way is to check ddp logging data at the end of your previous model training, if ``ddp_logging_data.get("can_set_static_graph") == True``, mostly you can set ``static_graph = True`` as well. Example:: >>> # xdoctest: +SKIP("undefined variables") >>> model_DDP = torch.nn.parallel.DistributedDataParallel(model) >>> # Training loop >>> ... >>> ddp_logging_data = model_DDP._get_ddp_logging_data() >>> static_graph = ddp_logging_data.get("can_set_static_graph") Attributes: module (Module): the module to be parallelized. Example:: >>> # xdoctest: +SKIP("undefined variables") >>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...') >>> net = torch.nn.parallel.DistributedDataParallel(model) """ def __init__( self, module, device_ids=None, output_device=None, dim=0, broadcast_buffers=True, process_group=None, bucket_cap_mb=25, find_unused_parameters=False, check_reduction=False, gradient_as_bucket_view=False, static_graph=False, ): super(DistributedDataParallel, self).__init__() Joinable.__init__(self) self.logger = None if not any((p.requires_grad for p in module.parameters())): self._log_and_throw( RuntimeError, "DistributedDataParallel is not needed when a module " "doesn't have any parameter that requires a gradient.", ) if device_ids is not None and len(device_ids) > 1: self._log_and_throw( ValueError, "device_ids can only be None or contain a single element." ) self.is_multi_device_module = len({p.device for p in module.parameters()}) > 1 distinct_device_types = {p.device.type for p in module.parameters()} if len(distinct_device_types) != 1: self._log_and_throw( ValueError, "DistributedDataParallel's input module must be on " "the same type of devices, but input module parameters locate in {}.".format( distinct_device_types ), ) self.device_type = list(distinct_device_types)[0] if ( device_ids is None or len(device_ids) == 0 # For backward compatibility. or self.device_type == "cpu" or self.is_multi_device_module ): if device_ids or output_device: self._log_and_throw( ValueError, "DistributedDataParallel device_ids and output_device arguments " "only work with single-device/multiple-device GPU modules or CPU modules, " "but got device_ids {}, output_device {}, and module parameters {}.".format( device_ids, output_device, {p.device for p in module.parameters()}, ), ) self.device_ids = None self.output_device = None else: self.device_ids = [_get_device_index(x, True) for x in device_ids] if output_device is None: output_device = device_ids[0] self.output_device = _get_device_index(output_device, True) if process_group is None: self.process_group = _get_default_group() else: self.process_group = process_group self.static_graph = False self.dim = dim self.module = module self.device = list(self.module.parameters())[0].device self.broadcast_buffers = broadcast_buffers self.find_unused_parameters = find_unused_parameters self.require_backward_grad_sync = True self.require_forward_param_sync = True self.gradient_as_bucket_view = gradient_as_bucket_view if hasattr(module, "_ddp_params_and_buffers_to_ignore"): self.parameters_to_ignore = module._ddp_params_and_buffers_to_ignore else: self.parameters_to_ignore = [] self._use_replicated_tensor_module = _ddp_with_replicated_tensor_enabled() self._build_replicated_tensor_module() if check_reduction: # This argument is no longer used since the reducer # will ensure reduction completes even if some parameters # do not receive gradients. warnings.warn( "The `check_reduction` argument in `DistributedDataParallel` " "module is deprecated. Please avoid using it." ) # Check that a module does not have Uninitialized parameters for param in module.parameters(): if isinstance(param, torch.nn.parameter.UninitializedParameter): self._log_and_throw( RuntimeError, "Modules with uninitialized parameters can't be used with `DistributedDataParallel`. " "Run a dummy forward pass to correctly initialize the modules", ) # used for intra-node param sync and inter-node sync as well self.broadcast_bucket_size = int(250 * 1024 * 1024) # reduction bucket size self.bucket_bytes_cap = int(bucket_cap_mb * 1024 * 1024) # Whether to perform input tensor CPU to GPU copies on a side-stream self.use_side_stream_for_tensor_copies = ( os.environ.get("PYTORCH_DDP_USE_SIDE_STREAM", "1") == "1" ) # Build parameters for reducer. parameters, expect_sparse_gradient = self._build_params_for_reducer() # Verify model equivalence. _verify_param_shape_across_processes(self.process_group, parameters) # Sync params and buffers. Ensures all DDP models start off at the same value. _sync_module_states( module=self.module, process_group=self.process_group, broadcast_bucket_size=self.broadcast_bucket_size, src=0, params_and_buffers_to_ignore=self.parameters_to_ignore, ) # In debug mode, build a mapping of parameter index -> parameter. param_to_name_mapping = self._build_debug_param_to_name_mapping(parameters) # Builds reducer. self._ddp_init_helper( parameters, expect_sparse_gradient, param_to_name_mapping, static_graph ) self._has_rebuilt_buckets = False if static_graph: self._set_static_graph() def _build_replicated_tensor_module(self): if self._use_replicated_tensor_module: # Create a module with ReplicatedTensor without copying tensors. Avoid # registering '_replicated_tensor_module' as a submodule by directly # adding to self.__dict__. from ._replicated_tensor_ddp_interop import _replicate_module self.__dict__['_replicated_tensor_module'] = _replicate_module(self.module, self.process_group) def _log_and_throw(self, err_type, err_msg): if self.logger is not None: self.logger.set_error_and_log(f"{str(err_type)}: {err_msg}") raise err_type(err_msg) def _ddp_init_helper( self, parameters, expect_sparse_gradient, param_to_name_mapping, static_graph ): """ Initialization helper function that does the following: (1) bucketing the parameters for reductions (2) resetting the bucketing states (3) registering the grad hooks (4) Logging construction-time DDP logging data (5) passing a handle of DDP to SyncBatchNorm Layer """ self.num_iterations = 0 # Notice, the parameters order is not in the order in which they are used, # especially in models with control flow. # # Alongside parameters are not presented in the real execution order, # if a certain model happens to also # 1) have other collectives comm ops in its backward graph. # 2) have unused parameter in subset ranks of the whole world. # bucketing could insert ALL-REDUCE comm op too early on the rank with unused parameter, # matching up with other collectives comm ops on other ranks unexpectedly. # # In order to handle this corner case, when the parameters are not in the real execution order, # we don't do bucketing, thus only one ALL-REDUCE is inserted after all the gradients # of the whole graph are computed. # # Notice, here we only disable bucketing for the first iteration. # After the first iteration, it's OK to rebuild buckets, # because "bucket rebuild" bucketizes parameters based on its real execution order in backward graph. # Can remove this branching once #73732 is landed. if static_graph is True or self.find_unused_parameters is False: bucket_size_limits = [sys.maxsize] else: bucket_size_limits = [dist._DEFAULT_FIRST_BUCKET_BYTES, self.bucket_bytes_cap] bucket_indices, per_bucket_size_limits = dist._compute_bucket_assignment_by_size( parameters, bucket_size_limits, expect_sparse_gradient, ) # Note: reverse list of buckets because we want to approximate the # order in which their gradients are produced, and assume they # are used in the forward pass in the order they are defined. self.reducer = dist.Reducer( parameters, list(reversed(bucket_indices)), list(reversed(per_bucket_size_limits)), self.process_group, expect_sparse_gradient, # The bucket size limit is specified in the constructor. # Additionally, we allow for a single small bucket for parameters # that are defined first, such that their gradients don't spill into # a much larger bucket, adding unnecessary latency after gradient # computation finishes. Experiments showed 1MB is a reasonable value. self.bucket_bytes_cap, self.find_unused_parameters, self.gradient_as_bucket_view, param_to_name_mapping, # User can set dist._DEFAULT_FIRST_BUCKET_BYTES to tune DDP first # bucket. dist._DEFAULT_FIRST_BUCKET_BYTES ) self.logger = dist.Logger(self.reducer) # Set as a weak reference to avoid reference cycle between # logger and reducer. self.reducer.set_logger(self.logger) has_sync_bn = False for submodule in self.module.modules(): if isinstance(submodule, torch.nn.SyncBatchNorm): has_sync_bn = True break # Set logging data that can be got during construction time. self.logger.set_construction_data_and_log( self.module.__class__.__name__, [] if self.device_ids is None else self.device_ids, -1 if self.output_device is None else self.output_device, self.broadcast_buffers, has_sync_bn, static_graph, ) # passing a handle to torch.nn.SyncBatchNorm layer self._passing_sync_batchnorm_handle(self.module) def __getstate__(self): self._check_default_group() attrs = copy.copy(self.__dict__) del attrs["process_group"] del attrs["reducer"] del attrs["logger"] if self._use_replicated_tensor_module: del attrs["_replicated_tensor_module"] return attrs def __setstate__(self, state): # If serializable, then the process group should be the default one self.process_group = _get_default_group() super(DistributedDataParallel, self).__setstate__(state) self._build_replicated_tensor_module() self.__dict__.setdefault("require_forward_param_sync", True) self.__dict__.setdefault("require_backward_grad_sync", True) parameters, expect_sparse_gradient = self._build_params_for_reducer() # In debug mode, build a mapping of parameter index -> parameter. param_to_name_mapping = self._build_debug_param_to_name_mapping(parameters) # Builds reducer. self._ddp_init_helper( parameters, expect_sparse_gradient, param_to_name_mapping, self.static_graph ) if self.static_graph: self.reducer._set_static_graph() self.logger._set_static_graph() def _build_params_for_reducer(self): # Build tuple of (module, parameter) for all parameters that require grads. modules_and_parameters = [ (module, parameter) for module_name, module in self.module.named_modules() for parameter in [ param # Note that we access module.named_parameters instead of # parameters(module). parameters(module) is only needed in the # single-process multi device case, where it accesses replicated # parameters through _former_parameters. for param_name, param in module.named_parameters(recurse=False) if param.requires_grad and f"{module_name}.{param_name}" not in self.parameters_to_ignore ] ] # Deduplicate any parameters that might be shared across child modules. memo = set() modules_and_parameters = [ # "p not in memo" is the deduplication check. # "not memo.add(p)" is always True, and it's only there to cause "add(p)" if needed. (m, p) for m, p in modules_and_parameters if p not in memo and not memo.add(p) ] # Build list of parameters. parameters = list(parameter for _, parameter in modules_and_parameters) # Checks if a module will produce a sparse gradient. def produces_sparse_gradient(module): if isinstance(module, torch.nn.Embedding) or isinstance( module, torch.nn.EmbeddingBag ): return module.sparse return False # Build list of booleans indicating whether or not to expect sparse # gradients for the corresponding parameters. expect_sparse_gradient = list(produces_sparse_gradient(module) for module, _ in modules_and_parameters) self._assign_modules_buffers() return parameters, expect_sparse_gradient def _assign_modules_buffers(self): """ Assigns module buffers to self.modules_buffers which are then used to broadcast across ranks when broadcast_buffers=True. Note that this must be called every time buffers need to be synced because buffers can be reassigned by user module, see https://github.com/pytorch/pytorch/issues/63916. """ # Collect buffers for modules, filtering out buffers that should be ignored. named_module_buffers = [ (buffer, buffer_name) for buffer_name, buffer in self.module.named_buffers() if buffer_name not in self.parameters_to_ignore ] self.modules_buffers = [ buffer for (buffer, buffer_name) in named_module_buffers ] # Dict[str, tensor] representing module buffers not ignored by DDP. self.named_module_buffers = { buffer_name: buffer for (buffer, buffer_name) in named_module_buffers } def _build_debug_param_to_name_mapping(self, parameters): if dist.get_debug_level() == dist.DebugLevel.OFF: return {} param_to_param_index = {parameters[i]: i for i in range(len(parameters))} param_set = set(parameters) param_index_to_param_fqn = {} for module_name, module in self.module.named_modules(): for param_name, param in module.named_parameters(recurse=False): fqn = f"{module_name}.{param_name}" # Bypass ignored parameters since those are not reduced by DDP # to begin with. if fqn not in self.parameters_to_ignore and param.requires_grad: if param not in param_set: self._log_and_throw( ValueError, f"Param with name {fqn} found in module parameters, but not DDP parameters." " This indicates a bug in DDP, please report an issue to PyTorch.", ) param_index = param_to_param_index[param] param_index_to_param_fqn[param_index] = fqn # Ensure we covered all parameters if len(param_set) != len(param_index_to_param_fqn): self._log_and_throw( ValueError, ( "Expected param to name mapping to cover all parameters, but" f" got conflicting lengths: {len(param_set)} vs " f"{len(param_index_to_param_fqn)}. This indicates a bug in DDP" ", please report an issue to PyTorch." ), ) return param_index_to_param_fqn def _get_parameters(self, m, recurse=True): """ Returns a generator of module parameters """ def model_parameters(m): ps = ( m._former_parameters.values() if hasattr(m, "_former_parameters") else m.parameters(recurse=False) ) for p in ps: yield p for m in m.modules() if recurse else [m]: for p in model_parameters(m): yield p def _check_default_group(self): pickle_not_supported = False try: if self.process_group != _get_default_group(): pickle_not_supported = True except RuntimeError: pickle_not_supported = True if pickle_not_supported: self._log_and_throw( RuntimeError, "DDP Pickling/Unpickling are only supported " "when using DDP with the default process " "group. That is, when you have called " "init_process_group and have not passed " "process_group argument to DDP constructor", ) @contextmanager def no_sync(self): r""" A context manager to disable gradient synchronizations across DDP processes. Within this context, gradients will be accumulated on module variables, which will later be synchronized in the first forward-backward pass exiting the context. Example:: >>> # xdoctest: +SKIP("undefined variables") >>> ddp = torch.nn.parallel.DistributedDataParallel(model, pg) >>> with ddp.no_sync(): >>> for input in inputs: >>> ddp(input).backward() # no synchronization, accumulate grads >>> ddp(another_input).backward() # synchronize grads """ old_require_backward_grad_sync = self.require_backward_grad_sync self.require_backward_grad_sync = False try: yield finally: self.require_backward_grad_sync = old_require_backward_grad_sync def _run_ddp_forward(self, *inputs, **kwargs): module_to_run = self._replicated_tensor_module if self._use_replicated_tensor_module else self.module if self.device_ids: inputs, kwargs = _to_kwargs( inputs, kwargs, self.device_ids[0], self.use_side_stream_for_tensor_copies ) return module_to_run(*inputs[0], **kwargs[0]) else: return module_to_run(*inputs, **kwargs) def forward(self, *inputs, **kwargs): with torch.autograd.profiler.record_function("DistributedDataParallel.forward"): if torch.is_grad_enabled() and self.require_backward_grad_sync: self.logger.set_runtime_stats_and_log() self.num_iterations += 1 self.reducer.prepare_for_forward() # Notify the join context that this process has not joined, if # needed work = Join.notify_join_context(self) if work: self.reducer._set_forward_pass_work_handle( work, self._divide_by_initial_world_size ) # Calling _rebuild_buckets before forward compuation, # It may allocate new buckets before deallocating old buckets # inside _rebuild_buckets. To save peak memory usage, # call _rebuild_buckets before the peak memory usage increases # during forward computation. # This should be called only once during whole training period. if torch.is_grad_enabled() and self.reducer._rebuild_buckets(): logger.info("Reducer buckets have been rebuilt in this iteration.") self._has_rebuilt_buckets = True # sync params according to location (before/after forward) user # specified as part of hook, if hook was specified. buffer_hook_registered = hasattr(self, 'buffer_hook') if self._check_sync_bufs_pre_fwd(): self._sync_buffers() if self._join_config.enable: # Notify joined ranks whether they should sync in backwards pass or not. self._check_global_requires_backward_grad_sync(is_joined_rank=False) output = self._run_ddp_forward(*inputs, **kwargs) # sync params according to location (before/after forward) user # specified as part of hook, if hook was specified. if self._check_sync_bufs_post_fwd(): self._sync_buffers() if torch.is_grad_enabled() and self.require_backward_grad_sync: self.require_forward_param_sync = True # We'll return the output object verbatim since it is a freeform # object. We need to find any tensors in this object, though, # because we need to figure out which parameters were used during # this forward pass, to ensure we short circuit reduction for any # unused parameters. Only if `find_unused_parameters` is set. if self.find_unused_parameters and not self.static_graph: # Do not need to populate this for static graph. self.reducer.prepare_for_backward(list(_find_tensors(output))) else: self.reducer.prepare_for_backward([]) else: self.require_forward_param_sync = False # TODO: DDPSink is currently enabled for unused parameter detection and # static graph training for first iteration. if (self.find_unused_parameters and not self.static_graph) or ( self.static_graph and self.num_iterations == 1 ): state_dict = { 'static_graph': self.static_graph, 'num_iterations': self.num_iterations, } output_tensor_list, treespec, output_is_rref = _tree_flatten_with_rref( output ) output_placeholders = [None for _ in range(len(output_tensor_list))] # Do not touch tensors that have no grad_fn, which can cause issues # such as https://github.com/pytorch/pytorch/issues/60733 for i, output in enumerate(output_tensor_list): if torch.is_tensor(output) and output.grad_fn is None: output_placeholders[i] = output # When find_unused_parameters=True, makes tensors which require grad # run through the DDPSink backward pass. When not all outputs are # used in loss, this makes those corresponding tensors receive # undefined gradient which the reducer then handles to ensure # param.grad field is not touched and we don't error out. passthrough_tensor_list = _DDPSink.apply( self.reducer, state_dict, *output_tensor_list, ) for i in range(len(output_placeholders)): if output_placeholders[i] is None: output_placeholders[i] = passthrough_tensor_list[i] # Reconstruct output data structure. output = _tree_unflatten_with_rref( output_placeholders, treespec, output_is_rref ) return output def scatter(self, inputs, kwargs, device_ids): return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim) def to_kwargs(self, inputs, kwargs, device_id): # Kept for BC return _to_kwargs( inputs, kwargs, device_id, self.use_side_stream_for_tensor_copies ) def gather(self, outputs, output_device): return gather(outputs, output_device, dim=self.dim) def train(self, mode=True): super(DistributedDataParallel, self).train(mode) if self._use_replicated_tensor_module: self._replicated_tensor_module.train(mode) return self # When running in join mode, schedules an allreduce to notify joined ranks # of whether backwards pass synchronization will run this iteraton or not. def _check_global_requires_backward_grad_sync(self, is_joined_rank): if not is_joined_rank and self.require_backward_grad_sync: requires_sync_tensor = torch.ones(1, device=self.device) else: requires_sync_tensor = torch.zeros(1, device=self.device) work = dist.all_reduce( requires_sync_tensor, group=self.process_group, async_op=True ) return work # When running in join mode, checks and performs sync of module buffers if # the models have buffers that should be synchronized in the forward pass. def _check_and_sync_module_buffers(self): if self._check_sync_bufs_pre_fwd(): authoritative_rank = self._find_common_rank(self._distributed_rank, False) self._sync_module_buffers(authoritative_rank) # When running in join model, agrees upon a common rank and broadcast model # parameters to all other ranks. def _sync_final_model(self, is_last_joiner): # Agree upon the process that will be the authoritative model copy. # The current rank is a candidate for being the authoritative copy if # is_last_joiner=True. We break ties via picking the larger rank. self._authoritative_rank = self._find_common_rank( self._distributed_rank, is_last_joiner ) _sync_module_states( module=self.module, process_group=self.process_group, broadcast_bucket_size=self.broadcast_bucket_size, src=self._authoritative_rank, params_and_buffers_to_ignore=self.parameters_to_ignore ) # Schedule comm ops to match those scheduled in the reducer's backward # pass. def _match_all_reduce_for_bwd_pass(self): comm_work = [] # Schedule comm in the same order as Reducer schedules them, i.e. # the order of the buckets. Retrieving the bucket order from the reducer # ensures that we keep the same order in join mode, such as when bucket # order is rebuilt dynamically. # Returns grad_buckets in order, but real tensors are substituted with # zero tensors of the same shape. grad_buckets = self.reducer._get_zeros_like_grad_buckets() for grad_bucket in grad_buckets: # Joined processes contribute zero gradient. In the case that # divide_by_initial_world_size=True, we divide grads by the static # world size, if not, the dividing factor is reduced by the number # of joined processes. work = self.reducer._run_comm_hook(grad_bucket) comm_work.append(work) for work in comm_work: work.wait() # Allreduces the used parameter mapping across ranks. def _match_unused_params_allreduce(self): locally_used_param_map = self.reducer._get_local_used_map() self.process_group.allreduce(locally_used_param_map) def join( self, divide_by_initial_world_size: bool = True, enable: bool = True, throw_on_early_termination: bool = False, ): r""" A context manager to be used in conjunction with an instance of :class:`torch.nn.parallel.DistributedDataParallel` to be able to train with uneven inputs across participating processes. This context manager will keep track of already-joined DDP processes, and "shadow" the forward and backward passes by inserting collective communication operations to match with the ones created by non-joined DDP processes. This will ensure each collective call has a corresponding call by already-joined DDP processes, preventing hangs or errors that would otherwise happen when training with uneven inputs across processes. Alternatively, if the flag ``throw_on_early_termination`` is specified to be ``True``, all trainers will throw an error once one rank runs out of inputs, allowing these errors to be caught and handled according to application logic. Once all DDP processes have joined, the context manager will broadcast the model corresponding to the last joined process to all processes to ensure the model is the same across all processes (which is guaranteed by DDP). To use this to enable training with uneven inputs across processes, simply wrap this context manager around your training loop. No further modifications to the model or data loading is required. .. warning:: If the model or training loop this context manager is wrapped around has additional distributed collective operations, such as ``SyncBatchNorm`` in the model's forward pass, then the flag ``throw_on_early_termination`` must be enabled. This is because this context manager is not aware of non-DDP collective communication. This flag will cause all ranks to throw when any one rank exhausts inputs, allowing these errors to be caught and recovered from across all ranks. Args: divide_by_initial_world_size (bool): If ``True``, will divide gradients by the initial ``world_size`` DDP training was launched with. If ``False``, will compute the effective world size (number of ranks that have not depleted their inputs yet) and divide gradients by that during allreduce. Set ``divide_by_initial_world_size=True`` to ensure every input sample including the uneven inputs have equal weight in terms of how much they contribute to the global gradient. This is achieved by always dividing the gradient by the initial ``world_size`` even when we encounter uneven inputs. If you set this to ``False``, we divide the gradient by the remaining number of nodes. This ensures parity with training on a smaller ``world_size`` although it also means the uneven inputs would contribute more towards the global gradient. Typically, you would want to set this to ``True`` for cases where the last few inputs of your training job are uneven. In extreme cases, where there is a large discrepancy in the number of inputs, setting this to ``False`` might provide better results. enable (bool): Whether to enable uneven input detection or not. Pass in ``enable=False`` to disable in cases where you know that inputs are even across participating processes. Default is ``True``. throw_on_early_termination (bool): Whether to throw an error or continue training when at least one rank has exhausted inputs. If ``True``, will throw upon the first rank reaching end of data. If ``False``, will continue training with a smaller effective world size until all ranks are joined. Note that if this flag is specified, then the flag ``divide_by_initial_world_size`` would be ignored. Default is ``False``. Example:: >>> import torch >>> import torch.distributed as dist >>> import os >>> import torch.multiprocessing as mp >>> import torch.nn as nn >>> # On each spawned worker >>> def worker(rank): >>> dist.init_process_group("nccl", rank=rank, world_size=2) >>> torch.cuda.set_device(rank) >>> model = nn.Linear(1, 1, bias=False).to(rank) >>> model = torch.nn.parallel.DistributedDataParallel( >>> model, device_ids=[rank], output_device=rank >>> ) >>> # Rank 1 gets one more input than rank 0. >>> inputs = [torch.tensor([1]).float() for _ in range(10 + rank)] >>> with model.join(): >>> for _ in range(5): >>> for inp in inputs: >>> loss = model(inp).sum() >>> loss.backward() >>> # Without the join() API, the below synchronization will hang >>> # blocking for rank 1's allreduce to complete. >>> torch.cuda.synchronize(device=rank) """ return Join( [self], enable, throw_on_early_termination, divide_by_initial_world_size=divide_by_initial_world_size, ) def join_hook( self, **kwargs, ): r""" Returns the DDP join hook, which enables training on uneven inputs by shadowing the collective communications in the forward and backward passes. Arguments: kwargs (dict): a :class:`dict` containing any keyword arguments to modify the behavior of the join hook at run time; all :class:`Joinable` instances sharing the same join context manager are forwarded the same value for ``kwargs``. The hook supports the following keyword arguments: divide_by_initial_world_size (bool, optional): If ``True``, then gradients are divided by the initial world size that DDP was launched with. If ``False``, then gradients are divided by the effective world size (i.e. the number of non-joined processes), meaning that the uneven inputs contribute more toward the global gradient. Typically, this should be set to ``True`` if the degree of unevenness is small but can be set to ``False`` in extreme cases for possibly better results. Default is ``True``. """ divide_by_initial_world_size = kwargs.get("divide_by_initial_world_size", True) return _DDPJoinHook( self, divide_by_initial_world_size=divide_by_initial_world_size ) @property def join_device(self): return self.device @property def join_process_group(self): return self.process_group def _register_buffer_comm_hook( self, state, hook: callable, comm_hook_location=_BufferCommHookLocation.POST_FORWARD ): r""" Allows custom registration of hooks that define how buffer are synchronized across ranks. The hook takes in an optional state and is passed in a Dict[str, Tensor] corresponding to buffer names and the buffers, and can run arbitrary reductions on buffers as opposed to DDP's default broadcast from rank 0. This is useful for example if a counter needs to be summed or averaged across ranks every iteration. Args: state (Any): Optional state that is passed to the hook. hook (Callable): Callable with the following signature: ``hook(state: object, buffers: Dict[str, torch.Tensor]) -> Optional[List[torch.futures.Future[torch.Tensor]]]`` comm_hook_location (_BufferCommHookLocation): Enum value indicating where to run the hook. _BufferCommHookLocation.PRE_FORWARD means that the hook will run _before_ the forward pass, and _BufferCommHookLocation.POST_FORWARD means that the hook will run _after_ the forward pass. hook (Callable): Callable with the following signature: ``hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]``: NOTE: To maximize performance, users can return a List[torch.futures.Future] from their hook, and DDP will install and await these hooks appropriately at the end of the backward pass. This will ensure all buffers are synchronized by the end of the backward pass. If this setting is used, it is recommended to pass comm_hook_location=_BufferCommHookLocation.POST_FORWARD, which will trigger the hook after the forward pass. If _BufferCommHookLocation.PRE_FORWARD is used, users must ensure appropriate synchronization when manipulating GPU buffers in the forward pass. """ assert callable(hook) self.buffer_hook = _BufferCommHook( buffer_comm_hook=hook, buffer_comm_hook_state=state, buffer_comm_hook_location=comm_hook_location ) def register_comm_hook(self, state: object, hook: callable): r""" Registers a communication hook which is an enhancement that provides a flexible hook to users where they can specify how DDP aggregates gradients across multiple workers. This hook would be very useful for researchers to try out new ideas. For example, this hook can be used to implement several algorithms like GossipGrad and gradient compression which involve different communication strategies for parameter syncs while running Distributed DataParallel training. Args: state (object): Passed to the hook to maintain any state information during the training process. Examples include error feedback in gradient compression, peers to communicate with next in GossipGrad, etc. It is locally stored by each worker and shared by all the gradient tensors on the worker. hook (Callable): Callable with the following signature: ``hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]``: This function is called once the bucket is ready. The hook can perform whatever processing is needed and return a Future indicating completion of any async work (ex: allreduce). If the hook doesn't perform any communication, it still must return a completed Future. The Future should hold the new value of grad bucket's tensors. Once a bucket is ready, c10d reducer would call this hook and use the tensors returned by the Future and copy grads to individual parameters. Note that the future's return type must be a single tensor. We also provide an API called ``get_future`` to retrieve a Future associated with the completion of ``c10d.ProcessGroup.Work``. ``get_future`` is currently supported for NCCL and also supported for most operations on GLOO and MPI, except for peer to peer operations (send/recv). .. warning :: Grad bucket's tensors will not be predivided by world_size. User is responsible to divide by the world_size in case of operations like allreduce. .. warning :: DDP communication hook can only be registered once and should be registered before calling backward. .. warning :: The Future object that hook returns should contain a single tensor that has the same shape with the tensors inside grad bucket. .. warning :: ``get_future`` API supports NCCL, and partially GLOO and MPI backends (no support for peer-to-peer operations like send/recv) and will return a ``torch.futures.Future``. Example:: Below is an example of a noop hook that returns the same tensor. >>> def noop(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]: >>> fut = torch.futures.Future() >>> fut.set_result(bucket.buffer()) >>> return fut >>> # xdoctest: +SKIP('undefined name') >>> ddp.register_comm_hook(state=None, hook=noop) Example:: Below is an example of a Parallel SGD algorithm where gradients are encoded before allreduce, and then decoded after allreduce. >>> def encode_and_decode(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]: >>> encoded_tensor = encode(bucket.buffer()) # encode gradients >>> fut = torch.distributed.all_reduce(encoded_tensor).get_future() >>> # Define the then callback to decode. >>> def decode(fut): >>> decoded_tensor = decode(fut.value()[0]) # decode gradients >>> return decoded_tensor >>> return fut.then(decode) >>> # xdoctest: +SKIP('undefined name') >>> ddp.register_comm_hook(state=None, hook=encode_and_decode) """ self._check_comm_hook(hook) self.logger._set_comm_hook_name(hook.__qualname__) dist._register_comm_hook(self.reducer, state, hook) def _register_builtin_comm_hook(self, comm_hook_type): r""" Registers a built-in communication hook that specifies how DDP aggregates gradients across multiple workers. The built-in hooks aim to provide efficient C++ implementations for certain hooks, which might not be as efficient if implemented in Python using a Python communication hook. Args: comm_hook_type (dist.BuiltinCommHookType): type of communication hook, such as ALLREDUCE, FP16_COMPRESS, etc. .. warning :: DDP communication hook can only be registered once and should be registered before calling backward. Example:: Below is an example of a FP16 compression where gradients are compressed into 16-bit floating-point numbers before allreduce, and then decompressed after allreduce. >>> # xdoctest: +SKIP('undefined name') >>> ddp._register_builtin_comm_hook(dist.BuiltinCommHookType.FP16_COMPRESS) """ self.logger._set_comm_hook_name(str(comm_hook_type)) dist._register_builtin_comm_hook(self.reducer, comm_hook_type) def _register_fused_optim(self, optim: Type, *args, optim_params=None, **kwargs): r""" Registers an optimizer with DDP such that the optimization for a parameter will run immediately when that parameter's gradient is finished with reduction, instead of waiting for all parameters' gradients to finish reduction. This can result in a training speedup depending on your workload since the optimizer can run while gradient reduction for other parameters are still ongoing. In addition, this has the potential to reduce peak memory consumption during training, as it only needs to load the per-parameter optimizer states of a single parameter at a time, instead of loading all per-parameter optimizer states at once. Args: optim_cls (Type): a ``torch.optim.Optimizer`` class to be registered as a fused optimizer. *args (Sequence[Any]): Arguments to forward to `optim_cls`. optim_params (Optional[Iterable[torch.Tensor]]): Set of parameters to optimize, similar to `params` argument of traditional `torch.optim` Optimizers. If this is omitted, all DDP model parameters will be optimized. **kwargs: (Dict[str, Any]): Keyword arguments to forward to `optim_cls`. .. warning :: _register_fused_optim should only be called once on a DDP instance, and registering multiple fused optimizers for the same DDP model is not currently supported. Please ping https://github.com/pytorch/pytorch/issues/71595 if this is necessary for your use case. .. warning :: _register_fused_optim and register_comm_hook currently do not compose together, meaning that custom DDP communication hooks are not supported with overlapped optimizers. Please ping https://github.com/pytorch/pytorch/issues/71595 if this is necessary for your use case. .. warning :: Gradient accumulation and DDP `no_sync` are currently not supported with overlapped optimizer. Please ping https://github.com/pytorch/pytorch/issues/71595 if this is necessary for your use case. Example:: >>> # xdoctest: +SKIP("No rendezvous handler") >>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...') >>> net = torch.nn.parallel.DistributedDataParallel(model, pg) >>> lr = 1e-2 >>> betas = (0.9, 0.99) >>> eps = 1e-6 >>> net._register_fused_optim(torch.optim.Adam, lr, betas=betas, eps=eps) >>> # Example with subset of parameters >>> params_to_opt = [list(net.parameters())[0]] >>> net._register_fused_optim( ... torch.optim.Adam, lr, optim_params=params_to_opt, betas=betas, eps=eps ... ) """ # Note: importing in function, otherwise this will cause a circular # import as optimizer_overlap module needs to import DistributedDataParallel. from torch.distributed.algorithms._optimizer_overlap import _as_overlapped_optim overlapped_optim = _as_overlapped_optim(optim, optim_params, *args, **kwargs) try: overlapped_optim.register_ddp(self) except NotImplementedError: raise RuntimeError( f"{optim} does not support overlapped DDP. Please file an issue to PyTorch or the respective owner of {optim}." ) def _distributed_broadcast_coalesced( self, tensors, buffer_size, authoritative_rank=0 ): dist._broadcast_coalesced( self.process_group, tensors, buffer_size, authoritative_rank ) def _check_sync_bufs_post_fwd(self): return ( self.will_sync_module_buffers() and hasattr(self, 'buffer_hook') and self.buffer_hook.buffer_comm_hook_location == _BufferCommHookLocation.POST_FORWARD ) def _check_sync_bufs_pre_fwd(self): return self.will_sync_module_buffers() and ( not hasattr(self, 'buffer_hook') or self.buffer_hook.buffer_comm_hook_location == _BufferCommHookLocation.PRE_FORWARD ) def will_sync_module_buffers(self): return ( self.require_forward_param_sync and self.broadcast_buffers and len(self.modules_buffers) > 0 ) def _find_common_rank(self, input_rank, rank_cond): # -1 indicates that this rank is not under consideration to be the # common_rank rank_to_use = torch.tensor( [input_rank if rank_cond else -1], device=self.device, ) dist.all_reduce(rank_to_use, op=ReduceOp.MAX, group=self.process_group) if rank_to_use.item() == -1: self._log_and_throw( ValueError, "BUG! Expected rank_cond to be true for at least one process." " This indicates a bug in PyTorch, please report an issue.", ) return rank_to_use.item() def _sync_buffers(self): with torch.no_grad(): # module buffer sync # Synchronize buffers across processes. # If we are running DDP with the join manager, we have to agree # upon a rank to sync module buffers from, since rank 0 may # already have been joined and have stale module buffers. if self._join_config.enable: authoritative_rank = self._find_common_rank( self._distributed_rank, True ) else: # The process with rank 0 is considered the authoritative copy. authoritative_rank = 0 # Update self.modules_buffers incase any buffers were # reassigned. self._assign_modules_buffers() self._sync_module_buffers(authoritative_rank) def _sync_module_buffers(self, authoritative_rank): if not hasattr(self, 'buffer_hook'): self._default_broadcast_coalesced(authoritative_rank=authoritative_rank) else: hook = self.buffer_hook.buffer_comm_hook state = self.buffer_hook.buffer_comm_hook_state futs = hook(state, self.named_module_buffers) if futs is not None: self.reducer._install_post_backward_futures(futs) def _default_broadcast_coalesced( self, bufs=None, bucket_size=None, authoritative_rank=0 ): """ Broadcasts buffers from rank 0 to rest of workers. If bufs, bucket_size are None, default values self.modules_buffers and self.broadcast_bucket_size are used instead. """ if bufs is None: bufs = self.modules_buffers if bucket_size is None: bucket_size = self.broadcast_bucket_size self._distributed_broadcast_coalesced( bufs, bucket_size, authoritative_rank ) def _passing_sync_batchnorm_handle(self, module): for layer in module.modules(): if isinstance(layer, torch.nn.modules.SyncBatchNorm): if self.device_type == "cpu": self._log_and_throw( ValueError, "SyncBatchNorm layers only work with GPU modules" ) def _check_comm_hook(self, hook): if not callable(hook): self._log_and_throw(TypeError, "Communication hook must be callable.") sig = inspect.signature(hook) if ( sig.parameters["bucket"].annotation != inspect._empty and sig.parameters["bucket"].annotation != dist.GradBucket ): self._log_and_throw( ValueError, "Communication hook: bucket annotation should be dist.GradBucket.", ) if ( sig.return_annotation != inspect._empty and sig.return_annotation != torch.futures.Future[torch.Tensor] ): self._log_and_throw( ValueError, "Communication hook: return annotation should be torch.futures.Future[torch.Tensor].", ) if ( hook.__name__ in ["bf16_compress_hook", "bf16_compress_wrapper_hook"] and ( (torch.version.cuda is None and torch.version.hip is None) or (torch.version.cuda is not None and int(torch.version.cuda.split('.')[0]) < 11) or not dist.is_available() or not dist.is_nccl_available() or torch.cuda.nccl.version() < (2, 10) ) ): self._log_and_throw(TypeError, "BF16 all reduce communication hook required CUDA 11+ and NCCL 2.10+.") @property def _distributed_rank(self): return dist.get_rank(self.process_group) @staticmethod def _set_params_and_buffers_to_ignore_for_model( module, params_and_buffers_to_ignore ): """ Sets parameters and buffers to be ignored by DDP. Expected format for parameters is the fully qualified name: {module_name}.{param_name}, and similarly, {module_name}.{buffer_name} for buffers. For example: params_to_ignore = [] # NB: model here is vanilla PyTorch module, not yet wrapped with DDP. for module_name, module in model.named_modules(): for param_name, param in module.named_parameters(recurse=False): if should_ignore(param): # Create expected format fqn = f"{module_name}.{param_name}" params_to_ignore.append(fqn) torch.nn.parallel.DistributedDataParallel._set_params_and_buffers_to_ignore_for_model( model, params_to_ignore ) """ # This is a workaround to set parameters and buffers DDP should ignore # during synchronization. It will be removed when the API is finalized # as part of addressing https://github.com/pytorch/pytorch/issues/43690. module._ddp_params_and_buffers_to_ignore = params_and_buffers_to_ignore def _get_ddp_logging_data(self): r""" This interface can be called after DistributedDataParallel() is constructed. It returns a dictionary of logging data. It could help for debugging and analysis. The loggind data includes DistributedDataParallel constructor input parameters, some internal states of DistributedDataParallel and performance metrics. Simply print the dictorinary and see what these metrics are. This is a prototype interface and subject to change in the future. """ ddp_logging_data = self.logger._get_ddp_logging_data() return {**ddp_logging_data.strs_map, **ddp_logging_data.ints_map} def _set_ddp_runtime_logging_sample_rate(self, sample_rate): r""" This interface allows users to set sample_rate of collecting runtime stats. The runtime stats will be recorded for the first 10 iterations, after 10 iteratons runtime stats will be recorded once every "sample_rate" training iterations. In default, runtime stats are recorded for the first 10 iterations, after 10 iterations runtime stats are recorded once every "kDDPRuntimeLoggingSampleRate=100" training iterations. This is a prototype interface and subject to change in the future. """ if sample_rate < 1: self._log_and_throw( ValueError, "DDP runtime logging sample rate should be equal or greater than 1", ) self.reducer._set_ddp_runtime_logging_sample_rate(sample_rate) def _set_static_graph(self): """ It is recommended to set static graph in the DDP constructor, which will call this private API internally. """ # If self.static_graph has been set, no need to set it again if self.static_graph: warnings.warn( "You've set static_graph to be True, no need to set it again." ) return self.static_graph = True self.reducer._set_static_graph() self.logger._set_static_graph() if self.find_unused_parameters: warnings.warn( "You passed find_unused_parameters=true to DistributedDataParallel, " "`_set_static_graph` will detect unused parameters automatically, so " "you do not need to set find_unused_parameters=true, just be sure these " "unused parameters will not change during training loop while calling " "`_set_static_graph`." )
pytorch-master
torch/nn/parallel/distributed.py
import torch from torch.distributed._shard.replicated_tensor import ReplicatedTensor class ReplicatedTensorFunction(torch.autograd.Function): """ Autograd function to ensure gradients are replicated between the replicated tensor and the original one. """ @staticmethod def forward(ctx, inp, process_group=None): # set_materialize_grads(False) will ensure that None gradients stay as # None and are not filled with zeros. ctx.set_materialize_grads(False) return ReplicatedTensor(inp, process_group) @staticmethod def backward(ctx, grad_output): return grad_output, None def _make_replicated_tensor(tensor, process_group): replicated_tensor = ReplicatedTensorFunction.apply(tensor, process_group) replicated_tensor.grad = tensor.grad return replicated_tensor def _replicate_module_recurse(module, process_group): replica = module._replicate_for_data_parallel() for param_name, param in module._parameters.items(): if param is not None: setattr(replica, param_name, _make_replicated_tensor(param, process_group)) else: setattr(replica, param_name, param) for buffer_name, buffer in module._buffers.items(): setattr(replica, buffer_name, buffer) for module_name, child in module._modules.items(): setattr(replica, module_name, _replicate_module_recurse(child, process_group)) return replica def _replicate_module(network, process_group): from torch.nn.parallel.replicate import _replicatable_module # type: ignore[attr-defined] if not _replicatable_module(network): raise RuntimeError("Cannot replicate network where python modules are " "childrens of ScriptModule") return _replicate_module_recurse(network, process_group)
pytorch-master
torch/nn/parallel/_replicated_tensor_ddp_interop.py
from .modules import * # noqa: F403
pytorch-master
torch/nn/qat/__init__.py
from .modules import * # noqa: F403
pytorch-master
torch/nn/qat/dynamic/__init__.py
import torch from torch.ao.quantization import activation_is_memoryless class Linear(torch.nn.qat.Linear): r""" A linear module attached with FakeQuantize modules for weight, used for dynamic quantization aware training. We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to default. """ def __init__(self, in_features, out_features, bias=True, qconfig=None, device=None, dtype=None) -> None: super().__init__(in_features, out_features, bias, qconfig, device, dtype) if not activation_is_memoryless(qconfig): raise ValueError( "Dynamic QAT requires a memoryless observer." + "This means a MovingAverage observer with averaging constant equal to 1" )
pytorch-master
torch/nn/qat/dynamic/modules/linear.py
from .linear import Linear __all__ = ["Linear"]
pytorch-master
torch/nn/qat/dynamic/modules/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.intrinsic import LinearReLU from torch.nn.utils.parametrize import ( is_parametrized, type_before_parametrizations, transfer_parametrizations_and_params, ) class Linear(nn.Linear): r""" A linear module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to default. Attributes: weight: fake quant module for weight """ _FLOAT_MODULE = nn.Linear def __init__(self, in_features, out_features, bias=True, qconfig=None, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(in_features, out_features, bias, **factory_kwargs) assert qconfig, 'qconfig must be provided for QAT module' self.qconfig = qconfig self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs) def forward(self, input): return F.linear(input, self.weight_fake_quant(self.weight), self.bias) @classmethod def from_float(cls, mod): r"""Create a qat module from a float module or qparams_dict Args: `mod` a float module, either produced by torch.ao.quantization utilities or directly from user """ assert type_before_parametrizations(mod) == cls._FLOAT_MODULE, ( " qat." + cls.__name__ + ".from_float only works for " + cls._FLOAT_MODULE.__name__ ) assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined" assert mod.qconfig, "Input float module must have a valid qconfig" if type_before_parametrizations(mod) == LinearReLU: mod = mod[0] qconfig = mod.qconfig qat_linear = cls(mod.in_features, mod.out_features, bias=mod.bias is not None, qconfig=qconfig) if is_parametrized(mod, "weight"): transfer_parametrizations_and_params(mod, qat_linear, "weight") else: qat_linear.weight = mod.weight if is_parametrized(mod, "bias"): transfer_parametrizations_and_params(mod, qat_linear, "bias") else: qat_linear.bias = mod.bias return qat_linear def to_float(self): linear = torch.nn.Linear(self.in_features, self.out_features, self.bias is not None) linear.weight = torch.nn.Parameter(self.weight.detach()) if self.bias is not None: linear.bias = torch.nn.Parameter(self.bias.detach()) linear.train(self.training) return linear
pytorch-master
torch/nn/qat/modules/linear.py
from .linear import Linear from .conv import Conv1d from .conv import Conv2d from .conv import Conv3d from .embedding_ops import EmbeddingBag, Embedding __all__ = [ "Linear", "Conv1d", "Conv2d", "Conv3d", "Embedding", "EmbeddingBag", ]
pytorch-master
torch/nn/qat/modules/__init__.py
import torch import torch.nn as nn from torch.nn.modules.utils import _single, _pair, _triple from torch.nn.intrinsic import _FusedModule from typing import Tuple, TypeVar, Union from torch.nn.common_types import _size_1_t, _size_2_t, _size_3_t MOD = TypeVar('MOD', bound=nn.modules.conv._ConvNd) class _ConvNd(nn.modules.conv._ConvNd): _FLOAT_MODULE = MOD def __init__(self, in_channels: int, out_channels: int, kernel_size: Tuple[int, ...], stride: Tuple[int, ...], padding: Tuple[int, ...], dilation: Tuple[int, ...], transposed: bool, output_padding: Tuple[int, ...], groups: int, bias: bool, padding_mode: str, qconfig=None, device=None, dtype=None) -> None: factory_kwargs = {"device": device, "dtype": dtype} nn.modules.conv._ConvNd.__init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode, **factory_kwargs) assert qconfig, 'qconfig must be provided for QAT module' self.qconfig = qconfig self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs) def forward(self, input): return self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias) @staticmethod def from_float(cls, mod): r"""Create a qat module from a float module Args: `mod`: a float module, either produced by torch.ao.quantization utilities or directly from user """ assert type(mod) == cls._FLOAT_MODULE, ( "qat." + cls.__name__ + ".from_float only works for " + cls._FLOAT_MODULE.__name__ # type: ignore[attr-defined] ) assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' assert mod.qconfig, 'Input float module must have a valid qconfig' if issubclass(type(mod), _FusedModule): mod = mod[0] # type: ignore[index] qconfig = mod.qconfig qat_conv = cls(mod.in_channels, mod.out_channels, mod.kernel_size, stride=mod.stride, padding=mod.padding, dilation=mod.dilation, groups=mod.groups, bias=mod.bias is not None, padding_mode=mod.padding_mode, qconfig=qconfig) qat_conv.weight = mod.weight qat_conv.bias = mod.bias return qat_conv def to_float(self): """ This works for both single qat conv, and the qat conv - relu modules to convert the qat module to a floating point module """ cls = type(self) conv = cls._FLOAT_CONV_MODULE( # type: ignore[attr-defined, operator] self.in_channels, self.out_channels, self.kernel_size, # type: ignore[arg-type] self.stride, # type: ignore[arg-type] self.padding, # type: ignore[arg-type] self.dilation, # type: ignore[arg-type] self.groups, self.bias is not None, self.padding_mode) conv.weight = torch.nn.Parameter(self.weight.detach()) if self.bias is not None: conv.bias = torch.nn.Parameter(self.bias.detach()) # conv relu if issubclass(cls, _FusedModule): modules = [conv] assert hasattr(cls, "_FLOAT_RELU_MODULE") relu = cls._FLOAT_RELU_MODULE() # type: ignore[attr-defined] modules.append(relu) fused = cls._FLOAT_MODULE(*modules) # type: ignore[arg-type, attr-defined, operator] fused.train(self.training) return fused else: return conv class Conv1d(_ConvNd, nn.Conv1d): r""" A Conv1d module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as :class:`~torch.nn.Conv1d` Similar to :class:`~torch.nn.Conv2d`, with FakeQuantize modules initialized to default. Attributes: weight_fake_quant: fake quant module for weight """ _FLOAT_MODULE = nn.Conv1d _FLOAT_CONV_MODULE = nn.Conv1d def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_1_t, stride: _size_1_t = 1, padding: Union[str, _size_1_t] = 0, dilation: _size_1_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', qconfig=None, device=None, dtype=None) -> None: kernel_size_ = _single(kernel_size) stride_ = _single(stride) padding_ = padding if isinstance(padding, str) else _single(padding) dilation_ = _single(dilation) super().__init__( in_channels, out_channels, kernel_size_, stride=stride_, padding=padding_, dilation=dilation_, transposed=False, output_padding=_single(0), groups=groups, bias=bias, padding_mode=padding_mode, qconfig=qconfig, device=device, dtype=dtype) @classmethod def from_float(cls, mod): return super().from_float(cls, mod) class Conv2d(_ConvNd, nn.Conv2d): r""" A Conv2d module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as `torch.nn.Conv2d`, please see https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d for documentation. Similar to `torch.nn.Conv2d`, with FakeQuantize modules initialized to default. Attributes: weight_fake_quant: fake quant module for weight """ _FLOAT_MODULE = nn.Conv2d _FLOAT_CONV_MODULE = nn.Conv2d def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: Union[str, _size_2_t] = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', qconfig=None, device=None, dtype=None) -> None: kernel_size_ = _pair(kernel_size) stride_ = _pair(stride) padding_ = padding if isinstance(padding, str) else _pair(padding) dilation_ = _pair(dilation) super().__init__( in_channels, out_channels, kernel_size_, stride=stride_, padding=padding_, dilation=dilation_, transposed=False, output_padding=_pair(0), groups=groups, bias=bias, padding_mode=padding_mode, qconfig=qconfig, device=device, dtype=dtype) def forward(self, input): return self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias) @classmethod def from_float(cls, mod): return super().from_float(cls, mod) class Conv3d(_ConvNd, nn.Conv3d): r""" A Conv3d module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as `torch.nn.Conv3d`, please see https://pytorch.org/docs/stable/nn.html?highlight=conv3d#torch.nn.Conv3d for documentation. Similar to `torch.nn.Conv3d`, with FakeQuantize modules initialized to default. Attributes: weight_fake_quant: fake quant module for weight """ _FLOAT_MODULE = nn.Conv3d _FLOAT_CONV_MODULE = nn.Conv3d def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_3_t, stride: _size_3_t = 1, padding: Union[str, _size_3_t] = 0, dilation: _size_3_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', qconfig=None, device=None, dtype=None) -> None: kernel_size_ = _triple(kernel_size) stride_ = _triple(stride) padding_ = padding if isinstance(padding, str) else _triple(padding) dilation_ = _triple(dilation) super().__init__( in_channels, out_channels, kernel_size_, stride=stride_, padding=padding_, dilation=dilation_, transposed=False, output_padding=_triple(0), groups=groups, bias=bias, padding_mode=padding_mode, qconfig=qconfig, device=device, dtype=dtype) def forward(self, input): return self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias) @classmethod def from_float(cls, mod): return super().from_float(cls, mod)
pytorch-master
torch/nn/qat/modules/conv.py
import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F __all__ = ['Embedding', 'EmbeddingBag'] class Embedding(nn.Embedding): r""" An embedding bag module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as `torch.nn.Embedding`, please see https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html#torch.nn.Embedding for documentation. Similar to `torch.nn.Embedding`, with FakeQuantize modules initialized to default. Attributes: weight: fake quant module for weight """ _FLOAT_MODULE = nn.Embedding def __init__(self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, device=None, dtype=None, qconfig=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, **factory_kwargs) assert qconfig, 'qconfig must be provided for QAT module' assert qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \ 'Embedding weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \ str(qconfig.weight().qscheme) self.qconfig = qconfig self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs) def forward(self, input) -> Tensor: return F.embedding(input, self.weight_fake_quant(self.weight), self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) @classmethod def from_float(cls, mod): r"""Create a qat module from a float module Args: `mod` a float module, either produced by torch.ao.quantization utilities or directly from user """ assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \ cls._FLOAT_MODULE.__name__ assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' assert mod.qconfig, 'Input float module must have a valid qconfig' weight_qscheme = mod.qconfig.weight().qscheme # type: ignore[union-attr, operator] assert weight_qscheme == torch.per_channel_affine_float_qparams, \ 'Embedding weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \ str(weight_qscheme) qconfig = mod.qconfig qat_embedding_bag = cls(mod.num_embeddings, mod.embedding_dim, mod.padding_idx, mod.max_norm, mod.norm_type, mod.scale_grad_by_freq, mod.sparse, mod.weight, qconfig=qconfig) return qat_embedding_bag def to_float(self): embedding_bag = torch.nn.Embedding(self.num_embeddings, self.embedding_dim, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, None) embedding_bag.weight = torch.nn.Parameter(self.weight.detach()) embedding_bag.train(self.training) return embedding_bag class EmbeddingBag(nn.EmbeddingBag): r""" An embedding bag module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as `torch.nn.EmbeddingBag`, please see https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html#torch.nn.EmbeddingBag for documentation. Similar to `torch.nn.EmbeddingBag`, with FakeQuantize modules initialized to default. Attributes: weight: fake quant module for weight """ _FLOAT_MODULE = nn.EmbeddingBag def __init__(self, num_embeddings, embedding_dim, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, mode='mean', sparse=False, _weight=None, include_last_offset=False, padding_idx=None, qconfig=None, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(num_embeddings, embedding_dim, max_norm, norm_type, scale_grad_by_freq, mode, sparse, _weight, include_last_offset, padding_idx, **factory_kwargs) assert qconfig, 'qconfig must be provided for QAT module' assert qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \ 'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \ str(qconfig.weight().qscheme) self.qconfig = qconfig self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs) def forward(self, input, offsets=None, per_sample_weights=None) -> Tensor: return F.embedding_bag(input, self.weight_fake_quant(self.weight), offsets, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse, per_sample_weights, self.include_last_offset, self.padding_idx) @classmethod def from_float(cls, mod): r"""Create a qat module from a float module Args: `mod` a float module, either produced by torch.ao.quantization utilities or directly from user """ assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \ cls._FLOAT_MODULE.__name__ assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' assert mod.qconfig, 'Input float module must have a valid qconfig' weight_qscheme = mod.qconfig.weight().qscheme # type: ignore[union-attr, operator] assert weight_qscheme == torch.per_channel_affine_float_qparams, \ 'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \ str(weight_qscheme) qconfig = mod.qconfig qat_embedding_bag = cls(mod.num_embeddings, mod.embedding_dim, mod.max_norm, mod.norm_type, mod.scale_grad_by_freq, mod.mode, mod.sparse, mod.weight, mod.include_last_offset, mod.padding_idx, qconfig=qconfig) return qat_embedding_bag def to_float(self): embedding_bag = torch.nn.EmbeddingBag(self.num_embeddings, self.embedding_dim, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse, None, self.include_last_offset, self.padding_idx) embedding_bag.weight = torch.nn.Parameter(self.weight.detach()) embedding_bag.train(self.training) return embedding_bag
pytorch-master
torch/nn/qat/modules/embedding_ops.py
from .modules import * # noqa: F403
pytorch-master
torch/nn/quantized/__init__.py
r""" Functional interface (quantized).""" from typing import List, Optional import warnings import torch from torch import Tensor from torch.nn.modules.utils import _pair, _triple from torch.nn.quantized.modules.utils import _pair_from_first from torch.jit.annotations import BroadcastingList2 # Although some of the functions and docstrings are mirrored from the torch.nn, # we want to have them here for future changes. def avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None): r""" Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size :math:`sH \times sW` steps. The number of output features is equal to the number of input planes. .. note:: The input quantization parameters propagate to the output. See :class:`~torch.nn.quantized.AvgPool2d` for details and output shape. Args: input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` kernel_size: size of the pooling region. Can be a single number or a tuple `(kH, kW)` stride: stride of the pooling operation. Can be a single number or a tuple `(sH, sW)`. Default: :attr:`kernel_size` padding: implicit zero paddings on both sides of the input. Can be a single number or a tuple `(padH, padW)`. Default: 0 ceil_mode: when True, will use `ceil` instead of `floor` in the formula to compute the output shape. Default: ``False`` count_include_pad: when True, will include the zero-padding in the averaging calculation. Default: ``True`` divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None """ if not input.is_quantized: raise ValueError("Input to 'quantized.avg_pool2d' must be quantized!") return torch.nn.functional.avg_pool2d(input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) def avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None): r""" Applies 3D average-pooling operation in :math:`kD \ times kH \times kW` regions by step size :math:`sD \times sH \times sW` steps. The number of output features is equal to the number of input planes. .. note:: The input quantization parameters propagate to the output. Args: input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` kernel_size: size of the pooling region. Can be a single number or a tuple `(kD, kH, kW)` stride: stride of the pooling operation. Can be a single number or a tuple `(sD, sH, sW)`. Default: :attr:`kernel_size` padding: implicit zero paddings on both sides of the input. Can be a single number or a tuple `(padD, padH, padW)`. Default: 0 ceil_mode: when True, will use `ceil` instead of `floor` in the formula to compute the output shape. Default: ``False`` count_include_pad: when True, will include the zero-padding in the averaging calculation. Default: ``True`` divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None """ if not input.is_quantized: raise ValueError("Input to 'quantized.avg_pool3d' must be quantized!") return torch.nn.functional.avg_pool3d(input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: r""" Applies a 2D adaptive average pooling over a quantized input signal composed of several quantized input planes. .. note:: The input quantization parameters propagate to the output. See :class:`~torch.nn.quantized.AdaptiveAvgPool2d` for details and output shape. Args: output_size: the target output size (single integer or double-integer tuple) """ if not input.is_quantized: raise ValueError("Input to 'quantized.functional.adaptive_avg_pool2d' must be quantized!") return torch.nn.functional.adaptive_avg_pool2d(input, output_size) def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: r""" Applies a 3D adaptive average pooling over a quantized input signal composed of several quantized input planes. .. note:: The input quantization parameters propagate to the output. See :class:`~torch.nn.quantized.AdaptiveAvgPool3d` for details and output shape. Args: output_size: the target output size (single integer or double-integer tuple) """ if not input.is_quantized: raise ValueError( "Input to 'quantized.functional.adaptive_avg_pool3d' must be quantized!") return torch.nn.functional.adaptive_avg_pool3d(input, output_size) def conv1d(input, weight, bias, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8): r""" Applies a 1D convolution over a quantized 1D input composed of several input planes. See :class:`~torch.nn.quantized.Conv1d` for details and output shape. Args: input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , iW)` bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`. stride: the stride of the convolving kernel. Can be a single number or a tuple `(sW,)`. Default: 1 padding: implicit paddings on both sides of the input. Can be a single number or a tuple `(padW,)`. Default: 0 dilation: the spacing between kernel elements. Can be a single number or a tuple `(dW,)`. Default: 1 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros" scale: quantization scale for the output. Default: 1.0 zero_point: quantization zero_point for the output. Default: 0 dtype: quantization data type to use. Default: ``torch.quint8`` Examples:: >>> from torch.nn.quantized import functional as qF >>> filters = torch.randn(33, 16, 3, dtype=torch.float) >>> inputs = torch.randn(20, 16, 50, dtype=torch.float) >>> bias = torch.randn(33, dtype=torch.float) >>> >>> scale, zero_point = 1.0, 0 >>> dtype_inputs = torch.quint8 >>> dtype_filters = torch.qint8 >>> >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) >>> qF.conv1d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point) """ # noqa: E501 if padding_mode != 'zeros': raise NotImplementedError("Only zero-padding is supported!") if input.dtype != torch.quint8: raise NotImplementedError("Only torch.quint8 is supported for activation tensor!") if weight.dtype != torch.qint8: raise NotImplementedError("Only torch.qint8 is supported for weight tensor!") if input.ndim != 3: raise ValueError("Input shape must be `(N, C, L)`!") stride = _pair_from_first(stride) padding = _pair_from_first(padding) dilation = _pair_from_first(dilation) packed_params = torch.ops.quantized.conv1d_prepack( weight, bias, stride, padding, dilation, groups) return torch.ops.quantized.conv1d(input, packed_params, scale, zero_point) def conv2d(input, weight, bias, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8): r""" Applies a 2D convolution over a quantized 2D input composed of several input planes. See :class:`~torch.nn.quantized.Conv2d` for details and output shape. Args: input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)` bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`. stride: the stride of the convolving kernel. Can be a single number or a tuple `(sH, sW)`. Default: 1 padding: implicit paddings on both sides of the input. Can be a single number or a tuple `(padH, padW)`. Default: 0 dilation: the spacing between kernel elements. Can be a single number or a tuple `(dH, dW)`. Default: 1 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros" scale: quantization scale for the output. Default: 1.0 zero_point: quantization zero_point for the output. Default: 0 dtype: quantization data type to use. Default: ``torch.quint8`` Examples:: >>> from torch.nn.quantized import functional as qF >>> filters = torch.randn(8, 4, 3, 3, dtype=torch.float) >>> inputs = torch.randn(1, 4, 5, 5, dtype=torch.float) >>> bias = torch.randn(8, dtype=torch.float) >>> >>> scale, zero_point = 1.0, 0 >>> dtype_inputs = torch.quint8 >>> dtype_filters = torch.qint8 >>> >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) >>> qF.conv2d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point) """ # noqa: E501 if padding_mode != 'zeros': raise NotImplementedError("Only zero-padding is supported!") if input.dtype != torch.quint8: raise NotImplementedError("Only torch.quint8 is supported for activation tensor!") if weight.dtype != torch.qint8: raise NotImplementedError("Only torch.qint8 is supported for weight tensor!") if input.ndim != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) packed_params = torch.ops.quantized.conv2d_prepack( weight, bias, stride, padding, dilation, groups) return torch.ops.quantized.conv2d(input, packed_params, scale, zero_point) def conv3d(input, weight, bias, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8): r""" Applies a 3D convolution over a quantized 3D input composed of several input planes. See :class:`~torch.nn.quantized.Conv3d` for details and output shape. Args: input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iD , iH , iW)` weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kD , kH , kW)` bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`. stride: the stride of the convolving kernel. Can be a single number or a tuple `(sD, sH, sW)`. Default: 1 padding: implicit paddings on both sides of the input. Can be a single number or a tuple `(padD, padH, padW)`. Default: 0 dilation: the spacing between kernel elements. Can be a single number or a tuple `(dD, dH, dW)`. Default: 1 groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the number of groups. Default: 1 padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros" scale: quantization scale for the output. Default: 1.0 zero_point: quantization zero_point for the output. Default: 0 dtype: quantization data type to use. Default: ``torch.quint8`` Examples:: >>> from torch.nn.quantized import functional as qF >>> filters = torch.randn(8, 4, 3, 3, 3, dtype=torch.float) >>> inputs = torch.randn(1, 4, 5, 5, 5, dtype=torch.float) >>> bias = torch.randn(8, dtype=torch.float) >>> >>> scale, zero_point = 1.0, 0 >>> dtype_inputs = torch.quint8 >>> dtype_filters = torch.qint8 >>> >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) >>> qF.conv3d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point) """ # noqa: E501 if padding_mode != 'zeros': raise NotImplementedError("Only zero-padding is supported!") if input.dtype != torch.quint8: raise NotImplementedError("Only torch.quint8 is supported for activation tensor!") if weight.dtype != torch.qint8: raise NotImplementedError("Only torch.qint8 is supported for weight tensor!") if input.ndim != 5: raise ValueError("Input shape must be `(N, C, D, H, W)`!") stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) packed_params = torch.ops.quantized.conv3d_prepack( weight, bias, stride, padding, dilation, groups) return torch.ops.quantized.conv3d(input, packed_params, scale, zero_point) def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None): r"""Down/up samples the input to either the given :attr:`size` or the given :attr:`scale_factor` See :func:`torch.nn.functional.interpolate` for implementation details. The input dimensions are interpreted in the form: `mini-batch x channels x [optional depth] x [optional height] x width`. .. note:: The input quantization parameters propagate to the output. .. note:: Only 2D/3D input is supported for quantized inputs .. note:: Only the following modes are supported for the quantized inputs: - `bilinear` - `nearest` Args: input (Tensor): the input tensor size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): output spatial size. scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple. mode (str): algorithm used for upsampling: ``'nearest'`` | ``'bilinear'`` align_corners (bool, optional): Geometrically, we consider the pixels of the input and output as squares rather than points. If set to ``True``, the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to ``False``, the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation *independent* of input size when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` is ``'bilinear'``. Default: ``False`` """ if not input.is_quantized: raise ValueError("Input to 'quantized.interpolate' must be quantized!") return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) def linear( input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, scale: Optional[float] = None, zero_point: Optional[int] = None ) -> Tensor: r""" Applies a linear transformation to the incoming quantized data: :math:`y = xA^T + b`. See :class:`~torch.nn.quantized.Linear` .. note:: Current implementation packs weights on every call, which has penalty on performance. If you want to avoid the overhead, use :class:`~torch.nn.quantized.Linear`. Args: input (Tensor): Quantized input of type `torch.quint8` weight (Tensor): Quantized weight of type `torch.qint8` bias (Tensor): None or fp32 bias of type `torch.float` scale (double): output scale. If None, derived from the input scale zero_point (long): output zero point. If None, derived from the input zero_point Shape: - Input: :math:`(N, *, in\_features)` where `*` means any number of additional dimensions - Weight: :math:`(out\_features, in\_features)` - Bias: :math:`(out\_features)` - Output: :math:`(N, *, out\_features)` """ if scale is None: scale = input.q_scale() if zero_point is None: zero_point = input.q_zero_point() _packed_params = torch.ops.quantized.linear_prepack(weight, bias) return torch.ops.quantized.linear(input, _packed_params, scale, zero_point) def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False): r"""Applies a 1D max pooling over a quantized input signal composed of several quantized input planes. .. note:: The input quantization parameters are propagated to the output. See :class:`~torch.nn.quantized.MaxPool1d` for details. """ if return_indices: raise NotImplementedError("return_indices is not yet implemented!") if stride is None: stride = torch.jit.annotate(List[int], []) return torch.nn.functional.max_pool1d(input, kernel_size, stride, padding, dilation, ceil_mode=ceil_mode, return_indices=return_indices) def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False): r"""Applies a 2D max pooling over a quantized input signal composed of several quantized input planes. .. note:: The input quantization parameters are propagated to the output. See :class:`~torch.nn.quantized.MaxPool2d` for details. """ if return_indices: raise NotImplementedError("return_indices is not yet implemented!") if stride is None: stride = torch.jit.annotate(List[int], []) return torch.nn.functional.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode=ceil_mode, return_indices=return_indices) def celu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor: r"""celu(input, scale, zero_point, alpha=1.) -> Tensor Applies the quantized CELU function element-wise. .. math:: \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x / \alpha) - 1)) Args: input: quantized input alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 """ if not input.is_quantized: raise ValueError("Input to 'quantized.celu' must be quantized!") return torch.ops.quantized.celu(input, scale, zero_point, alpha) def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False, scale: Optional[float] = None, zero_point: Optional[int] = None): r""" Quantized version of the. leaky_relu(input, negative_slope=0.01, inplace=False, scale, zero_point) -> Tensor Applies element-wise, :math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)` Args: input: Quaintized input negative_slope: The slope of the negative input inplace: Inplace modification of the input tensor scale, zero_point: Scale and zero point of the output tensor. See :class:`~torch.nn.LeakyReLU` for more details. """ if scale is not None and zero_point is not None: assert not inplace, "Cannot rescale with `inplace`" output = torch._empty_affine_quantized( input.shape, scale=scale, zero_point=int(zero_point), dtype=input.dtype) torch._C._nn.leaky_relu(input, negative_slope, out=output) return output if inplace: result = torch._C._nn.leaky_relu_(input, negative_slope) else: result = torch._C._nn.leaky_relu(input, negative_slope) return result def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor: r"""This is the quantized version of :func:`~torch.nn.functional.hardtanh`. """ if not input.is_quantized: raise ValueError("Input to 'quantized.hardtanh' must be quantized!") if inplace: return torch._C._nn.hardtanh_(input, min_val, max_val) return torch._C._nn.hardtanh(input, min_val, max_val) def hardswish(input: Tensor, scale: float, zero_point: int) -> Tensor: r"""This is the quantized version of :func:`~torch.nn.functional.hardswish`. Args: input: quantized input scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor """ if not input.is_quantized: raise ValueError("Input to 'quantized.hardswish' must be quantized!") return torch._ops.ops.quantized.hardswish(input, scale, zero_point) def threshold(input: Tensor, threshold: float, value: float) -> Tensor: r"""Applies the quantized version of the threshold function element-wise: .. math:: x = \begin{cases} x & \text{if~} x > \text{threshold} \\ \text{value} & \text{otherwise} \end{cases} See :class:`~torch.nn.Threshold` for more details. """ if not input.is_quantized: raise ValueError("Input to 'quantized.threshold' must be quantized!") if threshold is None: raise ValueError("Input to 'threshold' must be specified!") if value is None: raise ValueError("Input to 'value' must be specified!") return torch._ops.ops.quantized.threshold(input, threshold, value) def elu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor: r"""This is the quantized version of :func:`~torch.nn.functional.elu`. Args: input: quantized input scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor alpha: the alpha constant """ if not input.is_quantized: raise ValueError("Input to 'quantized.elu' must be quantized!") return torch.ops.quantized.elu(input, scale, zero_point, alpha) def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: r"""This is the quantized version of :func:`~torch.nn.functional.hardsigmoid`. """ if not input.is_quantized: raise ValueError("Input to 'quantized.hardsigmoid' must be quantized!") if inplace: return torch._C._nn.hardsigmoid_(input) # type: ignore[attr-defined] return torch._C._nn.hardsigmoid(input) def clamp(input: Tensor, min_: float, max_: float) -> Tensor: r"""float(input, min\_, max\_) -> Tensor Applies the clamp function element-wise. See :class:`~torch.nn.quantized.clamp` for more details. Args: input: quantized input min_: minimum value for clamping max_: maximum value for clamping """ if not input.is_quantized: raise ValueError("Input to 'quantized.clamp' must be quantized!") return torch.clamp(input, min_, max_) def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None): r"""Upsamples the input to either the given :attr:`size` or the given :attr:`scale_factor` .. warning:: This function is deprecated in favor of :func:`torch.nn.quantized.functional.interpolate`. This is equivalent with ``nn.quantized.functional.interpolate(...)``. See :func:`torch.nn.functional.interpolate` for implementation details. The input dimensions are interpreted in the form: `mini-batch x channels x [optional depth] x [optional height] x width`. .. note:: The input quantization parameters propagate to the output. .. note:: Only 2D input is supported for quantized inputs .. note:: Only the following modes are supported for the quantized inputs: - `bilinear` - `nearest` Args: input (Tensor): quantized input tensor size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): output spatial size. scale_factor (float or Tuple[float]): multiplier for spatial size. Has to be an integer. mode (str): algorithm used for upsampling: ``'nearest'`` | ``'bilinear'`` align_corners (bool, optional): Geometrically, we consider the pixels of the input and output as squares rather than points. If set to ``True``, the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to ``False``, the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation *independent* of input size when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` is ``'bilinear'``. Default: ``False`` .. warning:: With ``align_corners = True``, the linearly interpolating modes (`bilinear`) don't proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1. Since then, the default behavior is ``align_corners = False``. See :class:`~torch.nn.Upsample` for concrete examples on how this affects the outputs. """ warnings.warn("nn.quantized.functional.upsample is deprecated. Use nn.quantized.functional.interpolate instead.") return interpolate(input, size, scale_factor, mode, align_corners) def upsample_bilinear(input, size=None, scale_factor=None): r"""Upsamples the input, using bilinear upsampling. .. warning:: This function is deprecated in favor of :func:`torch.nn.quantized.functional.interpolate`. This is equivalent with ``nn.quantized.functional.interpolate(..., mode='bilinear', align_corners=True)``. .. note:: The input quantization parameters propagate to the output. .. note:: Only 2D inputs are supported Args: input (Tensor): quantized input size (int or Tuple[int, int]): output spatial size. scale_factor (int or Tuple[int, int]): multiplier for spatial size """ # DeprecationWarning is ignored by default warnings.warn("nn.quantized.functional.upsample_bilinear is deprecated. Use nn.quantized.functional.interpolate instead.") return interpolate(input, size, scale_factor, mode='bilinear', align_corners=True) def upsample_nearest(input, size=None, scale_factor=None): r"""Upsamples the input, using nearest neighbours' pixel values. .. warning:: This function is deprecated in favor of :func:`torch.nn.quantized.functional.interpolate`. This is equivalent with ``nn.quantized.functional.interpolate(..., mode='nearest')``. .. note:: The input quantization parameters propagate to the output. .. note:: Only 2D inputs are supported Args: input (Tensor): quantized input size (int or Tuple[int, int] or Tuple[int, int, int]): output spatial size. scale_factor (int): multiplier for spatial size. Has to be an integer. """ # DeprecationWarning is ignored by default warnings.warn("nn.quantized.functional.upsample_nearest is deprecated. Use nn.quantized.functional.interpolate instead.") return interpolate(input, size, scale_factor, mode='nearest')
pytorch-master
torch/nn/quantized/functional.py
from .modules import * # noqa: F403
pytorch-master
torch/nn/quantized/_reference/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Dict, Any from .utils import ReferenceQuantizedModule class Linear(nn.Linear, ReferenceQuantizedModule): """ A reference quantized linear module that fits into the FX Graph Mode Quantization workflow activation will be floating point Tensor, we will store floating point weight as well in the module, but in forward we'll quantize and dequantize the weight before running the floating point functional linear operator. """ _IS_REFERENCE = True def __init__( self, in_features: int, out_features: int, bias_: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, weight_qparams: Optional[Dict[str, Any]] = None): super().__init__(in_features, out_features, bias_, device, dtype) self._init_weight_qparams(weight_qparams, device) def _get_name(self): return "QuantizedLinear(Reference)" def forward(self, x: torch.Tensor) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.linear --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.linear --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized linear """ weight_quant_dequant = self.get_weight() result = F.linear(x, weight_quant_dequant, self.bias) return result @classmethod def from_float(cls, float_linear, weight_qparams): qref_linear = Linear( float_linear.in_features, float_linear.out_features, float_linear.bias is not None, device=float_linear.weight.device, dtype=float_linear.weight.dtype, weight_qparams=weight_qparams) qref_linear.weight = torch.nn.Parameter(float_linear.weight.detach()) if float_linear.bias is not None: qref_linear.bias = torch.nn.Parameter(float_linear.bias.detach()) return qref_linear
pytorch-master
torch/nn/quantized/_reference/modules/linear.py
from .linear import Linear from .conv import Conv1d, Conv2d, Conv3d, ConvTranspose1d, ConvTranspose2d, ConvTranspose3d from .rnn import RNNCell, LSTMCell, GRUCell, LSTM from .sparse import Embedding, EmbeddingBag __all__ = [ 'Linear', 'Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d', 'RNNCell', 'LSTMCell', 'GRUCell', 'LSTM', 'Embedding', 'EmbeddingBag', ]
pytorch-master
torch/nn/quantized/_reference/modules/__init__.py
import torch from typing import Dict, Any class ReferenceQuantizedModule(torch.nn.Module): def _init_weight_qparams(self, weight_qparams, device): if weight_qparams is None: weight_qparams = { "qscheme": torch.per_tensor_affine, "dtype": torch.quint8, "scale": 1.0, "zero_point": 0 } self.weight_qscheme: torch.qscheme = weight_qparams["qscheme"] self.weight_dtype = weight_qparams["dtype"] assert self.weight_qscheme in [ None, torch.per_tensor_affine, torch.per_channel_affine, torch.per_channel_affine_float_qparams], \ Exception(f"qscheme: {self.weight_qscheme} is not support in reference quantized {self._get_name()}") if self.weight_dtype in [torch.quint8, torch.qint8, torch.quint4x2, torch.qint32]: zero_point_dtype = weight_qparams["zero_point"].dtype if \ isinstance(weight_qparams["zero_point"], torch.Tensor) else \ torch.int w_scale = weight_qparams["scale"] w_scale_tensor = w_scale.clone().detach() \ if isinstance(w_scale, torch.Tensor) \ else torch.tensor(w_scale, dtype=torch.float, device=device) self.register_buffer("weight_scale", w_scale_tensor) w_zp = weight_qparams["zero_point"] w_zp_tensor = w_zp.clone().detach() \ if isinstance(w_zp, torch.Tensor) \ else torch.tensor(w_zp, dtype=zero_point_dtype, device=device) self.register_buffer("weight_zero_point", w_zp_tensor) if self.weight_qscheme in [torch.per_channel_affine, torch.per_channel_affine_float_qparams]: w_axis = weight_qparams["axis"] w_axis_tensor = w_axis.clone().detach() \ if isinstance(w_axis, torch.Tensor) \ else torch.tensor(w_axis, dtype=torch.int, device=device) self.register_buffer("weight_axis", w_axis_tensor) else: # added for TorchScriptability, not used self.register_buffer( "weight_axis", torch.tensor(0, dtype=torch.int, device=device)) else: # added for TorchScriptability, and for torch.float self.register_buffer("weight_scale", torch.tensor(1.0, dtype=torch.float, device=device)) self.register_buffer("weight_zero_point", torch.tensor(0, dtype=torch.int, device=device)) self.register_buffer( "weight_axis", torch.tensor(0, dtype=torch.int, device=device)) def get_weight(self): """ Fake quantize (quantize and dequantize) the weight with the quantization parameters for weight, this is used to simulate the numerics for the quantized weight in a quantized model """ # suppress mypy warning assert isinstance(self.weight_scale, torch.Tensor) assert isinstance(self.weight_zero_point, torch.Tensor) assert isinstance(self.weight_axis, torch.Tensor) return _quantize_and_dequantize_weight( self.weight, # type: ignore[arg-type] self.weight_qscheme, self.weight_dtype, self.weight_scale, self.weight_zero_point, self.weight_axis) def get_quantized_weight(self): # suppress mypy warning assert isinstance(self.weight_scale, torch.Tensor) assert isinstance(self.weight_zero_point, torch.Tensor) assert isinstance(self.weight_axis, torch.Tensor) return _quantize_weight( self.weight, # type: ignore[arg-type] self.weight_qscheme, self.weight_dtype, self.weight_scale, self.weight_zero_point, self.weight_axis) def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) _save_weight_qparams( destination, prefix, self.weight_qscheme, self.weight_dtype, self.weight_scale, self.weight_zero_point, self.weight_axis) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): for key in _get_weight_qparam_keys(state_dict, prefix): setattr(self, key, state_dict[prefix + key]) state_dict.pop(prefix + key) super()._load_from_state_dict( state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) def _quantize_weight( weight: torch.Tensor, weight_qscheme: torch.qscheme, weight_dtype: torch.dtype, weight_scale: torch.Tensor, weight_zero_point: torch.Tensor, weight_axis: torch.Tensor): if weight_dtype == torch.float16: weight = weight.to(weight_dtype) return weight if weight_qscheme == torch.per_tensor_affine: if weight_dtype in [torch.quint8, torch.qint8, torch.qint32]: weight = torch.quantize_per_tensor(weight, weight_scale, weight_zero_point, weight_dtype) return weight elif weight_qscheme in [torch.per_channel_affine, torch.per_channel_affine_float_qparams]: if weight_dtype in [torch.quint8, torch.qint8, torch.quint4x2, torch.qint32]: weight = torch.quantize_per_channel( weight, weight_scale, weight_zero_point, weight_axis.item(), weight_dtype) # type: ignore[arg-type] return weight raise Exception(f"Unsupported dtype and qscheme: {weight_dtype}, {weight_qscheme}") def _quantize_and_dequantize_weight( weight: torch.Tensor, weight_qscheme: torch.qscheme, weight_dtype: torch.dtype, weight_scale: torch.Tensor, weight_zero_point: torch.Tensor, weight_axis: torch.Tensor): """ Quantize and then dequantize the weight based on the quantization parameters """ if weight_qscheme in [ torch.per_tensor_affine, torch.per_channel_affine, torch.per_channel_affine_float_qparams]: weight_quant = _quantize_weight( weight, weight_qscheme, weight_dtype, weight_scale, weight_zero_point, weight_axis) weight_dequant = weight_quant.dequantize() else: weight_dequant = weight return weight_dequant def _save_weight_qparams(destination, prefix, weight_qscheme, weight_dtype, weight_scale, weight_zero_point, weight_axis): destination[prefix + "weight_qscheme"] = weight_qscheme destination[prefix + "weight_dtype"] = weight_dtype if weight_qscheme is not None: destination[prefix + "weight_scale"] = weight_scale destination[prefix + "weight_zero_point"] = weight_zero_point if weight_qscheme == torch.per_channel_affine: destination[prefix + "weight_axis"] = weight_axis def _get_weight_qparam_keys( state_dict: Dict[str, Any], prefix: str): keys = ["weight_qscheme", "weight_dtype"] weight_qscheme = state_dict[prefix + "weight_qscheme"] if weight_qscheme is not None: keys.append("weight_scale") keys.append("weight_zero_point") if weight_qscheme == torch.quantize_per_channel: keys.append("weight_axis") return keys
pytorch-master
torch/nn/quantized/_reference/modules/utils.py
import torch.nn as nn import torch.nn.functional as F from torch import Tensor from .utils import ReferenceQuantizedModule from typing import Optional, Dict, Any class Embedding(nn.Embedding, ReferenceQuantizedModule): """ A reference quantized Embedding module that fits into the FX Graph Mode Quantization workflow, activation will be floating point Tensor, we will store floating point weight as well in the module, but in forward we'll quantize and dequantize the weight before running the floating point functional embedding operator. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None) -> None: super().__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, device, dtype) self._init_weight_qparams(weight_qparams, device) def _get_name(self): return "QuantizedEmbedding(Reference)" def forward(self, input: Tensor) -> Tensor: weight_quant_dequant = self.get_weight() return F.embedding( input, weight_quant_dequant, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) @classmethod def from_float(cls, mod, weight_qparams): return cls( mod.num_embeddings, mod.embedding_dim, mod.padding_idx, mod.max_norm, mod.norm_type, mod.scale_grad_by_freq, mod.sparse, mod.weight, mod.weight.device, mod.weight.dtype, weight_qparams) class EmbeddingBag(nn.EmbeddingBag, ReferenceQuantizedModule): """ A reference quantized EmbeddingBag module that fits into the FX Graph Mode Quantization workflow, activation will be floating point Tensor, we will store floating point weight as well in the module, but in forward we'll quantize and dequantize the weight before running the floating point functional embedding operator. """ def __init__(self, num_embeddings: int, embedding_dim: int, max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, mode: str = 'mean', sparse: bool = False, _weight: Optional[Tensor] = None, include_last_offset: bool = False, padding_idx: Optional[int] = None, device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None) -> None: super().__init__(num_embeddings, embedding_dim, max_norm, norm_type, scale_grad_by_freq, mode, sparse, _weight, include_last_offset, padding_idx, device, dtype) self._init_weight_qparams(weight_qparams, device) def _get_name(self): return "QuantizedEmbedding(Reference)" def forward(self, input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None) -> Tensor: weight_quant_dequant = self.get_weight() return F.embedding_bag(input, weight_quant_dequant, offsets, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse, per_sample_weights, self.include_last_offset, self.padding_idx) @classmethod def from_float(cls, mod, weight_qparams): return cls( mod.num_embeddings, mod.embedding_dim, mod.max_norm, mod.norm_type, mod.scale_grad_by_freq, mod.mode, mod.sparse, mod.weight, mod.include_last_offset, mod.padding_idx, mod.weight.device, mod.weight.dtype, weight_qparams )
pytorch-master
torch/nn/quantized/_reference/modules/sparse.py
import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Dict, Any, List from torch.nn.common_types import _size_1_t from .utils import ReferenceQuantizedModule class _ConvNd(torch.nn.modules.conv._ConvNd, ReferenceQuantizedModule): """ A reference version of nn.quantized.Conv2d we will not pack the parameters in this module, since weight packing is an optimization for quantized backends supported in PyTorch (fbgemm/qnnpack), this is useful when user want to use this module in other backends like Glow. """ __annotations__ = {"bias": Optional[torch.Tensor]} _IS_REFERENCE = True @staticmethod def from_float(cls, float_conv, weight_qparams): qref_conv = cls( float_conv.in_channels, float_conv.out_channels, float_conv.kernel_size, # type: ignore[arg-type] float_conv.stride, # type: ignore[arg-type] float_conv.padding, # type: ignore[arg-type] float_conv.dilation, # type: ignore[arg-type] float_conv.groups, float_conv.bias is not None, # type: ignore[arg-type] float_conv.padding_mode, device=float_conv.weight.device, dtype=float_conv.weight.dtype, weight_qparams=weight_qparams) qref_conv.weight = torch.nn.Parameter(float_conv.weight.detach()) if float_conv.bias is not None: qref_conv.bias = torch.nn.Parameter(float_conv.bias.detach()) return qref_conv class Conv1d(_ConvNd, nn.Conv1d): def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_1_t, stride: _size_1_t = 1, padding: _size_1_t = 0, dilation: _size_1_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = "zeros", device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None): nn.Conv1d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype) self._init_weight_qparams(weight_qparams, device) def forward(self, x: torch.Tensor) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.conv1d --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.conv1d --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized conv1d """ weight_quant_dequant = self.get_weight() result = F.conv1d( x, weight_quant_dequant, self.bias, self.stride, self.padding, self.dilation, self.groups) return result def _get_name(self): return "QuantizedConv1d(Reference)" @classmethod def from_float(cls, float_conv, weight_qparams): return _ConvNd.from_float(cls, float_conv, weight_qparams) class Conv2d(_ConvNd, nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None): nn.Conv2d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype) self._init_weight_qparams(weight_qparams, device) def forward(self, x: torch.Tensor) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.conv2d --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.conv2d --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized conv2d """ weight_quant_dequant = self.get_weight() result = F.conv2d( x, weight_quant_dequant, self.bias, self.stride, self.padding, self.dilation, self.groups) return result def _get_name(self): return "QuantizedConv2d(Reference)" @classmethod def from_float(cls, float_conv, weight_qparams): return _ConvNd.from_float(cls, float_conv, weight_qparams) class Conv3d(_ConvNd, nn.Conv3d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode="zeros", device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None): nn.Conv3d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype) self._init_weight_qparams(weight_qparams, device) def forward(self, x: torch.Tensor) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.conv3d --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.conv3d --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized conv3d """ weight_quant_dequant = self.get_weight() result = F.conv3d( x, weight_quant_dequant, self.bias, self.stride, self.padding, self.dilation, self.groups) return result def _get_name(self): return "QuantizedConv3d(Reference)" @classmethod def from_float(cls, float_conv, weight_qparams): return _ConvNd.from_float(cls, float_conv, weight_qparams) class _ConvTransposeNd(_ConvNd, torch.nn.modules.conv._ConvTransposeNd): """ A reference version of nn.quantized.ConvTranspose2d we will not pack the parameters in this module, since weight packing is an optimization for quantized backends supported in PyTorch (fbgemm/qnnpack), this is useful when user want to use this module in other backends like Glow. """ @staticmethod def from_float(cls, float_conv, weight_qparams): qref_conv = cls( float_conv.in_channels, float_conv.out_channels, float_conv.kernel_size, # type: ignore[arg-type] float_conv.stride, # type: ignore[arg-type] float_conv.padding, # type: ignore[arg-type] float_conv.output_padding, # type: ignore[arg-type] float_conv.groups, float_conv.bias is not None, # type: ignore[arg-type] float_conv.dilation, # type: ignore[arg-type] float_conv.padding_mode, device=float_conv.weight.device, dtype=float_conv.weight.dtype, weight_qparams=weight_qparams) qref_conv.weight = torch.nn.Parameter(float_conv.weight.detach()) if float_conv.bias is not None: qref_conv.bias = torch.nn.Parameter(float_conv.bias.detach()) return qref_conv class ConvTranspose1d(_ConvTransposeNd, nn.ConvTranspose1d): def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_1_t, stride: _size_1_t = 1, padding: _size_1_t = 0, output_padding: _size_1_t = 0, groups: int = 1, bias: bool = True, dilation: _size_1_t = 1, padding_mode: str = "zeros", device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None): nn.ConvTranspose1d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, padding_mode, device, dtype) self._init_weight_qparams(weight_qparams, device) def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.convTranspose1d --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.convTranspose1d --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized conv1d """ assert isinstance(self.padding, tuple) # One cannot replace List by Tuple or Sequence in "_output_padding" because # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`. output_padding = self._output_padding( input, output_size, self.stride, self.padding, self.kernel_size, self.dilation) # type: ignore[arg-type] weight_quant_dequant = self.get_weight() result = F.conv_transpose1d( x, weight_quant_dequant, self.bias, self.stride, self.padding, output_padding, self.groups, self.dilation) return result def _get_name(self): return "QuantizedConvTranspose1d(Reference)" @classmethod def from_float(cls, float_conv, weight_qparams): return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams) class ConvTranspose2d(_ConvTransposeNd, nn.ConvTranspose2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None): nn.ConvTranspose2d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, padding_mode, device, dtype) self._init_weight_qparams(weight_qparams, device) def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.convTranspose2d --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.convTranspose2d --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized conv2d """ assert isinstance(self.padding, tuple) # One cannot replace List by Tuple or Sequence in "_output_padding" because # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`. output_padding = self._output_padding( input, output_size, self.stride, self.padding, self.kernel_size, self.dilation) # type: ignore[arg-type] weight_quant_dequant = self.get_weight() result = F.conv_transpose2d( x, weight_quant_dequant, self.bias, self.stride, self.padding, output_padding, self.groups, self.dilation) return result def _get_name(self): return "QuantizedConvTranspose2d(Reference)" @classmethod def from_float(cls, float_conv, weight_qparams): return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams) class ConvTranspose3d(_ConvTransposeNd, nn.ConvTranspose3d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode="zeros", device=None, dtype=None, weight_qparams: Optional[Dict[str, Any]] = None): nn.ConvTranspose3d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, padding_mode, device, dtype) self._init_weight_qparams(weight_qparams, device) def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.convTranspose3d --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.convTranspose3d --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized conv3d """ assert isinstance(self.padding, tuple) # One cannot replace List by Tuple or Sequence in "_output_padding" because # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`. output_padding = self._output_padding( input, output_size, self.stride, self.padding, self.kernel_size, self.dilation) # type: ignore[arg-type] weight_quant_dequant = self.get_weight() result = F.conv_transpose3d( x, weight_quant_dequant, self.bias, self.stride, self.padding, output_padding, self.groups, self.dilation) return result def _get_name(self): return "QuantizedConvTranspose3d(Reference)" @classmethod def from_float(cls, float_conv, weight_qparams): return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams)
pytorch-master
torch/nn/quantized/_reference/modules/conv.py
import torch import torch.nn as nn from torch import Tensor from .utils import _quantize_and_dequantize_weight from .utils import _quantize_weight from typing import Optional, Dict, Any, Tuple from torch import _VF from torch.nn.utils.rnn import PackedSequence def apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor: return tensor.index_select(dim, permutation) def get_weight_and_quantization_params(module, wn): weight = getattr(module, wn) params = [weight] for param_name in [wn + n for n in ["_qscheme", "_dtype", "_scale", "_zero_point", "_axis"]]: if hasattr(module, param_name): param = getattr(module, param_name) else: param = None params.append(param) return params def get_quantized_weight(module, wn): if not hasattr(module, wn): return None params = get_weight_and_quantization_params(module, wn) weight = _quantize_weight(*params) return weight def get_quantize_and_dequantized_weight(module, wn): if not hasattr(module, wn): return None params = get_weight_and_quantization_params(module, wn) weight = _quantize_and_dequantize_weight(*params) return weight class RNNCellBase(nn.RNNCellBase): def __init__(self, input_size: int, hidden_size: int, bias: bool, num_chunks: int, device=None, dtype=None, weight_qparams_dict=None) -> None: super().__init__(input_size, hidden_size, bias, num_chunks, device=device, dtype=dtype) if weight_qparams_dict is None: weight_qparams = { "qscheme": torch.per_tensor_affine, "dtype": torch.quint8, "scale": 1.0, "zero_point": 0 } weight_qparams_dict = { "weight_ih": weight_qparams, "weight_hh": weight_qparams } assert len(weight_qparams_dict) == 2, "Expected length for weight_qparams_dict to be 2 for QuantizedRNNCellBase(Reference)" self._init_weight_qparams_dict(weight_qparams_dict, device) def _init_weight_qparams_dict(self, weight_qparams_dict, device): assert weight_qparams_dict is not None for key, weight_qparams in weight_qparams_dict.items(): # TODO: refactor the duplicated code to utils.py weight_qscheme = weight_qparams["qscheme"] weight_dtype = weight_qparams["dtype"] setattr(self, key + "_qscheme", weight_qscheme) setattr(self, key + "_dtype", weight_dtype) assert weight_qscheme in [None, torch.per_tensor_affine, torch.per_channel_affine], \ Exception(f"qscheme: {weight_qscheme} is not support in {self._get_name()}") if weight_qscheme is not None: scale = weight_qparams["scale"] scale_tensor = scale.clone().detach() \ if isinstance(scale, torch.Tensor) else \ torch.tensor(scale, dtype=torch.float, device=device) self.register_buffer(key + "_scale", scale_tensor) zp = weight_qparams["zero_point"] zp_tensor = zp.clone().detach() \ if isinstance(zp, torch.Tensor) else \ torch.tensor(zp, dtype=torch.int, device=device) self.register_buffer(key + "_zero_point", zp_tensor) if weight_qscheme == torch.per_channel_affine: axis = weight_qparams["axis"] axis_tensor = axis.clone().detach() \ if isinstance(axis, torch.Tensor) else \ torch.tensor(axis, dtype=torch.int, device=device) self.register_buffer(key + "_axis", axis_tensor) else: # added for TorchScriptability, not used self.register_buffer( key + "_axis", torch.tensor(0, dtype=torch.int, device=device)) def _get_name(self): return "QuantizedRNNCellBase(Reference)" def get_quantized_weight_ih(self): return get_quantized_weight(self, "weight_ih") def get_quantized_weight_hh(self): return get_quantized_weight(self, "weight_hh") def get_weight_ih(self): return get_quantize_and_dequantized_weight(self, "weight_ih") def get_weight_hh(self): return get_quantize_and_dequantized_weight(self, "weight_hh") class RNNCell(RNNCellBase): """ We'll store weight_qparams for all the weights (weight_ih and weight_hh), we need to pass in a `weight_qparams_dict` that maps from weight name, e.g. weight_ih, to the weight_qparams for that weight """ def __init__(self, input_size: int, hidden_size: int, bias: bool = True, nonlinearity: str = "tanh", device=None, dtype=None, weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None: factory_kwargs = {'device': device, 'dtype': dtype, 'weight_qparams_dict': weight_qparams_dict} super().__init__(input_size, hidden_size, bias, num_chunks=1, **factory_kwargs) self.nonlinearity = nonlinearity def _get_name(self): return "QuantizedRNNCell(Reference)" # TODO: refactor nn.RNNCell to have a _forward that takes weight_ih and weight_hh as input # and remove duplicated code, same for the other two Cell modules def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor: assert input.dim() in (1, 2), \ f"RNNCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor" is_batched = input.dim() == 2 if not is_batched: input = input.unsqueeze(0) if hx is None: hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) else: hx = hx.unsqueeze(0) if not is_batched else hx if self.nonlinearity == "tanh": ret = _VF.rnn_tanh_cell( input, hx, self.get_weight_ih(), self.get_weight_hh(), self.bias_ih, self.bias_hh, ) elif self.nonlinearity == "relu": ret = _VF.rnn_relu_cell( input, hx, self.get_weight_ih(), self.get_weight_hh(), self.bias_ih, self.bias_hh, ) else: ret = input # TODO: remove when jit supports exception flow raise RuntimeError( "Unknown nonlinearity: {}".format(self.nonlinearity)) if not is_batched: ret = ret.squeeze(0) return ret @classmethod def from_float(cls, mod, weight_qparams_dict): ref_mod = cls( mod.input_size, mod.hidden_size, mod.bias, mod.nonlinearity, mod.weight_ih.device, mod.weight_ih.dtype, weight_qparams_dict) ref_mod.weight_ih = mod.weight_ih ref_mod.weight_hh = mod.weight_hh ref_mod.bias_ih = mod.bias_ih ref_mod.bias_hh = mod.bias_hh return ref_mod class LSTMCell(RNNCellBase): """ We'll store weight_qparams for all the weights (weight_ih and weight_hh), we need to pass in a `weight_qparams_dict` that maps from weight name, e.g. weight_ih, to the weight_qparams for that weight """ def __init__(self, input_size: int, hidden_size: int, bias: bool = True, device=None, dtype=None, weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None: factory_kwargs = {'device': device, 'dtype': dtype, 'weight_qparams_dict': weight_qparams_dict} super().__init__(input_size, hidden_size, bias, num_chunks=4, **factory_kwargs) def _get_name(self): return "QuantizedLSTMCell(Reference)" def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None) -> Tuple[Tensor, Tensor]: assert input.dim() in (1, 2), \ f"LSTMCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor" is_batched = input.dim() == 2 if not is_batched: input = input.unsqueeze(0) if hx is None: zeros = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) hx = (zeros, zeros) else: hx = (hx[0].unsqueeze(0), hx[1].unsqueeze(0)) if not is_batched else hx ret = _VF.lstm_cell( input, hx, self.get_weight_ih(), self.get_weight_hh(), self.bias_ih, self.bias_hh, ) if not is_batched: ret = (ret[0].squeeze(0), ret[1].squeeze(0)) return ret @classmethod def from_float(cls, mod, weight_qparams_dict): ref_mod = cls( mod.input_size, mod.hidden_size, mod.bias, mod.weight_ih.device, mod.weight_ih.dtype, weight_qparams_dict) ref_mod.weight_ih = mod.weight_ih ref_mod.weight_hh = mod.weight_hh ref_mod.bias_ih = mod.bias_ih ref_mod.bias_hh = mod.bias_hh return ref_mod class GRUCell(RNNCellBase): """ We'll store weight_qparams for all the weights (weight_ih and weight_hh), we need to pass in a `weight_qparams_dict` that maps from weight name, e.g. weight_ih, to the weight_qparams for that weight """ def __init__(self, input_size: int, hidden_size: int, bias: bool = True, device=None, dtype=None, weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None: factory_kwargs = {'device': device, 'dtype': dtype, 'weight_qparams_dict': weight_qparams_dict} super().__init__(input_size, hidden_size, bias, num_chunks=3, **factory_kwargs) def _get_name(self): return "QuantizedGRUCell(Reference)" def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor: assert input.dim() in (1, 2), \ f"GRUCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor" is_batched = input.dim() == 2 if not is_batched: input = input.unsqueeze(0) if hx is None: hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) else: hx = hx.unsqueeze(0) if not is_batched else hx ret = _VF.gru_cell( input, hx, self.get_weight_ih(), self.get_weight_hh(), self.bias_ih, self.bias_hh, ) if not is_batched: ret = ret.squeeze(0) return ret @classmethod def from_float(cls, mod, weight_qparams_dict): ref_mod = cls( mod.input_size, mod.hidden_size, mod.bias, mod.weight_ih.device, mod.weight_ih.dtype, weight_qparams_dict) ref_mod.weight_ih = mod.weight_ih ref_mod.weight_hh = mod.weight_hh ref_mod.bias_ih = mod.bias_ih ref_mod.bias_hh = mod.bias_hh return ref_mod class RNNBase(nn.RNNBase): def __init__(self, mode: str, input_size: int, hidden_size: int, num_layers: int = 1, bias: bool = True, batch_first: bool = False, dropout: float = 0., bidirectional: bool = False, proj_size: int = 0, device=None, dtype=None, weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None: super().__init__( mode, input_size, hidden_size, num_layers, bias, batch_first, dropout, bidirectional, proj_size, device, dtype ) if weight_qparams_dict is None: weight_qparams = { 'qscheme': torch.per_tensor_affine, 'dtype': torch.quint8, 'scale': 1.0, 'zero_point': 0 } weight_qparams_dict = dict() for wn in self._flat_weights_names: if wn.startswith("weight"): weight_qparams_dict[wn] = weight_qparams self._init_weight_qparams_dict(weight_qparams_dict, device) def _init_weight_qparams_dict(self, weight_qparams_dict, device): for key, weight_qparams in weight_qparams_dict.items(): weight_qscheme = weight_qparams["qscheme"] weight_dtype = weight_qparams["dtype"] setattr(self, key + "_qscheme", weight_qscheme) setattr(self, key + "_dtype", weight_dtype) assert weight_qscheme in [None, torch.per_tensor_affine, torch.per_channel_affine], \ Exception(f"qscheme: {weight_qscheme} is not support in {self._get_name()}") if weight_qscheme is not None: self.register_buffer( key + "_scale", torch.tensor(weight_qparams["scale"], dtype=torch.float, device=device)) self.register_buffer( key + "_zero_point", torch.tensor(weight_qparams["zero_point"], dtype=torch.int, device=device)) if weight_qscheme == torch.per_channel_affine: self.register_buffer( key + "_axis", torch.tensor(weight_qparams["axis"], dtype=torch.int, device=device)) else: # added for TorchScriptability, not used self.register_buffer( key + "_axis", torch.tensor(0, dtype=torch.int, device=device)) class LSTM(RNNBase): """ Reference Quantized LSTM Module We'll store weight_qparams for all the weights in _flat_weights, we need to pass in a `weight_qparams_dict` that maps from weight name, e.g. weight_ih_l0, to the weight_qparams for that weight """ def __init__(self, *args, **kwargs): super().__init__('LSTM', *args, **kwargs) # Same as above, see torch/nn/modules/module.py::_forward_unimplemented def permute_hidden(self, # type: ignore[override] hx: Tuple[Tensor, Tensor], permutation: Optional[Tensor] ) -> Tuple[Tensor, Tensor]: if permutation is None: return hx return apply_permutation(hx[0], permutation), apply_permutation(hx[1], permutation) def get_expected_cell_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]: if batch_sizes is not None: mini_batch = int(batch_sizes[0]) else: mini_batch = input.size(0) if self.batch_first else input.size(1) num_directions = 2 if self.bidirectional else 1 expected_hidden_size = (self.num_layers * num_directions, mini_batch, self.hidden_size) return expected_hidden_size # In the future, we should prevent mypy from applying contravariance rules here. # See torch/nn/modules/module.py::_forward_unimplemented def check_forward_args(self, # type: ignore[override] input: Tensor, hidden: Tuple[Tensor, Tensor], batch_sizes: Optional[Tensor], ): self.check_input(input, batch_sizes) self.check_hidden_size(hidden[0], self.get_expected_hidden_size(input, batch_sizes), 'Expected hidden[0] size {}, got {}') self.check_hidden_size(hidden[1], self.get_expected_cell_size(input, batch_sizes), 'Expected hidden[1] size {}, got {}') def get_quantized_weight_bias_dict(self): """ dictionary from flat_weight_name to quantized weight or (unquantized) bias e.g. { "weight_ih_l0": quantized_weight, "bias_ih_l0": unquantized_bias, ... } """ quantized_weight_bias_dict = {} for wn in self._flat_weights_names: if hasattr(self, wn): if wn.startswith("weight"): weight_or_bias = get_quantized_weight(self, wn) else: weight_or_bias = getattr(self, wn) else: weight_or_bias = None quantized_weight_bias_dict[wn] = weight_or_bias return quantized_weight_bias_dict def get_flat_weights(self): flat_weights = [] for wn in self._flat_weights_names: if hasattr(self, wn): weight = getattr(self, wn) if wn.startswith("weight"): params = get_weight_and_quantization_params(self, wn) weight = _quantize_and_dequantize_weight(*params) else: weight = None flat_weights.append(weight) return flat_weights def forward(self, input, hx=None): # noqa: F811 orig_input = input # xxx: isinstance check needs to be in conditional for TorchScript to compile batch_sizes = None if isinstance(orig_input, PackedSequence): input, batch_sizes, sorted_indices, unsorted_indices = input max_batch_size = batch_sizes[0] max_batch_size = int(max_batch_size) else: batch_sizes = None is_batched = input.dim() == 3 batch_dim = 0 if self.batch_first else 1 if not is_batched: input = input.unsqueeze(batch_dim) max_batch_size = input.size(0) if self.batch_first else input.size(1) sorted_indices = None unsorted_indices = None if hx is None: num_directions = 2 if self.bidirectional else 1 real_hidden_size = self.proj_size if self.proj_size > 0 else self.hidden_size h_zeros = torch.zeros(self.num_layers * num_directions, max_batch_size, real_hidden_size, dtype=input.dtype, device=input.device) c_zeros = torch.zeros(self.num_layers * num_directions, max_batch_size, self.hidden_size, dtype=input.dtype, device=input.device) hx = (h_zeros, c_zeros) else: if batch_sizes is None: # If not PackedSequence input. if is_batched: if (hx[0].dim() != 3 or hx[1].dim() != 3): msg = ("For batched 3-D input, hx and cx should " f"also be 3-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors") raise RuntimeError(msg) else: if hx[0].dim() != 2 or hx[1].dim() != 2: msg = ("For unbatched 2-D input, hx and cx should " f"also be 2-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors") raise RuntimeError(msg) hx = (hx[0].unsqueeze(1), hx[1].unsqueeze(1)) # Each batch of the hidden state should match the input sequence that # the user believes he/she is passing in. hx = self.permute_hidden(hx, sorted_indices) self.check_forward_args(input, hx, batch_sizes) if batch_sizes is None: result = _VF.lstm(input, hx, self.get_flat_weights(), self.bias, self.num_layers, self.dropout, self.training, self.bidirectional, self.batch_first) else: result = _VF.lstm(input, batch_sizes, hx, self.get_flat_weights(), self.bias, self.num_layers, self.dropout, self.training, self.bidirectional) output = result[0] hidden = result[1:] # xxx: isinstance check needs to be in conditional for TorchScript to compile if isinstance(orig_input, PackedSequence): output_packed = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices) return output_packed, self.permute_hidden(hidden, unsorted_indices) else: if not is_batched: output = output.squeeze(batch_dim) hidden = (hidden[0].squeeze(1), hidden[1].squeeze(1)) return output, self.permute_hidden(hidden, unsorted_indices) def _get_name(self): return "QuantizedLSTM(Reference)" @classmethod def from_float(cls, mod, weight_qparams_dict): ref_mod = cls( mod.input_size, mod.hidden_size, mod.num_layers, mod.bias, mod.batch_first, mod.dropout, mod.bidirectional, weight_qparams_dict=weight_qparams_dict) for wn in mod._flat_weights_names: setattr(ref_mod, wn, getattr(mod, wn)) return ref_mod
pytorch-master
torch/nn/quantized/_reference/modules/rnn.py
from .modules import * # noqa: F403
pytorch-master
torch/nn/quantized/dynamic/__init__.py
import torch import torch.nn.quantized as nnq import torch.nn.intrinsic as nni from torch.nn.quantized.modules.utils import _quantize_weight class Linear(nnq.Linear): r""" A dynamic quantized linear module with floating point tensor as inputs and outputs. We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to :class:`torch.nn.Linear`, attributes will be randomly initialized at module creation time and will be overwritten later Attributes: weight (Tensor): the non-learnable quantized weights of the module which are of shape :math:`(\text{out\_features}, \text{in\_features})`. bias (Tensor): the non-learnable floating point bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized to zero. Examples:: >>> m = nn.quantized.dynamic.Linear(20, 30) >>> input = torch.randn(128, 20) >>> # xdoctest: +SKIP >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ # version used in this class is different from the parent class nnq.Linear _version = 4 def __init__(self, in_features, out_features, bias_=True, dtype=torch.qint8): super(Linear, self).__init__(in_features, out_features, bias_, dtype=dtype) # We don't muck around with buffers or attributes or anything here # to keep the module simple. *everything* is simply a Python attribute. # Serialization logic is explicitly handled in the below serialization and # deserialization modules self.version = 4 def forward(self, x): # Note that we can handle self.bias == None case. if self._packed_params.dtype == torch.qint8: if self.version is None or self.version < 4: Y = torch.ops.quantized.linear_dynamic( x, self._packed_params._packed_params) else: Y = torch.ops.quantized.linear_dynamic( x, self._packed_params._packed_params, reduce_range=True) elif self._packed_params.dtype == torch.float16: Y = torch.ops.quantized.linear_dynamic_fp16( x, self._packed_params._packed_params) else: raise RuntimeError('Unsupported dtype on dynamic quantized linear!') return Y.to(x.dtype) def _get_name(self): return 'DynamicQuantizedLinear' def extra_repr(self): extra_repr_str = 'in_features={}, out_features={}, dtype={}'.format( self.in_features, self.out_features, self._packed_params.dtype ) if self._packed_params.dtype == torch.qint8: extra_repr_str += ', qscheme={}'.format(self.weight().qscheme()) return extra_repr_str def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): version = local_metadata.get('version', None) self.version = version super(Linear, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) @classmethod def from_float(cls, mod): r"""Create a dynamic quantized module from a float module or qparams_dict Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by the user """ float_modules = [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.intrinsic.modules.fused.LinearReLU, torch.nn.qat.dynamic.Linear] assert type(mod) in float_modules, \ 'nn.quantized.dynamic.Linear.from_float only works for one of' + \ str([float_mod.__name__ for float_mod in float_modules]) assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' if type(mod) == nni.LinearReLU: mod = mod[0] if mod.qconfig is not None and mod.qconfig.weight is not None: weight_observer = mod.qconfig.weight() else: # We have the circular import issues if we import the qconfig in the beginning of this file: # https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the # import until we need it. from torch.ao.quantization.qconfig import default_dynamic_qconfig weight_observer = default_dynamic_qconfig.weight() dtype = weight_observer.dtype assert dtype in [torch.qint8, torch.float16], "The only supported dtypes for " \ "dynamic quantized linear are qint8 and float16 got: {}".format(dtype) weight_observer(mod.weight) if dtype == torch.qint8: qweight = _quantize_weight(mod.weight.float(), weight_observer) elif dtype == torch.float16: qweight = mod.weight.float() else: raise RuntimeError('Unsupported dtype specified for dynamic quantized Linear!') qlinear = cls(mod.in_features, mod.out_features, dtype=dtype) qlinear.set_weight_bias(qweight, mod.bias) return qlinear @classmethod def from_reference(cls, ref_qlinear): """ Create a (fbgemm/qnnpack) dynamic quantized module from a reference quantized module Args: ref_qlinear (Module): a reference quantized module, either produced by torch.ao.quantization functions or provided by the user """ qlinear = cls(ref_qlinear.in_features, ref_qlinear.out_features, dtype=ref_qlinear.weight_dtype) qweight = ref_qlinear.get_quantized_weight() bias = ref_qlinear.bias qlinear.set_weight_bias(qweight, bias) return qlinear
pytorch-master
torch/nn/quantized/dynamic/modules/linear.py
from .linear import Linear from .rnn import LSTM, GRU, LSTMCell, RNNCell, GRUCell from .conv import Conv1d, Conv2d, Conv3d, ConvTranspose1d, ConvTranspose2d, ConvTranspose3d __all__ = [ 'Linear', 'LSTM', 'GRU', 'LSTMCell', 'RNNCell', 'GRUCell', 'Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d', ]
pytorch-master
torch/nn/quantized/dynamic/modules/__init__.py
# coding=utf-8 r"""Dynamically quantized convolution modules.""" import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch._ops import ops from torch.nn.common_types import _size_1_t from torch.nn.modules.utils import _single, _pair, _triple from torch.nn.quantized.modules.conv import _reverse_repeat_padding import torch.nn.quantized.modules as nnq import warnings __all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d'] class Conv1d(nnq.Conv1d): r"""A dynamically quantized conv module with floating point tensors as inputs and outputs. For details on input arguments, parameters, and implementation see :class:`~torch.nn.Conv1d` and :class:`~torch.nn.quantized.dynamic.Conv1d` and Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.Conv1d` for other attributes. Examples:: >>> m = nn.quantized.dynamic.Conv1d(16, 33, 3, stride=2) >>> input = torch.randn(20, 16, 100) >>> # xdoctest: +SKIP >>> output = m(input) """ _FLOAT_MODULE = nn.Conv1d _NNIQAT_CONV_BN_MODULE = None # type: ignore[assignment] _NNI_CONV_RELU_MODULE = None # type: ignore[assignment] def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_1_t, stride: _size_1_t = 1, padding: _size_1_t = 0, dilation: _size_1_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', device=None, dtype=None, reduce_range=True): warnings.warn( "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format( self._get_name() ) ) factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _single(kernel_size) stride = _single(stride) padding = padding if isinstance(padding, str) else _single(padding) dilation = _single(dilation) super(Conv1d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'DynamicQuantizedConv1d' def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor: # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 3: raise ValueError("Input shape must be `(N, C, L)`!") if self.padding_mode != 'zeros': # Padding in Conv1d is stored as (p, p), need to get (p,) _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1]) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return ops.quantized.conv1d_dynamic(input, self._packed_params, reduce_range) class Conv2d(nnq.Conv2d): r"""A dynamically quantized conv module with floating point tensors as inputs and outputs. For details on input arguments, parameters, and implementation see :class:`~torch.nn.Conv2d` and :class:`~torch.nn.quantized.dynamic.Conv2d` and Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.Conv2d` for other attributes. Examples:: >>> # With square kernels and equal stride >>> m = nn.quantized.dynamic.Conv2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.quantized.dynamic.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> # non-square kernels and unequal stride and with padding and dilation >>> m = nn.quantized.dynamic.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) >>> input = torch.randn(20, 16, 50, 100) >>> # xdoctest: +SKIP >>> output = m(input) """ _FLOAT_MODULE = nn.Conv2d _NNIQAT_CONV_BN_MODULE = None # type: ignore[assignment] _NNI_CONV_RELU_MODULE = None # type: ignore[assignment] def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): warnings.warn( "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format( self._get_name() ) ) factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'DynamicQuantizedConv2d' def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor: # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") if self.padding_mode != 'zeros': _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return ops.quantized.conv2d_dynamic( input, self._packed_params, reduce_range) class Conv3d(nnq.Conv3d): r"""A dynamically quantized conv module with floating point tensors as inputs and outputs. For details on input arguments, parameters, and implementation see :class:`~torch.nn.Conv3d` and :class:`~torch.nn.quantized.dynamic.Conv3d` and Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.Conv3d` for other attributes. Examples:: >>> # With square kernels and equal stride >>> m = nn.quantized.dynamic.Conv3d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.quantized.dynamic.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2)) >>> # non-square kernels and unequal stride and with padding and dilation >>> m = nn.quantized.dynamic.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2), dilation=(1, 2, 2)) >>> input = torch.randn(20, 16, 56, 56, 56) >>> # xdoctest: +SKIP >>> output = m(input) """ _FLOAT_MODULE = nn.Conv3d _NNIQAT_CONV_BN_MODULE = None # type: ignore[assignment] _NNI_CONV_RELU_MODULE = None # type: ignore[assignment] def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): warnings.warn( "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format( self._get_name() ) ) assert padding_mode != 'reflect', "Conv3d does not support reflection padding" factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) super(Conv3d, self)._init( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _triple(0), groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'DynamicQuantizedConv3d' def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor: # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 5: raise ValueError("Input shape must be `(N, C, D, H, W)`!") if self.padding_mode != 'zeros': _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return ops.quantized.conv3d_dynamic( input, self._packed_params, reduce_range) class ConvTranspose1d(nnq.ConvTranspose1d): r"""A dynamically quantized transposed convolution module with floating point tensors as inputs and outputs. For details on input arguments, parameters, and implementation see :class:`~torch.nn.ConvTranspose1d`. For special notes, please, see :class:`~torch.nn.quantized.dynamic.Conv1d` Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.ConvTranspose1d` for other attributes. Examples:: >>> # With square kernels and equal stride >>> # xdoctest: +SKIP >>> m = nndq.ConvTranspose1d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nndq.ConvTranspose1d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> output = m(input) >>> # exact output size can be also specified as an argument >>> downsample = nndq.Conv1d(16, 16, 3, stride=2, padding=1) >>> upsample = nndq.ConvTranspose1d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12]) """ _FLOAT_MODULE = nn.ConvTranspose1d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None): warnings.warn( "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format( self._get_name() ) ) factory_kwargs = {'device': device, 'dtype': dtype} super(ConvTranspose1d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, padding_mode, **factory_kwargs) def _get_name(self): return 'DynamicQuantizedConvTranpose1d' def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor: # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 3: raise ValueError("Input shape must be `(N, C, L)`!") return torch.ops.quantized.conv_transpose1d_dynamic( input, self._packed_params, reduce_range) class ConvTranspose2d(nnq.ConvTranspose2d): r"""A dynamically quantized transposed convolution module with floating point tensors as inputs and outputs. For details on input arguments, parameters, and implementation see :class:`~torch.nn.ConvTranspose2d`. For special notes, please, see :class:`~torch.nn.quantized.dynamic.Conv2d` Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.ConvTranspose2d` for other attributes. Examples:: >>> # With square kernels and equal stride >>> m = nnq.ConvTranspose2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nnq.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> # xdoctest: +SKIP >>> output = m(input) >>> # exact output size can be also specified as an argument >>> downsample = nnq.Conv2d(16, 16, 3, stride=2, padding=1) >>> upsample = nnq.ConvTranspose2d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12]) """ _FLOAT_MODULE = nn.ConvTranspose2d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None): warnings.warn( "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format( self._get_name() ) ) factory_kwargs = {'device': device, 'dtype': dtype} super(ConvTranspose2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, padding_mode, **factory_kwargs) def _get_name(self): return 'DynamicQuantizedConvTranpose2d' def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor: # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") return ops.quantized.conv_transpose2d_dynamic( input, self._packed_params, reduce_range) class ConvTranspose3d(nnq.ConvTranspose3d): r"""A dynamically quantized transposed convolution module with floating point tensors as inputs and outputs. For details on input arguments, parameters, and implementation see :class:`~torch.nn.ConvTranspose3d`. For special notes, please, see :class:`~torch.nn.quantized.dynamic.Conv3d` Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.ConvTranspose3d` for other attributes. Examples:: >>> # With cubic kernels and equal stride >>> m = nnq.ConvTranspose3d(16, 33, 3, stride=2) >>> # non-cubic kernels and unequal stride and with padding >>> m = nnq.ConvTranspose3d(16, 33, (3, 3, 5), stride=(2, 1, 1), padding=(4, 2, 2)) >>> # xdoctest: +SKIP >>> output = m(input) >>> # exact output size can be also specified as an argument >>> downsample = nnq.Conv3d(16, 16, 3, stride=2, padding=1) >>> upsample = nnq.ConvTranspose3d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12, 12]) """ _FLOAT_MODULE = nn.ConvTranspose3d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None): warnings.warn( "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format( self._get_name() ) ) factory_kwargs = {'device': device, 'dtype': dtype} super(ConvTranspose3d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, padding_mode, **factory_kwargs) def _get_name(self): return 'DynamicQuantizedConvTranpose3d' def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor: # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 5: raise ValueError("Input shape must be `(N, C, T, H, W)`!") return ops.quantized.conv_transpose3d_dynamic( input, self._packed_params, reduce_range)
pytorch-master
torch/nn/quantized/dynamic/modules/conv.py
import numbers import warnings import torch import torch.nn as nn from torch import Tensor # noqa: F401 from torch._jit_internal import Tuple, Optional, List, Union, Dict # noqa: F401 from torch.nn.utils.rnn import PackedSequence from torch.nn.quantized.modules.utils import _quantize_weight __all__ = ['pack_weight_bias', 'PackedParameter', 'RNNBase', 'LSTM', 'GRU', 'RNNCellBase', 'RNNCell', 'LSTMCell', 'GRUCell'] def _apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor: return tensor.index_select(dim, permutation) def apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor: warnings.warn("apply_permutation is deprecated, please use tensor.index_select(dim, permutation) instead") return _apply_permutation(tensor, permutation, dim) def pack_weight_bias(qweight, bias, dtype): if dtype == torch.qint8: # for each layer, for each direction we need to quantize and pack # weights and pack parameters in this order: # # w_ih, w_hh packed_weight = \ torch.ops.quantized.linear_prepack(qweight, bias) return packed_weight else: # for each layer, for each direction we need to quantize and pack # weights and pack parameters in this order: # # packed_ih, packed_hh, b_ih, b_hh packed_weight = torch.ops.quantized.linear_prepack_fp16( qweight, bias) return packed_weight class PackedParameter(torch.nn.Module): def __init__(self, param): super(PackedParameter, self).__init__() self.param = param def _save_to_state_dict(self, destination, prefix, keep_vars): super(PackedParameter, self)._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'param'] = self.param def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.param = state_dict[prefix + 'param'] super(PackedParameter, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) class RNNBase(torch.nn.Module): _FLOAT_MODULE = nn.RNNBase _version = 2 def __init__(self, mode, input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0., bidirectional=False, dtype=torch.qint8): super(RNNBase, self).__init__() self.mode = mode self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bias = bias self.batch_first = batch_first self.dropout = float(dropout) self.bidirectional = bidirectional self.dtype = dtype self.version = 2 self.training = False num_directions = 2 if bidirectional else 1 # "type: ignore" is required since ints and Numbers are not fully comparable # https://github.com/python/mypy/issues/8566 if not isinstance(dropout, numbers.Number) \ or not 0 <= dropout <= 1 or isinstance(dropout, bool): # type: ignore[operator] raise ValueError("dropout should be a number in range [0, 1] " "representing the probability of an element being " "zeroed") if dropout > 0 and num_layers == 1: # type: ignore[operator] warnings.warn("dropout option adds dropout after all but last " "recurrent layer, so non-zero dropout expects " "num_layers greater than 1, but got dropout={} and " "num_layers={}".format(dropout, num_layers)) if mode == 'LSTM': gate_size = 4 * hidden_size elif mode == 'GRU': gate_size = 3 * hidden_size else: raise ValueError("Unrecognized RNN mode: " + mode) _all_weight_values = [] for layer in range(num_layers): for direction in range(num_directions): layer_input_size = input_size if layer == 0 else hidden_size * num_directions w_ih = torch.randn(gate_size, layer_input_size).to(torch.float) w_hh = torch.randn(gate_size, hidden_size).to(torch.float) b_ih = torch.randn(gate_size).to(torch.float) b_hh = torch.randn(gate_size).to(torch.float) if dtype == torch.qint8: w_ih = torch.quantize_per_tensor(w_ih, scale=0.1, zero_point=0, dtype=torch.qint8) w_hh = torch.quantize_per_tensor(w_hh, scale=0.1, zero_point=0, dtype=torch.qint8) packed_ih = \ torch.ops.quantized.linear_prepack(w_ih, b_ih) packed_hh = \ torch.ops.quantized.linear_prepack(w_hh, b_hh) if self.version is None or self.version < 2: cell_params = torch.ops.quantized.make_quantized_cell_params_dynamic( packed_ih, packed_hh, b_ih, b_hh) else: cell_params = torch.ops.quantized.make_quantized_cell_params_dynamic( packed_ih, packed_hh, b_ih, b_hh, True) else: packed_ih = torch.ops.quantized.linear_prepack_fp16(w_ih, b_ih) packed_hh = torch.ops.quantized.linear_prepack_fp16(w_hh, b_hh) cell_params = torch.ops.quantized.make_quantized_cell_params_fp16( packed_ih, packed_hh) _all_weight_values.append(PackedParameter(cell_params)) self._all_weight_values = torch.nn.ModuleList(_all_weight_values) def _get_name(self): return 'DynamicQuantizedRNN' def extra_repr(self): s = '{input_size}, {hidden_size}' if self.num_layers != 1: s += ', num_layers={num_layers}' if self.bias is not True: s += ', bias={bias}' if self.batch_first is not False: s += ', batch_first={batch_first}' if self.dropout != 0: s += ', dropout={dropout}' if self.bidirectional is not False: s += ', bidirectional={bidirectional}' return s.format(**self.__dict__) def __repr__(self): # We don't want to show `ModuleList` children, hence custom # `__repr__`. This is the same as nn.Module.__repr__, except the check # for the `PackedParameter` and `nn.ModuleList`. # You should still override `extra_repr` to add more info. extra_lines = [] extra_repr = self.extra_repr() # empty string will be split into list [''] if extra_repr: extra_lines = extra_repr.split('\n') child_lines = [] for key, module in self._modules.items(): if isinstance(module, (PackedParameter, nn.ModuleList)): continue mod_str = repr(module) mod_str = nn.modules.module._addindent(mod_str, 2) child_lines.append('(' + key + '): ' + mod_str) lines = extra_lines + child_lines main_str = self._get_name() + '(' if lines: # simple one-liner info, which most builtin Modules will use if len(extra_lines) == 1 and not child_lines: main_str += extra_lines[0] else: main_str += '\n ' + '\n '.join(lines) + '\n' main_str += ')' return main_str def check_input(self, input: Tensor, batch_sizes: Optional[Tensor]) -> None: expected_input_dim = 2 if batch_sizes is not None else 3 if input.dim() != expected_input_dim: raise RuntimeError( 'input must have {} dimensions, got {}'.format( expected_input_dim, input.dim())) if self.input_size != input.size(-1): raise RuntimeError( 'input.size(-1) must be equal to input_size. Expected {}, got {}'.format( self.input_size, input.size(-1))) def get_expected_hidden_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]: if batch_sizes is not None: mini_batch = int(batch_sizes[0]) else: mini_batch = input.size(0) if self.batch_first else input.size(1) num_directions = 2 if self.bidirectional else 1 expected_hidden_size = (self.num_layers * num_directions, mini_batch, self.hidden_size) return expected_hidden_size def check_hidden_size( self, hx: Tensor, expected_hidden_size: Tuple[int, int, int], msg: str = 'Expected hidden size {}, got {}' ) -> None: if hx.size() != expected_hidden_size: raise RuntimeError(msg.format( expected_hidden_size, list(hx.size()))) def check_forward_args(self, input: Tensor, hidden: Tensor, batch_sizes: Optional[Tensor]) -> None: self.check_input(input, batch_sizes) expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes) self.check_hidden_size(hidden, expected_hidden_size, msg='Expected hidden size {}, got {}') def permute_hidden(self, hx: Tensor, permutation: Optional[Tensor]) -> Tensor: if permutation is None: return hx return _apply_permutation(hx, permutation) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): version = local_metadata.get('version', None) self.version = version super(RNNBase, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) def set_weight_bias(self, weight_bias_dict): def weight_bias_name(ihhh, layer, suffix): weight_name = "weight_{}_l{}{}".format(ihhh, layer, suffix) bias_name = "bias_{}_l{}{}".format(ihhh, layer, suffix) return weight_name, bias_name num_directions = 2 if self.bidirectional else 1 # TODO: dedup with __init__ of RNNBase _all_weight_values = [] for layer in range(self.num_layers): for direction in range(num_directions): suffix = "_reverse" if direction == 1 else "" w_ih_name, b_ih_name = weight_bias_name("ih", layer, suffix) w_hh_name, b_hh_name = weight_bias_name("hh", layer, suffix) w_ih = weight_bias_dict[w_ih_name] b_ih = weight_bias_dict[b_ih_name] w_hh = weight_bias_dict[w_hh_name] b_hh = weight_bias_dict[b_hh_name] if w_ih.dtype == torch.qint8: packed_ih = torch.ops.quantized.linear_prepack(w_ih, b_ih) packed_hh = torch.ops.quantized.linear_prepack(w_hh, b_hh) if self.version is None or self.version < 2: cell_params = torch.ops.quantized.make_quantized_cell_params_dynamic( packed_ih, packed_hh, b_ih, b_hh) else: cell_params = torch.ops.quantized.make_quantized_cell_params_dynamic( packed_ih, packed_hh, b_ih, b_hh, True) else: packed_ih = torch.ops.quantized.linear_prepack_fp16(w_ih, b_ih) packed_hh = torch.ops.quantized.linear_prepack_fp16(w_hh, b_hh) cell_params = torch.ops.quantized.make_quantized_cell_params_fp16( packed_ih, packed_hh) _all_weight_values.append(PackedParameter(cell_params)) self._all_weight_values = torch.nn.ModuleList(_all_weight_values) @classmethod def from_float(cls, mod): assert type(mod) in set( [torch.nn.LSTM, torch.nn.GRU] ), 'nn.quantized.dynamic.RNNBase.from_float only works for nn.LSTM and nn.GRU' assert hasattr( mod, 'qconfig' ), 'Input float module must have qconfig defined' if mod.qconfig is not None and mod.qconfig.weight is not None: weight_observer_method = mod.qconfig.weight else: # We have the circular import issues if we import the qconfig in the beginning of this file: # https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the # import until we need it. from torch.ao.quantization.qconfig import default_dynamic_qconfig weight_observer_method = default_dynamic_qconfig.weight dtype = weight_observer_method().dtype supported_scalar_types = [torch.qint8, torch.float16] if dtype not in supported_scalar_types: raise RuntimeError('Unsupported dtype for dynamic RNN quantization: {}'.format(dtype)) # RNNBase can be either LSTM or GRU qRNNBase: Union[LSTM, GRU] if mod.mode == 'LSTM': qRNNBase = LSTM(mod.input_size, mod.hidden_size, mod.num_layers, mod.bias, mod.batch_first, mod.dropout, mod.bidirectional, dtype) elif mod.mode == 'GRU': qRNNBase = GRU(mod.input_size, mod.hidden_size, mod.num_layers, mod.bias, mod.batch_first, mod.dropout, mod.bidirectional, dtype) else: raise NotImplementedError('Only LSTM/GRU is supported for QuantizedRNN for now') num_directions = 2 if mod.bidirectional else 1 assert mod.bias _all_weight_values = [] for layer in range(qRNNBase.num_layers): for direction in range(num_directions): suffix = '_reverse' if direction == 1 else '' def retrieve_weight_bias(ihhh): weight_name = 'weight_{}_l{}{}'.format(ihhh, layer, suffix) bias_name = 'bias_{}_l{}{}'.format(ihhh, layer, suffix) weight = getattr(mod, weight_name) bias = getattr(mod, bias_name) return weight, bias weight_ih, bias_ih = retrieve_weight_bias('ih') weight_hh, bias_hh = retrieve_weight_bias('hh') if dtype == torch.qint8: def quantize_and_pack(w, b): weight_observer = weight_observer_method() weight_observer(w) qweight = _quantize_weight(w.float(), weight_observer) packed_weight = \ torch.ops.quantized.linear_prepack(qweight, b) return packed_weight packed_ih = quantize_and_pack(weight_ih, bias_ih) packed_hh = quantize_and_pack(weight_hh, bias_hh) if qRNNBase.version is None or qRNNBase.version < 2: cell_params = torch.ops.quantized.make_quantized_cell_params_dynamic( packed_ih, packed_hh, bias_ih, bias_hh) else: cell_params = torch.ops.quantized.make_quantized_cell_params_dynamic( packed_ih, packed_hh, bias_ih, bias_hh, True) elif dtype == torch.float16: packed_ih = torch.ops.quantized.linear_prepack_fp16( weight_ih.float(), bias_ih) packed_hh = torch.ops.quantized.linear_prepack_fp16( weight_hh.float(), bias_hh) cell_params = torch.ops.quantized.make_quantized_cell_params_fp16( packed_ih, packed_hh) else: raise RuntimeError('Unsupported dtype specified for dynamic quantized LSTM!') _all_weight_values.append(PackedParameter(cell_params)) qRNNBase._all_weight_values = torch.nn.ModuleList(_all_weight_values) return qRNNBase def _weight_bias(self): # Returns a dict of weights and biases weight_bias_dict: Dict[str, Dict] = {'weight' : {}, 'bias' : {}} count = 0 num_directions = 2 if self.bidirectional else 1 for layer in range(self.num_layers): for direction in range(num_directions): suffix = '_reverse' if direction == 1 else '' key_name1 = 'weight_ih_l{layer_idx}{suffix}'.format(layer_idx=layer, suffix=suffix) key_name2 = 'weight_hh_l{layer_idx}{suffix}'.format(layer_idx=layer, suffix=suffix) # packed weights are part of torchbind class, CellParamsSerializationType # Within the packed weight class, the weight and bias are accessible as Tensors packed_weight_bias = self._all_weight_values[count].param.__getstate__()[0][4] weight_bias_dict['weight'][key_name1] = packed_weight_bias[0].__getstate__()[0][0] weight_bias_dict['weight'][key_name2] = packed_weight_bias[1].__getstate__()[0][0] key_name1 = 'bias_ih_l{layer_idx}{suffix}'.format(layer_idx=layer, suffix=suffix) key_name2 = 'bias_hh_l{layer_idx}{suffix}'.format(layer_idx=layer, suffix=suffix) weight_bias_dict['bias'][key_name1] = packed_weight_bias[0].__getstate__()[0][1] weight_bias_dict['bias'][key_name2] = packed_weight_bias[1].__getstate__()[0][1] count = count + 1 return weight_bias_dict def get_weight(self): return self._weight_bias()['weight'] def get_bias(self): return self._weight_bias()['bias'] class LSTM(RNNBase): r""" A dynamic quantized LSTM module with floating point tensor as inputs and outputs. We adopt the same interface as `torch.nn.LSTM`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.LSTM for documentation. Examples:: >>> rnn = nn.LSTM(10, 20, 2) >>> input = torch.randn(5, 3, 10) >>> h0 = torch.randn(2, 3, 20) >>> c0 = torch.randn(2, 3, 20) >>> output, (hn, cn) = rnn(input, (h0, c0)) """ _FLOAT_MODULE = nn.LSTM __overloads__ = {'forward': ['forward_packed', 'forward_tensor']} def __init__(self, *args, **kwargs): super(LSTM, self).__init__('LSTM', *args, **kwargs) def _get_name(self): return 'DynamicQuantizedLSTM' def forward_impl( self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]], batch_sizes: Optional[Tensor], max_batch_size: int, sorted_indices: Optional[Tensor] ) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: if hx is None: num_directions = 2 if self.bidirectional else 1 zeros = torch.zeros(self.num_layers * num_directions, max_batch_size, self.hidden_size, dtype=input.dtype, device=input.device) hx = (zeros, zeros) else: # Each batch of the hidden state should match the input sequence that # the user believes he/she is passing in. hx = self.permute_hidden(hx, sorted_indices) self.check_forward_args(input, hx, batch_sizes) _all_params = ([m.param for m in self._all_weight_values]) if batch_sizes is None: result = torch.quantized_lstm(input, hx, _all_params, self.bias, self.num_layers, float(self.dropout), self.training, self.bidirectional, self.batch_first, dtype=self.dtype, use_dynamic=True) else: result = torch.quantized_lstm(input, batch_sizes, hx, _all_params, self.bias, self.num_layers, float(self.dropout), self.training, self.bidirectional, dtype=self.dtype, use_dynamic=True) output = result[0] hidden = result[1:] return output, hidden @torch.jit.export def forward_tensor( self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None ) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: batch_sizes = None max_batch_size = input.size(0) if self.batch_first else input.size(1) sorted_indices = None unsorted_indices = None output, hidden = self.forward_impl( input, hx, batch_sizes, max_batch_size, sorted_indices) return output, self.permute_hidden(hidden, unsorted_indices) @torch.jit.export def forward_packed( self, input: PackedSequence, hx: Optional[Tuple[Tensor, Tensor]] = None ) -> Tuple[PackedSequence, Tuple[Tensor, Tensor]]: input_, batch_sizes, sorted_indices, unsorted_indices = input max_batch_size = batch_sizes[0] max_batch_size = int(max_batch_size) output_, hidden = self.forward_impl( input_, hx, batch_sizes, max_batch_size, sorted_indices) output = PackedSequence(output_, batch_sizes, sorted_indices, unsorted_indices) return output, self.permute_hidden(hidden, unsorted_indices) # "type: ignore" is required due to issue #43072 def permute_hidden( # type: ignore[override] self, hx: Tuple[Tensor, Tensor], permutation: Optional[Tensor] ) -> Tuple[Tensor, Tensor]: if permutation is None: return hx return _apply_permutation(hx[0], permutation), _apply_permutation(hx[1], permutation) # "type: ignore" is required due to issue #43072 def check_forward_args( # type: ignore[override] self, input: Tensor, hidden: Tuple[Tensor, Tensor], batch_sizes: Optional[Tensor] ) -> None: self.check_input(input, batch_sizes) expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes) self.check_hidden_size(hidden[0], expected_hidden_size, 'Expected hidden[0] size {}, got {}') self.check_hidden_size(hidden[1], expected_hidden_size, 'Expected hidden[1] size {}, got {}') @torch.jit.ignore def forward(self, input, hx=None): if isinstance(input, PackedSequence): return self.forward_packed(input, hx) else: return self.forward_tensor(input, hx) @classmethod def from_float(cls, mod): return super(LSTM, cls).from_float(mod) @classmethod def from_reference(cls, ref_mod): assert hasattr(ref_mod, "weight_ih_l0_dtype"), "We are assuming weight_ih_l0 " "exists in LSTM, may need to relax the assumption to support the use case" qmod = cls( ref_mod.input_size, ref_mod.hidden_size, ref_mod.num_layers, ref_mod.bias, ref_mod.batch_first, ref_mod.dropout, ref_mod.bidirectional, # assuming there is layer 0, which should be OK ref_mod.weight_ih_l0_dtype, ) qmod.set_weight_bias(ref_mod.get_quantized_weight_bias_dict()) return qmod class GRU(RNNBase): r"""Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence. For each element in the input sequence, each layer computes the following function: .. math:: \begin{array}{ll} r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\ z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\ n_t = \tanh(W_{in} x_t + b_{in} + r_t * (W_{hn} h_{(t-1)}+ b_{hn})) \\ h_t = (1 - z_t) * n_t + z_t * h_{(t-1)} \end{array} where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is the input at time `t`, :math:`h_{(t-1)}` is the hidden state of the layer at time `t-1` or the initial hidden state at time `0`, and :math:`r_t`, :math:`z_t`, :math:`n_t` are the reset, update, and new gates, respectively. :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. In a multilayer GRU, the input :math:`x^{(l)}_t` of the :math:`l` -th layer (:math:`l >= 2`) is the hidden state :math:`h^{(l-1)}_t` of the previous layer multiplied by dropout :math:`\delta^{(l-1)}_t` where each :math:`\delta^{(l-1)}_t` is a Bernoulli random variable which is :math:`0` with probability :attr:`dropout`. Args: input_size: The number of expected features in the input `x` hidden_size: The number of features in the hidden state `h` num_layers: Number of recurrent layers. E.g., setting ``num_layers=2`` would mean stacking two GRUs together to form a `stacked GRU`, with the second GRU taking in outputs of the first GRU and computing the final results. Default: 1 bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`. Default: ``True`` batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` dropout: If non-zero, introduces a `Dropout` layer on the outputs of each GRU layer except the last layer, with dropout probability equal to :attr:`dropout`. Default: 0 bidirectional: If ``True``, becomes a bidirectional GRU. Default: ``False`` Inputs: input, h_0 - **input** of shape `(seq_len, batch, input_size)`: tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See :func:`torch.nn.utils.rnn.pack_padded_sequence` for details. - **h_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1. Outputs: output, h_n - **output** of shape `(seq_len, batch, num_directions * hidden_size)`: tensor containing the output features h_t from the last layer of the GRU, for each `t`. If a :class:`torch.nn.utils.rnn.PackedSequence` has been given as the input, the output will also be a packed sequence. For the unpacked case, the directions can be separated using ``output.view(seq_len, batch, num_directions, hidden_size)``, with forward and backward being direction `0` and `1` respectively. Similarly, the directions can be separated in the packed case. - **h_n** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor containing the hidden state for `t = seq_len` Like *output*, the layers can be separated using ``h_n.view(num_layers, num_directions, batch, hidden_size)``. Shape: - Input1: :math:`(L, N, H_{in})` tensor containing input features where :math:`H_{in}=\text{input\_size}` and `L` represents a sequence length. - Input2: :math:`(S, N, H_{out})` tensor containing the initial hidden state for each element in the batch. :math:`H_{out}=\text{hidden\_size}` Defaults to zero if not provided. where :math:`S=\text{num\_layers} * \text{num\_directions}` If the RNN is bidirectional, num_directions should be 2, else it should be 1. - Output1: :math:`(L, N, H_{all})` where :math:`H_{all}=\text{num\_directions} * \text{hidden\_size}` - Output2: :math:`(S, N, H_{out})` tensor containing the next hidden state for each element in the batch Attributes: weight_ih_l[k] : the learnable input-hidden weights of the :math:`\text{k}^{th}` layer (W_ir|W_iz|W_in), of shape `(3*hidden_size, input_size)` for `k = 0`. Otherwise, the shape is `(3*hidden_size, num_directions * hidden_size)` weight_hh_l[k] : the learnable hidden-hidden weights of the :math:`\text{k}^{th}` layer (W_hr|W_hz|W_hn), of shape `(3*hidden_size, hidden_size)` bias_ih_l[k] : the learnable input-hidden bias of the :math:`\text{k}^{th}` layer (b_ir|b_iz|b_in), of shape `(3*hidden_size)` bias_hh_l[k] : the learnable hidden-hidden bias of the :math:`\text{k}^{th}` layer (b_hr|b_hz|b_hn), of shape `(3*hidden_size)` .. note:: All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{hidden\_size}}` .. include:: ../cudnn_persistent_rnn.rst Examples:: >>> rnn = nn.GRU(10, 20, 2) >>> input = torch.randn(5, 3, 10) >>> h0 = torch.randn(2, 3, 20) >>> output, hn = rnn(input, h0) """ _FLOAT_MODULE = nn.GRU __overloads__ = {'forward': ['forward_packed', 'forward_tensor']} def __init__(self, *args, **kwargs): super(GRU, self).__init__('GRU', *args, **kwargs) def _get_name(self): return 'DynamicQuantizedGRU' def check_forward_args(self, input: Tensor, hidden: Tensor, batch_sizes: Optional[Tensor]) -> None: self.check_input(input, batch_sizes) expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes) self.check_hidden_size(hidden, expected_hidden_size, 'Expected hidden size {}, got {}') def forward_impl( self, input: Tensor, hx: Optional[Tensor], batch_sizes: Optional[Tensor], max_batch_size: int, sorted_indices: Optional[Tensor] ) -> Tuple[Tensor, Tensor]: if hx is None: num_directions = 2 if self.bidirectional else 1 zeros = torch.zeros(self.num_layers * num_directions, max_batch_size, self.hidden_size, dtype=input.dtype, device=input.device) hx = zeros else: # Each batch of the hidden state should match the input sequence that # the user believes he/she is passing in. hx = self.permute_hidden(hx, sorted_indices) self.check_forward_args(input, hx, batch_sizes) _all_params = ([m.param for m in self._all_weight_values]) if batch_sizes is None: result = torch.quantized_gru(input, hx, _all_params, self.bias, self.num_layers, self.dropout, self.training, self.bidirectional, self.batch_first) else: result = torch.quantized_gru(input, batch_sizes, hx, _all_params, self.bias, self.num_layers, self.dropout, self.training, self.bidirectional) output = result[0] hidden = result[1] return output, hidden @torch.jit.export def forward_tensor( self, input: Tensor, hx: Optional[Tensor] = None ) -> Tuple[Tensor, Tensor]: batch_sizes = None max_batch_size = input.size(0) if self.batch_first else input.size(1) sorted_indices = None unsorted_indices = None output, hidden = self.forward_impl( input, hx, batch_sizes, max_batch_size, sorted_indices) return output, self.permute_hidden(hidden, unsorted_indices) @torch.jit.export def forward_packed( self, input: PackedSequence, hx: Optional[Tensor] = None ) -> Tuple[PackedSequence, Tensor]: input_, batch_sizes, sorted_indices, unsorted_indices = input max_batch_size = batch_sizes[0] max_batch_size = int(max_batch_size) output_, hidden = self.forward_impl( input_, hx, batch_sizes, max_batch_size, sorted_indices) output = PackedSequence(output_, batch_sizes, sorted_indices, unsorted_indices) return output, self.permute_hidden(hidden, unsorted_indices) def permute_hidden( self, hx: Tensor, permutation: Optional[Tensor] ) -> Tensor: if permutation is None: return hx return _apply_permutation(hx, permutation) @torch.jit.ignore def forward(self, input, hx=None): if isinstance(input, PackedSequence): return self.forward_packed(input, hx) else: return self.forward_tensor(input, hx) @classmethod def from_float(cls, mod): return super(GRU, cls).from_float(mod) class RNNCellBase(torch.nn.Module): # _FLOAT_MODULE = nn.CellRNNBase __constants__ = ['input_size', 'hidden_size', 'bias'] def __init__(self, input_size, hidden_size, bias=True, num_chunks=4, dtype=torch.qint8): super(RNNCellBase, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.weight_dtype = dtype if bias: self.bias_ih = torch.randn(num_chunks * hidden_size).to(dtype=torch.float) self.bias_hh = torch.randn(num_chunks * hidden_size).to(dtype=torch.float) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) weight_ih = torch.randn(num_chunks * hidden_size, input_size).to(torch.float) weight_hh = torch.randn(num_chunks * hidden_size, hidden_size).to(torch.float) if dtype == torch.qint8: weight_ih = torch.quantize_per_tensor(weight_ih, scale=1, zero_point=0, dtype=torch.qint8) weight_hh = torch.quantize_per_tensor(weight_hh, scale=1, zero_point=0, dtype=torch.qint8) if dtype == torch.qint8: # for each layer, for each direction we need to quantize and pack # weights and pack parameters in this order: # # w_ih, w_hh packed_weight_ih = \ torch.ops.quantized.linear_prepack(weight_ih, self.bias_ih) packed_weight_hh = \ torch.ops.quantized.linear_prepack(weight_hh, self.bias_hh) else: # for each layer, for each direction we need to quantize and pack # weights and pack parameters in this order: # # packed_ih, packed_hh, b_ih, b_hh packed_weight_ih = torch.ops.quantized.linear_prepack_fp16( weight_ih, self.bias_ih) packed_weight_hh = torch.ops.quantized.linear_prepack_fp16( weight_hh, self.bias_hh) self._packed_weight_ih = packed_weight_ih self._packed_weight_hh = packed_weight_hh def _get_name(self): return 'DynamicQuantizedRNNBase' def extra_repr(self): s = '{input_size}, {hidden_size}' if 'bias' in self.__dict__ and self.bias is not True: s += ', bias={bias}' if 'nonlinearity' in self.__dict__ and self.nonlinearity != "tanh": s += ', nonlinearity={nonlinearity}' return s.format(**self.__dict__) def check_forward_input(self, input): if input.size(1) != self.input_size: raise RuntimeError( "input has inconsistent input_size: got {}, expected {}".format( input.size(1), self.input_size)) def check_forward_hidden(self, input: Tensor, hx: Tensor, hidden_label: str = '') -> None: if input.size(0) != hx.size(0): raise RuntimeError( "Input batch size {} doesn't match hidden{} batch size {}".format( input.size(0), hidden_label, hx.size(0))) if hx.size(1) != self.hidden_size: raise RuntimeError( "hidden{} has inconsistent hidden_size: got {}, expected {}".format( hidden_label, hx.size(1), self.hidden_size)) @classmethod def from_float(cls, mod): assert type(mod) in set([torch.nn.LSTMCell, torch.nn.GRUCell, torch.nn.RNNCell]), 'nn.quantized.dynamic.RNNCellBase.from_float \ only works for nn.LSTMCell, nn.GRUCell and nn.RNNCell' assert hasattr( mod, 'qconfig'), 'Input float module must have qconfig defined' if mod.qconfig is not None and mod.qconfig.weight is not None: weight_observer_method = mod.qconfig.weight else: # We have the circular import issues if we import the qconfig in the beginning of this file: # https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the # import until we need it. from torch.ao.quantization.qconfig import default_dynamic_qconfig weight_observer_method = default_dynamic_qconfig.weight dtype = weight_observer_method().dtype supported_scalar_types = [torch.qint8, torch.float16] if dtype not in supported_scalar_types: raise RuntimeError('Unsupported dtype for dynamic RNN quantization: {}'.format(dtype)) qRNNCellBase: Union[LSTMCell, GRUCell, RNNCell] if type(mod) == torch.nn.LSTMCell: qRNNCellBase = LSTMCell(mod.input_size, mod.hidden_size, bias=mod.bias, dtype=dtype) elif type(mod) == torch.nn.GRUCell: qRNNCellBase = GRUCell(mod.input_size, mod.hidden_size, bias=mod.bias, dtype=dtype) elif type(mod) == torch.nn.RNNCell: qRNNCellBase = RNNCell(mod.input_size, mod.hidden_size, bias=mod.bias, nonlinearity=mod.nonlinearity, dtype=dtype) else: raise NotImplementedError('Only LSTMCell, GRUCell and RNNCell \ are supported for QuantizedRNN for now') assert mod.bias def _observe_and_quantize_weight(weight): if dtype == torch.qint8: weight_observer = weight_observer_method() weight_observer(weight) qweight = _quantize_weight(weight.float(), weight_observer) return qweight else: return weight.float() qRNNCellBase._packed_weight_ih = pack_weight_bias(_observe_and_quantize_weight(mod.weight_ih), mod.bias_ih, dtype) qRNNCellBase._packed_weight_hh = pack_weight_bias(_observe_and_quantize_weight(mod.weight_hh), mod.bias_hh, dtype) return qRNNCellBase @classmethod def from_reference(cls, ref_mod): assert hasattr(ref_mod, "weight_ih_dtype"), "We are assuming weight_ih " "exists in reference module, may need to relax the assumption to support the use case" if hasattr(ref_mod, "nonlinearity"): qmod = cls( ref_mod.input_size, ref_mod.hidden_size, ref_mod.bias, ref_mod.nonlinearity, dtype=ref_mod.weight_ih_dtype ) else: qmod = cls( ref_mod.input_size, ref_mod.hidden_size, ref_mod.bias, dtype=ref_mod.weight_ih_dtype ) weight_bias_dict = { "weight": { "weight_ih": ref_mod.get_quantized_weight_ih(), "weight_hh": ref_mod.get_quantized_weight_hh(), }, "bias": { "bias_ih": ref_mod.bias_ih, "bias_hh": ref_mod.bias_hh, } } qmod.set_weight_bias(weight_bias_dict) return qmod def _weight_bias(self): # Returns a dict of weights and biases weight_bias_dict: Dict[str, Dict] = {'weight' : {}, 'bias' : {}} w1, b1 = self._packed_weight_ih.__getstate__()[0] w2, b2 = self._packed_weight_hh.__getstate__()[0] # TODO: these can be simplified to one level? e.g. using weight_ih as key # directly weight_bias_dict['weight']['weight_ih'] = w1 weight_bias_dict['weight']['weight_hh'] = w2 weight_bias_dict['bias']['bias_ih'] = b1 weight_bias_dict['bias']['bias_hh'] = b2 return weight_bias_dict def get_weight(self): return self._weight_bias()['weight'] def get_bias(self): return self._weight_bias()['bias'] def set_weight_bias(self, weight_bias_dict): # TODO: these can be simplified to one level? e.g. using weight_ih as key # directly self._packed_weight_ih = pack_weight_bias( weight_bias_dict["weight"]["weight_ih"], weight_bias_dict["bias"]["bias_ih"], self.weight_dtype) self._packed_weight_hh = pack_weight_bias( weight_bias_dict["weight"]["weight_hh"], weight_bias_dict["bias"]["bias_hh"], self.weight_dtype) def _save_to_state_dict(self, destination, prefix, keep_vars): super(RNNCellBase, self)._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + '_packed_weight_ih'] = self._packed_weight_ih destination[prefix + '_packed_weight_hh'] = self._packed_weight_hh def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self._packed_weight_ih = state_dict.pop(prefix + '_packed_weight_ih') self._packed_weight_hh = state_dict.pop(prefix + '_packed_weight_hh') super(RNNCellBase, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) class RNNCell(RNNCellBase): r"""An Elman RNN cell with tanh or ReLU non-linearity. A dynamic quantized RNNCell module with floating point tensor as inputs and outputs. Weights are quantized to 8 bits. We adopt the same interface as `torch.nn.RNNCell`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.RNNCell for documentation. Examples:: >>> rnn = nn.RNNCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx) """ __constants__ = ['input_size', 'hidden_size', 'bias', 'nonlinearity'] def __init__(self, input_size, hidden_size, bias=True, nonlinearity="tanh", dtype=torch.qint8): super(RNNCell, self).__init__(input_size, hidden_size, bias, num_chunks=1, dtype=dtype) self.nonlinearity = nonlinearity def _get_name(self): return 'DynamicQuantizedRNNCell' def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor: self.check_forward_input(input) if hx is None: hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) self.check_forward_hidden(input, hx, '') if self.nonlinearity == "tanh": ret = torch.ops.quantized.quantized_rnn_tanh_cell_dynamic( input, hx, self._packed_weight_ih, self._packed_weight_hh, self.bias_ih, self.bias_hh) elif self.nonlinearity == "relu": ret = torch.ops.quantized.quantized_rnn_relu_cell_dynamic( input, hx, self._packed_weight_ih, self._packed_weight_hh, self.bias_ih, self.bias_hh) else: ret = input # TODO: remove when jit supports exception flow raise RuntimeError( "Unknown nonlinearity: {}".format(self.nonlinearity)) return ret @classmethod def from_float(cls, mod): return super(RNNCell, cls).from_float(mod) class LSTMCell(RNNCellBase): r"""A long short-term memory (LSTM) cell. A dynamic quantized LSTMCell module with floating point tensor as inputs and outputs. Weights are quantized to 8 bits. We adopt the same interface as `torch.nn.LSTMCell`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.LSTMCell for documentation. Examples:: >>> rnn = nn.LSTMCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> cx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx, cx = rnn(input[i], (hx, cx)) ... output.append(hx) """ def __init__(self, *args, **kwargs): super(LSTMCell, self).__init__(*args, num_chunks=4, **kwargs) # type: ignore[misc] def _get_name(self): return 'DynamicQuantizedLSTMCell' def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None) -> Tuple[Tensor, Tensor]: self.check_forward_input(input) if hx is None: zeros = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) hx = (zeros, zeros) self.check_forward_hidden(input, hx[0], '[0]') self.check_forward_hidden(input, hx[1], '[1]') return torch.ops.quantized.quantized_lstm_cell_dynamic( input, hx, self._packed_weight_ih, self._packed_weight_hh, self.bias_ih, self.bias_hh) @classmethod def from_float(cls, mod): return super(LSTMCell, cls).from_float(mod) class GRUCell(RNNCellBase): r"""A gated recurrent unit (GRU) cell A dynamic quantized GRUCell module with floating point tensor as inputs and outputs. Weights are quantized to 8 bits. We adopt the same interface as `torch.nn.GRUCell`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.GRUCell for documentation. Examples:: >>> rnn = nn.GRUCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx) """ def __init__(self, input_size, hidden_size, bias=True, dtype=torch.qint8): super(GRUCell, self).__init__(input_size, hidden_size, bias, num_chunks=3, dtype=dtype) def _get_name(self): return 'DynamicQuantizedGRUCell' def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor: self.check_forward_input(input) if hx is None: hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) self.check_forward_hidden(input, hx, '') return torch.ops.quantized.quantized_gru_cell_dynamic( input, hx, self._packed_weight_ih, self._packed_weight_hh, self.bias_ih, self.bias_hh, ) @classmethod def from_float(cls, mod): return super(GRUCell, cls).from_float(mod)
pytorch-master
torch/nn/quantized/dynamic/modules/rnn.py
import torch import torch.nn.quantized.functional import torch.nn.intrinsic as nni from torch import Tensor class _BatchNorm(torch.nn.modules.batchnorm._BatchNorm): def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(num_features, eps, momentum, True, True, **factory_kwargs) self.register_buffer('scale', torch.tensor(1.0, **factory_kwargs)) self.register_buffer('zero_point', torch.tensor(0, **factory_kwargs)) @staticmethod def from_float(cls, mod): activation_post_process = mod.activation_post_process if type(mod) == cls._NNI_BN_RELU_MODULE: mod = mod[0] scale, zero_point = activation_post_process.calculate_qparams() new_mod = cls(mod.num_features, mod.eps) new_mod.weight = mod.weight new_mod.bias = mod.bias new_mod.running_mean = mod.running_mean new_mod.running_var = mod.running_var new_mod.scale = scale new_mod.zero_point = zero_point return new_mod @classmethod def from_reference(cls, bn, output_scale, output_zero_point): qbn = cls( bn.num_features, bn.eps, bn.momentum, device=bn.weight.device, dtype=bn.weight.dtype ) qbn.weight = bn.weight qbn.bias = bn.bias qbn.running_mean = bn.running_mean qbn.running_var = bn.running_var qbn.scale = output_scale qbn.zero_point = output_zero_point return qbn class BatchNorm2d(_BatchNorm): r"""This is the quantized version of :class:`~torch.nn.BatchNorm2d`. """ _NNI_BN_RELU_MODULE = nni.BNReLU2d def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(num_features, eps, momentum, **factory_kwargs) def _get_name(self): return 'QuantizedBatchNorm2d' def _check_input_dim(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") def forward(self, input: Tensor) -> Tensor: # disabling this since this is not symbolically traceable # self._check_input_dim(input) return torch.ops.quantized.batch_norm2d( input, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.scale, self.zero_point) @classmethod def from_float(cls, mod): return _BatchNorm.from_float(cls, mod) class BatchNorm3d(_BatchNorm): r"""This is the quantized version of :class:`~torch.nn.BatchNorm3d`. """ _NNI_BN_RELU_MODULE = nni.BNReLU3d def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(num_features, eps, momentum, **factory_kwargs) def _get_name(self): return 'QuantizedBatchNorm3d' def _check_input_dim(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 5: raise ValueError("Input shape must be `(N, C, H, W)`!") def forward(self, input: Tensor) -> Tensor: # disabling this since this is not symbolically traceable # self._check_input_dim(input) return torch.ops.quantized.batch_norm3d( input, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.scale, self.zero_point) @classmethod def from_float(cls, mod): return _BatchNorm.from_float(cls, mod)
pytorch-master
torch/nn/quantized/modules/batchnorm.py
from typing import List import torch from torch import Tensor from torch._ops import ops __all__ = ['FloatFunctional', 'FXFloatFunctional', 'QFunctional'] class FloatFunctional(torch.nn.Module): r"""State collector class for float operations. The instance of this class can be used instead of the ``torch.`` prefix for some operations. See example usage below. .. note:: This class does not provide a ``forward`` hook. Instead, you must use one of the underlying functions (e.g. ``add``). Examples:: >>> f_add = FloatFunctional() >>> a = torch.tensor(3.0) >>> b = torch.tensor(4.0) >>> f_add.add(a, b) # Equivalent to ``torch.add(a, b)`` Valid operation names: - add - cat - mul - add_relu - add_scalar - mul_scalar """ def __init__(self): super(FloatFunctional, self).__init__() self.activation_post_process = torch.nn.Identity() def forward(self, x): raise RuntimeError("FloatFunctional is not intended to use the " + "'forward'. Please use the underlying operation") r"""Operation equivalent to ``torch.add(Tensor, Tensor)``""" def add(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.add(Tensor, float)``""" def add_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.add(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.mul(Tensor, Tensor)``""" def mul(self, x: Tensor, y: Tensor) -> Tensor: r = torch.mul(x, y) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.mul(Tensor, float)``""" def mul_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.mul(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.cat``""" def cat(self, x: List[Tensor], dim: int = 0) -> Tensor: r = torch.cat(x, dim=dim) r = self.activation_post_process(r) return r r"""Operation equivalent to ``relu(torch.add(x,y))``""" def add_relu(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) r = torch.nn.functional.relu(r) r = self.activation_post_process(r) return r class FXFloatFunctional(torch.nn.Module): r""" module to replace FloatFunctional module before FX graph mode quantization, since activation_post_process will be inserted in top level module directly Valid operation names: - add - cat - mul - add_relu - add_scalar - mul_scalar """ def forward(self, x): raise RuntimeError("FloatFunctional is not intended to use the " + "'forward'. Please use the underlying operation") r"""Operation equivalent to ``torch.add(Tensor, Tensor)``""" def add(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) return r r"""Operation equivalent to ``torch.add(Tensor, float)``""" def add_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.add(x, y) return r r"""Operation equivalent to ``torch.mul(Tensor, Tensor)``""" def mul(self, x: Tensor, y: Tensor) -> Tensor: r = torch.mul(x, y) return r r"""Operation equivalent to ``torch.mul(Tensor, float)``""" def mul_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.mul(x, y) return r r"""Operation equivalent to ``torch.cat``""" def cat(self, x: List[Tensor], dim: int = 0) -> Tensor: r = torch.cat(x, dim=dim) return r r"""Operation equivalent to ``relu(torch.add(x,y))``""" def add_relu(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) r = torch.nn.functional.relu(r) return r class QFunctional(torch.nn.Module): r"""Wrapper class for quantized operations. The instance of this class can be used instead of the ``torch.ops.quantized`` prefix. See example usage below. .. note:: This class does not provide a ``forward`` hook. Instead, you must use one of the underlying functions (e.g. ``add``). Examples:: >>> q_add = QFunctional() >>> # xdoctest: +SKIP >>> a = torch.quantize_per_tensor(torch.tensor(3.0), 1.0, 0, torch.qint32) >>> b = torch.quantize_per_tensor(torch.tensor(4.0), 1.0, 0, torch.qint32) >>> q_add.add(a, b) # Equivalent to ``torch.ops.quantized.add(a, b, 1.0, 0)`` Valid operation names: - add - cat - mul - add_relu - add_scalar - mul_scalar """ def __init__(self): super(QFunctional, self).__init__() self.scale = 1.0 self.zero_point = 0 self.activation_post_process = torch.nn.Identity() def _save_to_state_dict(self, destination, prefix, keep_vars): super(QFunctional, self)._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'scale'] = torch.tensor(self.scale) destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.scale = float(state_dict.pop(prefix + 'scale')) self.zero_point = int(state_dict.pop(prefix + 'zero_point')) super(QFunctional, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) def _get_name(self): return 'QFunctional' def extra_repr(self): return 'scale={}, zero_point={}'.format( self.scale, self.zero_point ) def forward(self, x): raise RuntimeError("Functional is not intended to use the " + "'forward'. Please use the underlying operation") r"""Operation equivalent to ``torch.ops.quantized.add``""" def add(self, x: Tensor, y: Tensor) -> Tensor: r = ops.quantized.add(x, y, scale=self.scale, zero_point=self.zero_point) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.ops.quantized.add(Tensor, float)``""" def add_scalar(self, x: Tensor, y: float) -> Tensor: r = ops.quantized.add_scalar(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.ops.quantized.mul(Tensor, Tensor)``""" def mul(self, x: Tensor, y: Tensor) -> Tensor: r = ops.quantized.mul(x, y, scale=self.scale, zero_point=self.zero_point) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.ops.quantized.mul(Tensor, float)``""" def mul_scalar(self, x: Tensor, y: float) -> Tensor: r = ops.quantized.mul_scalar(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.ops.quantized.cat``""" def cat(self, x: List[Tensor], dim: int = 0) -> Tensor: r = ops.quantized.cat(x, scale=self.scale, zero_point=self.zero_point, dim=dim) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.ops.quantized.add_relu``""" def add_relu(self, x: Tensor, y: Tensor) -> Tensor: r = ops.quantized.add_relu(x, y, scale=self.scale, zero_point=self.zero_point) r = self.activation_post_process(r) return r @classmethod def from_float(cls, mod): assert type(mod) == FloatFunctional,\ "QFunctional.from_float expects an instance of FloatFunctional" scale, zero_point = mod.activation_post_process.calculate_qparams() # type: ignore[operator] new_mod = QFunctional() new_mod.scale = float(scale) new_mod.zero_point = int(zero_point) return new_mod
pytorch-master
torch/nn/quantized/modules/functional_modules.py
from collections.abc import Iterable import torch import torch.nn as nn import torch.nn.intrinsic as nni import torch.nn.intrinsic.qat as nniqat from torch.nn.quantized.modules.utils import _quantize_weight, hide_packed_params_repr, WeightedQuantizedModule from torch.nn.utils.fusion import fuse_linear_bn_weights from torch.nn.utils.parametrize import type_before_parametrizations from typing import Optional __all__ = ['LinearPackedParams', 'Linear'] class LinearPackedParams(torch.nn.Module): _version = 3 def __init__(self, dtype=torch.qint8): super().__init__() self.dtype = dtype if self.dtype == torch.qint8: wq = torch._empty_affine_quantized([1, 1], scale=1.0, zero_point=0, dtype=torch.qint8) elif self.dtype == torch.float16: wq = torch.zeros([1, 1], dtype=torch.float) self.set_weight_bias(wq, None) @torch.jit.export def set_weight_bias(self, weight: torch.Tensor, bias: Optional[torch.Tensor]) -> None: if self.dtype == torch.qint8: self._packed_params = torch.ops.quantized.linear_prepack(weight, bias) elif self.dtype == torch.float16: self._packed_params = torch.ops.quantized.linear_prepack_fp16(weight, bias) else: raise RuntimeError('Unsupported dtype on dynamic quantized linear!') @torch.jit.export def _weight_bias(self): if self.dtype == torch.qint8: return torch.ops.quantized.linear_unpack(self._packed_params) elif self.dtype == torch.float16: return torch.ops.quantized.linear_unpack_fp16(self._packed_params) else: raise RuntimeError('Unsupported dtype on dynamic quantized linear!') def forward(self, x): return x # Version 1 # self # |--- weight : Tensor # |--- bias : Tensor # # Version 2 # self # |--- weight : Tensor # |--- bias : Tensor # |--- dtype : torch.dtype # # Version 3 # self # |--- _packed_params : (Tensor, Tensor) representing (weight, bias) # of LinearPackedParams # |--- dtype : torch.dtype def _save_to_state_dict(self, destination, prefix, keep_vars): super(LinearPackedParams, self)._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'dtype'] = self.dtype destination[prefix + '_packed_params'] = self._weight_bias() def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): version = local_metadata.get('version', None) if version is None or version < 2: self.dtype = torch.qint8 else: self.dtype = state_dict[prefix + 'dtype'] state_dict.pop(prefix + 'dtype') if version is None or version < 3: self.set_weight_bias(state_dict[prefix + 'weight'], state_dict[prefix + 'bias']) state_dict.pop(prefix + 'weight') state_dict.pop(prefix + 'bias') if version == 3: weight, bias = state_dict[prefix + '_packed_params'] state_dict.pop(prefix + '_packed_params') self.set_weight_bias(weight, bias) super(LinearPackedParams, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) def __repr__(self): return self._weight_bias().__repr__() class Linear(WeightedQuantizedModule): r""" A quantized linear module with quantized tensor as inputs and outputs. We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to :class:`~torch.nn.Linear`, attributes will be randomly initialized at module creation time and will be overwritten later Attributes: weight (Tensor): the non-learnable quantized weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized to zero. scale: `scale` parameter of output Quantized Tensor, type: double zero_point: `zero_point` parameter for output Quantized Tensor, type: long Examples:: >>> m = nn.quantized.Linear(20, 30) >>> input = torch.randn(128, 20) >>> # xdoctest: +SKIP >>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ _version = 3 _FLOAT_MODULE = (nn.Linear, nn.modules.linear.NonDynamicallyQuantizableLinear) def __init__(self, in_features, out_features, bias_=True, dtype=torch.qint8): super().__init__() # We don't muck around with buffers or attributes or anything here # to keep the module simple. *everything* is simply a Python attribute. # Serialization logic is explicitly handled in the below serialization and # deserialization modules self.in_features = in_features self.out_features = out_features bias = None if bias_: bias = torch.zeros(out_features, dtype=torch.float) if dtype == torch.qint8: qweight = torch._empty_affine_quantized( [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8) elif dtype == torch.float16: qweight = torch.zeros([out_features, in_features], dtype=torch.float) else: raise RuntimeError('Unsupported dtype specified for quantized Linear!') self._packed_params = LinearPackedParams(dtype) self._packed_params.set_weight_bias(qweight, bias) self.scale = 1.0 self.zero_point = 0 def _get_name(self): return 'QuantizedLinear' def extra_repr(self): return 'in_features={}, out_features={}, scale={}, zero_point={}, qscheme={}'.format( self.in_features, self.out_features, self.scale, self.zero_point, self.weight().qscheme() ) def __repr__(self): return hide_packed_params_repr(self, LinearPackedParams) def forward(self, x: torch.Tensor) -> torch.Tensor: return torch.ops.quantized.linear( x, self._packed_params._packed_params, self.scale, self.zero_point) # ===== Serialization methods ===== # The special consideration here is that we have to unpack the weights into their # regular QTensor form for serialization. Packed weights should not live # outside the process in which they were created, rather they should be derived # from the QTensor weight. # # Version 1 # self # |--- scale : float # |--- zero_point : int # |--- weight : Tensor # |--- bias : Tensor # # Version 2 # self # |--- scale : float # |--- zero_point : int # |--- _packed_params : Module # |--- weight : Tensor # |--- bias : Tensor # # Version 3 # self # |--- scale : float # |--- zero_point : int # |--- _packed_params : Module # |--- _packed_params : (Tensor, Tensor) representing weight, bias # of LinearPackedParams C++ struct # def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'scale'] = torch.tensor(self.scale) destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) # ===== Deserialization methods ===== # Counterpart to the serialization methods, we must pack the serialized QTensor # weight into its packed format for use by the FBGEMM ops. def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.scale = float(state_dict[prefix + 'scale']) state_dict.pop(prefix + 'scale') self.zero_point = int(state_dict[prefix + 'zero_point']) state_dict.pop(prefix + 'zero_point') version = local_metadata.get('version', None) if version is None or version == 1: # We moved the parameters into a LinearPackedParameters submodule weight = state_dict.pop(prefix + 'weight') bias = state_dict.pop(prefix + 'bias') state_dict.update({prefix + '_packed_params.weight': weight, prefix + '_packed_params.bias': bias}) super()._load_from_state_dict( state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) # Function rather than property to make sure that JIT serialization doesn't # register this as an attribute def _weight_bias(self): return self._packed_params._weight_bias() def weight(self): return self._weight_bias()[0] def bias(self): return self._weight_bias()[1] def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: self._packed_params.set_weight_bias(w, b) @classmethod def from_float(cls, mod): r"""Create a quantized module from an observed float module Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by the user """ if hasattr(mod, 'weight_fake_quant'): if type_before_parametrizations(mod) == nniqat.LinearBn1d: mod.weight, mod.bias = fuse_linear_bn_weights( mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var, mod.bn.eps, mod.bn.weight, mod.bn.bias) weight_post_process = mod.weight_fake_quant activation_post_process = mod.activation_post_process else: # This function does not participate in JIT, so it is OK to ignore # the type mismatch in assignment. Also, mypy has an issue with # iterables not being implemented, so we are ignoring those too. if not isinstance(cls._FLOAT_MODULE, Iterable): cls._FLOAT_MODULE = [cls._FLOAT_MODULE] # type: ignore[assignment] supported_modules = ', '.join([float_mod.__name__ for float_mod in cls._FLOAT_MODULE]) # type: ignore[attr-defined] error_msg = 'nnq.{}.from_float only works for {}, but got: {}'.format(cls.__name__, supported_modules, type(mod)) assert type_before_parametrizations(mod) in cls._FLOAT_MODULE, error_msg.format() # type: ignore[attr-defined] assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' activation_post_process = mod.activation_post_process if type_before_parametrizations(mod) == nni.LinearReLU: mod = mod[0] weight_post_process = mod.qconfig.weight() weight_post_process(mod.weight) dtype = weight_post_process.dtype act_scale, act_zp = activation_post_process.calculate_qparams() assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8' qweight = _quantize_weight(mod.weight.float(), weight_post_process) qlinear = cls(mod.in_features, mod.out_features, dtype=dtype) qlinear.set_weight_bias(qweight, mod.bias) qlinear.scale = float(act_scale) qlinear.zero_point = int(act_zp) return qlinear @classmethod def from_reference(cls, ref_qlinear, output_scale, output_zero_point): r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module Args: ref_qlinear (Module): a reference quantized linear module, either produced by torch.ao.quantization utilities or provided by the user output_scale (float): scale for output Tensor zero_point (int): zero point for output Tensor """ qlinear = cls( ref_qlinear.in_features, ref_qlinear.out_features) qweight = ref_qlinear.get_quantized_weight() qlinear.set_weight_bias(qweight, ref_qlinear.bias) qlinear.scale = float(output_scale) qlinear.zero_point = int(output_zero_point) return qlinear
pytorch-master
torch/nn/quantized/modules/linear.py
import torch from torch.nn.modules.pooling import MaxPool2d from .activation import ReLU6, Hardswish, ELU, LeakyReLU, Sigmoid, Softmax, MultiheadAttention, PReLU from .dropout import Dropout from .batchnorm import BatchNorm2d, BatchNorm3d from .normalization import LayerNorm, GroupNorm, InstanceNorm1d, \ InstanceNorm2d, InstanceNorm3d from .conv import Conv1d, Conv2d, Conv3d from .conv import ConvTranspose1d, ConvTranspose2d, ConvTranspose3d from .linear import Linear from .embedding_ops import Embedding, EmbeddingBag from .rnn import LSTM from .functional_modules import FloatFunctional, FXFloatFunctional, QFunctional class Quantize(torch.nn.Module): r"""Quantizes an incoming tensor Args: `scale`: scale of the output Quantized Tensor `zero_point`: zero_point of output Quantized Tensor `dtype`: data type of output Quantized Tensor `factory_kwargs`: Dictionary of kwargs used for configuring initialization of internal buffers. Currently, `device` and `dtype` are supported. Example: `factory_kwargs={'device': 'cuda', 'dtype': torch.float64}` will initialize internal buffers as type `torch.float64` on the current CUDA device. Note that `dtype` only applies to floating-point buffers. Examples:: >>> t = torch.tensor([[1., -1.], [1., -1.]]) >>> scale, zero_point, dtype = 1.0, 2, torch.qint8 >>> qm = Quantize(scale, zero_point, dtype) >>> # xdoctest: +SKIP >>> qt = qm(t) >>> print(qt) tensor([[ 1., -1.], [ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2) """ scale: torch.Tensor zero_point: torch.Tensor def __init__(self, scale, zero_point, dtype, factory_kwargs=None): factory_kwargs = torch.nn.factory_kwargs(factory_kwargs) super(Quantize, self).__init__() self.register_buffer('scale', torch.tensor([scale], **factory_kwargs)) self.register_buffer('zero_point', torch.tensor([zero_point], dtype=torch.long, **{k: v for k, v in factory_kwargs.items() if k != 'dtype'})) self.dtype = dtype def forward(self, X): return torch.quantize_per_tensor(X, float(self.scale), int(self.zero_point), self.dtype) @staticmethod def from_float(mod): assert hasattr(mod, 'activation_post_process') scale, zero_point = mod.activation_post_process.calculate_qparams() return Quantize(scale.float().item(), zero_point.long().item(), mod.activation_post_process.dtype) def extra_repr(self): return 'scale={}, zero_point={}, dtype={}'.format(self.scale, self.zero_point, self.dtype) class DeQuantize(torch.nn.Module): r"""Dequantizes an incoming tensor Examples:: >>> input = torch.tensor([[1., -1.], [1., -1.]]) >>> scale, zero_point, dtype = 1.0, 2, torch.qint8 >>> qm = Quantize(scale, zero_point, dtype) >>> # xdoctest: +SKIP >>> quantized_input = qm(input) >>> dqm = DeQuantize() >>> dequantized = dqm(quantized_input) >>> print(dequantized) tensor([[ 1., -1.], [ 1., -1.]], dtype=torch.float32) """ def __init__(self): super(DeQuantize, self).__init__() def forward(self, Xq): return Xq.dequantize() @staticmethod def from_float(mod): return DeQuantize() __all__ = [ 'BatchNorm2d', 'BatchNorm3d', 'Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d', 'DeQuantize', 'ELU', 'Embedding', 'EmbeddingBag', 'GroupNorm', 'Hardswish', 'InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d', 'LayerNorm', 'LeakyReLU', 'Linear', 'LSTM', 'MaxPool2d', 'MultiheadAttention', 'Quantize', 'ReLU6', 'Sigmoid', 'Softmax', 'Dropout', 'PReLU', # Wrapper modules 'FloatFunctional', 'FXFloatFunctional', 'QFunctional', ]
pytorch-master
torch/nn/quantized/modules/__init__.py
import torch import torch.nn.quantized.functional class ReLU6(torch.nn.ReLU): r"""Applies the element-wise function: :math:`\text{ReLU6}(x) = \min(\max(x_0, x), q(6))`, where :math:`x_0` is the zero_point, and :math:`q(6)` is the quantized representation of number 6. Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: ../scripts/activation_images/ReLU6.png Examples:: >>> m = nn.quantized.ReLU6() >>> input = torch.randn(2) >>> # xdoctest: +SKIP >>> input = torch.quantize_per_tensor(input, 1.0, 0, dtype=torch.qint32) >>> output = m(input) """ def __init__(self, inplace=False): super(ReLU6, self).__init__(inplace) self.inplace = inplace def forward(self, input): return torch.ops.quantized.relu6(input, self.inplace) def _get_name(self): return 'QuantizedReLU6' @staticmethod def from_float(mod): return ReLU6(mod.inplace) class Hardswish(torch.nn.Hardswish): r"""This is the quantized version of :class:`~torch.nn.Hardswish`. Args: scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor """ def __init__(self, scale, zero_point): super(Hardswish, self).__init__() self.scale = scale self.zero_point = zero_point def forward(self, input): return torch.nn.quantized.functional.hardswish( input, scale=self.scale, zero_point=self.zero_point) def _get_name(self): return 'QuantizedHardswish' @staticmethod def from_float(mod): scale, zero_point = mod.activation_post_process.calculate_qparams() return Hardswish(float(scale), int(zero_point)) @classmethod def from_reference(cls, mod, scale, zero_point): return cls(float(scale), int(zero_point)) class ELU(torch.nn.ELU): r"""This is the quantized equivalent of :class:`~torch.nn.ELU`. Args: scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor alpha: the alpha constant """ def __init__(self, scale, zero_point, alpha=1.): super(ELU, self).__init__(alpha) self.scale = scale self.zero_point = zero_point def forward(self, input): return torch.nn.quantized.functional.elu( input, self.scale, self.zero_point, self.alpha) def _get_name(self): return 'QuantizedELU' @staticmethod def from_float(mod): scale, zero_point = mod.activation_post_process.calculate_qparams() return ELU(float(scale), int(zero_point), mod.alpha) @classmethod def from_reference(cls, mod, scale, zero_point): return cls(float(scale), int(zero_point), mod.alpha) class LeakyReLU(torch.nn.LeakyReLU): r"""This is the quantized equivalent of :class:`~torch.nn.LeakyReLU`. Args: scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor negative_slope: Controls the angle of the negative slope. Default: 1e-2 """ def __init__(self, scale: float, zero_point: int, negative_slope: float = 1e-2, inplace: bool = False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(negative_slope, inplace) self.register_buffer('scale', torch.tensor(scale, **factory_kwargs)) self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs)) def forward(self, input): return torch.ops.quantized.leaky_relu( input, self.negative_slope, self.inplace, self.scale, self.zero_point) def _get_name(self): return 'QuantizedLeakyReLU' @classmethod def from_float(cls, mod): scale, zero_point = mod.activation_post_process.calculate_qparams() return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace) @classmethod def from_reference(cls, mod, scale, zero_point): return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace) class Sigmoid(torch.nn.Sigmoid): r"""This is the quantized equivalent of :class:`~torch.nn.Sigmoid`. Args: scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor """ def __init__(self, output_scale: float, output_zero_point: int): super().__init__() self.output_scale = output_scale self.output_zero_point = output_zero_point def forward(self, input): return torch.ops.quantized.sigmoid(input, self.output_scale, self.output_zero_point) @classmethod def from_float(cls, mod): output_scale, output_zero_point = mod.activation_post_process.calculate_qparams() return cls(float(output_scale), int(output_zero_point)) class Softmax(torch.nn.Softmax): r"""This is the quantized version of :class:`~torch.nn.Softmax`. Args: dim: A dimension along which Softmax will be computed (so every slice along dim will sum to 1). scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor """ def __init__(self, dim=None, scale=1.0, zero_point=0): super().__init__() self.dim = dim self.scale = scale self.zero_point = zero_point def forward(self, input): dim = self.dim if dim is None: stacklevel = 3 # Note: adding the mypy ignore on _get_softmax_dim seems less bad # than making `_get_softmax_dim` an official API. dim = torch.nn.functional._get_softmax_dim( # type: ignore[attr-defined] "softmax", input.dim(), stacklevel) return torch.ops.quantized.softmax( input, dim, self.scale, self.zero_point) def _get_name(self): return 'QuantizedSoftmax' @staticmethod def from_float(mod): scale, zero_point = mod.activation_post_process.calculate_qparams() return Softmax(mod.dim, float(scale), int(zero_point)) @classmethod def from_reference(cls, mod, scale, zero_point): return cls(mod.dim, float(scale), int(zero_point)) class MultiheadAttention(torch.nn.quantizable.MultiheadAttention): _FLOAT_MODULE = torch.nn.quantizable.MultiheadAttention def _get_name(self): return "QuantizedMultiheadAttention" @classmethod def from_float(cls, other): # The whole flow is float -> observed -> quantized # This class does observed -> quantized only raise NotImplementedError("It looks like you are trying to convert a " "non-observed MHA module. Please, see " "the examples on quantizable MHAs.") @classmethod def from_observed(cls, other): converted = torch.ao.quantization.convert(other, mapping=None, inplace=False, remove_qconfig=True, convert_custom_config_dict=None) converted.__class__ = cls # Remove the parameters for the bias_k and bias_v to quantize them # TODO: This is a potential source of accuracy drop. # quantized cat takes the scale and zp of the first # element, which might lose the precision in the bias_k # and the bias_v (which are cat'ed with k/v being first). if converted.bias_k is not None: bias_k = converted._parameters.pop('bias_k') sc, zp = torch._choose_qparams_per_tensor(bias_k, reduce_range=False) bias_k = torch.quantize_per_tensor(bias_k, sc, zp, torch.quint8) setattr(converted, 'bias_k', bias_k) # noqa: B010 if converted.bias_v is not None: bias_v = converted._parameters.pop('bias_v') sc, zp = torch._choose_qparams_per_tensor(bias_k, reduce_range=False) bias_v = torch.quantize_per_tensor(bias_v, sc, zp, torch.quint8) setattr(converted, 'bias_v', bias_v) # noqa: B010 return converted class PReLU(torch.nn.Module): r"""This is the quantized equivalent of :class:`~torch.nn.PReLU`. Args: scale: quantization scale of the output tensor zero_point: quantization zero point of the output tensor num_parameters: number of parameters: 1, or the number of channels at input. Default: 1 """ def __init__(self, output_scale: float, output_zero_point: int, num_parameters: int = 1) -> None: super().__init__() self.num_parameters = num_parameters self.scale = output_scale self.zero_point = output_zero_point w = torch.randn(num_parameters, dtype=torch.float) qw = torch.quantize_per_tensor(w, scale=1.0, zero_point=0, dtype=torch.quint8) self.set_weight(qw) def set_weight(self, w: torch.Tensor) -> None: self.weight = w def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.ops.quantized.prelu(input, self.weight, self.scale, self.zero_point) def _get_name(self): return 'QuantizedPReLU' @classmethod def from_float(cls, mod): scale, zero_point = mod.activation_post_process.calculate_qparams() qprelu = cls(float(scale), int(zero_point), mod.num_parameters) float_wt = mod.weight.float() observer = mod.qconfig.weight() wt_scale, wt_zp = observer.calculate_qparams() qweight = torch.quantize_per_tensor( float_wt, float(wt_scale), int(wt_zp), torch.quint8) qprelu.set_weight(qweight) return qprelu @classmethod def from_reference(cls, mod, scale, zero_point): qprelu = cls(float(scale), int(zero_point), mod.num_parameters) float_wt = mod.weight.float() observer = mod.qconfig.weight() wt_scale, wt_zp = observer.calculate_qparams() qweight = torch.quantize_per_tensor( float_wt, float(wt_scale), int(wt_zp), torch.quint8) qprelu.set_weight(qweight) return qprelu
pytorch-master
torch/nn/quantized/modules/activation.py
import abc import torch from itertools import repeat import collections from torch.nn.modules.module import _addindent class WeightedQuantizedModule(torch.nn.Module, metaclass=abc.ABCMeta): """Wrapper for quantized modules than can be lowered from reference modules.""" @classmethod @abc.abstractmethod def from_reference(cls, ref_module, output_scale, output_zero_point): raise NotImplementedError def _quantize_weight(float_wt, observer): wt_scale, wt_zp = observer.calculate_qparams() if observer.qscheme in [torch.per_tensor_symmetric, torch.per_tensor_affine]: qweight = torch.quantize_per_tensor( float_wt, float(wt_scale), int(wt_zp), torch.qint8) elif observer.qscheme in [torch.per_channel_symmetric, torch.per_channel_affine]: wt_axis = observer.ch_axis qweight = torch.quantize_per_channel( float_wt, wt_scale.to(torch.double), wt_zp.to(torch.int64), wt_axis, torch.qint8) elif observer.qscheme in [torch.per_channel_affine_float_qparams]: qweight = torch.quantize_per_channel( float_wt, wt_scale.to(torch.float), wt_zp.to(torch.float), observer.ch_axis, observer.dtype) else: raise ValueError("Unexpected qscheme " + observer.qscheme) return qweight def _ntuple_from_first(n): """Converts the argument to a tuple of size n with the first element repeated.""" def parse(x): while isinstance(x, collections.abc.Sequence): if len(x) == n: break x = x[0] return tuple(repeat(x, n)) return parse def hide_packed_params_repr(self, params): # We don't want to show `PackedParams` children, hence custom # `__repr__`. This is the same as nn.Module.__repr__, except the check # for the `params module`. extra_lines = [] extra_repr = self.extra_repr() # empty string will be split into list [''] if extra_repr: extra_lines = extra_repr.split('\n') child_lines = [] for key, module in self._modules.items(): if isinstance(module, params): continue mod_str = repr(module) mod_str = _addindent(mod_str, 2) child_lines.append('(' + key + '): ' + mod_str) lines = extra_lines + child_lines main_str = self._get_name() + '(' if lines: # simple one-liner info, which most builtin Modules will use if len(extra_lines) == 1 and not child_lines: main_str += extra_lines[0] else: main_str += '\n ' + '\n '.join(lines) + '\n' main_str += ')' return main_str _pair_from_first = _ntuple_from_first(2)
pytorch-master
torch/nn/quantized/modules/utils.py
import torch import torch.nn.quantized.functional __all__ = ['Dropout'] class Dropout(torch.nn.Dropout): r"""This is the quantized equivalent of :class:`~torch.nn.Dropout`. And this is a placeholder to enable models where fp32 tensors had dropout to work with quantized tensors in train and eval mode. Args: p: probability of an element to be zeroed inplace: can optionally do the operation in-place. Default: ``False`` """ def forward(self, input): return input def _get_name(self): return 'QuantizedDropout' @classmethod def from_float(cls, mod): return cls(mod.p, mod.inplace) @classmethod def from_reference(cls, mod, scale, zero_point): return cls(mod.p, mod.inplace)
pytorch-master
torch/nn/quantized/modules/dropout.py
# coding=utf-8 r"""Quantized convolution modules.""" from typing import Optional, List, TypeVar import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.intrinsic as nni import torch.nn.intrinsic.qat as nniqat from torch._ops import ops from torch.nn.common_types import _size_1_t from torch.nn.modules.utils import _single, _pair, _triple from torch.nn.quantized.modules.utils import _quantize_weight, WeightedQuantizedModule from torch.nn.utils import fuse_conv_bn_weights __all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d'] _SUPPORTED_PADDING = { 'zeros', 'reflect' } def _reverse_repeat_padding(padding: List[int]) -> List[int]: _reversed_padding_repeated_twice: List[int] = [] N = len(padding) for idx in range(N): for _ in range(2): _reversed_padding_repeated_twice.append(padding[N - idx - 1]) return _reversed_padding_repeated_twice class _ConvNd(WeightedQuantizedModule): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): # All subclasses have this signature - See PR #49702s raise NotImplementedError def _init(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode='zeros', device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(_ConvNd, self).__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.transposed = transposed self.output_padding = output_padding self.groups = groups if padding_mode not in _SUPPORTED_PADDING: raise ValueError("'padding_mode' {} is not supported by quantized convolution".format(padding_mode)) self.padding_mode = padding_mode # Initialize as NCHW. set_weight will internally transpose to NHWC. if self.transposed: weight_shape = [in_channels, out_channels // self.groups] else: weight_shape = [out_channels, in_channels // self.groups] qweight = torch._empty_affine_quantized( weight_shape + list(kernel_size), scale=1, zero_point=0, dtype=torch.qint8, **{k: v for k, v in factory_kwargs.items() if k != 'dtype'}) bias_float = ( torch.zeros(out_channels, dtype=torch.float, **{k: v for k, v in factory_kwargs.items() if k != 'dtype'}) if bias else None) self.set_weight_bias(qweight, bias_float) self.scale = 1.0 self.zero_point = 0 def set_weight_bias(self, qweight, bias_float): raise NotImplementedError def bias(self): raise NotImplementedError def _weight_bias(self): raise NotImplementedError def extra_repr(self): s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' ', stride={stride}, scale={scale}, zero_point={zero_point}') if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.dilation != (1,) * len(self.dilation): s += ', dilation={dilation}' if self.output_padding != (0,) * len(self.output_padding): s += ', output_padding={output_padding}' if self.groups != 1: s += ', groups={groups}' if self.bias() is None: s += ', bias=False' return s.format(**self.__dict__) # ===== Serialization methods ===== # The special consideration here is that we have to unpack the weights into # their regular QTensor form for serialization. Packed weights should not # live outside the process in which they were created, rather they should be # derived from the QTensor weight. # self # |--- weight : Tensor # |--- bias : Tensor # # TODO: maybe change to this when https://github.com/pytorch/pytorch/pull/32958 is landed # self # |--- _packed_params : Conv2dPackedParamsBase or Conv3dPackedParamsBase def _save_to_state_dict(self, destination, prefix, keep_vars): super(_ConvNd, self)._save_to_state_dict(destination, prefix, keep_vars) (w, b) = self._weight_bias() destination[prefix + 'weight'] = w destination[prefix + 'bias'] = b destination[prefix + 'scale'] = torch.tensor(self.scale) destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) @torch.jit.export def __getstate__(self): (w, b) = self._weight_bias() return ( self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding, self.dilation, self.transposed, self.output_padding, self.groups, self.padding_mode, w, b, self.scale, self.zero_point, self.training ) # ===== Deserialization methods ===== # Counterpart to the serialization methods, we must pack the serialized # QTensor weight into its packed format for use by the FBGEMM ops. def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.set_weight_bias( state_dict[prefix + 'weight'], state_dict[prefix + 'bias']) state_dict.pop(prefix + 'weight') state_dict.pop(prefix + 'bias') self.scale = float(state_dict[prefix + 'scale']) state_dict.pop(prefix + 'scale') self.zero_point = int(state_dict[prefix + 'zero_point']) state_dict.pop(prefix + 'zero_point') super(_ConvNd, self)._load_from_state_dict( state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) @torch.jit.export def __setstate__(self, state): self.in_channels = state[0] self.out_channels = state[1] self.kernel_size = state[2] self.stride = state[3] self.padding = state[4] self.dilation = state[5] self.transposed = state[6] self.output_padding = state[7] self.groups = state[8] self.padding_mode = state[9] self.set_weight_bias(state[10], state[11]) self.scale = state[12] self.zero_point = state[13] self.training = state[14] def __deepcopy__(self, memo): new_instance = type(self).__new__(type(self)) torch.nn.Module.__init__(new_instance) state = self.__getstate__() new_instance.__setstate__(state) return new_instance def __copy__(self): return self.__deepcopy__({}) @classmethod def get_qconv(cls, mod, activation_post_process, weight_post_process=None): r"""Creates a qconv object and returns it. """ if weight_post_process is None: weight_post_process = mod.qconfig.weight() weight_post_process(mod.weight) assert weight_post_process.dtype == torch.qint8, \ 'Weight observer must have a dtype of qint8' qweight = _quantize_weight(mod.weight.float(), weight_post_process) # the __init__ call used is the one from derived classes and not the one from _ConvNd qconv = cls(mod.in_channels, mod.out_channels, mod.kernel_size, mod.stride, mod.padding, mod.dilation, mod.groups, mod.bias is not None, mod.padding_mode) qconv.set_weight_bias(qweight, mod.bias) if activation_post_process is None or activation_post_process.dtype == torch.float: return qconv # dynamic quantization doesn't need scale/zero_point else: act_scale, act_zp = activation_post_process.calculate_qparams() qconv.scale = float(act_scale) qconv.zero_point = int(act_zp) return qconv @staticmethod def from_float(cls, mod): if hasattr(mod, "weight_fake_quant"): # assert type(mod) == cls.__QAT_MODULE, " nnq." + cls.__name__ + \ # ".from_float only works for " + cls.__QAT_MODULE.__name__ if type(mod) == cls._NNIQAT_CONV_BN_MODULE: mod.weight, mod.bias = fuse_conv_bn_weights( mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var, mod.bn.eps, mod.bn.weight, mod.bn.bias) assert hasattr(mod, "activation_post_process"), \ "Input QAT module must have observer attached" weight_post_process = mod.weight_fake_quant activation_post_process = mod.activation_post_process else: assert type(mod) == cls._FLOAT_MODULE, \ " nnq." + cls.__name__ + ".from_float only works for " + \ cls._FLOAT_MODULE.__name__ + " but got:" + str(type(mod)) assert hasattr(mod, "qconfig"), \ "Input float module must have qconfig defined." activation_post_process = None if not hasattr( mod, "activation_post_process") else mod.activation_post_process if type(mod) == cls._NNI_CONV_RELU_MODULE: mod = mod[0] weight_post_process = mod.qconfig.weight() return cls.get_qconv(mod, activation_post_process, weight_post_process) @classmethod def from_reference(cls, ref_qconv, output_scale, output_zero_point): r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module Args: ref_module (Module): a reference quantized module, either produced by torch.ao.quantization utilities or provided by the user output_scale (float): scale for output Tensor output_zero_point (int): zero point for output Tensor """ qconv = cls( ref_qconv.in_channels, ref_qconv.out_channels, ref_qconv.kernel_size, # type: ignore[arg-type] ref_qconv.stride, # type: ignore[arg-type] ref_qconv.padding, # type: ignore[arg-type] ref_qconv.dilation, # type: ignore[arg-type] ref_qconv.groups, ref_qconv.bias is not None, # type: ignore[arg-type] ref_qconv.padding_mode, device=ref_qconv.weight.device, dtype=ref_qconv.weight.dtype) qweight = ref_qconv.get_quantized_weight() qconv.set_weight_bias(qweight, ref_qconv.bias) qconv.scale = float(output_scale) qconv.zero_point = int(output_zero_point) return qconv class Conv1d(_ConvNd): r"""Applies a 1D convolution over a quantized input signal composed of several quantized input planes. For details on input arguments, parameters, and implementation see :class:`~torch.nn.Conv1d`. .. note:: Only `zeros` is supported for the :attr:`padding_mode` argument. .. note:: Only `torch.quint8` is supported for the input data type. Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.Conv1d` for other attributes. Examples:: >>> m = nn.quantized.Conv1d(16, 33, 3, stride=2) >>> input = torch.randn(20, 16, 100) >>> # quantize input to quint8 >>> # xdoctest: +SKIP >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) """ _FLOAT_MODULE = nn.Conv1d _NNIQAT_CONV_BN_MODULE = nniqat.ConvBn1d _NNI_CONV_RELU_MODULE = nni.ConvReLU1d def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_1_t, stride: _size_1_t = 1, padding: _size_1_t = 0, dilation: _size_1_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _single(kernel_size) stride = _single(stride) padding = padding if isinstance(padding, str) else _single(padding) dilation = _single(dilation) # Subclasses of _ConvNd needs to call _init rather than __init__. See # discussion on PR #49702 super(Conv1d, self)._init( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _single(0), groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'QuantizedConv1d' def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: if self.padding_mode == 'zeros': self._packed_params = torch.ops.quantized.conv1d_prepack( w, b, self.stride, self.padding, self.dilation, self.groups) else: self._packed_params = torch.ops.quantized.conv1d_prepack( w, b, self.stride, _pair(0), self.dilation, self.groups) def _weight_bias(self): w, b = torch.ops.quantized.conv1d_unpack(self._packed_params) return w, b def weight(self): return self._weight_bias()[0] def bias(self): return self._weight_bias()[1] def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 3: raise ValueError("Input shape must be `(N, C, L)`!") if self.padding_mode != 'zeros': # Padding in Conv1d is stored as (p, p), need to get (p,) _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1]) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return ops.quantized.conv1d(input, self._packed_params, self.scale, self.zero_point) @classmethod def from_float(cls, mod): r"""Creates a quantized module from a float module or qparams_dict. Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by the user """ return _ConvNd.from_float(cls, mod) class Conv2d(_ConvNd): r"""Applies a 2D convolution over a quantized input signal composed of several quantized input planes. For details on input arguments, parameters, and implementation see :class:`~torch.nn.Conv2d`. .. note:: Only `zeros` is supported for the :attr:`padding_mode` argument. .. note:: Only `torch.quint8` is supported for the input data type. Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.Conv2d` for other attributes. Examples:: >>> # With square kernels and equal stride >>> m = nn.quantized.Conv2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.quantized.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> # non-square kernels and unequal stride and with padding and dilation >>> m = nn.quantized.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) >>> input = torch.randn(20, 16, 50, 100) >>> # quantize input to quint8 >>> # xdoctest: +SKIP >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) """ _FLOAT_MODULE = nn.Conv2d _NNIQAT_CONV_BN_MODULE = nniqat.ConvBn2d _NNI_CONV_RELU_MODULE = nni.ConvReLU2d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) # Subclasses of _ConvNd need to call _init rather than __init__. See # discussion on PR #49702 super(Conv2d, self)._init( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'QuantizedConv2d' def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: if self.padding_mode == 'zeros': self._packed_params = torch.ops.quantized.conv2d_prepack( w, b, self.stride, self.padding, self.dilation, self.groups) else: self._packed_params = torch.ops.quantized.conv2d_prepack( w, b, self.stride, _pair(0), self.dilation, self.groups) def _weight_bias(self): return self._packed_params.unpack() def weight(self): return self._weight_bias()[0] def bias(self): return self._weight_bias()[1] def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") if self.padding_mode != 'zeros': _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return ops.quantized.conv2d( input, self._packed_params, self.scale, self.zero_point) @classmethod def from_float(cls, mod): r"""Creates a quantized module from a float module or qparams_dict. Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by the user """ return _ConvNd.from_float(cls, mod) class Conv3d(_ConvNd): r"""Applies a 3D convolution over a quantized input signal composed of several quantized input planes. For details on input arguments, parameters, and implementation see :class:`~torch.nn.Conv3d`. .. note:: Only `zeros` is supported for the :attr:`padding_mode` argument. .. note:: Only `torch.quint8` is supported for the input data type. Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.Conv3d` for other attributes. Examples:: >>> # With square kernels and equal stride >>> m = nn.quantized.Conv3d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2)) >>> # non-square kernels and unequal stride and with padding and dilation >>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2), dilation=(1, 2, 2)) >>> input = torch.randn(20, 16, 56, 56, 56) >>> # quantize input to quint8 >>> # xdoctest: +SKIP >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) """ _FLOAT_MODULE = nn.Conv3d _NNIQAT_CONV_BN_MODULE = nniqat.ConvBn3d _NNI_CONV_RELU_MODULE = nni.ConvReLU3d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): assert padding_mode != 'reflect', "Conv3d does not support reflection padding" factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) # Subclasses of _ConvNd need to call _init rather than __init__. See # discussion on PR #49702 super(Conv3d, self)._init( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _triple(0), groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'QuantizedConv3d' def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: if self.padding_mode == 'zeros': self._packed_params = torch.ops.quantized.conv3d_prepack( w, b, self.stride, self.padding, self.dilation, self.groups) else: self._packed_params = torch.ops.quantized.conv3d_prepack( w, b, self.stride, _triple(0), self.dilation, self.groups) def _weight_bias(self): return self._packed_params.unpack() def weight(self): return self._weight_bias()[0] def bias(self): return self._weight_bias()[1] def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 5: raise ValueError("Input shape must be `(N, C, D, H, W)`!") if self.padding_mode != 'zeros': _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return ops.quantized.conv3d( input, self._packed_params, self.scale, self.zero_point) @classmethod def from_float(cls, mod): r"""Creates a quantized module from a float module or qparams_dict. Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by the user """ return _ConvNd.from_float(cls, mod) # === Transposed Convolutions === MOD = TypeVar('MOD', bound=nn.modules.conv._ConvNd) class _ConvTransposeNd(_ConvNd): _FLOAT_MODULE = MOD def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode, device=None, dtype=None): if padding_mode != 'zeros': raise ValueError('Only "zeros" padding mode is supported for {}'.format(self.__class__.__name__)) factory_kwargs = {'device': device, 'dtype': dtype} # Subclasses of _ConvNd need to call _init rather than __init__. See # discussion on PR #49702 super(_ConvTransposeNd, self)._init( in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode, **factory_kwargs) def _input_padding(self, kernel_size: List[int], dilation: List[int], padding: List[int]) -> List[int]: res = torch.jit.annotate(List[int], []) for kdx in range(len(kernel_size)): pad = (dilation[kdx] * (kernel_size[kdx] - 1) - padding[kdx]) res.append(pad) return res @classmethod def from_float(cls, mod): r"""Creates a quantized module from a float module or qparams_dict. Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by the user """ # derived classes override cls._FLOAT_MODULE attribute msg = ' nnq.' + cls.__name__ + '.from_float only works for ' + \ cls._FLOAT_MODULE.__name__ # type: ignore[attr-defined] assert type(mod) == cls._FLOAT_MODULE, msg assert hasattr(mod, 'qconfig'), \ 'Input float module must have qconfig defined.' weight_post_process = mod.qconfig.weight() weight_post_process(mod.weight) assert weight_post_process.dtype == torch.qint8, \ 'Weight observer must have a dtype of qint8' qweight = _quantize_weight(mod.weight.float(), weight_post_process) # the __init__ call used is the one from derived classes and not the one from _ConvTransposeNd qconv = cls(mod.in_channels, mod.out_channels, mod.kernel_size, # type: ignore[call-arg] mod.stride, mod.padding, mod.output_padding, mod.groups, mod.bias is not None, mod.dilation, mod.padding_mode) qconv.set_weight_bias(qweight, mod.bias) if not hasattr(mod, "activation_post_process") or mod.activation_post_process.dtype == torch.float: return qconv # dynamic quantization doesn't need scale/zero_point else: act_scale, act_zp = mod.activation_post_process.calculate_qparams() qconv.scale = float(act_scale) qconv.zero_point = int(act_zp) return qconv @staticmethod def from_reference(cls, ref_qconvt, output_scale, output_zero_point): r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module Args: ref_module (Module): a reference quantized module, either produced by torch.ao.quantization utilities or provided by the user output_scale (float): scale for output Tensor output_zero_point (int): zero point for output Tensor """ qconv = cls( ref_qconvt.in_channels, ref_qconvt.out_channels, ref_qconvt.kernel_size, # type: ignore[arg-type] ref_qconvt.stride, # type: ignore[arg-type] ref_qconvt.padding, # type: ignore[arg-type] ref_qconvt.output_padding, # type: ignore[arg-type] ref_qconvt.groups, ref_qconvt.bias is not None, # type: ignore[arg-type] ref_qconvt.dilation, # type: ignore[arg-type] ref_qconvt.padding_mode, device=ref_qconvt.weight.device, dtype=ref_qconvt.weight.dtype) qweight = ref_qconvt.get_quantized_weight() qconv.set_weight_bias(qweight, ref_qconvt.bias) qconv.scale = float(output_scale) qconv.zero_point = int(output_zero_point) return qconv class ConvTranspose1d(_ConvTransposeNd): r"""Applies a 1D transposed convolution operator over an input image composed of several input planes. For details on input arguments, parameters, and implementation see :class:`~torch.nn.ConvTranspose1d`. .. note:: Currently only the QNNPACK engine is implemented. Please, set the `torch.backends.quantized.engine = 'qnnpack'` For special notes, please, see :class:`~torch.nn.quantized.Conv1d` Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.ConvTranspose2d` for other attributes. Examples:: >>> torch.backends.quantized.engine = 'qnnpack' >>> # With square kernels and equal stride >>> # xdoctest: +SKIP >>> m = nnq.ConvTranspose1d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nnq.ConvTranspose1d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = torch.randn(20, 16, 50) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) >>> # exact output size can be also specified as an argument >>> input = torch.randn(1, 16, 12) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> downsample = nnq.Conv1d(16, 16, 3, stride=2, padding=1) >>> upsample = nnq.ConvTranspose1d(16, 16, 3, stride=2, padding=1) >>> h = downsample(q_input) >>> h.size() torch.Size([1, 16, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12]) """ _FLOAT_MODULE = nn.ConvTranspose1d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _single(kernel_size) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) output_padding = _single(output_padding) super(ConvTranspose1d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, True, output_padding, groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'QuantizedConvTranpose1d' def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: self._packed_params = torch.ops.quantized.conv_transpose1d_prepack( w, b, self.stride, self.padding, self.output_padding, self.dilation, self.groups) def _weight_bias(self): w, b = torch.ops.quantized.conv_transpose1d_unpack(self._packed_params) return w, b def weight(self): (w, _) = self._weight_bias() return w def bias(self): (_, b) = self._weight_bias() return b def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 3: raise ValueError("Input shape must be `(N, C, L)`!") return torch.ops.quantized.conv_transpose1d( input, self._packed_params, self.scale, self.zero_point) @classmethod def from_reference(cls, ref_qconvt, output_scale, output_zero_point): return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point) class ConvTranspose2d(_ConvTransposeNd): r"""Applies a 2D transposed convolution operator over an input image composed of several input planes. For details on input arguments, parameters, and implementation see :class:`~torch.nn.ConvTranspose2d`. For special notes, please, see :class:`~torch.nn.quantized.Conv2d` Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.ConvTranspose2d` for other attributes. Examples:: >>> # QNNPACK or FBGEMM as backend >>> torch.backends.quantized.engine = 'qnnpack' >>> # With square kernels and equal stride >>> # xdoctest: +SKIP >>> m = nnq.ConvTranspose2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nnq.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = torch.randn(20, 16, 50, 100) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) >>> # exact output size can be also specified as an argument >>> input = torch.randn(1, 16, 12, 12) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> downsample = nnq.Conv2d(16, 16, 3, stride=2, padding=1) >>> upsample = nnq.ConvTranspose2d(16, 16, 3, stride=2, padding=1) >>> h = downsample(q_input) >>> h.size() torch.Size([1, 16, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12]) """ _FLOAT_MODULE = nn.ConvTranspose2d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) output_padding = _pair(output_padding) super(ConvTranspose2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, True, output_padding, groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'QuantizedConvTranpose2d' def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: self._packed_params = torch.ops.quantized.conv_transpose2d_prepack( w, b, self.stride, self.padding, self.output_padding, self.dilation, self.groups) def _weight_bias(self): w, b = torch.ops.quantized.conv2d_unpack(self._packed_params) return w, b def weight(self): (w, _) = self._weight_bias() return w def bias(self): (_, b) = self._weight_bias() return b def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") return ops.quantized.conv_transpose2d( input, self._packed_params, self.scale, self.zero_point) @classmethod def from_reference(cls, ref_qconvt, output_scale, output_zero_point): return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point) class ConvTranspose3d(_ConvTransposeNd): r"""Applies a 3D transposed convolution operator over an input image composed of several input planes. For details on input arguments, parameters, and implementation see :class:`~torch.nn.ConvTranspose3d`. .. note:: Currently only the FBGEMM engine is implemented. Please, set the `torch.backends.quantized.engine = 'fbgemm'` For special notes, please, see :class:`~torch.nn.quantized.Conv3d` Attributes: weight (Tensor): packed tensor derived from the learnable weight parameter. scale (Tensor): scalar for the output scale zero_point (Tensor): scalar for the output zero point See :class:`~torch.nn.ConvTranspose3d` for other attributes. Examples:: >>> torch.backends.quantized.engine = 'fbgemm' >>> # With cubic kernels and equal stride >>> # xdoctest: +SKIP >>> m = nnq.ConvTranspose3d(16, 33, 3, stride=2) >>> # non-cubic kernels and unequal stride and with padding >>> m = nnq.ConvTranspose3d(16, 33, (3, 3, 5), stride=(2, 1, 1), padding=(4, 2, 2)) >>> input = torch.randn(20, 16, 50, 100, 100) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) >>> # exact output size can be also specified as an argument >>> input = torch.randn(1, 16, 12, 12, 12) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> downsample = nnq.Conv3d(16, 16, 3, stride=2, padding=1) >>> upsample = nnq.ConvTranspose3d(16, 16, 3, stride=2, padding=1) >>> h = downsample(q_input) >>> h.size() torch.Size([1, 16, 6, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12, 12]) """ _FLOAT_MODULE = nn.ConvTranspose3d def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) output_padding = _triple(output_padding) super(ConvTranspose3d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, True, output_padding, groups, bias, padding_mode, **factory_kwargs) def _get_name(self): return 'QuantizedConvTranpose3d' def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: self._packed_params = torch.ops.quantized.conv_transpose3d_prepack( w, b, self.stride, self.padding, self.output_padding, self.dilation, self.groups) def _weight_bias(self): w, b = torch.ops.quantized.conv3d_unpack(self._packed_params) return w, b def weight(self): (w, _) = self._weight_bias() return w def bias(self): (_, b) = self._weight_bias() return b def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 5: raise ValueError("Input shape must be `(N, C, T, H, W)`!") return ops.quantized.conv_transpose3d( input, self._packed_params, self.scale, self.zero_point) @classmethod def from_reference(cls, ref_qconvt, output_scale, output_zero_point): return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point)
pytorch-master
torch/nn/quantized/modules/conv.py
import torch import torch.nn.quantized.functional __all__ = ['LayerNorm', 'GroupNorm', 'InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d'] class LayerNorm(torch.nn.LayerNorm): r"""This is the quantized version of :class:`~torch.nn.LayerNorm`. Additional args: * **scale** - quantization scale of the output, type: double. * **zero_point** - quantization zero point of the output, type: long. """ def __init__(self, normalized_shape, weight, bias, scale, zero_point, eps=1e-5, elementwise_affine=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(LayerNorm, self).__init__( normalized_shape, eps=eps, elementwise_affine=elementwise_affine, **factory_kwargs) self.weight = weight self.bias = bias self.register_buffer('scale', torch.tensor(scale, **factory_kwargs)) self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs)) def forward(self, input): return torch.ops.quantized.layer_norm( input, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps, output_scale=self.scale, output_zero_point=self.zero_point) def _get_name(self): return 'QuantizedLayerNorm' @classmethod def from_float(cls, mod): scale, zero_point = mod.activation_post_process.calculate_qparams() new_mod = cls( mod.normalized_shape, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.elementwise_affine) return new_mod @classmethod def from_reference(cls, mod, scale, zero_point): return cls( mod.normalized_shape, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.elementwise_affine) class GroupNorm(torch.nn.GroupNorm): r"""This is the quantized version of :class:`~torch.nn.GroupNorm`. Additional args: * **scale** - quantization scale of the output, type: double. * **zero_point** - quantization zero point of the output, type: long. """ __constants__ = ['num_groups', 'num_channels', 'eps', 'affine'] def __init__(self, num_groups, num_channels, weight, bias, scale, zero_point, eps=1e-5, affine=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(GroupNorm, self).__init__(num_groups, num_channels, eps, affine, **factory_kwargs) self.weight = weight self.bias = bias self.register_buffer('scale', torch.tensor(scale, **factory_kwargs)) self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs)) def forward(self, input): return torch.ops.quantized.group_norm( input, self.num_groups, self.weight, self.bias, self.eps, self.scale, self.zero_point) def _get_name(self): return 'QuantizedGroupNorm' @classmethod def from_float(cls, mod): scale, zero_point = mod.activation_post_process.calculate_qparams() new_mod = cls( mod.num_groups, mod.num_channels, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.affine) return new_mod class InstanceNorm1d(torch.nn.InstanceNorm1d): r"""This is the quantized version of :class:`~torch.nn.InstanceNorm1d`. Additional args: * **scale** - quantization scale of the output, type: double. * **zero_point** - quantization zero point of the output, type: long. """ def __init__(self, num_features, weight, bias, scale, zero_point, eps=1e-5, momentum=0.1, affine=False, track_running_stats=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(InstanceNorm1d, self).__init__( num_features, eps, momentum, affine, track_running_stats, **factory_kwargs) self.weight = weight self.bias = bias self.register_buffer('scale', torch.tensor(scale, **factory_kwargs)) self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs)) def forward(self, input): return torch.ops.quantized.instance_norm( input, self.weight, self.bias, self.eps, self.scale, self.zero_point) def _get_name(self): return 'QuantizedInstanceNorm1d' @classmethod def from_float(cls, mod): scale, zero_point = mod.activation_post_process.calculate_qparams() new_mod = cls( mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.affine) return new_mod @classmethod def from_reference(cls, mod, scale, zero_point): return cls( mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.affine) class InstanceNorm2d(torch.nn.InstanceNorm2d): r"""This is the quantized version of :class:`~torch.nn.InstanceNorm2d`. Additional args: * **scale** - quantization scale of the output, type: double. * **zero_point** - quantization zero point of the output, type: long. """ def __init__(self, num_features, weight, bias, scale, zero_point, eps=1e-5, momentum=0.1, affine=False, track_running_stats=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(InstanceNorm2d, self).__init__( num_features, eps, momentum, affine, track_running_stats, **factory_kwargs) self.weight = weight self.bias = bias self.register_buffer('scale', torch.tensor(scale, **factory_kwargs)) self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs)) def forward(self, input): return torch.ops.quantized.instance_norm( input, self.weight, self.bias, self.eps, self.scale, self.zero_point) def _get_name(self): return 'QuantizedInstanceNorm2d' @classmethod def from_float(cls, mod): scale, zero_point = mod.activation_post_process.calculate_qparams() new_mod = cls( mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.affine) return new_mod @classmethod def from_reference(cls, mod, scale, zero_point): return cls( mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.affine) class InstanceNorm3d(torch.nn.InstanceNorm3d): r"""This is the quantized version of :class:`~torch.nn.InstanceNorm3d`. Additional args: * **scale** - quantization scale of the output, type: double. * **zero_point** - quantization zero point of the output, type: long. """ def __init__(self, num_features, weight, bias, scale, zero_point, eps=1e-5, momentum=0.1, affine=False, track_running_stats=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(InstanceNorm3d, self).__init__( num_features, eps, momentum, affine, track_running_stats, **factory_kwargs) self.weight = weight self.bias = bias self.register_buffer('scale', torch.tensor(scale, **factory_kwargs)) self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs)) def forward(self, input): return torch.ops.quantized.instance_norm( input, self.weight, self.bias, self.eps, self.scale, self.zero_point) def _get_name(self): return 'QuantizedInstanceNorm3d' @classmethod def from_float(cls, mod): scale, zero_point = mod.activation_post_process.calculate_qparams() new_mod = cls( mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.affine) return new_mod @classmethod def from_reference(cls, mod, scale, zero_point): return cls( mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point), mod.eps, mod.affine)
pytorch-master
torch/nn/quantized/modules/normalization.py
import torch class LSTM(torch.nn.quantizable.LSTM): r"""A quantized long short-term memory (LSTM). For the description and the argument types, please, refer to :class:`~torch.nn.LSTM` Attributes: layers : instances of the `_LSTMLayer` .. note:: To access the weights and biases, you need to access them per layer. See examples in :class:`~torch.nn.quantizable.LSTM` Examples:: >>> # xdoctest: +SKIP >>> custom_module_config = { ... 'float_to_observed_custom_module_class': { ... nn.LSTM: nn.quantizable.LSTM, ... }, ... 'observed_to_quantized_custom_module_class': { ... nn.quantizable.LSTM: nn.quantized.LSTM, ... } ... } >>> tq.prepare(model, prepare_custom_module_class=custom_module_config) >>> tq.convert(model, convert_custom_module_class=custom_module_config) """ _FLOAT_MODULE = torch.nn.quantizable.LSTM def _get_name(self): return 'QuantizedLSTM' @classmethod def from_float(cls, *args, **kwargs): # The whole flow is float -> observed -> quantized # This class does observed -> quantized only raise NotImplementedError("It looks like you are trying to convert a " "non-observed LSTM module. Please, see " "the examples on quantizable LSTMs.") @classmethod def from_observed(cls, other): assert type(other) == cls._FLOAT_MODULE converted = torch.ao.quantization.convert(other, inplace=False, remove_qconfig=True) converted.__class__ = cls return converted
pytorch-master
torch/nn/quantized/modules/rnn.py
import torch import torch.nn as nn from torch import Tensor # noqa: F401 from torch._jit_internal import Optional, List # noqa: F401 from torch.nn.quantized.modules.utils import hide_packed_params_repr from torch.nn.quantized.modules.utils import _quantize_weight __all__ = ['EmbeddingPackedParams', 'Embedding', 'EmbeddingBag'] class EmbeddingPackedParams(torch.nn.Module): _version = 1 def __init__(self, num_embeddings, embedding_dim, dtype=torch.quint8): super(EmbeddingPackedParams, self).__init__() self.dtype = dtype if self.dtype in [torch.quint8, torch.quint4x2]: scales = torch.ones(num_embeddings, dtype=torch.float) zero_points = torch.zeros(num_embeddings, dtype=torch.float) wq = torch._empty_per_channel_affine_quantized([num_embeddings, embedding_dim], scales=scales, zero_points=zero_points, axis=0, dtype=self.dtype) self.set_weight(wq) else: raise NotImplementedError(f'Unsupported dtype on quantized embedding! Supports quint8 and quint4x2. Got dtype: {dtype}') @torch.jit.export def set_weight(self, weight: torch.Tensor) -> None: if self.dtype in [torch.quint8, torch.quint4x2]: self._packed_weight = torch.ops.quantized.embedding_bag_prepack(weight) else: raise NotImplementedError('Unsupported dtype for quantized embedding prepack! Supports quint8 and quint4x2.') @torch.jit.export def _weight(self): if self.dtype in [torch.quint8, torch.quint4x2]: return torch.ops.quantized.embedding_bag_unpack(self._packed_weight) else: raise NotImplementedError('Unsupported dtype for quantized embedding unpack! Supports quint8 and quint4x2.') def forward(self, x): return x # Version 1 # self # |--- _packed_weight : Tensor representing weight of EmbeddingPackedParamsBase # |--- dtype : torch.dtype def _save_to_state_dict(self, destination, prefix, keep_vars): super(EmbeddingPackedParams, self)._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'dtype'] = self.dtype destination[prefix + '_packed_weight'] = self._weight() def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.dtype = state_dict[prefix + 'dtype'] state_dict.pop(prefix + 'dtype') weight = state_dict[prefix + '_packed_weight'] state_dict.pop(prefix + '_packed_weight') self.set_weight(weight) super(EmbeddingPackedParams, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) def __repr__(self): return self._weight().__repr__() class Embedding(torch.nn.Module): r""" A quantized Embedding module with quantized packed weights as inputs. We adopt the same interface as `torch.nn.Embedding`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Embedding for documentation. Similar to :class:`~torch.nn.Embedding`, attributes will be randomly initialized at module creation time and will be overwritten later Attributes: weight (Tensor): the non-learnable quantized weights of the module of shape :math:`(\text{num\_embeddings}, \text{embedding\_dim})`. Examples:: >>> m = nn.quantized.Embedding(num_embeddings=10, embedding_dim=12) >>> indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8]) >>> output = m(indices) >>> print(output.size()) torch.Size([9, 12]) """ _version = 1 def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, dtype=torch.quint8) -> None: super(Embedding, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.dtype = dtype if _weight is None: scales = torch.ones(num_embeddings, dtype=torch.float) zero_points = torch.zeros(num_embeddings, dtype=torch.float) qweight = torch._empty_per_channel_affine_quantized([num_embeddings, embedding_dim], scales=scales, zero_points=zero_points, axis=0, dtype=torch.quint8) else: assert list(_weight.shape) == [num_embeddings, embedding_dim], \ 'Shape of weight does not match num_embeddings and embedding_dim' qweight = _weight self._packed_params = EmbeddingPackedParams(num_embeddings, embedding_dim, dtype) self._packed_params.set_weight(qweight) def forward(self, indices: Tensor) -> Tensor: if self.dtype == torch.quint4x2: return torch.ops.quantized.embedding_4bit(self._packed_params._packed_weight, indices) else: return torch.ops.quantized.embedding_byte(self._packed_params._packed_weight, indices) def _get_name(self): return 'QuantizedEmbedding' def __repr__(self): return hide_packed_params_repr(self, EmbeddingPackedParams) def extra_repr(self): extra_repr_str = 'num_embeddings={}, embedding_dim={}, dtype={}, qscheme={}'.format( self.num_embeddings, self.embedding_dim, self._packed_params.dtype, self.weight().qscheme() ) return extra_repr_str def set_weight(self, w: torch.Tensor) -> None: self._packed_params.set_weight(w) def weight(self): return self._packed_params._weight() @classmethod def from_float(cls, mod): r"""Create a quantized embedding module from a float module Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by user """ if hasattr(mod, 'weight_fake_quant'): assert type(mod) == nn.qat.Embedding, 'nnq.' + cls.__name__ + '.from_float ' + \ 'with fake quant only works for ' + nn.qat.Embedding.__name__ weight_observer = mod.weight_fake_quant activation_post_process = mod.activation_post_process else: assert type(mod) == nn.Embedding, 'nnq.' + cls.__name__ + '.from_float only works for ' + \ nn.Embedding.__name__ assert hasattr(mod, 'qconfig'), 'Embedding input float module must have qconfig defined' from torch.ao.quantization import float_qparams_weight_only_qconfig if mod.qconfig is not None and mod.qconfig.weight is not None: # type: ignore[union-attr] weight_observer = mod.qconfig.weight() # type: ignore[union-attr, operator] else: weight_observer = float_qparams_weight_only_qconfig.weight() dtype = weight_observer.dtype is_float_qparams_qconfig = weight_observer.qscheme == torch.per_channel_affine_float_qparams assert is_float_qparams_qconfig, \ 'Embedding quantization is only supported with float_qparams_weight_only_qconfig.' assert dtype == torch.quint8 or dtype == torch.quint4x2, \ f'The only supported dtype for nnq.Embedding is torch.quint8 and torch.quint4x2, got {dtype}' # Run the observer to calculate qparams. weight_observer(mod.weight) qweight = _quantize_weight(mod.weight.float(), weight_observer) # Create quantized Embedding module and pass in the quantized weight qembedding = Embedding(mod.num_embeddings, mod.embedding_dim) qembedding.set_weight(qweight) return qembedding @classmethod def from_reference(cls, ref_embedding): qembedding = cls( ref_embedding.num_embeddings, ref_embedding.embedding_dim, ref_embedding.padding_idx, ref_embedding.max_norm, ref_embedding.norm_type, ref_embedding.scale_grad_by_freq, ref_embedding.sparse, ref_embedding.get_quantized_weight(), ref_embedding.weight_dtype, ) return qembedding class EmbeddingBag(Embedding): r""" A quantized EmbeddingBag module with quantized packed weights as inputs. We adopt the same interface as `torch.nn.EmbeddingBag`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.EmbeddingBag for documentation. Similar to :class:`~torch.nn.EmbeddingBag`, attributes will be randomly initialized at module creation time and will be overwritten later Attributes: weight (Tensor): the non-learnable quantized weights of the module of shape :math:`(\text{num\_embeddings}, \text{embedding\_dim})`. Examples:: >>> m = nn.quantized.EmbeddingBag(num_embeddings=10, embedding_dim=12, include_last_offset=True, mode='sum') >>> indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8, 6, 6, 9, 1, 6, 8, 8, 3, 2, 3, 6, 3, 6, 5, 7, 0, 8, 4, 6, 5, 8, 2, 3]) >>> offsets = torch.tensor([0, 19, 20, 28, 28, 32]) >>> output = m(indices, offsets) >>> print(output.size()) torch.Size([5, 12]) """ _version = 1 def __init__(self, num_embeddings: int, embedding_dim: int, max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, mode: str = 'sum', sparse: bool = False, _weight: Optional[Tensor] = None, include_last_offset: bool = False, dtype=torch.quint8) -> None: super(EmbeddingBag, self).__init__(num_embeddings, embedding_dim, _weight=_weight, dtype=dtype) self.mode = mode self.pruned_weights = False self.include_last_offset = include_last_offset self.dtype = dtype def forward(self, indices: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None, compressed_indices_mapping: Optional[Tensor] = None) -> Tensor: if self.dtype == torch.quint4x2: return torch.ops.quantized.embedding_bag_4bit(self._packed_params._packed_weight, indices, offsets, False, 0, self.pruned_weights, per_sample_weights, compressed_indices_mapping, self.include_last_offset) else: return torch.ops.quantized.embedding_bag_byte(self._packed_params._packed_weight, indices, offsets, False, 0, self.pruned_weights, per_sample_weights, compressed_indices_mapping, self.include_last_offset) def _get_name(self): return 'QuantizedEmbeddingBag' @classmethod def from_float(cls, mod): r"""Create a quantized embedding_bag module from a float module Args: mod (Module): a float module, either produced by torch.ao.quantization utilities or provided by user """ if hasattr(mod, 'weight_fake_quant'): weight_observer = mod.weight_fake_quant else: assert type(mod) == nn.EmbeddingBag, 'nnq.' + cls.__name__ + '.from_float only works for ' + \ nn.EmbeddingBag.__name__ assert hasattr(mod, 'qconfig'), 'EmbeddingBag input float module must have qconfig defined' from torch.ao.quantization.qconfig import float_qparams_weight_only_qconfig if mod.qconfig is not None and mod.qconfig.weight is not None: # type: ignore[union-attr] weight_observer = mod.qconfig.weight() # type: ignore[union-attr, operator] else: weight_observer = float_qparams_weight_only_qconfig.weight() dtype = weight_observer.dtype is_float_qparams_qconfig = weight_observer.qscheme == torch.per_channel_affine_float_qparams assert is_float_qparams_qconfig, \ 'EmbeddingBag quantization is only supported with float_qparams_weight_only_qconfig.' assert dtype == torch.quint8 or dtype == torch.quint4x2, \ f'The only supported dtype for nnq.EmbeddingBag is torch.quint8 and torch.quint4x2, got {dtype}' # Run the observer to calculate qparams. weight_observer(mod.weight) qweight = _quantize_weight(mod.weight.float(), weight_observer) # Create quantized EmbeddingBag module and pass in the quantized weight qembedding_bag = EmbeddingBag(mod.num_embeddings, mod.embedding_dim, dtype=dtype) qembedding_bag.set_weight(qweight) return qembedding_bag @classmethod def from_reference(cls, ref_embedding_bag): qembedding_bag = cls( ref_embedding_bag.num_embeddings, ref_embedding_bag.embedding_dim, ref_embedding_bag.max_norm, ref_embedding_bag.norm_type, ref_embedding_bag.scale_grad_by_freq, ref_embedding_bag.mode, ref_embedding_bag.sparse, ref_embedding_bag.get_quantized_weight(), ref_embedding_bag.include_last_offset, ref_embedding_bag.weight_dtype, ) return qembedding_bag
pytorch-master
torch/nn/quantized/modules/embedding_ops.py
# this is for historical pickle deserilaization, it is not used otherwise def _get_thnn_function_backend(): pass
pytorch-master
torch/nn/backends/thnn.py
pytorch-master
torch/nn/backends/__init__.py
""" Spectral Normalization from https://arxiv.org/abs/1802.05957 """ import torch from torch.nn.functional import normalize from typing import Any, Optional, TypeVar from ..modules import Module __all__ = ['SpectralNorm', 'SpectralNormLoadStateDictPreHook', 'SpectralNormStateDictHook', 'spectral_norm', 'remove_spectral_norm'] class SpectralNorm: # Invariant before and after each forward call: # u = normalize(W @ v) # NB: At initialization, this invariant is not enforced _version: int = 1 # At version 1: # made `W` not a buffer, # added `v` as a buffer, and # made eval mode use `W = u @ W_orig @ v` rather than the stored `W`. name: str dim: int n_power_iterations: int eps: float def __init__(self, name: str = 'weight', n_power_iterations: int = 1, dim: int = 0, eps: float = 1e-12) -> None: self.name = name self.dim = dim if n_power_iterations <= 0: raise ValueError('Expected n_power_iterations to be positive, but ' 'got n_power_iterations={}'.format(n_power_iterations)) self.n_power_iterations = n_power_iterations self.eps = eps def reshape_weight_to_matrix(self, weight: torch.Tensor) -> torch.Tensor: weight_mat = weight if self.dim != 0: # permute dim to front weight_mat = weight_mat.permute(self.dim, *[d for d in range(weight_mat.dim()) if d != self.dim]) height = weight_mat.size(0) return weight_mat.reshape(height, -1) def compute_weight(self, module: Module, do_power_iteration: bool) -> torch.Tensor: # NB: If `do_power_iteration` is set, the `u` and `v` vectors are # updated in power iteration **in-place**. This is very important # because in `DataParallel` forward, the vectors (being buffers) are # broadcast from the parallelized module to each module replica, # which is a new module object created on the fly. And each replica # runs its own spectral norm power iteration. So simply assigning # the updated vectors to the module this function runs on will cause # the update to be lost forever. And the next time the parallelized # module is replicated, the same randomly initialized vectors are # broadcast and used! # # Therefore, to make the change propagate back, we rely on two # important behaviors (also enforced via tests): # 1. `DataParallel` doesn't clone storage if the broadcast tensor # is already on correct device; and it makes sure that the # parallelized module is already on `device[0]`. # 2. If the out tensor in `out=` kwarg has correct shape, it will # just fill in the values. # Therefore, since the same power iteration is performed on all # devices, simply updating the tensors in-place will make sure that # the module replica on `device[0]` will update the _u vector on the # parallized module (by shared storage). # # However, after we update `u` and `v` in-place, we need to **clone** # them before using them to normalize the weight. This is to support # backproping through two forward passes, e.g., the common pattern in # GAN training: loss = D(real) - D(fake). Otherwise, engine will # complain that variables needed to do backward for the first forward # (i.e., the `u` and `v` vectors) are changed in the second forward. weight = getattr(module, self.name + '_orig') u = getattr(module, self.name + '_u') v = getattr(module, self.name + '_v') weight_mat = self.reshape_weight_to_matrix(weight) if do_power_iteration: with torch.no_grad(): for _ in range(self.n_power_iterations): # Spectral norm of weight equals to `u^T W v`, where `u` and `v` # are the first left and right singular vectors. # This power iteration produces approximations of `u` and `v`. v = normalize(torch.mv(weight_mat.t(), u), dim=0, eps=self.eps, out=v) u = normalize(torch.mv(weight_mat, v), dim=0, eps=self.eps, out=u) if self.n_power_iterations > 0: # See above on why we need to clone u = u.clone(memory_format=torch.contiguous_format) v = v.clone(memory_format=torch.contiguous_format) sigma = torch.dot(u, torch.mv(weight_mat, v)) weight = weight / sigma return weight def remove(self, module: Module) -> None: with torch.no_grad(): weight = self.compute_weight(module, do_power_iteration=False) delattr(module, self.name) delattr(module, self.name + '_u') delattr(module, self.name + '_v') delattr(module, self.name + '_orig') module.register_parameter(self.name, torch.nn.Parameter(weight.detach())) def __call__(self, module: Module, inputs: Any) -> None: setattr(module, self.name, self.compute_weight(module, do_power_iteration=module.training)) def _solve_v_and_rescale(self, weight_mat, u, target_sigma): # Tries to returns a vector `v` s.t. `u = normalize(W @ v)` # (the invariant at top of this class) and `u @ W @ v = sigma`. # This uses pinverse in case W^T W is not invertible. v = torch.linalg.multi_dot([weight_mat.t().mm(weight_mat).pinverse(), weight_mat.t(), u.unsqueeze(1)]).squeeze(1) return v.mul_(target_sigma / torch.dot(u, torch.mv(weight_mat, v))) @staticmethod def apply(module: Module, name: str, n_power_iterations: int, dim: int, eps: float) -> 'SpectralNorm': for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, SpectralNorm) and hook.name == name: raise RuntimeError("Cannot register two spectral_norm hooks on " "the same parameter {}".format(name)) fn = SpectralNorm(name, n_power_iterations, dim, eps) weight = module._parameters[name] if weight is None: raise ValueError(f'`SpectralNorm` cannot be applied as parameter `{name}` is None') if isinstance(weight, torch.nn.parameter.UninitializedParameter): raise ValueError( 'The module passed to `SpectralNorm` can\'t have uninitialized parameters. ' 'Make sure to run the dummy forward before applying spectral normalization') with torch.no_grad(): weight_mat = fn.reshape_weight_to_matrix(weight) h, w = weight_mat.size() # randomly initialize `u` and `v` u = normalize(weight.new_empty(h).normal_(0, 1), dim=0, eps=fn.eps) v = normalize(weight.new_empty(w).normal_(0, 1), dim=0, eps=fn.eps) delattr(module, fn.name) module.register_parameter(fn.name + "_orig", weight) # We still need to assign weight back as fn.name because all sorts of # things may assume that it exists, e.g., when initializing weights. # However, we can't directly assign as it could be an nn.Parameter and # gets added as a parameter. Instead, we register weight.data as a plain # attribute. setattr(module, fn.name, weight.data) module.register_buffer(fn.name + "_u", u) module.register_buffer(fn.name + "_v", v) module.register_forward_pre_hook(fn) module._register_state_dict_hook(SpectralNormStateDictHook(fn)) module._register_load_state_dict_pre_hook(SpectralNormLoadStateDictPreHook(fn)) return fn # This is a top level class because Py2 pickle doesn't like inner class nor an # instancemethod. class SpectralNormLoadStateDictPreHook: # See docstring of SpectralNorm._version on the changes to spectral_norm. def __init__(self, fn) -> None: self.fn = fn # For state_dict with version None, (assuming that it has gone through at # least one training forward), we have # # u = normalize(W_orig @ v) # W = W_orig / sigma, where sigma = u @ W_orig @ v # # To compute `v`, we solve `W_orig @ x = u`, and let # v = x / (u @ W_orig @ x) * (W / W_orig). def __call__(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None: fn = self.fn version = local_metadata.get('spectral_norm', {}).get(fn.name + '.version', None) if version is None or version < 1: weight_key = prefix + fn.name if version is None and all(weight_key + s in state_dict for s in ('_orig', '_u', '_v')) and \ weight_key not in state_dict: # Detect if it is the updated state dict and just missing metadata. # This could happen if the users are crafting a state dict themselves, # so we just pretend that this is the newest. return has_missing_keys = False for suffix in ('_orig', '', '_u'): key = weight_key + suffix if key not in state_dict: has_missing_keys = True if strict: missing_keys.append(key) if has_missing_keys: return with torch.no_grad(): weight_orig = state_dict[weight_key + '_orig'] weight = state_dict.pop(weight_key) sigma = (weight_orig / weight).mean() weight_mat = fn.reshape_weight_to_matrix(weight_orig) u = state_dict[weight_key + '_u'] v = fn._solve_v_and_rescale(weight_mat, u, sigma) state_dict[weight_key + '_v'] = v # This is a top level class because Py2 pickle doesn't like inner class nor an # instancemethod. class SpectralNormStateDictHook: # See docstring of SpectralNorm._version on the changes to spectral_norm. def __init__(self, fn) -> None: self.fn = fn def __call__(self, module, state_dict, prefix, local_metadata) -> None: if 'spectral_norm' not in local_metadata: local_metadata['spectral_norm'] = {} key = self.fn.name + '.version' if key in local_metadata['spectral_norm']: raise RuntimeError("Unexpected key in metadata['spectral_norm']: {}".format(key)) local_metadata['spectral_norm'][key] = self.fn._version T_module = TypeVar('T_module', bound=Module) def spectral_norm(module: T_module, name: str = 'weight', n_power_iterations: int = 1, eps: float = 1e-12, dim: Optional[int] = None) -> T_module: r"""Applies spectral normalization to a parameter in the given module. .. math:: \mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})}, \sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2} Spectral normalization stabilizes the training of discriminators (critics) in Generative Adversarial Networks (GANs) by rescaling the weight tensor with spectral norm :math:`\sigma` of the weight matrix calculated using power iteration method. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. This is implemented via a hook that calculates spectral norm and rescales weight before every :meth:`~Module.forward` call. See `Spectral Normalization for Generative Adversarial Networks`_ . .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957 Args: module (nn.Module): containing module name (str, optional): name of weight parameter n_power_iterations (int, optional): number of power iterations to calculate spectral norm eps (float, optional): epsilon for numerical stability in calculating norms dim (int, optional): dimension corresponding to number of outputs, the default is ``0``, except for modules that are instances of ConvTranspose{1,2,3}d, when it is ``1`` Returns: The original module with the spectral norm hook .. note:: This function has been reimplemented as :func:`torch.nn.utils.parametrizations.spectral_norm` using the new parametrization functionality in :func:`torch.nn.utils.parametrize.register_parametrization`. Please use the newer version. This function will be deprecated in a future version of PyTorch. Example:: >>> m = spectral_norm(nn.Linear(20, 40)) >>> m Linear(in_features=20, out_features=40, bias=True) >>> m.weight_u.size() torch.Size([40]) """ if dim is None: if isinstance(module, (torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d)): dim = 1 else: dim = 0 SpectralNorm.apply(module, name, n_power_iterations, dim, eps) return module def remove_spectral_norm(module: T_module, name: str = 'weight') -> T_module: r"""Removes the spectral normalization reparameterization from a module. Args: module (Module): containing module name (str, optional): name of weight parameter Example: >>> m = spectral_norm(nn.Linear(40, 10)) >>> remove_spectral_norm(m) """ for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, SpectralNorm) and hook.name == name: hook.remove(module) del module._forward_pre_hooks[k] break else: raise ValueError("spectral_norm of '{}' not found in {}".format( name, module)) for k, hook in module._state_dict_hooks.items(): if isinstance(hook, SpectralNormStateDictHook) and hook.fn.name == name: del module._state_dict_hooks[k] break for k, hook in module._load_state_dict_pre_hooks.items(): if isinstance(hook, SpectralNormLoadStateDictPreHook) and hook.fn.name == name: del module._load_state_dict_pre_hooks[k] break return module
pytorch-master
torch/nn/utils/spectral_norm.py
import torch from typing import Iterable, Optional def parameters_to_vector(parameters: Iterable[torch.Tensor]) -> torch.Tensor: r"""Convert parameters to one vector Args: parameters (Iterable[Tensor]): an iterator of Tensors that are the parameters of a model. Returns: The parameters represented by a single vector """ # Flag for the device where the parameter is located param_device = None vec = [] for param in parameters: # Ensure the parameters are located in the same device param_device = _check_param_device(param, param_device) vec.append(param.view(-1)) return torch.cat(vec) def vector_to_parameters(vec: torch.Tensor, parameters: Iterable[torch.Tensor]) -> None: r"""Convert one vector to the parameters Args: vec (Tensor): a single vector represents the parameters of a model. parameters (Iterable[Tensor]): an iterator of Tensors that are the parameters of a model. """ # Ensure vec of type Tensor if not isinstance(vec, torch.Tensor): raise TypeError('expected torch.Tensor, but got: {}' .format(torch.typename(vec))) # Flag for the device where the parameter is located param_device = None # Pointer for slicing the vector for each parameter pointer = 0 for param in parameters: # Ensure the parameters are located in the same device param_device = _check_param_device(param, param_device) # The length of the parameter num_param = param.numel() # Slice the vector, reshape it, and replace the old data of the parameter param.data = vec[pointer:pointer + num_param].view_as(param).data # Increment the pointer pointer += num_param def _check_param_device(param: torch.Tensor, old_param_device: Optional[int]) -> int: r"""This helper function is to check if the parameters are located in the same device. Currently, the conversion between model parameters and single vector form is not supported for multiple allocations, e.g. parameters in different GPUs, or mixture of CPU/GPU. Args: param ([Tensor]): a Tensor of a parameter of a model old_param_device (int): the device where the first parameter of a model is allocated. Returns: old_param_device (int): report device for the first time """ # Meet the first parameter if old_param_device is None: old_param_device = param.get_device() if param.is_cuda else -1 else: warn = False if param.is_cuda: # Check if in same GPU warn = (param.get_device() != old_param_device) else: # Check if in CPU warn = (old_param_device != -1) if warn: raise TypeError('Found two parameters on different devices, ' 'this is currently not supported.') return old_param_device
pytorch-master
torch/nn/utils/convert_parameters.py
import contextlib from typing import Any, Callable, Dict, Iterator, List, Tuple import torch from torch import Tensor __all__ = ["functional_call"] # We avoid typing module here because module attributes are declared as Union[Parameter, Tensor] by default # and using other types causes mypy errors def _change_class(module, params_and_buffers) -> None: cls = module.__class__ attr_to_path : Dict[str, str] = module._attr_to_path def _getattribute(self, name: str) -> Any: if name in attr_to_path: return params_and_buffers[attr_to_path[name]] return cls.__getattribute__(self, name) def _setattr(self, name: str, value: Any) -> None: if name in attr_to_path: params_and_buffers[attr_to_path[name]] = value else: return cls.__setattr__(self, name, value) param_cls = type( f"StatelessReplacer{cls.__name__}", (cls,), { "__getattribute__": _getattribute, "__setattr__": _setattr, }, ) module.__class__ = param_cls module._orig_class = cls def _create_swap_params(params_and_buffers): def _swap_parameters(module, tensor_name: str, full_path: str, tensor: Tensor) -> None: # Changes the module class to get a new __getattr__ dunder method # that looks for the reparametrized tensor if hasattr(module, "_attr_to_path"): module._attr_to_path[tensor_name] = full_path else: module._attr_to_path = {} module._attr_to_path[tensor_name] = full_path _change_class(module, params_and_buffers) return _swap_parameters def _remove_swap(module, name: str, full_path: str) -> None: if hasattr(module, "_orig_class"): module.__class__ = module._orig_class delattr(module, "_orig_class") delattr(module, "_attr_to_path") @contextlib.contextmanager def _reparametrize_module( module: 'torch.nn.Module', parameters_and_buffers: Dict[str, Tensor], ) -> Iterator[None]: for name, tensor in parameters_and_buffers.items(): _apply_func_submodules( _create_swap_params(parameters_and_buffers), module, name.split("."), name, (tensor,)) try: yield finally: for name in parameters_and_buffers: _apply_func_submodules( _remove_swap, module, name.split("."), name, ()) def _apply_func_submodules( func: Callable[..., None], module: 'torch.nn.Module', path: List[str], full_path: str, args: Tuple, ): if len(path) == 1: func(module, path[0], full_path, *args) else: _apply_func_submodules(func, getattr(module, path[0]), path[1:], full_path, args) def functional_call( module: 'torch.nn.Module', parameters_and_buffers: Dict[str, Tensor], args: Tuple, kwargs : Dict[str, Any] = None, ): r"""Performs a functional call on the module by replacing the module parameters and buffers with the provided ones. .. note:: If the module has active parametrizations, passing a value in the :attr:`parameters_and_buffers` argument with the name set to the regular parameter name will completely disable the parametrization. If you want to apply the parametrization function to the value passed please set the key as ``{submodule_name}.parametrizations.{parameter_name}.original``. .. note:: If the module performs in-place operations on parameters/buffers, these will be reflected in the `parameters_and_buffers` input. Example:: >>> a = {'foo': torch.zeros(())} >>> # xdoctest: +SKIP >>> mod = Foo() # does self.foo = self.foo + 1 >>> print(mod.foo) # tensor(0.) >>> functional_call(mod, a, torch.ones(())) >>> print(mod.foo) # tensor(0.) >>> print(a['foo']) # tensor(1.) Args: module (torch.nn.Module): the module to call parameters_and_buffers (dict of str and Tensor): the parameters that will be used in the module call. args (tuple): arguments to be passed to the module call kwargs (dict): keyword arguments to be passed to the module call Returns: Any: the result of calling ``module``. """ # TODO allow kwargs such as unsafe and others for parametrization if ( torch.jit.is_tracing() or torch.jit.is_scripting() or isinstance(module, ( torch.jit.RecursiveScriptModule, torch.jit.ScriptModule, torch.jit.ScriptFunction) ) ): raise RuntimeError("The stateless API can't be used with Jitted modules") if kwargs is None: kwargs = {} with _reparametrize_module(module, parameters_and_buffers): if isinstance(args, tuple): out = module(*args, **kwargs) else: out = module(args, **kwargs) return out
pytorch-master
torch/nn/utils/stateless.py
import torch from torch.nn.modules.container import ModuleList, ModuleDict, Module from torch.nn.parameter import Parameter from torch import Tensor import collections import copyreg from copy import deepcopy from contextlib import contextmanager from typing import Union, Optional, Dict, Tuple, Sequence __all__ = ['cached', 'ParametrizationList', 'register_parametrization', 'is_parametrized', 'remove_parametrizations', 'type_before_parametrizations', 'transfer_parametrizations_and_params'] _cache_enabled = 0 _cache: Dict[Tuple[int, str], Optional[Tensor]] = {} @contextmanager def cached(): r"""Context manager that enables the caching system within parametrizations registered with :func:`register_parametrization`. The value of the parametrized objects is computed and cached the first time they are required when this context manager is active. The cached values are discarded when leaving the context manager. This is useful when using a parametrized parameter more than once in the forward pass. An example of this is when parametrizing the recurrent kernel of an RNN or when sharing weights. The simplest way to activate the cache is by wrapping the forward pass of the neural network .. code-block:: python import torch.nn.utils.parametrize as P ... with P.cached(): output = model(inputs) in training and evaluation. One may also wrap the parts of the modules that use several times the parametrized tensors. For example, the loop of an RNN with a parametrized recurrent kernel: .. code-block:: python with P.cached(): for x in xs: out_rnn = self.rnn_cell(x, out_rnn) """ global _cache global _cache_enabled _cache_enabled += 1 try: yield finally: _cache_enabled -= 1 if not _cache_enabled: _cache = {} def _register_parameter_or_buffer(module, name, X): if isinstance(X, Parameter): module.register_parameter(name, X) else: module.register_buffer(name, X) class ParametrizationList(ModuleList): r"""A sequential container that holds and manages the ``original`` or ``original0``, ``original1``, ... parameters or buffers of a parametrized :class:`torch.nn.Module`. It is the type of ``module.parametrizations[tensor_name]`` when ``module[tensor_name]`` has been parametrized with :func:`register_parametrization`. If the first registered parmetrization has a ``right_inverse`` that returns one tensor or does not have a ``right_inverse`` (in which case we assume that ``right_inverse`` is the identity), it will hold the tensor under the name ``original``. If it has a ``right_inverse`` that returns more than one tensor, these will be registered as ``original0``, ``original1``, ... .. warning:: This class is used internally by :func:`register_parametrization`. It is documented here for completeness. It shall not be instantiated by the user. Args: modules (sequence): sequence of modules representing the parametrizations original (Parameter or Tensor): parameter or buffer that is parametrized unsafe (bool): a boolean flag that denotes whether the parametrization may change the dtype and shape of the tensor. Default: `False` Warning: the parametrization is not checked for consistency upon registration. Enable this flag at your own risk. """ original: Tensor unsafe: bool def __init__( self, modules: Sequence[Module], original: Union[Tensor, Parameter], unsafe: bool = False ) -> None: # We require this because we need to treat differently the first parametrization # This should never throw, unless this class is used from the outside if len(modules) == 0: raise ValueError("ParametrizationList requires one or more modules.") super().__init__(modules) self.unsafe = unsafe # In plain words: # module.weight must keep its dtype and shape. # Furthermore, if there is no right_inverse or the right_inverse returns a tensor, # this should be of the same dtype as the original tensor # # We check that the following invariants hold: # X = module.weight # Y = param.right_inverse(X) # assert isinstance(Y, Tensor) or # (isinstance(Y, collections.abc.Sequence) and all(isinstance(t, Tensor) for t in Y)) # Z = param(Y) if isisntance(Y, Tensor) else param(*Y) # # Consistency checks # assert X.dtype == Z.dtype and X.shape == Z.shape # # If it has one input, this allows to be able to use set_ to be able to # # move data to/from the original tensor without changing its id (which is what the # # optimiser uses to track parameters) # if isinstance(Y, Tensor) # assert X.dtype == Y.dtype # Below we use original = X, new = Y original_shape = original.shape original_dtype = original.dtype # Compute new with torch.no_grad(): new = original for module in reversed(self): # type: ignore[call-overload] if hasattr(module, "right_inverse"): try: new = module.right_inverse(new) except NotImplementedError: pass # else, or if it throws, we assume that right_inverse is the identity if not isinstance(new, Tensor) and not isinstance(new, collections.abc.Sequence): raise ValueError("'right_inverse' must return a Tensor or a Sequence of tensors (list, tuple...). " f"Got {type(new).__name__}") # Set the number of original tensors self.is_tensor = isinstance(new, Tensor) self.ntensors = 1 if self.is_tensor else len(new) # Register the tensor(s) if self.is_tensor: if original.dtype != new.dtype: raise ValueError( "When `right_inverse` outputs one tensor, it may not change the dtype.\n" f"original.dtype: {original.dtype}\n" f"right_inverse(original).dtype: {new.dtype}" ) # Set the original to original so that the user does not need to re-register the parameter # manually in the optimiser with torch.no_grad(): original.set_(new) # type: ignore[call-overload] _register_parameter_or_buffer(self, "original", original) else: for i, originali in enumerate(new): if not isinstance(originali, Tensor): raise ValueError("'right_inverse' must return a Tensor or a Sequence of tensors " "(list, tuple...). " f"Got element {i} of the sequence with type {type(originali).__name__}.") # If the original tensor was a Parameter that required grad, we expect the user to # add the new parameters to the optimizer after registering the parametrization # (this is documented) if isinstance(original, Parameter): originali = Parameter(originali) originali.requires_grad_(original.requires_grad) _register_parameter_or_buffer(self, f"original{i}", originali) if not self.unsafe: # Consistency checks: # Since f : A -> B, right_inverse : B -> A, Z and original should live in B # Z = forward(right_inverse(original)) Z = self() if not isinstance(Z, Tensor): raise ValueError( f"A parametrization must return a tensor. Got {type(Z).__name__}." ) if Z.dtype != original_dtype: raise ValueError( "Registering a parametrization may not change the dtype of the tensor, unless `unsafe` flag is enabled.\n" f"unparametrized dtype: {original_dtype}\n" f"parametrized dtype: {Z.dtype}" ) if Z.shape != original_shape: raise ValueError( "Registering a parametrization may not change the shape of the tensor, unless `unsafe` flag is enabled.\n" f"unparametrized shape: {original_shape}\n" f"parametrized shape: {Z.shape}" ) def right_inverse(self, value: Tensor) -> None: r"""Calls the methods ``right_inverse`` (see :func:`register_parametrization`) of the parametrizations in the inverse order they were registered in. Then, it stores the result in ``self.original`` if ``right_inverse`` outputs one tensor or in ``self.original0``, ``self.original1``, ... if it outputs several. Args: value (Tensor): Value to which initialize the module """ # All the exceptions in this function should almost never throw. # They could throw if, for example, right_inverse function returns a different # dtype when given a different input, which should most likely be caused by a # bug in the user's code with torch.no_grad(): # See https://github.com/pytorch/pytorch/issues/53103 for module in reversed(self): # type: ignore[call-overload] if hasattr(module, "right_inverse"): value = module.right_inverse(value) else: raise RuntimeError(f"parametrization {type(module).__name__} does not implement " "right_inverse.") if self.is_tensor: # These exceptions should only throw when a right_inverse function does not # return the same dtype for every input, which should most likely be caused by a bug if not isinstance(value, Tensor): raise ValueError( f"`right_inverse` should return a tensor. Got {type(value).__name__}" ) if value.dtype != self.original.dtype: raise ValueError( f"The tensor returned by `right_inverse` has dtype {value.dtype} " f"while `original` has dtype {self.original.dtype}" ) # We know that the result is going to have the same dtype self.original.set_(value) # type: ignore[call-overload] else: if not isinstance(value, collections.abc.Sequence): raise ValueError( "'right_inverse' must return a sequence of tensors. " f"Got {type(value).__name__}." ) if len(value) != self.ntensors: raise ValueError( "'right_inverse' must return a sequence of tensors of length " f"{self.ntensors}. Got a sequence of lenght {len(value)}." ) for i, tensor in enumerate(value): original_i = getattr(self, f"original{i}") if not isinstance(tensor, Tensor): raise ValueError( f"`right_inverse` must return a sequence of tensors. " f"Got element {i} of type {type(tensor).__name__}" ) if original_i.dtype != tensor.dtype: raise ValueError( f"Tensor {i} returned by `right_inverse` has dtype {tensor.dtype} " f"while `original{i}` has dtype {original_i.dtype}" ) original_i.set_(tensor) def forward(self) -> Tensor: if torch.jit.is_scripting(): raise RuntimeError('Parametrization is not working with scripting.') # Unpack the originals for the first parametrization if self.is_tensor: x = self[0](self.original) else: originals = (getattr(self, f"original{i}") for i in range(self.ntensors)) x = self[0](*originals) # It's not possible to call self[1:] here, so we have to be a bit more cryptic # Also we want to skip all non-integer keys curr_idx = 1 while hasattr(self, str(curr_idx)): x = self[curr_idx](x) curr_idx += 1 return x def _inject_new_class(module: Module) -> None: r"""Sets up a module to be parametrized. This works by substituting the class of the module by a class that extends it to be able to inject a property Args: module (nn.Module): module into which to inject the property """ cls = module.__class__ def default_deepcopy(self, memo): # Just emulate a standard deepcopy procedure when __deepcopy__ doesn't exist in the current class. obj = memo.get(id(self), None) if obj is not None: return obj replica = self.__new__(self.__class__) memo[id(self)] = replica replica.__dict__ = deepcopy(self.__dict__, memo) # Also save all slots if they exist. slots_to_save = copyreg._slotnames(self.__class__) # type: ignore[attr-defined] for slot in slots_to_save: if hasattr(self, slot): setattr(replica, slot, deepcopy(getattr(self, slot), memo)) return replica def getstate(self): raise RuntimeError( "Serialization of parametrized modules is only " "supported through state_dict(). See:\n" "https://pytorch.org/tutorials/beginner/saving_loading_models.html" "#saving-loading-a-general-checkpoint-for-inference-and-or-resuming-training" ) dct = {"__getstate__": getstate} # We don't allow serialization of parametrized modules but should still allow deepcopying. # Default 'deepcopy' function invokes __deepcopy__ method instead of __getstate__ when it exists. if not hasattr(cls, "__deepcopy__"): dct["__deepcopy__"] = default_deepcopy # type: ignore[assignment] param_cls = type( f"Parametrized{cls.__name__}", (cls,), dct, ) module.__class__ = param_cls def _inject_property(module: Module, tensor_name: str) -> None: r"""Injects a property into module[tensor_name]. It assumes that the class in the module has already been modified from its original one using _inject_new_class and that the tensor under :attr:`tensor_name` has already been moved out Args: module (nn.Module): module into which to inject the property tensor_name (str): name of the name of the property to create """ # We check the precondition. # This should never fire if register_parametrization is correctly implemented assert not hasattr(module, tensor_name) @torch.jit.unused def get_cached_parametrization(parametrization) -> Tensor: global _cache key = (id(module), tensor_name) tensor = _cache.get(key) if tensor is None: tensor = parametrization() _cache[key] = tensor return tensor def get_parametrized(self) -> Tensor: if torch.jit.is_scripting(): raise RuntimeError('Parametrization is not working with scripting.') parametrization = self.parametrizations[tensor_name] if _cache_enabled: if torch.jit.is_scripting(): # Scripting raise RuntimeError('Caching is not implemented for scripting. ' 'Either disable caching or avoid scripting.') elif torch._C._get_tracing_state() is not None: # Tracing raise RuntimeError('Cannot trace a model while caching parametrizations.') else: return get_cached_parametrization(parametrization) else: # If caching is not active, this function just evaluates the parametrization return parametrization() def set_original(self, value: Tensor) -> None: if torch.jit.is_scripting(): raise RuntimeError('Parametrization is not working with scripting.') self.parametrizations[tensor_name].right_inverse(value) setattr(module.__class__, tensor_name, property(get_parametrized, set_original)) def register_parametrization( module: Module, tensor_name: str, parametrization: Module, *, unsafe: bool = False, ) -> Module: r"""Adds a parametrization to a tensor in a module. Assume that ``tensor_name="weight"`` for simplicity. When accessing ``module.weight``, the module will return the parametrized version ``parametrization(module.weight)``. If the original tensor requires a gradient, the backward pass will differentiate through :attr:`parametrization`, and the optimizer will update the tensor accordingly. The first time that a module registers a parametrization, this function will add an attribute ``parametrizations`` to the module of type :class:`~ParametrizationList`. The list of parametrizations on the tensor ``weight`` will be accessible under ``module.parametrizations.weight``. The original tensor will be accessible under ``module.parametrizations.weight.original``. Parametrizations may be concatenated by registering several parametrizations on the same attribute. The training mode of a registered parametrization is updated on registration to match the training mode of the host module Parametrized parameters and buffers have an inbuilt caching system that can be activated using the context manager :func:`cached`. A :attr:`parametrization` may optionally implement a method with signature .. code-block:: python def right_inverse(self, X: Tensor) -> Union[Tensor, Sequence[Tensor]] This method is called on the unparametrized tensor when the first parametrization is registered to compute the initial value of the original tensor. If this method is not implemented, the original tensor will be just the unparametrized tensor. If all the parametrizations registered on a tensor implement `right_inverse` it is possible to initialize a parametrized tensor by assigning to it, as shown in the example below. It is possible for the first parametrization to depend on several inputs. This may be implemented returning a tuple of tensors from ``right_inverse`` (see the example implementation of a ``RankOne`` parametrization below). In this case, the unconstrained tensors are also located under ``module.parametrizations.weight`` with names ``original0``, ``original1``,... .. note:: If unsafe=False (default) both the forward and right_inverse methods will be called once to perform a number of consistency checks. If unsafe=True, then right_inverse will be called if the tensor is not parametrized, and nothing will be called otherwise. .. note:: In most situations, ``right_inverse`` will be a function such that ``forward(right_inverse(X)) == X`` (see `right inverse <https://en.wikipedia.org/wiki/Inverse_function#Right_inverses>`_). Sometimes, when the parametrization is not surjective, it may be reasonable to relax this. .. warning:: If a parametrization depends on several inputs, :func:`~register_parametrization` will register a number of new parameters. If such parametrization is registered after the optimizer is created, these new parameters will need to be added manually to the optimizer. See :meth:`torch.Optimizer.add_param_group`. Args: module (nn.Module): module on which to register the parametrization tensor_name (str): name of the parameter or buffer on which to register the parametrization parametrization (nn.Module): the parametrization to register Keyword args: unsafe (bool): a boolean flag that denotes whether the parametrization may change the dtype and shape of the tensor. Default: `False` Warning: the parametrization is not checked for consistency upon registration. Enable this flag at your own risk. Raises: ValueError: if the module does not have a parameter or a buffer named :attr:`tensor_name` Examples: >>> # xdoctest: +REQUIRES(--lapack) >>> import torch >>> import torch.nn as nn >>> import torch.nn.utils.parametrize as P >>> >>> class Symmetric(nn.Module): >>> def forward(self, X): >>> return X.triu() + X.triu(1).T # Return a symmetric matrix >>> >>> def right_inverse(self, A): >>> return A.triu() >>> >>> m = nn.Linear(5, 5) >>> P.register_parametrization(m, "weight", Symmetric()) >>> print(torch.allclose(m.weight, m.weight.T)) # m.weight is now symmetric True >>> A = torch.rand(5, 5) >>> A = A + A.T # A is now symmetric >>> m.weight = A # Initialize the weight to be the symmetric matrix A >>> print(torch.allclose(m.weight, A)) True >>> class RankOne(nn.Module): >>> def forward(self, x, y): >>> # Form a rank 1 matrix multiplying two vectors >>> return x.unsqueeze(-1) @ y.unsqueeze(-2) >>> >>> def right_inverse(self, Z): >>> # Project Z onto the rank 1 matrices >>> U, S, Vh = torch.linalg.svd(Z, full_matrices=False) >>> # Return rescaled singular vectors >>> s0_sqrt = S[0].sqrt().unsqueeze(-1) >>> return U[..., :, 0] * s0_sqrt, Vh[..., 0, :] * s0_sqrt >>> >>> linear_rank_one = P.register_parametrization(nn.Linear(4, 4), "weight", RankOne()) >>> print(torch.linalg.matrix_rank(linear_rank_one.weight).item()) 1 """ parametrization.train(module.training) if is_parametrized(module, tensor_name): # Correctness checks. # If A is the space of tensors with shape and dtype equal to module.weight # we check that parametrization.forward and parametrization.right_inverse are # functions from A to A if not unsafe: Y = getattr(module, tensor_name) X = parametrization(Y) if not isinstance(X, Tensor): raise ValueError( f"A parametrization must return a tensor. Got {type(X).__name__}." ) if X.dtype != Y.dtype: raise ValueError( "Registering a parametrization may not change the dtype of the tensor, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.dtype: {Y.dtype}\n" f"parametrization(module.{tensor_name}).dtype: {X.dtype}" ) if X.shape != Y.shape: raise ValueError( "Registering a parametrization may not change the shape of the tensor, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.shape: {Y.shape}\n" f"parametrization(module.{tensor_name}).shape: {X.shape}" ) if hasattr(parametrization, "right_inverse"): try: Z = parametrization.right_inverse(X) # type: ignore[operator] except NotImplementedError: pass else: if not isinstance(Z, Tensor): raise ValueError( f"parametrization.right_inverse must return a tensor. Got: {type(Z).__name__}" ) if Z.dtype != Y.dtype: raise ValueError( "The tensor returned by parametrization.right_inverse must have the same dtype " f"as module.{tensor_name}, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.dtype: {Y.dtype}\n" f"returned dtype: {Z.dtype}" ) if Z.shape != Y.shape: raise ValueError( "The tensor returned by parametrization.right_inverse must have the same shape " f"as module.{tensor_name}, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.shape: {Y.shape}\n" f"returned shape: {Z.shape}" ) # else right_inverse is assumed to be the identity # add the new parametrization to the parametrization list assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy module.parametrizations[tensor_name].append(parametrization) # If unsafe was True in previous parametrization, keep it enabled module.parametrizations[tensor_name].unsafe |= unsafe # type: ignore[index, union-attr] elif tensor_name in module._buffers or tensor_name in module._parameters: # Set the parametrization mechanism # Fetch the original buffer or parameter original = getattr(module, tensor_name) # We create this early to check for possible errors parametrizations = ParametrizationList([parametrization], original, unsafe=unsafe) # Delete the previous parameter or buffer delattr(module, tensor_name) # If this is the first parametrization registered on the module, # we prepare the module to inject the property if not is_parametrized(module): # Change the class _inject_new_class(module) # Inject a ``ModuleDict`` into the instance under module.parametrizations module.parametrizations = ModuleDict() # Add a property into the class _inject_property(module, tensor_name) # Add a ParametrizationList assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy module.parametrizations[tensor_name] = parametrizations else: raise ValueError( f"Module '{module}' does not have a parameter, a buffer, or a " f"parametrized element with name '{tensor_name}'" ) return module def is_parametrized(module: Module, tensor_name: Optional[str] = None) -> bool: r"""Returns ``True`` if module has an active parametrization. If the argument :attr:`tensor_name` is specified, returns ``True`` if ``module[tensor_name]`` is parametrized. Args: module (nn.Module): module to query name (str, optional): attribute in the module to query Default: ``None`` """ parametrizations = getattr(module, "parametrizations", None) if parametrizations is None or not isinstance(parametrizations, ModuleDict): return False if tensor_name is None: # Check that there is at least one parametrized buffer or Parameter return len(parametrizations) > 0 else: return tensor_name in parametrizations def remove_parametrizations( module: Module, tensor_name: str, leave_parametrized: bool = True ) -> Module: r"""Removes the parametrizations on a tensor in a module. - If ``leave_parametrized=True``, ``module[tensor_name]`` will be set to its current output. In this case, the parametrization shall not change the ``dtype`` of the tensor. - If ``leave_parametrized=False``, ``module[tensor_name]`` will be set to the unparametrised tensor in ``module.parametrizations[tensor_name].original``. This is only possible when the parametrization depends on just one tensor. Args: module (nn.Module): module from which remove the parametrization tensor_name (str): name of the parametrization to be removed leave_parametrized (bool, optional): leave the attribute :attr:`tensor_name` parametrized. Default: ``True`` Returns: Module: module Raises: ValueError: if ``module[tensor_name]`` is not parametrized ValueError: if ``leave_parametrized=False`` and the parametrization depends on several tensors """ if not is_parametrized(module, tensor_name): raise ValueError(f"Module {module} does not have a parametrization on {tensor_name}") # Fetch the original tensor assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy parametrizations = module.parametrizations[tensor_name] if parametrizations.is_tensor: original = parametrizations.original if leave_parametrized: with torch.no_grad(): t = getattr(module, tensor_name) # We know they have the same dtype because we have checked this when registering the # parametrizations. As such, we can use set_ # We do this so that the parameter does not to change the id() # This way the user does not need to update the optimizer with torch.no_grad(): if type(original) is torch.Tensor: original.set_(t) else: try: original.set_(t) except RuntimeError as e: # TODO: Fix this for tensor subclasses that are parameters: # RuntimeError: set_storage is not allowed on a Tensor created from .data or .detach(). raise RuntimeError("Calling remove_parametrizations() with leave_parametrized=True " "for a parameter that is an instance of a tensor subclass requires " "set_() to be implemented correctly for the tensor subclass. Either " "set leave_parametrized=False or provide a working implementation for " "set_() in the tensor subclass.") else: if leave_parametrized: # We cannot use no_grad because we need to know whether one or more # original tensors required grad t = getattr(module, tensor_name) # We'll have to trust the user to add it to the optimizer original = Parameter(t) if t.requires_grad else t else: raise ValueError("Cannot leave unparametrized (`leave_parametrized=False`) a tensor " "that is parametrized in terms of a sequence of tensors.") # Delete the property that manages the parametrization delattr(module.__class__, tensor_name) # Delete the ParametrizationList del module.parametrizations[tensor_name] # Restore the parameter / buffer into the main class _register_parameter_or_buffer(module, tensor_name, original) # Roll back the parametrized class if no other buffer or parameter # is currently parametrized in this class if not is_parametrized(module): delattr(module, "parametrizations") # Restore class orig_cls = module.__class__.__bases__[0] module.__class__ = orig_cls return module def type_before_parametrizations(module: Module) -> type: r"""Returns the module type before parametrizations were applied and if not, then it returns the module type. Args: module (nn.Module): module to get type of """ if is_parametrized(module): return module.__class__.__bases__[0] else: return type(module) def transfer_parametrizations_and_params( from_module: Module, to_module: Module, tensor_name: Optional[str] = None ) -> Module: r"""Transfers parametrizations and the parameters they parametrize from from_module to to_module. If tensor_name is specified, only transfers the specified parameter, otherwise transfers all parametrized parameters. If those parameters do not exist in to_module, it will create them. Does nothing if from_module is not parametrized. Args: from_module (nn.Module): module to transfer from to_module (nn.Module): module to transfer to tensor_name (str, optional): parameter to transfer Returns: Module: to_module """ if is_parametrized(from_module): assert isinstance(from_module.parametrizations, ModuleDict) # for mypy # get list of all params or the single param to transfer parameters_to_transfer: Union[list, ModuleDict] = ( from_module.parametrizations if tensor_name is None else [tensor_name] ) assert hasattr(parameters_to_transfer, "__iter__") # for mypy for parameter_name in parameters_to_transfer: # initialize the to-be-transfered param in to_module if it doesn't exist already if not hasattr(to_module, parameter_name): setattr( to_module, parameter_name, Parameter(getattr(from_module, parameter_name)), ) # apply the params's parametrizations to to_module for param_func in from_module.parametrizations[parameter_name]: register_parametrization(to_module, parameter_name, param_func) assert isinstance(to_module.parametrizations, ModuleDict) # for mypy # make values match, original values can be stored in either original or # original0, original1..., need to check both cases if hasattr(from_module.parametrizations[parameter_name], "original"): to_module.parametrizations[parameter_name].original = \ from_module.parametrizations[parameter_name].original else: num = 0 orig_num = "original" + str(num) # loop through each original# until all values have been set while hasattr(from_module.parametrizations[parameter_name], orig_num): setattr( to_module.parametrizations[parameter_name], orig_num, getattr(from_module.parametrizations[parameter_name], orig_num), ) num = num + 1 orig_num = "original" + str(num) return to_module
pytorch-master
torch/nn/utils/parametrize.py
import torch def convert_conv2d_weight_memory_format(module, memory_format): r"""Convert ``memory_format`` of ``nn.Conv2d.weight`` to ``memory_format`` The conversion recursively applies to nested ``nn.Module``, including ``module``. Note that it only changes the memory_format, but not the semantics of each dimensions. This function is used to facilitate the computation to adopt NHWC kernels, which provides considerable speed up for fp16 data on CUDA devices with compute capability >= 7.0 .. note:: Calling ``model.to(memory_format=torch.channels_last)`` is more aggressive than the utility function ``convert_conv2d_weight_memory_format``. Any layer with 4d weight will be affected by ``model.to``, which does not necessarily benefit from conversion to specified ``memory_format``. One place we are confident in is that NHWC(channels_last) conversion for convolution in cuDNN, As it is beneficial to run convolution in NHWC, even in cases where we have to apply permutation to input tensors. Hence our strategy here is to convert only the weight of convolution to channels_last. This ensures that; 1. Fast convolution kernels will be used, the benefit of which could outweigh overhead of permutation (if input is not in the same format) 2. No unnecessary permutations are applied on layers that do not benefit from memory_format conversion. The optimal case is that, layers between convolution layers are channels last compatible. Input tensor would be permuted to channels last when it encounters the first convolution layer and stay in that memory format. Hence following convolutions will not need to permute its input tensor. In case where a channels last incompatible layer is between convolution layers, we need to permute the input tensor back to contiguous format for that layer. The input tensor will go through the remaining layers in contiguous format and be permuted to channels last when it encounters another convolution layer. There's no point in propagating that permutation to an earlier layer, as most layers are quite agnostic to ``memory_format``. This claim might change when PyTorch supports fusion of permutation, as there might have been a better spot to fuse the permutation other than immediately before a convolution. Args: module (nn.Module): ``nn.Conv2d`` & ``nn.ConvTranspose2d`` or container ``nn.Module`` format: user specified ``memory_format``, e.g. ``torch.channels_last`` or ``torch.contiguous_format`` Returns: The original module with updated ``nn.Conv2d`` Example: >>> # xdoctest: +REQUIRES(env:CUBLAS_WORKSPACE_CONFIG) >>> input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float16, device="cuda") >>> model = nn.Sequential( >>> nn.Conv2d(8, 4, 3)).cuda().half() >>> # This is identical to: >>> # nn.utils.convert_conv2d_weight_memory_format(model, torch.channels_last) >>> model = nn.utils.convert_conv2d_weight_memory_format(model, torch.channels_last) >>> out = model(input) """ # TODO: expand this to `_ConvNd` when channels_last support is extended # beyond only 4d tensors. if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.ConvTranspose2d): weight_data = module.weight.detach().clone().contiguous(memory_format=memory_format) module.weight.data = weight_data.resize_(weight_data.size(), memory_format=memory_format) for child in module.children(): convert_conv2d_weight_memory_format(child, memory_format) return module
pytorch-master
torch/nn/utils/memory_format.py
import functools import torch from torch.nn.utils.stateless import functional_call from torch.nn.utils._expanded_weights.expanded_weights_impl import ExpandedWeight from torch.utils._pytree import tree_flatten # dependency on `functional_call` means that this can't be exposed in utils # without creating circular dependency def call_for_per_sample_grads(module, *, batch_size=None, loss_reduction="sum"): r""" call_for_per_sample_grads(module, batch_size=None, loss_reduction="sum") ``call_for_per_sample_grads`` returns a function that is invoked like the forward function of ``module`` and will produce the same result. Then, when backward is invoked, the parameters of ``module`` will have a ``grad_sample`` field populated with the per sample gradients instead of the regular gradients Args: module: The ``nn.Module`` to get per sample gradients with respect to. All trainable parameters will compute per sample gradients, located in a ``grad_sample`` field when ``backward`` is invoked batch_size: The batch size of the input. If None is passed, all tensor arguments in args and kwargs must have the same batch size, which is the size of the first dimension. Otherwise, it must be passed manually. Default: None loss_reduction: Indicates if the loss reduction (for aggregating the gradients) is a sum or a mean operation. If "mean", per sample gradients will be scaled by the batch size to offset the crossbatch interaction from running mean across a batch. Must be "mean" or "sum". Default: "sum" Examples:: >>> model = nn.Linear(4, 3) >>> batched_input = torch.randn(5, 4) # batch size of 5 >>> # xdoctest: +SKIP >>> res = call_for_per_sample_grads(model)(batched_input).sum() >>> res.backward() >>> assert model.weight.shape == (3, 4) >>> assert model.weight.grad_sample.shape == (5, 3, 4) >>> assert model.weight.grad == None >>> assert model.bias.shape == (3,) >>> assert model.bias.grad_sample.shape == (5, 3) >>> assert model.bias.grad == None An example using "mean" loss reduction. The grad_sample fields will be scaled by batch_size from what they would be if we ran the same code with loss_reduction="sum". This is because the mean at the end will scale all grad_outputs by 1 / batch_size from cross batch interaction. >>> model = nn.Linear(4, 3) >>> batched_input = torch.randn(5, 4) # batch size of 5 >>> res = call_for_per_sample_grads(model, 5, loss_reduction="mean")(batched_input).mean() >>> res.backward() Note:: Does not work with any `nn.RNN`, including `nn.GRU` or `nn.LSTM`. Please use custom rewrites that wrap an `nn.Linear` module. See Opacus for an example """ def maybe_build_expanded_weight(og_tensor, batch_size): if og_tensor.requires_grad: return ExpandedWeight(og_tensor, batch_size, loss_reduction) else: return og_tensor def compute_batch_size(*args, **kwargs): args_and_kwargs = tree_flatten(args)[0] + tree_flatten(kwargs)[0] batch_size = None for arg in args_and_kwargs: if not isinstance(arg, torch.Tensor): continue arg_batch_size = arg.shape[0] # we assume batch size is the first dim if batch_size is not None and batch_size != arg_batch_size: raise RuntimeError("When computing batch size, found at least one input with batch size " f"{batch_size} and one with batch size {arg_batch_size}. Please specify it " "explicitly using the batch size kwarg in call_for_per_sample_grads") batch_size = arg_batch_size if batch_size is None: raise RuntimeError("Unable to find a tensor in the passed args and kwargs. They may not be pytree-able " "and so ExpandedWeights cannot compute the batch size from the inputs. Please specify " "it explicitly") return batch_size if loss_reduction not in ["sum", "mean"]: raise RuntimeError(f"Expected loss_reduction argument to be sum or mean, got {loss_reduction}") if not isinstance(module, torch.nn.Module): raise RuntimeError(f"Module passed must be nn.Module, got {type(module).__name__}") if not (batch_size is None or isinstance(batch_size, int)): raise RuntimeError(f"Batch size passed must be None or an integer, got {type(batch_size).__name__}") if batch_size is not None and batch_size < 1: raise RuntimeError(f"Batch size must be positive, got {batch_size}") for weight in module.parameters(): if hasattr(weight, "grad_sample") and weight.grad_sample is not None: # type: ignore[attr-defined] raise RuntimeError("Current Expanded Weights accumulates the gradients, which will be incorrect for multiple " f"calls without clearing gradients. Please clear out the grad_sample parameter of {weight} or " "post an issue to pytorch/pytorch to prioritize correct behavior") @functools.wraps(module.forward) def wrapper(*args, **kwargs): wrapper_batch_size = batch_size if wrapper_batch_size is None: wrapper_batch_size = compute_batch_size(*args, **kwargs) params = {name: maybe_build_expanded_weight(value, wrapper_batch_size) for (name, value) in module.named_parameters()} return functional_call(module, params, args, kwargs) return wrapper
pytorch-master
torch/nn/utils/_per_sample_grad.py
from . import rnn from .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_ from .weight_norm import weight_norm, remove_weight_norm from .convert_parameters import parameters_to_vector, vector_to_parameters from .spectral_norm import spectral_norm, remove_spectral_norm from .fusion import fuse_conv_bn_eval, fuse_conv_bn_weights from .memory_format import convert_conv2d_weight_memory_format from . import parametrizations from .init import skip_init from . import stateless
pytorch-master
torch/nn/utils/__init__.py
r""" Weight Normalization from https://arxiv.org/abs/1602.07868 """ from torch.nn.parameter import Parameter, UninitializedParameter from torch import _weight_norm, norm_except_dim from typing import Any, TypeVar from ..modules import Module __all__ = ['WeightNorm', 'weight_norm', 'remove_weight_norm'] class WeightNorm(object): name: str dim: int def __init__(self, name: str, dim: int) -> None: if dim is None: dim = -1 self.name = name self.dim = dim # TODO Make return type more specific def compute_weight(self, module: Module) -> Any: g = getattr(module, self.name + '_g') v = getattr(module, self.name + '_v') return _weight_norm(v, g, self.dim) @staticmethod def apply(module, name: str, dim: int) -> 'WeightNorm': for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, WeightNorm) and hook.name == name: raise RuntimeError("Cannot register two weight_norm hooks on " "the same parameter {}".format(name)) if dim is None: dim = -1 fn = WeightNorm(name, dim) weight = getattr(module, name) if isinstance(weight, UninitializedParameter): raise ValueError( 'The module passed to `WeightNorm` can\'t have uninitialized parameters. ' 'Make sure to run the dummy forward before applying weight normalization') # remove w from parameter list del module._parameters[name] # add g and v as new parameters and express w as g/||v|| * v module.register_parameter(name + '_g', Parameter(norm_except_dim(weight, 2, dim).data)) module.register_parameter(name + '_v', Parameter(weight.data)) setattr(module, name, fn.compute_weight(module)) # recompute weight before every forward() module.register_forward_pre_hook(fn) return fn def remove(self, module: Module) -> None: weight = self.compute_weight(module) delattr(module, self.name) del module._parameters[self.name + '_g'] del module._parameters[self.name + '_v'] setattr(module, self.name, Parameter(weight.data)) def __call__(self, module: Module, inputs: Any) -> None: setattr(module, self.name, self.compute_weight(module)) T_module = TypeVar('T_module', bound=Module) def weight_norm(module: T_module, name: str = 'weight', dim: int = 0) -> T_module: r"""Applies weight normalization to a parameter in the given module. .. math:: \mathbf{w} = g \dfrac{\mathbf{v}}{\|\mathbf{v}\|} Weight normalization is a reparameterization that decouples the magnitude of a weight tensor from its direction. This replaces the parameter specified by :attr:`name` (e.g. ``'weight'``) with two parameters: one specifying the magnitude (e.g. ``'weight_g'``) and one specifying the direction (e.g. ``'weight_v'``). Weight normalization is implemented via a hook that recomputes the weight tensor from the magnitude and direction before every :meth:`~Module.forward` call. By default, with ``dim=0``, the norm is computed independently per output channel/plane. To compute a norm over the entire weight tensor, use ``dim=None``. See https://arxiv.org/abs/1602.07868 Args: module (Module): containing module name (str, optional): name of weight parameter dim (int, optional): dimension over which to compute the norm Returns: The original module with the weight norm hook Example:: >>> m = weight_norm(nn.Linear(20, 40), name='weight') >>> m Linear(in_features=20, out_features=40, bias=True) >>> m.weight_g.size() torch.Size([40, 1]) >>> m.weight_v.size() torch.Size([40, 20]) """ WeightNorm.apply(module, name, dim) return module def remove_weight_norm(module: T_module, name: str = 'weight') -> T_module: r"""Removes the weight normalization reparameterization from a module. Args: module (Module): containing module name (str, optional): name of weight parameter Example: >>> m = weight_norm(nn.Linear(20, 40)) >>> remove_weight_norm(m) """ for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, WeightNorm) and hook.name == name: hook.remove(module) del module._forward_pre_hooks[k] return module raise ValueError("weight_norm of '{}' not found in {}" .format(name, module))
pytorch-master
torch/nn/utils/weight_norm.py
# This file is never automatically imported within PyTorch so it is ok to # always warn here import warnings warnings.warn("The `torch.nn.utils._stateless` code is deprecated now that " "it is publicly available. Please use `torch.nn.utils.stateless " "instead.", DeprecationWarning) # Import * wouldn't work as most things are private and thus wouldn't be imported # here. from torch.nn.utils.stateless import functional_call # noqa: F401 from torch.nn.utils.stateless import _apply_func_submodules, _change_class # noqa: F401 # This one used to look public but should actually be private. This was fixed when making the module # public and is kept here for BC from torch.nn.utils.stateless import _reparametrize_module as reparametrize_module # noqa: F401
pytorch-master
torch/nn/utils/_stateless.py
import copy import torch def fuse_conv_bn_eval(conv, bn, transpose=False): assert(not (conv.training or bn.training)), "Fusion only for eval!" fused_conv = copy.deepcopy(conv) fused_conv.weight, fused_conv.bias = \ fuse_conv_bn_weights(fused_conv.weight, fused_conv.bias, bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias, transpose) return fused_conv def fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b, transpose=False): if conv_b is None: conv_b = torch.zeros_like(bn_rm) if bn_w is None: bn_w = torch.ones_like(bn_rm) if bn_b is None: bn_b = torch.zeros_like(bn_rm) bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps) if transpose: shape = [1, -1] + [1] * (len(conv_w.shape) - 2) else: shape = [-1, 1] + [1] * (len(conv_w.shape) - 2) conv_w = conv_w * (bn_w * bn_var_rsqrt).reshape(shape) conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b return torch.nn.Parameter(conv_w), torch.nn.Parameter(conv_b) def fuse_linear_bn_eval(linear, bn): assert(not (linear.training or bn.training)), "Fusion only for eval!" fused_linear = copy.deepcopy(linear) fused_linear.weight, fused_linear.bias = fuse_linear_bn_weights( fused_linear.weight, fused_linear.bias, bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias) return fused_linear def fuse_linear_bn_weights(linear_w, linear_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b): if linear_b is None: linear_b = torch.zeros_like(bn_rm) bn_scale = bn_w * torch.rsqrt(bn_rv + bn_eps) fused_w = linear_w * bn_scale.unsqueeze(-1) fused_b = (linear_b - bn_rm) * bn_scale + bn_b return torch.nn.Parameter(fused_w), torch.nn.Parameter(fused_b)
pytorch-master
torch/nn/utils/fusion.py
r""" Pruning methods """ import numbers from abc import ABC, abstractmethod from collections.abc import Iterable from typing import Tuple import torch class BasePruningMethod(ABC): r"""Abstract base class for creation of new pruning techniques. Provides a skeleton for customization requiring the overriding of methods such as :meth:`compute_mask` and :meth:`apply`. """ _tensor_name: str def __init__(self): pass def __call__(self, module, inputs): r"""Multiplies the mask (stored in ``module[name + '_mask']``) into the original tensor (stored in ``module[name + '_orig']``) and stores the result into ``module[name]`` by using :meth:`apply_mask`. Args: module (nn.Module): module containing the tensor to prune inputs: not used. """ setattr(module, self._tensor_name, self.apply_mask(module)) @abstractmethod def compute_mask(self, t, default_mask): r"""Computes and returns a mask for the input tensor ``t``. Starting from a base ``default_mask`` (which should be a mask of ones if the tensor has not been pruned yet), generate a random mask to apply on top of the ``default_mask`` according to the specific pruning method recipe. Args: t (torch.Tensor): tensor representing the importance scores of the parameter to prune. default_mask (torch.Tensor): Base mask from previous pruning iterations, that need to be respected after the new mask is applied. Same dims as ``t``. Returns: mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t`` """ pass def apply_mask(self, module): r"""Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor. Args: module (nn.Module): module containing the tensor to prune Returns: pruned_tensor (torch.Tensor): pruned version of the input tensor """ # to carry out the multiplication, the mask needs to have been computed, # so the pruning method must know what tensor it's operating on assert self._tensor_name is not None, "Module {} has to be pruned".format( module ) # this gets set in apply() mask = getattr(module, self._tensor_name + "_mask") orig = getattr(module, self._tensor_name + "_orig") pruned_tensor = mask.to(dtype=orig.dtype) * orig return pruned_tensor @classmethod def apply(cls, module, name, *args, importance_scores=None, **kwargs): r"""Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. args: arguments passed on to a subclass of :class:`BasePruningMethod` importance_scores (torch.Tensor): tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the parameter will be used in its place. kwargs: keyword arguments passed on to a subclass of a :class:`BasePruningMethod` """ def _get_composite_method(cls, module, name, *args, **kwargs): # Check if a pruning method has already been applied to # `module[name]`. If so, store that in `old_method`. old_method = None found = 0 # there should technically be only 1 hook with hook.name == name # assert this using `found` hooks_to_remove = [] for k, hook in module._forward_pre_hooks.items(): # if it exists, take existing thing, remove hook, then # go through normal thing if isinstance(hook, BasePruningMethod) and hook._tensor_name == name: old_method = hook hooks_to_remove.append(k) found += 1 assert ( found <= 1 ), "Avoid adding multiple pruning hooks to the\ same tensor {} of module {}. Use a PruningContainer.".format( name, module ) for k in hooks_to_remove: del module._forward_pre_hooks[k] # Apply the new pruning method, either from scratch or on top of # the previous one. method = cls(*args, **kwargs) # new pruning # Have the pruning method remember what tensor it's been applied to method._tensor_name = name # combine `methods` with `old_method`, if `old_method` exists if old_method is not None: # meaning that there was a hook # if the hook is already a pruning container, just add the # new pruning method to the container if isinstance(old_method, PruningContainer): old_method.add_pruning_method(method) method = old_method # rename old_method --> method # if the hook is simply a single pruning method, create a # container, add the old pruning method and the new one elif isinstance(old_method, BasePruningMethod): container = PruningContainer(old_method) # Have the pruning method remember the name of its tensor # setattr(container, '_tensor_name', name) container.add_pruning_method(method) method = container # rename container --> method return method method = _get_composite_method(cls, module, name, *args, **kwargs) # at this point we have no forward_pre_hooks but we could have an # active reparametrization of the tensor if another pruning method # had been applied (in which case `method` would be a PruningContainer # and not a simple pruning method). # Pruning is to be applied to the module's tensor named `name`, # starting from the state it is found in prior to this iteration of # pruning. The pruning mask is calculated based on importances scores. orig = getattr(module, name) if importance_scores is not None: assert ( importance_scores.shape == orig.shape ), "importance_scores should have the same shape as parameter \ {} of {}".format( name, module ) else: importance_scores = orig # If this is the first time pruning is applied, take care of moving # the original tensor to a new parameter called name + '_orig' and # and deleting the original parameter if not isinstance(method, PruningContainer): # copy `module[name]` to `module[name + '_orig']` module.register_parameter(name + "_orig", orig) # temporarily delete `module[name]` del module._parameters[name] default_mask = torch.ones_like(orig) # temp # If this is not the first time pruning is applied, all of the above # has been done before in a previous pruning iteration, so we're good # to go else: default_mask = ( getattr(module, name + "_mask") .detach() .clone(memory_format=torch.contiguous_format) ) # Use try/except because if anything goes wrong with the mask # computation etc., you'd want to roll back. try: # get the final mask, computed according to the specific method mask = method.compute_mask(importance_scores, default_mask=default_mask) # reparametrize by saving mask to `module[name + '_mask']`... module.register_buffer(name + "_mask", mask) # ... and the new pruned tensor to `module[name]` setattr(module, name, method.apply_mask(module)) # associate the pruning method to the module via a hook to # compute the function before every forward() (compile by run) module.register_forward_pre_hook(method) except Exception as e: if not isinstance(method, PruningContainer): orig = getattr(module, name + "_orig") module.register_parameter(name, orig) del module._parameters[name + "_orig"] raise e return method def prune(self, t, default_mask=None, importance_scores=None): r"""Computes and returns a pruned version of input tensor ``t`` according to the pruning rule specified in :meth:`compute_mask`. Args: t (torch.Tensor): tensor to prune (of same dimensions as ``default_mask``). importance_scores (torch.Tensor): tensor of importance scores (of same shape as ``t``) used to compute mask for pruning ``t``. The values in this tensor indicate the importance of the corresponding elements in the ``t`` that is being pruned. If unspecified or None, the tensor ``t`` will be used in its place. default_mask (torch.Tensor, optional): mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones. Returns: pruned version of tensor ``t``. """ if importance_scores is not None: assert ( importance_scores.shape == t.shape ), "importance_scores should have the same shape as tensor t" else: importance_scores = t default_mask = default_mask if default_mask is not None else torch.ones_like(t) return t * self.compute_mask(importance_scores, default_mask=default_mask) def remove(self, module): r"""Removes the pruning reparameterization from a module. The pruned parameter named ``name`` remains permanently pruned, and the parameter named ``name+'_orig'`` is removed from the parameter list. Similarly, the buffer named ``name+'_mask'`` is removed from the buffers. Note: Pruning itself is NOT undone or reversed! """ # before removing pruning from a tensor, it has to have been applied assert ( self._tensor_name is not None ), "Module {} has to be pruned\ before pruning can be removed".format( module ) # this gets set in apply() # to update module[name] to latest trained weights weight = self.apply_mask(module) # masked weights # delete and reset if hasattr(module, self._tensor_name): delattr(module, self._tensor_name) orig = module._parameters[self._tensor_name + "_orig"] orig.data = weight.data del module._parameters[self._tensor_name + "_orig"] del module._buffers[self._tensor_name + "_mask"] setattr(module, self._tensor_name, orig) class PruningContainer(BasePruningMethod): """Container holding a sequence of pruning methods for iterative pruning. Keeps track of the order in which pruning methods are applied and handles combining successive pruning calls. Accepts as argument an instance of a BasePruningMethod or an iterable of them. """ def __init__(self, *args): self._pruning_methods: Tuple["BasePruningMethod", ...] = tuple() if not isinstance(args, Iterable): # only 1 item self._tensor_name = args._tensor_name self.add_pruning_method(args) elif len(args) == 1: # only 1 item in a tuple self._tensor_name = args[0]._tensor_name self.add_pruning_method(args[0]) else: # manual construction from list or other iterable (or no args) for method in args: self.add_pruning_method(method) def add_pruning_method(self, method): r"""Adds a child pruning ``method`` to the container. Args: method (subclass of BasePruningMethod): child pruning method to be added to the container. """ # check that we're adding a pruning method to the container if not isinstance(method, BasePruningMethod) and method is not None: raise TypeError( "{} is not a BasePruningMethod subclass".format(type(method)) ) elif method is not None and self._tensor_name != method._tensor_name: raise ValueError( "Can only add pruning methods acting on " "the parameter named '{}' to PruningContainer {}.".format( self._tensor_name, self ) + " Found '{}'".format(method._tensor_name) ) # if all checks passed, add to _pruning_methods tuple self._pruning_methods += (method,) # type: ignore[operator] def __len__(self): return len(self._pruning_methods) def __iter__(self): return iter(self._pruning_methods) def __getitem__(self, idx): return self._pruning_methods[idx] def compute_mask(self, t, default_mask): r"""Applies the latest ``method`` by computing the new partial masks and returning its combination with the ``default_mask``. The new partial mask should be computed on the entries or channels that were not zeroed out by the ``default_mask``. Which portions of the tensor ``t`` the new mask will be calculated from depends on the ``PRUNING_TYPE`` (handled by the type handler): * for 'unstructured', the mask will be computed from the raveled list of nonmasked entries; * for 'structured', the mask will be computed from the nonmasked channels in the tensor; * for 'global', the mask will be computed across all entries. Args: t (torch.Tensor): tensor representing the parameter to prune (of same dimensions as ``default_mask``). default_mask (torch.Tensor): mask from previous pruning iteration. Returns: mask (torch.Tensor): new mask that combines the effects of the ``default_mask`` and the new mask from the current pruning ``method`` (of same dimensions as ``default_mask`` and ``t``). """ def _combine_masks(method, t, mask): r""" Args: method (a BasePruningMethod subclass): pruning method currently being applied. t (torch.Tensor): tensor representing the parameter to prune (of same dimensions as mask). mask (torch.Tensor): mask from previous pruning iteration Returns: new_mask (torch.Tensor): new mask that combines the effects of the old mask and the new mask from the current pruning method (of same dimensions as mask and t). """ new_mask = mask # start off from existing mask new_mask = new_mask.to(dtype=t.dtype) # compute a slice of t onto which the new pruning method will operate if method.PRUNING_TYPE == "unstructured": # prune entries of t where the mask is 1 slc = mask == 1 # for struct pruning, exclude channels that have already been # entirely pruned elif method.PRUNING_TYPE == "structured": if not hasattr(method, "dim"): raise AttributeError( "Pruning methods of PRUNING_TYPE " '"structured" need to have the attribute `dim` defined.' ) # find the channels to keep by removing the ones that have been # zeroed out already (i.e. where sum(entries) == 0) n_dims = t.dim() # "is this a 2D tensor? 3D? ..." dim = method.dim # convert negative indexing if dim < 0: dim = n_dims + dim # if dim is still negative after subtracting it from n_dims if dim < 0: raise IndexError( "Index is out of bounds for tensor with dimensions {}".format( n_dims ) ) # find channels along dim = dim that aren't already tots 0ed out keep_channel = mask.sum(dim=[d for d in range(n_dims) if d != dim]) != 0 # create slice to identify what to prune slc = [slice(None)] * n_dims slc[dim] = keep_channel elif method.PRUNING_TYPE == "global": n_dims = len(t.shape) # "is this a 2D tensor? 3D? ..." slc = [slice(None)] * n_dims else: raise ValueError( "Unrecognized PRUNING_TYPE {}".format(method.PRUNING_TYPE) ) # compute the new mask on the unpruned slice of the tensor t partial_mask = method.compute_mask(t[slc], default_mask=mask[slc]) new_mask[slc] = partial_mask.to(dtype=new_mask.dtype) return new_mask method = self._pruning_methods[-1] mask = _combine_masks(method, t, default_mask) return mask class Identity(BasePruningMethod): r"""Utility pruning method that does not prune any units but generates the pruning parametrization with a mask of ones. """ PRUNING_TYPE = "unstructured" def compute_mask(self, t, default_mask): mask = default_mask return mask @classmethod def apply(cls, module, name): r"""Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. """ return super(Identity, cls).apply(module, name) class RandomUnstructured(BasePruningMethod): r"""Prune (currently unpruned) units in a tensor at random. Args: name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. """ PRUNING_TYPE = "unstructured" def __init__(self, amount): # Check range of validity of pruning amount _validate_pruning_amount_init(amount) self.amount = amount def compute_mask(self, t, default_mask): # Check that the amount of units to prune is not > than the number of # parameters in t tensor_size = t.nelement() # Compute number of units to prune: amount if int, # else amount * tensor_size nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size) # This should raise an error if the number of units to prune is larger # than the number of units in the tensor _validate_pruning_amount(nparams_toprune, tensor_size) mask = default_mask.clone(memory_format=torch.contiguous_format) if nparams_toprune != 0: # k=0 not supported by torch.kthvalue prob = torch.rand_like(t) topk = torch.topk(prob.view(-1), k=nparams_toprune) mask.view(-1)[topk.indices] = 0 return mask @classmethod def apply(cls, module, name, amount): r"""Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. """ return super(RandomUnstructured, cls).apply(module, name, amount=amount) class L1Unstructured(BasePruningMethod): r"""Prune (currently unpruned) units in a tensor by zeroing out the ones with the lowest L1-norm. Args: amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. """ PRUNING_TYPE = "unstructured" def __init__(self, amount): # Check range of validity of pruning amount _validate_pruning_amount_init(amount) self.amount = amount def compute_mask(self, t, default_mask): # Check that the amount of units to prune is not > than the number of # parameters in t tensor_size = t.nelement() # Compute number of units to prune: amount if int, # else amount * tensor_size nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size) # This should raise an error if the number of units to prune is larger # than the number of units in the tensor _validate_pruning_amount(nparams_toprune, tensor_size) mask = default_mask.clone(memory_format=torch.contiguous_format) if nparams_toprune != 0: # k=0 not supported by torch.kthvalue # largest=True --> top k; largest=False --> bottom k # Prune the smallest k topk = torch.topk(torch.abs(t).view(-1), k=nparams_toprune, largest=False) # topk will have .indices and .values mask.view(-1)[topk.indices] = 0 return mask @classmethod def apply(cls, module, name, amount, importance_scores=None): r"""Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. importance_scores (torch.Tensor): tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the module parameter will be used in its place. """ return super(L1Unstructured, cls).apply( module, name, amount=amount, importance_scores=importance_scores ) class RandomStructured(BasePruningMethod): r"""Prune entire (currently unpruned) channels in a tensor at random. Args: amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. dim (int, optional): index of the dim along which we define channels to prune. Default: -1. """ PRUNING_TYPE = "structured" def __init__(self, amount, dim=-1): # Check range of validity of amount _validate_pruning_amount_init(amount) self.amount = amount self.dim = dim def compute_mask(self, t, default_mask): r"""Computes and returns a mask for the input tensor ``t``. Starting from a base ``default_mask`` (which should be a mask of ones if the tensor has not been pruned yet), generate a random mask to apply on top of the ``default_mask`` by randomly zeroing out channels along the specified dim of the tensor. Args: t (torch.Tensor): tensor representing the parameter to prune default_mask (torch.Tensor): Base mask from previous pruning iterations, that need to be respected after the new mask is applied. Same dims as ``t``. Returns: mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t`` Raises: IndexError: if ``self.dim >= len(t.shape)`` """ # Check that tensor has structure (i.e. more than 1 dimension) such # that the concept of "channels" makes sense _validate_structured_pruning(t) # Check that self.dim is a valid dim to index t, else raise IndexError _validate_pruning_dim(t, self.dim) # Check that the amount of channels to prune is not > than the number of # channels in t along the dim to prune tensor_size = t.shape[self.dim] # Compute number of units to prune: amount if int, # else amount * tensor_size nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size) # This should raise an error if the number of units to prune is larger # than the number of units in the tensor _validate_pruning_amount(nparams_toprune, tensor_size) # Compute binary mask by initializing it to all 0s and then filling in # 1s wherever topk.indices indicates, along self.dim. # mask has the same shape as tensor t def make_mask(t, dim, nchannels, nchannels_toprune): # generate a random number in [0, 1] to associate to each channel prob = torch.rand(nchannels) # generate mask for each channel by 0ing out the channels that # got assigned the k = nchannels_toprune lowest values in prob threshold = torch.kthvalue(prob, k=nchannels_toprune).values channel_mask = prob > threshold mask = torch.zeros_like(t) slc = [slice(None)] * len(t.shape) slc[dim] = channel_mask mask[slc] = 1 return mask if nparams_toprune == 0: # k=0 not supported by torch.kthvalue mask = default_mask else: # apply the new structured mask on top of prior (potentially # unstructured) mask mask = make_mask(t, self.dim, tensor_size, nparams_toprune) mask *= default_mask.to(dtype=mask.dtype) return mask @classmethod def apply(cls, module, name, amount, dim=-1): r"""Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. dim (int, optional): index of the dim along which we define channels to prune. Default: -1. """ return super(RandomStructured, cls).apply(module, name, amount=amount, dim=dim) class LnStructured(BasePruningMethod): r"""Prune entire (currently unpruned) channels in a tensor based on their L\ ``n``-norm. Args: amount (int or float): quantity of channels to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid entries for argument ``p`` in :func:`torch.norm`. dim (int, optional): index of the dim along which we define channels to prune. Default: -1. """ PRUNING_TYPE = "structured" def __init__(self, amount, n, dim=-1): # Check range of validity of amount _validate_pruning_amount_init(amount) self.amount = amount self.n = n self.dim = dim def compute_mask(self, t, default_mask): r"""Computes and returns a mask for the input tensor ``t``. Starting from a base ``default_mask`` (which should be a mask of ones if the tensor has not been pruned yet), generate a mask to apply on top of the ``default_mask`` by zeroing out the channels along the specified dim with the lowest L\ ``n``-norm. Args: t (torch.Tensor): tensor representing the parameter to prune default_mask (torch.Tensor): Base mask from previous pruning iterations, that need to be respected after the new mask is applied. Same dims as ``t``. Returns: mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t`` Raises: IndexError: if ``self.dim >= len(t.shape)`` """ # Check that tensor has structure (i.e. more than 1 dimension) such # that the concept of "channels" makes sense _validate_structured_pruning(t) # Check that self.dim is a valid dim to index t, else raise IndexError _validate_pruning_dim(t, self.dim) # Check that the amount of channels to prune is not > than the number of # channels in t along the dim to prune tensor_size = t.shape[self.dim] # Compute number of units to prune: amount if int, # else amount * tensor_size nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size) nparams_tokeep = tensor_size - nparams_toprune # This should raise an error if the number of units to prune is larger # than the number of units in the tensor _validate_pruning_amount(nparams_toprune, tensor_size) # Structured pruning prunes entire channels so we need to know the # L_n norm along each channel to then find the topk based on this # metric norm = _compute_norm(t, self.n, self.dim) # largest=True --> top k; largest=False --> bottom k # Keep the largest k channels along dim=self.dim topk = torch.topk(norm, k=nparams_tokeep, largest=True) # topk will have .indices and .values # Compute binary mask by initializing it to all 0s and then filling in # 1s wherever topk.indices indicates, along self.dim. # mask has the same shape as tensor t def make_mask(t, dim, indices): # init mask to 0 mask = torch.zeros_like(t) # e.g.: slc = [None, None, None], if len(t.shape) = 3 slc = [slice(None)] * len(t.shape) # replace a None at position=dim with indices # e.g.: slc = [None, None, [0, 2, 3]] if dim=2 & indices=[0,2,3] slc[dim] = indices # use slc to slice mask and replace all its entries with 1s # e.g.: mask[:, :, [0, 2, 3]] = 1 mask[slc] = 1 return mask if nparams_toprune == 0: # k=0 not supported by torch.kthvalue mask = default_mask else: mask = make_mask(t, self.dim, topk.indices) mask *= default_mask.to(dtype=mask.dtype) return mask @classmethod def apply(cls, module, name, amount, n, dim, importance_scores=None): r"""Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid entries for argument ``p`` in :func:`torch.norm`. dim (int): index of the dim along which we define channels to prune. importance_scores (torch.Tensor): tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the module parameter will be used in its place. """ return super(LnStructured, cls).apply( module, name, amount=amount, n=n, dim=dim, importance_scores=importance_scores, ) class CustomFromMask(BasePruningMethod): PRUNING_TYPE = "global" def __init__(self, mask): self.mask = mask def compute_mask(self, t, default_mask): assert default_mask.shape == self.mask.shape mask = default_mask * self.mask.to(dtype=default_mask.dtype) return mask @classmethod def apply(cls, module, name, mask): r"""Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. """ return super(CustomFromMask, cls).apply(module, name, mask=mask) def identity(module, name): r"""Applies pruning reparametrization to the tensor corresponding to the parameter called ``name`` in ``module`` without actually pruning any units. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called ``name+'_mask'`` corresponding to the binary mask applied to the parameter ``name`` by the pruning method. 2) replacing the parameter ``name`` by its pruned version, while the original (unpruned) parameter is stored in a new parameter named ``name+'_orig'``. Note: The mask is a tensor of ones. Args: module (nn.Module): module containing the tensor to prune. name (str): parameter name within ``module`` on which pruning will act. Returns: module (nn.Module): modified (i.e. pruned) version of the input module Examples: >>> # xdoctest: +SKIP >>> m = prune.identity(nn.Linear(2, 3), 'bias') >>> print(m.bias_mask) tensor([1., 1., 1.]) """ Identity.apply(module, name) return module def random_unstructured(module, name, amount): r"""Prunes tensor corresponding to parameter called ``name`` in ``module`` by removing the specified ``amount`` of (currently unpruned) units selected at random. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called ``name+'_mask'`` corresponding to the binary mask applied to the parameter ``name`` by the pruning method. 2) replacing the parameter ``name`` by its pruned version, while the original (unpruned) parameter is stored in a new parameter named ``name+'_orig'``. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. Returns: module (nn.Module): modified (i.e. pruned) version of the input module Examples: >>> # xdoctest: +SKIP >>> m = prune.random_unstructured(nn.Linear(2, 3), 'weight', amount=1) >>> torch.sum(m.weight_mask == 0) tensor(1) """ RandomUnstructured.apply(module, name, amount) return module def l1_unstructured(module, name, amount, importance_scores=None): r"""Prunes tensor corresponding to parameter called ``name`` in ``module`` by removing the specified `amount` of (currently unpruned) units with the lowest L1-norm. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called ``name+'_mask'`` corresponding to the binary mask applied to the parameter ``name`` by the pruning method. 2) replacing the parameter ``name`` by its pruned version, while the original (unpruned) parameter is stored in a new parameter named ``name+'_orig'``. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. importance_scores (torch.Tensor): tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the module parameter will be used in its place. Returns: module (nn.Module): modified (i.e. pruned) version of the input module Examples: >>> # xdoctest: +SKIP >>> m = prune.l1_unstructured(nn.Linear(2, 3), 'weight', amount=0.2) >>> m.state_dict().keys() odict_keys(['bias', 'weight_orig', 'weight_mask']) """ L1Unstructured.apply( module, name, amount=amount, importance_scores=importance_scores ) return module def random_structured(module, name, amount, dim): r"""Prunes tensor corresponding to parameter called ``name`` in ``module`` by removing the specified ``amount`` of (currently unpruned) channels along the specified ``dim`` selected at random. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called ``name+'_mask'`` corresponding to the binary mask applied to the parameter ``name`` by the pruning method. 2) replacing the parameter ``name`` by its pruned version, while the original (unpruned) parameter is stored in a new parameter named ``name+'_orig'``. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. dim (int): index of the dim along which we define channels to prune. Returns: module (nn.Module): modified (i.e. pruned) version of the input module Examples: >>> # xdoctest: +SKIP >>> m = prune.random_structured( ... nn.Linear(5, 3), 'weight', amount=3, dim=1 ... ) >>> columns_pruned = int(sum(torch.sum(m.weight, dim=0) == 0)) >>> print(columns_pruned) 3 """ RandomStructured.apply(module, name, amount, dim) return module def ln_structured(module, name, amount, n, dim, importance_scores=None): r"""Prunes tensor corresponding to parameter called ``name`` in ``module`` by removing the specified ``amount`` of (currently unpruned) channels along the specified ``dim`` with the lowest L\ ``n``-norm. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called ``name+'_mask'`` corresponding to the binary mask applied to the parameter ``name`` by the pruning method. 2) replacing the parameter ``name`` by its pruned version, while the original (unpruned) parameter is stored in a new parameter named ``name+'_orig'``. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. amount (int or float): quantity of parameters to prune. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid entries for argument ``p`` in :func:`torch.norm`. dim (int): index of the dim along which we define channels to prune. importance_scores (torch.Tensor): tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the module parameter will be used in its place. Returns: module (nn.Module): modified (i.e. pruned) version of the input module Examples: >>> # xdoctest: +SKIP >>> m = prune.ln_structured( ... nn.Conv2d(5, 3, 2), 'weight', amount=0.3, dim=1, n=float('-inf') ... ) """ LnStructured.apply( module, name, amount, n, dim, importance_scores=importance_scores ) return module def global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs): r""" Globally prunes tensors corresponding to all parameters in ``parameters`` by applying the specified ``pruning_method``. Modifies modules in place by: 1) adding a named buffer called ``name+'_mask'`` corresponding to the binary mask applied to the parameter ``name`` by the pruning method. 2) replacing the parameter ``name`` by its pruned version, while the original (unpruned) parameter is stored in a new parameter named ``name+'_orig'``. Args: parameters (Iterable of (module, name) tuples): parameters of the model to prune in a global fashion, i.e. by aggregating all weights prior to deciding which ones to prune. module must be of type :class:`nn.Module`, and name must be a string. pruning_method (function): a valid pruning function from this module, or a custom one implemented by the user that satisfies the implementation guidelines and has ``PRUNING_TYPE='unstructured'``. importance_scores (dict): a dictionary mapping (module, name) tuples to the corresponding parameter's importance scores tensor. The tensor should be the same shape as the parameter, and is used for computing mask for pruning. If unspecified or None, the parameter will be used in place of its importance scores. kwargs: other keyword arguments such as: amount (int or float): quantity of parameters to prune across the specified parameters. If ``float``, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If ``int``, it represents the absolute number of parameters to prune. Raises: TypeError: if ``PRUNING_TYPE != 'unstructured'`` Note: Since global structured pruning doesn't make much sense unless the norm is normalized by the size of the parameter, we now limit the scope of global pruning to unstructured methods. Examples: >>> # xdoctest: +SKIP >>> net = nn.Sequential(OrderedDict([ ... ('first', nn.Linear(10, 4)), ... ('second', nn.Linear(4, 1)), ... ])) >>> parameters_to_prune = ( ... (net.first, 'weight'), ... (net.second, 'weight'), ... ) >>> prune.global_unstructured( ... parameters_to_prune, ... pruning_method=prune.L1Unstructured, ... amount=10, ... ) >>> print(sum(torch.nn.utils.parameters_to_vector(net.buffers()) == 0)) tensor(10, dtype=torch.uint8) """ # ensure parameters is a list or generator of tuples if not isinstance(parameters, Iterable): raise TypeError("global_unstructured(): parameters is not an Iterable") importance_scores = importance_scores if importance_scores is not None else {} if not isinstance(importance_scores, dict): raise TypeError("global_unstructured(): importance_scores must be of type dict") # flatten importance scores to consider them all at once in global pruning relevant_importance_scores = torch.nn.utils.parameters_to_vector( [ importance_scores.get((module, name), getattr(module, name)) for (module, name) in parameters ] ) # similarly, flatten the masks (if they exist), or use a flattened vector # of 1s of the same dimensions as t default_mask = torch.nn.utils.parameters_to_vector( [ getattr(module, name + "_mask", torch.ones_like(getattr(module, name))) for (module, name) in parameters ] ) # use the canonical pruning methods to compute the new mask, even if the # parameter is now a flattened out version of `parameters` container = PruningContainer() container._tensor_name = "temp" # to make it match that of `method` method = pruning_method(**kwargs) method._tensor_name = "temp" # to make it match that of `container` if method.PRUNING_TYPE != "unstructured": raise TypeError( 'Only "unstructured" PRUNING_TYPE supported for ' "the `pruning_method`. Found method {} of type {}".format( pruning_method, method.PRUNING_TYPE ) ) container.add_pruning_method(method) # use the `compute_mask` method from `PruningContainer` to combine the # mask computed by the new method with the pre-existing mask final_mask = container.compute_mask(relevant_importance_scores, default_mask) # Pointer for slicing the mask to match the shape of each parameter pointer = 0 for module, name in parameters: param = getattr(module, name) # The length of the parameter num_param = param.numel() # Slice the mask, reshape it param_mask = final_mask[pointer : pointer + num_param].view_as(param) # Assign the correct pre-computed mask to each parameter and add it # to the forward_pre_hooks like any other pruning method custom_from_mask(module, name, mask=param_mask) # Increment the pointer to continue slicing the final_mask pointer += num_param def custom_from_mask(module, name, mask): r"""Prunes tensor corresponding to parameter called ``name`` in ``module`` by applying the pre-computed mask in ``mask``. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called ``name+'_mask'`` corresponding to the binary mask applied to the parameter ``name`` by the pruning method. 2) replacing the parameter ``name`` by its pruned version, while the original (unpruned) parameter is stored in a new parameter named ``name+'_orig'``. Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. mask (Tensor): binary mask to be applied to the parameter. Returns: module (nn.Module): modified (i.e. pruned) version of the input module Examples: >>> # xdoctest: +SKIP >>> m = prune.custom_from_mask( ... nn.Linear(5, 3), name='bias', mask=torch.tensor([0, 1, 0]) ... ) >>> print(m.bias_mask) tensor([0., 1., 0.]) """ CustomFromMask.apply(module, name, mask) return module def remove(module, name): r"""Removes the pruning reparameterization from a module and the pruning method from the forward hook. The pruned parameter named ``name`` remains permanently pruned, and the parameter named ``name+'_orig'`` is removed from the parameter list. Similarly, the buffer named ``name+'_mask'`` is removed from the buffers. Note: Pruning itself is NOT undone or reversed! Args: module (nn.Module): module containing the tensor to prune name (str): parameter name within ``module`` on which pruning will act. Examples: >>> m = random_unstructured(nn.Linear(5, 7), name='weight', amount=0.2) >>> m = remove(m, name='weight') """ for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, BasePruningMethod) and hook._tensor_name == name: hook.remove(module) del module._forward_pre_hooks[k] return module raise ValueError( "Parameter '{}' of module {} has to be pruned " "before pruning can be removed".format(name, module) ) def is_pruned(module): r"""Check whether ``module`` is pruned by looking for ``forward_pre_hooks`` in its modules that inherit from the :class:`BasePruningMethod`. Args: module (nn.Module): object that is either pruned or unpruned Returns: binary answer to whether ``module`` is pruned. Examples: >>> m = nn.Linear(5, 7) >>> # xdoctest: +SKIP >>> print(prune.is_pruned(m)) False >>> prune.random_unstructured(m, name='weight', amount=0.2) >>> print(prune.is_pruned(m)) True """ for _, submodule in module.named_modules(): for _, hook in submodule._forward_pre_hooks.items(): if isinstance(hook, BasePruningMethod): return True return False def _validate_pruning_amount_init(amount): r"""Validation helper to check the range of amount at init. Args: amount (int or float): quantity of parameters to prune. If float, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If int, it represents the absolute number of parameters to prune. Raises: ValueError: if amount is a float not in [0, 1], or if it's a negative integer. TypeError: if amount is neither a float nor an integer. Note: This does not take into account the number of parameters in the tensor to be pruned, which is known only at prune. """ if not isinstance(amount, numbers.Real): raise TypeError( "Invalid type for amount: {}. Must be int or float." "".format(amount) ) if (isinstance(amount, numbers.Integral) and amount < 0) or ( not isinstance(amount, numbers.Integral) # so it's a float and (float(amount) > 1.0 or float(amount) < 0.0) ): raise ValueError( "amount={} should either be a float in the " "range [0, 1] or a non-negative integer" "".format(amount) ) def _validate_pruning_amount(amount, tensor_size): r"""Validation helper to check that the amount of parameters to prune is meaningful wrt to the size of the data (`tensor_size`). Args: amount (int or float): quantity of parameters to prune. If float, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If int, it represents the absolute number of parameters to prune. tensor_size (int): absolute number of parameters in the tensor to prune. """ # TODO: consider removing this check and allowing users to specify # a number of units to prune that is greater than the number of units # left to prune. In this case, the tensor will just be fully pruned. if isinstance(amount, numbers.Integral) and amount > tensor_size: raise ValueError( "amount={} should be smaller than the number of " "parameters to prune={}".format(amount, tensor_size) ) def _validate_structured_pruning(t): r"""Validation helper to check that the tensor to be pruned is multi- dimensional, such that the concept of "channels" is well-defined. Args: t (torch.Tensor): tensor representing the parameter to prune Raises: ValueError: if the tensor `t` is not at least 2D. """ shape = t.shape if len(shape) <= 1: raise ValueError( "Structured pruning can only be applied to " "multidimensional tensors. Found tensor of shape " "{} with {} dims".format(shape, len(shape)) ) def _compute_nparams_toprune(amount, tensor_size): r"""Since amount can be expressed either in absolute value or as a percentage of the number of units/channels in a tensor, this utility function converts the percentage to absolute value to standardize the handling of pruning. Args: amount (int or float): quantity of parameters to prune. If float, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If int, it represents the absolute number of parameters to prune. tensor_size (int): absolute number of parameters in the tensor to prune. Returns: int: the number of units to prune in the tensor """ # incorrect type already checked in _validate_pruning_amount_init if isinstance(amount, numbers.Integral): return amount else: return round(amount * tensor_size) def _validate_pruning_dim(t, dim): r""" Args: t (torch.Tensor): tensor representing the parameter to prune dim (int): index of the dim along which we define channels to prune """ if dim >= t.dim(): raise IndexError("Invalid index {} for tensor of size {}".format(dim, t.shape)) def _compute_norm(t, n, dim): r"""Compute the L_n-norm across all entries in tensor `t` along all dimension except for the one identified by dim. Example: if `t` is of shape, say, 3x2x4 and dim=2 (the last dim), then norm will have Size [4], and each entry will represent the `L_n`-norm computed using the 3x2=6 entries for each of the 4 channels. Args: t (torch.Tensor): tensor representing the parameter to prune n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid entries for argument p in torch.norm dim (int): dim identifying the channels to prune Returns: norm (torch.Tensor): L_n norm computed across all dimensions except for `dim`. By construction, `norm.shape = t.shape[-1]`. """ # dims = all axes, except for the one identified by `dim` dims = list(range(t.dim())) # convert negative indexing if dim < 0: dim = dims[dim] dims.remove(dim) norm = torch.norm(t, p=n, dim=dims) return norm
pytorch-master
torch/nn/utils/prune.py
from enum import Enum, auto import torch from torch import Tensor from ..utils import parametrize from ..modules import Module from .. import functional as F from typing import Optional __all__ = ['orthogonal', 'spectral_norm'] def _is_orthogonal(Q, eps=None): n, k = Q.size(-2), Q.size(-1) Id = torch.eye(k, dtype=Q.dtype, device=Q.device) # A reasonable eps, but not too large eps = 10. * n * torch.finfo(Q.dtype).eps return torch.allclose(Q.mH @ Q, Id, atol=eps) def _make_orthogonal(A): """ Assume that A is a tall matrix. Compute the Q factor s.t. A = QR (A may be complex) and diag(R) is real and non-negative """ X, tau = torch.geqrf(A) Q = torch.linalg.householder_product(X, tau) # The diagonal of X is the diagonal of R (which is always real) so we normalise by its signs Q *= X.diagonal(dim1=-2, dim2=-1).sgn().unsqueeze(-2) return Q class _OrthMaps(Enum): matrix_exp = auto() cayley = auto() householder = auto() class _Orthogonal(Module): base: Tensor def __init__(self, weight, orthogonal_map: _OrthMaps, *, use_trivialization=True) -> None: super().__init__() # Note [Householder complex] # For complex tensors, it is not possible to compute the tensor `tau` necessary for # linalg.householder_product from the reflectors. # To see this, note that the reflectors have a shape like: # 0 0 0 # * 0 0 # * * 0 # which, for complex matrices, give n(n-1) (real) parameters. Now, you need n^2 parameters # to parametrize the unitary matrices. Saving tau on its own does not work either, because # not every combination of `(A, tau)` gives a unitary matrix, meaning that if we optimise # them as independent tensors we would not maintain the constraint # An equivalent reasoning holds for rectangular matrices if weight.is_complex() and orthogonal_map == _OrthMaps.householder: raise ValueError("The householder parametrization does not support complex tensors.") self.shape = weight.shape self.orthogonal_map = orthogonal_map if use_trivialization: self.register_buffer("base", None) def forward(self, X: torch.Tensor) -> torch.Tensor: n, k = X.size(-2), X.size(-1) transposed = n < k if transposed: X = X.mT n, k = k, n # Here n > k and X is a tall matrix if self.orthogonal_map == _OrthMaps.matrix_exp or self.orthogonal_map == _OrthMaps.cayley: # We just need n x k - k(k-1)/2 parameters X = X.tril() if n != k: # Embed into a square matrix X = torch.cat([X, X.new_zeros(n, n - k).expand(*X.shape[:-2], -1, -1)], dim=-1) A = X - X.mH # A is skew-symmetric (or skew-hermitian) if self.orthogonal_map == _OrthMaps.matrix_exp: Q = torch.matrix_exp(A) elif self.orthogonal_map == _OrthMaps.cayley: # Computes the Cayley retraction (I+A/2)(I-A/2)^{-1} Id = torch.eye(n, dtype=A.dtype, device=A.device) Q = torch.linalg.solve(torch.add(Id, A, alpha=-0.5), torch.add(Id, A, alpha=0.5)) # Q is now orthogonal (or unitary) of size (..., n, n) if n != k: Q = Q[..., :k] # Q is now the size of the X (albeit perhaps transposed) else: # X is real here, as we do not support householder with complex numbers A = X.tril(diagonal=-1) tau = 2. / (1. + (A * A).sum(dim=-2)) Q = torch.linalg.householder_product(A, tau) # The diagonal of X is 1's and -1's # We do not want to differentiate through this or update the diagonal of X hence the casting Q = Q * X.diagonal(dim1=-2, dim2=-1).int().unsqueeze(-2) if hasattr(self, "base"): Q = self.base @ Q if transposed: Q = Q.mT return Q @torch.autograd.no_grad() def right_inverse(self, Q: torch.Tensor) -> torch.Tensor: if Q.shape != self.shape: raise ValueError(f"Expected a matrix or batch of matrices of shape {self.shape}. " f"Got a tensor of shape {Q.shape}.") Q_init = Q n, k = Q.size(-2), Q.size(-1) transpose = n < k if transpose: Q = Q.mT n, k = k, n # We always make sure to always copy Q in every path if not hasattr(self, "base"): # Note [right_inverse expm cayley] # If we do not have use_trivialization=True, we just implement the inverse of the forward # map for the Householder. To see why, think that for the Cayley map, # we would need to find the matrix X \in R^{n x k} such that: # Y = torch.cat([X.tril(), X.new_zeros(n, n - k).expand(*X.shape[:-2], -1, -1)], dim=-1) # A = Y - Y.mH # cayley(A)[:, :k] # gives the original tensor. It is not clear how to do this. # Perhaps via some algebraic manipulation involving the QR like that of # Corollary 2.2 in Edelman, Arias and Smith? if self.orthogonal_map == _OrthMaps.cayley or self.orthogonal_map == _OrthMaps.matrix_exp: raise NotImplementedError("It is not possible to assign to the matrix exponential " "or the Cayley parametrizations when use_trivialization=False.") # If parametrization == _OrthMaps.householder, make Q orthogonal via the QR decomposition. # Here Q is always real because we do not support householder and complex matrices. # See note [Householder complex] A, tau = torch.geqrf(Q) # We want to have a decomposition X = QR with diag(R) > 0, as otherwise we could # decompose an orthogonal matrix Q as Q = (-Q)@(-Id), which is a valid QR decomposition # The diagonal of Q is the diagonal of R from the qr decomposition A.diagonal(dim1=-2, dim2=-1).sign_() # Equality with zero is ok because LAPACK returns exactly zero when it does not want # to use a particular reflection A.diagonal(dim1=-2, dim2=-1)[tau == 0.] *= -1 return A.mT if transpose else A else: if n == k: # We check whether Q is orthogonal if not _is_orthogonal(Q): Q = _make_orthogonal(Q) else: # Is orthogonal Q = Q.clone() else: # Complete Q into a full n x n orthogonal matrix N = torch.randn(*(Q.size()[:-2] + (n, n - k)), dtype=Q.dtype, device=Q.device) Q = torch.cat([Q, N], dim=-1) Q = _make_orthogonal(Q) self.base = Q # It is necessary to return the -Id, as we use the diagonal for the # Householder parametrization. Using -Id makes: # householder(torch.zeros(m,n)) == torch.eye(m,n) # Poor man's version of eye_like neg_Id = torch.zeros_like(Q_init) neg_Id.diagonal(dim1=-2, dim2=-1).fill_(-1.) return neg_Id def orthogonal(module: Module, name: str = 'weight', orthogonal_map: Optional[str] = None, *, use_trivialization: bool = True) -> Module: r"""Applies an orthogonal or unitary parametrization to a matrix or a batch of matrices. Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the parametrized matrix :math:`Q \in \mathbb{K}^{m \times n}` is **orthogonal** as .. math:: \begin{align*} Q^{\text{H}}Q &= \mathrm{I}_n \mathrlap{\qquad \text{if }m \geq n}\\ QQ^{\text{H}} &= \mathrm{I}_m \mathrlap{\qquad \text{if }m < n} \end{align*} where :math:`Q^{\text{H}}` is the conjugate transpose when :math:`Q` is complex and the transpose when :math:`Q` is real-valued, and :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix. In plain words, :math:`Q` will have orthonormal columns whenever :math:`m \geq n` and orthonormal rows otherwise. If the tensor has more than two dimensions, we consider it as a batch of matrices of shape `(..., m, n)`. The matrix :math:`Q` may be parametrized via three different ``orthogonal_map`` in terms of the original tensor: - ``"matrix_exp"``/``"cayley"``: the :func:`~torch.matrix_exp` :math:`Q = \exp(A)` and the `Cayley map`_ :math:`Q = (\mathrm{I}_n + A/2)(\mathrm{I}_n - A/2)^{-1}` are applied to a skew-symmetric :math:`A` to give an orthogonal matrix. - ``"householder"``: computes a product of Householder reflectors (:func:`~torch.linalg.householder_product`). ``"matrix_exp"``/``"cayley"`` often make the parametrized weight converge faster than ``"householder"``, but they are slower to compute for very thin or very wide matrices. If ``use_trivialization=True`` (default), the parametrization implements the "Dynamic Trivialization Framework", where an extra matrix :math:`B \in \mathbb{K}^{n \times n}` is stored under ``module.parametrizations.weight[0].base``. This helps the convergence of the parametrized layer at the expense of some extra memory use. See `Trivializations for Gradient-Based Optimization on Manifolds`_ . Initial value of :math:`Q`: If the original tensor is not parametrized and ``use_trivialization=True`` (default), the initial value of :math:`Q` is that of the original tensor if it is orthogonal (or unitary in the complex case) and it is orthogonalized via the QR decomposition otherwise (see :func:`torch.linalg.qr`). Same happens when it is not parametrized and ``orthogonal_map="householder"`` even when ``use_trivialization=False``. Otherwise, the initial value is the result of the composition of all the registered parametrizations applied to the original tensor. .. note:: This function is implemented using the parametrization functionality in :func:`~torch.nn.utils.parametrize.register_parametrization`. .. _`Cayley map`: https://en.wikipedia.org/wiki/Cayley_transform#Matrix_map .. _`Trivializations for Gradient-Based Optimization on Manifolds`: https://arxiv.org/abs/1909.09501 Args: module (nn.Module): module on which to register the parametrization. name (str, optional): name of the tensor to make orthogonal. Default: ``"weight"``. orthogonal_map (str, optional): One of the following: ``"matrix_exp"``, ``"cayley"``, ``"householder"``. Default: ``"matrix_exp"`` if the matrix is square or complex, ``"householder"`` otherwise. use_trivialization (bool, optional): whether to use the dynamic trivialization framework. Default: ``True``. Returns: The original module with an orthogonal parametrization registered to the specified weight Example:: >>> # xdoctest: +REQUIRES(--lapack) >>> orth_linear = orthogonal(nn.Linear(20, 40)) >>> orth_linear ParametrizedLinear( in_features=20, out_features=40, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): _Orthogonal() ) ) ) >>> # xdoctest: +IGNORE_WANT >>> Q = orth_linear.weight >>> torch.dist(Q.T @ Q, torch.eye(20)) tensor(4.9332e-07) """ weight = getattr(module, name, None) if not isinstance(weight, Tensor): raise ValueError( "Module '{}' has no parameter or buffer with name '{}'".format(module, name) ) # We could implement this for 1-dim tensors as the maps on the sphere # but I believe it'd bite more people than it'd help if weight.ndim < 2: raise ValueError("Expected a matrix or batch of matrices. " f"Got a tensor of {weight.ndim} dimensions.") if orthogonal_map is None: orthogonal_map = "matrix_exp" if weight.size(-2) == weight.size(-1) or weight.is_complex() else "householder" orth_enum = getattr(_OrthMaps, orthogonal_map, None) if orth_enum is None: raise ValueError('orthogonal_map has to be one of "matrix_exp", "cayley", "householder". ' f'Got: {orthogonal_map}') orth = _Orthogonal(weight, orth_enum, use_trivialization=use_trivialization) parametrize.register_parametrization(module, name, orth, unsafe=True) return module class _SpectralNorm(Module): def __init__( self, weight: torch.Tensor, n_power_iterations: int = 1, dim: int = 0, eps: float = 1e-12 ) -> None: super().__init__() ndim = weight.ndim if dim >= ndim or dim < -ndim: raise IndexError("Dimension out of range (expected to be in range of " f"[-{ndim}, {ndim - 1}] but got {dim})") if n_power_iterations <= 0: raise ValueError('Expected n_power_iterations to be positive, but ' 'got n_power_iterations={}'.format(n_power_iterations)) self.dim = dim if dim >= 0 else dim + ndim self.eps = eps if ndim > 1: # For ndim == 1 we do not need to approximate anything (see _SpectralNorm.forward) self.n_power_iterations = n_power_iterations weight_mat = self._reshape_weight_to_matrix(weight) h, w = weight_mat.size() u = weight_mat.new_empty(h).normal_(0, 1) v = weight_mat.new_empty(w).normal_(0, 1) self.register_buffer('_u', F.normalize(u, dim=0, eps=self.eps)) self.register_buffer('_v', F.normalize(v, dim=0, eps=self.eps)) # Start with u, v initialized to some reasonable values by performing a number # of iterations of the power method self._power_method(weight_mat, 15) def _reshape_weight_to_matrix(self, weight: torch.Tensor) -> torch.Tensor: # Precondition assert weight.ndim > 1 if self.dim != 0: # permute dim to front weight = weight.permute(self.dim, *(d for d in range(weight.dim()) if d != self.dim)) return weight.flatten(1) @torch.autograd.no_grad() def _power_method(self, weight_mat: torch.Tensor, n_power_iterations: int) -> None: # See original note at torch/nn/utils/spectral_norm.py # NB: If `do_power_iteration` is set, the `u` and `v` vectors are # updated in power iteration **in-place**. This is very important # because in `DataParallel` forward, the vectors (being buffers) are # broadcast from the parallelized module to each module replica, # which is a new module object created on the fly. And each replica # runs its own spectral norm power iteration. So simply assigning # the updated vectors to the module this function runs on will cause # the update to be lost forever. And the next time the parallelized # module is replicated, the same randomly initialized vectors are # broadcast and used! # # Therefore, to make the change propagate back, we rely on two # important behaviors (also enforced via tests): # 1. `DataParallel` doesn't clone storage if the broadcast tensor # is already on correct device; and it makes sure that the # parallelized module is already on `device[0]`. # 2. If the out tensor in `out=` kwarg has correct shape, it will # just fill in the values. # Therefore, since the same power iteration is performed on all # devices, simply updating the tensors in-place will make sure that # the module replica on `device[0]` will update the _u vector on the # parallized module (by shared storage). # # However, after we update `u` and `v` in-place, we need to **clone** # them before using them to normalize the weight. This is to support # backproping through two forward passes, e.g., the common pattern in # GAN training: loss = D(real) - D(fake). Otherwise, engine will # complain that variables needed to do backward for the first forward # (i.e., the `u` and `v` vectors) are changed in the second forward. # Precondition assert weight_mat.ndim > 1 for _ in range(n_power_iterations): # Spectral norm of weight equals to `u^T W v`, where `u` and `v` # are the first left and right singular vectors. # This power iteration produces approximations of `u` and `v`. self._u = F.normalize(torch.mv(weight_mat, self._v), # type: ignore[has-type] dim=0, eps=self.eps, out=self._u) # type: ignore[has-type] self._v = F.normalize(torch.mv(weight_mat.t(), self._u), dim=0, eps=self.eps, out=self._v) # type: ignore[has-type] def forward(self, weight: torch.Tensor) -> torch.Tensor: if weight.ndim == 1: # Faster and more exact path, no need to approximate anything return F.normalize(weight, dim=0, eps=self.eps) else: weight_mat = self._reshape_weight_to_matrix(weight) if self.training: self._power_method(weight_mat, self.n_power_iterations) # See above on why we need to clone u = self._u.clone(memory_format=torch.contiguous_format) v = self._v.clone(memory_format=torch.contiguous_format) # The proper way of computing this should be through F.bilinear, but # it seems to have some efficiency issues: # https://github.com/pytorch/pytorch/issues/58093 sigma = torch.dot(u, torch.mv(weight_mat, v)) return weight / sigma def right_inverse(self, value: torch.Tensor) -> torch.Tensor: # we may want to assert here that the passed value already # satisfies constraints return value def spectral_norm(module: Module, name: str = 'weight', n_power_iterations: int = 1, eps: float = 1e-12, dim: Optional[int] = None) -> Module: r"""Applies spectral normalization to a parameter in the given module. .. math:: \mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})}, \sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2} When applied on a vector, it simplifies to .. math:: \mathbf{x}_{SN} = \dfrac{\mathbf{x}}{\|\mathbf{x}\|_2} Spectral normalization stabilizes the training of discriminators (critics) in Generative Adversarial Networks (GANs) by reducing the Lipschitz constant of the model. :math:`\sigma` is approximated performing one iteration of the `power method`_ every time the weight is accessed. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. See `Spectral Normalization for Generative Adversarial Networks`_ . .. _`power method`: https://en.wikipedia.org/wiki/Power_iteration .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957 .. note:: This function is implemented using the parametrization functionality in :func:`~torch.nn.utils.parametrize.register_parametrization`. It is a reimplementation of :func:`torch.nn.utils.spectral_norm`. .. note:: When this constraint is registered, the singular vectors associated to the largest singular value are estimated rather than sampled at random. These are then updated performing :attr:`n_power_iterations` of the `power method`_ whenever the tensor is accessed with the module on `training` mode. .. note:: If the `_SpectralNorm` module, i.e., `module.parametrization.weight[idx]`, is in training mode on removal, it will perform another power iteration. If you'd like to avoid this iteration, set the module to eval mode before its removal. Args: module (nn.Module): containing module name (str, optional): name of weight parameter. Default: ``"weight"``. n_power_iterations (int, optional): number of power iterations to calculate spectral norm. Default: ``1``. eps (float, optional): epsilon for numerical stability in calculating norms. Default: ``1e-12``. dim (int, optional): dimension corresponding to number of outputs. Default: ``0``, except for modules that are instances of ConvTranspose{1,2,3}d, when it is ``1`` Returns: The original module with a new parametrization registered to the specified weight Example:: >>> # xdoctest: +REQUIRES(--lapack) >>> snm = spectral_norm(nn.Linear(20, 40)) >>> snm ParametrizedLinear( in_features=20, out_features=40, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): _SpectralNorm() ) ) ) >>> torch.linalg.matrix_norm(snm.weight, 2) tensor(1.0000, grad_fn=<CopyBackwards>) """ weight = getattr(module, name, None) if not isinstance(weight, Tensor): raise ValueError( "Module '{}' has no parameter or buffer with name '{}'".format(module, name) ) if dim is None: if isinstance(module, (torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d)): dim = 1 else: dim = 0 parametrize.register_parametrization(module, name, _SpectralNorm(weight, n_power_iterations, dim, eps)) return module
pytorch-master
torch/nn/utils/parametrizations.py
import inspect import torch def skip_init(module_cls, *args, **kwargs): r""" Given a module class object and args / kwargs, instantiates the module without initializing parameters / buffers. This can be useful if initialization is slow or if custom initialization will be performed, making the default initialization unnecessary. There are some caveats to this, due to the way this function is implemented: 1. The module must accept a `device` arg in its constructor that is passed to any parameters or buffers created during construction. 2. The module must not perform any computation on parameters in its constructor except initialization (i.e. functions from :mod:`torch.nn.init`). If these conditions are satisfied, the module can be instantiated with parameter / buffer values uninitialized, as if having been created using :func:`torch.empty`. Args: module_cls: Class object; should be a subclass of :class:`torch.nn.Module` args: args to pass to the module's constructor kwargs: kwargs to pass to the module's constructor Returns: Instantiated module with uninitialized parameters / buffers Example:: >>> import torch >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = torch.nn.utils.skip_init(torch.nn.Linear, 5, 1) >>> m.weight Parameter containing: tensor([[0.0000e+00, 1.5846e+29, 7.8307e+00, 2.5250e-29, 1.1210e-44]], requires_grad=True) >>> m2 = torch.nn.utils.skip_init(torch.nn.Linear, in_features=6, out_features=1) >>> m2.weight Parameter containing: tensor([[-1.4677e+24, 4.5915e-41, 1.4013e-45, 0.0000e+00, -1.4677e+24, 4.5915e-41]], requires_grad=True) """ if not issubclass(module_cls, torch.nn.Module): raise RuntimeError('Expected a Module; got {}'.format(module_cls)) if 'device' not in inspect.signature(module_cls).parameters: raise RuntimeError('Module must support a \'device\' arg to skip initialization') final_device = kwargs.pop('device', 'cpu') kwargs['device'] = 'meta' return module_cls(*args, **kwargs).to_empty(device=final_device)
pytorch-master
torch/nn/utils/init.py
from collections import namedtuple import warnings import torch from torch import Tensor from ... import _VF from ..._jit_internal import Optional from typing import List, Tuple, Union, Iterable __all__ = ['PackedSequence', 'invert_permutation', 'pack_padded_sequence', 'pad_packed_sequence', 'pad_sequence', 'unpad_sequence', 'pack_sequence', 'unpack_sequence'] PackedSequence_ = namedtuple('PackedSequence_', ['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices']) # type annotation for PackedSequence_ to make it compatible with TorchScript PackedSequence_.__annotations__ = {'data': torch.Tensor, 'batch_sizes': torch.Tensor, 'sorted_indices': Optional[torch.Tensor], 'unsorted_indices': Optional[torch.Tensor]} def bind(optional, fn): if optional is None: return None return fn(optional) class PackedSequence(PackedSequence_): r"""Holds the data and list of :attr:`batch_sizes` of a packed sequence. All RNN modules accept packed sequences as inputs. Note: Instances of this class should never be created manually. They are meant to be instantiated by functions like :func:`pack_padded_sequence`. Batch sizes represent the number elements at each sequence step in the batch, not the varying sequence lengths passed to :func:`pack_padded_sequence`. For instance, given data ``abc`` and ``x`` the :class:`PackedSequence` would contain data ``axbc`` with ``batch_sizes=[2,1,1]``. Attributes: data (Tensor): Tensor containing packed sequence batch_sizes (Tensor): Tensor of integers holding information about the batch size at each sequence step sorted_indices (Tensor, optional): Tensor of integers holding how this :class:`PackedSequence` is constructed from sequences. unsorted_indices (Tensor, optional): Tensor of integers holding how this to recover the original sequences with correct order. .. note:: :attr:`data` can be on arbitrary device and of arbitrary dtype. :attr:`sorted_indices` and :attr:`unsorted_indices` must be ``torch.int64`` tensors on the same device as :attr:`data`. However, :attr:`batch_sizes` should always be a CPU ``torch.int64`` tensor. This invariant is maintained throughout :class:`PackedSequence` class, and all functions that construct a `:class:PackedSequence` in PyTorch (i.e., they only pass in tensors conforming to this constraint). """ def __new__(cls, data, batch_sizes=None, sorted_indices=None, unsorted_indices=None): return super(PackedSequence, cls).__new__( cls, *_packed_sequence_init_args(data, batch_sizes, sorted_indices, unsorted_indices)) # NOTE [ device and dtype of a PackedSequence ] # # See the note above in doc string (starting with ":attr:`data` can be on # arbitrary device..."). def pin_memory(self): # Why not convert `batch_sizes`? # See NOTE [ device and dtype of a PackedSequence ] return type(self)(self.data.pin_memory(), self.batch_sizes, bind(self.sorted_indices, lambda t: t.pin_memory()), bind(self.unsorted_indices, lambda t: t.pin_memory())) def cuda(self, *args, **kwargs): # Tests to see if 'cuda' should be added to kwargs ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(*args, **kwargs) if ex.is_cuda: return self.to(*args, **kwargs) return self.to(*args, device='cuda', **kwargs) def cpu(self, *args, **kwargs): ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(*args, **kwargs) if ex.device.type == 'cpu': return self.to(*args, **kwargs) return self.to(*args, device='cpu', **kwargs) def double(self): return self.to(dtype=torch.double) def float(self): return self.to(dtype=torch.float) def half(self): return self.to(dtype=torch.half) def long(self): return self.to(dtype=torch.long) def int(self): return self.to(dtype=torch.int) def short(self): return self.to(dtype=torch.short) def char(self): return self.to(dtype=torch.int8) def byte(self): return self.to(dtype=torch.uint8) def to(self, *args, **kwargs): r"""Performs dtype and/or device conversion on `self.data`. It has similar signature as :meth:`torch.Tensor.to`, except optional arguments like `non_blocking` and `copy` should be passed as kwargs, not args, or they will not apply to the index tensors. .. note:: If the ``self.data`` Tensor already has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. Otherwise, returns a copy with the desired configuration. """ # Why not convert `batch_sizes`? # See NOTE [ device and dtype of a PackedSequence ] data = self.data.to(*args, **kwargs) if data is self.data: return self else: # Does not forward device or dtype arg/kwargs, device is set from data.device kwargs = {k : v for k, v in filter(lambda t: t[0] != 'device' and t[0] != 'dtype', kwargs.items())} sorted_indices = bind(self.sorted_indices, lambda t: t.to(data.device, **kwargs)) unsorted_indices = bind(self.unsorted_indices, lambda t: t.to(data.device, **kwargs)) return type(self)(data, self.batch_sizes, sorted_indices, unsorted_indices) @property def is_cuda(self): r"""Returns true if `self.data` stored on a gpu""" return self.data.is_cuda def is_pinned(self): r"""Returns true if `self.data` stored on in pinned memory""" return self.data.is_pinned() # TorchScript doesn't support constructors on named tuples, so we use this helper # method to construct PackedSequence def _packed_sequence_init_args( data: Tensor, batch_sizes: Optional[Tensor] = None, sorted_indices: Optional[Tensor] = None, unsorted_indices: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]: # NB: if unsorted_indices is provided, it should be the inverse permutation # to sorted_indices. Don't assert it here because the PackedSequence ctor # should only be used internally. if unsorted_indices is None: unsorted_indices = invert_permutation(sorted_indices) # support being called as `PackedSequence(data, batch_sizes, sorted_indices)` if batch_sizes is not None: # TODO: Re-enable this check (.type isn't supported in TorchScript) if batch_sizes.device.type != 'cpu': raise ValueError( "batch_sizes should always be on CPU. " "Instances of PackedSequence should never be created manually. " "They should be instantiated by functions like pack_sequence " "and pack_padded_sequences in nn.utils.rnn. " "https://pytorch.org/docs/stable/nn.html#torch.nn.utils.rnn.pack_sequence") return data, batch_sizes, sorted_indices, unsorted_indices # support being called as `PackedSequence((data, batch_sizes), *, sorted_indices)` else: assert isinstance(data, (list, tuple)) and len(data) == 2 return data[0], data[1], sorted_indices, unsorted_indices def _packed_sequence_init( data: Tensor, batch_sizes: Optional[Tensor] = None, sorted_indices: Optional[Tensor] = None, unsorted_indices: Optional[Tensor] = None, ) -> PackedSequence: data, batch_sizes, sorted_indices, unsorted_indices = _packed_sequence_init_args( data, batch_sizes, sorted_indices, unsorted_indices) return PackedSequence(data, batch_sizes, sorted_indices, unsorted_indices) def invert_permutation(permutation: Optional[Tensor]) -> Optional[Tensor]: if permutation is None: return None output = torch.empty_like(permutation, memory_format=torch.legacy_contiguous_format) output.scatter_(0, permutation, torch.arange(0, permutation.numel(), device=permutation.device)) return output def pack_padded_sequence( input: Tensor, lengths: Tensor, batch_first: bool = False, enforce_sorted: bool = True, ) -> PackedSequence: r"""Packs a Tensor containing padded sequences of variable length. :attr:`input` can be of size ``T x B x *`` where `T` is the length of the longest sequence (equal to ``lengths[0]``), ``B`` is the batch size, and ``*`` is any number of dimensions (including 0). If ``batch_first`` is ``True``, ``B x T x *`` :attr:`input` is expected. For unsorted sequences, use `enforce_sorted = False`. If :attr:`enforce_sorted` is ``True``, the sequences should be sorted by length in a decreasing order, i.e. ``input[:,0]`` should be the longest sequence, and ``input[:,B-1]`` the shortest one. `enforce_sorted = True` is only necessary for ONNX export. Note: This function accepts any input that has at least two dimensions. You can apply it to pack the labels, and use the output of the RNN with them to compute the loss directly. A Tensor can be retrieved from a :class:`PackedSequence` object by accessing its ``.data`` attribute. Args: input (Tensor): padded batch of variable length sequences. lengths (Tensor or list(int)): list of sequence lengths of each batch element (must be on the CPU if provided as a tensor). batch_first (bool, optional): if ``True``, the input is expected in ``B x T x *`` format. enforce_sorted (bool, optional): if ``True``, the input is expected to contain sequences sorted by length in a decreasing order. If ``False``, the input will get sorted unconditionally. Default: ``True``. Returns: a :class:`PackedSequence` object """ if torch._C._get_tracing_state() and not isinstance(lengths, torch.Tensor): warnings.warn('pack_padded_sequence has been called with a Python list of ' 'sequence lengths. The tracer cannot track the data flow of Python ' 'values, and it will treat them as constants, likely rendering ' 'the trace incorrect for any other combination of lengths.', stacklevel=2) lengths = torch.as_tensor(lengths, dtype=torch.int64) if enforce_sorted: sorted_indices = None else: lengths, sorted_indices = torch.sort(lengths, descending=True) sorted_indices = sorted_indices.to(input.device) batch_dim = 0 if batch_first else 1 input = input.index_select(batch_dim, sorted_indices) data, batch_sizes = \ _VF._pack_padded_sequence(input, lengths, batch_first) return _packed_sequence_init(data, batch_sizes, sorted_indices, None) def pad_packed_sequence( sequence: PackedSequence, batch_first: bool = False, padding_value: float = 0.0, total_length: Optional[int] = None, ) -> Tuple[Tensor, Tensor]: r"""Pads a packed batch of variable length sequences. It is an inverse operation to :func:`pack_padded_sequence`. The returned Tensor's data will be of size ``T x B x *``, where `T` is the length of the longest sequence and `B` is the batch size. If ``batch_first`` is True, the data will be transposed into ``B x T x *`` format. Example: >>> from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence >>> seq = torch.tensor([[1,2,0], [3,0,0], [4,5,6]]) >>> lens = [2, 1, 3] >>> packed = pack_padded_sequence(seq, lens, batch_first=True, enforce_sorted=False) >>> packed PackedSequence(data=tensor([4, 1, 3, 5, 2, 6]), batch_sizes=tensor([3, 2, 1]), sorted_indices=tensor([2, 0, 1]), unsorted_indices=tensor([1, 2, 0])) >>> seq_unpacked, lens_unpacked = pad_packed_sequence(packed, batch_first=True) >>> seq_unpacked tensor([[1, 2, 0], [3, 0, 0], [4, 5, 6]]) >>> lens_unpacked tensor([2, 1, 3]) .. note:: :attr:`total_length` is useful to implement the ``pack sequence -> recurrent network -> unpack sequence`` pattern in a :class:`~torch.nn.Module` wrapped in :class:`~torch.nn.DataParallel`. See :ref:`this FAQ section <pack-rnn-unpack-with-data-parallelism>` for details. Args: sequence (PackedSequence): batch to pad batch_first (bool, optional): if ``True``, the output will be in ``B x T x *`` format. padding_value (float, optional): values for padded elements. total_length (int, optional): if not ``None``, the output will be padded to have length :attr:`total_length`. This method will throw :class:`ValueError` if :attr:`total_length` is less than the max sequence length in :attr:`sequence`. Returns: Tuple of Tensor containing the padded sequence, and a Tensor containing the list of lengths of each sequence in the batch. Batch elements will be re-ordered as they were ordered originally when the batch was passed to ``pack_padded_sequence`` or ``pack_sequence``. """ max_seq_length = sequence.batch_sizes.size(0) if total_length is not None: if total_length < max_seq_length: raise ValueError("Expected total_length to be at least the length " "of the longest sequence in input, but got " "total_length={} and max sequence length being {}" .format(total_length, max_seq_length)) max_seq_length = total_length padded_output, lengths = _VF._pad_packed_sequence( sequence.data, sequence.batch_sizes, batch_first, padding_value, max_seq_length) unsorted_indices = sequence.unsorted_indices if unsorted_indices is not None: batch_dim = 0 if batch_first else 1 return padded_output.index_select(batch_dim, unsorted_indices), lengths[unsorted_indices.cpu()] return padded_output, lengths def pad_sequence( sequences: Union[Tensor, List[Tensor]], batch_first: bool = False, padding_value: float = 0.0, ) -> Tensor: r"""Pad a list of variable length Tensors with ``padding_value`` ``pad_sequence`` stacks a list of Tensors along a new dimension, and pads them to equal length. For example, if the input is list of sequences with size ``L x *`` and if batch_first is False, and ``T x B x *`` otherwise. `B` is batch size. It is equal to the number of elements in ``sequences``. `T` is length of the longest sequence. `L` is length of the sequence. `*` is any number of trailing dimensions, including none. Example: >>> from torch.nn.utils.rnn import pad_sequence >>> a = torch.ones(25, 300) >>> b = torch.ones(22, 300) >>> c = torch.ones(15, 300) >>> pad_sequence([a, b, c]).size() torch.Size([25, 3, 300]) Note: This function returns a Tensor of size ``T x B x *`` or ``B x T x *`` where `T` is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same. Args: sequences (list[Tensor]): list of variable length sequences. batch_first (bool, optional): output will be in ``B x T x *`` if True, or in ``T x B x *`` otherwise. Default: False. padding_value (float, optional): value for padded elements. Default: 0. Returns: Tensor of size ``T x B x *`` if :attr:`batch_first` is ``False``. Tensor of size ``B x T x *`` otherwise """ if not (torch.jit.is_tracing() or torch.jit.is_scripting()): # JIT doesn't support `Iterable` if not isinstance(sequences, Iterable): msg = ('pad_sequence: Expected iterable for input sequences, but got arg of type: ' f'{type(sequences)}') raise RuntimeError(msg) # In JIT context this leads to, # RuntimeError: cannot statically infer the expected size of a list in this context sequences = tuple(sequences) else: # For JIT, we only support Union[Tensor, Tuple[Tensor]] if isinstance(sequences, torch.Tensor): sequences = sequences.unbind(0) # assuming trailing dimensions and type of all the Tensors # in sequences are same and fetching those from sequences[0] return torch._C._nn.pad_sequence(sequences, batch_first, padding_value) def unpad_sequence( padded_sequences: Tensor, lengths: Tensor, batch_first: bool = False, ) -> List[Tensor]: r"""Unpad padded Tensor into a list of variable length Tensors ``unpad_sequence`` unstacks padded Tensor into a list of variable length Tensors. Example: >>> from torch.nn.utils.rnn import pad_sequence, unpad_sequence >>> a = torch.ones(25, 300) >>> b = torch.ones(22, 300) >>> c = torch.ones(15, 300) >>> sequences = [a, b, c] >>> padded_sequences = pad_sequence(sequences) >>> lengths = torch.as_tensor([v.size(0) for v in sequences]) >>> unpadded_sequences = unpad_sequence(padded_sequences, lengths) >>> torch.allclose(sequences[0], unpadded_sequences[0]) True >>> torch.allclose(sequences[1], unpadded_sequences[1]) True >>> torch.allclose(sequences[2], unpadded_sequences[2]) True Args: padded_sequences (Tensor): padded sequences. lengths (Tensor): length of original (unpadded) sequences. batch_first (bool, optional): whether batch dimension first or not. Default: False. Returns: a list of :class:`Tensor` objects """ unpadded_sequences = [] if not batch_first: padded_sequences.transpose_(0, 1) max_length = padded_sequences.shape[1] idx = torch.arange(max_length) for seq, length in zip(padded_sequences, lengths): mask = idx < length unpacked_seq = seq[mask] unpadded_sequences.append(unpacked_seq) return unpadded_sequences def pack_sequence(sequences: List[Tensor], enforce_sorted: bool = True) -> PackedSequence: r"""Packs a list of variable length Tensors Consecutive call of the next functions: ``pad_sequence``, ``pack_padded_sequence``. ``sequences`` should be a list of Tensors of size ``L x *``, where `L` is the length of a sequence and `*` is any number of trailing dimensions, including zero. For unsorted sequences, use `enforce_sorted = False`. If ``enforce_sorted`` is ``True``, the sequences should be sorted in the order of decreasing length. ``enforce_sorted = True`` is only necessary for ONNX export. Example: >>> from torch.nn.utils.rnn import pack_sequence >>> a = torch.tensor([1,2,3]) >>> b = torch.tensor([4,5]) >>> c = torch.tensor([6]) >>> pack_sequence([a, b, c]) PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None) Args: sequences (list[Tensor]): A list of sequences of decreasing length. enforce_sorted (bool, optional): if ``True``, checks that the input contains sequences sorted by length in a decreasing order. If ``False``, this condition is not checked. Default: ``True``. Returns: a :class:`PackedSequence` object """ lengths = torch.as_tensor([v.size(0) for v in sequences]) return pack_padded_sequence(pad_sequence(sequences), lengths, enforce_sorted=enforce_sorted) def unpack_sequence(packed_sequences: PackedSequence) -> List[Tensor]: r"""Unpacks PackedSequence into a list of variable length Tensors ``packed_sequences`` should be a PackedSequence object. Example: >>> from torch.nn.utils.rnn import pack_sequence, unpack_sequence >>> a = torch.tensor([1,2,3]) >>> b = torch.tensor([4,5]) >>> c = torch.tensor([6]) >>> sequences = [a, b, c] >>> print(sequences) [tensor([1, 2, 3]), tensor([4, 5]), tensor([6])] >>> packed_sequences = pack_sequence(sequences) >>> print(packed_sequences) PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None) >>> unpacked_sequences = unpack_sequence(packed_sequences) >>> print(unpacked_sequences) [tensor([1, 2, 3]), tensor([4, 5]), tensor([6])] Args: packed_sequences (PackedSequence): A PackedSequence object. Returns: a list of :class:`Tensor` objects """ padded_sequences, lengths = pad_packed_sequence(packed_sequences, batch_first=True) unpacked_sequences = unpad_sequence(padded_sequences, lengths, batch_first=True) return unpacked_sequences
pytorch-master
torch/nn/utils/rnn.py
import warnings import torch from torch._six import inf from typing import Union, Iterable _tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]] __all__ = ['clip_grad_norm_', 'clip_grad_norm', 'clip_grad_value_'] def clip_grad_norm_( parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0, error_if_nonfinite: bool = False) -> torch.Tensor: r"""Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Args: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. error_if_nonfinite (bool): if True, an error is thrown if the total norm of the gradients from :attr:`parameters` is ``nan``, ``inf``, or ``-inf``. Default: False (will switch to True in the future) Returns: Total norm of the parameter gradients (viewed as a single vector). """ if isinstance(parameters, torch.Tensor): parameters = [parameters] grads = [p.grad for p in parameters if p.grad is not None] max_norm = float(max_norm) norm_type = float(norm_type) if len(grads) == 0: return torch.tensor(0.) device = grads[0].device if norm_type == inf: norms = [g.detach().abs().max().to(device) for g in grads] total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms)) else: total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type) if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()): raise RuntimeError( f'The total norm of order {norm_type} for gradients from ' '`parameters` is non-finite, so it cannot be clipped. To disable ' 'this error and scale the gradients by the non-finite norm anyway, ' 'set `error_if_nonfinite=False`') clip_coef = max_norm / (total_norm + 1e-6) # Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so # avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization # when the gradients do not reside in CPU memory. clip_coef_clamped = torch.clamp(clip_coef, max=1.0) for g in grads: g.detach().mul_(clip_coef_clamped.to(g.device)) return total_norm def clip_grad_norm( parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2., error_if_nonfinite: bool = False) -> torch.Tensor: r"""Clips gradient norm of an iterable of parameters. .. warning:: This method is now deprecated in favor of :func:`torch.nn.utils.clip_grad_norm_`. """ warnings.warn("torch.nn.utils.clip_grad_norm is now deprecated in favor " "of torch.nn.utils.clip_grad_norm_.", stacklevel=2) return clip_grad_norm_(parameters, max_norm, norm_type, error_if_nonfinite) def clip_grad_value_(parameters: _tensor_or_tensors, clip_value: float) -> None: r"""Clips gradient of an iterable of parameters at specified value. Gradients are modified in-place. Args: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized clip_value (float or int): maximum allowed value of the gradients. The gradients are clipped in the range :math:`\left[\text{-clip\_value}, \text{clip\_value}\right]` """ if isinstance(parameters, torch.Tensor): parameters = [parameters] clip_value = float(clip_value) for p in filter(lambda p: p.grad is not None, parameters): p.grad.data.clamp_(min=-clip_value, max=clip_value)
pytorch-master
torch/nn/utils/clip_grad.py
from functools import reduce import operator import torch import torch.nn.functional as F from .expanded_weights_impl import ExpandedWeight, implements_per_sample_grads from .expanded_weights_utils import standard_kwargs, \ forward_helper, set_grad_sample_if_exists, unpack_expanded_weight_or_tensor from typing import List, Optional @implements_per_sample_grads(F.group_norm) class GroupNormPerSampleGrad(torch.autograd.Function): @staticmethod def forward(ctx, kwarg_names, _, *expanded_args_and_kwargs): expanded_args, expanded_kwargs = standard_kwargs(kwarg_names, expanded_args_and_kwargs) input, num_groups = expanded_args N = input.shape[0] C = input.shape[1] HxW = reduce(operator.mul, input.shape[2:], 1) weight, bias, eps = expanded_kwargs['weight'], expanded_kwargs['bias'], expanded_kwargs['eps'] output, mean, rstd = forward_helper(torch.native_group_norm, (input, weight, bias, N, C, HxW, num_groups, eps), {}) ctx.input, ctx.num_groups = input, num_groups ctx.weight, ctx.eps = weight, eps ctx.mean, ctx.rstd = mean, rstd if isinstance(bias, ExpandedWeight): ctx.bias = bias if input.requires_grad and isinstance(weight, ExpandedWeight): ctx.weight = weight return output @staticmethod def backward(ctx, grad_output): input, num_groups = ctx.input, ctx.num_groups weight, bias, eps = ctx.weight, ctx.bias, ctx.eps mean, rstd = ctx.mean, ctx.rstd results: List[Optional[torch.Tensor]] = [] results.append(None) # for kwarg names results.append(None) # for op reference if input.requires_grad: weight_c = unpack_expanded_weight_or_tensor(weight, lambda t: t.contiguous()) input_c = input.contiguous() grad_output_c = grad_output.contiguous() if grad_output is not None else None N = input.shape[0] C = input.shape[1] HxW = 1 for s in input.shape[2:]: HxW *= s bw_fn = torch.ops.aten.native_group_norm_backward results.append(bw_fn(grad_output_c, input_c, mean, rstd, weight_c, N, C, HxW, num_groups, (True, False, False))[0]) else: results.append(None) # weight and bias don't compute batched gradients; no other arguments are differentiable results = results + [None] * 4 # set grad_sample field for weight and bias with per sample gradients if hasattr(ctx, "weight"): set_grad_sample_if_exists(weight, lambda _: torch.einsum("ni...->ni", F.group_norm(input, num_groups, eps=eps) * grad_output)) if hasattr(ctx, "bias"): set_grad_sample_if_exists(bias, lambda _: torch.einsum("ni...->ni", grad_output)) return tuple(results)
pytorch-master
torch/nn/utils/_expanded_weights/group_norm_expanded_weights.py
import torch import torch.nn.functional as F from .expanded_weights_impl import ExpandedWeight, implements_per_sample_grads from .expanded_weights_utils import forward_helper, set_grad_sample_if_exists, \ standard_kwargs, sum_over_all_but_batch_and_last_n, unpack_expanded_weight_or_tensor from typing import List, Optional @implements_per_sample_grads(F.layer_norm) class LayerNormPerSampleGrad(torch.autograd.Function): @staticmethod def forward(ctx, kwarg_names, _, *expanded_args_and_kwargs): expanded_args, expanded_kwargs = standard_kwargs(kwarg_names, expanded_args_and_kwargs) input = expanded_args[0] normalized_shape = expanded_args[1] if len(input.shape) <= len(normalized_shape): raise RuntimeError("Expanded Weights: Layer norm should not normalize over batch dimension for per sample gradient" f"computations but got that normalized shape, {normalized_shape}, matched input shape.") output, mean, rstd = forward_helper(torch.native_layer_norm, expanded_args, expanded_kwargs) ctx.args = expanded_args if input.requires_grad or isinstance(expanded_kwargs['weight'], ExpandedWeight): ctx.weight = expanded_kwargs['weight'] if input.requires_grad or isinstance(expanded_kwargs['bias'], ExpandedWeight): ctx.bias = expanded_kwargs['bias'] ctx.eps = expanded_kwargs['eps'] ctx.mean, ctx.rstd = mean, rstd return output @staticmethod def backward(ctx, grad_output): def weight_per_sample_grad(weight): return sum_over_all_but_batch_and_last_n(F.layer_norm(input, normalized_shape, eps=ctx.eps) * grad_output, weight.dim()) input, normalized_shape = ctx.args mean, rstd = ctx.mean, ctx.rstd results: List[Optional[torch.Tensor]] = [] results.append(None) # for kwarg names results.append(None) # for op reference if input.requires_grad: weight_ = unpack_expanded_weight_or_tensor(ctx.weight) bias_ = unpack_expanded_weight_or_tensor(ctx.bias) results.append(torch.ops.aten.native_layer_norm_backward( grad_output, input, normalized_shape, mean, rstd, weight_, bias_, (True, False, False))[0]) else: results.append(None) # weight and bias don't compute batched gradients; no other arguments are differentiable results = results + [None] * 4 # set grad_sample field for weight and bias with per sample gradients if hasattr(ctx, "weight"): set_grad_sample_if_exists(ctx.weight, weight_per_sample_grad) if hasattr(ctx, "bias"): set_grad_sample_if_exists(ctx.bias, lambda bias: sum_over_all_but_batch_and_last_n(grad_output, bias.dim())) return tuple(results)
pytorch-master
torch/nn/utils/_expanded_weights/layer_norm_expanded_weights.py