python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
import tensorboard from distutils.version import LooseVersion if not hasattr(tensorboard, "__version__") or LooseVersion( tensorboard.__version__ ) < LooseVersion("1.15"): raise ImportError("TensorBoard logging requires TensorBoard version 1.15 or above") del LooseVersion del tensorboard from .writer import FileWriter, SummaryWriter # noqa: F401 from tensorboard.summary.writer.record_writer import RecordWriter # noqa: F401
pytorch-master
torch/utils/tensorboard/__init__.py
import math import numpy as np from ._convert_np import make_np from ._utils import make_grid from tensorboard.compat import tf from tensorboard.plugins.projector.projector_config_pb2 import EmbeddingInfo def make_tsv(metadata, save_path, metadata_header=None): if not metadata_header: metadata = [str(x) for x in metadata] else: assert len(metadata_header) == len( metadata[0] ), "len of header must be equal to the number of columns in metadata" metadata = ["\t".join(str(e) for e in l) for l in [metadata_header] + metadata] metadata_bytes = tf.compat.as_bytes("\n".join(metadata) + "\n") fs = tf.io.gfile.get_filesystem(save_path) fs.write(fs.join(save_path, "metadata.tsv"), metadata_bytes, binary_mode=True) # https://github.com/tensorflow/tensorboard/issues/44 image label will be squared def make_sprite(label_img, save_path): from PIL import Image from io import BytesIO # this ensures the sprite image has correct dimension as described in # https://www.tensorflow.org/get_started/embedding_viz nrow = int(math.ceil((label_img.size(0)) ** 0.5)) arranged_img_CHW = make_grid(make_np(label_img), ncols=nrow) # augment images so that #images equals nrow*nrow arranged_augment_square_HWC = np.zeros( (arranged_img_CHW.shape[2], arranged_img_CHW.shape[2], 3) ) arranged_img_HWC = arranged_img_CHW.transpose(1, 2, 0) # chw -> hwc arranged_augment_square_HWC[: arranged_img_HWC.shape[0], :, :] = arranged_img_HWC im = Image.fromarray(np.uint8((arranged_augment_square_HWC * 255).clip(0, 255))) with BytesIO() as buf: im.save(buf, format="PNG") im_bytes = buf.getvalue() fs = tf.io.gfile.get_filesystem(save_path) fs.write(fs.join(save_path, "sprite.png"), im_bytes, binary_mode=True) def get_embedding_info(metadata, label_img, filesys, subdir, global_step, tag): info = EmbeddingInfo() info.tensor_name = "{}:{}".format(tag, str(global_step).zfill(5)) info.tensor_path = filesys.join(subdir, "tensors.tsv") if metadata is not None: info.metadata_path = filesys.join(subdir, "metadata.tsv") if label_img is not None: info.sprite.image_path = filesys.join(subdir, "sprite.png") info.sprite.single_image_dim.extend([label_img.size(3), label_img.size(2)]) return info def write_pbtxt(save_path, contents): fs = tf.io.gfile.get_filesystem(save_path) config_path = fs.join(save_path, "projector_config.pbtxt") fs.write(config_path, tf.compat.as_bytes(contents), binary_mode=True) def make_mat(matlist, save_path): fs = tf.io.gfile.get_filesystem(save_path) with tf.io.gfile.GFile(fs.join(save_path, "tensors.tsv"), "wb") as f: for x in matlist: x = [str(i.item()) for i in x] f.write(tf.compat.as_bytes("\t".join(x) + "\n"))
pytorch-master
torch/utils/tensorboard/_embedding.py
from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.node_def_pb2 import NodeDef from tensorboard.compat.proto.versions_pb2 import VersionDef from tensorboard.compat.proto.attr_value_pb2 import AttrValue from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto def load_onnx_graph(fname): import onnx m = onnx.load(fname) g = m.graph return parse(g) def parse(graph): nodes_proto = [] nodes = [] import itertools for node in itertools.chain(graph.input, graph.output): nodes_proto.append(node) for node in nodes_proto: print(node.name) shapeproto = TensorShapeProto( dim=[ TensorShapeProto.Dim(size=d.dim_value) for d in node.type.tensor_type.shape.dim ] ) nodes.append( NodeDef( name=node.name.encode(encoding="utf_8"), op="Variable", input=[], attr={ "dtype": AttrValue(type=node.type.tensor_type.elem_type), "shape": AttrValue(shape=shapeproto), }, ) ) for node in graph.node: _attr = [] for s in node.attribute: _attr.append(" = ".join([str(f[1]) for f in s.ListFields()])) attr = ", ".join(_attr).encode(encoding="utf_8") print(node.output[0]) nodes.append( NodeDef( name=node.output[0].encode(encoding="utf_8"), op=node.op_type, input=node.input, attr={"parameters": AttrValue(s=attr)}, ) ) # two pass token replacement, appends opname to object id mapping = {} for node in nodes: mapping[node.name] = node.op + "_" + node.name return GraphDef(node=nodes, versions=VersionDef(producer=22))
pytorch-master
torch/utils/tensorboard/_onnx_graph.py
import json import logging import os from typing import Optional import numpy as np from google.protobuf import struct_pb2 # pylint: disable=unused-import from six.moves import range from tensorboard.compat.proto.summary_pb2 import HistogramProto from tensorboard.compat.proto.summary_pb2 import Summary from tensorboard.compat.proto.summary_pb2 import SummaryMetadata from tensorboard.compat.proto.tensor_pb2 import TensorProto from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto from tensorboard.plugins.custom_scalar import layout_pb2 from tensorboard.plugins.pr_curve.plugin_data_pb2 import PrCurvePluginData from tensorboard.plugins.text.plugin_data_pb2 import TextPluginData from ._convert_np import make_np from ._utils import _prepare_video, convert_to_HWC __all__ = ['hparams', 'scalar', 'histogram_raw', 'histogram', 'make_histogram', 'image', 'image_boxes', 'draw_boxes', 'make_image', 'video', 'make_video', 'audio', 'custom_scalars', 'text', 'pr_curve_raw', 'pr_curve', 'compute_curve', 'mesh'] logger = logging.getLogger(__name__) def _calc_scale_factor(tensor): converted = tensor.numpy() if not isinstance(tensor, np.ndarray) else tensor return 1 if converted.dtype == np.uint8 else 255 def _draw_single_box( image, xmin, ymin, xmax, ymax, display_str, color="black", color_text="black", thickness=2, ): from PIL import ImageDraw, ImageFont font = ImageFont.load_default() draw = ImageDraw.Draw(image) (left, right, top, bottom) = (xmin, xmax, ymin, ymax) draw.line( [(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color, ) if display_str: text_bottom = bottom # Reverse list and print from bottom to top. text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle( [ (left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom), ], fill=color, ) draw.text( (left + margin, text_bottom - text_height - margin), display_str, fill=color_text, font=font, ) return image def hparams(hparam_dict=None, metric_dict=None, hparam_domain_discrete=None): """Outputs three `Summary` protocol buffers needed by hparams plugin. `Experiment` keeps the metadata of an experiment, such as the name of the hyperparameters and the name of the metrics. `SessionStartInfo` keeps key-value pairs of the hyperparameters `SessionEndInfo` describes status of the experiment e.g. STATUS_SUCCESS Args: hparam_dict: A dictionary that contains names of the hyperparameters and their values. metric_dict: A dictionary that contains names of the metrics and their values. hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that contains names of the hyperparameters and all discrete values they can hold Returns: The `Summary` protobufs for Experiment, SessionStartInfo and SessionEndInfo """ import torch from six import string_types from tensorboard.plugins.hparams.api_pb2 import ( Experiment, HParamInfo, MetricInfo, MetricName, Status, DataType, ) from tensorboard.plugins.hparams.metadata import ( PLUGIN_NAME, PLUGIN_DATA_VERSION, EXPERIMENT_TAG, SESSION_START_INFO_TAG, SESSION_END_INFO_TAG, ) from tensorboard.plugins.hparams.plugin_data_pb2 import ( HParamsPluginData, SessionEndInfo, SessionStartInfo, ) # TODO: expose other parameters in the future. # hp = HParamInfo(name='lr',display_name='learning rate', # type=DataType.DATA_TYPE_FLOAT64, domain_interval=Interval(min_value=10, # max_value=100)) # mt = MetricInfo(name=MetricName(tag='accuracy'), display_name='accuracy', # description='', dataset_type=DatasetType.DATASET_VALIDATION) # exp = Experiment(name='123', description='456', time_created_secs=100.0, # hparam_infos=[hp], metric_infos=[mt], user='tw') if not isinstance(hparam_dict, dict): logger.warning("parameter: hparam_dict should be a dictionary, nothing logged.") raise TypeError( "parameter: hparam_dict should be a dictionary, nothing logged." ) if not isinstance(metric_dict, dict): logger.warning("parameter: metric_dict should be a dictionary, nothing logged.") raise TypeError( "parameter: metric_dict should be a dictionary, nothing logged." ) hparam_domain_discrete = hparam_domain_discrete or {} if not isinstance(hparam_domain_discrete, dict): raise TypeError( "parameter: hparam_domain_discrete should be a dictionary, nothing logged." ) for k, v in hparam_domain_discrete.items(): if ( k not in hparam_dict or not isinstance(v, list) or not all(isinstance(d, type(hparam_dict[k])) for d in v) ): raise TypeError( "parameter: hparam_domain_discrete[{}] should be a list of same type as " "hparam_dict[{}].".format(k, k) ) hps = [] ssi = SessionStartInfo() for k, v in hparam_dict.items(): if v is None: continue if isinstance(v, int) or isinstance(v, float): ssi.hparams[k].number_value = v if k in hparam_domain_discrete: domain_discrete: Optional[struct_pb2.ListValue] = struct_pb2.ListValue( values=[ struct_pb2.Value(number_value=d) for d in hparam_domain_discrete[k] ] ) else: domain_discrete = None hps.append( HParamInfo( name=k, type=DataType.Value("DATA_TYPE_FLOAT64"), domain_discrete=domain_discrete, ) ) continue if isinstance(v, string_types): ssi.hparams[k].string_value = v if k in hparam_domain_discrete: domain_discrete = struct_pb2.ListValue( values=[ struct_pb2.Value(string_value=d) for d in hparam_domain_discrete[k] ] ) else: domain_discrete = None hps.append( HParamInfo( name=k, type=DataType.Value("DATA_TYPE_STRING"), domain_discrete=domain_discrete, ) ) continue if isinstance(v, bool): ssi.hparams[k].bool_value = v if k in hparam_domain_discrete: domain_discrete = struct_pb2.ListValue( values=[ struct_pb2.Value(bool_value=d) for d in hparam_domain_discrete[k] ] ) else: domain_discrete = None hps.append( HParamInfo( name=k, type=DataType.Value("DATA_TYPE_BOOL"), domain_discrete=domain_discrete, ) ) continue if isinstance(v, torch.Tensor): v = make_np(v)[0] ssi.hparams[k].number_value = v hps.append(HParamInfo(name=k, type=DataType.Value("DATA_TYPE_FLOAT64"))) continue raise ValueError( "value should be one of int, float, str, bool, or torch.Tensor" ) content = HParamsPluginData(session_start_info=ssi, version=PLUGIN_DATA_VERSION) smd = SummaryMetadata( plugin_data=SummaryMetadata.PluginData( plugin_name=PLUGIN_NAME, content=content.SerializeToString() ) ) ssi = Summary(value=[Summary.Value(tag=SESSION_START_INFO_TAG, metadata=smd)]) mts = [MetricInfo(name=MetricName(tag=k)) for k in metric_dict.keys()] exp = Experiment(hparam_infos=hps, metric_infos=mts) content = HParamsPluginData(experiment=exp, version=PLUGIN_DATA_VERSION) smd = SummaryMetadata( plugin_data=SummaryMetadata.PluginData( plugin_name=PLUGIN_NAME, content=content.SerializeToString() ) ) exp = Summary(value=[Summary.Value(tag=EXPERIMENT_TAG, metadata=smd)]) sei = SessionEndInfo(status=Status.Value("STATUS_SUCCESS")) content = HParamsPluginData(session_end_info=sei, version=PLUGIN_DATA_VERSION) smd = SummaryMetadata( plugin_data=SummaryMetadata.PluginData( plugin_name=PLUGIN_NAME, content=content.SerializeToString() ) ) sei = Summary(value=[Summary.Value(tag=SESSION_END_INFO_TAG, metadata=smd)]) return exp, ssi, sei def scalar(name, tensor, collections=None, new_style=False, double_precision=False): """Outputs a `Summary` protocol buffer containing a single scalar value. The generated Summary has a Tensor.proto containing the input Tensor. Args: name: A name for the generated node. Will also serve as the series name in TensorBoard. tensor: A real numeric Tensor containing a single value. collections: Optional list of graph collections keys. The new summary op is added to these collections. Defaults to `[GraphKeys.SUMMARIES]`. new_style: Whether to use new style (tensor field) or old style (simple_value field). New style could lead to faster data loading. Returns: A scalar `Tensor` of type `string`. Which contains a `Summary` protobuf. Raises: ValueError: If tensor has the wrong shape or type. """ tensor = make_np(tensor).squeeze() assert ( tensor.ndim == 0 ), f"Tensor should contain one element (0 dimensions). Was given size: {tensor.size} and {tensor.ndim} dimensions." # python float is double precision in numpy scalar = float(tensor) if new_style: tensor_proto = TensorProto(float_val=[scalar], dtype="DT_FLOAT") if double_precision: tensor_proto = TensorProto(double_val=[scalar], dtype="DT_DOUBLE") plugin_data = SummaryMetadata.PluginData(plugin_name="scalars") smd = SummaryMetadata(plugin_data=plugin_data) return Summary( value=[ Summary.Value( tag=name, tensor=tensor_proto, metadata=smd, ) ] ) else: return Summary(value=[Summary.Value(tag=name, simple_value=scalar)]) def histogram_raw(name, min, max, num, sum, sum_squares, bucket_limits, bucket_counts): # pylint: disable=line-too-long """Outputs a `Summary` protocol buffer with a histogram. The generated [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto) has one summary value containing a histogram for `values`. Args: name: A name for the generated node. Will also serve as a series name in TensorBoard. min: A float or int min value max: A float or int max value num: Int number of values sum: Float or int sum of all values sum_squares: Float or int sum of squares for all values bucket_limits: A numeric `Tensor` with upper value per bucket bucket_counts: A numeric `Tensor` with number of values per bucket Returns: A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ hist = HistogramProto( min=min, max=max, num=num, sum=sum, sum_squares=sum_squares, bucket_limit=bucket_limits, bucket=bucket_counts, ) return Summary(value=[Summary.Value(tag=name, histo=hist)]) def histogram(name, values, bins, max_bins=None): # pylint: disable=line-too-long """Outputs a `Summary` protocol buffer with a histogram. The generated [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto) has one summary value containing a histogram for `values`. This op reports an `InvalidArgument` error if any value is not finite. Args: name: A name for the generated node. Will also serve as a series name in TensorBoard. values: A real numeric `Tensor`. Any shape. Values to use to build the histogram. Returns: A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ values = make_np(values) hist = make_histogram(values.astype(float), bins, max_bins) return Summary(value=[Summary.Value(tag=name, histo=hist)]) def make_histogram(values, bins, max_bins=None): """Convert values into a histogram proto using logic from histogram.cc.""" if values.size == 0: raise ValueError("The input has no element.") values = values.reshape(-1) counts, limits = np.histogram(values, bins=bins) num_bins = len(counts) if max_bins is not None and num_bins > max_bins: subsampling = num_bins // max_bins subsampling_remainder = num_bins % subsampling if subsampling_remainder != 0: counts = np.pad( counts, pad_width=[[0, subsampling - subsampling_remainder]], mode="constant", constant_values=0, ) counts = counts.reshape(-1, subsampling).sum(axis=-1) new_limits = np.empty((counts.size + 1,), limits.dtype) new_limits[:-1] = limits[:-1:subsampling] new_limits[-1] = limits[-1] limits = new_limits # Find the first and the last bin defining the support of the histogram: cum_counts = np.cumsum(np.greater(counts, 0, dtype=np.int32)) start, end = np.searchsorted(cum_counts, [0, cum_counts[-1] - 1], side="right") start = int(start) end = int(end) + 1 del cum_counts # TensorBoard only includes the right bin limits. To still have the leftmost limit # included, we include an empty bin left. # If start == 0, we need to add an empty one left, otherwise we can just include the bin left to the # first nonzero-count bin: counts = ( counts[start - 1 : end] if start > 0 else np.concatenate([[0], counts[:end]]) ) limits = limits[start : end + 1] if counts.size == 0 or limits.size == 0: raise ValueError("The histogram is empty, please file a bug report.") sum_sq = values.dot(values) return HistogramProto( min=values.min(), max=values.max(), num=len(values), sum=values.sum(), sum_squares=sum_sq, bucket_limit=limits.tolist(), bucket=counts.tolist(), ) def image(tag, tensor, rescale=1, dataformats="NCHW"): """Outputs a `Summary` protocol buffer with images. The summary has up to `max_images` summary values containing images. The images are built from `tensor` which must be 3-D with shape `[height, width, channels]` and where `channels` can be: * 1: `tensor` is interpreted as Grayscale. * 3: `tensor` is interpreted as RGB. * 4: `tensor` is interpreted as RGBA. The `name` in the outputted Summary.Value protobufs is generated based on the name, with a suffix depending on the max_outputs setting: * If `max_outputs` is 1, the summary value tag is '*name*/image'. * If `max_outputs` is greater than 1, the summary value tags are generated sequentially as '*name*/image/0', '*name*/image/1', etc. Args: tag: A name for the generated node. Will also serve as a series name in TensorBoard. tensor: A 3-D `uint8` or `float32` `Tensor` of shape `[height, width, channels]` where `channels` is 1, 3, or 4. 'tensor' can either have values in [0, 1] (float32) or [0, 255] (uint8). The image() function will scale the image values to [0, 255] by applying a scale factor of either 1 (uint8) or 255 (float32). Returns: A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ tensor = make_np(tensor) tensor = convert_to_HWC(tensor, dataformats) # Do not assume that user passes in values in [0, 255], use data type to detect scale_factor = _calc_scale_factor(tensor) tensor = tensor.astype(np.float32) tensor = (tensor * scale_factor).astype(np.uint8) image = make_image(tensor, rescale=rescale) return Summary(value=[Summary.Value(tag=tag, image=image)]) def image_boxes( tag, tensor_image, tensor_boxes, rescale=1, dataformats="CHW", labels=None ): """Outputs a `Summary` protocol buffer with images.""" tensor_image = make_np(tensor_image) tensor_image = convert_to_HWC(tensor_image, dataformats) tensor_boxes = make_np(tensor_boxes) tensor_image = tensor_image.astype(np.float32) * _calc_scale_factor(tensor_image) image = make_image( tensor_image.astype(np.uint8), rescale=rescale, rois=tensor_boxes, labels=labels ) return Summary(value=[Summary.Value(tag=tag, image=image)]) def draw_boxes(disp_image, boxes, labels=None): # xyxy format num_boxes = boxes.shape[0] list_gt = range(num_boxes) for i in list_gt: disp_image = _draw_single_box( disp_image, boxes[i, 0], boxes[i, 1], boxes[i, 2], boxes[i, 3], display_str=None if labels is None else labels[i], color="Red", ) return disp_image def make_image(tensor, rescale=1, rois=None, labels=None): """Convert a numpy representation of an image to Image protobuf""" from PIL import Image height, width, channel = tensor.shape scaled_height = int(height * rescale) scaled_width = int(width * rescale) image = Image.fromarray(tensor) if rois is not None: image = draw_boxes(image, rois, labels=labels) image = image.resize((scaled_width, scaled_height), Image.ANTIALIAS) import io output = io.BytesIO() image.save(output, format="PNG") image_string = output.getvalue() output.close() return Summary.Image( height=height, width=width, colorspace=channel, encoded_image_string=image_string, ) def video(tag, tensor, fps=4): tensor = make_np(tensor) tensor = _prepare_video(tensor) # If user passes in uint8, then we don't need to rescale by 255 scale_factor = _calc_scale_factor(tensor) tensor = tensor.astype(np.float32) tensor = (tensor * scale_factor).astype(np.uint8) video = make_video(tensor, fps) return Summary(value=[Summary.Value(tag=tag, image=video)]) def make_video(tensor, fps): try: import moviepy # noqa: F401 except ImportError: print("add_video needs package moviepy") return try: from moviepy import editor as mpy except ImportError: print( "moviepy is installed, but can't import moviepy.editor.", "Some packages could be missing [imageio, requests]", ) return import tempfile t, h, w, c = tensor.shape # encode sequence of images into gif string clip = mpy.ImageSequenceClip(list(tensor), fps=fps) filename = tempfile.NamedTemporaryFile(suffix=".gif", delete=False).name try: # newer version of moviepy use logger instead of progress_bar argument. clip.write_gif(filename, verbose=False, logger=None) except TypeError: try: # older version of moviepy does not support progress_bar argument. clip.write_gif(filename, verbose=False, progress_bar=False) except TypeError: clip.write_gif(filename, verbose=False) with open(filename, "rb") as f: tensor_string = f.read() try: os.remove(filename) except OSError: logger.warning("The temporary file used by moviepy cannot be deleted.") return Summary.Image( height=h, width=w, colorspace=c, encoded_image_string=tensor_string ) def audio(tag, tensor, sample_rate=44100): array = make_np(tensor) array = array.squeeze() if abs(array).max() > 1: print("warning: audio amplitude out of range, auto clipped.") array = array.clip(-1, 1) assert array.ndim == 1, "input tensor should be 1 dimensional." array = (array * np.iinfo(np.int16).max).astype("<i2") import io import wave fio = io.BytesIO() with wave.open(fio, "wb") as wave_write: wave_write.setnchannels(1) wave_write.setsampwidth(2) wave_write.setframerate(sample_rate) wave_write.writeframes(array.data) audio_string = fio.getvalue() fio.close() audio = Summary.Audio( sample_rate=sample_rate, num_channels=1, length_frames=array.shape[-1], encoded_audio_string=audio_string, content_type="audio/wav", ) return Summary(value=[Summary.Value(tag=tag, audio=audio)]) def custom_scalars(layout): categories = [] for k, v in layout.items(): charts = [] for chart_name, chart_meatadata in v.items(): tags = chart_meatadata[1] if chart_meatadata[0] == "Margin": assert len(tags) == 3 mgcc = layout_pb2.MarginChartContent( series=[ layout_pb2.MarginChartContent.Series( value=tags[0], lower=tags[1], upper=tags[2] ) ] ) chart = layout_pb2.Chart(title=chart_name, margin=mgcc) else: mlcc = layout_pb2.MultilineChartContent(tag=tags) chart = layout_pb2.Chart(title=chart_name, multiline=mlcc) charts.append(chart) categories.append(layout_pb2.Category(title=k, chart=charts)) layout = layout_pb2.Layout(category=categories) plugin_data = SummaryMetadata.PluginData(plugin_name="custom_scalars") smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_STRING", string_val=[layout.SerializeToString()], tensor_shape=TensorShapeProto(), ) return Summary( value=[ Summary.Value(tag="custom_scalars__config__", tensor=tensor, metadata=smd) ] ) def text(tag, text): plugin_data = SummaryMetadata.PluginData( plugin_name="text", content=TextPluginData(version=0).SerializeToString() ) smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_STRING", string_val=[text.encode(encoding="utf_8")], tensor_shape=TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), ) return Summary( value=[Summary.Value(tag=tag + "/text_summary", metadata=smd, tensor=tensor)] ) def pr_curve_raw( tag, tp, fp, tn, fn, precision, recall, num_thresholds=127, weights=None ): if num_thresholds > 127: # weird, value > 127 breaks protobuf num_thresholds = 127 data = np.stack((tp, fp, tn, fn, precision, recall)) pr_curve_plugin_data = PrCurvePluginData( version=0, num_thresholds=num_thresholds ).SerializeToString() plugin_data = SummaryMetadata.PluginData( plugin_name="pr_curves", content=pr_curve_plugin_data ) smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_FLOAT", float_val=data.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[ TensorShapeProto.Dim(size=data.shape[0]), TensorShapeProto.Dim(size=data.shape[1]), ] ), ) return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)]) def pr_curve(tag, labels, predictions, num_thresholds=127, weights=None): # weird, value > 127 breaks protobuf num_thresholds = min(num_thresholds, 127) data = compute_curve( labels, predictions, num_thresholds=num_thresholds, weights=weights ) pr_curve_plugin_data = PrCurvePluginData( version=0, num_thresholds=num_thresholds ).SerializeToString() plugin_data = SummaryMetadata.PluginData( plugin_name="pr_curves", content=pr_curve_plugin_data ) smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_FLOAT", float_val=data.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[ TensorShapeProto.Dim(size=data.shape[0]), TensorShapeProto.Dim(size=data.shape[1]), ] ), ) return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)]) # https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/summary.py def compute_curve(labels, predictions, num_thresholds=None, weights=None): _MINIMUM_COUNT = 1e-7 if weights is None: weights = 1.0 # Compute bins of true positives and false positives. bucket_indices = np.int32(np.floor(predictions * (num_thresholds - 1))) float_labels = labels.astype(np.float64) histogram_range = (0, num_thresholds - 1) tp_buckets, _ = np.histogram( bucket_indices, bins=num_thresholds, range=histogram_range, weights=float_labels * weights, ) fp_buckets, _ = np.histogram( bucket_indices, bins=num_thresholds, range=histogram_range, weights=(1.0 - float_labels) * weights, ) # Obtain the reverse cumulative sum. tp = np.cumsum(tp_buckets[::-1])[::-1] fp = np.cumsum(fp_buckets[::-1])[::-1] tn = fp[0] - fp fn = tp[0] - tp precision = tp / np.maximum(_MINIMUM_COUNT, tp + fp) recall = tp / np.maximum(_MINIMUM_COUNT, tp + fn) return np.stack((tp, fp, tn, fn, precision, recall)) def _get_tensor_summary( name, display_name, description, tensor, content_type, components, json_config ): """Creates a tensor summary with summary metadata. Args: name: Uniquely identifiable name of the summary op. Could be replaced by combination of name and type to make it unique even outside of this summary. display_name: Will be used as the display name in TensorBoard. Defaults to `name`. description: A longform readable description of the summary data. Markdown is supported. tensor: Tensor to display in summary. content_type: Type of content inside the Tensor. components: Bitmask representing present parts (vertices, colors, etc.) that belong to the summary. json_config: A string, JSON-serialized dictionary of ThreeJS classes configuration. Returns: Tensor summary with metadata. """ import torch from tensorboard.plugins.mesh import metadata tensor = torch.as_tensor(tensor) tensor_metadata = metadata.create_summary_metadata( name, display_name, content_type, components, tensor.shape, description, json_config=json_config, ) tensor = TensorProto( dtype="DT_FLOAT", float_val=tensor.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[ TensorShapeProto.Dim(size=tensor.shape[0]), TensorShapeProto.Dim(size=tensor.shape[1]), TensorShapeProto.Dim(size=tensor.shape[2]), ] ), ) tensor_summary = Summary.Value( tag=metadata.get_instance_name(name, content_type), tensor=tensor, metadata=tensor_metadata, ) return tensor_summary def _get_json_config(config_dict): """Parses and returns JSON string from python dictionary.""" json_config = "{}" if config_dict is not None: json_config = json.dumps(config_dict, sort_keys=True) return json_config # https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/mesh/summary.py def mesh( tag, vertices, colors, faces, config_dict, display_name=None, description=None ): """Outputs a merged `Summary` protocol buffer with a mesh/point cloud. Args: tag: A name for this summary operation. vertices: Tensor of shape `[dim_1, ..., dim_n, 3]` representing the 3D coordinates of vertices. faces: Tensor of shape `[dim_1, ..., dim_n, 3]` containing indices of vertices within each triangle. colors: Tensor of shape `[dim_1, ..., dim_n, 3]` containing colors for each vertex. display_name: If set, will be used as the display name in TensorBoard. Defaults to `name`. description: A longform readable description of the summary data. Markdown is supported. config_dict: Dictionary with ThreeJS classes names and configuration. Returns: Merged summary for mesh/point cloud representation. """ from tensorboard.plugins.mesh.plugin_data_pb2 import MeshPluginData from tensorboard.plugins.mesh import metadata json_config = _get_json_config(config_dict) summaries = [] tensors = [ (vertices, MeshPluginData.VERTEX), (faces, MeshPluginData.FACE), (colors, MeshPluginData.COLOR), ] tensors = [tensor for tensor in tensors if tensor[0] is not None] components = metadata.get_components_bitmask( [content_type for (tensor, content_type) in tensors] ) for tensor, content_type in tensors: summaries.append( _get_tensor_summary( tag, display_name, description, tensor, content_type, components, json_config, ) ) return Summary(value=summaries)
pytorch-master
torch/utils/tensorboard/summary.py
""" This module converts objects into numpy array. """ import numpy as np import torch def make_np(x): """ Args: x: An instance of torch tensor or caffe blob name Returns: numpy.array: Numpy array """ if isinstance(x, np.ndarray): return x if isinstance(x, str): # Caffe2 will pass name of blob(s) to fetch return _prepare_caffe2(x) if np.isscalar(x): return np.array([x]) if isinstance(x, torch.Tensor): return _prepare_pytorch(x) raise NotImplementedError( "Got {}, but numpy array, torch tensor, or caffe2 blob name are expected.".format( type(x) ) ) def _prepare_pytorch(x): x = x.detach().cpu().numpy() return x def _prepare_caffe2(x): from caffe2.python import workspace x = workspace.FetchBlob(x) return x
pytorch-master
torch/utils/tensorboard/_convert_np.py
"""Provides an API for writing protocol buffers to event files to be consumed by TensorBoard for visualization.""" import os import time import torch from tensorboard.compat import tf from tensorboard.compat.proto.event_pb2 import SessionLog from tensorboard.compat.proto.event_pb2 import Event from tensorboard.compat.proto import event_pb2 from tensorboard.plugins.projector.projector_config_pb2 import ProjectorConfig from tensorboard.summary.writer.event_file_writer import EventFileWriter from ._convert_np import make_np from ._embedding import ( make_mat, make_sprite, make_tsv, write_pbtxt, get_embedding_info, ) from ._onnx_graph import load_onnx_graph from ._pytorch_graph import graph from ._utils import figure_to_image from .summary import ( scalar, histogram, histogram_raw, image, audio, text, pr_curve, pr_curve_raw, video, custom_scalars, image_boxes, mesh, hparams, ) __all__ = ['FileWriter', 'SummaryWriter'] class FileWriter(object): """Writes protocol buffers to event files to be consumed by TensorBoard. The `FileWriter` class provides a mechanism to create an event file in a given directory and add summaries and events to it. The class updates the file contents asynchronously. This allows a training program to call methods to add data to the file directly from the training loop, without slowing down training. """ def __init__(self, log_dir, max_queue=10, flush_secs=120, filename_suffix=""): """Creates a `FileWriter` and an event file. On construction the writer creates a new event file in `log_dir`. The other arguments to the constructor control the asynchronous writes to the event file. Args: log_dir: A string. Directory where event file will be written. max_queue: Integer. Size of the queue for pending events and summaries before one of the 'add' calls forces a flush to disk. Default is ten items. flush_secs: Number. How often, in seconds, to flush the pending events and summaries to disk. Default is every two minutes. filename_suffix: A string. Suffix added to all event filenames in the log_dir directory. More details on filename construction in tensorboard.summary.writer.event_file_writer.EventFileWriter. """ # Sometimes PosixPath is passed in and we need to coerce it to # a string in all cases # TODO: See if we can remove this in the future if we are # actually the ones passing in a PosixPath log_dir = str(log_dir) self.event_writer = EventFileWriter( log_dir, max_queue, flush_secs, filename_suffix ) def get_logdir(self): """Returns the directory where event file will be written.""" return self.event_writer.get_logdir() def add_event(self, event, step=None, walltime=None): """Adds an event to the event file. Args: event: An `Event` protocol buffer. step: Number. Optional global step value for training process to record with the event. walltime: float. Optional walltime to override the default (current) walltime (from time.time()) seconds after epoch """ event.wall_time = time.time() if walltime is None else walltime if step is not None: # Make sure step is converted from numpy or other formats # since protobuf might not convert depending on version event.step = int(step) self.event_writer.add_event(event) def add_summary(self, summary, global_step=None, walltime=None): """Adds a `Summary` protocol buffer to the event file. This method wraps the provided summary in an `Event` protocol buffer and adds it to the event file. Args: summary: A `Summary` protocol buffer. global_step: Number. Optional global step value for training process to record with the summary. walltime: float. Optional walltime to override the default (current) walltime (from time.time()) seconds after epoch """ event = event_pb2.Event(summary=summary) self.add_event(event, global_step, walltime) def add_graph(self, graph_profile, walltime=None): """Adds a `Graph` and step stats protocol buffer to the event file. Args: graph_profile: A `Graph` and step stats protocol buffer. walltime: float. Optional walltime to override the default (current) walltime (from time.time()) seconds after epoch """ graph = graph_profile[0] stepstats = graph_profile[1] event = event_pb2.Event(graph_def=graph.SerializeToString()) self.add_event(event, None, walltime) trm = event_pb2.TaggedRunMetadata( tag="step1", run_metadata=stepstats.SerializeToString() ) event = event_pb2.Event(tagged_run_metadata=trm) self.add_event(event, None, walltime) def add_onnx_graph(self, graph, walltime=None): """Adds a `Graph` protocol buffer to the event file. Args: graph: A `Graph` protocol buffer. walltime: float. Optional walltime to override the default (current) _get_file_writerfrom time.time()) """ event = event_pb2.Event(graph_def=graph.SerializeToString()) self.add_event(event, None, walltime) def flush(self): """Flushes the event file to disk. Call this method to make sure that all pending events have been written to disk. """ self.event_writer.flush() def close(self): """Flushes the event file to disk and close the file. Call this method when you do not need the summary writer anymore. """ self.event_writer.close() def reopen(self): """Reopens the EventFileWriter. Can be called after `close()` to add more events in the same directory. The events will go into a new events file. Does nothing if the EventFileWriter was not closed. """ self.event_writer.reopen() class SummaryWriter(object): """Writes entries directly to event files in the log_dir to be consumed by TensorBoard. The `SummaryWriter` class provides a high-level API to create an event file in a given directory and add summaries and events to it. The class updates the file contents asynchronously. This allows a training program to call methods to add data to the file directly from the training loop, without slowing down training. """ def __init__( self, log_dir=None, comment="", purge_step=None, max_queue=10, flush_secs=120, filename_suffix="", ): """Creates a `SummaryWriter` that will write out events and summaries to the event file. Args: log_dir (str): Save directory location. Default is runs/**CURRENT_DATETIME_HOSTNAME**, which changes after each run. Use hierarchical folder structure to compare between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2', etc. for each new experiment to compare across them. comment (str): Comment log_dir suffix appended to the default ``log_dir``. If ``log_dir`` is assigned, this argument has no effect. purge_step (int): When logging crashes at step :math:`T+X` and restarts at step :math:`T`, any events whose global_step larger or equal to :math:`T` will be purged and hidden from TensorBoard. Note that crashed and resumed experiments should have the same ``log_dir``. max_queue (int): Size of the queue for pending events and summaries before one of the 'add' calls forces a flush to disk. Default is ten items. flush_secs (int): How often, in seconds, to flush the pending events and summaries to disk. Default is every two minutes. filename_suffix (str): Suffix added to all event filenames in the log_dir directory. More details on filename construction in tensorboard.summary.writer.event_file_writer.EventFileWriter. Examples:: from torch.utils.tensorboard import SummaryWriter # create a summary writer with automatically generated folder name. writer = SummaryWriter() # folder location: runs/May04_22-14-54_s-MacBook-Pro.local/ # create a summary writer using the specified folder name. writer = SummaryWriter("my_experiment") # folder location: my_experiment # create a summary writer with comment appended. writer = SummaryWriter(comment="LR_0.1_BATCH_16") # folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/ """ torch._C._log_api_usage_once("tensorboard.create.summarywriter") if not log_dir: import socket from datetime import datetime current_time = datetime.now().strftime("%b%d_%H-%M-%S") log_dir = os.path.join( "runs", current_time + "_" + socket.gethostname() + comment ) self.log_dir = log_dir self.purge_step = purge_step self.max_queue = max_queue self.flush_secs = flush_secs self.filename_suffix = filename_suffix # Initialize the file writers, but they can be cleared out on close # and recreated later as needed. self.file_writer = self.all_writers = None self._get_file_writer() # Create default bins for histograms, see generate_testdata.py in tensorflow/tensorboard v = 1e-12 buckets = [] neg_buckets = [] while v < 1e20: buckets.append(v) neg_buckets.append(-v) v *= 1.1 self.default_bins = neg_buckets[::-1] + [0] + buckets def _check_caffe2_blob(self, item): """ Caffe2 users have the option of passing a string representing the name of a blob in the workspace instead of passing the actual Tensor/array containing the numeric values. Thus, we need to check if we received a string as input instead of an actual Tensor/array, and if so, we need to fetch the Blob from the workspace corresponding to that name. Fetching can be done with the following: from caffe2.python import workspace (if not already imported) workspace.FetchBlob(blob_name) workspace.FetchBlobs([blob_name1, blob_name2, ...]) """ return isinstance(item, str) def _get_file_writer(self): """Returns the default FileWriter instance. Recreates it if closed.""" if self.all_writers is None or self.file_writer is None: self.file_writer = FileWriter( self.log_dir, self.max_queue, self.flush_secs, self.filename_suffix ) self.all_writers = {self.file_writer.get_logdir(): self.file_writer} if self.purge_step is not None: most_recent_step = self.purge_step self.file_writer.add_event( Event(step=most_recent_step, file_version="brain.Event:2") ) self.file_writer.add_event( Event( step=most_recent_step, session_log=SessionLog(status=SessionLog.START), ) ) self.purge_step = None return self.file_writer def get_logdir(self): """Returns the directory where event files will be written.""" return self.log_dir def add_hparams( self, hparam_dict, metric_dict, hparam_domain_discrete=None, run_name=None ): """Add a set of hyperparameters to be compared in TensorBoard. Args: hparam_dict (dict): Each key-value pair in the dictionary is the name of the hyper parameter and it's corresponding value. The type of the value can be one of `bool`, `string`, `float`, `int`, or `None`. metric_dict (dict): Each key-value pair in the dictionary is the name of the metric and it's corresponding value. Note that the key used here should be unique in the tensorboard record. Otherwise the value you added by ``add_scalar`` will be displayed in hparam plugin. In most cases, this is unwanted. hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that contains names of the hyperparameters and all discrete values they can hold run_name (str): Name of the run, to be included as part of the logdir. If unspecified, will use current timestamp. Examples:: from torch.utils.tensorboard import SummaryWriter with SummaryWriter() as w: for i in range(5): w.add_hparams({'lr': 0.1*i, 'bsize': i}, {'hparam/accuracy': 10*i, 'hparam/loss': 10*i}) Expected result: .. image:: _static/img/tensorboard/add_hparam.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_hparams") if type(hparam_dict) is not dict or type(metric_dict) is not dict: raise TypeError("hparam_dict and metric_dict should be dictionary.") exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete) if not run_name: run_name = str(time.time()) logdir = os.path.join(self._get_file_writer().get_logdir(), run_name) with SummaryWriter(log_dir=logdir) as w_hp: w_hp.file_writer.add_summary(exp) w_hp.file_writer.add_summary(ssi) w_hp.file_writer.add_summary(sei) for k, v in metric_dict.items(): w_hp.add_scalar(k, v) def add_scalar( self, tag, scalar_value, global_step=None, walltime=None, new_style=False, double_precision=False, ): """Add scalar data to summary. Args: tag (str): Data identifier scalar_value (float or string/blobname): Value to save global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) with seconds after epoch of event new_style (boolean): Whether to use new style (tensor field) or old style (simple_value field). New style could lead to faster data loading. Examples:: from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() x = range(100) for i in x: writer.add_scalar('y=2x', i * 2, i) writer.close() Expected result: .. image:: _static/img/tensorboard/add_scalar.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_scalar") if self._check_caffe2_blob(scalar_value): from caffe2.python import workspace scalar_value = workspace.FetchBlob(scalar_value) summary = scalar( tag, scalar_value, new_style=new_style, double_precision=double_precision ) self._get_file_writer().add_summary(summary, global_step, walltime) def add_scalars(self, main_tag, tag_scalar_dict, global_step=None, walltime=None): """Adds many scalar data to summary. Args: main_tag (str): The parent name for the tags tag_scalar_dict (dict): Key-value pair storing the tag and corresponding values global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() r = 5 for i in range(100): writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r), 'xcosx':i*np.cos(i/r), 'tanx': np.tan(i/r)}, i) writer.close() # This call adds three values to the same scalar plot with the tag # 'run_14h' in TensorBoard's scalar section. Expected result: .. image:: _static/img/tensorboard/add_scalars.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_scalars") walltime = time.time() if walltime is None else walltime fw_logdir = self._get_file_writer().get_logdir() for tag, scalar_value in tag_scalar_dict.items(): fw_tag = fw_logdir + "/" + main_tag.replace("/", "_") + "_" + tag assert self.all_writers is not None if fw_tag in self.all_writers.keys(): fw = self.all_writers[fw_tag] else: fw = FileWriter( fw_tag, self.max_queue, self.flush_secs, self.filename_suffix ) self.all_writers[fw_tag] = fw if self._check_caffe2_blob(scalar_value): from caffe2.python import workspace scalar_value = workspace.FetchBlob(scalar_value) fw.add_summary(scalar(main_tag, scalar_value), global_step, walltime) def add_histogram( self, tag, values, global_step=None, bins="tensorflow", walltime=None, max_bins=None, ): """Add histogram to summary. Args: tag (str): Data identifier values (torch.Tensor, numpy.ndarray, or string/blobname): Values to build histogram global_step (int): Global step value to record bins (str): One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np writer = SummaryWriter() for i in range(10): x = np.random.random(1000) writer.add_histogram('distribution centers', x + i, i) writer.close() Expected result: .. image:: _static/img/tensorboard/add_histogram.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_histogram") if self._check_caffe2_blob(values): from caffe2.python import workspace values = workspace.FetchBlob(values) if isinstance(bins, str) and bins == "tensorflow": bins = self.default_bins self._get_file_writer().add_summary( histogram(tag, values, bins, max_bins=max_bins), global_step, walltime ) def add_histogram_raw( self, tag, min, max, num, sum, sum_squares, bucket_limits, bucket_counts, global_step=None, walltime=None, ): """Adds histogram with raw data. Args: tag (str): Data identifier min (float or int): Min value max (float or int): Max value num (int): Number of values sum (float or int): Sum of all values sum_squares (float or int): Sum of squares for all values bucket_limits (torch.Tensor, numpy.ndarray): Upper value per bucket. The number of elements of it should be the same as `bucket_counts`. bucket_counts (torch.Tensor, numpy.ndarray): Number of values per bucket global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/README.md Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np writer = SummaryWriter() dummy_data = [] for idx, value in enumerate(range(50)): dummy_data += [idx + 0.001] * value bins = list(range(50+2)) bins = np.array(bins) values = np.array(dummy_data).astype(float).reshape(-1) counts, limits = np.histogram(values, bins=bins) sum_sq = values.dot(values) writer.add_histogram_raw( tag='histogram_with_raw_data', min=values.min(), max=values.max(), num=len(values), sum=values.sum(), sum_squares=sum_sq, bucket_limits=limits[1:].tolist(), bucket_counts=counts.tolist(), global_step=0) writer.close() Expected result: .. image:: _static/img/tensorboard/add_histogram_raw.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_histogram_raw") if len(bucket_limits) != len(bucket_counts): raise ValueError( "len(bucket_limits) != len(bucket_counts), see the document." ) self._get_file_writer().add_summary( histogram_raw( tag, min, max, num, sum, sum_squares, bucket_limits, bucket_counts ), global_step, walltime, ) def add_image( self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW" ): """Add image data to summary. Note that this requires the ``pillow`` package. Args: tag (str): Data identifier img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event dataformats (str): Image data format specification of the form CHW, HWC, HW, WH, etc. Shape: img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to convert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job. Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long as corresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``. Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np img = np.zeros((3, 100, 100)) img[0] = np.arange(0, 10000).reshape(100, 100) / 10000 img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 img_HWC = np.zeros((100, 100, 3)) img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 writer = SummaryWriter() writer.add_image('my_image', img, 0) # If you have non-default dimension setting, set the dataformats argument. writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC') writer.close() Expected result: .. image:: _static/img/tensorboard/add_image.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_image") if self._check_caffe2_blob(img_tensor): from caffe2.python import workspace img_tensor = workspace.FetchBlob(img_tensor) self._get_file_writer().add_summary( image(tag, img_tensor, dataformats=dataformats), global_step, walltime ) def add_images( self, tag, img_tensor, global_step=None, walltime=None, dataformats="NCHW" ): """Add batched image data to summary. Note that this requires the ``pillow`` package. Args: tag (str): Data identifier img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event dataformats (str): Image data format specification of the form NCHW, NHWC, CHW, HWC, HW, WH, etc. Shape: img_tensor: Default is :math:`(N, 3, H, W)`. If ``dataformats`` is specified, other shape will be accepted. e.g. NCHW or NHWC. Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np img_batch = np.zeros((16, 3, 100, 100)) for i in range(16): img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i writer = SummaryWriter() writer.add_images('my_image_batch', img_batch, 0) writer.close() Expected result: .. image:: _static/img/tensorboard/add_images.png :scale: 30 % """ torch._C._log_api_usage_once("tensorboard.logging.add_images") if self._check_caffe2_blob(img_tensor): from caffe2.python import workspace img_tensor = workspace.FetchBlob(img_tensor) self._get_file_writer().add_summary( image(tag, img_tensor, dataformats=dataformats), global_step, walltime ) def add_image_with_boxes( self, tag, img_tensor, box_tensor, global_step=None, walltime=None, rescale=1, dataformats="CHW", labels=None, ): """Add image and draw bounding boxes on the image. Args: tag (str): Data identifier img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data box_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Box data (for detected objects) box should be represented as [x1, y1, x2, y2]. global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event rescale (float): Optional scale override dataformats (str): Image data format specification of the form NCHW, NHWC, CHW, HWC, HW, WH, etc. labels (list of string): The label to be shown for each bounding box. Shape: img_tensor: Default is :math:`(3, H, W)`. It can be specified with ``dataformats`` argument. e.g. CHW or HWC box_tensor: (torch.Tensor, numpy.ndarray, or string/blobname): NX4, where N is the number of boxes and each 4 elements in a row represents (xmin, ymin, xmax, ymax). """ torch._C._log_api_usage_once("tensorboard.logging.add_image_with_boxes") if self._check_caffe2_blob(img_tensor): from caffe2.python import workspace img_tensor = workspace.FetchBlob(img_tensor) if self._check_caffe2_blob(box_tensor): from caffe2.python import workspace box_tensor = workspace.FetchBlob(box_tensor) if labels is not None: if isinstance(labels, str): labels = [labels] if len(labels) != box_tensor.shape[0]: labels = None self._get_file_writer().add_summary( image_boxes( tag, img_tensor, box_tensor, rescale=rescale, dataformats=dataformats, labels=labels, ), global_step, walltime, ) def add_figure(self, tag, figure, global_step=None, close=True, walltime=None): """Render matplotlib figure into an image and add it to summary. Note that this requires the ``matplotlib`` package. Args: tag (str): Data identifier figure (matplotlib.pyplot.figure) or list of figures: Figure or a list of figures global_step (int): Global step value to record close (bool): Flag to automatically close the figure walltime (float): Optional override default walltime (time.time()) seconds after epoch of event """ torch._C._log_api_usage_once("tensorboard.logging.add_figure") if isinstance(figure, list): self.add_image( tag, figure_to_image(figure, close), global_step, walltime, dataformats="NCHW", ) else: self.add_image( tag, figure_to_image(figure, close), global_step, walltime, dataformats="CHW", ) def add_video(self, tag, vid_tensor, global_step=None, fps=4, walltime=None): """Add video data to summary. Note that this requires the ``moviepy`` package. Args: tag (str): Data identifier vid_tensor (torch.Tensor): Video data global_step (int): Global step value to record fps (float or int): Frames per second walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Shape: vid_tensor: :math:`(N, T, C, H, W)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`. """ torch._C._log_api_usage_once("tensorboard.logging.add_video") self._get_file_writer().add_summary( video(tag, vid_tensor, fps), global_step, walltime ) def add_audio( self, tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None ): """Add audio data to summary. Args: tag (str): Data identifier snd_tensor (torch.Tensor): Sound data global_step (int): Global step value to record sample_rate (int): sample rate in Hz walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Shape: snd_tensor: :math:`(1, L)`. The values should lie between [-1, 1]. """ torch._C._log_api_usage_once("tensorboard.logging.add_audio") if self._check_caffe2_blob(snd_tensor): from caffe2.python import workspace snd_tensor = workspace.FetchBlob(snd_tensor) self._get_file_writer().add_summary( audio(tag, snd_tensor, sample_rate=sample_rate), global_step, walltime ) def add_text(self, tag, text_string, global_step=None, walltime=None): """Add text data to summary. Args: tag (str): Data identifier text_string (str): String to save global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: writer.add_text('lstm', 'This is an lstm', 0) writer.add_text('rnn', 'This is an rnn', 10) """ torch._C._log_api_usage_once("tensorboard.logging.add_text") self._get_file_writer().add_summary( text(tag, text_string), global_step, walltime ) def add_onnx_graph(self, prototxt): torch._C._log_api_usage_once("tensorboard.logging.add_onnx_graph") self._get_file_writer().add_onnx_graph(load_onnx_graph(prototxt)) def add_graph( self, model, input_to_model=None, verbose=False, use_strict_trace=True ): """Add graph data to summary. Args: model (torch.nn.Module): Model to draw. input_to_model (torch.Tensor or list of torch.Tensor): A variable or a tuple of variables to be fed. verbose (bool): Whether to print graph structure in console. use_strict_trace (bool): Whether to pass keyword argument `strict` to `torch.jit.trace`. Pass False when you want the tracer to record your mutable container types (list, dict) """ torch._C._log_api_usage_once("tensorboard.logging.add_graph") if hasattr(model, "forward"): # A valid PyTorch model should have a 'forward' method self._get_file_writer().add_graph( graph(model, input_to_model, verbose, use_strict_trace) ) else: # Caffe2 models do not have the 'forward' method from caffe2.proto import caffe2_pb2 from caffe2.python import core from ._caffe2_graph import ( model_to_graph_def, nets_to_graph_def, protos_to_graph_def, ) if isinstance(model, list): if isinstance(model[0], core.Net): current_graph = nets_to_graph_def(model) elif isinstance(model[0], caffe2_pb2.NetDef): current_graph = protos_to_graph_def(model) else: # Handles cnn.CNNModelHelper, model_helper.ModelHelper current_graph = model_to_graph_def(model) event = event_pb2.Event(graph_def=current_graph.SerializeToString()) self._get_file_writer().add_event(event) @staticmethod def _encode(rawstr): # I'd use urllib but, I'm unsure about the differences from python3 to python2, etc. retval = rawstr retval = retval.replace("%", "%%%02x" % (ord("%"))) retval = retval.replace("/", "%%%02x" % (ord("/"))) retval = retval.replace("\\", "%%%02x" % (ord("\\"))) return retval def add_embedding( self, mat, metadata=None, label_img=None, global_step=None, tag="default", metadata_header=None, ): """Add embedding projector data to summary. Args: mat (torch.Tensor or numpy.ndarray): A matrix which each row is the feature vector of the data point metadata (list): A list of labels, each element will be convert to string label_img (torch.Tensor): Images correspond to each data point global_step (int): Global step value to record tag (str): Name for the embedding Shape: mat: :math:`(N, D)`, where N is number of data and D is feature dimension label_img: :math:`(N, C, H, W)` Examples:: import keyword import torch meta = [] while len(meta)<100: meta = meta+keyword.kwlist # get some strings meta = meta[:100] for i, v in enumerate(meta): meta[i] = v+str(i) label_img = torch.rand(100, 3, 10, 32) for i in range(100): label_img[i]*=i/100.0 writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img) writer.add_embedding(torch.randn(100, 5), label_img=label_img) writer.add_embedding(torch.randn(100, 5), metadata=meta) """ torch._C._log_api_usage_once("tensorboard.logging.add_embedding") mat = make_np(mat) if global_step is None: global_step = 0 # clear pbtxt? # Maybe we should encode the tag so slashes don't trip us up? # I don't think this will mess us up, but better safe than sorry. subdir = "%s/%s" % (str(global_step).zfill(5), self._encode(tag)) save_path = os.path.join(self._get_file_writer().get_logdir(), subdir) fs = tf.io.gfile.get_filesystem(save_path) if fs.exists(save_path): if fs.isdir(save_path): print( "warning: Embedding dir exists, did you set global_step for add_embedding()?" ) else: raise Exception( "Path: `%s` exists, but is a file. Cannot proceed." % save_path ) else: fs.makedirs(save_path) if metadata is not None: assert mat.shape[0] == len( metadata ), "#labels should equal with #data points" make_tsv(metadata, save_path, metadata_header=metadata_header) if label_img is not None: assert ( mat.shape[0] == label_img.shape[0] ), "#images should equal with #data points" make_sprite(label_img, save_path) assert ( mat.ndim == 2 ), "mat should be 2D, where mat.size(0) is the number of data points" make_mat(mat, save_path) # Filesystem doesn't necessarily have append semantics, so we store an # internal buffer to append to and re-write whole file after each # embedding is added if not hasattr(self, "_projector_config"): self._projector_config = ProjectorConfig() embedding_info = get_embedding_info( metadata, label_img, fs, subdir, global_step, tag ) self._projector_config.embeddings.extend([embedding_info]) from google.protobuf import text_format config_pbtxt = text_format.MessageToString(self._projector_config) write_pbtxt(self._get_file_writer().get_logdir(), config_pbtxt) def add_pr_curve( self, tag, labels, predictions, global_step=None, num_thresholds=127, weights=None, walltime=None, ): """Adds precision recall curve. Plotting a precision-recall curve lets you understand your model's performance under different threshold settings. With this function, you provide the ground truth labeling (T/F) and prediction confidence (usually the output of your model) for each target. The TensorBoard UI will let you choose the threshold interactively. Args: tag (str): Data identifier labels (torch.Tensor, numpy.ndarray, or string/blobname): Ground truth data. Binary label for each element. predictions (torch.Tensor, numpy.ndarray, or string/blobname): The probability that an element be classified as true. Value should be in [0, 1] global_step (int): Global step value to record num_thresholds (int): Number of thresholds used to draw the curve. walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np labels = np.random.randint(2, size=100) # binary label predictions = np.random.rand(100) writer = SummaryWriter() writer.add_pr_curve('pr_curve', labels, predictions, 0) writer.close() """ torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve") labels, predictions = make_np(labels), make_np(predictions) self._get_file_writer().add_summary( pr_curve(tag, labels, predictions, num_thresholds, weights), global_step, walltime, ) def add_pr_curve_raw( self, tag, true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, global_step=None, num_thresholds=127, weights=None, walltime=None, ): """Adds precision recall curve with raw data. Args: tag (str): Data identifier true_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): true positive counts false_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): false positive counts true_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): true negative counts false_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): false negative counts precision (torch.Tensor, numpy.ndarray, or string/blobname): precision recall (torch.Tensor, numpy.ndarray, or string/blobname): recall global_step (int): Global step value to record num_thresholds (int): Number of thresholds used to draw the curve. walltime (float): Optional override default walltime (time.time()) seconds after epoch of event see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/README.md """ torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve_raw") self._get_file_writer().add_summary( pr_curve_raw( tag, true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, num_thresholds, weights, ), global_step, walltime, ) def add_custom_scalars_multilinechart( self, tags, category="default", title="untitled" ): """Shorthand for creating multilinechart. Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*. Args: tags (list): list of tags that have been used in ``add_scalar()`` Examples:: writer.add_custom_scalars_multilinechart(['twse/0050', 'twse/2330']) """ torch._C._log_api_usage_once( "tensorboard.logging.add_custom_scalars_multilinechart" ) layout = {category: {title: ["Multiline", tags]}} self._get_file_writer().add_summary(custom_scalars(layout)) def add_custom_scalars_marginchart( self, tags, category="default", title="untitled" ): """Shorthand for creating marginchart. Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*, which should have exactly 3 elements. Args: tags (list): list of tags that have been used in ``add_scalar()`` Examples:: writer.add_custom_scalars_marginchart(['twse/0050', 'twse/2330', 'twse/2006']) """ torch._C._log_api_usage_once( "tensorboard.logging.add_custom_scalars_marginchart" ) assert len(tags) == 3 layout = {category: {title: ["Margin", tags]}} self._get_file_writer().add_summary(custom_scalars(layout)) def add_custom_scalars(self, layout): """Create special chart by collecting charts tags in 'scalars'. Note that this function can only be called once for each SummaryWriter() object. Because it only provides metadata to tensorboard, the function can be called before or after the training loop. Args: layout (dict): {categoryName: *charts*}, where *charts* is also a dictionary {chartName: *ListOfProperties*}. The first element in *ListOfProperties* is the chart's type (one of **Multiline** or **Margin**) and the second element should be a list containing the tags you have used in add_scalar function, which will be collected into the new chart. Examples:: layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]}, 'USA':{ 'dow':['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']], 'nasdaq':['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}} writer.add_custom_scalars(layout) """ torch._C._log_api_usage_once("tensorboard.logging.add_custom_scalars") self._get_file_writer().add_summary(custom_scalars(layout)) def add_mesh( self, tag, vertices, colors=None, faces=None, config_dict=None, global_step=None, walltime=None, ): """Add meshes or 3D point clouds to TensorBoard. The visualization is based on Three.js, so it allows users to interact with the rendered object. Besides the basic definitions such as vertices, faces, users can further provide camera parameter, lighting condition, etc. Please check https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene for advanced usage. Args: tag (str): Data identifier vertices (torch.Tensor): List of the 3D coordinates of vertices. colors (torch.Tensor): Colors for each vertex faces (torch.Tensor): Indices of vertices within each triangle. (Optional) config_dict: Dictionary with ThreeJS classes names and configuration. global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Shape: vertices: :math:`(B, N, 3)`. (batch, number_of_vertices, channels) colors: :math:`(B, N, 3)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`. faces: :math:`(B, N, 3)`. The values should lie in [0, number_of_vertices] for type `uint8`. Examples:: from torch.utils.tensorboard import SummaryWriter vertices_tensor = torch.as_tensor([ [1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1], ], dtype=torch.float).unsqueeze(0) colors_tensor = torch.as_tensor([ [255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255], ], dtype=torch.int).unsqueeze(0) faces_tensor = torch.as_tensor([ [0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2], ], dtype=torch.int).unsqueeze(0) writer = SummaryWriter() writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor) writer.close() """ torch._C._log_api_usage_once("tensorboard.logging.add_mesh") self._get_file_writer().add_summary( mesh(tag, vertices, colors, faces, config_dict), global_step, walltime ) def flush(self): """Flushes the event file to disk. Call this method to make sure that all pending events have been written to disk. """ if self.all_writers is None: return for writer in self.all_writers.values(): writer.flush() def close(self): if self.all_writers is None: return # ignore double close for writer in self.all_writers.values(): writer.flush() writer.close() self.file_writer = self.all_writers = None def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()
pytorch-master
torch/utils/tensorboard/writer.py
import copy import logging import os import re from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.node_def_pb2 import NodeDef from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto from builtins import bytes from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace from typing import Set, Dict, Tuple, List def _make_unique_name(seen: Set[str], name: str, min_version: int = 0): """ Make the name unique by appending a unique number to the name. Used for SSA. Args: seen (set): Set of names that have already been used (with respect to some context). name (str): The name to make unique min_version (number): Starting index. Is incremented continually until it can make the resulting name unique relative to 'seen'. Returns: x (str): A version of name that is not in seen. """ assert name is not None i = min_version x = "%s_%d" % (name, i) if i else name while x in seen: i += 1 x = "%s_%d" % (name, i) seen.add(x) return x def _rename_tensorflow_style(shapes, blob_name_tracker, ops): """ Convert some of the common names in Caffe2 to tensorflow. NOTE: The common names in both Caffe2 and Tensorflow are currently hardcoded, if either side changes at some point, then this code should change as well. Args: shapes: Dictionary mapping blob names to their shapes/dimensions. blob_name_tracker: Dictionary of all unique blob names (with respect to some context). ops: List of Caffe2 operators Returns: None. The _rename_all() call modifies blob_name_tracker and ops in-place. """ WEIGHT = re.compile(r"(_w)$") WEIGHT_ = re.compile(r"(_w_)") BN = re.compile(r"(_bn)$") BN_ = re.compile(r"(_bn_)") BIAS = re.compile(r"(_b)$") BIAS_ = re.compile(r"(_b_)") SCALE = re.compile(r"(_s)$") SCALE_ = re.compile(r"(_s_)") SUM = re.compile(r"(_sum)$") SUM_ = re.compile(r"(_sum_)") BRANCH = re.compile(r"(_branch)") def f(name): inter_name = WEIGHT_.sub("/weight_", WEIGHT.sub("/weight", name)) inter_name = BN_.sub("/batchnorm_", BN.sub("/batchnorm", inter_name)) inter_name = BIAS_.sub("/bias_", BIAS.sub("/bias", inter_name)) inter_name = SCALE_.sub("/scale_", SCALE.sub("/scale", inter_name)) inter_name = SUM_.sub("/sum_", SUM.sub("/sum", inter_name)) new_name = BRANCH.sub("/branch", inter_name) return new_name _rename_all(shapes, blob_name_tracker, ops, f) def _convert_to_ssa(shapes, blob_name_tracker, ops): """ Convert an operator graph to SSA (i.e. out-of-place). i.e. blobs will be renamed so that each blob is produced only once. Args: shapes: Dictionary mapping blob names to their shapes/dimensions. blob_name_tracker: Dictionary of all unique blob names (with respect to some context). ops: List of Caffe2 operators Returns: None. Modifies blob_name_tracker and ops in-place. """ ir = core.IR(ops) seen: Set[str] = set() versioned: Dict[Tuple[str, int], int] = {} new_shapes = {} new_blob_name_tracker = {} def ssa_name(name: str, versions: Dict[str, int]) -> int: assert name in versions version = versions[name] if (name, version) in versioned: return versioned[(name, version)] # Always setting name2 = `{name}_{version}` would work, but we also try # to avoid a trailing `_0`, so we have to be careful not to introduce # name collisions, such as (foo_1, 0) = foo_1 = (foo, 1). # Note: operator names (if any) will be handled later. new_name = _make_unique_name(seen, name, min_version=version) versioned[(name, version)] = new_name # Transfer shape. if name in shapes: new_shapes[new_name] = shapes[name] if blob_name_tracker and name in blob_name_tracker: new_blob_name_tracker[new_name] = blob_name_tracker[name] return new_name for (op, ssa) in zip(ops, ir.ssa): assert op is ssa.op inputs = list(op.input) outputs = list(op.output) del op.input[:] del op.output[:] op.input.extend(ssa_name(name, ssa.in_versions) for name in inputs) op.output.extend(ssa_name(name, ssa.out_versions) for name in outputs) shapes.clear() shapes.update(new_shapes) if blob_name_tracker: blob_name_tracker.clear() blob_name_tracker.update(new_blob_name_tracker) def _get_blob_names(ops): """ Get all the operator input and output blobs and perform dedup on their names. Args: ops: List of Caffe2 operators to extract inputs and outputs from Returns: set containing distinct inputs and outputs from 'ops' """ names = set() for op in ops: names.update(op.input) names.update(op.output) return {name: name for name in names} def _remap_keys(old_dict, rename_fn): """ Rename keys of 'old_dict' according to 'rename_fn'. Args: old_dict: Dictionary (i.e. containing blob_name -> blob_name relationships.) remap_fn: Function string -> string for renaming. Returns: None. Modifies old_dict in-place. """ new_dict = {rename_fn(key): value for key, value in old_dict.items()} old_dict.clear() old_dict.update(new_dict) def _rename_all(shapes, blob_name_tracker, ops, rename_fn): """ Rename all the names in the operators. Args: shapes: Dictionary mapping blob names to their shapes/dimensions. blob_name_tracker: Dictionary of all unique blob names (with respect to some context). ops: List of Caffe2 operators rename_fn: Function string -> string that specifies how to rename Returns: None. Modifies shapes, blob_name_tracker and ops in-place using the specified 'rename_fn'. """ seen: Set[str] = set() renamed: Dict[Tuple[str, int], int] = {} def g(name): """Collision-free version of f.""" if name is None: return None if name in renamed: return renamed[name] new_name = _make_unique_name(seen, rename_fn(name)) renamed[name] = new_name return new_name for op in ops: inputs = list(op.input) outputs = list(op.output) del op.input[:] del op.output[:] op.input.extend(g(name) for name in inputs) op.output.extend(g(name) for name in outputs) _remap_keys(shapes, g) if blob_name_tracker: _remap_keys(blob_name_tracker, g) # Rename all operator names (if any) independently so that the # unique-fication happens only once in _fill_missing_operator_names(). seen.clear() renamed.clear() for op in ops: op.name = g(op.name) def _add_gradient_scope(shapes, blob_name_tracker, ops): """ For all operators or blobs with name containing "_grad", add a "GRADIENTS/" scope. Note: breaks graph execution since the blob -> gradient mapping is hardcoded. Args: shapes: Dictionary mapping blob names to their shapes/dimensions. blob_name_tracker: Dictionary of all unique blob names (with respect to some context). ops: List of Caffe2 operators Returns: None. Modifies shapes, blob_name_tracker and ops in-place by renaming. """ def f(name): if "_grad" in name: return "GRADIENTS/{}".format(name) else: return name _rename_all(shapes, blob_name_tracker, ops, f) def _replace_colons(shapes, blob_name_tracker, ops, repl): """ `:i` has a special meaning in Tensorflow. This function replaces all colons with $ to avoid any possible conflicts. Args: shapes: Dictionary mapping blob names to their shapes/dimensions. blob_name_tracker: Dictionary of all unique blob names (with respect to some context). ops: List of Caffe2 operators repl: String representing the text to replace ':' with. Usually this is '$'. Returns: None. Modifies blob_name_tracker in-place. """ def f(name): return name.replace(":", repl) _rename_all(shapes, blob_name_tracker, ops, f) def _fill_missing_operator_names(ops): """ Give missing operators a name. We expect C2 operators to be generally unnamed. This gives them a scope (inferred from their outputs) and a name after their type. Duplicates will be postfixed by an index. Args: ops: List of Caffe2 operators to assign names to. Returns: None: Modifies 'ops' in-place. """ seen = set() for op in ops: # Make sure operator names don't collide with blobs. seen.update(op.input) seen.update(op.output) for op in ops: if op.name: name = op.name elif op.output or op.input: name_list = [os.path.dirname(name) for name in op.output or op.input] scope = os.path.commonprefix(name_list) name = os.path.join(scope, op.type) else: name = op.type assert name op.name = _make_unique_name(seen, name) def _tf_device(device_option): """ Handle the devices. Args: device_option (caffe2_pb2.DeviceOption): DeviceOption protobuf, associated to an operator, that contains information such as device_type (optional), cuda_gpu_id (optional), node_name (optional, tells which node the operator should execute on). See caffe2.proto in caffe2/proto for the full list. Returns: Formatted string representing device information contained in device_option. """ if not device_option.HasField("device_type"): return "" if ( device_option.device_type == caffe2_pb2.CPU or device_option.device_type == caffe2_pb2.MKLDNN ): return "/cpu:*" if device_option.device_type == caffe2_pb2.CUDA: return "/gpu:{}".format(device_option.device_id) raise Exception("Unhandled device", device_option) def _add_tf_shape(attr_dict, ints): """ Converts a list of ints to a TensorShapeProto representing the dimensions of a blob/object. Args: attr_dict: Dictionary to update (usually attributes of a Node) ints: List of integers representing dimensions of some object. Returns: None. Modifies attr_dict in-place. """ shape_proto = TensorShapeProto() for i in ints: dim = TensorShapeProto.Dim() dim.size = i shape_proto.dim.extend([dim]) attr_dict["_output_shapes"].list.shape.extend([shape_proto]) def _set_tf_attr(attr_dict, arg): """ Add attributes to a node. Key is the arg.name, and values can be shape, floats, strings, ints or an empty list. Args: attr_dict: Dictionary to update (usually attributes of a Node) arg: Object with name and data fields. Returns: None. Modifies attr_dict in-place. """ k = arg.name if k == "shape" and arg.ints: _add_tf_shape(attr_dict, arg.ints) return # Float if arg.HasField("f"): attr_dict[k].f = arg.f return # Integer if arg.HasField("i"): attr_dict[k].i = arg.i return # String if arg.HasField("s"): attr_dict[k].s = ( arg.s if isinstance(arg.s, bytes) else str(arg.s).encode("utf-8") ) return if arg.floats: attr_dict[k].list.f.extend(arg.floats) return if arg.ints: attr_dict[k].list.i.extend(arg.ints) return if arg.strings: attr_dict[k].list.s.extend( s if isinstance(s, bytes) else str(s).encode("utf-8") for s in arg.strings ) return # The value is an empty list. attr_dict[k].list.s.extend([]) def _operator_to_node(shapes, op): """ Converts an operator to a node in a TF graph. Args: shapes: Dictionary mapping blob names to their shapes/dimensions. op: The Caffe2 operator to convert to a TF graph node. Returns: n: The TF graph node created from op. """ assert op.name, op n = NodeDef() n.name = op.name n.input.extend(op.input) n.op = op.type n.device = _tf_device(op.device_option) if shapes: # Add shapes in order. for output in op.output: if output not in shapes: break _add_tf_shape(n.attr, shapes[output]) for arg in op.arg: _set_tf_attr(n.attr, arg) return n def _operator_to_node_simp(op, inter_blobs, seen): """ Convert the operators to nodes. Args: op: Caffe2 operator to convert to node inter_blobs: Set of intermediate blobs seen: Names that have already been used and are not unique Returns: nodes: Nodes representing 'op' and the outputs of 'op' """ assert op nodes = [] outputs = [o for o in op.output if o not in inter_blobs] seen.update(outputs) len_outputs = len(outputs) if len_outputs == 1: n = NodeDef() n.name = outputs[0] # Here we are sure the name is unique. n.input.extend(op.input) n.op = op.type n.device = _tf_device(op.device_option) for arg in op.arg: _set_tf_attr(n.attr, arg) nodes.append(n) elif len_outputs > 1: # Create a name that is likely unique if op.name: name = op.name else: name_list = list(outputs) scope = os.path.commonprefix(name_list) name = os.path.join(scope, op.type) assert name op.name = _make_unique_name(seen, name) device = _tf_device(op.device_option) # Create additional output nodes for output in outputs: n = NodeDef() n.name = output n.input.extend([op.name]) n.op = "Blob" n.device = device nodes.append(n) # Node for the current op n = NodeDef() n.name = op.name n.input.extend(op.input) n.op = op.type n.device = device for arg in op.arg: _set_tf_attr(n.attr, arg) nodes.append(n) return nodes def _blob_to_node(producing_ops, shapes, name): """ Converts a blob (operator input or output) to a node in a TF graph. Args: producing_ops: Dictionary of blob name to list of (producing_op, blob_index within producing_op.output) mapping. shapes: Dictionary mapping blob names to their shapes/dimensions. name: String representing the name of this blob. Returns: n: The TF graph node created from this blob. """ assert name n = NodeDef() n.name = name # Get all ops that have the blob corresponding to 'name' as one of their # outputs. See _operators_to_graph_def. produced_by = producing_ops.get(name, []) if len(produced_by) > 0: n.op = "Blob" else: # This blob is not produced but is instead a TF Placeholder where a # value is passed in. n.op = "Placeholder" n.input.extend("%s:%d" % (p_op.name, i) for p_op, i in produced_by) if produced_by: device = produced_by[0][0].device_option if all(producer[0].device_option == device for producer in produced_by): n.device = _tf_device(device) if shapes and name in shapes: _add_tf_shape(n.attr, shapes[name]) return n def _clear_debug_info(ops, perform_clear): """ Removes debug information from operators, they are copious. Args: ops: List of Caffe2 operators perform_clear: Boolean passed from _operators_to_graph_def specifying whether to remove the debug information. This boolean is passed into this function to reduce the complexity of _operators_to_graph_def. Returns: None. Modifies the list of Caffe2 operators in-place and removes the 'debug_info' field. """ if not perform_clear: return for op in ops: if op.HasField("debug_info"): op.ClearField("debug_info") def _check_if_forward(blob): """ Blobs with names containing '_m' or 'grad' are part of the backward pass. This function references facebookresearch/Detectron/detectron/utils/net.py. Args: blob: The blob to inspect Returns: Boolean representing whether this blob is part of the forward pass """ # return blob.find("__m") < 0 or blob.find("grad") < 0 def _check_if_cpu(blob): """ Check if the blob's name starts with '_gpu'. Args: blob: The blob to inspect Returns: Boolean representing whether this blob is associated with a gpu """ return not blob.startswith("_gpu") def _compute_in_out(ops): """ Find the input, intermediate and output nodes of a set of operators. Args: ops: List of Caffe2 operators to look through Returns: input_blobs: The input nodes of the set of operators inter_blobs: The intermediate nodes of the set of operators output_blobs: The output nodes of the set of operators """ in_blobs = set() out_blobs = set() for op in ops: for input_blob in op.input: in_blobs.add(input_blob) for output_blob in op.output: out_blobs.add(output_blob) input_blobs = list(in_blobs.difference(out_blobs)) output_blobs = list(out_blobs.difference(in_blobs)) inter_blobs = {b for b in output_blobs if b.startswith("_")} output_blobs = [b for b in output_blobs if b not in inter_blobs] return input_blobs, inter_blobs, output_blobs def _filter_ops(ops, filter_fn, perform_filter): """ Filter unwanted operators based on criteria in 'filter_fn'. Args: ops: List of Caffe2 operators to filter filter_fn: Criteria function for whether inputs/outputs in an operator should be filtered. perform_filter: Boolean passed from _operators_to_graph_def specifying whether to filter operators Returns: new_ops: Subset of ops containing a subset of their inputs and outputs. """ if not perform_filter: return ops new_ops = [] for op in ops: inputs = list(op.input) outputs = list(op.output) del op.input[:] del op.output[:] new_inputs = [i for i in inputs if filter_fn(i)] new_outputs = [o for o in outputs if filter_fn(o)] # Only add the op if output is not empty if new_outputs: op.input.extend(new_inputs) op.output.extend(new_outputs) new_ops.append(op) return new_ops def _operators_to_graph_def( shapes, ops, colon_replacement="$", with_ssa=True, with_gradient_scope=True, blob_name_tracker=None, show_simplified=False, custom_rename=None, ): """ Main function to convert set of operators to a graph. Args: shapes: Dictionary mapping blob names to their shapes/dimensions. ops: List of Caffe2 operators, representing some computation graph ### **kwargs (model_to_graph_def, nets_to_graph_def, protos_to_graph_def) ### colon_replacement: Symbol to replace ':' with. ':i' in TF has a special meaning, so we need to replace it with a non-conflicting symbol. with_ssa: Boolean with_gradient_scope: Boolean blob_name_tracker: Dictionary tracking names of blobs (inputs/outputs from operators) show_simplified: Whether to show a simplified version of the model graph Sets all of the following values: clear_debug_info: Boolean representing whether to silence debug info (which can be very verbose) show_forward_only: Boolean representing whether to only show blobs involved in the forward pass show_cpu_only: Boolean representing whether to only show blobs that are not associated with a gpu use_tensorflow_naming: Boolean representing whether to convert some common Caffe2 naming conventions to their Tensorflow counterparts custom_rename: Function string -> string that defines a custom renaming function to use. Returns: current_graph: GraphDef representing the computation graph formed by the set of operators. """ if blob_name_tracker is not None: blob_name_tracker.clear() else: blob_name_tracker = {} blob_name_tracker.update(_get_blob_names(ops)) _clear_debug_info(ops, show_simplified) # clear_debug_info ops = _filter_ops(ops, _check_if_forward, show_simplified) # show_forward_only ops = _filter_ops(ops, _check_if_cpu, show_simplified) # show_cpu_only if custom_rename: _rename_all(shapes, blob_name_tracker, ops, custom_rename) if colon_replacement: _replace_colons(shapes, blob_name_tracker, ops, colon_replacement) if with_ssa: _convert_to_ssa(shapes, blob_name_tracker, ops) if with_gradient_scope: _add_gradient_scope(shapes, blob_name_tracker, ops) _fill_missing_operator_names(ops) if show_simplified: # use_tensorflow_naming _rename_tensorflow_style(shapes, blob_name_tracker, ops) producing_ops: Dict[caffe2_pb2.OperatorDef, List] = {} blobs = set() input_blobs, inter_blobs, _ = _compute_in_out(ops) current_graph = GraphDef() seen = set(input_blobs) for op in ops: nodes_from_op = ( _operator_to_node_simp(op, inter_blobs, seen) if show_simplified else [_operator_to_node(shapes, op)] ) # .extend() expects an iterable current_graph.node.extend(nodes_from_op) for input_blob in op.input: blobs.add(input_blob) for i, output_blob in enumerate(op.output): blobs.add(output_blob) producing_ops.setdefault(output_blob, []).append((op, i)) if show_simplified: # Show a cleaner, easier-to-interpret version of the model graph blobs = input_blobs for blob in sorted(blobs): current_graph.node.extend([_blob_to_node(producing_ops, {}, blob)]) return current_graph def _propagate_device_option(net_def): """ Propagate the device options from net to operators. Args: net_def: A caffe2_pb2.NetDef representing a computation graph. The graph consists of Caffe2 operators. Returns: None. Iterates through all ops contained within the net. For each op, modifies the op device_option in-place to be the net device_option if the op has no pre-existing device_option, and leaves the op as-is if it already has a device_option. """ if not net_def.HasField("device_option"): return for op in net_def.op: if not op.HasField("device_option"): op.device_option.CopyFrom(net_def.device_option) def _try_get_shapes(nets): """ Get missing shapes for all blobs contained in the nets. Args: nets: List of core.Net to extract blob shape information from. Returns: Dictionary containing blob name to shape/dimensions mapping. The net is a computation graph that is composed of operators, and the operators have input and output blobs, each with their own dims. """ try: # Note: this will inspect the workspace for better or worse. # We don't care about the types, only the shapes shapes, _ = workspace.InferShapesAndTypes(nets) return shapes except Exception as e: logging.warning("Failed to compute shapes: %s", e) return {} def model_to_graph_def(model, **kwargs): """ Convert a Caffe2 model to a Tensorflow graph. This function extracts 'param_init_net' and 'net' from the model and passes it to nets_to_graph() for further processing. Args: model (cnn.CNNModelHelper, model_helper.ModelHelper): The model to extract the nets (instances of core.Net) from. Returns: Call to nets_to_graph_def() with extracted 'param_init_net', 'net' and **kwargs. See _operators_to_graph_def for detailed **kwargs. """ nets = [model.param_init_net, model.net] return nets_to_graph_def(nets, **kwargs) def nets_to_graph_def(nets, shapes=None, **kwargs): """ Convert a set of Caffe2 nets to a Tensorflow graph. Args: nets: List of core.Nets. core.Net is a wrapper around a NetDef protobuf. The corresponding protobuf can be extracted using .Proto(). shapes: Dictionary mapping blob names to their shapes/dimensions. Returns: Call to protos_to_graph_def() with the extracted NetDef protobufs and **kwargs. See _operators_to_graph_def for detailed **kwargs. """ # if shapes is None: # shapes = _try_get_shapes(nets) # _try_get_shapes(nets) depends on workspace.InferShapesAndTypes(nets), # which is currently broken (segfault). We omit the shapes for now. shapes = {} nets = [copy.deepcopy(net.Proto()) for net in nets] shapes = copy.deepcopy(shapes) return protos_to_graph_def(nets, shapes, **kwargs) def protos_to_graph_def(net_defs, shapes=None, **kwargs): """ Convert a set of Caffe2 net definitions to a Tensorflow graph. Args: net_defs: List of caffe2_pb2.NetDef protobufs representing computation graphs. shapes: Dictionary mapping blob names to their shapes/dimensions. Returns: Call to _operators_to_graph_def() with the extracted operators from the NetDefs and **kwargs. See _operators_to_graph_def for detailed **kwargs. """ for net in net_defs: _propagate_device_option(net) shapes = copy.deepcopy(shapes or {}) ops = [op for net_def in net_defs for op in net_def.op] return _operators_to_graph_def(shapes, ops, **kwargs)
pytorch-master
torch/utils/tensorboard/_caffe2_graph.py
import numpy as np # Functions for converting def figure_to_image(figures, close=True): """Render matplotlib figure to numpy format. Note that this requires the ``matplotlib`` package. Args: figure (matplotlib.pyplot.figure) or list of figures: figure or a list of figures close (bool): Flag to automatically close the figure Returns: numpy.array: image in [CHW] order """ import matplotlib.pyplot as plt import matplotlib.backends.backend_agg as plt_backend_agg def render_to_rgb(figure): canvas = plt_backend_agg.FigureCanvasAgg(figure) canvas.draw() data = np.frombuffer(canvas.buffer_rgba(), dtype=np.uint8) w, h = figure.canvas.get_width_height() image_hwc = data.reshape([h, w, 4])[:, :, 0:3] image_chw = np.moveaxis(image_hwc, source=2, destination=0) if close: plt.close(figure) return image_chw if isinstance(figures, list): images = [render_to_rgb(figure) for figure in figures] return np.stack(images) else: image = render_to_rgb(figures) return image def _prepare_video(V): """ Converts a 5D tensor [batchsize, time(frame), channel(color), height, width] into 4D tensor with dimension [time(frame), new_width, new_height, channel]. A batch of images are spreaded to a grid, which forms a frame. e.g. Video with batchsize 16 will have a 4x4 grid. """ b, t, c, h, w = V.shape if V.dtype == np.uint8: V = np.float32(V) / 255.0 def is_power2(num): return num != 0 and ((num & (num - 1)) == 0) # pad to nearest power of 2, all at once if not is_power2(V.shape[0]): len_addition = int(2 ** V.shape[0].bit_length() - V.shape[0]) V = np.concatenate((V, np.zeros(shape=(len_addition, t, c, h, w))), axis=0) n_rows = 2 ** ((b.bit_length() - 1) // 2) n_cols = V.shape[0] // n_rows V = np.reshape(V, newshape=(n_rows, n_cols, t, c, h, w)) V = np.transpose(V, axes=(2, 0, 4, 1, 5, 3)) V = np.reshape(V, newshape=(t, n_rows * h, n_cols * w, c)) return V def make_grid(I, ncols=8): # I: N1HW or N3HW assert isinstance(I, np.ndarray), "plugin error, should pass numpy array here" if I.shape[1] == 1: I = np.concatenate([I, I, I], 1) assert I.ndim == 4 and I.shape[1] == 3 nimg = I.shape[0] H = I.shape[2] W = I.shape[3] ncols = min(nimg, ncols) nrows = int(np.ceil(float(nimg) / ncols)) canvas = np.zeros((3, H * nrows, W * ncols), dtype=I.dtype) i = 0 for y in range(nrows): for x in range(ncols): if i >= nimg: break canvas[:, y * H : (y + 1) * H, x * W : (x + 1) * W] = I[i] i = i + 1 return canvas # if modality == 'IMG': # if x.dtype == np.uint8: # x = x.astype(np.float32) / 255.0 def convert_to_HWC(tensor, input_format): # tensor: numpy array assert len(set(input_format)) == len( input_format ), "You can not use the same dimension shordhand twice. \ input_format: {}".format( input_format ) assert len(tensor.shape) == len( input_format ), "size of input tensor and input format are different. \ tensor shape: {}, input_format: {}".format( tensor.shape, input_format ) input_format = input_format.upper() if len(input_format) == 4: index = [input_format.find(c) for c in "NCHW"] tensor_NCHW = tensor.transpose(index) tensor_CHW = make_grid(tensor_NCHW) return tensor_CHW.transpose(1, 2, 0) if len(input_format) == 3: index = [input_format.find(c) for c in "HWC"] tensor_HWC = tensor.transpose(index) if tensor_HWC.shape[2] == 1: tensor_HWC = np.concatenate([tensor_HWC, tensor_HWC, tensor_HWC], 2) return tensor_HWC if len(input_format) == 2: index = [input_format.find(c) for c in "HW"] tensor = tensor.transpose(index) tensor = np.stack([tensor, tensor, tensor], 2) return tensor
pytorch-master
torch/utils/tensorboard/_utils.py
#!/usr/bin/env python3 """ model_dump: a one-stop shop for TorchScript model inspection. The goal of this tool is to provide a simple way to extract lots of useful information from a TorchScript model and make it easy for humans to consume. It (mostly) replaces zipinfo, common uses of show_pickle, and various ad-hoc analysis notebooks. The tool extracts information from the model and serializes it as JSON. That JSON can then be rendered by an HTML+JS page, either by loading the JSON over HTTP or producing a fully self-contained page with all of the code and data burned-in. """ # Maintainer notes follow. """ The implementation strategy has tension between 3 goals: - Small file size. - Fully self-contained. - Easy, modern JS environment. Using Preact and HTM achieves 1 and 2 with a decent result for 3. However, the models I tested with result in ~1MB JSON output, so even using something heavier like full React might be tolerable if the build process can be worked out. One principle I have followed that I think is very beneficial is to keep the JSON data as close as possible to the model and do most of the rendering logic on the client. This makes for easier development (just refresh, usually), allows for more laziness and dynamism, and lets us add more views of the same data without bloating the HTML file. Currently, this code doesn't actually load the model or even depend on any part of PyTorch. I don't know if that's an important feature to maintain, but it's probably worth preserving the ability to run at least basic analysis on models that cannot be loaded. I think the easiest way to develop this code is to cd into model_dump and run "python -m http.server", then load http://localhost:8000/skeleton.html in the browser. In another terminal, run "python -m torch.utils.model_dump --style=json FILE > \ torch/utils/model_dump/model_info.json" every time you update the Python code or model. When you update JS, just refresh. Possible improvements: - Fix various TODO comments in this file and the JS. - Make the HTML much less janky, especially the auxiliary data panel. - Make the auxiliary data panel start small, expand when data is available, and have a button to clear/contract. - Clean up the JS. There's a lot of copypasta because I don't really know how to use Preact. - Make the HTML render and work nicely inside a Jupyter notebook. - Add the ability for JS to choose the URL to load the JSON based on the page URL (query or hash). That way we could publish the inlined skeleton once and have it load various JSON blobs. - Add a button to expand all expandable sections so ctrl-F works well. - Add hyperlinking from data to code, and code to code. - Add hyperlinking from debug info to Diffusion. - Make small tensor contents available. - Do something nice for quantized models (they probably don't work at all right now). """ import sys import os import io import pathlib import re import argparse import zipfile import json import pickle import pprint import urllib.parse from typing import ( Dict, ) import torch.utils.show_pickle DEFAULT_EXTRA_FILE_SIZE_LIMIT = 16 * 1024 __all__ = ['get_storage_info', 'hierarchical_pickle', 'get_model_info', 'get_inline_skeleton', 'burn_in_info', 'get_info_and_burn_skeleton'] def get_storage_info(storage): assert isinstance(storage, torch.utils.show_pickle.FakeObject) assert storage.module == "pers" assert storage.name == "obj" assert storage.state is None assert isinstance(storage.args, tuple) assert len(storage.args) == 1 sa = storage.args[0] assert isinstance(sa, tuple) assert len(sa) == 5 assert sa[0] == "storage" assert isinstance(sa[1], torch.utils.show_pickle.FakeClass) assert sa[1].module == "torch" assert sa[1].name.endswith("Storage") storage_info = [sa[1].name.replace("Storage", "")] + list(sa[2:]) return storage_info def hierarchical_pickle(data): if isinstance(data, (bool, int, float, str, type(None))): return data if isinstance(data, list): return [hierarchical_pickle(d) for d in data] if isinstance(data, tuple): return { "__tuple_values__": hierarchical_pickle(list(data)), } if isinstance(data, dict): return { "__is_dict__": True, "keys": hierarchical_pickle(list(data.keys())), "values": hierarchical_pickle(list(data.values())), } if isinstance(data, torch.utils.show_pickle.FakeObject): typename = f"{data.module}.{data.name}" if ( typename.startswith("__torch__.") or typename.startswith("torch.jit.LoweredWrapper.") or typename.startswith("torch.jit.LoweredModule.") ): assert data.args == () return { "__module_type__": typename, "state": hierarchical_pickle(data.state), } if typename == "torch._utils._rebuild_tensor_v2": assert data.state is None storage, offset, size, stride, requires_grad, hooks = data.args storage_info = get_storage_info(storage) return {"__tensor_v2__": [storage_info, offset, size, stride, requires_grad]} if typename == "torch._utils._rebuild_qtensor": assert data.state is None storage, offset, size, stride, quantizer, requires_grad, hooks = data.args storage_info = get_storage_info(storage) assert isinstance(quantizer, tuple) assert isinstance(quantizer[0], torch.utils.show_pickle.FakeClass) assert quantizer[0].module == "torch" if quantizer[0].name == "per_tensor_affine": assert len(quantizer) == 3 assert isinstance(quantizer[1], float) assert isinstance(quantizer[2], int) quantizer_extra = list(quantizer[1:3]) else: quantizer_extra = [] quantizer_json = [quantizer[0].name] + quantizer_extra return {"__qtensor__": [storage_info, offset, size, stride, quantizer_json, requires_grad]} if typename == "torch.jit._pickle.restore_type_tag": assert data.state is None obj, typ = data.args assert isinstance(typ, str) return hierarchical_pickle(obj) if re.fullmatch(r"torch\.jit\._pickle\.build_[a-z]+list", typename): assert data.state is None ls, = data.args assert isinstance(ls, list) return hierarchical_pickle(ls) if typename == "torch.device": assert data.state is None name, = data.args assert isinstance(name, str) # Just forget that it was a device and return the name. return name if typename == "builtin.UnicodeDecodeError": assert data.state is None msg, = data.args assert isinstance(msg, str) # Hack: Pretend this is a module so we don't need custom serialization. # Hack: Wrap the message in a tuple so it looks like a nice state object. # TODO: Undo at least that second hack. We should support string states. return { "__module_type__": typename, "state": hierarchical_pickle((msg,)), } raise Exception(f"Can't prepare fake object of type for JS: {typename}") raise Exception(f"Can't prepare data of type for JS: {type(data)}") def get_model_info( path_or_file, title=None, extra_file_size_limit=DEFAULT_EXTRA_FILE_SIZE_LIMIT): """Get JSON-friendly information about a model. The result is suitable for being saved as model_info.json, or passed to burn_in_info. """ if isinstance(path_or_file, os.PathLike): default_title = os.fspath(path_or_file) file_size = path_or_file.stat().st_size # type: ignore[attr-defined] elif isinstance(path_or_file, str): default_title = path_or_file file_size = pathlib.Path(path_or_file).stat().st_size else: default_title = "buffer" path_or_file.seek(0, io.SEEK_END) file_size = path_or_file.tell() path_or_file.seek(0) title = title or default_title with zipfile.ZipFile(path_or_file) as zf: path_prefix = None zip_files = [] for zi in zf.infolist(): prefix = re.sub("/.*", "", zi.filename) if path_prefix is None: path_prefix = prefix elif prefix != path_prefix: raise Exception(f"Mismatched prefixes: {path_prefix} != {prefix}") zip_files.append(dict( filename=zi.filename, compression=zi.compress_type, compressed_size=zi.compress_size, file_size=zi.file_size, )) assert path_prefix is not None version = zf.read(path_prefix + "/version").decode("utf-8").strip() def get_pickle(name): assert path_prefix is not None with zf.open(path_prefix + f"/{name}.pkl") as handle: raw = torch.utils.show_pickle.DumpUnpickler(handle, catch_invalid_utf8=True).load() return hierarchical_pickle(raw) model_data = get_pickle("data") constants = get_pickle("constants") # Intern strings that are likely to be re-used. # Pickle automatically detects shared structure, # so re-used strings are stored efficiently. # However, JSON has no way of representing this, # so we have to do it manually. interned_strings : Dict[str, int] = {} def ist(s): if s not in interned_strings: interned_strings[s] = len(interned_strings) return interned_strings[s] code_files = {} for zi in zf.infolist(): if not zi.filename.endswith(".py"): continue with zf.open(zi) as handle: raw_code = handle.read() with zf.open(zi.filename + ".debug_pkl") as handle: raw_debug = handle.read() # Parse debug info and add begin/end markers if not present # to ensure that we cover the entire source code. debug_info_t = pickle.loads(raw_debug) text_table = None if (len(debug_info_t) == 3 and isinstance(debug_info_t[0], str) and debug_info_t[0] == 'FORMAT_WITH_STRING_TABLE'): _, text_table, content = debug_info_t def parse_new_format(line): # (0, (('', '', 0), 0, 0)) num, ((text_indexes, fname_idx, offset), start, end), tag = line text = ''.join(text_table[x] for x in text_indexes) # type: ignore[index] fname = text_table[fname_idx] # type: ignore[index] return num, ((text, fname, offset), start, end), tag debug_info_t = map(parse_new_format, content) debug_info = list(debug_info_t) if not debug_info: debug_info.append((0, (('', '', 0), 0, 0))) if debug_info[-1][0] != len(raw_code): debug_info.append((len(raw_code), (('', '', 0), 0, 0))) code_parts = [] for di, di_next in zip(debug_info, debug_info[1:]): start, source_range, *_ = di end = di_next[0] assert end > start source, s_start, s_end = source_range s_text, s_file, s_line = source # TODO: Handle this case better. TorchScript ranges are in bytes, # but JS doesn't really handle byte strings. # if bytes and chars are not equivalent for this string, # zero out the ranges so we don't highlight the wrong thing. if len(s_text) != len(s_text.encode("utf-8")): s_start = 0 s_end = 0 text = raw_code[start:end] code_parts.append([text.decode("utf-8"), ist(s_file), s_line, ist(s_text), s_start, s_end]) code_files[zi.filename] = code_parts extra_files_json_pattern = re.compile(re.escape(path_prefix) + "/extra/.*\\.json") extra_files_jsons = {} for zi in zf.infolist(): if not extra_files_json_pattern.fullmatch(zi.filename): continue if zi.file_size > extra_file_size_limit: continue with zf.open(zi) as handle: try: json_content = json.load(handle) extra_files_jsons[zi.filename] = json_content except json.JSONDecodeError: extra_files_jsons[zi.filename] = "INVALID JSON" always_render_pickles = { "bytecode.pkl", } extra_pickles = {} for zi in zf.infolist(): if not zi.filename.endswith(".pkl"): continue with zf.open(zi) as handle: # TODO: handle errors here and just ignore the file? # NOTE: For a lot of these files (like bytecode), # we could get away with just unpickling, but this should be safer. obj = torch.utils.show_pickle.DumpUnpickler(handle, catch_invalid_utf8=True).load() buf = io.StringIO() pprint.pprint(obj, buf) contents = buf.getvalue() # Checked the rendered length instead of the file size # because pickles with shared structure can explode in size during rendering. if os.path.basename(zi.filename) not in always_render_pickles and \ len(contents) > extra_file_size_limit: continue extra_pickles[zi.filename] = contents return {"model": dict( title=title, file_size=file_size, version=version, zip_files=zip_files, interned_strings=list(interned_strings), code_files=code_files, model_data=model_data, constants=constants, extra_files_jsons=extra_files_jsons, extra_pickles=extra_pickles, )} def get_inline_skeleton(): """Get a fully-inlined skeleton of the frontend. The returned HTML page has no external network dependencies for code. It can load model_info.json over HTTP, or be passed to burn_in_info. """ if sys.version_info < (3, 7): raise Exception("get_inline_skeleton requires Python 3.7") import importlib.resources skeleton = importlib.resources.read_text(__package__, "skeleton.html") js_code = importlib.resources.read_text(__package__, "code.js") for js_module in ["preact", "htm"]: js_lib = importlib.resources.read_binary(__package__, f"{js_module}.mjs") js_url = "data:application/javascript," + urllib.parse.quote(js_lib) js_code = js_code.replace(f"https://unpkg.com/{js_module}?module", js_url) skeleton = skeleton.replace(' src="./code.js">', ">\n" + js_code) return skeleton def burn_in_info(skeleton, info): """Burn model info into the HTML skeleton. The result will render the hard-coded model info and have no external network dependencies for code or data. """ # Note that Python's json serializer does not escape slashes in strings. # Since we're inlining this JSON directly into a script tag, a string # containing "</script>" would end the script prematurely and # mess up our page. Unconditionally escape fixes that. return skeleton.replace( "BURNED_IN_MODEL_INFO = null", "BURNED_IN_MODEL_INFO = " + json.dumps(info, sort_keys=True).replace("/", "\\/")) def get_info_and_burn_skeleton(path_or_bytesio, **kwargs): model_info = get_model_info(path_or_bytesio, **kwargs) skeleton = get_inline_skeleton() page = burn_in_info(skeleton, model_info) return page def main(argv, *, stdout=None): parser = argparse.ArgumentParser() parser.add_argument("--style", choices=["json", "html"]) parser.add_argument("--title") parser.add_argument("model") args = parser.parse_args(argv[1:]) info = get_model_info(args.model, title=args.title) output = stdout or sys.stdout if args.style == "json": output.write(json.dumps(info, sort_keys=True) + "\n") elif args.style == "html": skeleton = get_inline_skeleton() page = burn_in_info(skeleton, info) output.write(page) else: raise Exception("Invalid style")
pytorch-master
torch/utils/model_dump/__init__.py
#!/usr/bin/env python3 import sys from . import main sys.exit(main(sys.argv))
pytorch-master
torch/utils/model_dump/__main__.py
import warnings from typing import Any, List, Optional, Set import torch import torch.utils.data.datapipes as dp from torch.utils.data.graph import DataPipe, DataPipeGraph, traverse __all__ = [ "apply_sharding", "apply_shuffle_seed", "apply_shuffle_settings", "get_all_graph_pipes", ] def get_all_graph_pipes(graph: DataPipeGraph) -> List[DataPipe]: return _get_all_graph_pipes_helper(graph, set()) def _get_all_graph_pipes_helper(graph: DataPipeGraph, id_cache: Set[int]) -> List[DataPipe]: results: List[DataPipe] = [] for dp_id, (datapipe, sub_graph) in graph.items(): if dp_id in id_cache: continue id_cache.add(dp_id) results.append(datapipe) results.extend(_get_all_graph_pipes_helper(sub_graph, id_cache)) return results def apply_sharding(datapipe: DataPipe, num_of_instances: int, instance_id: int) -> DataPipe: graph = traverse(datapipe, only_datapipe=True) all_pipes = get_all_graph_pipes(graph) already_applied_to = None for pipe in all_pipes: if hasattr(pipe, 'is_shardable'): if pipe.is_shardable(): if hasattr(pipe, 'apply_sharding'): if already_applied_to is not None: raise RuntimeError('This implementation of sharding can be only applied once per instance of DataPipeline.', 'Already applied to', already_applied_to, 'while trying to apply to', pipe) pipe.apply_sharding(num_of_instances, instance_id) already_applied_to = pipe return datapipe def apply_shuffle_settings(datapipe: DataPipe, shuffle: Optional[bool]) -> DataPipe: if shuffle is None: return datapipe graph = traverse(datapipe, only_datapipe=True) all_pipes = get_all_graph_pipes(graph) shufflers = [pipe for pipe in all_pipes if isinstance(pipe, (dp.iter.Shuffler, dp.map.Shuffler))] if not shufflers and shuffle: warnings.warn( "`shuffle=True` was set, but the datapipe does not contain a `Shuffler`. Adding one at the end. " "Be aware that the default buffer size might not be sufficient for your task." ) datapipe = datapipe.shuffle() shufflers = [datapipe, ] # type: ignore[list-item] for shuffler in shufflers: shuffler.set_shuffle(shuffle) return datapipe def apply_shuffle_seed(datapipe: DataPipe, rng: Any) -> DataPipe: graph = traverse(datapipe, only_datapipe=True) all_pipes = get_all_graph_pipes(graph) shufflers = {pipe for pipe in all_pipes if isinstance(pipe, (dp.iter.Shuffler, dp.map.Shuffler))} for shuffler in shufflers: shuffle_seed = int(torch.empty((), dtype=torch.int64).random_(generator=rng).item()) shuffler.set_seed(shuffle_seed) return datapipe
pytorch-master
torch/utils/data/graph_settings.py
import io import pickle from torch.utils.data import IterDataPipe, MapDataPipe from torch.utils.data._utils.serialization import DILL_AVAILABLE from typing import Dict, List, Set, Tuple, Type, Union __all__ = ["traverse"] DataPipe = Union[IterDataPipe, MapDataPipe] DataPipeGraph = Dict[int, Tuple[DataPipe, "DataPipeGraph"]] # type: ignore[misc] reduce_ex_hook = None def _stub_unpickler(): return "STUB" # TODO(VitalyFedyunin): Make sure it works without dill module installed def _list_connected_datapipes(scan_obj: DataPipe, only_datapipe: bool, cache: Set[int]) -> List[DataPipe]: f = io.BytesIO() p = pickle.Pickler(f) # Not going to work for lambdas, but dill infinite loops on typing and can't be used as is if DILL_AVAILABLE: from dill import Pickler as dill_Pickler d = dill_Pickler(f) else: d = None def stub_pickler(obj): return _stub_unpickler, () captured_connections = [] def getstate_hook(obj): state = {} for k, v in obj.__dict__.items(): if isinstance(v, (IterDataPipe, MapDataPipe, tuple)): state[k] = v return state def reduce_hook(obj): if obj == scan_obj or id(obj) in cache: raise NotImplementedError else: captured_connections.append(obj) cache.add(id(obj)) return _stub_unpickler, () datapipe_classes: Tuple[Type[DataPipe]] = (IterDataPipe, MapDataPipe) # type: ignore[assignment] try: for cls in datapipe_classes: cls.set_reduce_ex_hook(reduce_hook) if only_datapipe: cls.set_getstate_hook(getstate_hook) try: p.dump(scan_obj) except (pickle.PickleError, AttributeError, TypeError): if DILL_AVAILABLE: d.dump(scan_obj) else: raise finally: for cls in datapipe_classes: cls.set_reduce_ex_hook(None) if only_datapipe: cls.set_getstate_hook(None) if DILL_AVAILABLE: from dill import extend as dill_extend dill_extend(False) # Undo change to dispatch table return captured_connections def traverse(datapipe: DataPipe, only_datapipe: bool = False) -> DataPipeGraph: cache: Set[int] = set() return _traverse_helper(datapipe, only_datapipe, cache) # Add cache here to prevent infinite recursion on DataPipe def _traverse_helper(datapipe: DataPipe, only_datapipe: bool, cache: Set[int]) -> DataPipeGraph: if not isinstance(datapipe, (IterDataPipe, MapDataPipe)): raise RuntimeError("Expected `IterDataPipe` or `MapDataPipe`, but {} is found".format(type(datapipe))) dp_id = id(datapipe) if dp_id in cache: return {} cache.add(dp_id) items = _list_connected_datapipes(datapipe, only_datapipe, cache.copy()) d: DataPipeGraph = {dp_id: (datapipe, {})} for item in items: # Using cache.copy() here is to prevent recursion on a single path rather than global graph # Single DataPipe can present multiple times in different paths in graph d[dp_id][1].update(_traverse_helper(item, only_datapipe, cache.copy())) return d
pytorch-master
torch/utils/data/graph.py
# TODO(VitalyFedyunin): Rearranging this imports leads to crash, # need to cleanup dependencies and fix it from torch.utils.data.sampler import ( BatchSampler, RandomSampler, Sampler, SequentialSampler, SubsetRandomSampler, WeightedRandomSampler, ) from torch.utils.data.dataset import ( ChainDataset, ConcatDataset, Dataset, IterableDataset, Subset, TensorDataset, random_split, ) from torch.utils.data.datapipes.datapipe import ( DFIterDataPipe, DataChunk, IterDataPipe, MapDataPipe, ) from torch.utils.data.dataloader import ( DataLoader, _DatasetKind, get_worker_info, default_collate, default_convert, ) from torch.utils.data.distributed import DistributedSampler from torch.utils.data.datapipes._decorator import ( argument_validation, functional_datapipe, guaranteed_datapipes_determinism, non_deterministic, runtime_validation, runtime_validation_disabled, ) from torch.utils.data.dataloader_experimental import DataLoader2 from torch.utils.data import communication __all__ = ['BatchSampler', 'ChainDataset', 'ConcatDataset', 'DFIterDataPipe', 'DataChunk', 'DataLoader', 'DataLoader2', 'Dataset', 'DistributedSampler', 'IterDataPipe', 'IterableDataset', 'MapDataPipe', 'RandomSampler', 'Sampler', 'SequentialSampler', 'Subset', 'SubsetRandomSampler', 'TensorDataset', 'WeightedRandomSampler', '_DatasetKind', 'argument_validation', 'communication', 'default_collate', 'default_convert', 'functional_datapipe', 'get_worker_info', 'guaranteed_datapipes_determinism', 'non_deterministic', 'random_split', 'runtime_validation', 'runtime_validation_disabled'] # Please keep this list sorted assert __all__ == sorted(__all__)
pytorch-master
torch/utils/data/__init__.py
import bisect import warnings import math from typing import ( Generic, Iterable, Iterator, List, Optional, Sequence, Tuple, TypeVar, Union ) # No 'default_generator' in torch/__init__.pyi from torch import default_generator, randperm from torch._utils import _accumulate from ... import Generator, Tensor __all__ = [ "Dataset", "IterableDataset", "TensorDataset", "ConcatDataset", "ChainDataset", "Subset", "random_split", ] T_co = TypeVar('T_co', covariant=True) T = TypeVar('T') class Dataset(Generic[T_co]): r"""An abstract class representing a :class:`Dataset`. All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a data sample for a given key. Subclasses could also optionally overwrite :meth:`__len__`, which is expected to return the size of the dataset by many :class:`~torch.utils.data.Sampler` implementations and the default options of :class:`~torch.utils.data.DataLoader`. .. note:: :class:`~torch.utils.data.DataLoader` by default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided. """ def __getitem__(self, index) -> T_co: raise NotImplementedError def __add__(self, other: 'Dataset[T_co]') -> 'ConcatDataset[T_co]': return ConcatDataset([self, other]) # No `def __len__(self)` default? # See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ] # in pytorch/torch/utils/data/sampler.py class IterableDataset(Dataset[T_co]): r"""An iterable Dataset. All datasets that represent an iterable of data samples should subclass it. Such form of datasets is particularly useful when data come from a stream. All subclasses should overwrite :meth:`__iter__`, which would return an iterator of samples in this dataset. When a subclass is used with :class:`~torch.utils.data.DataLoader`, each item in the dataset will be yielded from the :class:`~torch.utils.data.DataLoader` iterator. When :attr:`num_workers > 0`, each worker process will have a different copy of the dataset object, so it is often desired to configure each copy independently to avoid having duplicate data returned from the workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker process, returns information about the worker. It can be used in either the dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's :attr:`worker_init_fn` option to modify each copy's behavior. Example 1: splitting workload across all workers in :meth:`__iter__`:: >>> class MyIterableDataset(torch.utils.data.IterableDataset): ... def __init__(self, start, end): ... super(MyIterableDataset).__init__() ... assert end > start, "this example code only works with end >= start" ... self.start = start ... self.end = end ... ... def __iter__(self): ... worker_info = torch.utils.data.get_worker_info() ... if worker_info is None: # single-process data loading, return the full iterator ... iter_start = self.start ... iter_end = self.end ... else: # in a worker process ... # split workload ... per_worker = int(math.ceil((self.end - self.start) / float(worker_info.num_workers))) ... worker_id = worker_info.id ... iter_start = self.start + worker_id * per_worker ... iter_end = min(iter_start + per_worker, self.end) ... return iter(range(iter_start, iter_end)) ... >>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6]. >>> ds = MyIterableDataset(start=3, end=7) >>> # Single-process loading >>> print(list(torch.utils.data.DataLoader(ds, num_workers=0))) [tensor([3]), tensor([4]), tensor([5]), tensor([6])] >>> # Mult-process loading with two worker processes >>> # Worker 0 fetched [3, 4]. Worker 1 fetched [5, 6]. >>> # xdoctest: +IGNORE_WANT("non deterministic") >>> print(list(torch.utils.data.DataLoader(ds, num_workers=2))) [tensor([3]), tensor([5]), tensor([4]), tensor([6])] >>> # With even more workers >>> # xdoctest: +IGNORE_WANT("non deterministic") >>> print(list(torch.utils.data.DataLoader(ds, num_workers=20))) [tensor([3]), tensor([5]), tensor([4]), tensor([6])] Example 2: splitting workload across all workers using :attr:`worker_init_fn`:: >>> class MyIterableDataset(torch.utils.data.IterableDataset): ... def __init__(self, start, end): ... super(MyIterableDataset).__init__() ... assert end > start, "this example code only works with end >= start" ... self.start = start ... self.end = end ... ... def __iter__(self): ... return iter(range(self.start, self.end)) ... >>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6]. >>> ds = MyIterableDataset(start=3, end=7) >>> # Single-process loading >>> print(list(torch.utils.data.DataLoader(ds, num_workers=0))) [3, 4, 5, 6] >>> >>> # Directly doing multi-process loading yields duplicate data >>> print(list(torch.utils.data.DataLoader(ds, num_workers=2))) [3, 3, 4, 4, 5, 5, 6, 6] >>> # Define a `worker_init_fn` that configures each dataset copy differently >>> def worker_init_fn(worker_id): ... worker_info = torch.utils.data.get_worker_info() ... dataset = worker_info.dataset # the dataset copy in this worker process ... overall_start = dataset.start ... overall_end = dataset.end ... # configure the dataset to only process the split workload ... per_worker = int(math.ceil((overall_end - overall_start) / float(worker_info.num_workers))) ... worker_id = worker_info.id ... dataset.start = overall_start + worker_id * per_worker ... dataset.end = min(dataset.start + per_worker, overall_end) ... >>> # Mult-process loading with the custom `worker_init_fn` >>> # Worker 0 fetched [3, 4]. Worker 1 fetched [5, 6]. >>> print(list(torch.utils.data.DataLoader(ds, num_workers=2, worker_init_fn=worker_init_fn))) [3, 5, 4, 6] >>> # With even more workers >>> print(list(torch.utils.data.DataLoader(ds, num_workers=20, worker_init_fn=worker_init_fn))) [3, 4, 5, 6] """ def __iter__(self) -> Iterator[T_co]: raise NotImplementedError def __add__(self, other: Dataset[T_co]): return ChainDataset([self, other]) # No `def __len__(self)` default? Subclasses raise `TypeError` when needed. # See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ] class TensorDataset(Dataset[Tuple[Tensor, ...]]): r"""Dataset wrapping tensors. Each sample will be retrieved by indexing tensors along the first dimension. Args: *tensors (Tensor): tensors that have the same size of the first dimension. """ tensors: Tuple[Tensor, ...] def __init__(self, *tensors: Tensor) -> None: assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors), "Size mismatch between tensors" self.tensors = tensors def __getitem__(self, index): return tuple(tensor[index] for tensor in self.tensors) def __len__(self): return self.tensors[0].size(0) class ConcatDataset(Dataset[T_co]): r"""Dataset as a concatenation of multiple datasets. This class is useful to assemble different existing datasets. Args: datasets (sequence): List of datasets to be concatenated """ datasets: List[Dataset[T_co]] cumulative_sizes: List[int] @staticmethod def cumsum(sequence): r, s = [], 0 for e in sequence: l = len(e) r.append(l + s) s += l return r def __init__(self, datasets: Iterable[Dataset]) -> None: super(ConcatDataset, self).__init__() self.datasets = list(datasets) assert len(self.datasets) > 0, 'datasets should not be an empty iterable' # type: ignore[arg-type] for d in self.datasets: assert not isinstance(d, IterableDataset), "ConcatDataset does not support IterableDataset" self.cumulative_sizes = self.cumsum(self.datasets) def __len__(self): return self.cumulative_sizes[-1] def __getitem__(self, idx): if idx < 0: if -idx > len(self): raise ValueError("absolute value of index should not exceed dataset length") idx = len(self) + idx dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) if dataset_idx == 0: sample_idx = idx else: sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] return self.datasets[dataset_idx][sample_idx] @property def cummulative_sizes(self): warnings.warn("cummulative_sizes attribute is renamed to " "cumulative_sizes", DeprecationWarning, stacklevel=2) return self.cumulative_sizes class ChainDataset(IterableDataset): r"""Dataset for chaining multiple :class:`IterableDataset` s. This class is useful to assemble different existing dataset streams. The chaining operation is done on-the-fly, so concatenating large-scale datasets with this class will be efficient. Args: datasets (iterable of IterableDataset): datasets to be chained together """ def __init__(self, datasets: Iterable[Dataset]) -> None: super(ChainDataset, self).__init__() self.datasets = datasets def __iter__(self): for d in self.datasets: assert isinstance(d, IterableDataset), "ChainDataset only supports IterableDataset" for x in d: yield x def __len__(self): total = 0 for d in self.datasets: assert isinstance(d, IterableDataset), "ChainDataset only supports IterableDataset" total += len(d) # type: ignore[arg-type] return total class Subset(Dataset[T_co]): r""" Subset of a dataset at specified indices. Args: dataset (Dataset): The whole Dataset indices (sequence): Indices in the whole set selected for subset """ dataset: Dataset[T_co] indices: Sequence[int] def __init__(self, dataset: Dataset[T_co], indices: Sequence[int]) -> None: self.dataset = dataset self.indices = indices def __getitem__(self, idx): if isinstance(idx, list): return self.dataset[[self.indices[i] for i in idx]] return self.dataset[self.indices[idx]] def __len__(self): return len(self.indices) def random_split(dataset: Dataset[T], lengths: Sequence[Union[int, float]], generator: Optional[Generator] = default_generator) -> List[Subset[T]]: r""" Randomly split a dataset into non-overlapping new datasets of given lengths. If a list of fractions that sum up to 1 is given, the lengths will be computed automatically as floor(frac * len(dataset)) for each fraction provided. After computing the lengths, if there are any remainders, 1 count will be distributed in round-robin fashion to the lengths until there are no remainders left. Optionally fix the generator for reproducible results, e.g.: >>> random_split(range(10), [3, 7], generator=torch.Generator().manual_seed(42)) >>> random_split(range(30), [0.3, 0.3, 0.4], generator=torch.Generator( ... ).manual_seed(42)) Args: dataset (Dataset): Dataset to be split lengths (sequence): lengths or fractions of splits to be produced generator (Generator): Generator used for the random permutation. """ if math.isclose(sum(lengths), 1) and sum(lengths) <= 1: subset_lengths: List[int] = [] for i, frac in enumerate(lengths): if frac < 0 or frac > 1: raise ValueError(f"Fraction at index {i} is not between 0 and 1") n_items_in_split = int( math.floor(len(dataset) * frac) # type: ignore[arg-type] ) subset_lengths.append(n_items_in_split) remainder = len(dataset) - sum(subset_lengths) # type: ignore[arg-type] # add 1 to all the lengths in round-robin fashion until the remainder is 0 for i in range(remainder): idx_to_add_at = i % len(subset_lengths) subset_lengths[idx_to_add_at] += 1 lengths = subset_lengths for i, length in enumerate(lengths): if length == 0: warnings.warn(f"Length of split at index {i} is 0. " f"This might result in an empty dataset.") # Cannot verify that dataset is Sized if sum(lengths) != len(dataset): # type: ignore[arg-type] raise ValueError("Sum of input lengths does not equal the length of the input dataset!") indices = randperm(sum(lengths), generator=generator).tolist() # type: ignore[call-overload] return [Subset(dataset, indices[offset - length : offset]) for offset, length in zip(_accumulate(lengths), lengths)]
pytorch-master
torch/utils/data/dataset.py
import math from typing import TypeVar, Optional, Iterator import torch from . import Sampler, Dataset import torch.distributed as dist __all__ = ["DistributedSampler", ] T_co = TypeVar('T_co', covariant=True) class DistributedSampler(Sampler[T_co]): r"""Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a :class:`~torch.utils.data.DataLoader` sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size and that any instance of it always returns the same elements in the same order. Args: dataset: Dataset used for sampling. num_replicas (int, optional): Number of processes participating in distributed training. By default, :attr:`world_size` is retrieved from the current distributed group. rank (int, optional): Rank of the current process within :attr:`num_replicas`. By default, :attr:`rank` is retrieved from the current distributed group. shuffle (bool, optional): If ``True`` (default), sampler will shuffle the indices. seed (int, optional): random seed used to shuffle the sampler if :attr:`shuffle=True`. This number should be identical across all processes in the distributed group. Default: ``0``. drop_last (bool, optional): if ``True``, then the sampler will drop the tail of the data to make it evenly divisible across the number of replicas. If ``False``, the sampler will add extra indices to make the data evenly divisible across the replicas. Default: ``False``. .. warning:: In distributed mode, calling the :meth:`set_epoch` method at the beginning of each epoch **before** creating the :class:`DataLoader` iterator is necessary to make shuffling work properly across multiple epochs. Otherwise, the same ordering will be always used. Example:: >>> # xdoctest: +SKIP >>> sampler = DistributedSampler(dataset) if is_distributed else None >>> loader = DataLoader(dataset, shuffle=(sampler is None), ... sampler=sampler) >>> for epoch in range(start_epoch, n_epochs): ... if is_distributed: ... sampler.set_epoch(epoch) ... train(loader) """ def __init__(self, dataset: Dataset, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True, seed: int = 0, drop_last: bool = False) -> None: if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() if rank >= num_replicas or rank < 0: raise ValueError( "Invalid rank {}, rank should be in the interval" " [0, {}]".format(rank, num_replicas - 1)) self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.drop_last = drop_last # If the dataset length is evenly divisible by # of replicas, then there # is no need to drop any data, since the dataset will be split equally. if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type] # Split to nearest available length that is evenly divisible. # This is to ensure each rank receives the same amount of data when # using this Sampler. self.num_samples = math.ceil( (len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type] ) else: self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type] self.total_size = self.num_samples * self.num_replicas self.shuffle = shuffle self.seed = seed def __iter__(self) -> Iterator[T_co]: if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] else: indices = list(range(len(self.dataset))) # type: ignore[arg-type] if not self.drop_last: # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] else: # remove tail of data to make it evenly divisible. indices = indices[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self) -> int: return self.num_samples def set_epoch(self, epoch: int) -> None: r""" Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas use a different random ordering for each epoch. Otherwise, the next iteration of this sampler will yield the same ordering. Args: epoch (int): Epoch number. """ self.epoch = epoch
pytorch-master
torch/utils/data/distributed.py
import time from typing import Any, List import torch.utils.data.backward_compatibility import torch.utils.data.graph_settings from torch.utils.data import DataLoader, IterDataPipe, communication from torch.utils.data.datapipes.iter import IterableWrapper __all__ = [ "DataLoader2", ] class _ThreadingDataLoader2: def __init__(self, datapipe, num_workers=0, collate_fn=None): self.threads = [] self.datapipes = [] self.collate_fn = collate_fn for worker_id in range(num_workers): (thread, req_queue, res_queue, thread_localdatapipe) = communication.eventloop.SpawnThreadForDataPipeline(datapipe) torch.utils.data.graph_settings.apply_sharding(thread_localdatapipe, num_workers, worker_id) thread.start() self.threads.append((thread, req_queue, res_queue)) # These queues are independent local_datapipe = communication.iter.QueueWrapper( communication.protocol.IterDataPipeQueueProtocolClient(req_queue, res_queue)) self.datapipes.append(local_datapipe) def __iter__(self): not_available = False forever = True exclude_datapipes: List[Any] = [] while len(exclude_datapipes) < len(self.datapipes): for dp in self.datapipes: if dp not in exclude_datapipes: try: value = dp.nonblocking_next() yield value except StopIteration: exclude_datapipes.append(dp) except communication.iter.NotAvailable: not_available = True if not_available: time.sleep(0.001) def __del__(self): self._cleanup_all_threads() def _cleanup_all_threads(self): def clean_me(thread, req_queue, res_queue): req_queue.put(communication.messages.TerminateRequest()) _ = res_queue.get() thread.join() for thread, req_queue, res_queue in self.threads: clean_me(thread, req_queue, res_queue) class DataLoader2: def __new__(cls, dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, *, prefetch_factor=2, persistent_workers=False, batch_outside_worker=False, parallelism_mode='mp'): if isinstance(dataset, IterDataPipe): data_loader: Any = None if batch_sampler is not None: raise Exception( 'batch_sampler is not yet supported by DataPipes') if sampler is not None: raise Exception( 'sampler is not yet supported by DataPipes') datapipe = dataset datapipe = torch.utils.data.graph_settings.apply_shuffle_settings(datapipe, shuffle=shuffle) # type: ignore[assignment] if batch_outside_worker and pin_memory: raise Exception( 'pin_memory is not yet compatible with batch_outside_worker') if not batch_outside_worker: if batch_size is not None: datapipe = datapipe.batch(batch_size, drop_last=drop_last) if collate_fn is None: collate_fn = torch.utils.data._utils.collate.default_collate # Note: It is safe to pass shuffle=True to the old DataLoader, as shuffle does nothing # for Iterable, but required to set Pipes correctly. data_loader = DataLoader(datapipe, batch_size=None, # Replaced by .batch DataPipe shuffle=shuffle, sampler=None, batch_sampler=None, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=False, # Replaced by .batch DataPipe timeout=timeout, worker_init_fn=worker_init_fn, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers) elif parallelism_mode == 'thread': if collate_fn is not None and not batch_outside_worker: datapipe = datapipe.map(collate_fn) if pin_memory: raise Exception( 'pin_memory is not yet supported by DataPipes with Threading') if worker_init_fn is not None: raise Exception( 'worker_init_fn is not yet supported by DataPipes with Threading') data_loader = _ThreadingDataLoader2(datapipe, num_workers=num_workers, collate_fn=collate_fn) else: raise Exception('Unsupported parallelism mode', parallelism_mode) if not batch_outside_worker: return data_loader else: if collate_fn is None: collate_fn = torch.utils.data._utils.collate.default_collate datapipe = IterableWrapper(data_loader).batch( batch_size, drop_last=drop_last).map(collate_fn) return datapipe else: if parallelism_mode == 'thread': raise Exception( 'thread parallelism mode is not supported for old DataSets') return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers)
pytorch-master
torch/utils/data/dataloader_experimental.py
import warnings def worker_init_fn(worker_id): warnings.warn("Usage of backward_compatibility.worker_init_fn is deprecated" " as DataLoader automatically applies sharding in every worker")
pytorch-master
torch/utils/data/backward_compatibility.py
r"""Definition of the DataLoader and associated iterators that subclass _BaseDataLoaderIter To support these two classes, in `./_utils` we define many utility methods and functions to be run in multiprocessing. E.g., the data loading worker loop is in `./_utils/worker.py`. """ import functools import itertools import logging import os import queue import threading import time import warnings from datetime import timedelta from typing import Any, Callable, Iterable, TypeVar, Generic, Sequence, List, Optional, Union import multiprocessing as python_multiprocessing import torch import torch.distributed as dist import torch.multiprocessing as multiprocessing import torch.utils.data.graph_settings from torch._utils import ExceptionWrapper from torch._six import string_classes from . import ( IterDataPipe, MapDataPipe, IterableDataset, Sampler, SequentialSampler, RandomSampler, BatchSampler, Dataset,) from torch.utils.data.datapipes.datapipe import _IterDataPipeSerializationWrapper, _MapDataPipeSerializationWrapper from . import _utils __all__ = [ "DataLoader", "get_worker_info", "default_collate", "default_convert", ] T_co = TypeVar('T_co', covariant=True) T = TypeVar('T') _worker_init_fn_t = Callable[[int], None] # Ideally we would parameterize `DataLoader` by the return type of `collate_fn`, but there is currently no way to have that # type parameter set to a default value if the user doesn't pass in a custom 'collate_fn'. # See https://github.com/python/mypy/issues/3737. _collate_fn_t = Callable[[List[T]], Any] # These functions used to be defined in this file. However, it was moved to # _utils/collate.py. Although it is rather hard to access this from user land # (one has to explicitly directly `import torch.utils.data.dataloader`), there # probably is user code out there using it. This aliasing maintains BC in this # aspect. default_collate: _collate_fn_t = _utils.collate.default_collate default_convert = _utils.collate.default_convert get_worker_info = _utils.worker.get_worker_info logger = logging.getLogger(__name__) class _DatasetKind(object): Map = 0 Iterable = 1 @staticmethod def create_fetcher(kind, dataset, auto_collation, collate_fn, drop_last): if kind == _DatasetKind.Map: return _utils.fetch._MapDatasetFetcher(dataset, auto_collation, collate_fn, drop_last) else: return _utils.fetch._IterableDatasetFetcher(dataset, auto_collation, collate_fn, drop_last) class _InfiniteConstantSampler(Sampler): r"""Analogous to ``itertools.repeat(None, None)``. Used as sampler for :class:`~torch.utils.data.IterableDataset`. Args: data_source (Dataset): dataset to sample from """ def __init__(self): super(_InfiniteConstantSampler, self).__init__(None) def __iter__(self): while True: yield None def _get_distributed_settings(): if dist.is_available() and dist.is_initialized(): return dist.get_world_size(), dist.get_rank() else: return 1, 0 def _sharding_worker_init_fn(worker_init_fn, world_size, rank_id, worker_id): global_worker_id = worker_id info = torch.utils.data.get_worker_info() total_workers = info.num_workers datapipe = info.dataset # To distribute elements across distributed process evenly, we should shard data on distributed # processes first then shard on worker processes total_workers *= world_size global_worker_id = global_worker_id * world_size + rank_id torch.utils.data.graph_settings.apply_sharding(datapipe, total_workers, global_worker_id) if worker_init_fn is not None: worker_init_fn(worker_id) class DataLoader(Generic[T_co]): r""" Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset. The :class:`~torch.utils.data.DataLoader` supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning. See :py:mod:`torch.utils.data` documentation page for more details. Args: dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per batch to load (default: ``1``). shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``). sampler (Sampler or Iterable, optional): defines the strategy to draw samples from the dataset. Can be any ``Iterable`` with ``__len__`` implemented. If specified, :attr:`shuffle` must not be specified. batch_sampler (Sampler or Iterable, optional): like :attr:`sampler`, but returns a batch of indices at a time. Mutually exclusive with :attr:`batch_size`, :attr:`shuffle`, :attr:`sampler`, and :attr:`drop_last`. num_workers (int, optional): how many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process. (default: ``0``) collate_fn (Callable, optional): merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. pin_memory (bool, optional): If ``True``, the data loader will copy Tensors into device/CUDA pinned memory before returning them. If your data elements are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, see the example below. drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If ``False`` and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: ``False``) timeout (numeric, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: ``0``) worker_init_fn (Callable, optional): If not ``None``, this will be called on each worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as input, after seeding and before data loading. (default: ``None``) generator (torch.Generator, optional): If not ``None``, this RNG will be used by RandomSampler to generate random indexes and multiprocessing to generate `base_seed` for workers. (default: ``None``) prefetch_factor (int, optional, keyword-only arg): Number of batches loaded in advance by each worker. ``2`` means there will be a total of 2 * num_workers batches prefetched across all workers. (default: ``2``) persistent_workers (bool, optional): If ``True``, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers `Dataset` instances alive. (default: ``False``) pin_memory_device (str, optional): the data loader will copy Tensors into device pinned memory before returning them if pin_memory is set to true. .. warning:: If the ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an unpicklable object, e.g., a lambda function. See :ref:`multiprocessing-best-practices` on more details related to multiprocessing in PyTorch. .. warning:: ``len(dataloader)`` heuristic is based on the length of the sampler used. When :attr:`dataset` is an :class:`~torch.utils.data.IterableDataset`, it instead returns an estimate based on ``len(dataset) / batch_size``, with proper rounding depending on :attr:`drop_last`, regardless of multi-process loading configurations. This represents the best guess PyTorch can make because PyTorch trusts user :attr:`dataset` code in correctly handling multi-process loading to avoid duplicate data. However, if sharding results in multiple workers having incomplete last batches, this estimate can still be inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one batch worth of samples can be dropped when :attr:`drop_last` is set. Unfortunately, PyTorch can not detect such cases in general. See `Dataset Types`_ for more details on these two types of datasets and how :class:`~torch.utils.data.IterableDataset` interacts with `Multi-process data loading`_. .. warning:: See :ref:`reproducibility`, and :ref:`dataloader-workers-random-seed`, and :ref:`data-loading-randomness` notes for random seed related questions. """ dataset: Dataset[T_co] batch_size: Optional[int] num_workers: int pin_memory: bool drop_last: bool timeout: float sampler: Union[Sampler, Iterable] pin_memory_device: str prefetch_factor: int _iterator : Optional['_BaseDataLoaderIter'] __initialized = False def __init__(self, dataset: Dataset[T_co], batch_size: Optional[int] = 1, shuffle: Optional[bool] = None, sampler: Union[Sampler, Iterable, None] = None, batch_sampler: Union[Sampler[Sequence], Iterable[Sequence], None] = None, num_workers: int = 0, collate_fn: Optional[_collate_fn_t] = None, pin_memory: bool = False, drop_last: bool = False, timeout: float = 0, worker_init_fn: Optional[_worker_init_fn_t] = None, multiprocessing_context=None, generator=None, *, prefetch_factor: int = 2, persistent_workers: bool = False, pin_memory_device: str = ""): torch._C._log_api_usage_once("python.data_loader") if num_workers < 0: raise ValueError('num_workers option should be non-negative; ' 'use num_workers=0 to disable multiprocessing.') if timeout < 0: raise ValueError('timeout option should be non-negative') if num_workers == 0 and prefetch_factor != 2: raise ValueError('prefetch_factor option could only be specified in multiprocessing.' 'let num_workers > 0 to enable multiprocessing.') assert prefetch_factor > 0 if persistent_workers and num_workers == 0: raise ValueError('persistent_workers option needs num_workers > 0') self.dataset = dataset self.num_workers = num_workers self.prefetch_factor = prefetch_factor self.pin_memory = pin_memory self.pin_memory_device = pin_memory_device self.timeout = timeout self.worker_init_fn = worker_init_fn self.multiprocessing_context = multiprocessing_context # Adds several forward compatibilities so classic DataLoader can work with DataPipes # 1. _DataPipeSerializationWrapper container makes it easier to serialize without redefining pickler # 2. Additional worker init function will take care of sharding in MP and Distributed if isinstance(self.dataset, IterDataPipe): self.dataset = _IterDataPipeSerializationWrapper(self.dataset) ws, rank = _get_distributed_settings() if num_workers > 0: self.worker_init_fn = functools.partial( _sharding_worker_init_fn, self.worker_init_fn, ws, rank) else: torch.utils.data.graph_settings.apply_sharding(self.dataset, ws, rank) elif isinstance(self.dataset, MapDataPipe): self.dataset = _MapDataPipeSerializationWrapper(self.dataset) ws, rank = _get_distributed_settings() if num_workers > 0: self.worker_init_fn = functools.partial( _sharding_worker_init_fn, self.worker_init_fn, ws, rank) else: torch.utils.data.graph_settings.apply_sharding(self.dataset, ws, rank) # Arg-check dataset related before checking samplers because we want to # tell users that iterable-style datasets are incompatible with custom # samplers first, so that they don't learn that this combo doesn't work # after spending time fixing the custom sampler errors. if isinstance(dataset, IterableDataset): self._dataset_kind = _DatasetKind.Iterable # NOTE [ Custom Samplers and IterableDataset ] # # `IterableDataset` does not support custom `batch_sampler` or # `sampler` since the key is irrelevant (unless we support # generator-style dataset one day...). # # For `sampler`, we always create a dummy sampler. This is an # infinite sampler even when the dataset may have an implemented # finite `__len__` because in multi-process data loading, naive # settings will return duplicated data (which may be desired), and # thus using a sampler with length matching that of dataset will # cause data lost (you may have duplicates of the first couple # batches, but never see anything afterwards). Therefore, # `Iterabledataset` always uses an infinite sampler, an instance of # `_InfiniteConstantSampler` defined above. # # A custom `batch_sampler` essentially only controls the batch size. # However, it is unclear how useful it would be since an iterable-style # dataset can handle that within itself. Moreover, it is pointless # in multi-process data loading as the assignment order of batches # to workers is an implementation detail so users can not control # how to batchify each worker's iterable. Thus, we disable this # option. If this turns out to be useful in future, we can re-enable # this, and support custom samplers that specify the assignments to # specific workers. if isinstance(dataset, IterDataPipe): if shuffle is not None: dataset = torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle) # We cannot check `shuffle is not None` here, since previously `shuffle=False` was the default. elif shuffle not in {False, None}: raise ValueError( "DataLoader with IterableDataset: expected unspecified " "shuffle option, but got shuffle={}".format(shuffle)) if sampler is not None: # See NOTE [ Custom Samplers and IterableDataset ] raise ValueError( "DataLoader with IterableDataset: expected unspecified " "sampler option, but got sampler={}".format(sampler)) elif batch_sampler is not None: # See NOTE [ Custom Samplers and IterableDataset ] raise ValueError( "DataLoader with IterableDataset: expected unspecified " "batch_sampler option, but got batch_sampler={}".format(batch_sampler)) else: shuffle = bool(shuffle) self._dataset_kind = _DatasetKind.Map if sampler is not None and shuffle: raise ValueError('sampler option is mutually exclusive with ' 'shuffle') if batch_sampler is not None: # auto_collation with custom batch_sampler if batch_size != 1 or shuffle or sampler is not None or drop_last: raise ValueError('batch_sampler option is mutually exclusive ' 'with batch_size, shuffle, sampler, and ' 'drop_last') batch_size = None drop_last = False elif batch_size is None: # no auto_collation if drop_last: raise ValueError('batch_size=None option disables auto-batching ' 'and is mutually exclusive with drop_last') if sampler is None: # give default samplers if self._dataset_kind == _DatasetKind.Iterable: # See NOTE [ Custom Samplers and IterableDataset ] sampler = _InfiniteConstantSampler() else: # map-style if shuffle: sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-type] else: sampler = SequentialSampler(dataset) # type: ignore[arg-type] if batch_size is not None and batch_sampler is None: # auto_collation without custom batch_sampler batch_sampler = BatchSampler(sampler, batch_size, drop_last) self.batch_size = batch_size self.drop_last = drop_last self.sampler = sampler self.batch_sampler = batch_sampler self.generator = generator if collate_fn is None: if self._auto_collation: collate_fn = _utils.collate.default_collate else: collate_fn = _utils.collate.default_convert self.collate_fn = collate_fn self.persistent_workers = persistent_workers self.__initialized = True self._IterableDataset_len_called = None # See NOTE [ IterableDataset and __len__ ] self._iterator = None self.check_worker_number_rationality() torch.set_vital('Dataloader', 'enabled', 'True') # type: ignore[attr-defined] def _get_iterator(self) -> '_BaseDataLoaderIter': if self.num_workers == 0: return _SingleProcessDataLoaderIter(self) else: self.check_worker_number_rationality() return _MultiProcessingDataLoaderIter(self) @property def multiprocessing_context(self): return self.__multiprocessing_context @multiprocessing_context.setter def multiprocessing_context(self, multiprocessing_context): if multiprocessing_context is not None: if self.num_workers > 0: if isinstance(multiprocessing_context, string_classes): valid_start_methods = multiprocessing.get_all_start_methods() if multiprocessing_context not in valid_start_methods: raise ValueError( ('multiprocessing_context option ' 'should specify a valid start method in {!r}, but got ' 'multiprocessing_context={!r}').format(valid_start_methods, multiprocessing_context)) # error: Argument 1 to "get_context" has incompatible type "Union[str, bytes]"; expected "str" [arg-type] multiprocessing_context = multiprocessing.get_context(multiprocessing_context) # type: ignore[arg-type] if not isinstance(multiprocessing_context, python_multiprocessing.context.BaseContext): raise TypeError(('multiprocessing_context option should be a valid context ' 'object or a string specifying the start method, but got ' 'multiprocessing_context={}').format(multiprocessing_context)) else: raise ValueError(('multiprocessing_context can only be used with ' 'multi-process loading (num_workers > 0), but got ' 'num_workers={}').format(self.num_workers)) self.__multiprocessing_context = multiprocessing_context def __setattr__(self, attr, val): if self.__initialized and attr in ( 'batch_size', 'batch_sampler', 'sampler', 'drop_last', 'dataset', 'persistent_workers'): raise ValueError('{} attribute should not be set after {} is ' 'initialized'.format(attr, self.__class__.__name__)) super(DataLoader, self).__setattr__(attr, val) # We quote '_BaseDataLoaderIter' since it isn't defined yet and the definition can't be moved up # since '_BaseDataLoaderIter' references 'DataLoader'. def __iter__(self) -> '_BaseDataLoaderIter': # When using a single worker the returned iterator should be # created everytime to avoid reseting its state # However, in the case of a multiple workers iterator # the iterator is only created once in the lifetime of the # DataLoader object so that workers can be reused if self.persistent_workers and self.num_workers > 0: if self._iterator is None: self._iterator = self._get_iterator() else: self._iterator._reset(self) return self._iterator else: return self._get_iterator() @property def _auto_collation(self): return self.batch_sampler is not None @property def _index_sampler(self): # The actual sampler used for generating indices for `_DatasetFetcher` # (see _utils/fetch.py) to read data at each time. This would be # `.batch_sampler` if in auto-collation mode, and `.sampler` otherwise. # We can't change `.sampler` and `.batch_sampler` attributes for BC # reasons. if self._auto_collation: return self.batch_sampler else: return self.sampler def __len__(self) -> int: if self._dataset_kind == _DatasetKind.Iterable: # NOTE [ IterableDataset and __len__ ] # # For `IterableDataset`, `__len__` could be inaccurate when one naively # does multi-processing data loading, since the samples will be duplicated. # However, no real use case should be actually using that behavior, so # it should count as a user error. We should generally trust user # code to do the proper thing (e.g., configure each replica differently # in `__iter__`), and give us the correct `__len__` if they choose to # implement it (this will still throw if the dataset does not implement # a `__len__`). # # To provide a further warning, we track if `__len__` was called on the # `DataLoader`, save the returned value in `self._len_called`, and warn # if the iterator ends up yielding more than this number of samples. # Cannot statically verify that dataset is Sized length = self._IterableDataset_len_called = len(self.dataset) # type: ignore[assignment, arg-type] if self.batch_size is not None: # IterableDataset doesn't allow custom sampler or batch_sampler from math import ceil if self.drop_last: length = length // self.batch_size else: length = ceil(length / self.batch_size) return length else: return len(self._index_sampler) def check_worker_number_rationality(self): # This function check whether the dataloader's worker number is rational based on # current system's resource. Current rule is that if the number of workers this # Dataloader will create is bigger than the number of logical cpus that is allowed to # use, than we will pop up a warning to let user pay attention. # # eg. If current system has 2 physical CPUs with 16 cores each. And each core support 2 # threads, then the total logical cpus here is 2 * 16 * 2 = 64. Let's say current # DataLoader process can use half of them which is 32, then the rational max number of # worker that initiated from this process is 32. # Now, let's say the created DataLoader has num_works = 40, which is bigger than 32. # So the warning message is triggered to notify the user to lower the worker number if # necessary. # # # [Note] Please note that this function repects `cpuset` only when os.sched_getaffinity is # available (available in most of Linux system, but not OSX and Windows). # When os.sched_getaffinity is not available, os.cpu_count() is called instead, but # it doesn't repect cpuset. # We don't take threading into account since each worker process is single threaded # at this time. # # We don't set any threading flags (eg. OMP_NUM_THREADS, MKL_NUM_THREADS, etc) # other than `torch.set_num_threads` to 1 in the worker process, if the passing # in functions use 3rd party modules that rely on those threading flags to determine # how many thread to create (eg. numpy, etc), then it is caller's responsibility to # set those flags correctly. def _create_warning_msg(num_worker_suggest, num_worker_created, cpuset_checked): suggested_max_worker_msg = (( "Our suggested max number of worker in current system is {}{}, which is smaller " "than what this DataLoader is going to create.").format( num_worker_suggest, ("" if cpuset_checked else " (`cpuset` is not taken into account)")) ) if num_worker_suggest is not None else ( "DataLoader is not able to compute a suggested max number of worker in current system.") warn_msg = ( "This DataLoader will create {} worker processes in total. {} " "Please be aware that excessive worker creation might get DataLoader running slow or even freeze, " "lower the worker number to avoid potential slowness/freeze if necessary.").format( num_worker_created, suggested_max_worker_msg) return warn_msg if not self.num_workers or self.num_workers == 0: return # try to compute a suggested max number of worker based on system's resource max_num_worker_suggest = None cpuset_checked = False if hasattr(os, 'sched_getaffinity'): try: max_num_worker_suggest = len(os.sched_getaffinity(0)) cpuset_checked = True except Exception: pass if max_num_worker_suggest is None: # os.cpu_count() could return Optional[int] # get cpu count first and check None in order to satify mypy check cpu_count = os.cpu_count() if cpu_count is not None: max_num_worker_suggest = cpu_count if max_num_worker_suggest is None: warnings.warn(_create_warning_msg( max_num_worker_suggest, self.num_workers, cpuset_checked)) return if self.num_workers > max_num_worker_suggest: warnings.warn(_create_warning_msg( max_num_worker_suggest, self.num_workers, cpuset_checked)) def _get_shared_seed(self): if isinstance(self.dataset, IterDataPipe): _shared_seed = torch.empty((), dtype=torch.int64).random_(generator=self.generator).item() if dist.is_available() and dist.is_initialized(): rank = dist.get_rank() ws = dist.get_world_size() store = dist.distributed_c10d._get_default_store() if rank == 0: _shared_seed_str = str(_shared_seed) store.set(_utils.DATAPIPE_SHARED_SEED, _shared_seed_str) logger.info(f"Shared seed ({_shared_seed_str}) sent to store on rank 0") # Use 'add' instead of 'get' since for some store implementations 'add' # doesn't work well with 'get'. _shared_seed_recv_cnt = store.add(_utils.DATAPIPE_SHARED_SEED_COUNTER, 1) start = time.time() while _shared_seed_recv_cnt < ws: time.sleep(_utils.DATAPIPE_SHARED_SEED_CHECK_INTERVAL) _shared_seed_recv_cnt = store.add(_utils.DATAPIPE_SHARED_SEED_COUNTER, 0) if timedelta(seconds=(time.time() - start)) > \ timedelta(seconds=_utils.DATAPIPE_SHARED_SEED_DEFAULT_TIMEOUT): raise RuntimeError("Timed out receiving the signal from the distribtued store on " "Rank 0 that all other Ranks have received the shared seed. " f"(world_size={ws}, received={_shared_seed_recv_cnt}, " f"timeout={_utils.DATAPIPE_SHARED_SEED_DEFAULT_TIMEOUT})") # Reset after all distributed processes have received the shared seed store.set(_utils.DATAPIPE_SHARED_SEED, "") _shared_seed_recv_cnt = store.add(_utils.DATAPIPE_SHARED_SEED_COUNTER, -ws) assert _shared_seed_recv_cnt == 0 else: _shared_seed_str = "" start = time.time() while len(_shared_seed_str) == 0: time.sleep(_utils.DATAPIPE_SHARED_SEED_CHECK_INTERVAL) _shared_seed_str = store.get(_utils.DATAPIPE_SHARED_SEED) if timedelta(seconds=(time.time() - start)) > \ timedelta(seconds=_utils.DATAPIPE_SHARED_SEED_DEFAULT_TIMEOUT): raise RuntimeError("Timed out receiving the shared seed from the distribtued store " f"on Rank {rank}. (world_size={ws}, " f"timeout={_utils.DATAPIPE_SHARED_SEED_DEFAULT_TIMEOUT})") logger.info(f"Shared seed ({_shared_seed_str}) received from store on rank {rank}") _shared_seed_recv_cnt = store.add(_utils.DATAPIPE_SHARED_SEED_COUNTER, 1) # Exit only when all ranks received seed, otherwise we are at risk that current rank # will reach same section of the code again while rank zero still in the previous iteration while _shared_seed_recv_cnt > 0: time.sleep(_utils.DATAPIPE_SHARED_SEED_CHECK_INTERVAL) _shared_seed_recv_cnt = store.add(_utils.DATAPIPE_SHARED_SEED_COUNTER, 0) _shared_seed = int(_shared_seed_str) return _shared_seed else: return None class _BaseDataLoaderIter(object): def __init__(self, loader: DataLoader) -> None: self._dataset = loader.dataset self._shared_seed = loader._get_shared_seed() if isinstance(self._dataset, IterDataPipe): shared_rng = torch.Generator() shared_rng.manual_seed(self._shared_seed) self._dataset = torch.utils.data.graph_settings.apply_shuffle_seed(self._dataset, shared_rng) self._dataset_kind = loader._dataset_kind self._IterableDataset_len_called = loader._IterableDataset_len_called self._auto_collation = loader._auto_collation self._drop_last = loader.drop_last self._index_sampler = loader._index_sampler self._num_workers = loader.num_workers self._prefetch_factor = loader.prefetch_factor # for other backends, pin_memory_device need to set. if not set # default behaviour is CUDA device. if pin_memory_device is selected # and pin_memory is not set, the default behaviour false. if (len(loader.pin_memory_device) == 0): self._pin_memory = loader.pin_memory and torch.cuda.is_available() self._pin_memory_device = None else: if not loader.pin_memory: warn_msg = ("pin memory device is set and pin_memory flag is not used then device pinned memory won't be used" "please set pin_memory to true, if you need to use the device pin memory") warnings.warn(warn_msg) self._pin_memory = loader.pin_memory self._pin_memory_device = loader.pin_memory_device self._timeout = loader.timeout self._collate_fn = loader.collate_fn self._sampler_iter = iter(self._index_sampler) self._base_seed = torch.empty((), dtype=torch.int64).random_(generator=loader.generator).item() self._persistent_workers = loader.persistent_workers self._num_yielded = 0 self._profile_name = "enumerate(DataLoader)#{}.__next__".format(self.__class__.__name__) def __iter__(self) -> '_BaseDataLoaderIter': return self def _reset(self, loader, first_iter=False): self._sampler_iter = iter(self._index_sampler) self._num_yielded = 0 self._IterableDataset_len_called = loader._IterableDataset_len_called self._shared_seed = loader._get_shared_seed() if isinstance(self._dataset, IterDataPipe): shared_rng = torch.Generator() shared_rng.manual_seed(self._shared_seed) self._dataset = torch.utils.data.graph_settings.apply_shuffle_seed(self._dataset, shared_rng) def _next_index(self): return next(self._sampler_iter) # may raise StopIteration def _next_data(self): raise NotImplementedError def __next__(self) -> Any: with torch.autograd.profiler.record_function(self._profile_name): if self._sampler_iter is None: # TODO(https://github.com/pytorch/pytorch/issues/76750) self._reset() # type: ignore[call-arg] data = self._next_data() self._num_yielded += 1 if self._dataset_kind == _DatasetKind.Iterable and \ self._IterableDataset_len_called is not None and \ self._num_yielded > self._IterableDataset_len_called: warn_msg = ("Length of IterableDataset {} was reported to be {} (when accessing len(dataloader)), but {} " "samples have been fetched. ").format(self._dataset, self._IterableDataset_len_called, self._num_yielded) if self._num_workers > 0: warn_msg += ("For multiprocessing data-loading, this could be caused by not properly configuring the " "IterableDataset replica at each worker. Please see " "https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset for examples.") warnings.warn(warn_msg) return data def __len__(self) -> int: return len(self._index_sampler) def __getstate__(self): # TODO: add limited pickling support for sharing an iterator # across multiple threads for HOGWILD. # Probably the best way to do this is by moving the sample pushing # to a separate thread and then just sharing the data queue # but signalling the end is tricky without a non-blocking API raise NotImplementedError("{} cannot be pickled", self.__class__.__name__) class _SingleProcessDataLoaderIter(_BaseDataLoaderIter): def __init__(self, loader): super(_SingleProcessDataLoaderIter, self).__init__(loader) assert self._timeout == 0 assert self._num_workers == 0 self._dataset_fetcher = _DatasetKind.create_fetcher( self._dataset_kind, self._dataset, self._auto_collation, self._collate_fn, self._drop_last) def _next_data(self): index = self._next_index() # may raise StopIteration data = self._dataset_fetcher.fetch(index) # may raise StopIteration if self._pin_memory: data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) return data class _MultiProcessingDataLoaderIter(_BaseDataLoaderIter): r"""Iterates once over the DataLoader's dataset, as specified by the sampler""" # NOTE [ Data Loader Multiprocessing Shutdown Logic ] # # Preliminary: # # Our data model looks like this (queues are indicated with curly brackets): # # main process || # | || # {index_queue} || # | || # worker processes || DATA # | || # {worker_result_queue} || FLOW # | || # pin_memory_thread of main process || DIRECTION # | || # {data_queue} || # | || # data output \/ # # P.S. `worker_result_queue` and `pin_memory_thread` part may be omitted if # `pin_memory=False`. # # # Terminating multiprocessing logic requires very careful design. In # particular, we need to make sure that # # 1. The iterator gracefully exits the workers when its last reference is # gone or it is depleted. # # In this case, the workers should be gracefully exited because the # main process may still need to continue to run, and we want cleaning # up code in the workers to be executed (e.g., releasing GPU memory). # Naturally, we implement the shutdown logic in `__del__` of # DataLoaderIterator. # # We delay the discussion on the logic in this case until later. # # 2. The iterator exits the workers when the loader process and/or worker # processes exits normally or with error. # # We set all workers and `pin_memory_thread` to have `daemon=True`. # # You may ask, why can't we make the workers non-daemonic, and # gracefully exit using the same logic as we have in `__del__` when the # iterator gets deleted (see 1 above)? # # First of all, `__del__` is **not** guaranteed to be called when # interpreter exits. Even if it is called, by the time it executes, # many Python core library resources may alreay be freed, and even # simple things like acquiring an internal lock of a queue may hang. # Therefore, in this case, we actually need to prevent `__del__` from # being executed, and rely on the automatic termination of daemonic # children. # # Thus, we register an `atexit` hook that sets a global flag # `_utils.python_exit_status`. Since `atexit` hooks are executed in the # reverse order of registration, we are guaranteed that this flag is # set before library resources we use are freed (which, at least in # CPython, is done via an `atexit` handler defined in # `multiprocessing/util.py` # https://github.com/python/cpython/blob/c606624af8d4cb3b4a052fb263bb983b3f87585b/Lib/multiprocessing/util.py#L320-L362 # registered when an object requiring this mechanism is first # created, e.g., `mp.Queue` # https://github.com/python/cpython/blob/c606624af8d4cb3b4a052fb263bb983b3f87585b/Lib/multiprocessing/context.py#L100-L103 # https://github.com/python/cpython/blob/c606624af8d4cb3b4a052fb263bb983b3f87585b/Lib/multiprocessing/queues.py#L29 # ) # # So in `__del__`, we check if `_utils.python_exit_status` is set or # `None` (freed), and perform no-op if so. # # However, simply letting library clean-up codes run can also be bad, # because such codes (i.e., `multiprocessing.util._exit_function()`) # include join putting threads for `mp.Queue`, which can be blocking. # Hence, the main process putting threads are called with # `cancel_join_thread` at creation. See later section # [ 3b. A process won't hang when putting into a queue; ] # for more details. # # Here are two example cases where library clean-up codes can run # before `__del__` is called: # # 1. If we hold onto a reference to the iterator, it more often # than not tries to do `multiprocessing` library cleaning before # clearing the alive referenced objects (https://github.com/pytorch/pytorch/issues/48666) # and thus prevents our cleaning-up code to run first. # # 2. A similar issue araises when a `DataLoader` is used in a subprocess. # When a process ends, it shuts the all its daemonic children # down with a SIGTERM (instead of joining them without a timeout). # Simiarly for threads, but by a different mechanism. This fact, # together with a few implementation details of multiprocessing, forces # us to make workers daemonic. All of our problems arise when a # DataLoader is used in a subprocess, and are caused by multiprocessing # code which looks more or less like this: # # try: # your_function_using_a_dataloader() # finally: # multiprocessing.util._exit_function() # # The joining/termination mentioned above happens inside # `_exit_function()`. Now, if `your_function_using_a_dataloader()` # throws, the stack trace stored in the exception will prevent the # frame which uses `DataLoaderIter` to be freed. If the frame has any # reference to the `DataLoaderIter` (e.g., in a method of the iter), # its `__del__`, which starts the shutdown procedure, will not be # called. That, in turn, means that workers aren't notified. Attempting # to join in `_exit_function` will then result in a hang. # # For context, `_exit_function` is also registered as an `atexit` call. # So it is unclear to me (@ssnl) why this is needed in a finally block. # The code dates back to 2008 and there is no comment on the original # PEP 371 or patch https://bugs.python.org/issue3050 (containing both # the finally block and the `atexit` registration) that explains this. # # # Finally, another choice is to just shutdown workers with logic in 1 # above whenever we see an error in `next`. This isn't ideal because # a. It prevents users from using try-catch to resume data loading. # b. It doesn't prevent hanging if users have references to the # iterator. # # 3. All processes exit if any of them die unexpectedly by fatal signals. # # As shown above, the workers are set as daemonic children of the main # process. However, automatic cleaning-up of such child processes only # happens if the parent process exits gracefully (e.g., not via fatal # signals like SIGKILL). So we must ensure that each process will exit # even the process that should send/receive data to/from it were # killed, i.e., # # a. A process won't hang when getting from a queue. # # Even with carefully designed data dependencies (i.e., a `put()` # always corresponding to a `get()`), hanging on `get()` can still # happen when data in queue is corrupted (e.g., due to # `cancel_join_thread` or unexpected exit). # # For child exit, we set a timeout whenever we try to get data # from `data_queue`, and check the workers' status on each timeout # and error. # See `_DataLoaderiter._get_batch()` and # `_DataLoaderiter._try_get_data()` for details. # # Additionally, for child exit on non-Windows platforms, we also # register a SIGCHLD handler (which is supported on Windows) on # the main process, which checks if any of the workers fail in the # (Python) handler. This is more efficient and faster in detecting # worker failures, compared to only using the above mechanism. # See `DataLoader.cpp` and `_utils/signal_handling.py` for details. # # For `.get()` calls where the sender(s) is not the workers, we # guard them with timeouts, and check the status of the sender # when timeout happens: # + in the workers, the `_utils.worker.ManagerWatchdog` class # checks the status of the main process. # + if `pin_memory=True`, when getting from `pin_memory_thread`, # check `pin_memory_thread` status periodically until `.get()` # returns or see that `pin_memory_thread` died. # # b. A process won't hang when putting into a queue; # # We use `mp.Queue` which has a separate background thread to put # objects from an unbounded buffer array. The background thread is # daemonic and usually automatically joined when the process # *exits*. # # In case that the receiver has ended abruptly while # reading from the pipe, the join will hang forever. The usual # solution for this in Python is calling `q.cancel_join_thread`, # which prevents automatically joining it when finalizing # (exiting). # # Nonetheless, `cancel_join_thread` must only be called when the # queue is **not** going to be read from or write into by another # process, because it may hold onto a lock or leave corrupted data # in the queue, leading other readers/writers to hang. # # Hence, # + For worker processes, we only do so (for their output # queues, i.e., `worker_result_queue`) before exiting. # + For `pin_memory_thread`, its output queue `data_queue` is a # `queue.Queue` that does blocking `put` if the queue is full. # So there is no above problem, but as a result, in # `_pin_memory_loop`, we do need to wrap the `put` in a loop # that breaks not only upon success, but also when the main # process stops reading, i.e., is shutting down. # + For loader process, we `cancel_join_thread()` for all # `_index_queues` because the whole purpose of workers and # `pin_memory_thread` is to serve the loader process. If # loader process is already exiting, we don't really care if # the queues are corrupted. # # # Now let's get back to 1: # how we gracefully exit the workers when the last reference to the # iterator is gone. # # To achieve this, we implement the following logic along with the design # choices mentioned above: # # `workers_done_event`: # A `multiprocessing.Event` shared among the main process and all worker # processes. This is used to signal the workers that the iterator is # shutting down. After it is set, they will not send processed data to # queues anymore, and only wait for the final `None` before exiting. # `done_event` isn't strictly needed. I.e., we can just check for `None` # from the input queue, but it allows us to skip wasting resources # processing data if we are already shutting down. # # `pin_memory_thread_done_event`: # A `threading.Event` for a similar purpose to that of # `workers_done_event`, but is for the `pin_memory_thread`. The reason # that separate events are needed is that `pin_memory_thread` reads from # the output queue of the workers. But the workers, upon seeing that # `workers_done_event` is set, only wants to see the final `None`, and is # not required to flush all data in the output queue (e.g., it may call # `cancel_join_thread` on that queue if its `IterableDataset` iterator # happens to exhaust coincidentally, which is out of the control of the # main process). Thus, since we will exit `pin_memory_thread` before the # workers (see below), two separete events are used. # # NOTE: In short, the protocol is that the main process will set these # `done_event`s and then the corresponding processes/threads a `None`, # and that they may exit at any time after receiving the `None`. # # NOTE: Using `None` as the final signal is valid, since normal data will # always be a 2-tuple with the 1st element being the index of the data # transferred (different from dataset index/key), and the 2nd being # either the dataset key or the data sample (depending on which part # of the data model the queue is at). # # [ worker processes ] # While loader process is alive: # Get from `index_queue`. # If get anything else, # Check `workers_done_event`. # If set, continue to next iteration # i.e., keep getting until see the `None`, then exit. # Otherwise, process data: # If is fetching from an `IterableDataset` and the iterator # is exhausted, send an `_IterableDatasetStopIteration` # object to signal iteration end. The main process, upon # receiving such an object, will send `None` to this # worker and not use the corresponding `index_queue` # anymore. # If timed out, # No matter `workers_done_event` is set (still need to see `None`) # or not, must continue to next iteration. # (outside loop) # If `workers_done_event` is set, (this can be False with `IterableDataset`) # `data_queue.cancel_join_thread()`. (Everything is ending here: # main process won't read from it; # other workers will also call # `cancel_join_thread`.) # # [ pin_memory_thread ] # # No need to check main thread. If this thread is alive, the main loader # # thread must be alive, because this thread is set as daemonic. # While `pin_memory_thread_done_event` is not set: # Get from `index_queue`. # If timed out, continue to get in the next iteration. # Otherwise, process data. # While `pin_memory_thread_done_event` is not set: # Put processed data to `data_queue` (a `queue.Queue` with blocking put) # If timed out, continue to put in the next iteration. # Otherwise, break, i.e., continuing to the out loop. # # NOTE: we don't check the status of the main thread because # 1. if the process is killed by fatal signal, `pin_memory_thread` # ends. # 2. in other cases, either the cleaning-up in __del__ or the # automatic exit of daemonic thread will take care of it. # This won't busy-wait either because `.get(timeout)` does not # busy-wait. # # [ main process ] # In the DataLoader Iter's `__del__` # b. Exit `pin_memory_thread` # i. Set `pin_memory_thread_done_event`. # ii Put `None` in `worker_result_queue`. # iii. Join the `pin_memory_thread`. # iv. `worker_result_queue.cancel_join_thread()`. # # c. Exit the workers. # i. Set `workers_done_event`. # ii. Put `None` in each worker's `index_queue`. # iii. Join the workers. # iv. Call `.cancel_join_thread()` on each worker's `index_queue`. # # NOTE: (c) is better placed after (b) because it may leave corrupted # data in `worker_result_queue`, which `pin_memory_thread` # reads from, in which case the `pin_memory_thread` can only # happen at timeing out, which is slow. Nonetheless, same thing # happens if a worker is killed by signal at unfortunate times, # but in other cases, we are better off having a non-corrupted # `worker_result_queue` for `pin_memory_thread`. # # NOTE: If `pin_memory=False`, there is no `pin_memory_thread` and (b) # can be omitted # # NB: `done_event`s isn't strictly needed. E.g., we can just check for # `None` from `index_queue`, but it allows us to skip wasting resources # processing indices already in `index_queue` if we are already shutting # down. def __init__(self, loader): super(_MultiProcessingDataLoaderIter, self).__init__(loader) assert self._num_workers > 0 assert self._prefetch_factor > 0 if loader.multiprocessing_context is None: multiprocessing_context = multiprocessing else: multiprocessing_context = loader.multiprocessing_context self._worker_init_fn = loader.worker_init_fn # No certainty which module multiprocessing_context is self._worker_result_queue = multiprocessing_context.Queue() # type: ignore[var-annotated] self._worker_pids_set = False self._shutdown = False self._workers_done_event = multiprocessing_context.Event() self._index_queues = [] self._workers = [] for i in range(self._num_workers): # No certainty which module multiprocessing_context is index_queue = multiprocessing_context.Queue() # type: ignore[var-annotated] # Need to `cancel_join_thread` here! # See sections (2) and (3b) above. index_queue.cancel_join_thread() w = multiprocessing_context.Process( target=_utils.worker._worker_loop, args=(self._dataset_kind, self._dataset, index_queue, self._worker_result_queue, self._workers_done_event, self._auto_collation, self._collate_fn, self._drop_last, self._base_seed, self._worker_init_fn, i, self._num_workers, self._persistent_workers, self._shared_seed)) w.daemon = True # NB: Process.start() actually take some time as it needs to # start a process and pass the arguments over via a pipe. # Therefore, we only add a worker to self._workers list after # it started, so that we do not call .join() if program dies # before it starts, and __del__ tries to join but will get: # AssertionError: can only join a started process. w.start() self._index_queues.append(index_queue) self._workers.append(w) if self._pin_memory: self._pin_memory_thread_done_event = threading.Event() # Queue is not type-annotated self._data_queue = queue.Queue() # type: ignore[var-annotated] pin_memory_thread = threading.Thread( target=_utils.pin_memory._pin_memory_loop, args=(self._worker_result_queue, self._data_queue, torch.cuda.current_device(), self._pin_memory_thread_done_event, self._pin_memory_device)) pin_memory_thread.daemon = True pin_memory_thread.start() # Similar to workers (see comment above), we only register # pin_memory_thread once it is started. self._pin_memory_thread = pin_memory_thread else: self._data_queue = self._worker_result_queue # In some rare cases, persistent workers (daemonic processes) # would be terminated before `__del__` of iterator is invoked # when main process exits # It would cause failure when pin_memory_thread tries to read # corrupted data from worker_result_queue # atexit is used to shutdown thread and child processes in the # right sequence before main process exits if self._persistent_workers and self._pin_memory: import atexit for w in self._workers: atexit.register(_MultiProcessingDataLoaderIter._clean_up_worker, w) # .pid can be None only before process is spawned (not the case, so ignore) _utils.signal_handling._set_worker_pids(id(self), tuple(w.pid for w in self._workers)) # type: ignore[misc] _utils.signal_handling._set_SIGCHLD_handler() self._worker_pids_set = True self._reset(loader, first_iter=True) def _reset(self, loader, first_iter=False): super()._reset(loader, first_iter) self._send_idx = 0 # idx of the next task to be sent to workers self._rcvd_idx = 0 # idx of the next task to be returned in __next__ # information about data not yet yielded, i.e., tasks w/ indices in range [rcvd_idx, send_idx). # map: task idx => - (worker_id,) if data isn't fetched (outstanding) # \ (worker_id, data) if data is already fetched (out-of-order) self._task_info = {} self._tasks_outstanding = 0 # always equal to count(v for v in task_info.values() if len(v) == 1) # A list of booleans representing whether each worker still has work to # do, i.e., not having exhausted its iterable dataset object. It always # contains all `True`s if not using an iterable-style dataset # (i.e., if kind != Iterable). # Not that this indicates that a worker still has work to do *for this epoch*. # It does not mean that a worker is dead. In case of `_persistent_workers`, # the worker will be reset to available in the next epoch. self._workers_status = [True for i in range(self._num_workers)] # Reset the worker queue cycle so it resumes next epoch at worker 0 self._worker_queue_idx_cycle = itertools.cycle(range(self._num_workers)) # We resume the prefetching in case it was enabled if not first_iter: for idx in range(self._num_workers): self._index_queues[idx].put(_utils.worker._ResumeIteration(self._shared_seed)) resume_iteration_cnt = self._num_workers while resume_iteration_cnt > 0: return_idx, return_data = self._get_data() if isinstance(return_idx, _utils.worker._ResumeIteration): assert return_data is None resume_iteration_cnt -= 1 # prime the prefetch loop for _ in range(self._prefetch_factor * self._num_workers): self._try_put_index() def _try_get_data(self, timeout=_utils.MP_STATUS_CHECK_INTERVAL): # Tries to fetch data from `self._data_queue` once for a given timeout. # This can also be used as inner loop of fetching without timeout, with # the sender status as the loop condition. # # This raises a `RuntimeError` if any worker died expectedly. This error # can come from either the SIGCHLD handler in `_utils/signal_handling.py` # (only for non-Windows platforms), or the manual check below on errors # and timeouts. # # Returns a 2-tuple: # (bool: whether successfully get data, any: data if successful else None) try: data = self._data_queue.get(timeout=timeout) return (True, data) except Exception as e: # At timeout and error, we manually check whether any worker has # failed. Note that this is the only mechanism for Windows to detect # worker failures. failed_workers = [] for worker_id, w in enumerate(self._workers): if self._workers_status[worker_id] and not w.is_alive(): failed_workers.append(w) self._mark_worker_as_unavailable(worker_id) if len(failed_workers) > 0: pids_str = ', '.join(str(w.pid) for w in failed_workers) raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e if isinstance(e, queue.Empty): return (False, None) import tempfile import errno try: # Raise an exception if we are this close to the FDs limit. # Apparently, trying to open only one file is not a sufficient # test. # See NOTE [ DataLoader on Linux and open files limit ] fds_limit_margin = 10 fs = [tempfile.NamedTemporaryFile() for i in range(fds_limit_margin)] except OSError as e: if e.errno == errno.EMFILE: raise RuntimeError( "Too many open files. Communication with the" " workers is no longer possible. Please increase the" " limit using `ulimit -n` in the shell or change the" " sharing strategy by calling" " `torch.multiprocessing.set_sharing_strategy('file_system')`" " at the beginning of your code") from None raise # NOTE [ DataLoader on Linux and open files limit ] # # On Linux when DataLoader is used with multiprocessing we pass the data between # the root process and the workers through SHM files. We remove those files from # the filesystem as soon as they are created and keep them alive by # passing around their file descriptors through AF_UNIX sockets. (See # docs/source/multiprocessing.rst and 'Multiprocessing Technical Notes` in # the wiki (https://github.com/pytorch/pytorch/wiki).) # # This sometimes leads us to exceeding the open files limit. When that happens, # and the offending file descriptor is coming over a socket, the `socket` Python # package silently strips the file descriptor from the message, setting only the # `MSG_CTRUNC` flag (which might be a bit misleading since the manpage says that # it _indicates that some control data were discarded due to lack of space in # the buffer for ancillary data_). This might reflect the C implementation of # AF_UNIX sockets. # # This behaviour can be reproduced with the script and instructions at the # bottom of this note. # # When that happens, the standard Python `multiprocessing` (and not # `torch.multiprocessing`) raises a `RuntimeError: received 0 items of ancdata` # # Sometimes, instead of the FD being stripped, you may get an `OSError: # Too many open files`, both in the script below and in DataLoader. However, # this is rare and seems to be nondeterministic. # # # #!/usr/bin/env python3 # import sys # import socket # import os # import array # import shutil # import socket # # # if len(sys.argv) != 4: # print("Usage: ", sys.argv[0], " tmp_dirname iteration (send|recv)") # sys.exit(1) # # if __name__ == '__main__': # dirname = sys.argv[1] # sock_path = dirname + "/sock" # iterations = int(sys.argv[2]) # def dummy_path(i): # return dirname + "/" + str(i) + ".dummy" # # # if sys.argv[3] == 'send': # while not os.path.exists(sock_path): # pass # client = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM) # client.connect(sock_path) # for i in range(iterations): # fd = os.open(dummy_path(i), os.O_WRONLY | os.O_CREAT) # ancdata = array.array('i', [fd]) # msg = bytes([i % 256]) # print("Sending fd ", fd, " (iteration #", i, ")") # client.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, ancdata)]) # # # else: # assert sys.argv[3] == 'recv' # # if os.path.exists(dirname): # raise Exception("Directory exists") # # os.mkdir(dirname) # # print("Opening socket...") # server = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM) # server.bind(sock_path) # # print("Listening...") # for i in range(iterations): # a = array.array('i') # msg, ancdata, flags, addr = server.recvmsg(1, socket.CMSG_SPACE(a.itemsize)) # assert(len(ancdata) == 1) # cmsg_level, cmsg_type, cmsg_data = ancdata[0] # a.frombytes(cmsg_data) # print("Received fd ", a[0], " (iteration #", i, ")") # # shutil.rmtree(dirname) # # Steps to reproduce: # # 1. Run two shells and set lower file descriptor limit in the receiving one: # (shell1) ulimit -n 1020 # (shell2) ulimit -n 1022 # # 2. Run the script above with the `recv` option in the first shell # (shell1) ./test_socket.py sock_tmp 1017 recv # # 3. Run the script with the `send` option in the second shell: # (shell2) ./test_socket.py sock_tmp 1017 send def _get_data(self): # Fetches data from `self._data_queue`. # # We check workers' status every `MP_STATUS_CHECK_INTERVAL` seconds, # which we achieve by running `self._try_get_data(timeout=MP_STATUS_CHECK_INTERVAL)` # in a loop. This is the only mechanism to detect worker failures for # Windows. For other platforms, a SIGCHLD handler is also used for # worker failure detection. # # If `pin_memory=True`, we also need check if `pin_memory_thread` had # died at timeouts. if self._timeout > 0: success, data = self._try_get_data(self._timeout) if success: return data else: raise RuntimeError('DataLoader timed out after {} seconds'.format(self._timeout)) elif self._pin_memory: while self._pin_memory_thread.is_alive(): success, data = self._try_get_data() if success: return data else: # while condition is false, i.e., pin_memory_thread died. raise RuntimeError('Pin memory thread exited unexpectedly') # In this case, `self._data_queue` is a `queue.Queue`,. But we don't # need to call `.task_done()` because we don't use `.join()`. else: while True: success, data = self._try_get_data() if success: return data def _next_data(self): while True: # If the worker responsible for `self._rcvd_idx` has already ended # and was unable to fulfill this task (due to exhausting an `IterableDataset`), # we try to advance `self._rcvd_idx` to find the next valid index. # # This part needs to run in the loop because both the `self._get_data()` # call and `_IterableDatasetStopIteration` check below can mark # extra worker(s) as dead. while self._rcvd_idx < self._send_idx: info = self._task_info[self._rcvd_idx] worker_id = info[0] if len(info) == 2 or self._workers_status[worker_id]: # has data or is still active break del self._task_info[self._rcvd_idx] self._rcvd_idx += 1 else: # no valid `self._rcvd_idx` is found (i.e., didn't break) if not self._persistent_workers: self._shutdown_workers() raise StopIteration # Now `self._rcvd_idx` is the batch index we want to fetch # Check if the next sample has already been generated if len(self._task_info[self._rcvd_idx]) == 2: data = self._task_info.pop(self._rcvd_idx)[1] return self._process_data(data) assert not self._shutdown and self._tasks_outstanding > 0 idx, data = self._get_data() self._tasks_outstanding -= 1 if self._dataset_kind == _DatasetKind.Iterable: # Check for _IterableDatasetStopIteration if isinstance(data, _utils.worker._IterableDatasetStopIteration): if self._persistent_workers: self._workers_status[data.worker_id] = False else: self._mark_worker_as_unavailable(data.worker_id) self._try_put_index() continue if idx != self._rcvd_idx: # store out-of-order samples self._task_info[idx] += (data,) else: del self._task_info[idx] return self._process_data(data) def _try_put_index(self): assert self._tasks_outstanding < self._prefetch_factor * self._num_workers try: index = self._next_index() except StopIteration: return for _ in range(self._num_workers): # find the next active worker, if any worker_queue_idx = next(self._worker_queue_idx_cycle) if self._workers_status[worker_queue_idx]: break else: # not found (i.e., didn't break) return self._index_queues[worker_queue_idx].put((self._send_idx, index)) self._task_info[self._send_idx] = (worker_queue_idx,) self._tasks_outstanding += 1 self._send_idx += 1 def _process_data(self, data): self._rcvd_idx += 1 self._try_put_index() if isinstance(data, ExceptionWrapper): data.reraise() return data def _mark_worker_as_unavailable(self, worker_id, shutdown=False): # Mark a worker as having finished its work e.g., due to # exhausting an `IterableDataset`. This should be used only when this # `_MultiProcessingDataLoaderIter` is going to continue running. assert self._workers_status[worker_id] or (self._persistent_workers and shutdown) # Signal termination to that specific worker. q = self._index_queues[worker_id] # Indicate that no more data will be put on this queue by the current # process. q.put(None) # Note that we don't actually join the worker here, nor do we remove the # worker's pid from C side struct because (1) joining may be slow, and # (2) since we don't join, the worker may still raise error, and we # prefer capturing those, rather than ignoring them, even though they # are raised after the worker has finished its job. # Joinning is deferred to `_shutdown_workers`, which it is called when # all workers finish their jobs (e.g., `IterableDataset` replicas) or # when this iterator is garbage collected. self._workers_status[worker_id] = False assert self._workers_done_event.is_set() == shutdown def _shutdown_workers(self): # Called when shutting down this `_MultiProcessingDataLoaderIter`. # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on # the logic of this function. python_exit_status = _utils.python_exit_status if python_exit_status is True or python_exit_status is None: # See (2) of the note. If Python is shutting down, do no-op. return # Normal exit when last reference is gone / iterator is depleted. # See (1) and the second half of the note. if not self._shutdown: self._shutdown = True try: # Normal exit when last reference is gone / iterator is depleted. # See (1) and the second half of the note. # Exit `pin_memory_thread` first because exiting workers may leave # corrupted data in `worker_result_queue` which `pin_memory_thread` # reads from. if hasattr(self, '_pin_memory_thread'): # Use hasattr in case error happens before we set the attribute. self._pin_memory_thread_done_event.set() # Send something to pin_memory_thread in case it is waiting # so that it can wake up and check `pin_memory_thread_done_event` self._worker_result_queue.put((None, None)) self._pin_memory_thread.join() self._worker_result_queue.cancel_join_thread() self._worker_result_queue.close() # Exit workers now. self._workers_done_event.set() for worker_id in range(len(self._workers)): # Get number of workers from `len(self._workers)` instead of # `self._num_workers` in case we error before starting all # workers. # If we are using workers_status with persistent_workers # we have to shut it down because the worker is paused if self._persistent_workers or self._workers_status[worker_id]: self._mark_worker_as_unavailable(worker_id, shutdown=True) for w in self._workers: # We should be able to join here, but in case anything went # wrong, we set a timeout and if the workers fail to join, # they are killed in the `finally` block. w.join(timeout=_utils.MP_STATUS_CHECK_INTERVAL) for q in self._index_queues: q.cancel_join_thread() q.close() finally: # Even though all this function does is putting into queues that # we have called `cancel_join_thread` on, weird things can # happen when a worker is killed by a signal, e.g., hanging in # `Event.set()`. So we need to guard this with SIGCHLD handler, # and remove pids from the C side data structure only at the # end. # # FIXME: Unfortunately, for Windows, we are missing a worker # error detection mechanism here in this function, as it # doesn't provide a SIGCHLD handler. if self._worker_pids_set: _utils.signal_handling._remove_worker_pids(id(self)) self._worker_pids_set = False for w in self._workers: if w.is_alive(): # Existing mechanisms try to make the workers exit # peacefully, but in case that we unfortunately reach # here, which we shouldn't, (e.g., pytorch/pytorch#39570), # we kill the worker. w.terminate() # staticmethod is used to remove reference to `_MultiProcessingDataLoaderIter` @staticmethod def _clean_up_worker(w): try: w.join(timeout=_utils.MP_STATUS_CHECK_INTERVAL) finally: if w.is_alive(): w.terminate() def __del__(self): self._shutdown_workers()
pytorch-master
torch/utils/data/dataloader.py
import torch from torch import Tensor from typing import Iterator, Iterable, Optional, Sequence, List, TypeVar, Generic, Sized, Union __all__ = [ "BatchSampler", "RandomSampler", "Sampler", "SequentialSampler", "SubsetRandomSampler", "WeightedRandomSampler", ] T_co = TypeVar('T_co', covariant=True) class Sampler(Generic[T_co]): r"""Base class for all Samplers. Every Sampler subclass has to provide an :meth:`__iter__` method, providing a way to iterate over indices of dataset elements, and a :meth:`__len__` method that returns the length of the returned iterators. .. note:: The :meth:`__len__` method isn't strictly required by :class:`~torch.utils.data.DataLoader`, but is expected in any calculation involving the length of a :class:`~torch.utils.data.DataLoader`. """ def __init__(self, data_source: Optional[Sized]) -> None: pass def __iter__(self) -> Iterator[T_co]: raise NotImplementedError # NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ] # # Many times we have an abstract class representing a collection/iterable of # data, e.g., `torch.utils.data.Sampler`, with its subclasses optionally # implementing a `__len__` method. In such cases, we must make sure to not # provide a default implementation, because both straightforward default # implementations have their issues: # # + `return NotImplemented`: # Calling `len(subclass_instance)` raises: # TypeError: 'NotImplementedType' object cannot be interpreted as an integer # # + `raise NotImplementedError()`: # This prevents triggering some fallback behavior. E.g., the built-in # `list(X)` tries to call `len(X)` first, and executes a different code # path if the method is not found or `NotImplemented` is returned, while # raising an `NotImplementedError` will propagate and and make the call # fail where it could have use `__iter__` to complete the call. # # Thus, the only two sensible things to do are # # + **not** provide a default `__len__`. # # + raise a `TypeError` instead, which is what Python uses when users call # a method that is not defined on an object. # (@ssnl verifies that this works on at least Python 3.7.) class SequentialSampler(Sampler[int]): r"""Samples elements sequentially, always in the same order. Args: data_source (Dataset): dataset to sample from """ data_source: Sized def __init__(self, data_source: Sized) -> None: self.data_source = data_source def __iter__(self) -> Iterator[int]: return iter(range(len(self.data_source))) def __len__(self) -> int: return len(self.data_source) class RandomSampler(Sampler[int]): r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset. If with replacement, then user can specify :attr:`num_samples` to draw. Args: data_source (Dataset): dataset to sample from replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False`` num_samples (int): number of samples to draw, default=`len(dataset)`. generator (Generator): Generator used in sampling. """ data_source: Sized replacement: bool def __init__(self, data_source: Sized, replacement: bool = False, num_samples: Optional[int] = None, generator=None) -> None: self.data_source = data_source self.replacement = replacement self._num_samples = num_samples self.generator = generator if not isinstance(self.replacement, bool): raise TypeError("replacement should be a boolean value, but got " "replacement={}".format(self.replacement)) if not isinstance(self.num_samples, int) or self.num_samples <= 0: raise ValueError("num_samples should be a positive integer " "value, but got num_samples={}".format(self.num_samples)) @property def num_samples(self) -> int: # dataset size might change at runtime if self._num_samples is None: return len(self.data_source) return self._num_samples def __iter__(self) -> Iterator[int]: n = len(self.data_source) if self.generator is None: seed = int(torch.empty((), dtype=torch.int64).random_().item()) generator = torch.Generator() generator.manual_seed(seed) else: generator = self.generator if self.replacement: for _ in range(self.num_samples // 32): yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist() yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist() else: for _ in range(self.num_samples // n): yield from torch.randperm(n, generator=generator).tolist() yield from torch.randperm(n, generator=generator).tolist()[:self.num_samples % n] def __len__(self) -> int: return self.num_samples class SubsetRandomSampler(Sampler[int]): r"""Samples elements randomly from a given list of indices, without replacement. Args: indices (sequence): a sequence of indices generator (Generator): Generator used in sampling. """ indices: Sequence[int] def __init__(self, indices: Sequence[int], generator=None) -> None: self.indices = indices self.generator = generator def __iter__(self) -> Iterator[int]: for i in torch.randperm(len(self.indices), generator=self.generator): yield self.indices[i] def __len__(self) -> int: return len(self.indices) class WeightedRandomSampler(Sampler[int]): r"""Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights). Args: weights (sequence) : a sequence of weights, not necessary summing up to one num_samples (int): number of samples to draw replacement (bool): if ``True``, samples are drawn with replacement. If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row. generator (Generator): Generator used in sampling. Example: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True)) [4, 4, 1, 4, 5] >>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False)) [0, 1, 4, 3, 2] """ weights: Tensor num_samples: int replacement: bool def __init__(self, weights: Sequence[float], num_samples: int, replacement: bool = True, generator=None) -> None: if not isinstance(num_samples, int) or isinstance(num_samples, bool) or \ num_samples <= 0: raise ValueError("num_samples should be a positive integer " "value, but got num_samples={}".format(num_samples)) if not isinstance(replacement, bool): raise ValueError("replacement should be a boolean value, but got " "replacement={}".format(replacement)) weights_tensor = torch.as_tensor(weights, dtype=torch.double) if len(weights_tensor.shape) != 1: raise ValueError("weights should be a 1d sequence but given " "weights have shape {}".format(tuple(weights_tensor.shape))) self.weights = weights_tensor self.num_samples = num_samples self.replacement = replacement self.generator = generator def __iter__(self) -> Iterator[int]: rand_tensor = torch.multinomial(self.weights, self.num_samples, self.replacement, generator=self.generator) yield from iter(rand_tensor.tolist()) def __len__(self) -> int: return self.num_samples class BatchSampler(Sampler[List[int]]): r"""Wraps another sampler to yield a mini-batch of indices. Args: sampler (Sampler or Iterable): Base sampler. Can be any iterable object batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size`` Example: >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True)) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] """ def __init__(self, sampler: Union[Sampler[int], Iterable[int]], batch_size: int, drop_last: bool) -> None: # Since collections.abc.Iterable does not check for `__getitem__`, which # is one way for an object to be an iterable, we don't do an `isinstance` # check here. if not isinstance(batch_size, int) or isinstance(batch_size, bool) or \ batch_size <= 0: raise ValueError("batch_size should be a positive integer value, " "but got batch_size={}".format(batch_size)) if not isinstance(drop_last, bool): raise ValueError("drop_last should be a boolean value, but got " "drop_last={}".format(drop_last)) self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last def __iter__(self) -> Iterator[List[int]]: # Implemented based on the benchmarking in https://github.com/pytorch/pytorch/pull/76951 if self.drop_last: sampler_iter = iter(self.sampler) while True: try: batch = [next(sampler_iter) for _ in range(self.batch_size)] yield batch except StopIteration: break else: batch = [0] * self.batch_size idx_in_batch = 0 for idx in self.sampler: batch[idx_in_batch] = idx idx_in_batch += 1 if idx_in_batch == self.batch_size: yield batch idx_in_batch = 0 batch = [0] * self.batch_size if idx_in_batch > 0: yield batch[:idx_in_batch] def __len__(self) -> int: # Can only be called if self.sampler has __len__ implemented # We cannot enforce this condition, so we turn off typechecking for the # implementation below. # Somewhat related: see NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ] if self.drop_last: return len(self.sampler) // self.batch_size # type: ignore[arg-type] else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size # type: ignore[arg-type]
pytorch-master
torch/utils/data/sampler.py
r""""Contains definitions of the methods used by the _BaseDataLoaderIter to fetch data from an iterable-style or map-style dataset. This logic is shared in both single- and multi-processing data loading. """ class _BaseDatasetFetcher(object): def __init__(self, dataset, auto_collation, collate_fn, drop_last): self.dataset = dataset self.auto_collation = auto_collation self.collate_fn = collate_fn self.drop_last = drop_last def fetch(self, possibly_batched_index): raise NotImplementedError() class _IterableDatasetFetcher(_BaseDatasetFetcher): def __init__(self, dataset, auto_collation, collate_fn, drop_last): super(_IterableDatasetFetcher, self).__init__(dataset, auto_collation, collate_fn, drop_last) self.dataset_iter = iter(dataset) self.ended = False def fetch(self, possibly_batched_index): if self.ended: raise StopIteration if self.auto_collation: data = [] for _ in possibly_batched_index: try: data.append(next(self.dataset_iter)) except StopIteration: self.ended = True break if len(data) == 0 or (self.drop_last and len(data) < len(possibly_batched_index)): raise StopIteration else: data = next(self.dataset_iter) return self.collate_fn(data) class _MapDatasetFetcher(_BaseDatasetFetcher): def __init__(self, dataset, auto_collation, collate_fn, drop_last): super(_MapDatasetFetcher, self).__init__(dataset, auto_collation, collate_fn, drop_last) def fetch(self, possibly_batched_index): if self.auto_collation: data = [self.dataset[idx] for idx in possibly_batched_index] else: data = self.dataset[possibly_batched_index] return self.collate_fn(data)
pytorch-master
torch/utils/data/_utils/fetch.py
r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers. These **needs** to be in global scope since Py2 doesn't support serializing static methods. """ import torch import random import os import queue from dataclasses import dataclass from torch._utils import ExceptionWrapper from typing import Optional, Union from . import signal_handling, MP_STATUS_CHECK_INTERVAL, IS_WINDOWS, HAS_NUMPY if IS_WINDOWS: import ctypes from ctypes.wintypes import DWORD, BOOL, HANDLE # On Windows, the parent ID of the worker process remains unchanged when the manager process # is gone, and the only way to check it through OS is to let the worker have a process handle # of the manager and ask if the process status has changed. class ManagerWatchdog(object): def __init__(self): self.manager_pid = os.getppid() # mypy cannot detect this code is windows only self.kernel32 = ctypes.WinDLL('kernel32', use_last_error=True) # type: ignore[attr-defined] self.kernel32.OpenProcess.argtypes = (DWORD, BOOL, DWORD) self.kernel32.OpenProcess.restype = HANDLE self.kernel32.WaitForSingleObject.argtypes = (HANDLE, DWORD) self.kernel32.WaitForSingleObject.restype = DWORD # Value obtained from https://msdn.microsoft.com/en-us/library/ms684880.aspx SYNCHRONIZE = 0x00100000 self.manager_handle = self.kernel32.OpenProcess(SYNCHRONIZE, 0, self.manager_pid) if not self.manager_handle: raise ctypes.WinError(ctypes.get_last_error()) # type: ignore[attr-defined] self.manager_dead = False def is_alive(self): if not self.manager_dead: # Value obtained from https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx self.manager_dead = self.kernel32.WaitForSingleObject(self.manager_handle, 0) == 0 return not self.manager_dead else: class ManagerWatchdog(object): # type: ignore[no-redef] def __init__(self): self.manager_pid = os.getppid() self.manager_dead = False def is_alive(self): if not self.manager_dead: self.manager_dead = os.getppid() != self.manager_pid return not self.manager_dead _worker_info = None class WorkerInfo(object): __initialized = False def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) self.__keys = tuple(kwargs.keys()) self.__initialized = True def __setattr__(self, key, val): if self.__initialized: raise RuntimeError("Cannot assign attributes to {} objects".format(self.__class__.__name__)) return super(WorkerInfo, self).__setattr__(key, val) def __repr__(self): items = [] for k in self.__keys: items.append('{}={}'.format(k, getattr(self, k))) return '{}({})'.format(self.__class__.__name__, ', '.join(items)) def get_worker_info(): r"""Returns the information about the current :class:`~torch.utils.data.DataLoader` iterator worker process. When called in a worker, this returns an object guaranteed to have the following attributes: * :attr:`id`: the current worker id. * :attr:`num_workers`: the total number of workers. * :attr:`seed`: the random seed set for the current worker. This value is determined by main process RNG and the worker id. See :class:`~torch.utils.data.DataLoader`'s documentation for more details. * :attr:`dataset`: the copy of the dataset object in **this** process. Note that this will be a different object in a different process than the one in the main process. When called in the main process, this returns ``None``. .. note:: When used in a :attr:`worker_init_fn` passed over to :class:`~torch.utils.data.DataLoader`, this method can be useful to set up each worker process differently, for instance, using ``worker_id`` to configure the ``dataset`` object to only read a specific fraction of a sharded dataset, or use ``seed`` to seed other libraries used in dataset code. """ return _worker_info r"""Dummy class used to signal the end of an IterableDataset""" @dataclass(frozen=True) class _IterableDatasetStopIteration(object): worker_id: int r"""Dummy class used to resume the fetching when worker reuse is enabled""" @dataclass(frozen=True) class _ResumeIteration(object): seed: Optional[int] = None # The function `_generate_state` is adapted from `numpy.random.SeedSequence` # from https://github.com/numpy/numpy/blob/main/numpy/random/bit_generator.pyx # It's MIT licensed, here is the copyright: # Copyright (c) 2015 Melissa E. O'Neill # Copyright (c) 2019 NumPy Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # This function generates an array of int32 as the seed for # `numpy.random`, in order to prevent state collision due to same # seed and algorithm for `numpy.random` and `random` modules. # TODO: Implement `SeedSequence` like object for `torch.random` def _generate_state(base_seed, worker_id): INIT_A = 0x43b0d7e5 MULT_A = 0x931e8875 INIT_B = 0x8b51f9dd MULT_B = 0x58f38ded MIX_MULT_L = 0xca01f9dd MIX_MULT_R = 0x4973f715 XSHIFT = 4 * 8 // 2 MASK32 = 0xFFFFFFFF entropy = [worker_id, base_seed & MASK32, base_seed >> 32, 0] pool = [0] * 4 hash_const_A = INIT_A def hash(value): nonlocal hash_const_A value = (value ^ hash_const_A) & MASK32 hash_const_A = (hash_const_A * MULT_A) & MASK32 value = (value * hash_const_A) & MASK32 value = (value ^ (value >> XSHIFT)) & MASK32 return value def mix(x, y): result_x = (MIX_MULT_L * x) & MASK32 result_y = (MIX_MULT_R * y) & MASK32 result = (result_x - result_y) & MASK32 result = (result ^ (result >> XSHIFT)) & MASK32 return result # Add in the entropy to the pool. for i in range(len(pool)): pool[i] = hash(entropy[i]) # Mix all bits together so late bits can affect earlier bits. for i_src in range(len(pool)): for i_dst in range(len(pool)): if i_src != i_dst: pool[i_dst] = mix(pool[i_dst], hash(pool[i_src])) hash_const_B = INIT_B state = [] for i_dst in range(4): data_val = pool[i_dst] data_val = (data_val ^ hash_const_B) & MASK32 hash_const_B = (hash_const_B * MULT_B) & MASK32 data_val = (data_val * hash_const_B) & MASK32 data_val = (data_val ^ (data_val >> XSHIFT)) & MASK32 state.append(data_val) return state def _worker_loop(dataset_kind, dataset, index_queue, data_queue, done_event, auto_collation, collate_fn, drop_last, base_seed, init_fn, worker_id, num_workers, persistent_workers, shared_seed): # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the # logic of this function. try: # Initialize C side signal handlers for SIGBUS and SIGSEGV. Python signal # module's handlers are executed after Python returns from C low-level # handlers, likely when the same fatal signal had already happened # again. # https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers signal_handling._set_worker_signal_handlers() torch.set_num_threads(1) seed = base_seed + worker_id random.seed(seed) torch.manual_seed(seed) if HAS_NUMPY: np_seed = _generate_state(base_seed, worker_id) import numpy as np np.random.seed(np_seed) from torch.utils.data import IterDataPipe from torch.utils.data.graph_settings import apply_shuffle_seed shared_rng = torch.Generator() if isinstance(dataset, IterDataPipe): assert shared_seed is not None shared_rng.manual_seed(shared_seed) dataset = apply_shuffle_seed(dataset, shared_rng) global _worker_info _worker_info = WorkerInfo(id=worker_id, num_workers=num_workers, seed=seed, dataset=dataset) from torch.utils.data import _DatasetKind init_exception = None try: if init_fn is not None: init_fn(worker_id) fetcher = _DatasetKind.create_fetcher(dataset_kind, dataset, auto_collation, collate_fn, drop_last) except Exception: init_exception = ExceptionWrapper( where="in DataLoader worker process {}".format(worker_id)) # When using Iterable mode, some worker can exit earlier than others due # to the IterableDataset behaving differently for different workers. # When such things happen, an `_IterableDatasetStopIteration` object is # sent over to the main process with the ID of this worker, so that the # main process won't send more tasks to this worker, and will send # `None` to this worker to properly exit it. # # Note that we cannot set `done_event` from a worker as it is shared # among all processes. Instead, we set the `iteration_end` flag to # signify that the iterator is exhausted. When either `done_event` or # `iteration_end` is set, we skip all processing step and just wait for # `None`. iteration_end = False watchdog = ManagerWatchdog() while watchdog.is_alive(): try: r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL) except queue.Empty: continue if isinstance(r, _ResumeIteration): # Acknowledge the main process data_queue.put((r, None)) iteration_end = False if isinstance(dataset, IterDataPipe): assert r.seed is not None shared_rng.manual_seed(r.seed) dataset = apply_shuffle_seed(dataset, shared_rng) # Recreate the fetcher for worker-reuse policy fetcher = _DatasetKind.create_fetcher( dataset_kind, dataset, auto_collation, collate_fn, drop_last) continue elif r is None: # Received the final signal assert done_event.is_set() or iteration_end break elif done_event.is_set() or iteration_end: # `done_event` is set. But I haven't received the final signal # (None) yet. I will keep continuing until get it, and skip the # processing steps. continue idx, index = r data: Union[_IterableDatasetStopIteration, ExceptionWrapper] if init_exception is not None: data = init_exception init_exception = None else: try: data = fetcher.fetch(index) except Exception as e: if isinstance(e, StopIteration) and dataset_kind == _DatasetKind.Iterable: data = _IterableDatasetStopIteration(worker_id) # Set `iteration_end` # (1) to save future `next(...)` calls, and # (2) to avoid sending multiple `_IterableDatasetStopIteration`s. iteration_end = True else: # It is important that we don't store exc_info in a variable. # `ExceptionWrapper` does the correct thing. # See NOTE [ Python Traceback Reference Cycle Problem ] data = ExceptionWrapper( where="in DataLoader worker process {}".format(worker_id)) data_queue.put((idx, data)) del data, idx, index, r # save memory except KeyboardInterrupt: # Main process will raise KeyboardInterrupt anyways. pass if done_event.is_set(): data_queue.cancel_join_thread() data_queue.close()
pytorch-master
torch/utils/data/_utils/worker.py
r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers to collate samples fetched from dataset into Tensor(s). These **needs** to be in global scope since Py2 doesn't support serializing static methods. `default_collate` and `default_convert` are exposed to users via 'dataloader.py'. """ import torch import re import collections from torch._six import string_classes np_str_obj_array_pattern = re.compile(r'[SaUO]') def default_convert(data): r""" Function that converts each NumPy array element into a :class:`torch.Tensor`. If the input is a `Sequence`, `Collection`, or `Mapping`, it tries to convert each element inside to a :class:`torch.Tensor`. If the input is not an NumPy array, it is left unchanged. This is used as the default function for collation when both `batch_sampler` and `batch_size` are NOT defined in :class:`~torch.utils.data.DataLoader`. The general input type to output type mapping is similar to that of :func:`~torch.utils.data.default_collate`. See the description there for more details. Args: data: a single data point to be converted Examples: >>> # Example with `int` >>> default_convert(0) 0 >>> # Example with NumPy array >>> # xdoctest: +SKIP >>> default_convert(np.array([0, 1])) tensor([0, 1]) >>> # Example with NamedTuple >>> Point = namedtuple('Point', ['x', 'y']) >>> default_convert(Point(0, 0)) Point(x=0, y=0) >>> default_convert(Point(np.array(0), np.array(0))) Point(x=tensor(0), y=tensor(0)) >>> # Example with List >>> default_convert([np.array([0, 1]), np.array([2, 3])]) [tensor([0, 1]), tensor([2, 3])] """ elem_type = type(data) if isinstance(data, torch.Tensor): return data elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': # array of string classes and object if elem_type.__name__ == 'ndarray' \ and np_str_obj_array_pattern.search(data.dtype.str) is not None: return data return torch.as_tensor(data) elif isinstance(data, collections.abc.Mapping): try: return elem_type({key: default_convert(data[key]) for key in data}) except TypeError: # The mapping type may not support `__init__(iterable)`. return {key: default_convert(data[key]) for key in data} elif isinstance(data, tuple) and hasattr(data, '_fields'): # namedtuple return elem_type(*(default_convert(d) for d in data)) elif isinstance(data, tuple): return [default_convert(d) for d in data] # Backwards compatibility. elif isinstance(data, collections.abc.Sequence) and not isinstance(data, string_classes): try: return elem_type([default_convert(d) for d in data]) except TypeError: # The sequence type may not support `__init__(iterable)` (e.g., `range`). return [default_convert(d) for d in data] else: return data default_collate_err_msg_format = ( "default_collate: batch must contain tensors, numpy arrays, numbers, " "dicts or lists; found {}") def default_collate(batch): r""" Function that takes in a batch of data and puts the elements within the batch into a tensor with an additional outer dimension - batch size. The exact output type can be a :class:`torch.Tensor`, a `Sequence` of :class:`torch.Tensor`, a Collection of :class:`torch.Tensor`, or left unchanged, depending on the input type. This is used as the default function for collation when `batch_size` or `batch_sampler` is defined in :class:`~torch.utils.data.DataLoader`. Here is the general input type (based on the type of the element within the batch) to output type mapping: * :class:`torch.Tensor` -> :class:`torch.Tensor` (with an added outer dimension batch size) * NumPy Arrays -> :class:`torch.Tensor` * `float` -> :class:`torch.Tensor` * `int` -> :class:`torch.Tensor` * `str` -> `str` (unchanged) * `bytes` -> `bytes` (unchanged) * `Mapping[K, V_i]` -> `Mapping[K, default_collate([V_1, V_2, ...])]` * `NamedTuple[V1_i, V2_i, ...]` -> `NamedTuple[default_collate([V1_1, V1_2, ...]), default_collate([V2_1, V2_2, ...]), ...]` * `Sequence[V1_i, V2_i, ...]` -> `Sequence[default_collate([V1_1, V1_2, ...]), default_collate([V2_1, V2_2, ...]), ...]` Args: batch: a single batch to be collated Examples: >>> # Example with a batch of `int`s: >>> default_collate([0, 1, 2, 3]) tensor([0, 1, 2, 3]) >>> # Example with a batch of `str`s: >>> default_collate(['a', 'b', 'c']) ['a', 'b', 'c'] >>> # Example with `Map` inside the batch: >>> default_collate([{'A': 0, 'B': 1}, {'A': 100, 'B': 100}]) {'A': tensor([ 0, 100]), 'B': tensor([ 1, 100])} >>> # Example with `NamedTuple` inside the batch: >>> # xdoctest: +SKIP >>> Point = namedtuple('Point', ['x', 'y']) >>> default_collate([Point(0, 0), Point(1, 1)]) Point(x=tensor([0, 1]), y=tensor([0, 1])) >>> # Example with `Tuple` inside the batch: >>> default_collate([(0, 1), (2, 3)]) [tensor([0, 2]), tensor([1, 3])] >>> # Example with `List` inside the batch: >>> default_collate([[0, 1], [2, 3]]) [tensor([0, 2]), tensor([1, 3])] """ elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum(x.numel() for x in batch) storage = elem.storage()._new_shared(numel, device=elem.device) out = elem.new(storage).resize_(len(batch), *list(elem.size())) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(default_collate_err_msg_format.format(elem.dtype)) return default_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, float): return torch.tensor(batch, dtype=torch.float64) elif isinstance(elem, int): return torch.tensor(batch) elif isinstance(elem, string_classes): return batch elif isinstance(elem, collections.abc.Mapping): try: return elem_type({key: default_collate([d[key] for d in batch]) for key in elem}) except TypeError: # The mapping type may not support `__init__(iterable)`. return {key: default_collate([d[key] for d in batch]) for key in elem} elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple return elem_type(*(default_collate(samples) for samples in zip(*batch))) elif isinstance(elem, collections.abc.Sequence): # check to make sure that the elements in batch have consistent size it = iter(batch) elem_size = len(next(it)) if not all(len(elem) == elem_size for elem in it): raise RuntimeError('each element in list of batch should be of equal size') transposed = list(zip(*batch)) # It may be accessed twice, so we use a list. if isinstance(elem, tuple): return [default_collate(samples) for samples in transposed] # Backwards compatibility. else: try: return elem_type([default_collate(samples) for samples in transposed]) except TypeError: # The sequence type may not support `__init__(iterable)` (e.g., `range`). return [default_collate(samples) for samples in transposed] raise TypeError(default_collate_err_msg_format.format(elem_type))
pytorch-master
torch/utils/data/_utils/collate.py
r""""Contains definitions of the methods used by the _BaseDataLoaderIter to put fetched tensors into pinned memory. These **needs** to be in global scope since Py2 doesn't support serializing static methods. """ import collections import queue import torch from torch._six import string_classes from . import MP_STATUS_CHECK_INTERVAL from torch._utils import ExceptionWrapper def _pin_memory_loop(in_queue, out_queue, device_id, done_event, device): # This setting is thread local, and prevents the copy in pin_memory from # consuming all CPU cores. torch.set_num_threads(1) torch.cuda.set_device(device_id) # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the # logic of this function. while not done_event.is_set(): try: r = in_queue.get(timeout=MP_STATUS_CHECK_INTERVAL) except queue.Empty: continue idx, data = r if not done_event.is_set() and not isinstance(data, ExceptionWrapper): try: data = pin_memory(data, device) except Exception: data = ExceptionWrapper( where="in pin memory thread for device {}".format(device_id)) r = (idx, data) while not done_event.is_set(): try: out_queue.put(r, timeout=MP_STATUS_CHECK_INTERVAL) break except queue.Full: continue del r # save memory def pin_memory(data, device=None): if isinstance(data, torch.Tensor): return data.pin_memory(device) elif isinstance(data, string_classes): return data elif isinstance(data, collections.abc.Mapping): try: return type(data)({k: pin_memory(sample, device) for k, sample in data.items()}) # type: ignore[call-arg] except TypeError: # The mapping type may not support `__init__(iterable)`. return {k: pin_memory(sample, device) for k, sample in data.items()} elif isinstance(data, tuple) and hasattr(data, '_fields'): # namedtuple return type(data)(*(pin_memory(sample, device) for sample in data)) elif isinstance(data, tuple): return [pin_memory(sample, device) for sample in data] # Backwards compatibility. elif isinstance(data, collections.abc.Sequence): try: return type(data)([pin_memory(sample, device) for sample in data]) # type: ignore[call-arg] except TypeError: # The sequence type may not support `__init__(iterable)` (e.g., `range`). return [pin_memory(sample, device) for sample in data] elif hasattr(data, "pin_memory"): return data.pin_memory() else: return data
pytorch-master
torch/utils/data/_utils/pin_memory.py
r"""Utility classes & functions for data loading. Code in this folder is mostly used by ../dataloder.py. A lot of multiprocessing is used in data loading, which only supports running functions defined in global environment (py2 can't serialize static methods). Therefore, for code tidiness we put these functions into different files in this folder. """ import sys import atexit # old private location of the ExceptionWrapper that some users rely on: from torch._utils import ExceptionWrapper IS_WINDOWS = sys.platform == "win32" MP_STATUS_CHECK_INTERVAL = 5.0 r"""Interval (in seconds) to check status of processes to avoid hanging in multiprocessing data loading. This is mainly used in getting data from another process, in which case we need to periodically check whether the sender is alive to prevent hanging.""" python_exit_status = False r"""Whether Python is shutting down. This flag is guaranteed to be set before the Python core library resources are freed, but Python may already be exiting for some time when this is set. Hook to set this flag is `_set_python_exit_flag`, and is inspired by a similar hook in Python 3.7 multiprocessing library: https://github.com/python/cpython/blob/d4d60134b29290049e28df54f23493de4f1824b6/Lib/multiprocessing/util.py#L277-L327 """ DATAPIPE_SHARED_SEED = "_dl_shared_seed" r"""The key to share the same seed for shuffle DataPipe across distributed processes""" DATAPIPE_SHARED_SEED_COUNTER = "_dl_shared_seed_recv_cnt" r"""The key to count the number of distributed processes that have received the shared seed""" DATAPIPE_SHARED_SEED_DEFAULT_TIMEOUT = 30 * 60 r"""Timeout (in seconds) sending the shared seed from Rank 0 and sending the signal of the shared seed received from other Ranks. It uses the same default timeout for the distributed process group""" DATAPIPE_SHARED_SEED_CHECK_INTERVAL = 0.01 r"""Interval to check if each rank has received the shared seed""" try: import numpy HAS_NUMPY = True except ModuleNotFoundError: HAS_NUMPY = False def _set_python_exit_flag(): global python_exit_status python_exit_status = True atexit.register(_set_python_exit_flag) from . import worker, signal_handling, pin_memory, collate, fetch
pytorch-master
torch/utils/data/_utils/__init__.py
r""""Signal handling for multiprocessing data loading. NOTE [ Signal handling in multiprocessing data loading ] In cases like DataLoader, if a worker process dies due to bus error/segfault or just hang, the main process will hang waiting for data. This is difficult to avoid on PyTorch side as it can be caused by limited shm, or other libraries users call in the workers. In this file and `DataLoader.cpp`, we make our best effort to provide some error message to users when such unfortunate events happen. When a _BaseDataLoaderIter starts worker processes, their pids are registered in a defined in `DataLoader.cpp`: id(_BaseDataLoaderIter) => Collection[ Worker pids ] via `_set_worker_pids`. When an error happens in a worker process, the main process received a SIGCHLD, and Python will eventually call the handler registered below (in `_set_SIGCHLD_handler`). In the handler, the `_error_if_any_worker_fails` call checks all registered worker pids and raise proper error message to prevent main process from hanging waiting for data from worker. Additionally, at the beginning of each worker's `_utils.worker._worker_loop`, `_set_worker_signal_handlers` is called to register critical signal handlers (e.g., for SIGSEGV, SIGBUS, SIGFPE, SIGTERM) in C, which just prints an error message to stderr before triggering the default handler. So a message will also be printed from the worker process when it is killed by such signals. See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for the reasoning of this signal handling design and other mechanism we implement to make our multiprocessing data loading robust to errors. """ import signal import threading from . import IS_WINDOWS # Some of the following imported functions are not used in this file, but are to # be used `_utils.signal_handling.XXXXX`. from torch._C import _set_worker_pids, _remove_worker_pids # noqa: F401 from torch._C import _error_if_any_worker_fails, _set_worker_signal_handlers # noqa: F401 _SIGCHLD_handler_set = False r"""Whether SIGCHLD handler is set for DataLoader worker failures. Only one handler needs to be set for all DataLoaders in a process.""" def _set_SIGCHLD_handler(): # Windows doesn't support SIGCHLD handler if IS_WINDOWS: return # can't set signal in child threads if not isinstance(threading.current_thread(), threading._MainThread): # type: ignore[attr-defined] return global _SIGCHLD_handler_set if _SIGCHLD_handler_set: return previous_handler = signal.getsignal(signal.SIGCHLD) if not callable(previous_handler): # This doesn't catch default handler, but SIGCHLD default handler is a # no-op. previous_handler = None def handler(signum, frame): # This following call uses `waitid` with WNOHANG from C side. Therefore, # Python can still get and update the process status successfully. _error_if_any_worker_fails() if previous_handler is not None: assert callable(previous_handler) previous_handler(signum, frame) signal.signal(signal.SIGCHLD, handler) _SIGCHLD_handler_set = True
pytorch-master
torch/utils/data/_utils/signal_handling.py
try: import dill # XXX: By default, dill writes the Pickler dispatch table to inject its # own logic there. This globally affects the behavior of the standard library # pickler for any user who transitively depends on this module! # Undo this extension to avoid altering the behavior of the pickler globally. dill.extend(use_dill=False) DILL_AVAILABLE = True except ImportError: DILL_AVAILABLE = False
pytorch-master
torch/utils/data/_utils/serialization.py
import threading import time class LocalQueue(): ops = 0 stored = 0 uid = 0 empty = 0 def __init__(self, name='unnamed'): self.items = [] self.name = name self.uid = LocalQueue.uid LocalQueue.uid += 1 def put(self, item, block=True): LocalQueue.ops += 1 LocalQueue.stored += 1 self.items.append(item) def get(self, block=True, timeout=0): # TODO(VitalyFedyunin): Add support of block and timeout arguments LocalQueue.ops += 1 if not len(self.items): LocalQueue.empty += 1 raise Exception('LocalQueue is empty') LocalQueue.stored -= 1 return self.items.pop() class ThreadingQueue(): def __init__(self, name='unnamed'): self.lock = threading.Lock() self.items = [] self.name = name def put(self, item, block=True): with self.lock: self.items.append(item) def get(self, block=True, timeout=0): # TODO(VitalyFedyunin): Add support of block and timeout arguments while True: with self.lock: if len(self.items) > 0: return self.items.pop() if not block: raise Exception("Not available") # TODO(VitalyFedyunin): Figure out what to do if nothing in the queue time.sleep(0.000001)
pytorch-master
torch/utils/data/communication/queue.py
import time import types from torch.utils.data import IterDataPipe, communication DEFAULT_NON_BLOCKING_SLEEP = 0.001 __all__ = [ "DataPipeBehindQueues", "EnsureNonBlockingDataPipe", "InvalidStateResetRequired", "NonBlocking", "NotAvailable", "QueueWrapper", "default_not_available_hook", ] def default_not_available_hook(): time.sleep(DEFAULT_NON_BLOCKING_SLEEP) class NotAvailable(Exception): pass class InvalidStateResetRequired(Exception): """ Returned by DataPipe when it is expecting to get reset request, for example RouterDataPipe expecting all workers to request reset' """ pass class NonBlocking(IterDataPipe): not_available_hook = default_not_available_hook def __iter__(self): self.reset_iterator() return self def __next__(self): while True: try: return self.nonblocking_next() except StopIteration: raise StopIteration except NotAvailable: if NonBlocking.not_available_hook is not None: NonBlocking.not_available_hook() def nonblocking_next(self): raise NotImplementedError( "nonblocking_next is not implemented for %s" % self.__class__) def reset_iterator(self): raise NotImplementedError( "reset_iterator is not implemented for %s" % self.__class__) @staticmethod def register_not_available_hook(hook_function): NonBlocking.not_available_hook = hook_function def EnsureNonBlockingDataPipe(validated_datapipe): if not isinstance(validated_datapipe, IterDataPipe): raise Exception('Not Iterable DataPipe ' + str(validated_datapipe.__class__)) if isinstance(validated_datapipe, NonBlocking): return validated_datapipe if not hasattr(validated_datapipe, '_as_iterator'): validated_datapipe._as_iterator = None # type: ignore[attr-defined] if not hasattr(validated_datapipe, 'nonblocking_next'): def nonblocking_next(self): if self._as_iterator is None: self._as_iterator = iter(self) return next(self._as_iterator) validated_datapipe.nonblocking_next = types.MethodType( # type: ignore[attr-defined] nonblocking_next, validated_datapipe) if not hasattr(validated_datapipe, 'reset_iterator'): def reset_iterator(self): self._as_iterator = None validated_datapipe.reset_iterator = types.MethodType( # type: ignore[attr-defined] reset_iterator, validated_datapipe) return validated_datapipe def DataPipeBehindQueues(source_datapipe, protocol, full_stop=False, blocking_request_get=False): """ Indefinitely iterates over req_queue and passing values from source_datapipe to res_queue If raise_stop is true, raises exception when StopIteration received from the source_datapipe """ if not isinstance(protocol, communication.protocol.IterDataPipeQueueProtocolServer): raise Exception('Expecting IterDataPipeQueueProtocolServer, got', protocol) source_datapipe = EnsureNonBlockingDataPipe(source_datapipe) forever = True while forever: try: # Non-blocking call is Extremely slow here for python.mp, need to figure out a good workaround request = protocol.get_new_request(block=blocking_request_get) except communication.protocol.EmptyQueue: yield True continue if isinstance(request, communication.messages.ResetIteratorRequest): source_datapipe.reset_iterator() protocol.response_reset_iterator() elif isinstance(request, communication.messages.TerminateRequest): forever = False protocol.response_terminate() elif isinstance(request, communication.messages.GetNextRequest): while forever: try: value = source_datapipe.nonblocking_next() except NotAvailable: yield True continue except StopIteration: protocol.response_stop_iteration() if full_stop: forever = False else: yield True break except InvalidStateResetRequired: protocol.response_invalid_state() if full_stop: forever = False else: yield True break protocol.response_next(value) yield True # Returns control break else: raise Exception('Unrecognized type of request received', request) class QueueWrapper(NonBlocking): """ Creates iter.DataPipe which reads data from the DataLoader.Queue """ def __init__(self, protocol, response_wait_time=0.00001): if not isinstance(protocol, communication.protocol.IterDataPipeQueueProtocolClient): raise Exception('Got', protocol) self.protocol = protocol self.counter = 0 self._stop_iteration = False self._response_wait_time = response_wait_time def reset_iterator(self): self._stop_iteration = False self.counter = 0 self.protocol.request_reset_iterator() while True: try: self.protocol.get_response_reset_iterator() break except communication.protocol.EmptyQueue: if NonBlocking.not_available_hook is not None: NonBlocking.not_available_hook() def nonblocking_next(self): if self._stop_iteration: raise Exception( '`next` or `nonblocking_next` called after receiving StopIteration') if self.protocol.can_take_request(): self.protocol.request_next() try: response = self.protocol.get_response_next(block=True, timeout=self._response_wait_time) except communication.protocol.EmptyQueue: raise NotAvailable if isinstance(response, communication.messages.StopIterationResponse): self._stop_iteration = True raise StopIteration if isinstance(response, communication.messages.InvalidStateResponse): raise NotAvailable return response.value
pytorch-master
torch/utils/data/communication/iter.py
from torch.utils.data import communication class Protocol(object): __slots__ = ('request_queue', 'response_queue') def __init__(self, request_queue, response_queue): self.request_queue = request_queue self.response_queue = response_queue class ProtocolClient(Protocol): """ ProtocolClient takes charge of putting requests into req_queue and returning results from res_queue. """ _req_sent = None def __init__(self, request_queue, response_queue): self.request_queue = request_queue self.response_queue = response_queue self._req_sent = None def can_take_request(self): return self._req_sent is None def waiting_for_response(self): return self._req_sent is not None def request_sent(self, request=True): if not self.can_take_request(): raise Exception('Protocol only supports one request in the Queue') self._req_sent = request def request_served(self, result=None): if not self.waiting_for_response(): raise Exception( 'Expected no peding requests, but something got served', result) self._req_sent = None class ProtocolServer(Protocol): """ ProtocolServer takes charge of getting requests from req_queue and fetching data from source datapipe. """ _req_received = None def __init__(self, request_queue, response_queue): self.request_queue = request_queue self.response_queue = response_queue self._req_received = None def have_pending_request(self): return self._req_received is not None def get_new_request(self, block=False): if self.have_pending_request(): raise Exception( 'Trying to get next request, while having one unserved') try: response = self.request_queue.get(block=block) except Exception as e: # TODO: Catch only timeout exceptions raise EmptyQueue('queue is empty') self._req_received = response return response # TODO: Validate supported requests def response_terminate(self): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") if not isinstance(self._req_received, communication.messages.TerminateRequest): raise Exception( "Replaying with terminate status to other type of message") self.response_queue.put(communication.messages.TerminateResponse()) self._req_received = None class MapDataPipeQueueProtocolServer(ProtocolServer): def response_item(self, key, value): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") self.response_queue.put(communication.messages.GetItemResponse(key, value)) self._req_received = None def response_len(self, size): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") self.response_queue.put(communication.messages.LenResponse(size)) self._req_received = None def response_index_out_of_bound(self): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") self.response_queue.put(communication.messages.StopIterationResponse()) self._req_received = None class MapDataPipeQueueProtocolClient(ProtocolClient): def request_len(self): if not self.can_take_request(): raise Exception('Can not request len while we are still waiting response for previous request') request = communication.messages.LenRequest() self.request_queue.put(request) self.request_sent(request) def request_item(self, index): if not self.can_take_request(): raise Exception('Can not request item while we are still waiting response for previous request') request = communication.messages.GetItemRequest(index) self.request_queue.put(request) self.request_sent(request) def get_response_len(self, block=False, timeout=None): if not self.waiting_for_response(): raise Exception('Can not expect any response without submitted request') try: response = self.response_queue.get(block=block, timeout=timeout) except TimeoutError: raise EmptyQueue('queue is empty') self.request_served(response) if not isinstance(response, communication.messages.LenResponse): raise Exception('Invalid response received') return response def get_response_item(self, block=False, timeout=None): if not self.waiting_for_response(): raise Exception('Can not expect any response without submitted request') try: response = self.response_queue.get(block=block, timeout=timeout) except TimeoutError: raise EmptyQueue('queue is empty') self.request_served(response) # if not isinstance(response, communication.messages.GetItemResponse): # raise Exception('Invalid response received') return response class EmptyQueue(Exception): pass class IterDataPipeQueueProtocolServer(ProtocolServer): def response_reset_iterator(self): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") if not isinstance(self._req_received, communication.messages.ResetIteratorRequest): raise Exception( "Replaying with reset status to other type of message") self.response_queue.put(communication.messages.ResetIteratorResponse()) self._req_received = None def response_next(self, value): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") self.response_queue.put(communication.messages.GetNextResponse(value)) self._req_received = None def response_stop_iteration(self): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") self.response_queue.put(communication.messages.StopIterationResponse()) self._req_received = None def response_invalid_state(self): if not self.have_pending_request(): raise Exception("Attempting to reply with pending request") self.response_queue.put(communication.messages.InvalidStateResponse()) self._req_received = None class IterDataPipeQueueProtocolClient(ProtocolClient): def request_reset_iterator(self): if not self.can_take_request(): raise Exception('Can not reset while we are still waiting response for previous request') request = communication.messages.ResetIteratorRequest() self.request_queue.put(request) self.request_sent(request) def request_next(self): if not self.can_take_request(): raise Exception('Can not request next item while we are still waiting response for previous request') request = communication.messages.GetNextRequest() self.request_queue.put(request) self.request_sent(request) def get_response_reset_iterator(self, block=False): try: response = self.response_queue.get(block=block) except Exception as e: # TODO: Catch only timeout exceptions raise EmptyQueue('queue is empty') self.request_served(response) if not isinstance(response, communication.messages.ResetIteratorResponse): raise Exception('Invalid response received') def get_response_next(self, block=False, timeout=None): if not self.waiting_for_response(): raise Exception( 'Can not expect any response without submitted request') try: response = self.response_queue.get(block=block, timeout=timeout) except Exception as e: # TODO: Catch only timeout exceptions raise EmptyQueue('queue is empty') self.request_served(response) # TODO(VitalyFedyunin): Add possible response types validation here return response
pytorch-master
torch/utils/data/communication/protocol.py
from . import eventloop from . import iter from . import map from . import messages from . import protocol from . import queue
pytorch-master
torch/utils/data/communication/__init__.py
import torch import threading import pickle from torch.utils.data import IterDataPipe, communication, MapDataPipe try: import dill # XXX: By default, dill writes the Pickler dispatch table to inject its # own logic there. This globally affects the behavior of the standard library # pickler for any user who transitively depends on this module! # Undo this extension to avoid altering the behavior of the pickler globally. dill.extend(use_dill=False) HAS_DILL = True except ImportError: HAS_DILL = False __all__ = [ "DataPipeToQueuesLoop", "SpawnProcessForDataPipeline", "SpawnThreadForDataPipeline", ] def DataPipeToQueuesLoop(source_datapipe, req_queue, res_queue): if isinstance(source_datapipe, IterDataPipe): pipe_type = communication.iter protocol_type = communication.protocol.IterDataPipeQueueProtocolServer elif isinstance(source_datapipe, MapDataPipe): pipe_type = communication.map # type: ignore[misc] protocol_type = communication.protocol.MapDataPipeQueueProtocolServer # type: ignore[assignment] else: raise Exception('Only supports IterDataPipe or MapDataPipe, got', source_datapipe) torch.set_num_threads(1) for _ in pipe_type.DataPipeBehindQueues(source_datapipe, protocol_type(req_queue, res_queue), blocking_request_get=True): pass def SpawnProcessForDataPipeline(multiprocessing_ctx, datapipe): req_queue = multiprocessing_ctx.Queue() res_queue = multiprocessing_ctx.Queue() process = multiprocessing_ctx.Process( target=DataPipeToQueuesLoop, args=(datapipe, req_queue, res_queue)) return process, req_queue, res_queue def SpawnThreadForDataPipeline(datapipe): r""" Given a DataPipe, creates a copy of the DataPipe, starts a new Thread with DataPipeToQueuesLoop as target, and return the process, req_queue, res_queue, thread_local_datapipe. """ req_queue = communication.queue.ThreadingQueue() res_queue = communication.queue.ThreadingQueue() try: new_datapipe = pickle.loads(pickle.dumps(datapipe)) except Exception as pe: if HAS_DILL: try: new_datapipe = dill.loads(dill.dumps(datapipe)) except Exception as de: raise Exception('Unable to dill DataPipe to make thread local copy', de) else: raise Exception('Unable to pickle DataPipe to make thread local copy (consider installing `dill`)', pe) process = threading.Thread(target=DataPipeToQueuesLoop, args=( new_datapipe, req_queue, res_queue), daemon=True) return process, req_queue, res_queue, new_datapipe
pytorch-master
torch/utils/data/communication/eventloop.py
import time import types from torch.utils.data import communication, MapDataPipe DEFAULT_NON_BLOCKING_SLEEP = 0.001 __all__ = [ "DataPipeBehindQueues", "EnsureNonBlockingMapDataPipe", "NonBlockingMap", "NotAvailable", "QueueWrapperForMap", "default_not_available_hook", ] def default_not_available_hook(): time.sleep(DEFAULT_NON_BLOCKING_SLEEP) class NotAvailable(Exception): pass class NonBlockingMap(MapDataPipe): not_available_hook = default_not_available_hook def __getitem__(self, index): while True: try: return self.nonblocking_getitem(index) except NotAvailable: if NonBlockingMap.not_available_hook is not None: NonBlockingMap.not_available_hook() def __len__(self): try: return self.nonblocking_len() except NotAvailable: if NonBlockingMap.not_available_hook is not None: NonBlockingMap.not_available_hook() def nonblocking_len(self): raise NotImplementedError( "nonblocking_len is not implemented for %s" % self.__class__) def nonblocking_getitem(self, index): raise NotImplementedError( "nonblocking_getitem is not implemented for %s" % self.__class__) @staticmethod def register_not_available_hook(hook_function): NonBlockingMap.not_available_hook = hook_function def EnsureNonBlockingMapDataPipe(validated_datapipe): if not isinstance(validated_datapipe, MapDataPipe): raise Exception(f'Not Map DataPipe - got {validated_datapipe.__class__}') if isinstance(validated_datapipe, NonBlockingMap): return validated_datapipe if not hasattr(validated_datapipe, 'nonblocking_len'): def nonblocking_len(self): return self.__len__() validated_datapipe.nonblocking_len = types.MethodType( # type: ignore[attr-defined] nonblocking_len, validated_datapipe) if not hasattr(validated_datapipe, 'nonblocking_getitem'): def nonblocking_getitem(self, index): return self.__getitem__(index) validated_datapipe.nonblocking_getitem = types.MethodType( # type: ignore[attr-defined] nonblocking_getitem, validated_datapipe) return validated_datapipe def DataPipeBehindQueues(source_datapipe, protocol, full_stop=False, blocking_request_get=False): """ Indefinitely iterates over req_queue and passing values from source_datapipe to res_queue If raise_stop is true, raises exception when StopIteration received from the source_datapipe """ if not isinstance(protocol, communication.protocol.MapDataPipeQueueProtocolServer): raise Exception('Expecting MapDataPipeQueueProtocolServer, got', protocol) source_datapipe = EnsureNonBlockingMapDataPipe(source_datapipe) forever = True while forever: try: # Non-blocking call is Extremely slow here for python.mp, need to figure out a good workaround request = protocol.get_new_request(block=blocking_request_get) except communication.protocol.EmptyQueue: yield True continue if isinstance(request, communication.messages.TerminateRequest): forever = False protocol.response_terminate() elif isinstance(request, communication.messages.LenRequest): size = source_datapipe.nonblocking_len() protocol.response_len(size) elif isinstance(request, communication.messages.GetItemRequest): while forever: try: value = source_datapipe.nonblocking_getitem(request.key) except NotAvailable: yield True continue except IndexError as e: # Alternatively, we can just allow the underlying DataPipe to throw an exception? protocol.response_index_out_of_bound() if full_stop: forever = False else: yield True break protocol.response_item(request.key, value) yield True # Returns control break else: raise Exception('Unrecognized type of request received', request) class QueueWrapperForMap(NonBlockingMap): """ Creates map.DataPipe which reads data from the DataLoader.Queue """ def __init__(self, protocol, response_wait_time=0.00001): if not isinstance(protocol, communication.protocol.MapDataPipeQueueProtocolClient): raise Exception('Got', protocol) self.protocol = protocol self.counter = 0 self._stop_iteration = False self._response_wait_time = response_wait_time def nonblocking_getitem(self, index): if self._stop_iteration: raise Exception( '`getitem` or `nonblocking_getitem` called after receiving StopIteration') if self.protocol.can_take_request(): self.protocol.request_item(index) try: response = self.protocol.get_response_item(block=True, timeout=self._response_wait_time) except communication.protocol.EmptyQueue: raise NotAvailable if isinstance(response, communication.messages.StopIterationResponse): self._stop_iteration = True raise IndexError(f"Index {index} is out of bound.") return response.key, response.value def nonblocking_len(self): if self._stop_iteration: raise Exception( '`len` or `nonblocking_len` called after receiving StopIteration') if self.protocol.can_take_request(): self.protocol.request_len() try: response = self.protocol.get_response_len(block=True, timeout=self._response_wait_time) except communication.protocol.EmptyQueue: raise NotAvailable return response.len
pytorch-master
torch/utils/data/communication/map.py
class DataLoaderQueueMessage(object): pass class Request(DataLoaderQueueMessage): pass class Response(DataLoaderQueueMessage): pass class ResetIteratorRequest(Request): pass class ResetIteratorResponse(Response): pass class TerminateRequest(Request): pass class TerminateResponse(Response): pass class LenRequest(Request): pass class LenResponse(Response): __slots__ = ('len') def __init__(self, len): self.len = len class GetItemRequest(Request): __slots__ = ('key') def __init__(self, key): self.key = key class GetItemResponse(Response): __slots__ = ('key', 'value') def __init__(self, key, value): self.key = key self.value = value class GetNextRequest(Request): pass class GetNextResponse(Response): __slots__ = ('value') def __init__(self, value): self.value = value class StopIterationResponse(Response): pass class InvalidStateResponse(Response): """ Returned by DataPipe when it is expecting to get reset request, for example RouterDataPipe expecting all workers to request reset' """ pass
pytorch-master
torch/utils/data/communication/messages.py
import inspect from functools import wraps from typing import Any, Callable, Optional, Type, Union, get_type_hints from torch.utils.data.datapipes.datapipe import IterDataPipe, MapDataPipe from torch.utils.data.datapipes._typing import _DataPipeMeta ###################################################### # Functional API ###################################################### class functional_datapipe(object): name: str def __init__(self, name: str, enable_df_api_tracing=False) -> None: """ Args: enable_df_api_tracing - if set, any returned DataPipe would accept DataFrames API in tracing mode. """ self.name = name self.enable_df_api_tracing = enable_df_api_tracing def __call__(self, cls): if issubclass(cls, IterDataPipe): if isinstance(cls, Type): # type: ignore[arg-type] if not isinstance(cls, _DataPipeMeta): raise TypeError('`functional_datapipe` can only decorate IterDataPipe') # with non_deterministic decorator else: if not isinstance(cls, non_deterministic) and \ not (hasattr(cls, '__self__') and isinstance(cls.__self__, non_deterministic)): raise TypeError('`functional_datapipe` can only decorate IterDataPipe') IterDataPipe.register_datapipe_as_function(self.name, cls, enable_df_api_tracing=self.enable_df_api_tracing) elif issubclass(cls, MapDataPipe): MapDataPipe.register_datapipe_as_function(self.name, cls) return cls ###################################################### # Determinism ###################################################### _determinism: bool = False class guaranteed_datapipes_determinism(object): prev: bool def __init__(self) -> None: global _determinism self.prev = _determinism _determinism = True def __enter__(self) -> None: pass def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: global _determinism _determinism = self.prev class non_deterministic(object): cls: Optional[Type[IterDataPipe]] = None # TODO: Lambda for picking deterministic_fn: Callable[[], bool] def __init__(self, arg: Union[Type[IterDataPipe], Callable[[], bool]]) -> None: # 1. Decorator doesn't have any argument if isinstance(arg, Type): # type: ignore[arg-type] if not issubclass(arg, IterDataPipe): # type: ignore[arg-type] raise TypeError("Only `IterDataPipe` can be decorated with `non_deterministic`" ", but {} is found".format(arg.__name__)) self.cls = arg # type: ignore[assignment] # 2. Decorator has an argument of a function # This class should behave differently given different inputs. Use this # function to verify the determinism for each instance. # When the function returns True, the instance is non-deterministic. Otherwise, # the instance is a deterministic DataPipe. elif isinstance(arg, Callable): # type:ignore[arg-type] self.deterministic_fn = arg # type: ignore[assignment, misc] else: raise TypeError("{} can not be decorated by non_deterministic".format(arg)) def __call__(self, *args, **kwargs): global _determinism # Decorate IterDataPipe if self.cls is not None: if _determinism: raise TypeError("{} is non-deterministic, but you set 'guaranteed_datapipes_determinism'. " "You can turn off determinism for this DataPipe if that is acceptable " "for your application".format(self.cls.__name__)) return self.cls(*args, **kwargs) # type: ignore[call-arg] # Decorate with a functional argument if not (isinstance(args[0], Type) and # type: ignore[arg-type] issubclass(args[0], IterDataPipe)): raise TypeError("Only `IterDataPipe` can be decorated, but {} is found" .format(args[0].__name__)) self.cls = args[0] return self.deterministic_wrapper_fn def deterministic_wrapper_fn(self, *args, **kwargs) -> IterDataPipe: res = self.deterministic_fn(*args, **kwargs) # type: ignore[call-arg, misc] if not isinstance(res, bool): raise TypeError("deterministic_fn of `non_deterministic` decorator is required " "to return a boolean value, but {} is found".format(type(res))) global _determinism if _determinism and res: raise TypeError("{} is non-deterministic with the inputs, but you set " "'guaranteed_datapipes_determinism'. You can turn off determinism " "for this DataPipe if that is acceptable for your application" .format(self.cls.__name__)) # type: ignore[union-attr] return self.cls(*args, **kwargs) # type: ignore[call-arg, misc] ###################################################### # Type validation ###################################################### # Validate each argument of DataPipe with hint as a subtype of the hint. def argument_validation(f): signature = inspect.signature(f) hints = get_type_hints(f) @wraps(f) def wrapper(*args, **kwargs): bound = signature.bind(*args, **kwargs) for argument_name, value in bound.arguments.items(): if argument_name in hints and isinstance(hints[argument_name], _DataPipeMeta): hint = hints[argument_name] if not isinstance(value, IterDataPipe): raise TypeError("Expected argument '{}' as a IterDataPipe, but found {}" .format(argument_name, type(value))) if not value.type.issubtype(hint.type): raise TypeError("Expected type of argument '{}' as a subtype of " "hint {}, but found {}" .format(argument_name, hint.type, value.type)) return f(*args, **kwargs) return wrapper # Default value is True _runtime_validation_enabled: bool = True class runtime_validation_disabled(object): prev: bool def __init__(self) -> None: global _runtime_validation_enabled self.prev = _runtime_validation_enabled _runtime_validation_enabled = False def __enter__(self) -> None: pass def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: global _runtime_validation_enabled _runtime_validation_enabled = self.prev # Runtime checking # Validate output data is subtype of return hint def runtime_validation(f): # TODO: # Can be extended to validate '__getitem__' and nonblocking if f.__name__ != '__iter__': raise TypeError("Can not decorate function {} with 'runtime_validation'" .format(f.__name__)) @wraps(f) def wrapper(self): global _runtime_validation_enabled if not _runtime_validation_enabled: yield from f(self) else: it = f(self) for d in it: if not self.type.issubtype_of_instance(d): raise RuntimeError("Expected an instance as subtype of {}, but found {}({})" .format(self.type, d, type(d))) yield d return wrapper
pytorch-master
torch/utils/data/datapipes/_decorator.py
# Taking reference from official Python typing # https://github.com/python/cpython/blob/master/Lib/typing.py import collections import functools import numbers import sys from torch.utils.data.datapipes._hook_iterator import hook_iterator, _SnapshotState from typing import (Any, Dict, Iterator, Generic, List, Set, Tuple, TypeVar, Union, get_type_hints) from typing import _eval_type, _tp_cache, _type_check, _type_repr # type: ignore[attr-defined] from typing import ForwardRef # TODO: Use TypeAlias when Python 3.6 is deprecated # Please check [Note: TypeMeta and TypeAlias] # In case of metaclass conflict due to ABCMeta or _ProtocolMeta # For Python 3.9, only Protocol in typing uses metaclass from abc import ABCMeta from typing import _GenericAlias # type: ignore[attr-defined, no-redef] class GenericMeta(ABCMeta): # type: ignore[no-redef] pass class Integer(numbers.Integral): pass class Boolean(numbers.Integral): pass # Python 'type' object is not subscriptable # Tuple[int, List, dict] -> valid # tuple[int, list, dict] -> invalid # Map Python 'type' to abstract base class TYPE2ABC = { bool: Boolean, int: Integer, float: numbers.Real, complex: numbers.Complex, dict: Dict, list: List, set: Set, tuple: Tuple, None: type(None), } def issubtype(left, right, recursive=True): r""" Check if the left-side type is a subtype of the right-side type. If any of type is a composite type like `Union` and `TypeVar` with bounds, it would be expanded into a list of types and check all of left-side types are subtypes of either one from right-side types. """ left = TYPE2ABC.get(left, left) right = TYPE2ABC.get(right, right) if right is Any or left == right: return True if isinstance(right, _GenericAlias): if getattr(right, '__origin__', None) is Generic: return True if right == type(None): return False # Right-side type constraints = _decompose_type(right) if len(constraints) == 0 or Any in constraints: return True if left is Any: return False # Left-side type variants = _decompose_type(left) # all() will return True for empty variants if len(variants) == 0: return False return all(_issubtype_with_constraints(variant, constraints, recursive) for variant in variants) def _decompose_type(t, to_list=True): if isinstance(t, TypeVar): if t.__bound__ is not None: ts = [t.__bound__] else: # For T_co, __constraints__ is () ts = list(t.__constraints__) elif hasattr(t, '__origin__') and t.__origin__ == Union: ts = t.__args__ else: if not to_list: return None ts = [t] # Ignored: Generator has incompatible item type "object"; expected "Type[Any]" ts = list(TYPE2ABC.get(_t, _t) for _t in ts) # type: ignore[misc] return ts def _issubtype_with_constraints(variant, constraints, recursive=True): r""" Check if the variant is a subtype of either one from constraints. For composite types like `Union` and `TypeVar` with bounds, they would be expanded for testing. """ if variant in constraints: return True # [Note: Subtype for Union and TypeVar] # Python typing is able to flatten Union[Union[...]] or Union[TypeVar]. # But it couldn't flatten the following scenarios: # - Union[int, TypeVar[Union[...]]] # - TypeVar[TypeVar[...]] # So, variant and each constraint may be a TypeVar or a Union. # In these cases, all of inner types from the variant are required to be # extraced and verified as a subtype of any constraint. And, all of # inner types from any constraint being a TypeVar or a Union are # also required to be extracted and verified if the variant belongs to # any of them. # Variant vs = _decompose_type(variant, to_list=False) # Variant is TypeVar or Union if vs is not None: return all(_issubtype_with_constraints(v, constraints, recursive) for v in vs) # Variant is not TypeVar or Union if hasattr(variant, '__origin__') and variant.__origin__ is not None: v_origin = variant.__origin__ # In Python-3.9 typing library untyped generics do not have args v_args = getattr(variant, "__args__", None) else: v_origin = variant v_args = None # Constraints for constraint in constraints: cs = _decompose_type(constraint, to_list=False) # Constraint is TypeVar or Union if cs is not None: if _issubtype_with_constraints(variant, cs, recursive): return True # Constraint is not TypeVar or Union else: # __origin__ can be None for plain list, tuple, ... in Python 3.6 if hasattr(constraint, '__origin__') and constraint.__origin__ is not None: c_origin = constraint.__origin__ if v_origin == c_origin: if not recursive: return True # In Python-3.9 typing library untyped generics do not have args c_args = getattr(constraint, "__args__", None) if c_args is None or len(c_args) == 0: return True if v_args is not None and len(v_args) == len(c_args) and \ all(issubtype(v_arg, c_arg) for v_arg, c_arg in zip(v_args, c_args)): return True # Tuple[int] -> Tuple else: if v_origin == constraint: return True return False def issubinstance(data, data_type): if not issubtype(type(data), data_type, recursive=False): return False # In Python-3.9 typing library __args__ attribute is not defined for untyped generics dt_args = getattr(data_type, "__args__", None) if isinstance(data, tuple): if dt_args is None or len(dt_args) == 0: return True if len(dt_args) != len(data): return False return all(issubinstance(d, t) for d, t in zip(data, dt_args)) elif isinstance(data, (list, set)): if dt_args is None or len(dt_args) == 0: return True t = dt_args[0] return all(issubinstance(d, t) for d in data) elif isinstance(data, dict): if dt_args is None or len(dt_args) == 0: return True kt, vt = dt_args return all(issubinstance(k, kt) and issubinstance(v, vt) for k, v in data.items()) return True # [Note: TypeMeta and TypeAlias] # In order to keep compatibility for Python 3.6, use Meta for the typing. # TODO: When PyTorch drops the support for Python 3.6, it can be converted # into the Alias system and using `__class_getitem__` for DataPipe. The # typing system will gain benefit of performance and resolving metaclass # conflicts as elaborated in https://www.python.org/dev/peps/pep-0560/ class _DataPipeType: r""" Save type annotation in `param` """ def __init__(self, param): self.param = param def __repr__(self): return _type_repr(self.param) def __eq__(self, other): if isinstance(other, _DataPipeType): return self.param == other.param return NotImplemented def __hash__(self): return hash(self.param) def issubtype(self, other): if isinstance(other.param, _GenericAlias): if getattr(other.param, '__origin__', None) is Generic: return True if isinstance(other, _DataPipeType): return issubtype(self.param, other.param) if isinstance(other, type): return issubtype(self.param, other) raise TypeError("Expected '_DataPipeType' or 'type', but found {}".format(type(other))) def issubtype_of_instance(self, other): return issubinstance(other, self.param) # Default type for DataPipe without annotation T_co = TypeVar('T_co', covariant=True) _DEFAULT_TYPE = _DataPipeType(Generic[T_co]) class _DataPipeMeta(GenericMeta): r""" Metaclass for `DataPipe`. Add `type` attribute and `__init_subclass__` based on the type, and validate the return hint of `__iter__`. Note that there is subclass `_IterDataPipeMeta` specifically for `IterDataPipe`. """ type: _DataPipeType def __new__(cls, name, bases, namespace, **kwargs): return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload] # TODO: the statements below are not reachable by design as there is a bug and typing is low priority for now. cls.__origin__ = None if 'type' in namespace: return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload] namespace['__type_class__'] = False # For plain derived class without annotation for base in bases: if isinstance(base, _DataPipeMeta): return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload] namespace.update({'type': _DEFAULT_TYPE, '__init_subclass__': _dp_init_subclass}) return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload] def __init__(self, name, bases, namespace, **kwargs): super().__init__(name, bases, namespace, **kwargs) # type: ignore[call-overload] # TODO: Fix isinstance bug @_tp_cache def _getitem_(self, params): if params is None: raise TypeError('{}[t]: t can not be None'.format(self.__name__)) if isinstance(params, str): params = ForwardRef(params) if not isinstance(params, tuple): params = (params, ) msg = "{}[t]: t must be a type".format(self.__name__) params = tuple(_type_check(p, msg) for p in params) if isinstance(self.type.param, _GenericAlias): orig = getattr(self.type.param, '__origin__', None) if isinstance(orig, type) and orig is not Generic: p = self.type.param[params] # type: ignore[index] t = _DataPipeType(p) l = len(str(self.type)) + 2 name = self.__name__[:-l] name = name + '[' + str(t) + ']' bases = (self,) + self.__bases__ return self.__class__(name, bases, {'__init_subclass__': _dp_init_subclass, 'type': t, '__type_class__': True}) if len(params) > 1: raise TypeError('Too many parameters for {} actual {}, expected 1'.format(self, len(params))) t = _DataPipeType(params[0]) if not t.issubtype(self.type): raise TypeError('Can not subclass a DataPipe[{}] from DataPipe[{}]' .format(t, self.type)) # Types are equal, fast path for inheritance if self.type == t: return self name = self.__name__ + '[' + str(t) + ']' bases = (self,) + self.__bases__ return self.__class__(name, bases, {'__init_subclass__': _dp_init_subclass, '__type_class__': True, 'type': t}) # TODO: Fix isinstance bug def _eq_(self, other): if not isinstance(other, _DataPipeMeta): return NotImplemented if self.__origin__ is None or other.__origin__ is None: # type: ignore[has-type] return self is other return (self.__origin__ == other.__origin__ # type: ignore[has-type] and self.type == other.type) # TODO: Fix isinstance bug def _hash_(self): return hash((self.__name__, self.type)) class _IterDataPipeMeta(_DataPipeMeta): r""" Metaclass for `IterDataPipe` and inherits from `_DataPipeMeta`. Aad various functions for behaviors specific to `IterDataPipe`. """ def __new__(cls, name, bases, namespace, **kwargs): if 'reset' in namespace: reset_func = namespace['reset'] @functools.wraps(reset_func) def conditional_reset(*args, **kwargs): r""" Only execute DataPipe's `reset()` method if `_SnapshotState` is `Iterating`. This allows recently restored DataPipe to preserve its restored state during the initial `__iter__` call. """ datapipe = args[0] if datapipe._snapshot_state == _SnapshotState.Iterating: # Reset `NotStarted` is necessary because the `source_datapipe` of a DataPipe might have # already begun iterating. datapipe._number_of_samples_yielded = 0 datapipe._fast_forward_iterator = None reset_func(*args, **kwargs) datapipe._snapshot_state = _SnapshotState.Iterating namespace['reset'] = conditional_reset if '__iter__' in namespace: hook_iterator(namespace, 'enumerate(DataPipe)#{}'.format(name)) return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload] def _dp_init_subclass(sub_cls, *args, **kwargs): # Add function for datapipe instance to reinforce the type sub_cls.reinforce_type = reinforce_type # TODO: # - add global switch for type checking at compile-time # Ignore internal type class if getattr(sub_cls, '__type_class__', False): return # Check if the string type is valid if isinstance(sub_cls.type.param, ForwardRef): base_globals = sys.modules[sub_cls.__module__].__dict__ try: param = _eval_type(sub_cls.type.param, base_globals, locals()) sub_cls.type.param = param except TypeError as e: raise TypeError("{} is not supported by Python typing" .format(sub_cls.type.param.__forward_arg__)) from e if '__iter__' in sub_cls.__dict__: iter_fn = sub_cls.__dict__['__iter__'] hints = get_type_hints(iter_fn) if 'return' in hints: return_hint = hints['return'] # Plain Return Hint for Python 3.6 if return_hint == Iterator: return if not (hasattr(return_hint, '__origin__') and (return_hint.__origin__ == Iterator or return_hint.__origin__ == collections.abc.Iterator)): raise TypeError("Expected 'Iterator' as the return annotation for `__iter__` of {}" ", but found {}".format(sub_cls.__name__, _type_repr(hints['return']))) data_type = return_hint.__args__[0] if not issubtype(data_type, sub_cls.type.param): raise TypeError("Expected return type of '__iter__' as a subtype of {}, but found {}" " for {}".format(sub_cls.type, _type_repr(data_type), sub_cls.__name__)) def reinforce_type(self, expected_type): r""" Reinforce the type for DataPipe instance. And the 'expected_type' is required to be a subtype of the original type hint to restrict the type requirement of DataPipe instance. """ if isinstance(expected_type, tuple): expected_type = Tuple[expected_type] _type_check(expected_type, msg="'expected_type' must be a type") if not issubtype(expected_type, self.type.param): raise TypeError("Expected 'expected_type' as subtype of {}, but found {}" .format(self.type, _type_repr(expected_type))) self.type = _DataPipeType(expected_type) return self
pytorch-master
torch/utils/data/datapipes/_typing.py
import inspect import functools from enum import Enum import torch.autograd class _SnapshotState(Enum): r""" These are the snapshotting-related states that IterDataPipes can be in. `NotStarted` - allows you to restore a snapshot and create an iterator without reset `Restored` - cannot restore again, allows you to create an iterator without resetting the DataPipe `Iterating` - can restore, will reset if you create a new iterator """ NotStarted = 0 Restored = 1 Iterating = 2 def _simplify_obj_name(obj) -> str: """ Simplify the display strings of objects for the purpose of rendering within DataPipe error messages. """ if inspect.isfunction(obj): return obj.__name__ else: return repr(obj) def _generate_input_args_string(obj): """ Generate a string for the input arguments of an object. """ signature = inspect.signature(obj.__class__) input_param_names = set() for param_name, _ in signature.parameters.items(): input_param_names.add(param_name) result = [] for name, obj in inspect.getmembers(obj): if name in input_param_names: result.append((name, _simplify_obj_name(obj))) return ', '.join([f'{name}={value}' for name, value in result]) def _generate_iterdatapipe_msg(datapipe): return f"{datapipe.__class__.__name__}({_generate_input_args_string(datapipe)})" def _gen_invalid_iterdatapipe_msg(datapipe): return ("This iterator has been invalidated because another iterator has been created " f"from the same IterDataPipe: {_generate_iterdatapipe_msg(datapipe)}\n" "This may be caused multiple references to the same IterDataPipe. We recommend " "using `.fork()` if that is necessary.") _feedback_msg = ("\nFor feedback regarding this single iterator per IterDataPipe constraint, feel free " "to comment on this issue: https://github.com/pytorch/data/issues/45.") def _check_iterator_valid(datapipe, iterator_id, next_method_exists=False) -> None: r""" Given an instance of a DataPipe and an iterator ID, check if the IDs match, and if not, raises an exception. In the case of ChildDataPipe, the ID gets compared to the one stored in `main_datapipe` as well. """ if next_method_exists: # This is the case where `IterDataPipe` has both `__iter__` and `__next__`. # The `_valid_iterator_id` should either be never set (`None`), or set by at most one # iterator (`0`). Otherwise, it means there are multiple iterators. if datapipe._valid_iterator_id is not None and datapipe._valid_iterator_id != 0: extra_msg = "\nNote that this exception is raised inside your IterDataPipe's a `__next__` method" raise RuntimeError(_gen_invalid_iterdatapipe_msg(datapipe) + extra_msg + _feedback_msg) elif hasattr(datapipe, "_is_child_datapipe") and datapipe._is_child_datapipe is True: if hasattr(datapipe, "_check_valid_iterator_id"): if not datapipe._check_valid_iterator_id(iterator_id): raise RuntimeError("This iterator has been invalidated, because a new iterator has been created " f"from one of the ChildDataPipes of " f"{_generate_iterdatapipe_msg(datapipe.main_datapipe)}." + _feedback_msg) else: raise RuntimeError("ChildDataPipe must have method `_check_valid_iterator_id`.") elif datapipe._valid_iterator_id != iterator_id: raise RuntimeError(_gen_invalid_iterdatapipe_msg(datapipe) + _feedback_msg) def _set_datapipe_valid_iterator_id(datapipe): r""" Given a DataPipe, updates its valid iterator ID and reset the DataPipe. """ if hasattr(datapipe, "_is_child_datapipe") and datapipe._is_child_datapipe is True: if hasattr(datapipe, "_set_main_datapipe_valid_iterator_id"): datapipe._set_main_datapipe_valid_iterator_id() # reset() is called within this method when appropriate else: raise RuntimeError("ChildDataPipe must have method `_set_main_datapipe_valid_iterator_id`.") else: if datapipe._valid_iterator_id is None: datapipe._valid_iterator_id = 0 else: datapipe._valid_iterator_id += 1 datapipe.reset() return datapipe._valid_iterator_id def hook_iterator(namespace, profile_name): r""" Hook that is applied to all `__iter__` of metaclass `_DataPipeMeta`. This is done for the purpose of profiling and checking if an iterator is still valid. """ def profiler_record_fn_context(): return torch.autograd.profiler.record_function(profile_name) class IteratorDecorator: r""" Wrap the iterator and modifying its `__next__` method. This decorator is applied to DataPipes of which `__iter__` method is NOT a generator function. Those `__iter__` method commonly returns `self` but not necessarily. """ def __init__(self, iterator, source_dp, iterator_id, has_next_method): self.iterator = iterator self.source_dp = source_dp self.iterator_id = iterator_id self._profiler_enabled = torch.autograd._profiler_enabled() # Check if `__iter__` returns `self` and `DataPipe` has `__next__` self.self_and_has_next_method = self.iterator is self.source_dp and has_next_method def __iter__(self): return self def _get_next(self): r""" Return next with logic related to iterator validity, profiler, and incrementation of samples yielded. """ _check_iterator_valid(self.source_dp, self.iterator_id) result = next(self.iterator) if not self.self_and_has_next_method: self.source_dp._number_of_samples_yielded += 1 return result def __next__(self): # TODO: Add try-except to in-place reduce traceback from the Exception # See: https://github.com/pytorch/data/issues/284 if self._profiler_enabled: with profiler_record_fn_context(): return self._get_next() else: # Decided against using `contextlib.nullcontext` for performance reasons return self._get_next() def __getattr__(self, name): return getattr(self.iterator, name) func = namespace['__iter__'] # ``__iter__`` of IterDataPipe is a generator function if inspect.isgeneratorfunction(func): @functools.wraps(func) def wrap_generator(*args, **kwargs): gen = func(*args, **kwargs) datapipe = args[0] if datapipe._fast_forward_iterator: it = datapipe._fast_forward_iterator datapipe._fast_forward_iterator = None datapipe._snapshot_state = _SnapshotState.Iterating while True: try: yield next(it) except StopIteration: return iterator_id = _set_datapipe_valid_iterator_id(datapipe) # This ID is tied to each created iterator _profiler_enabled = torch.autograd._profiler_enabled() try: if _profiler_enabled: with profiler_record_fn_context(): response = gen.send(None) else: response = gen.send(None) while True: datapipe._number_of_samples_yielded += 1 request = yield response # Pass through here every time `__next__` is called if _profiler_enabled: with profiler_record_fn_context(): _check_iterator_valid(datapipe, iterator_id) response = gen.send(request) else: # Decided against using `contextlib.nullcontext` for performance reasons _check_iterator_valid(datapipe, iterator_id) response = gen.send(request) except StopIteration as e: return except Exception as e: # TODO: Simplify the traceback message to skip over `response = gen.send(None)` # Part of https://github.com/pytorch/data/issues/284 datapipe = args[0] msg = "thrown by __iter__ of" single_iterator_msg = "single iterator per IterDataPipe constraint" if hasattr(e.args, '__len__'): full_msg = f"{msg} {datapipe.__class__.__name__}({_generate_input_args_string(datapipe)})" if len(e.args) == 0: # If an exception message doesn't exist e.args = (f'\nThis exception is {full_msg}',) elif msg not in e.args[0] and single_iterator_msg not in e.args[0]: e.args = (e.args[0] + f'\nThis exception is {full_msg}',) + e.args[1:] raise namespace['__iter__'] = wrap_generator else: # ``__iter__`` of IterDataPipe is NOT a generator function # IterDataPipe is an iterator with both ``__iter__`` and ``__next__`` # And ``__iter__`` may or may not return `self` if '__next__' in namespace: # If `__next__` exists, put a wrapper around it next_func = namespace['__next__'] @functools.wraps(next_func) def wrap_next(*args, **kwargs): if torch.autograd._profiler_enabled(): with profiler_record_fn_context(): result = next_func(*args, **kwargs) else: result = next_func(*args, **kwargs) datapipe = args[0] datapipe._number_of_samples_yielded += 1 return result namespace['__next__'] = wrap_next # Note that if the `__next__` and `__iter__` do something completely unrelated. It may cause issue but # the user will be violating the iterator protocol. Potential issue: # 1. Valid iterator ID may not update or checked properly # 2. The number of samples yielded will be miscounted # Regardless if `__next__` exists or not, `__iter__` needs a wrapper to track the number of valid iterators @functools.wraps(func) def wrap_iter(*args, **kwargs): iter_ret = func(*args, **kwargs) datapipe = args[0] datapipe._snapshot_state = _SnapshotState.Iterating if datapipe._fast_forward_iterator: iter_ret = datapipe._fast_forward_iterator datapipe._fast_forward_iterator = None return iter_ret iterator_id = _set_datapipe_valid_iterator_id(datapipe) # This ID is tied to each created iterator return IteratorDecorator(iter_ret, datapipe, iterator_id, '__next__' in namespace) namespace['__iter__'] = wrap_iter
pytorch-master
torch/utils/data/datapipes/_hook_iterator.py
import functools import pickle from typing import Dict, Callable, Optional, TypeVar, Generic, Iterator from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta from torch.utils.data.datapipes._hook_iterator import _SnapshotState from torch.utils.data.datapipes.utils.common import ( _deprecation_warning, _iter_deprecated_functional_names, _map_deprecated_functional_names, ) from torch.utils.data.dataset import Dataset, IterableDataset try: import dill # XXX: By default, dill writes the Pickler dispatch table to inject its # own logic there. This globally affects the behavior of the standard library # pickler for any user who transitively depends on this module! # Undo this extension to avoid altering the behavior of the pickler globally. dill.extend(use_dill=False) HAS_DILL = True except ImportError: HAS_DILL = False __all__ = [ "DataChunk", "DFIterDataPipe", "IterDataPipe", "MapDataPipe", ] T = TypeVar('T') T_co = TypeVar('T_co', covariant=True) UNTRACABLE_DATAFRAME_PIPES = ['batch', # As it returns DataChunks 'groupby', # As it returns DataChunks '_dataframes_as_tuples', # As it unpacks DF 'trace_as_dataframe', # As it used to mark DF for tracing ] class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta): r""" Iterable-style DataPipe. All DataPipes that represent an iterable of data samples should subclass this. This style of DataPipes is particularly useful when data come from a stream, or when the number of samples is too large to fit them all in memory. ``IterDataPipe`` is lazily initialized and its elements are computed only when ``next()`` is called on the iterator of an ``IterDataPipe``. All subclasses should overwrite :meth:`__iter__`, which would return an iterator of samples in this DataPipe. Calling ``__iter__`` of an ``IterDataPipe`` automatically invokes its method ``reset()``, which by default performs no operation. When writing a custom ``IterDataPipe``, users should override ``reset()`` if necessary. The common usages include resetting buffers, pointers, and various state variables within the custom ``IterDataPipe``. Note: Only `one` iterator can be valid for each ``IterDataPipe`` at a time, and the creation a second iterator will invalidate the first one. This constraint is necessary because some ``IterDataPipe`` have internal buffers, whose states can become invalid if there are multiple iterators. The code example below presents details on how this constraint looks in practice. If you have any feedback related to this constraint, please see `GitHub IterDataPipe Single Iterator Issue`_. These DataPipes can be invoked in two ways, using the class constructor or applying their functional form onto an existing ``IterDataPipe`` (recommended, available to most but not all DataPipes). You can chain multiple `IterDataPipe` together to form a pipeline that will perform multiple operations in succession. .. _GitHub IterDataPipe Single Iterator Issue: https://github.com/pytorch/data/issues/45 Note: When a subclass is used with :class:`~torch.utils.data.DataLoader`, each item in the DataPipe will be yielded from the :class:`~torch.utils.data.DataLoader` iterator. When :attr:`num_workers > 0`, each worker process will have a different copy of the DataPipe object, so it is often desired to configure each copy independently to avoid having duplicate data returned from the workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker process, returns information about the worker. It can be used in either the dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's :attr:`worker_init_fn` option to modify each copy's behavior. Examples: General Usage: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper, Mapper >>> dp = IterableWrapper(range(10)) >>> map_dp_1 = Mapper(dp, lambda x: x + 1) # Using class constructor >>> map_dp_2 = dp.map(lambda x: x + 1) # Using functional form (recommended) >>> list(map_dp_1) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> list(map_dp_2) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> filter_dp = map_dp_1.filter(lambda x: x % 2 == 0) >>> list(filter_dp) [2, 4, 6, 8, 10] Single Iterator Constraint Example: >>> from torchdata.datapipes.iter import IterableWrapper, Mapper >>> dp = IterableWrapper(range(10)) >>> it1 = iter(source_dp) >>> list(it1) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> it1 = iter(source_dp) >>> it2 = iter(source_dp) # The creation of a new iterator invalidates `it1` >>> next(it2) 0 >>> next(it1) # Further usage of `it1` will raise a `RunTimeError` """ functions: Dict[str, Callable] = {} reduce_ex_hook: Optional[Callable] = None getstate_hook: Optional[Callable] = None str_hook: Optional[Callable] = None repr_hook: Optional[Callable] = None _valid_iterator_id: Optional[int] = None _number_of_samples_yielded: int = 0 _snapshot_state: _SnapshotState = _SnapshotState.NotStarted _fast_forward_iterator: Optional[Iterator] = None def __getattr__(self, attribute_name): if attribute_name in IterDataPipe.functions: if attribute_name in _iter_deprecated_functional_names: kwargs = _iter_deprecated_functional_names[attribute_name] _deprecation_warning(**kwargs) function = functools.partial(IterDataPipe.functions[attribute_name], self) return function else: raise AttributeError("'{0}' object has no attribute '{1}".format(self.__class__.__name__, attribute_name)) @classmethod def register_function(cls, function_name, function): cls.functions[function_name] = function @classmethod def register_datapipe_as_function(cls, function_name, cls_to_register, enable_df_api_tracing=False): if function_name in cls.functions: raise Exception("Unable to add DataPipe function name {} as it is already taken".format(function_name)) def class_function(cls, enable_df_api_tracing, source_dp, *args, **kwargs): result_pipe = cls(source_dp, *args, **kwargs) if isinstance(result_pipe, IterDataPipe): if enable_df_api_tracing or isinstance(source_dp, DFIterDataPipe): if function_name not in UNTRACABLE_DATAFRAME_PIPES: result_pipe = result_pipe.trace_as_dataframe() return result_pipe function = functools.partial(class_function, cls_to_register, enable_df_api_tracing) cls.functions[function_name] = function def __getstate__(self): """ This contains special logic to serialize `lambda` functions when `dill` is available. If this doesn't cover your custom DataPipe's use case, consider writing custom methods for `__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization. """ if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(self) return self.__dict__ def __reduce_ex__(self, *args, **kwargs): if IterDataPipe.reduce_ex_hook is not None: try: return IterDataPipe.reduce_ex_hook(self) except NotImplementedError: pass return super().__reduce_ex__(*args, **kwargs) @classmethod def set_getstate_hook(cls, hook_fn): if IterDataPipe.getstate_hook is not None and hook_fn is not None: raise Exception("Attempt to override existing getstate_hook") IterDataPipe.getstate_hook = hook_fn @classmethod def set_reduce_ex_hook(cls, hook_fn): if IterDataPipe.reduce_ex_hook is not None and hook_fn is not None: raise Exception("Attempt to override existing reduce_ex_hook") IterDataPipe.reduce_ex_hook = hook_fn def __repr__(self): if self.repr_hook is not None: return self.repr_hook(self) # Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name return str(self.__class__.__qualname__) def __str__(self): if self.str_hook is not None: return self.str_hook(self) # Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name return str(self.__class__.__qualname__) def reset(self) -> None: r""" Reset the `IterDataPipe` to the initial state. By default, no-op. For subclasses of `IterDataPipe`, depending on their functionalities, they may want to override this method with implementations that may clear the buffers and reset pointers of the DataPipe. The `reset` method is always called when `__iter__` is called as part of `hook_iterator`. """ pass class DFIterDataPipe(IterDataPipe): def _is_dfpipe(self): return True class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta): r""" Map-style DataPipe. All datasets that represent a map from keys to data samples should subclass this. Subclasses should overwrite :meth:`__getitem__`, supporting fetching a data sample for a given, unique key. Subclasses can also optionally overwrite :meth:`__len__`, which is expected to return the size of the dataset by many :class:`~torch.utils.data.Sampler` implementations and the default options of :class:`~torch.utils.data.DataLoader`. These DataPipes can be invoked in two ways, using the class constructor or applying their functional form onto an existing `MapDataPipe` (recommend, available to most but not all DataPipes). Note: :class:`~torch.utils.data.DataLoader` by default constructs an index sampler that yields integral indices. To make it work with a map-style DataPipe with non-integral indices/keys, a custom sampler must be provided. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper, Mapper >>> dp = SequenceWrapper(range(10)) >>> map_dp_1 = dp.map(lambda x: x + 1) # Using functional form (recommended) >>> list(map_dp_1) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> map_dp_2 = Mapper(dp, lambda x: x + 1) # Using class constructor >>> list(map_dp_2) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> batch_dp = map_dp_1.batch(batch_size=2) >>> list(batch_dp) [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]] """ functions: Dict[str, Callable] = {} reduce_ex_hook: Optional[Callable] = None getstate_hook: Optional[Callable] = None str_hook: Optional[Callable] = None repr_hook: Optional[Callable] = None def __getattr__(self, attribute_name): if attribute_name in MapDataPipe.functions: if attribute_name in _map_deprecated_functional_names: kwargs = _map_deprecated_functional_names[attribute_name] _deprecation_warning(**kwargs) function = functools.partial(MapDataPipe.functions[attribute_name], self) return function else: raise AttributeError("'{0}' object has no attribute '{1}".format(self.__class__.__name__, attribute_name)) @classmethod def register_function(cls, function_name, function): cls.functions[function_name] = function @classmethod def register_datapipe_as_function(cls, function_name, cls_to_register): if function_name in cls.functions: raise Exception("Unable to add DataPipe function name {} as it is already taken".format(function_name)) def class_function(cls, source_dp, *args, **kwargs): result_pipe = cls(source_dp, *args, **kwargs) return result_pipe function = functools.partial(class_function, cls_to_register) cls.functions[function_name] = function def __getstate__(self): """ This contains special logic to serialize `lambda` functions when `dill` is available. If this doesn't cover your custom DataPipe's use case, consider writing custom methods for `__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization. """ if MapDataPipe.getstate_hook is not None: return MapDataPipe.getstate_hook(self) return self.__dict__ def __reduce_ex__(self, *args, **kwargs): if MapDataPipe.reduce_ex_hook is not None: try: return MapDataPipe.reduce_ex_hook(self) except NotImplementedError: pass return super().__reduce_ex__(*args, **kwargs) @classmethod def set_getstate_hook(cls, hook_fn): if MapDataPipe.getstate_hook is not None and hook_fn is not None: raise Exception("Attempt to override existing getstate_hook") MapDataPipe.getstate_hook = hook_fn @classmethod def set_reduce_ex_hook(cls, hook_fn): if MapDataPipe.reduce_ex_hook is not None and hook_fn is not None: raise Exception("Attempt to override existing reduce_ex_hook") MapDataPipe.reduce_ex_hook = hook_fn def __repr__(self): if self.repr_hook is not None: return self.repr_hook(self) # Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name return str(self.__class__.__qualname__) def __str__(self): if self.str_hook is not None: return self.str_hook(self) # Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name return str(self.__class__.__qualname__) class _DataPipeSerializationWrapper: def __init__(self, datapipe): self._datapipe = datapipe def __getstate__(self): use_dill = False try: value = pickle.dumps(self._datapipe) except Exception: if HAS_DILL: value = dill.dumps(self._datapipe) use_dill = True else: raise return (value, use_dill) def __setstate__(self, state): value, use_dill = state if use_dill: self._datapipe = dill.loads(value) else: self._datapipe = pickle.loads(value) def __len__(self): try: return len(self._datapipe) except Exception: raise TypeError( "{} instance doesn't have valid length".format(type(self).__name__) ) class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe): def __iter__(self): yield from self._datapipe class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe): def __getitem__(self, idx): return self._datapipe[idx] class DataChunk(list, Generic[T]): def __init__(self, items): super().__init__(items) self.items = items def as_str(self, indent=''): res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]" return res def __iter__(self) -> Iterator[T]: for i in super().__iter__(): yield i def raw_iterator(self) -> T: # type: ignore[misc] for i in self.items: yield i
pytorch-master
torch/utils/data/datapipes/datapipe.py
from . import iter from . import map from . import dataframe
pytorch-master
torch/utils/data/datapipes/__init__.py
import os import pathlib from typing import Any, Dict, List, Set, Tuple, Union def materialize_lines(lines: List[str], indentation: int) -> str: output = "" new_line_with_indent = "\n" + " " * indentation for i, line in enumerate(lines): if i != 0: output += new_line_with_indent output += line.replace('\n', new_line_with_indent) return output def gen_from_template(dir: str, template_name: str, output_name: str, replacements: List[Tuple[str, Any, int]]): template_path = os.path.join(dir, template_name) output_path = os.path.join(dir, output_name) with open(template_path, "r") as f: content = f.read() for placeholder, lines, indentation in replacements: with open(output_path, "w") as f: content = content.replace(placeholder, materialize_lines(lines, indentation)) f.write(content) def find_file_paths(dir_paths: List[str], files_to_exclude: Set[str]) -> Set[str]: """ When given a path to a directory, returns the paths to the relevant files within it. This function does NOT recursive traverse to subdirectories. """ paths: Set[str] = set() for dir_path in dir_paths: all_files = os.listdir(dir_path) python_files = {fname for fname in all_files if ".py" == fname[-3:]} filter_files = {fname for fname in python_files if fname not in files_to_exclude} paths.update({os.path.join(dir_path, fname) for fname in filter_files}) return paths def extract_method_name(line: str) -> str: """ Extracts method name from decorator in the form of "@functional_datapipe({method_name})" """ if "(\"" in line: start_token, end_token = "(\"", "\")" elif "(\'" in line: start_token, end_token = "(\'", "\')" else: raise RuntimeError(f"Unable to find appropriate method name within line:\n{line}") start, end = line.find(start_token) + len(start_token), line.find(end_token) return line[start:end] def extract_class_name(line: str) -> str: """ Extracts class name from class definition in the form of "class {CLASS_NAME}({Type}):" """ start_token = "class " end_token = "(" start, end = line.find(start_token) + len(start_token), line.find(end_token) return line[start:end] def parse_datapipe_file(file_path: str) -> Tuple[Dict[str, str], Dict[str, str], Set[str]]: """ Given a path to file, parses the file and returns a dictionary of method names to function signatures. """ method_to_signature, method_to_class_name, special_output_type = {}, {}, set() with open(file_path) as f: open_paren_count = 0 method_name, class_name, signature = "", "", "" skip = False for line in f.readlines(): if line.count("\"\"\"") % 2 == 1: skip = not skip if skip or "\"\"\"" in line: # Skipping comment/example blocks continue if "@functional_datapipe" in line: method_name = extract_method_name(line) continue if method_name and "class " in line: class_name = extract_class_name(line) continue if method_name and ("def __init__(" in line or "def __new__(" in line): if "def __new__(" in line: special_output_type.add(method_name) open_paren_count += 1 start = line.find("(") + len("(") line = line[start:] if open_paren_count > 0: open_paren_count += line.count('(') open_paren_count -= line.count(')') if open_paren_count == 0: end = line.rfind(')') signature += line[:end] method_to_signature[method_name] = process_signature(signature) method_to_class_name[method_name] = class_name method_name, class_name, signature = "", "", "" elif open_paren_count < 0: raise RuntimeError("open parenthesis count < 0. This shouldn't be possible.") else: signature += line.strip('\n').strip(' ') return method_to_signature, method_to_class_name, special_output_type def parse_datapipe_files(file_paths: Set[str]) -> Tuple[Dict[str, str], Dict[str, str], Set[str]]: methods_and_signatures, methods_and_class_names, methods_with_special_output_types = {}, {}, set() for path in file_paths: method_to_signature, method_to_class_name, methods_needing_special_output_types = parse_datapipe_file(path) methods_and_signatures.update(method_to_signature) methods_and_class_names.update(method_to_class_name) methods_with_special_output_types.update(methods_needing_special_output_types) return methods_and_signatures, methods_and_class_names, methods_with_special_output_types def split_outside_bracket(line: str, delimiter: str = ",") -> List[str]: """ Given a line of text, split it on comma unless the comma is within a bracket '[]'. """ bracket_count = 0 curr_token = "" res = [] for char in line: if char == "[": bracket_count += 1 elif char == "]": bracket_count -= 1 elif char == delimiter and bracket_count == 0: res.append(curr_token) curr_token = "" continue curr_token += char res.append(curr_token) return res def process_signature(line: str) -> str: """ Given a raw function signature, clean it up by removing the self-referential datapipe argument, default arguments of input functions, newlines, and spaces. """ tokens: List[str] = split_outside_bracket(line) for i, token in enumerate(tokens): tokens[i] = token.strip(' ') if token == "cls": tokens[i] = "self" elif i > 0 and ("self" == tokens[i - 1]) and (tokens[i][0] != "*"): # Remove the datapipe after 'self' or 'cls' unless it has '*' tokens[i] = "" elif "Callable =" in token: # Remove default argument if it is a function head, default_arg = token.rsplit("=", 2) tokens[i] = head.strip(' ') + "= ..." tokens = [t for t in tokens if t != ""] line = ', '.join(tokens) return line def get_method_definitions(file_path: Union[str, List[str]], files_to_exclude: Set[str], deprecated_files: Set[str], default_output_type: str, method_to_special_output_type: Dict[str, str], root: str = "") -> List[str]: """ .pyi generation for functional DataPipes Process # 1. Find files that we want to process (exclude the ones who don't) # 2. Parse method name and signature # 3. Remove first argument after self (unless it is "*datapipes"), default args, and spaces """ if root == "": root = str(pathlib.Path(__file__).parent.resolve()) file_path = [file_path] if isinstance(file_path, str) else file_path file_path = [os.path.join(root, path) for path in file_path] file_paths = find_file_paths(file_path, files_to_exclude=files_to_exclude.union(deprecated_files)) methods_and_signatures, methods_and_class_names, methods_w_special_output_types = \ parse_datapipe_files(file_paths) method_definitions = [] for method_name, arguments in methods_and_signatures.items(): class_name = methods_and_class_names[method_name] if method_name in methods_w_special_output_types: output_type = method_to_special_output_type[method_name] else: output_type = default_output_type method_definitions.append(f"# Functional form of '{class_name}'\n" f"def {method_name}({arguments}) -> {output_type}: ...") method_definitions.sort(key=lambda s: s.split('\n')[1]) # sorting based on method_name return method_definitions # Defined outside of main() so they can be imported by TorchData iterDP_file_path: str = "iter" iterDP_files_to_exclude: Set[str] = {"__init__.py", "utils.py"} iterDP_deprecated_files: Set[str] = set() iterDP_method_to_special_output_type: Dict[str, str] = {"demux": "List[IterDataPipe]", "fork": "List[IterDataPipe]"} mapDP_file_path: str = "map" mapDP_files_to_exclude: Set[str] = {"__init__.py", "utils.py"} mapDP_deprecated_files: Set[str] = set() mapDP_method_to_special_output_type: Dict[str, str] = {} def main() -> None: """ # Inject file into template datapipe.pyi.in TODO: The current implementation of this script only generates interfaces for built-in methods. To generate interface for user-defined DataPipes, consider changing `IterDataPipe.register_datapipe_as_function`. """ iter_method_definitions = get_method_definitions(iterDP_file_path, iterDP_files_to_exclude, iterDP_deprecated_files, "IterDataPipe", iterDP_method_to_special_output_type) map_method_definitions = get_method_definitions(mapDP_file_path, mapDP_files_to_exclude, mapDP_deprecated_files, "MapDataPipe", mapDP_method_to_special_output_type) path = pathlib.Path(__file__).parent.resolve() replacements = [('${IterDataPipeMethods}', iter_method_definitions, 4), ('${MapDataPipeMethods}', map_method_definitions, 4)] gen_from_template(dir=str(path), template_name="datapipe.pyi.in", output_name="datapipe.pyi", replacements=replacements) if __name__ == '__main__': print("Generating Python interface file 'datapipe.pyi'...") main()
pytorch-master
torch/utils/data/datapipes/gen_pyi.py
from torch.utils.data.datapipes.dataframe.dataframes import ( CaptureDataFrame, DFIterDataPipe, ) from torch.utils.data.datapipes.dataframe.datapipes import ( DataFramesAsTuplesPipe, ) __all__ = ['CaptureDataFrame', 'DFIterDataPipe', 'DataFramesAsTuplesPipe'] # Please keep this list sorted assert __all__ == sorted(__all__)
pytorch-master
torch/utils/data/datapipes/dataframe/__init__.py
import random from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import DFIterDataPipe, IterDataPipe from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper __all__ = [ "ConcatDataFramesPipe", "DataFramesAsTuplesPipe", "ExampleAggregateAsDataFrames", "FilterDataFramesPipe", "PerRowDataFramesPipe", "ShuffleDataFramesPipe", ] @functional_datapipe('_dataframes_as_tuples') class DataFramesAsTuplesPipe(IterDataPipe): def __init__(self, source_datapipe): self.source_datapipe = source_datapipe def __iter__(self): for df in self.source_datapipe: # for record in df.to_records(index=False): for record in df_wrapper.iterate(df): yield record @functional_datapipe('_dataframes_per_row', enable_df_api_tracing=True) class PerRowDataFramesPipe(DFIterDataPipe): def __init__(self, source_datapipe): self.source_datapipe = source_datapipe def __iter__(self): for df in self.source_datapipe: # TODO(VitalyFedyunin): Replacing with TorchArrow only API, as we are dropping pandas as followup for i in range(len(df)): yield df[i:i + 1] @functional_datapipe('_dataframes_concat', enable_df_api_tracing=True) class ConcatDataFramesPipe(DFIterDataPipe): def __init__(self, source_datapipe, batch=3): self.source_datapipe = source_datapipe self.n_batch = batch def __iter__(self): buffer = [] for df in self.source_datapipe: buffer.append(df) if len(buffer) == self.n_batch: yield df_wrapper.concat(buffer) buffer = [] if len(buffer): yield df_wrapper.concat(buffer) @functional_datapipe('_dataframes_shuffle', enable_df_api_tracing=True) class ShuffleDataFramesPipe(DFIterDataPipe): def __init__(self, source_datapipe): self.source_datapipe = source_datapipe def __iter__(self): size = None all_buffer = [] for df in self.source_datapipe: if size is None: size = df_wrapper.get_len(df) for i in range(df_wrapper.get_len(df)): all_buffer.append(df_wrapper.get_item(df, i)) random.shuffle(all_buffer) buffer = [] for df in all_buffer: buffer.append(df) if len(buffer) == size: yield df_wrapper.concat(buffer) buffer = [] if len(buffer): yield df_wrapper.concat(buffer) @functional_datapipe('_dataframes_filter', enable_df_api_tracing=True) class FilterDataFramesPipe(DFIterDataPipe): def __init__(self, source_datapipe, filter_fn): self.source_datapipe = source_datapipe self.filter_fn = filter_fn def __iter__(self): size = None all_buffer = [] filter_res = [] for df in self.source_datapipe: if size is None: size = len(df.index) for i in range(len(df.index)): all_buffer.append(df[i:i + 1]) filter_res.append(self.filter_fn(df.iloc[i])) buffer = [] for df, res in zip(all_buffer, filter_res): if res: buffer.append(df) if len(buffer) == size: yield df_wrapper.concat(buffer) buffer = [] if len(buffer): yield df_wrapper.concat(buffer) @functional_datapipe('_to_dataframes_pipe', enable_df_api_tracing=True) class ExampleAggregateAsDataFrames(DFIterDataPipe): def __init__(self, source_datapipe, dataframe_size=10, columns=None): self.source_datapipe = source_datapipe self.columns = columns self.dataframe_size = dataframe_size def _as_list(self, item): try: return list(item) except Exception: # TODO(VitalyFedyunin): Replace with better iterable exception return [item] def __iter__(self): aggregate = [] for item in self.source_datapipe: aggregate.append(self._as_list(item)) if len(aggregate) == self.dataframe_size: yield df_wrapper.create_dataframe(aggregate, columns=self.columns) aggregate = [] if len(aggregate) > 0: yield df_wrapper.create_dataframe(aggregate, columns=self.columns)
pytorch-master
torch/utils/data/datapipes/dataframe/datapipes.py
_pandas = None _WITH_PANDAS = None def _try_import_pandas() -> bool: try: import pandas # type: ignore[import] global _pandas _pandas = pandas return True except ImportError: return False # pandas used only for prototyping, will be shortly replaced with TorchArrow def _with_pandas() -> bool: global _WITH_PANDAS if _WITH_PANDAS is None: _WITH_PANDAS = _try_import_pandas() return _WITH_PANDAS class PandasWrapper: @classmethod def create_dataframe(cls, data, columns): if not _with_pandas(): raise Exception("DataFrames prototype requires pandas to function") return _pandas.DataFrame(data, columns=columns) # type: ignore[union-attr] @classmethod def is_dataframe(cls, data): if not _with_pandas(): return False return isinstance(data, _pandas.core.frame.DataFrame) # type: ignore[union-attr] @classmethod def is_column(cls, data): if not _with_pandas(): return False return isinstance(data, _pandas.core.series.Series) # type: ignore[union-attr] @classmethod def iterate(cls, data): if not _with_pandas(): raise Exception("DataFrames prototype requires pandas to function") for d in data.itertuples(index=False): yield d @classmethod def concat(cls, buffer): if not _with_pandas(): raise Exception("DataFrames prototype requires pandas to function") return _pandas.concat(buffer) # type: ignore[union-attr] @classmethod def get_item(cls, data, idx): if not _with_pandas(): raise Exception("DataFrames prototype requires pandas to function") return data[idx: idx + 1] @classmethod def get_len(cls, df): if not _with_pandas(): raise Exception("DataFrames prototype requires pandas to function") return len(df.index) @classmethod def get_columns(cls, df): if not _with_pandas(): raise Exception("DataFrames prototype requires pandas to function") return list(df.columns.values.tolist()) # When you build own implementation just override it with dataframe_wrapper.set_df_wrapper(new_wrapper_class) default_wrapper = PandasWrapper def get_df_wrapper(): return default_wrapper def set_df_wrapper(wrapper): global default_wrapper default_wrapper = wrapper def create_dataframe(data, columns=None): wrapper = get_df_wrapper() return wrapper.create_dataframe(data, columns) def is_dataframe(data): wrapper = get_df_wrapper() return wrapper.is_dataframe(data) def get_columns(data): wrapper = get_df_wrapper() return wrapper.get_columns(data) def is_column(data): wrapper = get_df_wrapper() return wrapper.is_column(data) def concat(buffer): wrapper = get_df_wrapper() return wrapper.concat(buffer) def iterate(data): wrapper = get_df_wrapper() return wrapper.iterate(data) def get_item(data, idx): wrapper = get_df_wrapper() return wrapper.get_item(data, idx) def get_len(df): wrapper = get_df_wrapper() return wrapper.get_len(df)
pytorch-master
torch/utils/data/datapipes/dataframe/dataframe_wrapper.py
from torch.utils.data.datapipes.datapipe import DataChunk from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper __all__ = ["DataChunkDF", ] class DataChunkDF(DataChunk): """ DataChunkDF iterating over individual items inside of DataFrame containers, to access DataFrames user `raw_iterator` """ def __iter__(self): for df in self.items: for record in df_wrapper.iterate(df): yield record def __len__(self): total_len = 0 for df in self.items: total_len += df_wrapper.get_len(df) return total_len
pytorch-master
torch/utils/data/datapipes/dataframe/structures.py
from typing import Any, Dict, List from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import DFIterDataPipe, IterDataPipe from torch.utils.data.datapipes.dataframe.structures import DataChunkDF # TODO(VitalyFedyunin): Add error when two different traces get combined __all__ = [ "Capture", "CaptureA", "CaptureAdd", "CaptureCall", "CaptureControl", "CaptureDataFrame", "CaptureDataFrameWithDataPipeOps", "CaptureF", "CaptureGetAttr", "CaptureGetItem", "CaptureInitial", "CaptureLikeMock", "CaptureMul", "CaptureSetItem", "CaptureSub", "CaptureVariable", "CaptureVariableAssign", "DataFrameTracer", "DataFrameTracedOps", "disable_capture", "get_val", ] def disable_capture(): CaptureControl.disabled = True class CaptureControl(): disabled = False class DataFrameTracedOps(DFIterDataPipe): def __init__(self, source_datapipe, output_var): self.source_datapipe = source_datapipe self.output_var = output_var def __iter__(self): for item in self.source_datapipe: yield self.output_var.apply_ops(item) # TODO(VitalyFedyunin): Extract this list from the DFIterDataPipe registred functions DATAPIPES_OPS = ['_dataframes_as_tuples', 'groupby', '_dataframes_filter', 'map', 'to_datapipe', 'shuffle', 'concat', 'batch', '_dataframes_per_row', '_dataframes_concat', '_dataframes_shuffle'] UNIMPLEMENTED_ATTR = ['__deepcopy__', '__setstate__', 'is_shardable', 'apply_sharding'] class Capture(object): # TODO: All operations are shared across entire InitialCapture, need to figure out what if we join two captures def __init__(self, schema_df=None): self.ctx = {'operations': [], 'variables': [], 'schema_df': schema_df} def __str__(self): return self._ops_str() def _ops_str(self): res = "" for op in self.ctx['operations']: if len(res) > 0: res += "\n" res += str(op) return res def __getstate__(self): # TODO(VitalyFedyunin): Currently can't pickle (why?) self.ctx['schema_df'] = None for var in self.ctx['variables']: var.calculated_value = None state = {} for item in self.__dict__: state[item] = getattr(self, item) return state def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __getattr__(self, attrname): if attrname == 'kwarg' or attrname == 'kwargs': raise Exception('no kwargs!') if attrname in ['__deepcopy__']: raise AttributeError() result = CaptureGetAttr(self, attrname, ctx=self.ctx) return result def __getitem__(self, key): return CaptureGetItem(self, key, ctx=self.ctx) def __setitem__(self, key, value): self.ctx['operations'].append( CaptureSetItem(self, key, value, ctx=self.ctx)) def __add__(self, add_val): res = CaptureAdd(self, add_val, ctx=self.ctx) var = CaptureVariable(res, ctx=self.ctx) self.ctx['operations'].append( CaptureVariableAssign(variable=var, value=res, ctx=self.ctx)) return var def __sub__(self, add_val): res = CaptureSub(self, add_val, ctx=self.ctx) var = CaptureVariable(res, ctx=self.ctx) self.ctx['operations'].append( CaptureVariableAssign(variable=var, value=res, ctx=self.ctx)) return var def __mul__(self, add_val): res = CaptureMul(self, add_val, ctx=self.ctx) var = CaptureVariable(res, ctx=self.ctx) t = CaptureVariableAssign(variable=var, value=res, ctx=self.ctx) self.ctx['operations'].append(t) return var def _is_context_empty(self): return len(self.ctx['operations']) == 0 and len(self.ctx['variables']) == 0 def apply_ops_2(self, dataframe): # TODO(VitalyFedyunin): Make this calculation thread safe (as currently it updates pointer) self.ctx['variables'][0].calculated_value = dataframe for op in self.ctx['operations']: op.execute() @property def columns(self): self.apply_ops_2(self.ctx['schema_df']) value = self.execute() return value.columns # TODO(VitalyFedyunin): Add tests # TODO(VitalyFedyunin): Need to join context if one of them are empty because we used capture def __call__(self, *args, **kwargs): # TODO: Check if args or kwargs have more than one different context if self._is_context_empty(): # TODO: Allow CaptureA to take context from mock for arg in args: if isinstance(arg, Capture) and not arg._is_context_empty(): self.ctx = arg.ctx break if self._is_context_empty(): for k, v in kwargs.items(): if isinstance(k, Capture) and not k._is_context_empty(): self.ctx = k.ctx break if isinstance(v, Capture) and not v._is_context_empty(): self.ctx = v.ctx break res = CaptureCall(self, ctx=self.ctx, args=args, kwargs=kwargs) var = CaptureVariable(None, ctx=self.ctx) t = CaptureVariableAssign(ctx=self.ctx, variable=var, value=res) self.ctx['operations'].append(t) return var class CaptureF(Capture): def __init__(self, ctx=None, **kwargs): if ctx is None: self.ctx = {'operations': [], 'variables': []} else: self.ctx = ctx self.kwargs = kwargs class CaptureA(CaptureF): def __str__(self): return '{name}'.format(name=self.kwargs['name']) def execute(self): value = self.kwargs['real_attribute'] return value class CaptureLikeMock(): def __init__(self, name): import unittest.mock as mock # TODO(VitalyFedyunin): Do not use provate function here, copy own implementation instead. get_target, attribute = mock._get_target(name) # type: ignore[attr-defined] self.get_target = get_target self.attribute = attribute self.name = name def __enter__(self): self.save = getattr(self.get_target(), self.attribute) capt = CaptureA(name=self.name, real_attribute=self.save) setattr(self.get_target(), self.attribute, capt) def __exit__(self, *exc_info): setattr(self.get_target(), self.attribute, self.save) class CaptureCall(Capture): def __init__(self, callable, ctx=None, **kwargs): if ctx is None: self.ctx = {'operations': [], 'variables': []} else: self.ctx = ctx self.kwargs = kwargs self.callable = callable def __str__(self): return "{callable}({args},{kwargs})".format(callable=self.callable, **self.kwargs) def execute(self): # TODO: VitalyFedyunin execute kwargs and maybe nestted structures executed_args = [] for arg in self.kwargs['args']: if isinstance(arg, Capture): executed_args.append(arg.execute()) else: executed_args.append(arg) left = get_val(self.callable) return left(*executed_args, **self.kwargs['kwargs']) class CaptureVariableAssign(CaptureF): def __str__(self): variable = self.kwargs['variable'] value = self.kwargs['value'] return "{variable} = {value}".format(variable=variable, value=value) def execute(self): self.kwargs['variable'].calculated_value = self.kwargs['value'].execute() class CaptureVariable(Capture): # TODO(VitalyFedyunin): This should be atomic and thread safe names_idx = 0 def __init__(self, value, ctx): if CaptureControl.disabled: raise Exception('Attempting to create capture variable with capture off') self.ctx = ctx self.value = value self.name = 'var_%s' % CaptureVariable.names_idx CaptureVariable.names_idx += 1 self.ctx['variables'].append(self) def __str__(self): return self.name def execute(self): return self.calculated_value def apply_ops(self, dataframe): # TODO(VitalyFedyunin): Make this calculation thread safe (as currently it updates pointer) self.ctx['variables'][0].calculated_value = dataframe for op in self.ctx['operations']: op.execute() return self.calculated_value class CaptureGetItem(Capture): def __init__(self, left, key, ctx): self.ctx = ctx self.left = left self.key = key def __str__(self): return "%s[%s]" % (self.left, get_val(self.key)) def execute(self): left = self.left.execute() return left[self.key] class CaptureSetItem(Capture): def __init__(self, left, key, value, ctx): self.ctx = ctx self.left = left self.key = key self.value = value def __str__(self): return "%s[%s] = %s" % (self.left, get_val(self.key), self.value) def execute(self): left = self.left.execute() value = self.value.execute() left[self.key] = value class CaptureAdd(Capture): def __init__(self, left, right, ctx): self.ctx = ctx self.left = left self.right = right def __str__(self): return "%s + %s" % (self.left, self.right) def execute(self): return get_val(self.left) + get_val(self.right) class CaptureMul(Capture): def __init__(self, left, right, ctx): self.ctx = ctx self.left = left self.right = right def __str__(self): return "%s * %s" % (self.left, self.right) def execute(self): return get_val(self.left) * get_val(self.right) class CaptureSub(Capture): def __init__(self, left, right, ctx): self.ctx = ctx self.left = left self.right = right def __str__(self): return "%s - %s" % (self.left, self.right) def execute(self): return get_val(self.left) - get_val(self.right) class CaptureGetAttr(Capture): def __init__(self, src, name, ctx): self.ctx = ctx self.src = src self.name = name def __str__(self): return "%s.%s" % (self.src, self.name) def execute(self): val = get_val(self.src) return getattr(val, self.name) def get_val(capture): if isinstance(capture, Capture): return capture.execute() elif isinstance(capture, str): return '"%s"' % capture else: return capture class CaptureInitial(CaptureVariable): def __init__(self, schema_df=None): new_ctx: Dict[str, List[Any]] = {'operations': [], 'variables': [], 'schema_df': schema_df} super().__init__(None, new_ctx) self.name = 'input_%s' % self.name class CaptureDataFrame(CaptureInitial): pass class CaptureDataFrameWithDataPipeOps(CaptureDataFrame): def as_datapipe(self): return DataFrameTracedOps( self.ctx['variables'][0].source_datapipe, self) def raw_iterator(self): return self.as_datapipe().__iter__() def __iter__(self): return iter(self._dataframes_as_tuples()) def batch(self, batch_size=10, drop_last: bool = False, wrapper_class=DataChunkDF): dp = self._dataframes_per_row()._dataframes_concat(batch_size) dp = dp.as_datapipe().batch(1, drop_last=drop_last, wrapper_class=wrapper_class) dp._dp_contains_dataframe = True return dp def groupby(self, group_key_fn, *, buffer_size=10000, group_size=None, guaranteed_group_size=None, drop_remaining=False): dp = self._dataframes_per_row() dp = dp.as_datapipe().groupby(group_key_fn, buffer_size=buffer_size, group_size=group_size, guaranteed_group_size=guaranteed_group_size, drop_remaining=drop_remaining) return dp def shuffle(self, *args, **kwargs): return self._dataframes_shuffle(*args, **kwargs) def filter(self, *args, **kwargs): return self._dataframes_filter(*args, **kwargs) def collate(self, *args, **kwargs): raise Exception("Can't collate unbatched DataFrames stream") def __getattr__(self, attrname): # ? if attrname in UNIMPLEMENTED_ATTR: raise AttributeError('Attemping to get ', attrname) if attrname in DATAPIPES_OPS: return (self.as_datapipe()).__getattr__(attrname) return super().__getattr__(attrname) @functional_datapipe('trace_as_dataframe') class DataFrameTracer(CaptureDataFrameWithDataPipeOps, IterDataPipe): source_datapipe = None # TODO(VitalyFedyunin): Must implement all special functions of datapipes def set_shuffle_settings(self, *args, **kwargs): pass def is_shardable(self): return False def __init__(self, source_datapipe, schema_df=None): self.source_datapipe = source_datapipe if schema_df is None: schema_df = next(iter(self.source_datapipe)) super().__init__(schema_df=schema_df)
pytorch-master
torch/utils/data/datapipes/dataframe/dataframes.py
from io import IOBase from typing import Iterable, Tuple, Optional from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe from torch.utils.data.datapipes.utils.common import get_file_binaries_from_pathnames, _deprecation_warning __all__ = [ "FileOpenerIterDataPipe", "FileLoaderIterDataPipe", ] @functional_datapipe("open_files") class FileOpenerIterDataPipe(IterDataPipe[Tuple[str, IOBase]]): r""" Given pathnames, opens files and yield pathname and file stream in a tuple (functional name: ``open_files``). Args: datapipe: Iterable datapipe that provides pathnames mode: An optional string that specifies the mode in which the file is opened by ``open()``. It defaults to ``r``, other options are ``b`` for reading in binary mode and ``t`` for text mode. encoding: An optional string that specifies the encoding of the underlying file. It defaults to ``None`` to match the default encoding of ``open``. length: Nominal length of the datapipe Note: The opened file handles will be closed by Python's GC periodically. Users can choose to close them explicitly. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import FileLister, FileOpener, StreamReader >>> dp = FileLister(root=".").filter(lambda fname: fname.endswith('.txt')) >>> dp = FileOpener(dp) >>> dp = StreamReader(dp) >>> list(dp) [('./abc.txt', 'abc')] """ def __init__( self, datapipe: Iterable[str], mode: str = 'r', encoding: Optional[str] = None, length: int = -1): super().__init__() self.datapipe: Iterable = datapipe self.mode: str = mode self.encoding: Optional[str] = encoding if self.mode not in ('b', 't', 'rb', 'rt', 'r'): raise ValueError("Invalid mode {}".format(mode)) # TODO: enforce typing for each instance based on mode, otherwise # `argument_validation` with this DataPipe may be potentially broken if 'b' in mode and encoding is not None: raise ValueError("binary mode doesn't take an encoding argument") self.length: int = length # Remove annotation due to 'IOBase' is a general type and true type # is determined at runtime based on mode. Some `DataPipe` requiring # a subtype would cause mypy error. def __iter__(self): yield from get_file_binaries_from_pathnames(self.datapipe, self.mode, self.encoding) def __len__(self): if self.length == -1: raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) return self.length class FileLoaderIterDataPipe(IterDataPipe[Tuple[str, IOBase]]): def __new__( cls, datapipe: Iterable[str], mode: str = 'b', length: int = -1): _deprecation_warning( cls.__name__, deprecation_version="1.12", removal_version="1.13", new_class_name="FileOpener", ) return FileOpenerIterDataPipe(datapipe=datapipe, mode=mode, length=length)
pytorch-master
torch/utils/data/datapipes/iter/fileopener.py
import functools from collections import namedtuple from typing import Callable, Iterator, Sized, TypeVar, Optional, Union, Any, Dict, List from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data._utils.collate import default_collate from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper from torch.utils.data.datapipes.datapipe import IterDataPipe from torch.utils.data.datapipes.utils.common import _check_unpickable_fn __all__ = [ "CollatorIterDataPipe", "MapperIterDataPipe", ] T_co = TypeVar("T_co", covariant=True) @functional_datapipe("map") class MapperIterDataPipe(IterDataPipe[T_co]): r""" Applies a function over each item from the source DataPipe (functional name: ``map``). The function can be any regular Python function or partial object. Lambda function is not recommended as it is not supported by pickle. Args: datapipe: Source Iterable DataPipe fn: Function being applied over each item input_col: Index or indices of data which ``fn`` is applied, such as: - ``None`` as default to apply ``fn`` to the data directly. - Integer(s) is used for list/tuple. - Key(s) is used for dict. output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified only when ``input_col`` is not ``None`` - ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with multiple indices, the left-most one is used, and other indices will be removed. - Integer is used for list/tuple. ``-1`` represents to append result at the end. - Key is used for dict. New key is acceptable. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper, Mapper >>> def add_one(x): ... return x + 1 >>> dp = IterableWrapper(range(10)) >>> map_dp_1 = dp.map(add_one) # Invocation via functional form is preferred >>> list(map_dp_1) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> # We discourage the usage of `lambda` functions as they are not serializable with `pickle` >>> # Use `functools.partial` or explicitly define the function instead >>> map_dp_2 = Mapper(dp, lambda x: x + 1) >>> list(map_dp_2) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] """ datapipe: IterDataPipe fn: Callable def __init__( self, datapipe: IterDataPipe, fn: Callable, input_col=None, output_col=None, ) -> None: super().__init__() self.datapipe = datapipe _check_unpickable_fn(fn) self.fn = fn # type: ignore[assignment] self.input_col = input_col if input_col is None and output_col is not None: raise ValueError("`output_col` must be None when `input_col` is None.") if isinstance(output_col, (list, tuple)): if len(output_col) > 1: raise ValueError("`output_col` must be a single-element list or tuple") output_col = output_col[0] self.output_col = output_col def _apply_fn(self, data): if self.input_col is None and self.output_col is None: return self.fn(data) if self.input_col is None: res = self.fn(data) elif isinstance(self.input_col, (list, tuple)): args = tuple(data[col] for col in self.input_col) res = self.fn(*args) else: res = self.fn(data[self.input_col]) # Copy tuple to list and run in-place modification because tuple is immutable. if isinstance(data, tuple): t_flag = True data = list(data) else: t_flag = False if self.output_col is None: if isinstance(self.input_col, (list, tuple)): data[self.input_col[0]] = res for idx in sorted(self.input_col[1:], reverse=True): del data[idx] else: data[self.input_col] = res else: if self.output_col == -1: data.append(res) else: data[self.output_col] = res # Convert list back to tuple return tuple(data) if t_flag else data def __iter__(self) -> Iterator[T_co]: for data in self.datapipe: yield self._apply_fn(data) def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError( "{} instance doesn't have valid length".format(type(self).__name__) ) def _collate_helper(conversion, item): # TODO(VitalyFedyunin): Verify that item is any sort of batch if len(item.items) > 1: # TODO(VitalyFedyunin): Compact all batch dataframes into one raise Exception("Only supports one DataFrame per batch") df = item[0] columns_name = df_wrapper.get_columns(df) tuple_names: List = [] tuple_values: List = [] for name in conversion.keys(): if name not in columns_name: raise Exception("Conversion keys missmatch") for name in columns_name: if name in conversion: if not callable(conversion[name]): raise Exception('Collate (DF)DataPipe requires callable as dict values') collation_fn = conversion[name] else: # TODO(VitalyFedyunin): Add default collation into df_wrapper try: import torcharrow.pytorch as tap # type: ignore[import] collation_fn = tap.rec.Default() except Exception: raise Exception("unable to import default collation function from the TorchArrrow") tuple_names.append(str(name)) value = collation_fn(df[name]) tuple_values.append(value) # TODO(VitalyFedyunin): We can dynamically extract types from the tuple_values here # TODO(VitalyFedyunin): Instead of ignoring mypy error, make sure tuple_names is not empty tpl_cls = namedtuple("CollateResult", tuple_names) # type: ignore[misc] tuple = tpl_cls(*tuple_values) return tuple @functional_datapipe("collate") class CollatorIterDataPipe(MapperIterDataPipe): r""" Collates samples from DataPipe to Tensor(s) by a custom collate function (functional name: ``collate``). By default, it uses :func:`torch.utils.data.default_collate`. .. note:: While writing a custom collate function, you can import :func:`torch.utils.data.default_collate` for the default behavior and `functools.partial` to specify any additional arguments. Args: datapipe: Iterable DataPipe being collated collate_fn: Customized collate function to collect and combine data or a batch of data. Default function collates to Tensor(s) based on data type. Example: Convert integer data to float Tensor >>> class MyIterDataPipe(torch.utils.data.IterDataPipe): ... def __init__(self, start, end): ... super(MyIterDataPipe).__init__() ... assert end > start, "this example code only works with end >= start" ... self.start = start ... self.end = end ... ... def __iter__(self): ... return iter(range(self.start, self.end)) ... ... def __len__(self): ... return self.end - self.start ... >>> ds = MyIterDataPipe(start=3, end=7) >>> print(list(ds)) [3, 4, 5, 6] >>> def collate_fn(batch): ... return torch.tensor(batch, dtype=torch.float) ... >>> # xdoctest: +SKIP >>> collated_ds = CollateIterDataPipe(ds, collate_fn=collate_fn) >>> print(list(collated_ds)) [tensor(3.), tensor(4.), tensor(5.), tensor(6.)] """ def __init__( self, datapipe: IterDataPipe, conversion: Optional[ Union[ Callable[..., Any], Dict[Union[str, Any], Union[Callable, Any]], ] ] = default_collate, collate_fn: Optional[Callable] = None, ) -> None: # TODO(VitalyFedyunin): Replace `Callable[..., Any]` with `Callable[[IColumn], Any]` # TODO(VitalyFedyunin): Replace with `Dict[Union[str, IColumn], Union[Callable, Enum]]` if collate_fn is not None: super().__init__(datapipe, fn=collate_fn) else: if callable(conversion): super().__init__(datapipe, fn=conversion) else: # TODO(VitalyFedyunin): Validate passed dictionary collate_fn = functools.partial(_collate_helper, conversion) super().__init__(datapipe, fn=collate_fn)
pytorch-master
torch/utils/data/datapipes/iter/callable.py
from collections import defaultdict from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe, DataChunk from torch.utils.data.datapipes.utils.common import _check_unpickable_fn from typing import Any, Callable, DefaultDict, Iterator, List, Optional, Sized, TypeVar __all__ = [ "BatcherIterDataPipe", "GrouperIterDataPipe", "ShardingFilterIterDataPipe", "UnBatcherIterDataPipe", ] T_co = TypeVar('T_co', covariant=True) @functional_datapipe('sharding_filter') class ShardingFilterIterDataPipe(IterDataPipe): r""" Wrapper that allows DataPipe to be sharded (functional name: ``sharding_filter``). After ``apply_sharding`` is called, each instance of the DataPipe (on different workers) will have every `n`-th element of the original DataPipe, where `n` equals to the number of instances. Args: source_datapipe: Iterable DataPipe that will be sharded """ def __init__(self, source_datapipe: IterDataPipe): self.source_datapipe = source_datapipe self.num_of_instances = 1 self.instance_id = 0 def is_shardable(self): return True def apply_sharding(self, num_of_instances, instance_id): self.num_of_instances = num_of_instances self.instance_id = instance_id def __iter__(self): for i, item in enumerate(self.source_datapipe): if i % self.num_of_instances == self.instance_id: yield item def __len__(self): if isinstance(self.source_datapipe, Sized): return len(self.source_datapipe) // self.num_of_instances +\ (1 if (self.instance_id < len(self.source_datapipe) % self.num_of_instances) else 0) raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) @functional_datapipe('batch') class BatcherIterDataPipe(IterDataPipe[DataChunk]): r""" Creates mini-batches of data (functional name: ``batch``). An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``, or ``length % batch_size`` for the last batch if ``drop_last`` is set to ``False``. Args: datapipe: Iterable DataPipe being batched batch_size: The size of each batch drop_last: Option to drop the last batch if it's not full wrapper_class: wrapper to apply onto each batch (type ``List``) before yielding, defaults to ``DataChunk`` Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(10)) >>> dp = dp.batch(batch_size=3, drop_last=True) >>> list(dp) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] """ datapipe: IterDataPipe batch_size: int drop_last: bool length: Optional[int] def __init__(self, datapipe: IterDataPipe, batch_size: int, drop_last: bool = False, wrapper_class=DataChunk, ) -> None: assert batch_size > 0, "Batch size is required to be larger than 0!" super().__init__() self.datapipe = datapipe self.batch_size = batch_size self.drop_last = drop_last self.length = None self.wrapper_class = wrapper_class def __iter__(self) -> Iterator[DataChunk]: batch: List = [] for x in self.datapipe: batch.append(x) if len(batch) == self.batch_size: yield self.wrapper_class(batch) batch = [] if len(batch) > 0: if not self.drop_last: yield self.wrapper_class(batch) def __len__(self) -> int: if self.length is not None: return self.length if isinstance(self.datapipe, Sized): if self.drop_last: self.length = len(self.datapipe) // self.batch_size else: self.length = (len(self.datapipe) + self.batch_size - 1) // self.batch_size return self.length raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) @functional_datapipe('unbatch') class UnBatcherIterDataPipe(IterDataPipe): r""" Undoes batching of data (functional name: ``unbatch``). In other words, it flattens the data up to the specified level within a batched DataPipe. Args: datapipe: Iterable DataPipe being un-batched unbatch_level: Defaults to ``1`` (only flattening the top level). If set to ``2``, it will flatten the top two levels, and ``-1`` will flatten the entire DataPipe. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper([[[0, 1], [2]], [[3, 4], [5]], [[6]]]) >>> dp1 = source_dp.unbatch() >>> list(dp1) [[0, 1], [2], [3, 4], [5], [6]] >>> dp2 = source_dp.unbatch(unbatch_level=2) >>> list(dp2) [0, 1, 2, 3, 4, 5, 6] """ def __init__(self, datapipe: IterDataPipe, unbatch_level: int = 1): self.datapipe = datapipe self.unbatch_level = unbatch_level def __iter__(self): for element in self.datapipe: for i in self._dive(element, unbatch_level=self.unbatch_level): yield i def _dive(self, element, unbatch_level): if unbatch_level < -1: raise ValueError("unbatch_level must be -1 or >= 0") if unbatch_level == -1: if isinstance(element, list) or isinstance(element, DataChunk): for item in element: for i in self._dive(item, unbatch_level=-1): yield i else: yield element elif unbatch_level == 0: yield element else: if isinstance(element, list) or isinstance(element, DataChunk): for item in element: for i in self._dive(item, unbatch_level=unbatch_level - 1): yield i else: raise IndexError(f"unbatch_level {self.unbatch_level} exceeds the depth of the DataPipe") @functional_datapipe('groupby') class GrouperIterDataPipe(IterDataPipe[DataChunk]): r""" Groups data from input IterDataPipe by keys which are generated from ``group_key_fn``, and yields a ``DataChunk`` with batch size up to ``group_size`` if defined (functional name: ``groupby``). The samples are read sequentially from the source ``datapipe``, and a batch of samples belonging to the same group will be yielded as soon as the size of the batch reaches ``group_size``. When the buffer is full, the DataPipe will yield the largest batch with the same key, provided that its size is larger than ``guaranteed_group_size``. If its size is smaller, it will be dropped if ``drop_remaining=True``. After iterating through the entirety of source ``datapipe``, everything not dropped due to the buffer capacity will be yielded from the buffer, even if the group sizes are smaller than ``guaranteed_group_size``. Args: datapipe: Iterable datapipe to be grouped group_key_fn: Function used to generate group key from the data of the source datapipe buffer_size: The size of buffer for ungrouped data group_size: The max size of each group, a batch is yielded as soon as it reaches this size guaranteed_group_size: The guaranteed minimum group size to be yielded in case the buffer is full drop_remaining: Specifies if the group smaller than ``guaranteed_group_size`` will be dropped from buffer when the buffer is full Example: >>> import os >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> def group_fn(file): ... return os.path.basename(file).split(".")[0] >>> source_dp = IterableWrapper(["a.png", "b.png", "a.json", "b.json", "a.jpg", "c.json"]) >>> dp0 = source_dp.groupby(group_key_fn=group_fn) >>> list(dp0) [['a.png', 'a.json', 'a.jpg'], ['b.png', 'b.json'], ['c.json']] >>> # A group is yielded as soon as its size equals to `group_size` >>> dp1 = source_dp.groupby(group_key_fn=group_fn, group_size=2) >>> list(dp1) [['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']] >>> # Scenario where `buffer` is full, and group 'a' needs to be yielded since its size > `guaranteed_group_size` >>> dp2 = source_dp.groupby(group_key_fn=group_fn, buffer_size=3, group_size=3, guaranteed_group_size=2) >>> list(dp2) [['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']] """ def __init__(self, datapipe: IterDataPipe[T_co], group_key_fn: Callable, *, buffer_size: int = 10000, group_size: Optional[int] = None, guaranteed_group_size: Optional[int] = None, drop_remaining: bool = False): _check_unpickable_fn(group_key_fn) self.datapipe = datapipe self.group_key_fn = group_key_fn self.max_buffer_size = buffer_size self.buffer_elements: DefaultDict[Any, List] = defaultdict(list) self.curr_buffer_size = 0 self.group_size = group_size self.guaranteed_group_size = None if group_size is not None and buffer_size is not None: assert 0 < group_size <= buffer_size self.guaranteed_group_size = group_size if guaranteed_group_size is not None: assert group_size is not None and 0 < guaranteed_group_size <= group_size self.guaranteed_group_size = guaranteed_group_size self.drop_remaining = drop_remaining self.wrapper_class = DataChunk def _remove_biggest_key(self): biggest_key = None biggest_size = 0 result_to_yield = None for findkey in self.buffer_elements.keys(): if len(self.buffer_elements[findkey]) > biggest_size: biggest_size = len(self.buffer_elements[findkey]) biggest_key = findkey if self.guaranteed_group_size is not None and biggest_size < self.guaranteed_group_size and not self.drop_remaining: raise RuntimeError('Failed to group items', str(self.buffer_elements[biggest_key])) if self.guaranteed_group_size is None or biggest_size >= self.guaranteed_group_size: result_to_yield = self.buffer_elements[biggest_key] self.curr_buffer_size -= biggest_size del self.buffer_elements[biggest_key] return result_to_yield def __iter__(self): for x in self.datapipe: key = self.group_key_fn(x) self.buffer_elements[key].append(x) self.curr_buffer_size += 1 if self.group_size is not None and self.group_size == len(self.buffer_elements[key]): yield self.wrapper_class(self.buffer_elements[key]) self.curr_buffer_size -= len(self.buffer_elements[key]) del self.buffer_elements[key] if self.curr_buffer_size == self.max_buffer_size: result_to_yield = self._remove_biggest_key() if result_to_yield is not None: yield self.wrapper_class(result_to_yield) for key in tuple(self.buffer_elements.keys()): res = self.buffer_elements.pop(key) self.curr_buffer_size -= len(res) yield self.wrapper_class(res) def reset(self) -> None: self.curr_buffer_size = 0 self.buffer_elements = defaultdict(list) def __getstate__(self): if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(self) state = ( self.datapipe, self.group_key_fn, self.max_buffer_size, self.group_size, self.guaranteed_group_size, self.drop_remaining, self.wrapper_class, self._valid_iterator_id, self._number_of_samples_yielded, ) return state def __setstate__(self, state): ( self.datapipe, self.group_key_fn, self.max_buffer_size, self.group_size, self.guaranteed_group_size, self.drop_remaining, self.wrapper_class, self._valid_iterator_id, self._number_of_samples_yielded, ) = state self.curr_buffer_size = 0 self.buffer_elements = defaultdict(list) def __del__(self): self.buffer_elements.clear()
pytorch-master
torch/utils/data/datapipes/iter/grouping.py
from torch.utils.data.datapipes.iter.utils import ( IterableWrapperIterDataPipe as IterableWrapper, ) from torch.utils.data.datapipes.iter.callable import ( CollatorIterDataPipe as Collator, MapperIterDataPipe as Mapper, ) from torch.utils.data.datapipes.iter.combinatorics import ( SamplerIterDataPipe as Sampler, ShufflerIterDataPipe as Shuffler, ) from torch.utils.data.datapipes.iter.combining import ( ConcaterIterDataPipe as Concater, DemultiplexerIterDataPipe as Demultiplexer, ForkerIterDataPipe as Forker, MultiplexerIterDataPipe as Multiplexer, ZipperIterDataPipe as Zipper, ) from torch.utils.data.datapipes.iter.filelister import ( FileListerIterDataPipe as FileLister, ) from torch.utils.data.datapipes.iter.fileopener import ( FileLoaderIterDataPipe as FileLoader, FileOpenerIterDataPipe as FileOpener, ) from torch.utils.data.datapipes.iter.grouping import ( BatcherIterDataPipe as Batcher, GrouperIterDataPipe as Grouper, ShardingFilterIterDataPipe as ShardingFilter, UnBatcherIterDataPipe as UnBatcher, ) from torch.utils.data.datapipes.iter.routeddecoder import ( RoutedDecoderIterDataPipe as RoutedDecoder, ) from torch.utils.data.datapipes.iter.selecting import ( FilterIterDataPipe as Filter, ) from torch.utils.data.datapipes.iter.streamreader import ( StreamReaderIterDataPipe as StreamReader, ) __all__ = ['Batcher', 'Collator', 'Concater', 'Demultiplexer', 'FileLister', 'FileLoader', 'FileOpener', 'Filter', 'Forker', 'Grouper', 'IterableWrapper', 'Mapper', 'Multiplexer', 'RoutedDecoder', 'Sampler', 'ShardingFilter', 'Shuffler', 'StreamReader', 'UnBatcher', 'Zipper'] # Please keep this list sorted assert __all__ == sorted(__all__)
pytorch-master
torch/utils/data/datapipes/iter/__init__.py
from typing import Callable, Iterator, Optional, TypeVar from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper from torch.utils.data.datapipes.utils.common import ( _check_unpickable_fn, _deprecation_warning, StreamWrapper, ) __all__ = ["FilterIterDataPipe", ] T_co = TypeVar('T_co', covariant=True) @functional_datapipe('filter') class FilterIterDataPipe(IterDataPipe[T_co]): r""" Filters out elements from the source datapipe according to input ``filter_fn`` (functional name: ``filter``). Args: datapipe: Iterable DataPipe being filtered filter_fn: Customized function mapping an element to a boolean. drop_empty_batches (Deprecated): By default, drops a batch if it is empty after filtering instead of keeping an empty list input_col: Index or indices of data which ``filter_fn`` is applied, such as: - ``None`` as default to apply ``filter_fn`` to the data directly. - Integer(s) is used for list/tuple. - Key(s) is used for dict. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> def is_even(n): ... return n % 2 == 0 >>> dp = IterableWrapper(range(5)) >>> filter_dp = dp.filter(filter_fn=is_even) >>> list(filter_dp) [0, 2, 4] """ datapipe: IterDataPipe filter_fn: Callable drop_empty_batches: bool def __init__( self, datapipe: IterDataPipe, filter_fn: Callable, drop_empty_batches: Optional[bool] = None, input_col=None, ) -> None: super().__init__() self.datapipe = datapipe _check_unpickable_fn(filter_fn) self.filter_fn = filter_fn # type: ignore[assignment] if drop_empty_batches is None: drop_empty_batches = True else: _deprecation_warning( type(self).__name__, deprecation_version="1.12", removal_version="1.14", old_argument_name="drop_empty_batches", ) self.drop_empty_batches = drop_empty_batches self.input_col = input_col def _apply_filter_fn(self, data) -> bool: if self.input_col is None: return self.filter_fn(data) elif isinstance(self.input_col, (list, tuple)): args = tuple(data[col] for col in self.input_col) return self.filter_fn(*args) else: return self.filter_fn(data[self.input_col]) def __iter__(self) -> Iterator[T_co]: for data in self.datapipe: filtered = self._returnIfTrue(data) if self._isNonEmpty(filtered): yield filtered else: StreamWrapper.close_streams(data) def _returnIfTrue(self, data): condition = self._apply_filter_fn(data) if df_wrapper.is_column(condition): # We are operating on DataFrames filter here result = [] for idx, mask in enumerate(df_wrapper.iterate(condition)): if mask: result.append(df_wrapper.get_item(data, idx)) if len(result): return df_wrapper.concat(result) else: return None if not isinstance(condition, bool): raise ValueError("Boolean output is required for `filter_fn` of FilterIterDataPipe, got", type(condition)) if condition: return data def _isNonEmpty(self, data): if df_wrapper.is_dataframe(data): return True r = data is not None and \ not (isinstance(data, list) and len(data) == 0 and self.drop_empty_batches) return r
pytorch-master
torch/utils/data/datapipes/iter/selecting.py
import warnings from collections import deque from typing import Any, Callable, Iterator, List, Optional, Sized, Tuple, TypeVar, Deque from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes._hook_iterator import _SnapshotState from torch.utils.data.datapipes.datapipe import IterDataPipe from torch.utils.data.datapipes.utils.common import StreamWrapper, _check_unpickable_fn __all__ = [ "ConcaterIterDataPipe", "DemultiplexerIterDataPipe", "ForkerIterDataPipe", "MultiplexerIterDataPipe", "ZipperIterDataPipe", ] T_co = TypeVar('T_co', covariant=True) @functional_datapipe('concat') class ConcaterIterDataPipe(IterDataPipe): r""" Concatenates multiple Iterable DataPipes (functional name: ``concat``). The resulting DataPipe will yield all the elements from the first input DataPipe, before yielding from the subsequent ones. Args: datapipes: Iterable DataPipes being concatenated Example: >>> # xdoctest: +REQUIRES(module:torchdata) >>> import random >>> from torchdata.datapipes.iter import IterableWrapper >>> dp1 = IterableWrapper(range(3)) >>> dp2 = IterableWrapper(range(5)) >>> list(dp1.concat(dp2)) [0, 1, 2, 0, 1, 2, 3, 4] """ datapipes: Tuple[IterDataPipe] length: Optional[int] def __init__(self, *datapipes: IterDataPipe): if len(datapipes) == 0: raise ValueError("Expected at least one DataPipe, but got nothing") if not all(isinstance(dp, IterDataPipe) for dp in datapipes): raise TypeError("Expected all inputs to be `IterDataPipe`") self.datapipes = datapipes # type: ignore[assignment] self.length = None def __iter__(self) -> Iterator: for dp in self.datapipes: for data in dp: yield data def __len__(self) -> int: if self.length is not None: if self.length == -1: raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) return self.length if all(isinstance(dp, Sized) for dp in self.datapipes): self.length = sum(len(dp) for dp in self.datapipes) else: self.length = -1 return len(self) @functional_datapipe('fork') class ForkerIterDataPipe(IterDataPipe): r""" Creates multiple instances of the same Iterable DataPipe (functional name: ``fork``). Args: datapipe: Iterable DataPipe being copied num_instances: number of instances of the datapipe to create buffer_size: this restricts how far ahead the leading child DataPipe can read relative to the slowest child DataPipe. Defaults to ``1000``. Use ``-1`` for the unlimited buffer. Example: >>> # xdoctest: +REQUIRES(module:torchdata) >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(range(5)) >>> dp1, dp2 = source_dp.fork(num_instances=2) >>> list(dp1) [0, 1, 2, 3, 4] >>> list(dp2) [0, 1, 2, 3, 4] """ def __new__(cls, datapipe: IterDataPipe, num_instances: int, buffer_size: int = 1000): if num_instances < 1: raise ValueError(f"Expected `num_instaces` larger than 0, but {num_instances} is found") if num_instances == 1: return datapipe container = _ForkerIterDataPipe(datapipe, num_instances, buffer_size) return [_ChildDataPipe(container, i) for i in range(num_instances)] class _ForkerIterDataPipe(IterDataPipe): r""" Container to hold instance-specific information on behalf of ForkerIterDataPipe. It tracks the state of its child DataPipes, maintains the buffer, and yields the next value as requested by the child DataPipes. """ def __init__(self, datapipe: IterDataPipe, num_instances: int, buffer_size: int = 1000): self.main_datapipe = datapipe self._datapipe_iterator: Optional[Iterator[Any]] = None self.num_instances = num_instances self.buffer: Deque = deque() self.buffer_size = buffer_size if self.buffer_size < 0: warnings.warn( "Unlimited buffer size is set for `fork`, " "please be aware of OOM at random places", UserWarning ) self.child_pointers: List[int] = [0] * num_instances # Indicate the indices of the next element to get self.slowest_ptr = 0 # The index to read by the slowest child self.leading_ptr = 0 # The index to read by the fastest child self.end_ptr: Optional[int] = None # The index to stop child def __len__(self): return len(self.main_datapipe) def get_next_element_by_instance(self, instance_id: int): if self._datapipe_iterator is None: self._datapipe_iterator = iter(self.main_datapipe) self._snapshot_state = _SnapshotState.Iterating while self.end_ptr is None or self.child_pointers[instance_id] + 1 < self.end_ptr: self.child_pointers[instance_id] += 1 # Use buffer if self.buffer and self.child_pointers[instance_id] <= self.leading_ptr: idx = self.child_pointers[instance_id] - self.slowest_ptr - 1 return_val = self.buffer[idx] else: # Retreive one element from main datapipe self.leading_ptr = self.child_pointers[instance_id] try: return_val = next(self._datapipe_iterator) self.buffer.append(return_val) except StopIteration: self.end_ptr = self.leading_ptr continue if self.child_pointers[instance_id] == self.slowest_ptr + 1: new_min = min(self.child_pointers) # Can optimize by avoiding the call to min() if self.slowest_ptr < new_min: self.slowest_ptr = new_min self.buffer.popleft() if self.buffer_size >= 0 and self.leading_ptr > self.buffer_size + self.slowest_ptr: raise BufferError("ForkerIterDataPipe buffer overflow," + f"buffer size {self.buffer_size} is insufficient.") yield return_val if all(p + 1 == self.end_ptr for p in self.child_pointers): self._datapipe_iterator = None def is_every_instance_exhausted(self) -> bool: # Due to the implementation of `get_next_element_by_instance`, `self.end_ptr` will end up # equaling to `len(main_datapipe) + 1`, hence the check for `self.end_ptr - 1 == ptr` below. return self.end_ptr is not None and\ all(self.end_ptr == ptr or self.end_ptr - 1 == ptr for ptr in self.child_pointers) def reset(self) -> None: self._datapipe_iterator = iter(self.main_datapipe) self.buffer = deque() self.child_pointers = [0] * self.num_instances self.slowest_ptr = 0 self.leading_ptr = 0 self.end_ptr = None def __getstate__(self): if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(self) state = ( self.main_datapipe, self.num_instances, self.buffer_size, self._valid_iterator_id, self._number_of_samples_yielded, ) return state def __setstate__(self, state): ( self.main_datapipe, self.num_instances, self.buffer_size, self._valid_iterator_id, self._number_of_samples_yielded, ) = state self._datapipe_iterator = None self.buffer = deque() self.child_pointers = [0] * self.num_instances self.slowest_ptr = 0 self.leading_ptr = 0 self.end_ptr = None def __del__(self): self.buffer.clear() class _ChildDataPipe(IterDataPipe): r""" Iterable Datapipe that is a child of a main DataPipe. The instance of this class will pass its instance_id to get the next value from its main DataPipe. Note: ChildDataPipe, like all other IterDataPipe, follows the single iterator per IterDataPipe constraint. Since ChildDataPipes share a common buffer, when an iterator is created for one of the ChildDataPipes, the previous iterators for all ChildDataPipes must be invalidated, with the exception when a ChildDataPipe hasn't had an iterator created from it since the last invalidation. See the example below. Example: >>> # xdoctest: +REQUIRES(module:torchdata) >>> # Singler Iterator per IteraDataPipe Invalidation >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(range(10)) >>> cdp1, cdp2 = source_dp.fork(num_instances=2) >>> it1, it2 = iter(cdp1), iter(cdp2) >>> it3 = iter(cdp1) >>> # The line above invalidates `it1` and `it2`, and resets `ForkerIterDataPipe`. >>> it4 = iter(cdp2) >>> # The line above doesn't invalidate `it3`, because an iterator for `cdp2` hasn't been created since >>> # the last invalidation. Args: main_datapipe: Main DataPipe with a method 'get_next_element_by_instance(instance_id)' instance_id: integer identifier of this instance """ _is_child_datapipe: bool = True def __init__(self, main_datapipe: IterDataPipe, instance_id: int): required_attrs = ["get_next_element_by_instance", "is_every_instance_exhausted", "reset"] required_ops = [getattr(main_datapipe, attr) for attr in required_attrs] if any(not callable(op) for op in required_ops): raise NotImplementedError(f"Main Datapipe must have methods {required_attrs} implemented.") self.main_datapipe: IterDataPipe = main_datapipe self.instance_id = instance_id def __iter__(self): # Note that the logic behind setting iterator ID and `reset` are handled within `hook_iterator` # We want to separate the code for reset and yield, so that 'reset' executes before __next__ is called return self.main_datapipe.get_next_element_by_instance(self.instance_id) def __len__(self): return len(self.main_datapipe) # This method is called by `hook_iterator` in `_typing.py`. def _set_main_datapipe_valid_iterator_id(self) -> int: r""" Update the valid iterator ID for both this DataPipe object and `main_datapipe`. `main_datapipe.reset()` is called when the ID is incremented to a new generation. """ # 1. First time any child iterator is created if self.main_datapipe._valid_iterator_id is None: self.main_datapipe._valid_iterator_id = 0 # type: ignore[attr-defined] # 2. This instance was already in the same generation as `main_datapipe`, # we need to increment the ID further by 1 elif self.main_datapipe._valid_iterator_id == self._valid_iterator_id: # type: ignore[has-type] self.main_datapipe._valid_iterator_id += 1 # type: ignore[attr-defined] # Whenever a new generation of iterator is created, the `main_datapipe` must reset if not self.main_datapipe.is_every_instance_exhausted(): warnings.warn("Some child DataPipes are not exhausted when __iter__ is called. We are resetting " "the buffer and each child DataPipe will read from the start again.", UserWarning) self.main_datapipe.reset() # 3. Otherwise, the iterator is behind the others, so it will just need to catch up by setting # the instance's iterator to match that of `main_datapipe` self._valid_iterator_id = self.main_datapipe._valid_iterator_id return self._valid_iterator_id # This method is called by `hook_iterator` in `_typing.py`. def _check_valid_iterator_id(self, iterator_id) -> bool: r""" Check the valid iterator ID against that of DataPipe object and that of `main_datapipe`. """ return iterator_id == self._valid_iterator_id and iterator_id == self.main_datapipe._valid_iterator_id @functional_datapipe('demux') class DemultiplexerIterDataPipe(IterDataPipe): r""" Splits the input DataPipe into multiple child DataPipes, using the given classification function (functional name: ``demux``). A list of the child DataPipes is returned from this operation. Args: datapipe: Iterable DataPipe being filtered num_instances: number of instances of the DataPipe to create classifier_fn: a function that maps values to an integer within the range ``[0, num_instances - 1]`` or ``None`` drop_none: defaults to ``False``, if ``True``, the function will skip over elements classified as ``None`` buffer_size: this defines the maximum number of inputs that the buffer can hold across all child DataPipes while waiting for their values to be yielded. Defaults to ``1000``. Use ``-1`` for the unlimited buffer. Examples: >>> # xdoctest: +REQUIRES(module:torchdata) >>> from torchdata.datapipes.iter import IterableWrapper >>> def odd_or_even(n): ... return n % 2 >>> source_dp = IterableWrapper(range(5)) >>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even) >>> list(dp1) [0, 2, 4] >>> list(dp2) [1, 3] >>> # It can also filter out any element that gets `None` from the `classifier_fn` >>> def odd_or_even_no_zero(n): ... return n % 2 if n != 0 else None >>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even_no_zero, drop_none=True) >>> list(dp1) [2, 4] >>> list(dp2) [1, 3] """ def __new__(cls, datapipe: IterDataPipe, num_instances: int, classifier_fn: Callable[[T_co], Optional[int]], drop_none: bool = False, buffer_size: int = 1000): if num_instances < 1: raise ValueError(f"Expected `num_instaces` larger than 0, but {num_instances} is found") _check_unpickable_fn(classifier_fn) # When num_instances == 1, demux can be replaced by filter, # but keep it as Demultiplexer for the sake of consistency # like throwing Error when classification result is out of o range container = _DemultiplexerIterDataPipe(datapipe, num_instances, classifier_fn, drop_none, buffer_size) return [_ChildDataPipe(container, i) for i in range(num_instances)] class _DemultiplexerIterDataPipe(IterDataPipe): r""" Container to hold instance-specific information on behalf of DemultiplexerIterDataPipe. It tracks the state of its child DataPipes, maintains the buffer, classifies and yields the next correct value as requested by the child DataPipes. """ def __init__(self, datapipe: IterDataPipe[T_co], num_instances: int, classifier_fn: Callable[[T_co], Optional[int]], drop_none: bool, buffer_size: int): self.main_datapipe = datapipe self._datapipe_iterator: Optional[Iterator[Any]] = None self.num_instances = num_instances self.buffer_size = buffer_size if self.buffer_size < 0: warnings.warn( "Unlimited buffer size is set for `demux`, " "please be aware of OOM at random places", UserWarning ) self.current_buffer_usage = 0 self.child_buffers: List[Deque[T_co]] = [deque() for _ in range(num_instances)] self.classifier_fn = classifier_fn self.drop_none = drop_none self.main_datapipe_exhausted = False def _find_next(self, instance_id: int) -> T_co: while True: if self.main_datapipe_exhausted: raise StopIteration if self._datapipe_iterator is None: raise ValueError( "_datapipe_iterator has not been set, likely because this private method is called directly " "without invoking get_next_element_by_instance() first.") value = next(self._datapipe_iterator) classification = self.classifier_fn(value) if classification is None and self.drop_none: StreamWrapper.close_streams(value) continue if classification is None or classification >= self.num_instances or classification < 0: raise ValueError(f"Output of the classification fn should be between 0 and {self.num_instances - 1}. " + f"{classification} is returned.") if classification == instance_id: return value self.child_buffers[classification].append(value) self.current_buffer_usage += 1 if self.buffer_size >= 0 and self.current_buffer_usage > self.buffer_size: raise BufferError( f"DemultiplexerIterDataPipe buffer overflow, buffer size {self.buffer_size} is insufficient.") def get_next_element_by_instance(self, instance_id: int): if self._datapipe_iterator is None and not self.main_datapipe_exhausted: self._datapipe_iterator = iter(self.main_datapipe) self._snapshot_state = _SnapshotState.Iterating # This is necessary for the DataPipe to reset properly. stop = False while not stop: if self.child_buffers[instance_id]: self.current_buffer_usage -= 1 yield self.child_buffers[instance_id].popleft() else: try: yield self._find_next(instance_id) except StopIteration: stop = True self.main_datapipe_exhausted = True self._datapipe_iterator = None def is_every_instance_exhausted(self) -> bool: return self.main_datapipe_exhausted and all(not child_buffer for child_buffer in self.child_buffers) def reset(self) -> None: self._datapipe_iterator = None self.current_buffer_usage = 0 self.child_buffers = [deque() for _ in range(self.num_instances)] self.main_datapipe_exhausted = False def __getstate__(self): if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(self) state = ( self.main_datapipe, self.num_instances, self.buffer_size, self.classifier_fn, self.drop_none, self._valid_iterator_id, self._number_of_samples_yielded, ) return state def __setstate__(self, state): ( self.main_datapipe, self.num_instances, self.buffer_size, self.classifier_fn, self.drop_none, self._valid_iterator_id, self._number_of_samples_yielded, ) = state self._datapipe_iterator = None self.current_buffer_usage = 0 self.child_buffers = [deque() for _ in range(self.num_instances)] self.main_datapipe_exhausted = False def __del__(self): for dq in self.child_buffers: dq.clear() @functional_datapipe('mux') class MultiplexerIterDataPipe(IterDataPipe): r""" Yields one element at a time from each of the input Iterable DataPipes (functional name: ``mux``). As in, one element from the 1st input DataPipe, then one element from the 2nd DataPipe in the next iteration, and so on. It ends when the shortest input DataPipe is exhausted. Args: datapipes: Iterable DataPipes that will take turn to yield their elements, until the shortest DataPipe is exhausted Example: >>> # xdoctest: +REQUIRES(module:torchdata) >>> from torchdata.datapipes.iter import IterableWrapper >>> dp1, dp2, dp3 = IterableWrapper(range(3)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25)) >>> list(dp1.mux(dp2, dp3)) [0, 10, 20, 1, 11, 21, 2, 12, 22] """ def __init__(self, *datapipes): self.datapipes = datapipes self.length: Optional[int] = None self.buffer: List = [] # Store values to be yielded only when every iterator provides one def __iter__(self): iterators = [iter(x) for x in self.datapipes] while len(iterators): for it in iterators: try: value = next(it) self.buffer.append(value) except StopIteration: self.buffer.clear() return for value in self.buffer: yield value self.buffer.clear() def __len__(self): if self.length is not None: if self.length == -1: raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) return self.length if all(isinstance(dp, Sized) for dp in self.datapipes): self.length = min(len(dp) for dp in self.datapipes) * len(self.datapipes) else: self.length = -1 return len(self) def reset(self) -> None: self.buffer = [] def __getstate__(self): if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(self) state = ( self.datapipes, self.length, self._valid_iterator_id, self._number_of_samples_yielded, ) return state def __setstate__(self, state): ( self.datapipes, self.length, self._valid_iterator_id, self._number_of_samples_yielded, ) = state self.buffer = [] def __del__(self): self.buffer.clear() @functional_datapipe('zip') class ZipperIterDataPipe(IterDataPipe[Tuple[T_co]]): r""" Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``). The output is stopped as soon as the shortest input DataPipe is exhausted. Args: *datapipes: Iterable DataPipes being aggregated Example: >>> # xdoctest: +REQUIRES(module:torchdata) >>> from torchdata.datapipes.iter import IterableWrapper >>> dp1, dp2, dp3 = IterableWrapper(range(5)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25)) >>> list(dp1.zip(dp2, dp3)) [(0, 10, 20), (1, 11, 21), (2, 12, 22), (3, 13, 23), (4, 14, 24)] """ datapipes: Tuple[IterDataPipe] length: Optional[int] def __init__(self, *datapipes: IterDataPipe): if not all(isinstance(dp, IterDataPipe) for dp in datapipes): raise TypeError("All inputs are required to be `IterDataPipe` " "for `ZipIterDataPipe`.") super().__init__() self.datapipes = datapipes # type: ignore[assignment] self.length = None def __iter__(self) -> Iterator[Tuple[T_co]]: iterators = [iter(datapipe) for datapipe in self.datapipes] try: for data in zip(*iterators): yield data finally: unused = [] for iterator in iterators: try: unused += list(iterator) except RuntimeError: # Some iterators may have been invalidated by single iterator constraints pass # TODO(VitalyFedyunin): This should be Exception or warning when torchdata.debug is enabled for item in unused: StreamWrapper.close_streams(item) def __len__(self) -> int: if self.length is not None: if self.length == -1: raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) return self.length if all(isinstance(dp, Sized) for dp in self.datapipes): self.length = min(len(dp) for dp in self.datapipes) else: self.length = -1 return len(self)
pytorch-master
torch/utils/data/datapipes/iter/combining.py
from typing import Iterator, List, Sequence, Union from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe from torch.utils.data.datapipes.iter import IterableWrapper from torch.utils.data.datapipes.utils.common import get_file_pathnames_from_root __all__ = ["FileListerIterDataPipe", ] @functional_datapipe("list_files") class FileListerIterDataPipe(IterDataPipe[str]): r""" Given path(s) to the root directory, yields file pathname(s) (path + filename) of files within the root directory. Multiple root directories can be provided. Args: root: Root directory or a sequence of root directories masks: Unix style filter string or string list for filtering file name(s) recursive: Whether to return pathname from nested directories or not abspath: Whether to return relative pathname or absolute pathname non_deterministic: Whether to return pathname in sorted order or not. If ``False``, the results yielded from each root directory will be sorted length: Nominal length of the datapipe Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import FileLister >>> dp = FileLister(root=".", recursive=True) >>> list(dp) ['example.py', './data/data.tar'] """ def __init__( self, root: Union[str, Sequence[str], IterDataPipe] = '.', masks: Union[str, List[str]] = '', *, recursive: bool = False, abspath: bool = False, non_deterministic: bool = False, length: int = -1 ) -> None: super().__init__() if isinstance(root, str): root = [root, ] if not isinstance(root, IterDataPipe): root = IterableWrapper(root) self.datapipe: IterDataPipe = root self.masks: Union[str, List[str]] = masks self.recursive: bool = recursive self.abspath: bool = abspath self.non_deterministic: bool = non_deterministic self.length: int = length def __iter__(self) -> Iterator[str] : for path in self.datapipe: yield from get_file_pathnames_from_root(path, self.masks, self.recursive, self.abspath, self.non_deterministic) def __len__(self): if self.length == -1: raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) return self.length
pytorch-master
torch/utils/data/datapipes/iter/filelister.py
import copy import warnings from torch.utils.data.datapipes.datapipe import IterDataPipe __all__ = ["IterableWrapperIterDataPipe", ] class IterableWrapperIterDataPipe(IterDataPipe): r""" Wraps an iterable object to create an IterDataPipe. Args: iterable: Iterable object to be wrapped into an IterDataPipe deepcopy: Option to deepcopy input iterable object for each iterator. The copy is made when the first element is read in ``iter()``. .. note:: If ``deepcopy`` is explicitly set to ``False``, users should ensure that the data pipeline doesn't contain any in-place operations over the iterable instance to prevent data inconsistency across iterations. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(10)) >>> list(dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ def __init__(self, iterable, deepcopy=True): self.iterable = iterable self.deepcopy = deepcopy def __iter__(self): source_data = self.iterable if self.deepcopy: try: source_data = copy.deepcopy(self.iterable) # For the case that data cannot be deep-copied, # all in-place operations will affect iterable variable. # When this DataPipe is iterated second time, it will # yield modified items. except TypeError: warnings.warn( "The input iterable can not be deepcopied, " "please be aware of in-place modification would affect source data." ) for data in source_data: yield data def __len__(self): return len(self.iterable)
pytorch-master
torch/utils/data/datapipes/iter/utils.py
import random import torch from torch.utils.data import Sampler, SequentialSampler from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe from typing import Dict, Iterator, List, Optional, Sized, Tuple, Type, TypeVar __all__ = [ "SamplerIterDataPipe", "ShufflerIterDataPipe", ] T_co = TypeVar('T_co', covariant=True) class SamplerIterDataPipe(IterDataPipe[T_co]): r""" Generates sample elements using the provided ``Sampler`` (defaults to :class:`SequentialSampler`). Args: datapipe: IterDataPipe to sample from sampler: Sampler class to generate sample elements from input DataPipe. Default is :class:`SequentialSampler` for IterDataPipe """ datapipe: IterDataPipe sampler: Sampler def __init__(self, datapipe: IterDataPipe, sampler: Type[Sampler] = SequentialSampler, sampler_args: Optional[Tuple] = None, sampler_kwargs: Optional[Dict] = None ) -> None: assert isinstance(datapipe, Sized), \ "Sampler class requires input datapipe implemented `__len__`" super().__init__() self.datapipe = datapipe self.sampler_args = () if sampler_args is None else sampler_args self.sampler_kwargs = {} if sampler_kwargs is None else sampler_kwargs # https://github.com/python/mypy/pull/9629 will solve self.sampler = sampler(data_source=self.datapipe, *self.sampler_args, **self.sampler_kwargs) # type: ignore[misc] def __iter__(self) -> Iterator[T_co]: return iter(self.sampler) def __len__(self) -> int: # Dataset has been tested as `Sized` if isinstance(self.sampler, Sized) and len(self.sampler) >= 0: return len(self.sampler) raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) @functional_datapipe('shuffle') class ShufflerIterDataPipe(IterDataPipe[T_co]): r""" Shuffles the input DataPipe with a buffer (functional name: ``shuffle``). The buffer with ``buffer_size`` is filled with elements from the datapipe first. Then, each item will be yielded from the buffer by reservoir sampling via iterator. ``buffer_size`` is required to be larger than ``0``. For ``buffer_size == 1``, the datapipe is not shuffled. In order to fully shuffle all elements from datapipe, ``buffer_size`` is required to be greater than or equal to the size of datapipe. When it is used with :class:`torch.utils.data.DataLoader`, the methods to set up random seed are different based on :attr:`num_workers`. For single-process mode (:attr:`num_workers == 0`), the random seed is set before the :class:`~torch.utils.data.DataLoader` in the main process. For multi-process mode (:attr:`num_worker > 0`), `worker_init_fn` is used to set up a random seed for each worker process. Args: datapipe: The IterDataPipe being shuffled buffer_size: The buffer size for shuffling (default to ``10000``) unbatch_level: Specifies if it is necessary to unbatch source data before applying the shuffle Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(10)) >>> shuffle_dp = dp.shuffle() >>> list(shuffle_dp) [0, 4, 1, 6, 3, 2, 9, 5, 7, 8] """ datapipe: IterDataPipe[T_co] buffer_size: int _buffer: List[T_co] _enabled: bool _seed: Optional[int] _rng: random.Random def __init__(self, datapipe: IterDataPipe[T_co], *, buffer_size: int = 10000, unbatch_level: int = 0 ) -> None: super().__init__() # TODO: Performance optimization # buffer can be a fixed size and remove expensive `append()` and `len()` operations self._buffer: List[T_co] = [] assert buffer_size > 0, "buffer_size should be larger than 0" if unbatch_level == 0: self.datapipe = datapipe else: self.datapipe = datapipe.unbatch(unbatch_level=unbatch_level) self.buffer_size = buffer_size self._enabled = True self._seed = None self._rng = random.Random() def set_shuffle(self, shuffle=True): self._enabled = shuffle return self def set_seed(self, seed: int): self._seed = seed def __iter__(self) -> Iterator[T_co]: if not self._enabled: for x in self.datapipe: yield x else: self._rng.seed(self._seed) self._seed = None for x in self.datapipe: if len(self._buffer) == self.buffer_size: idx = self._rng.randint(0, len(self._buffer) - 1) val, self._buffer[idx] = self._buffer[idx], x yield val else: self._buffer.append(x) self._rng.shuffle(self._buffer) while self._buffer: yield self._buffer.pop() def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError("{} instance doesn't have valid length".format(type(self).__name__)) def reset(self) -> None: self._buffer = [] if self._enabled and self._seed is None: self._seed = int(torch.empty((), dtype=torch.int64).random_().item()) def __getstate__(self): if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(self) state = ( self.datapipe, self.buffer_size, self._enabled, self._seed, self._valid_iterator_id, self._number_of_samples_yielded, self._rng.getstate(), ) return state def __setstate__(self, state): ( self.datapipe, self.buffer_size, self._enabled, self._seed, self._valid_iterator_id, self._number_of_samples_yielded, rng_state, ) = state self._rng = random.Random() self._rng.setstate(rng_state) self._buffer = [] def __del__(self): self._buffer.clear()
pytorch-master
torch/utils/data/datapipes/iter/combinatorics.py
from typing import Tuple from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe __all__ = ["StreamReaderIterDataPipe", ] @functional_datapipe('read_from_stream') class StreamReaderIterDataPipe(IterDataPipe[Tuple[str, bytes]]): r""" Given IO streams and their label names, yields bytes with label name in a tuple (functional name: ``read_from_stream``). Args: datapipe: Iterable DataPipe provides label/URL and byte stream chunk: Number of bytes to be read from stream per iteration. If ``None``, all bytes will be read util the EOF. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper, StreamReader >>> from io import StringIO >>> dp = IterableWrapper([("alphabet", StringIO("abcde"))]) >>> list(StreamReader(dp, chunk=1)) [('alphabet', 'a'), ('alphabet', 'b'), ('alphabet', 'c'), ('alphabet', 'd'), ('alphabet', 'e')] """ def __init__(self, datapipe, chunk=None): self.datapipe = datapipe self.chunk = chunk def __iter__(self): for furl, stream in self.datapipe: while True: d = stream.read(self.chunk) if not d: stream.close() break yield (furl, d)
pytorch-master
torch/utils/data/datapipes/iter/streamreader.py
from io import BufferedIOBase from typing import Any, Callable, Iterable, Iterator, Sized, Tuple from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe from torch.utils.data.datapipes.utils.common import _deprecation_warning from torch.utils.data.datapipes.utils.decoder import ( Decoder, basichandlers as decoder_basichandlers, imagehandler as decoder_imagehandler, extension_extract_fn ) __all__ = ["RoutedDecoderIterDataPipe", ] @functional_datapipe('routed_decode') class RoutedDecoderIterDataPipe(IterDataPipe[Tuple[str, Any]]): r""" Decodes binary streams from input DataPipe, yields pathname and decoded data in a tuple (functional name: ``routed_decode``). Args: datapipe: Iterable datapipe that provides pathname and binary stream in tuples handlers: Optional user defined decoder handlers. If ``None``, basic and image decoder handlers will be set as default. If multiple handles are provided, the priority order follows the order of handlers (the first handler has the top priority) key_fn: Function for decoder to extract key from pathname to dispatch handlers. Default is set to extract file extension from pathname Note: When ``key_fn`` is specified returning anything other than extension, the default handler will not work and users need to specify custom handler. Custom handler could use regex to determine the eligibility to handle data. """ def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], *handlers: Callable, key_fn: Callable = extension_extract_fn) -> None: super().__init__() self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe if not handlers: handlers = (decoder_basichandlers, decoder_imagehandler('torch')) self.decoder = Decoder(*handlers, key_fn=key_fn) _deprecation_warning( type(self).__name__, deprecation_version="1.12", removal_version="1.13", old_functional_name="routed_decode", ) def add_handler(self, *handler: Callable) -> None: self.decoder.add_handler(*handler) def __iter__(self) -> Iterator[Tuple[str, Any]]: for data in self.datapipe: pathname = data[0] result = self.decoder(data) yield (pathname, result[pathname]) def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError("{} instance doesn't have valid length".format(type(self).__name__))
pytorch-master
torch/utils/data/datapipes/iter/routeddecoder.py
# This file takes partial of the implementation from NVIDIA's webdataset at here: # https://github.com/tmbdev/webdataset/blob/master/webdataset/autodecode.py import io import json import os.path import pickle import tempfile import torch from torch.utils.data.datapipes.utils.common import StreamWrapper __all__ = [ "Decoder", "ImageHandler", "MatHandler", "audiohandler", "basichandlers", "extension_extract_fn", "handle_extension", "imagehandler", "mathandler", "videohandler", ] ################################################################ # handle basic datatypes ################################################################ def basichandlers(extension, data): if extension in "txt text transcript": return data.decode("utf-8") if extension in "cls cls2 class count index inx id".split(): try: return int(data) except ValueError: return None if extension in "json jsn": return json.loads(data) if extension in "pyd pickle".split(): return pickle.loads(data) if extension in "pt".split(): stream = io.BytesIO(data) return torch.load(stream) # if extension in "ten tb".split(): # from . import tenbin # return tenbin.decode_buffer(data) # if extension in "mp msgpack msg".split(): # import msgpack # return msgpack.unpackb(data) return None ################################################################ # handle images ################################################################ imagespecs = { "l8": ("numpy", "uint8", "l"), "rgb8": ("numpy", "uint8", "rgb"), "rgba8": ("numpy", "uint8", "rgba"), "l": ("numpy", "float", "l"), "rgb": ("numpy", "float", "rgb"), "rgba": ("numpy", "float", "rgba"), "torchl8": ("torch", "uint8", "l"), "torchrgb8": ("torch", "uint8", "rgb"), "torchrgba8": ("torch", "uint8", "rgba"), "torchl": ("torch", "float", "l"), "torchrgb": ("torch", "float", "rgb"), "torch": ("torch", "float", "rgb"), "torchrgba": ("torch", "float", "rgba"), "pill": ("pil", None, "l"), "pil": ("pil", None, "rgb"), "pilrgb": ("pil", None, "rgb"), "pilrgba": ("pil", None, "rgba"), } def handle_extension(extensions, f): """ Returns a decoder handler function for the list of extensions. Extensions can be a space separated list of extensions. Extensions can contain dots, in which case the corresponding number of extension components must be present in the key given to f. Comparisons are case insensitive. Examples: handle_extension("jpg jpeg", my_decode_jpg) # invoked for any file.jpg handle_extension("seg.jpg", special_case_jpg) # invoked only for file.seg.jpg """ extensions = extensions.lower().split() def g(key, data): extension = key.lower().split(".") for target in extensions: target = target.split(".") if len(target) > len(extension): continue if extension[-len(target):] == target: return f(data) return None return g class ImageHandler: """ Decode image data using the given `imagespec`. The `imagespec` specifies whether the image is decoded to numpy/torch/pi, decoded to uint8/float, and decoded to l/rgb/rgba: - l8: numpy uint8 l - rgb8: numpy uint8 rgb - rgba8: numpy uint8 rgba - l: numpy float l - rgb: numpy float rgb - rgba: numpy float rgba - torchl8: torch uint8 l - torchrgb8: torch uint8 rgb - torchrgba8: torch uint8 rgba - torchl: torch float l - torchrgb: torch float rgb - torch: torch float rgb - torchrgba: torch float rgba - pill: pil None l - pil: pil None rgb - pilrgb: pil None rgb - pilrgba: pil None rgba """ def __init__(self, imagespec): assert imagespec in list(imagespecs.keys()), "unknown image specification: {}".format(imagespec) self.imagespec = imagespec.lower() def __call__(self, extension, data): if extension.lower() not in "jpg jpeg png ppm pgm pbm pnm".split(): return None try: import numpy as np except ImportError as e: raise ModuleNotFoundError("Package `numpy` is required to be installed for default image decoder." "Please use `pip install numpy` to install the package") try: import PIL.Image except ImportError as e: raise ModuleNotFoundError("Package `PIL` is required to be installed for default image decoder." "Please use `pip install Pillow` to install the package") imagespec = self.imagespec atype, etype, mode = imagespecs[imagespec] with io.BytesIO(data) as stream: img = PIL.Image.open(stream) img.load() img = img.convert(mode.upper()) if atype == "pil": return img elif atype == "numpy": result = np.asarray(img) assert result.dtype == np.uint8, "numpy image array should be type uint8, but got {}".format(result.dtype) if etype == "uint8": return result else: return result.astype("f") / 255.0 elif atype == "torch": result = np.asarray(img) assert result.dtype == np.uint8, "numpy image array should be type uint8, but got {}".format(result.dtype) if etype == "uint8": result = np.array(result.transpose(2, 0, 1)) return torch.tensor(result) else: result = np.array(result.transpose(2, 0, 1)) return torch.tensor(result) / 255.0 return None def imagehandler(imagespec): return ImageHandler(imagespec) ################################################################ # torch video ################################################################ def videohandler(extension, data): if extension not in "mp4 ogv mjpeg avi mov h264 mpg webm wmv".split(): return None try: import torchvision.io except ImportError as e: raise ModuleNotFoundError("Package `torchvision` is required to be installed for default video file loader." "Please use `pip install torchvision` or `conda install torchvision -c pytorch`" "to install the package") with tempfile.TemporaryDirectory() as dirname: fname = os.path.join(dirname, f"file.{extension}") with open(fname, "wb") as stream: stream.write(data) return torchvision.io.read_video(fname) ################################################################ # torchaudio ################################################################ def audiohandler(extension, data): if extension not in ["flac", "mp3", "sox", "wav", "m4a", "ogg", "wma"]: return None try: import torchaudio # type: ignore[import] except ImportError as e: raise ModuleNotFoundError("Package `torchaudio` is required to be installed for default audio file loader." "Please use `pip install torchaudio` or `conda install torchaudio -c pytorch`" "to install the package") with tempfile.TemporaryDirectory() as dirname: fname = os.path.join(dirname, f"file.{extension}") with open(fname, "wb") as stream: stream.write(data) return torchaudio.load(fname) ################################################################ # mat ################################################################ class MatHandler: def __init__(self, **loadmat_kwargs) -> None: try: import scipy.io as sio except ImportError as e: raise ModuleNotFoundError("Package `scipy` is required to be installed for mat file." "Please use `pip install scipy` or `conda install scipy`" "to install the package") self.sio = sio self.loadmat_kwargs = loadmat_kwargs def __call__(self, extension, data): if extension != 'mat': return None with io.BytesIO(data) as stream: return self.sio.loadmat(stream, **self.loadmat_kwargs) def mathandler(**loadmat_kwargs): return MatHandler(**loadmat_kwargs) ################################################################ # a sample decoder ################################################################ # Extract extension from pathname def extension_extract_fn(pathname): ext = os.path.splitext(pathname)[1] # Remove dot if ext: ext = ext[1:] return ext class Decoder: """ Decode key/data sets using a list of handlers. For each key/data item, this iterates through the list of handlers until some handler returns something other than None. """ def __init__(self, *handler, key_fn=extension_extract_fn): self.handlers = list(handler) if handler else [] self.key_fn = key_fn # Insert new handler from the beginning of handlers list to make sure the new # handler having the highest priority def add_handler(self, *handler): if not handler: return self.handlers = list(handler) + self.handlers @staticmethod def _is_stream_handle(data): obj_to_check = data.file_obj if isinstance(data, StreamWrapper) else data return isinstance(obj_to_check, io.BufferedIOBase) or isinstance(obj_to_check, io.RawIOBase) def decode1(self, key, data): if not data: return data # if data is a stream handle, we need to read all the content before decoding if Decoder._is_stream_handle(data): ds = data # The behavior of .read can differ between streams (e.g. HTTPResponse), hence this is used instead data = b"".join(data) ds.close() for f in self.handlers: result = f(key, data) if result is not None: return result return data def decode(self, data): result = {} # single data tuple(pathname, data stream) if isinstance(data, tuple): data = [data] if data is not None: for k, v in data: # TODO: xinyu, figure out why Nvidia do this? if k[0] == "_": if isinstance(v, bytes): v = v.decode("utf-8") result[k] = v continue result[k] = self.decode1(self.key_fn(k), v) return result def __call__(self, data): return self.decode(data)
pytorch-master
torch/utils/data/datapipes/utils/decoder.py
pytorch-master
torch/utils/data/datapipes/utils/__init__.py
import fnmatch import inspect import os import warnings from io import IOBase from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union from torch.utils.data._utils.serialization import DILL_AVAILABLE __all__ = [ "StreamWrapper", "get_file_binaries_from_pathnames", "get_file_pathnames_from_root", "match_masks", "validate_pathname_binary_tuple", ] def _is_local_fn(fn): # Functions or Methods if hasattr(fn, "__code__"): return fn.__code__.co_flags & inspect.CO_NESTED # Callable Objects else: if hasattr(fn, "__qualname__"): return "<locals>" in fn.__qualname__ fn_type = type(fn) if hasattr(fn_type, "__qualname__"): return "<locals>" in fn_type.__qualname__ return False def _check_unpickable_fn(fn: Callable): """ Checks function is pickable or not. If it is a lambda or local function, a UserWarning will be raised. If it's not a callable function, a TypeError will be raised. """ if not callable(fn): raise TypeError(f"A callable function is expected, but {type(fn)} is provided.") # Extract function from partial object # Nested partial function is automatically expanded as a single partial object if isinstance(fn, partial): fn = fn.func # Local function if _is_local_fn(fn) and not DILL_AVAILABLE: warnings.warn( "Local function is not supported by pickle, please use " "regular python function or functools.partial instead." ) return # Lambda function if hasattr(fn, "__name__") and fn.__name__ == "<lambda>" and not DILL_AVAILABLE: warnings.warn( "Lambda function is not supported by pickle, please use " "regular python function or functools.partial instead." ) return def match_masks(name : str, masks : Union[str, List[str]]) -> bool: # empty mask matches any input name if not masks: return True if isinstance(masks, str): return fnmatch.fnmatch(name, masks) for mask in masks: if fnmatch.fnmatch(name, mask): return True return False def get_file_pathnames_from_root( root: str, masks: Union[str, List[str]], recursive: bool = False, abspath: bool = False, non_deterministic: bool = False) -> Iterable[str]: # print out an error message and raise the error out def onerror(err : OSError): warnings.warn(err.filename + " : " + err.strerror) raise err if os.path.isfile(root): path = root if abspath: path = os.path.abspath(path) fname = os.path.basename(path) if match_masks(fname, masks): yield path else: for path, dirs, files in os.walk(root, onerror=onerror): if abspath: path = os.path.abspath(path) if not non_deterministic: files.sort() for f in files: if match_masks(f, masks): yield os.path.join(path, f) if not recursive: break if not non_deterministic: # Note that this is in-place modifying the internal list from `os.walk` # This only works because `os.walk` doesn't shallow copy before turn # https://github.com/python/cpython/blob/f4c03484da59049eb62a9bf7777b963e2267d187/Lib/os.py#L407 dirs.sort() def get_file_binaries_from_pathnames(pathnames: Iterable, mode: str, encoding: Optional[str] = None): if not isinstance(pathnames, Iterable): pathnames = [pathnames, ] if mode in ('b', 't'): mode = 'r' + mode for pathname in pathnames: if not isinstance(pathname, str): raise TypeError("Expected string type for pathname, but got {}" .format(type(pathname))) yield pathname, StreamWrapper(open(pathname, mode, encoding=encoding)) def validate_pathname_binary_tuple(data: Tuple[str, IOBase]): if not isinstance(data, tuple): raise TypeError(f"pathname binary data should be tuple type, but it is type {type(data)}") if len(data) != 2: raise TypeError(f"pathname binary stream tuple length should be 2, but got {len(data)}") if not isinstance(data[0], str): raise TypeError(f"pathname within the tuple should have string type pathname, but it is type {type(data[0])}") if not isinstance(data[1], IOBase) and not isinstance(data[1], StreamWrapper): raise TypeError( f"binary stream within the tuple should have IOBase or" f"its subclasses as type, but it is type {type(data[1])}" ) # Deprecated function names and its corresponding DataPipe type and kwargs for the `_deprecation_warning` function _iter_deprecated_functional_names: Dict[str, Dict] = {"open_file_by_fsspec": {"old_class_name": "FSSpecFileOpener", "deprecation_version": "0.4.0", "removal_version": "0.6.0", "old_functional_name": "open_file_by_fsspec", "new_functional_name": "open_files_by_fsspec", "deprecate_functional_name_only": True}, "open_file_by_iopath": {"old_class_name": "IoPathFileOpener", "deprecation_version": "0.4.0", "removal_version": "0.6.0", "old_functional_name": "open_file_by_iopath", "new_functional_name": "open_files_by_iopath", "deprecate_functional_name_only": True}} _map_deprecated_functional_names: Dict[str, Dict] = {} def _deprecation_warning( old_class_name: str, *, deprecation_version: str, removal_version: str, old_functional_name: str = "", old_argument_name: str = "", new_class_name: str = "", new_functional_name: str = "", new_argument_name: str = "", deprecate_functional_name_only: bool = False, ) -> None: if new_functional_name and not old_functional_name: raise ValueError("Old functional API needs to be specified for the deprecation warning.") if new_argument_name and not old_argument_name: raise ValueError("Old argument name needs to be specified for the deprecation warning.") if old_functional_name and old_argument_name: raise ValueError("Deprecating warning for functional API and argument should be separated.") msg = f"`{old_class_name}()`" if deprecate_functional_name_only and old_functional_name: msg = f"{msg}'s functional API `.{old_functional_name}()` is" elif old_functional_name: msg = f"{msg} and its functional API `.{old_functional_name}()` are" elif old_argument_name: msg = f"The argument `{old_argument_name}` of {msg} is" else: msg = f"{msg} is" msg = ( f"{msg} deprecated since {deprecation_version} and will be removed in {removal_version}." f"\nSee https://github.com/pytorch/data/issues/163 for details." ) if new_class_name or new_functional_name: msg = f"{msg}\nPlease use" if new_class_name: msg = f"{msg} `{new_class_name}()`" if new_class_name and new_functional_name: msg = f"{msg} or" if new_functional_name: msg = f"{msg} `.{new_functional_name}()`" msg = f"{msg} instead." if new_argument_name: msg = f"{msg}\nPlease use `{old_class_name}({new_argument_name}=)` instead." warnings.warn(msg, FutureWarning) class StreamWrapper: """ StreamWrapper is introduced to wrap file handler generated by DataPipe operation like `FileOpener`. StreamWrapper would guarantee the wrapped file handler is closed when it's out of scope. """ session_streams: Dict[Any, int] = {} debug_unclosed_streams: bool = False def __init__(self, file_obj, parent_stream=None, name=None): self.file_obj = file_obj self.child_counter = 0 self.parent_stream = parent_stream self.close_on_last_child = False self.name = name self.closed = False if parent_stream is not None: if not isinstance(parent_stream, StreamWrapper): raise RuntimeError('Parent stream should be StreamWrapper, {} was given'.format(type(parent_stream))) parent_stream.child_counter += 1 self.parent_stream = parent_stream if StreamWrapper.debug_unclosed_streams: StreamWrapper.session_streams[self] = 1 @classmethod def close_streams(cls, v, depth=0): """ Traverse structure and attempts to close all found StreamWrappers on best effort basis. """ if depth > 10: return if isinstance(v, StreamWrapper): v.close() else: # Traverse only simple structures if isinstance(v, dict): for kk, vv in v.items(): cls.close_streams(vv, depth=depth + 1) elif isinstance(v, list) or isinstance(v, tuple): for vv in v: cls.close_streams(vv, depth=depth + 1) def __getattr__(self, name): file_obj = self.__dict__['file_obj'] return getattr(file_obj, name) def close(self, *args, **kwargs): if StreamWrapper.debug_unclosed_streams: del StreamWrapper.session_streams[self] if hasattr(self, "parent_stream") and self.parent_stream is not None: self.parent_stream.child_counter -= 1 if not self.parent_stream.child_counter and self.parent_stream.close_on_last_child: self.parent_stream.close() try: self.file_obj.close(*args, **kwargs) except AttributeError: pass self.closed = True def autoclose(self): """ Close steam if there is no children, or make it to be automatically closed as soon as all child streams are closed. """ if self.child_counter == 0: self.close() self.close_on_last_child = True def __dir__(self): attrs = list(self.__dict__.keys()) + list(StreamWrapper.__dict__.keys()) attrs += dir(self.file_obj) return list(set(list(attrs))) def __del__(self): if not self.closed: self.close() def __iter__(self): for line in self.file_obj: yield line def __next__(self): return next(self.file_obj) def __repr__(self): if self.name is None: return f"StreamWrapper<{self.file_obj!r}>" else: return f"StreamWrapper<{self.name},{self.file_obj!r}>" def __getstate__(self): return self.file_obj def __setstate__(self, obj): self.file_obj = obj
pytorch-master
torch/utils/data/datapipes/utils/common.py
from torch.utils.data.datapipes._hook_iterator import _SnapshotState from torch.utils.data.datapipes.datapipe import IterDataPipe from torch.utils.data.graph_settings import apply_shuffle_seed # TODO: Caveats # 1. Caller (either the ReadingService or DataLoader) must pass in the initial RNG # 2. `in_batch_shuffle` and `bucketbatch` are not compatible with this because they currently # lack the option to `set_seed`. def _simple_graph_snapshot_restoration(datapipe: IterDataPipe, n_iterations: int, rng=None) -> None: r""" This function will restore a snapshot by fast-forwarding the given DataPipe by ``n_iterations``, and in the process, fast-forward its parent DataPipes as well at the cost of re-doing every computation. For instance, applying this function to the final DataPipe of a graph will restore the snapshot (via fast-forward) every DataPipe within the graph. After you deserialize a DataPipe, you can use its `_number_of_samples_yielded` attribute as the input to this function to forward the DataPipe. A DataPipe cannot be restored twice in a row unless there is an iteration started between the restoration attempts. Note: This is the simplest but least efficient way to fast-forward a DataPipe. Usage of other fast-forwarding methods (custom ones if necessary) are recommended. Args: datapipe: IterDataPipe to be fast-forwarded n_iterations: number of iterations to fast-forward rng: ``Optional[torch.Generator]``. If not ``None``, this RNG will be used for shuffling. The generator should be in its `initial` state as it was first passed into ``DataLoader`` or ``ReadingService``. """ if datapipe._snapshot_state == _SnapshotState.Restored: raise RuntimeError( "Snapshot restoration cannot be applied. You can only restore simple snapshot to the graph " "if your graph has not been restored.") # For this snapshot restoration function, we want the DataPipe to be at its initial state prior to # simple fast-forwarding. Therefore, we need to call `reset` twice, because if `SnapshotState` is `Restored`, # the first reset will not actually reset. datapipe.reset() # This ensures `SnapshotState` is `Iterating` by this point, even if it was `Restored`. apply_shuffle_seed(datapipe, rng) remainder = n_iterations it = iter(datapipe) # This always reset the DataPipe if it hasn't already. while remainder > 0: try: next(it) remainder -= 1 except StopIteration: raise RuntimeError(f"Fast-forward {datapipe} by {n_iterations} iterations " "exceeds the number of samples available.") datapipe._fast_forward_iterator = it # While the DataPipe has `_fast_forward_iterator`, `next()` will get result from there instead of elsewhere. # This will prevent the DataPipe from resetting in the `iter()` call # If another DataPipe is consuming it, it won't have to start over again datapipe._snapshot_state = _SnapshotState.Restored
pytorch-master
torch/utils/data/datapipes/utils/snapshot.py
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn from typing import Callable, TypeVar from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import MapDataPipe __all__ = ["MapperMapDataPipe", "default_fn"] T_co = TypeVar('T_co', covariant=True) # Default function to return each item directly # In order to keep datapipe picklable, eliminates the usage # of python lambda function def default_fn(data): return data @functional_datapipe('map') class MapperMapDataPipe(MapDataPipe[T_co]): r""" Apply the input function over each item from the source DataPipe (functional name: ``map``). The function can be any regular Python function or partial object. Lambda function is not recommended as it is not supported by pickle. Args: datapipe: Source MapDataPipe fn: Function being applied to each item Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper, Mapper >>> def add_one(x): ... return x + 1 >>> dp = SequenceWrapper(range(10)) >>> map_dp_1 = dp.map(add_one) >>> list(map_dp_1) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> map_dp_2 = Mapper(dp, lambda x: x + 1) >>> list(map_dp_2) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] """ datapipe: MapDataPipe fn: Callable def __init__( self, datapipe: MapDataPipe, fn: Callable = default_fn, ) -> None: super().__init__() self.datapipe = datapipe _check_unpickable_fn(fn) self.fn = fn # type: ignore[assignment] def __len__(self) -> int: return len(self.datapipe) def __getitem__(self, index) -> T_co: return self.fn(self.datapipe[index])
pytorch-master
torch/utils/data/datapipes/map/callable.py
from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import MapDataPipe, DataChunk from typing import List, Optional, Sized, TypeVar __all__ = ["BatcherMapDataPipe", ] T = TypeVar('T') @functional_datapipe('batch') class BatcherMapDataPipe(MapDataPipe[DataChunk]): r""" Create mini-batches of data (functional name: ``batch``). An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``, or ``length % batch_size`` for the last batch if ``drop_last`` is set to ``False``. Args: datapipe: Iterable DataPipe being batched batch_size: The size of each batch drop_last: Option to drop the last batch if it's not full Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp = SequenceWrapper(range(10)) >>> batch_dp = dp.batch(batch_size=2) >>> list(batch_dp) [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]] """ datapipe: MapDataPipe batch_size: int drop_last: bool length: Optional[int] def __init__(self, datapipe: MapDataPipe[T], batch_size: int, drop_last: bool = False, wrapper_class=DataChunk, ) -> None: assert batch_size > 0, "Batch size is required to be larger than 0!" super().__init__() self.datapipe = datapipe self.batch_size = batch_size self.drop_last = drop_last self.length = None self.wrapper_class = wrapper_class def __getitem__(self, index) -> DataChunk: batch: List = [] indices = range(index * self.batch_size, (index + 1) * self.batch_size) try: for i in indices: batch.append(self.datapipe[i]) return self.wrapper_class(batch) except IndexError: if not self.drop_last and len(batch) > 0: return self.wrapper_class(batch) else: raise IndexError(f"Index {index} is out of bound.") def __len__(self) -> int: if self.length is not None: return self.length if isinstance(self.datapipe, Sized): if self.drop_last: self.length = len(self.datapipe) // self.batch_size else: self.length = (len(self.datapipe) + self.batch_size - 1) // self.batch_size return self.length raise TypeError("{} instance doesn't have valid length".format(type(self).__name__))
pytorch-master
torch/utils/data/datapipes/map/grouping.py
# Functional DataPipe from torch.utils.data.datapipes.map.callable import MapperMapDataPipe as Mapper from torch.utils.data.datapipes.map.combinatorics import ShufflerMapDataPipe as Shuffler from torch.utils.data.datapipes.map.combining import ( ConcaterMapDataPipe as Concater, ZipperMapDataPipe as Zipper ) from torch.utils.data.datapipes.map.grouping import ( BatcherMapDataPipe as Batcher ) from torch.utils.data.datapipes.map.utils import SequenceWrapperMapDataPipe as SequenceWrapper __all__ = ['Batcher', 'Concater', 'Mapper', 'SequenceWrapper', 'Shuffler', 'Zipper'] # Please keep this list sorted assert __all__ == sorted(__all__)
pytorch-master
torch/utils/data/datapipes/map/__init__.py
from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import MapDataPipe from typing import Sized, Tuple, TypeVar __all__ = ["ConcaterMapDataPipe", "ZipperMapDataPipe"] T_co = TypeVar('T_co', covariant=True) @functional_datapipe('concat') class ConcaterMapDataPipe(MapDataPipe): r""" Concatenate multiple Map DataPipes (functional name: ``concat``). The new index of is the cumulative sum of source DataPipes. For example, if there are 2 source DataPipes both with length 5, index 0 to 4 of the resulting `ConcatMapDataPipe` would refer to elements of the first DataPipe, and 5 to 9 would refer to elements of the second DataPipe. Args: datapipes: Map DataPipes being concatenated Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp1 = SequenceWrapper(range(3)) >>> dp2 = SequenceWrapper(range(3)) >>> concat_dp = dp1.concat(dp2) >>> list(concat_dp) [0, 1, 2, 0, 1, 2] """ datapipes: Tuple[MapDataPipe] length: int def __init__(self, *datapipes: MapDataPipe): if len(datapipes) == 0: raise ValueError("Expected at least one DataPipe, but got nothing") if not all(isinstance(dp, MapDataPipe) for dp in datapipes): raise TypeError("Expected all inputs to be `MapDataPipe`") if not all(isinstance(dp, Sized) for dp in datapipes): raise TypeError("Expected all inputs to be `Sized`") self.datapipes = datapipes # type: ignore[assignment] self.length = -1 def __getitem__(self, index) -> T_co: offset = 0 for dp in self.datapipes: if index - offset < len(dp): return dp[index - offset] else: offset += len(dp) raise IndexError("Index {} is out of range.".format(index)) def __len__(self) -> int: if self.length == -1: self.length = sum(len(dp) for dp in self.datapipes) return self.length @functional_datapipe('zip') class ZipperMapDataPipe(MapDataPipe[Tuple[T_co, ...]]): r""" Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``). This MataPipe is out of bound as soon as the shortest input DataPipe is exhausted. Args: *datapipes: Map DataPipes being aggregated Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp1 = SequenceWrapper(range(3)) >>> dp2 = SequenceWrapper(range(10, 13)) >>> zip_dp = dp1.zip(dp2) >>> list(zip_dp) [(0, 10), (1, 11), (2, 12)] """ datapipes: Tuple[MapDataPipe[T_co], ...] length: int def __init__(self, *datapipes: MapDataPipe[T_co]) -> None: if len(datapipes) == 0: raise ValueError("Expected at least one DataPipe, but got nothing") if not all(isinstance(dp, MapDataPipe) for dp in datapipes): raise TypeError("Expected all inputs to be `MapDataPipe`") if not all(isinstance(dp, Sized) for dp in datapipes): raise TypeError("Expected all inputs to be `Sized`") self.datapipes = datapipes self.length = -1 def __getitem__(self, index) -> Tuple[T_co, ...]: res = [] for dp in self.datapipes: try: res.append(dp[index]) except IndexError: raise IndexError(f"Index {index} is out of range for one of the input MapDataPipes {dp}.") return tuple(res) def __len__(self) -> int: if self.length == -1: self.length = min(len(dp) for dp in self.datapipes) return self.length
pytorch-master
torch/utils/data/datapipes/map/combining.py
import copy import warnings from torch.utils.data.datapipes.datapipe import MapDataPipe __all__ = ["SequenceWrapperMapDataPipe", ] class SequenceWrapperMapDataPipe(MapDataPipe): r""" Wraps a sequence object into a MapDataPipe. Args: sequence: Sequence object to be wrapped into an MapDataPipe deepcopy: Option to deepcopy input sequence object .. note:: If ``deepcopy`` is set to False explicitly, users should ensure that data pipeline doesn't contain any in-place operations over the iterable instance, in order to prevent data inconsistency across iterations. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp = SequenceWrapper(range(10)) >>> list(dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> dp = SequenceWrapper({'a': 100, 'b': 200, 'c': 300, 'd': 400}) >>> dp['a'] 100 """ def __init__(self, sequence, deepcopy=True): if deepcopy: try: self.sequence = copy.deepcopy(sequence) except TypeError: warnings.warn( "The input sequence can not be deepcopied, " "please be aware of in-place modification would affect source data" ) self.sequence = sequence else: self.sequence = sequence def __getitem__(self, index): return self.sequence[index] def __len__(self): return len(self.sequence)
pytorch-master
torch/utils/data/datapipes/map/utils.py
import random from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import MapDataPipe from typing import Iterator, List, Optional, TypeVar __all__ = ["ShufflerMapDataPipe", ] T_co = TypeVar('T_co', covariant=True) @functional_datapipe('shuffle') class ShufflerMapDataPipe(MapDataPipe[T_co]): r""" Shuffle the input DataPipe via its indices (functional name: ``shuffle``). When it is used with :class:`~torch.utils.data.DataLoader`, the methods to set up random seed are different based on :attr:`num_workers`. For single-process mode (:attr:`num_workers == 0`), the random seed is set before the :class:`~torch.utils.data.DataLoader` in the main process. For multi-process mode (:attr:`num_worker > 0`), ``worker_init_fn`` is used to set up a random seed for each worker process. Args: datapipe: MapDataPipe being shuffled indices: a list of indices of the MapDataPipe. If not provided, we assume it uses 0-based indexing Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp = SequenceWrapper(range(10)) >>> shuffle_dp = dp.shuffle() >>> list(shuffle_dp) [0, 4, 1, 6, 3, 2, 9, 5, 7, 8] """ datapipe: MapDataPipe[T_co] def __init__(self, datapipe: MapDataPipe[T_co], *, indices: Optional[List] = None, ) -> None: super().__init__() self.datapipe = datapipe self.indices = list(range(len(datapipe))) if indices is None else indices self.index_map = {index_name: num_index for num_index, index_name in enumerate(self.indices)} # We do not lazily shuffle because this way is significantly faster in terms of total time random.shuffle(self.indices) def __getitem__(self, index) -> T_co: try: old_numeric_index = self.index_map[index] except KeyError: raise IndexError(f"Index {index} is out of range for {self}.") new_index = self.indices[old_numeric_index] return self.datapipe[new_index] # Without __iter__ implemented, by default it tries to use 0-index, # which doesn't work when there is a custom index. def __iter__(self) -> Iterator[T_co]: for i in self.indices: yield self.datapipe[i] def __len__(self) -> int: return len(self.datapipe)
pytorch-master
torch/utils/data/datapipes/map/combinatorics.py
pytorch-master
torch/contrib/__init__.py
import time from collections import defaultdict from functools import partial from typing import DefaultDict import torch # Unfortunately it doesn't seem as if there was any way to get TensorBoard to do # anything without having TF installed, and so this file has a hard dependency on it # as well. It really is a debugging tool, so it doesn't matter. try: from tensorflow.core.util import event_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.python.summary.writer.writer import FileWriter except ImportError: raise ImportError("TensorBoard visualization of GraphExecutors requires having " "TensorFlow installed") from None def dump_tensorboard_summary(graph_executor, logdir): with FileWriter(logdir) as w: pb_graph = visualize(graph_executor) evt = event_pb2.Event(wall_time=time.time(), graph_def=pb_graph.SerializeToString()) w.add_event(evt) def visualize(graph, name_prefix='', pb_graph=None, executors_it=None): """Visualizes an independent graph, or a graph executor.""" value_map = {} pb_graph = pb_graph or graph_pb2.GraphDef() if isinstance(graph, torch._C.GraphExecutorState): visualize_graph_executor(graph, name_prefix, pb_graph, partial(visualize, pb_graph=pb_graph)) return pb_graph # Set up an input node input_node = pb_graph.node.add(op='input', name=name_prefix + 'input') for i, value in enumerate(graph.param_node().outputs()): value_map[value.unique()] = name_prefix + 'input:' + str(i) visualize_rec(graph, value_map, name_prefix, pb_graph, executors_it) # Gather all outputs return_node = pb_graph.node.add(op='output', name=name_prefix + 'output') for value in graph.return_node().inputs(): return_node.input.append(value_map[value.unique()]) return pb_graph def visualize_graph_executor(state, name_prefix, pb_graph, inline_graph): """Appends the state of a given GraphExecutor to the graph protobuf. Args: state (GraphExecutor or GraphExecutorState): GraphExecutor to display. name_prefix (str): Name prefix of the containing subgraph. pb_graph (GraphDef): graph to append to. inline_graph (Callable): a function that handles setting up a value_map, so that some graphs in here can be inlined. This is necessary, because this will simply be `visualize` for the top-level GraphExecutor, or `inline_graph` for all nested ones. The signature should look like (Graph, name_prefix) -> (). It will be called exactly once. The strategy is to embed all different configurations as independent subgraphs, while inlining the original graph as the one that actually produces the values. """ if state.autograd_fallback_graph is not None: visualize(graph=state.autograd_fallback_graph, name_prefix=name_prefix + 'autograd_fallback/', pb_graph=pb_graph, executors_it=iter(state.autograd_fallback.executors())) for i, (arg_spec, plan) in enumerate(state.execution_plans.items()): subgraph_name = name_prefix + 'plan{}/'.format(i) # Create a disconnected node that will keep information regarding the input # types of this trace. This is unfortunately a bit too verbose to be included # in the subgraph name. input_kinds = pb_graph.node.add(op='INPUT_KIND', name=subgraph_name) input_kinds.attr['inputs'].s = repr(arg_spec).encode('ascii') visualize(plan.graph, subgraph_name, pb_graph, iter(plan.code.executors())) # Show gradient as an independent subgraph of this plan if plan.grad_executor is not None: grad_subgraph_name = subgraph_name + 'grad/' visualize(plan.grad_executor, grad_subgraph_name, pb_graph) return inline_graph(state.graph, name_prefix + 'original/') def visualize_rec(graph, value_map, name_prefix, pb_graph, executors_it=None): """Recursive part of visualize (basically skips setting up the input and output nodes).""" def inline_graph(subgraph, name, node): rec_value_map = {inp.unique(): value_map[val.unique()] for inp, val in zip(subgraph.inputs(), node.inputs())} visualize_rec(graph=subgraph, value_map=rec_value_map, name_prefix=name, pb_graph=pb_graph) for out, val in zip(subgraph.outputs(), node.outputs()): value_map[val.unique()] = rec_value_map[out.unique()] op_id_counter: DefaultDict[str, int] = defaultdict(int) def name_for(node): kind = node.kind()[node.kind().index('::') + 2:] op_id_counter[kind] += 1 return kind, name_prefix + kind + '_' + str(op_id_counter[kind]) def add_fusion_group(node): op, name = name_for(node) inline_graph(node.g('Subgraph'), name + '/', node) def add_graph_executor(node): op, name = name_for(node) if executors_it is None: add_node(node) else: ge = next(executors_it) visualize_graph_executor(ge, name + '/', pb_graph, partial(inline_graph, node=node)) def add_node(node): if node.kind() == 'prim::FusionGroup': return add_fusion_group(node) elif node.kind() == 'prim::GraphExecutor': return add_graph_executor(node) op, name = name_for(node) pb_node = pb_graph.node.add(op=op, name=name) for value in node.inputs(): pb_node.input.append(value_map[value.unique()]) # TODO: handle attrs for i, value in enumerate(node.outputs()): value_map[value.unique()] = name + ':' + str(i) for node in graph.nodes(): add_node(node)
pytorch-master
torch/contrib/_tensorboard_vis.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/observer.py`, while adding an import statement here. """ from torch.ao.quantization.observer import ( _PartialWrapper, _with_args, _with_callable_args, ABC, ObserverBase, _ObserverBase, MinMaxObserver, MovingAverageMinMaxObserver, PerChannelMinMaxObserver, MovingAveragePerChannelMinMaxObserver, HistogramObserver, PlaceholderObserver, RecordingObserver, NoopObserver, _is_activation_post_process, _is_per_channel_script_obs_instance, get_observer_state_dict, load_observer_state_dict, default_observer, default_placeholder_observer, default_debug_observer, default_weight_observer, default_histogram_observer, default_per_channel_weight_observer, default_dynamic_quant_observer, default_float_qparams_observer, )
pytorch-master
torch/quantization/observer.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/fuse_modules.py`, while adding an import statement here. """ from torch.ao.quantization.fuse_modules import fuse_modules from torch.ao.quantization.fuse_modules import fuse_known_modules from torch.ao.quantization.fuse_modules import get_fuser_method # for backward compatiblity from torch.quantization.fuser_method_mappings import fuse_conv_bn from torch.quantization.fuser_method_mappings import fuse_conv_bn_relu # TODO: These functions are not used outside the `fuse_modules.py` # Keeping here for now, need to remove them later. from torch.ao.quantization.fuse_modules import ( _fuse_modules, _get_module, _set_module, )
pytorch-master
torch/quantization/fuse_modules.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/quantization_mappings.py`, while adding an import statement here. """ from torch.ao.quantization.quantization_mappings import ( DEFAULT_REFERENCE_STATIC_QUANT_MODULE_MAPPINGS, DEFAULT_STATIC_QUANT_MODULE_MAPPINGS, DEFAULT_QAT_MODULE_MAPPINGS, DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS, _INCLUDE_QCONFIG_PROPAGATE_LIST, DEFAULT_FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS, DEFAULT_MODULE_TO_ACT_POST_PROCESS, no_observer_set, get_default_static_quant_module_mappings, get_static_quant_module_class, get_dynamic_quant_module_class, get_default_qat_module_mappings, get_default_dynamic_quant_module_mappings, get_default_qconfig_propagation_list, get_default_compare_output_module_list, get_default_float_to_quantized_operator_mappings, get_quantized_operator, _get_special_act_post_process, _has_special_act_post_process, )
pytorch-master
torch/quantization/quantization_mappings.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/quantize.py`, while adding an import statement here. """ from torch.ao.quantization.quantize import _convert from torch.ao.quantization.quantize import _observer_forward_hook from torch.ao.quantization.quantize import _propagate_qconfig_helper from torch.ao.quantization.quantize import _remove_activation_post_process from torch.ao.quantization.quantize import _remove_qconfig from torch.ao.quantization.quantize import add_observer_ from torch.ao.quantization.quantize import add_quant_dequant from torch.ao.quantization.quantize import convert from torch.ao.quantization.quantize import get_observer_dict from torch.ao.quantization.quantize import get_unique_devices_ from torch.ao.quantization.quantize import is_activation_post_process from torch.ao.quantization.quantize import prepare from torch.ao.quantization.quantize import prepare_qat from torch.ao.quantization.quantize import propagate_qconfig_ from torch.ao.quantization.quantize import quantize from torch.ao.quantization.quantize import quantize_dynamic from torch.ao.quantization.quantize import quantize_qat from torch.ao.quantization.quantize import register_activation_post_process_hook from torch.ao.quantization.quantize import swap_module
pytorch-master
torch/quantization/quantize.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/ns/_numeric_suite.py`, while adding an import statement here. """ from torch.ao.ns._numeric_suite import ( NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST, _find_match, compare_weights, _get_logger_dict_helper, get_logger_dict, Logger, ShadowLogger, OutputLogger, _convert_tuple_to_list, _dequantize_tensor_list, Shadow, prepare_model_with_stubs, _is_identical_module_type, compare_model_stub, get_matching_activations, prepare_model_outputs, compare_model_outputs, )
pytorch-master
torch/quantization/_numeric_suite.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/fake_quantize.py`, while adding an import statement here. """ from torch.ao.quantization.fake_quantize import ( _is_per_channel, _is_per_tensor, _is_symmetric_quant, FakeQuantizeBase, FakeQuantize, FixedQParamsFakeQuantize, FusedMovingAvgObsFakeQuantize, default_fake_quant, default_weight_fake_quant, default_fixed_qparams_range_neg1to1_fake_quant, default_fixed_qparams_range_0to1_fake_quant, default_per_channel_weight_fake_quant, default_histogram_fake_quant, default_fused_act_fake_quant, default_fused_wt_fake_quant, default_fused_per_channel_wt_fake_quant, _is_fake_quant_script_module, disable_fake_quant, enable_fake_quant, disable_observer, enable_observer, )
pytorch-master
torch/quantization/fake_quantize.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/qconfig.py`, while adding an import statement here. """ from torch.ao.quantization.qconfig import ( QConfig, default_qconfig, default_debug_qconfig, default_per_channel_qconfig, QConfigDynamic, default_dynamic_qconfig, float16_dynamic_qconfig, float16_static_qconfig, per_channel_dynamic_qconfig, float_qparams_weight_only_qconfig, default_qat_qconfig, default_weight_only_qconfig, default_activation_only_qconfig, default_qat_qconfig_v2, get_default_qconfig, get_default_qat_qconfig, assert_valid_qconfig, QConfigAny, add_module_to_qconfig_obs_ctr, qconfig_equals )
pytorch-master
torch/quantization/qconfig.py
from .quantize import * # noqa: F403 from .observer import * # noqa: F403 from .qconfig import * # noqa: F403 from .fake_quantize import * # noqa: F403 from .fuse_modules import fuse_modules from .stubs import * # noqa: F403 from .quant_type import * # noqa: F403 from .quantize_jit import * # noqa: F403 # from .quantize_fx import * from .quantization_mappings import * # noqa: F403 from .fuser_method_mappings import * # noqa: F403 def default_eval_fn(model, calib_data): r""" Default evaluation function takes a torch.utils.data.Dataset or a list of input Tensors and run the model on the dataset """ for data, target in calib_data: model(data) # TODO(future PR): fix the typo, should be `__all__` _all__ = [ 'QuantWrapper', 'QuantStub', 'DeQuantStub', # Top level API for eager mode quantization 'quantize', 'quantize_dynamic', 'quantize_qat', 'prepare', 'convert', 'prepare_qat', # Top level API for graph mode quantization on TorchScript 'quantize_jit', 'quantize_dynamic_jit', # Top level API for graph mode quantization on GraphModule(torch.fx) # 'fuse_fx', 'quantize_fx', # TODO: add quantize_dynamic_fx # 'prepare_fx', 'prepare_dynamic_fx', 'convert_fx', 'QuantType', 'quant_type_to_str', # quantization type # custom module APIs 'get_default_static_quant_module_mappings', 'get_static_quant_module_class', 'get_default_dynamic_quant_module_mappings', 'get_default_qat_module_mappings', 'get_default_qconfig_propagation_list', 'get_default_compare_output_module_list', 'get_quantized_operator', 'get_fuser_method', # Sub functions for `prepare` and `swap_module` 'propagate_qconfig_', 'add_quant_dequant', 'add_observer_', 'swap_module', 'default_eval_fn', 'get_observer_dict', 'register_activation_post_process_hook', # Observers 'ObserverBase', 'WeightObserver', 'HistogramObserver', 'observer', 'default_observer', 'default_weight_observer', 'default_placeholder_observer', 'default_per_channel_weight_observer', # FakeQuantize (for qat) 'default_fake_quant', 'default_weight_fake_quant', 'default_fixed_qparams_range_neg1to1_fake_quant', 'default_fixed_qparams_range_0to1_fake_quant', 'default_per_channel_weight_fake_quant', 'default_histogram_fake_quant', # QConfig 'QConfig', 'default_qconfig', 'default_dynamic_qconfig', 'float16_dynamic_qconfig', 'float_qparams_weight_only_qconfig', # QAT utilities 'default_qat_qconfig', 'prepare_qat', 'quantize_qat', # module transformations 'fuse_modules', ]
pytorch-master
torch/quantization/__init__.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/stubs.py`, while adding an import statement here. """ from torch.ao.quantization.stubs import ( QuantStub, DeQuantStub, QuantWrapper )
pytorch-master
torch/quantization/stubs.py
# flake8: noqa: F401 r""" Utils shared by different modes of quantization (eager/graph) This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/utils.py`, while adding an import statement here. """ from torch.ao.quantization.utils import ( activation_dtype, activation_is_int8_quantized, activation_is_statically_quantized, calculate_qmin_qmax, check_min_max_valid, get_combined_dict, get_qconfig_dtypes, get_qparam_dict, get_quant_type, get_swapped_custom_module_class, getattr_from_fqn, is_per_channel, is_per_tensor, weight_dtype, weight_is_quantized, weight_is_statically_quantized, )
pytorch-master
torch/quantization/utils.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/fuser_method_mappings.py`, while adding an import statement here. """ from torch.ao.quantization.fuser_method_mappings import ( fuse_conv_bn, fuse_conv_bn_relu, fuse_linear_bn, DEFAULT_OP_LIST_TO_FUSER_METHOD, get_fuser_method, )
pytorch-master
torch/quantization/fuser_method_mappings.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/quantize_jit.py`, while adding an import statement here. """ from torch.ao.quantization.quantize_jit import ( _check_is_script_module, _check_forward_method, script_qconfig, script_qconfig_dict, fuse_conv_bn_jit, _prepare_jit, prepare_jit, prepare_dynamic_jit, _convert_jit, convert_jit, convert_dynamic_jit, _quantize_jit, quantize_jit, quantize_dynamic_jit )
pytorch-master
torch/quantization/quantize_jit.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/quant_type.py`, while adding an import statement here. """ from torch.ao.quantization.quant_type import QuantType from torch.ao.quantization.quant_type import quant_type_to_str
pytorch-master
torch/quantization/quant_type.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/quantize_fx.py`, while adding an import statement here. """ from torch.ao.quantization.quantize_fx import ( _check_is_graph_module, _swap_ff_with_fxff, _fuse_fx, Scope, ScopeContextManager, QuantizationTracer, _prepare_fx, _prepare_standalone_module_fx, fuse_fx, prepare_fx, prepare_qat_fx, _convert_fx, convert_fx, _convert_standalone_module_fx, ) from torch.ao.quantization.fx.graph_module import ( ObservedGraphModule, )
pytorch-master
torch/quantization/quantize_fx.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/ns/_numeric_suite_fx.py`, while adding an import statement here. """ from torch.ao.ns._numeric_suite_fx import ( RNNReturnType, OutputLogger, NSTracer, _extract_weights_one_model, _extract_weights_impl, extract_weights, _add_loggers_one_model, _add_loggers_impl, add_loggers, _extract_logger_info_one_model, extract_logger_info, _add_shadow_loggers_impl, add_shadow_loggers, extract_shadow_logger_info, extend_logger_results_with_comparison, )
pytorch-master
torch/quantization/_numeric_suite_fx.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.graph_module import ( GraphModule, FusedGraphModule, ObservedGraphModule, is_observed_module, ObservedStandaloneGraphModule, is_observed_standalone_module, QuantizedGraphModule )
pytorch-master
torch/quantization/fx/graph_module.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.fusion_patterns import ( FuseHandler, DefaultFuseHandler, )
pytorch-master
torch/quantization/fx/fusion_patterns.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx._equalize import ( reshape_scale, _InputEqualizationObserver, _WeightEqualizationObserver, calculate_equalization_scale, EqualizationQConfig, input_equalization_observer, weight_equalization_observer, default_equalization_qconfig, fused_module_supports_equalization, nn_module_supports_equalization, custom_module_supports_equalization, node_supports_equalization, is_equalization_observer, get_op_node_and_weight_eq_obs, maybe_get_weight_eq_obs_node, maybe_get_next_input_eq_obs, maybe_get_next_equalization_scale, scale_input_observer, scale_weight_node, scale_weight_functional, clear_weight_quant_obs_node, remove_node, update_obs_for_equalization, convert_eq_obs, _convert_equalization_ref, get_layer_sqnr_dict, get_equalization_qconfig_dict, CUSTOM_MODULE_SUPP_LIST, )
pytorch-master
torch/quantization/fx/_equalize.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.quantization_types import ( Pattern, QuantizerCls )
pytorch-master
torch/quantization/fx/quantization_types.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.convert import convert
pytorch-master
torch/quantization/fx/convert.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ # omitting files that's unlikely to be used right now, for example # the newly added lower_to_fbgemm etc. from torch.ao.quantization.fx.prepare import prepare from torch.ao.quantization.fx.convert import convert from torch.ao.quantization.fx.fuse import fuse
pytorch-master
torch/quantization/fx/__init__.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.utils import ( graph_pretty_str, get_per_tensor_qparams, quantize_node, get_custom_module_class_keys, get_linear_prepack_op_for_dtype, get_qconv_prepack_op, get_qconv_op, get_new_attr_name_with_prefix, graph_module_from_producer_nodes, assert_and_get_unique_device, create_getattr_from_value, create_qparam_nodes, all_node_args_have_no_tensors, node_return_type_is_int, get_non_observable_arg_indexes_and_types, is_get_tensor_info_node, maybe_get_next_module )
pytorch-master
torch/quantization/fx/utils.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.pattern_utils import ( QuantizeHandler, register_fusion_pattern, get_default_fusion_patterns, register_quant_pattern, get_default_quant_patterns, get_default_output_activation_post_process_map ) # QuantizeHandler.__module__ = _NAMESPACE register_fusion_pattern.__module__ = "torch.quantization.fx.pattern_utils" get_default_fusion_patterns.__module__ = "torch.quantization.fx.pattern_utils" register_quant_pattern.__module__ = "torch.quantization.fx.pattern_utils" get_default_quant_patterns.__module__ = "torch.quantization.fx.pattern_utils" get_default_output_activation_post_process_map.__module__ = "torch.quantization.fx.pattern_utils" # __all__ = [ # "QuantizeHandler", # "register_fusion_pattern", # "get_default_fusion_patterns", # "register_quant_pattern", # "get_default_quant_patterns", # "get_default_output_activation_post_process_map", # ]
pytorch-master
torch/quantization/fx/pattern_utils.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.fuse import fuse
pytorch-master
torch/quantization/fx/fuse.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.match_utils import ( MatchResult, MatchAllNode, is_match, find_matches )
pytorch-master
torch/quantization/fx/match_utils.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.prepare import ( prepare )
pytorch-master
torch/quantization/fx/prepare.py
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the appropriate files under `torch/ao/quantization/fx/`, while adding an import statement here. """ from torch.ao.quantization.fx.quantization_patterns import ( QuantizeHandler, BinaryOpQuantizeHandler, CatQuantizeHandler, ConvReluQuantizeHandler, LinearReLUQuantizeHandler, BatchNormQuantizeHandler, EmbeddingQuantizeHandler, RNNDynamicQuantizeHandler, DefaultNodeQuantizeHandler, FixedQParamsOpQuantizeHandler, CopyNodeQuantizeHandler, CustomModuleQuantizeHandler, GeneralTensorShapeOpQuantizeHandler, StandaloneModuleQuantizeHandler ) QuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" BinaryOpQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" CatQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" ConvReluQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" LinearReLUQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" BatchNormQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" EmbeddingQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" RNNDynamicQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" DefaultNodeQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" FixedQParamsOpQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" CopyNodeQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" CustomModuleQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" GeneralTensorShapeOpQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns" StandaloneModuleQuantizeHandler.__module__ = "torch.quantization.fx.quantization_patterns"
pytorch-master
torch/quantization/fx/quantization_patterns.py
import torch from torch._C import _add_docstr, _special # type: ignore[attr-defined] from torch._torch_docs import common_args, multi_dim_common __all__ = [ 'airy_ai', 'bessel_j0', 'bessel_j1', 'bessel_y0', 'bessel_y1', 'chebyshev_polynomial_t', 'chebyshev_polynomial_u', 'chebyshev_polynomial_v', 'chebyshev_polynomial_w', 'digamma', 'entr', 'erf', 'erfc', 'erfcx', 'erfinv', 'exp2', 'expit', 'expm1', 'gammainc', 'gammaincc', 'gammaln', 'hermite_polynomial_h', 'hermite_polynomial_he', 'i0', 'i0e', 'i1', 'i1e', 'laguerre_polynomial_l', 'legendre_polynomial_p', 'log1p', 'log_ndtr', 'log_softmax', 'logit', 'logsumexp', 'modified_bessel_i0', 'modified_bessel_i1', 'modified_bessel_k0', 'modified_bessel_k1', 'multigammaln', 'ndtr', 'ndtri', 'polygamma', 'psi', 'round', 'shifted_chebyshev_polynomial_t', 'shifted_chebyshev_polynomial_u', 'shifted_chebyshev_polynomial_v', 'shifted_chebyshev_polynomial_w', 'scaled_modified_bessel_k0', 'scaled_modified_bessel_k1', 'sinc', 'softmax', 'spherical_bessel_j0', 'xlog1py', 'xlogy', 'zeta', ] Tensor = torch.Tensor entr = _add_docstr(_special.special_entr, r""" entr(input, *, out=None) -> Tensor Computes the entropy on :attr:`input` (as defined below), elementwise. .. math:: \begin{align} \text{entr(x)} = \begin{cases} -x * \ln(x) & x > 0 \\ 0 & x = 0.0 \\ -\infty & x < 0 \end{cases} \end{align} """ + """ Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.arange(-0.5, 1, 0.5) >>> a tensor([-0.5000, 0.0000, 0.5000]) >>> torch.special.entr(a) tensor([ -inf, 0.0000, 0.3466]) """) psi = _add_docstr(_special.special_psi, r""" psi(input, *, out=None) -> Tensor Alias for :func:`torch.special.digamma`. """) digamma = _add_docstr(_special.special_digamma, r""" digamma(input, *, out=None) -> Tensor Computes the logarithmic derivative of the gamma function on `input`. .. math:: \digamma(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} """ + r""" Args: input (Tensor): the tensor to compute the digamma function on Keyword args: {out} .. note:: This function is similar to SciPy's `scipy.special.digamma`. .. note:: From PyTorch 1.8 onwards, the digamma function returns `-Inf` for `0`. Previously it returned `NaN` for `0`. Example:: >>> a = torch.tensor([1, 0.5]) >>> torch.special.digamma(a) tensor([-0.5772, -1.9635]) """.format(**common_args)) gammaln = _add_docstr(_special.special_gammaln, r""" gammaln(input, *, out=None) -> Tensor Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`. .. math:: \text{out}_{i} = \ln \Gamma(|\text{input}_{i}|) """ + """ Args: {input} Keyword args: {out} Example:: >>> a = torch.arange(0.5, 2, 0.5) >>> torch.special.gammaln(a) tensor([ 0.5724, 0.0000, -0.1208]) """.format(**common_args)) polygamma = _add_docstr(_special.special_polygamma, r""" polygamma(n, input, *, out=None) -> Tensor Computes the :math:`n^{th}` derivative of the digamma function on :attr:`input`. :math:`n \geq 0` is called the order of the polygamma function. .. math:: \psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x) .. note:: This function is implemented only for nonnegative integers :math:`n \geq 0`. """ + """ Args: n (int): the order of the polygamma function {input} Keyword args: {out} Example:: >>> a = torch.tensor([1, 0.5]) >>> torch.special.polygamma(1, a) tensor([1.64493, 4.9348]) >>> torch.special.polygamma(2, a) tensor([ -2.4041, -16.8288]) >>> torch.special.polygamma(3, a) tensor([ 6.4939, 97.4091]) >>> torch.special.polygamma(4, a) tensor([ -24.8863, -771.4742]) """.format(**common_args)) erf = _add_docstr(_special.special_erf, r""" erf(input, *, out=None) -> Tensor Computes the error function of :attr:`input`. The error function is defined as follows: .. math:: \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erf(torch.tensor([0, -1., 10.])) tensor([ 0.0000, -0.8427, 1.0000]) """.format(**common_args)) erfc = _add_docstr(_special.special_erfc, r""" erfc(input, *, out=None) -> Tensor Computes the complementary error function of :attr:`input`. The complementary error function is defined as follows: .. math:: \mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erfc(torch.tensor([0, -1., 10.])) tensor([ 1.0000, 1.8427, 0.0000]) """.format(**common_args)) erfcx = _add_docstr(_special.special_erfcx, r""" erfcx(input, *, out=None) -> Tensor Computes the scaled complementary error function for each element of :attr:`input`. The scaled complementary error function is defined as follows: .. math:: \mathrm{erfcx}(x) = e^{x^2} \mathrm{erfc}(x) """ + r""" """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erfcx(torch.tensor([0, -1., 10.])) tensor([ 1.0000, 5.0090, 0.0561]) """.format(**common_args)) erfinv = _add_docstr(_special.special_erfinv, r""" erfinv(input, *, out=None) -> Tensor Computes the inverse error function of :attr:`input`. The inverse error function is defined in the range :math:`(-1, 1)` as: .. math:: \mathrm{erfinv}(\mathrm{erf}(x)) = x """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erfinv(torch.tensor([0, 0.5, -1.])) tensor([ 0.0000, 0.4769, -inf]) """.format(**common_args)) logit = _add_docstr(_special.special_logit, r""" logit(input, eps=None, *, out=None) -> Tensor Returns a new tensor with the logit of the elements of :attr:`input`. :attr:`input` is clamped to [eps, 1 - eps] when eps is not None. When eps is None and :attr:`input` < 0 or :attr:`input` > 1, the function will yields NaN. .. math:: \begin{align} y_{i} &= \ln(\frac{z_{i}}{1 - z_{i}}) \\ z_{i} &= \begin{cases} x_{i} & \text{if eps is None} \\ \text{eps} & \text{if } x_{i} < \text{eps} \\ x_{i} & \text{if } \text{eps} \leq x_{i} \leq 1 - \text{eps} \\ 1 - \text{eps} & \text{if } x_{i} > 1 - \text{eps} \end{cases} \end{align} """ + r""" Args: {input} eps (float, optional): the epsilon for input clamp bound. Default: ``None`` Keyword args: {out} Example:: >>> a = torch.rand(5) >>> a tensor([0.2796, 0.9331, 0.6486, 0.1523, 0.6516]) >>> torch.special.logit(a, eps=1e-6) tensor([-0.9466, 2.6352, 0.6131, -1.7169, 0.6261]) """.format(**common_args)) logsumexp = _add_docstr(_special.special_logsumexp, r""" logsumexp(input, dim, keepdim=False, *, out=None) Alias for :func:`torch.logsumexp`. """.format(**multi_dim_common)) expit = _add_docstr(_special.special_expit, r""" expit(input, *, out=None) -> Tensor Computes the expit (also known as the logistic sigmoid function) of the elements of :attr:`input`. .. math:: \text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} """ + r""" Args: {input} Keyword args: {out} Example:: >>> t = torch.randn(4) >>> t tensor([ 0.9213, 1.0887, -0.8858, -1.7683]) >>> torch.special.expit(t) tensor([ 0.7153, 0.7481, 0.2920, 0.1458]) """.format(**common_args)) exp2 = _add_docstr(_special.special_exp2, r""" exp2(input, *, out=None) -> Tensor Computes the base two exponential function of :attr:`input`. .. math:: y_{i} = 2^{x_{i}} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.exp2(torch.tensor([0, math.log2(2.), 3, 4])) tensor([ 1., 2., 8., 16.]) """.format(**common_args)) expm1 = _add_docstr(_special.special_expm1, r""" expm1(input, *, out=None) -> Tensor Computes the exponential of the elements minus 1 of :attr:`input`. .. math:: y_{i} = e^{x_{i}} - 1 .. note:: This function provides greater precision than exp(x) - 1 for small values of x. """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.expm1(torch.tensor([0, math.log(2.)])) tensor([ 0., 1.]) """.format(**common_args)) xlog1py = _add_docstr(_special.special_xlog1py, r""" xlog1py(input, other, *, out=None) -> Tensor Computes ``input * log1p(other)`` with the following cases. .. math:: \text{out}_{i} = \begin{cases} \text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\ 0 & \text{if } \text{input}_{i} = 0.0 \text{ and } \text{other}_{i} != \text{NaN} \\ \text{input}_{i} * \text{log1p}(\text{other}_{i})& \text{otherwise} \end{cases} Similar to SciPy's `scipy.special.xlog1py`. """ + r""" Args: input (Number or Tensor) : Multiplier other (Number or Tensor) : Argument .. note:: At least one of :attr:`input` or :attr:`other` must be a tensor. Keyword args: {out} Example:: >>> x = torch.zeros(5,) >>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')]) >>> torch.special.xlog1py(x, y) tensor([0., 0., 0., 0., nan]) >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([3, 2, 1]) >>> torch.special.xlog1py(x, y) tensor([1.3863, 2.1972, 2.0794]) >>> torch.special.xlog1py(x, 4) tensor([1.6094, 3.2189, 4.8283]) >>> torch.special.xlog1py(2, y) tensor([2.7726, 2.1972, 1.3863]) """.format(**common_args)) xlogy = _add_docstr(_special.special_xlogy, r""" xlogy(input, other, *, out=None) -> Tensor Computes ``input * log(other)`` with the following cases. .. math:: \text{out}_{i} = \begin{cases} \text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\ 0 & \text{if } \text{input}_{i} = 0.0 \\ \text{input}_{i} * \log{(\text{other}_{i})} & \text{otherwise} \end{cases} Similar to SciPy's `scipy.special.xlogy`. """ + r""" Args: input (Number or Tensor) : Multiplier other (Number or Tensor) : Argument .. note:: At least one of :attr:`input` or :attr:`other` must be a tensor. Keyword args: {out} Example:: >>> x = torch.zeros(5,) >>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')]) >>> torch.special.xlogy(x, y) tensor([0., 0., 0., 0., nan]) >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([3, 2, 1]) >>> torch.special.xlogy(x, y) tensor([1.0986, 1.3863, 0.0000]) >>> torch.special.xlogy(x, 4) tensor([1.3863, 2.7726, 4.1589]) >>> torch.special.xlogy(2, y) tensor([2.1972, 1.3863, 0.0000]) """.format(**common_args)) i0 = _add_docstr(_special.special_i0, r""" i0(input, *, out=None) -> Tensor Computes the zeroth order modified Bessel function of the first kind for each element of :attr:`input`. .. math:: \text{out}_{i} = I_0(\text{input}_{i}) = \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2} """ + r""" Args: input (Tensor): the input tensor Keyword args: {out} Example:: >>> torch.i0(torch.arange(5, dtype=torch.float32)) tensor([ 1.0000, 1.2661, 2.2796, 4.8808, 11.3019]) """.format(**common_args)) i0e = _add_docstr(_special.special_i0e, r""" i0e(input, *, out=None) -> Tensor Computes the exponentially scaled zeroth order modified Bessel function of the first kind (as defined below) for each element of :attr:`input`. .. math:: \text{out}_{i} = \exp(-|x|) * i0(x) = \exp(-|x|) * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.i0e(torch.arange(5, dtype=torch.float32)) tensor([1.0000, 0.4658, 0.3085, 0.2430, 0.2070]) """.format(**common_args)) i1 = _add_docstr(_special.special_i1, r""" i1(input, *, out=None) -> Tensor Computes the first order modified Bessel function of the first kind (as defined below) for each element of :attr:`input`. .. math:: \text{out}_{i} = \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.i1(torch.arange(5, dtype=torch.float32)) tensor([0.0000, 0.5652, 1.5906, 3.9534, 9.7595]) """.format(**common_args)) i1e = _add_docstr(_special.special_i1e, r""" i1e(input, *, out=None) -> Tensor Computes the exponentially scaled first order modified Bessel function of the first kind (as defined below) for each element of :attr:`input`. .. math:: \text{out}_{i} = \exp(-|x|) * i1(x) = \exp(-|x|) * \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.i1e(torch.arange(5, dtype=torch.float32)) tensor([0.0000, 0.2079, 0.2153, 0.1968, 0.1788]) """.format(**common_args)) ndtr = _add_docstr(_special.special_ndtr, r""" ndtr(input, *, out=None) -> Tensor Computes the area under the standard Gaussian probability density function, integrated from minus infinity to :attr:`input`, elementwise. .. math:: \text{ndtr}(x) = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3])) tensor([0.0013, 0.0228, 0.1587, 0.5000, 0.8413, 0.9772, 0.9987]) """.format(**common_args)) ndtri = _add_docstr(_special.special_ndtri, r""" ndtri(input, *, out=None) -> Tensor Computes the argument, x, for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to :attr:`input`, elementwise. .. math:: \text{ndtri}(p) = \sqrt{2}\text{erf}^{-1}(2p - 1) .. note:: Also known as quantile function for Normal Distribution. """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.ndtri(torch.tensor([0, 0.25, 0.5, 0.75, 1])) tensor([ -inf, -0.6745, 0.0000, 0.6745, inf]) """.format(**common_args)) log_ndtr = _add_docstr(_special.special_log_ndtr, r""" log_ndtr(input, *, out=None) -> Tensor Computes the log of the area under the standard Gaussian probability density function, integrated from minus infinity to :attr:`input`, elementwise. .. math:: \text{log\_ndtr}(x) = \log\left(\frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt \right) """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.log_ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3])) tensor([-6.6077 -3.7832 -1.841 -0.6931 -0.1728 -0.023 -0.0014]) """.format(**common_args)) log1p = _add_docstr(_special.special_log1p, r""" log1p(input, *, out=None) -> Tensor Alias for :func:`torch.log1p`. """) sinc = _add_docstr(_special.special_sinc, r""" sinc(input, *, out=None) -> Tensor Computes the normalized sinc of :attr:`input.` .. math:: \text{out}_{i} = \begin{cases} 1, & \text{if}\ \text{input}_{i}=0 \\ \sin(\pi \text{input}_{i}) / (\pi \text{input}_{i}), & \text{otherwise} \end{cases} """ + r""" Args: {input} Keyword args: {out} Example:: >>> t = torch.randn(4) >>> t tensor([ 0.2252, -0.2948, 1.0267, -1.1566]) >>> torch.special.sinc(t) tensor([ 0.9186, 0.8631, -0.0259, -0.1300]) """.format(**common_args)) round = _add_docstr(_special.special_round, r""" round(input, *, out=None) -> Tensor Alias for :func:`torch.round`. """) softmax = _add_docstr(_special.special_softmax, r""" softmax(input, dim, *, dtype=None) -> Tensor Computes the softmax function. Softmax is defined as: :math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}` It is applied to all slices along dim, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. Args: input (Tensor): input dim (int): A dimension along which softmax will be computed. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is cast to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Examples:: >>> t = torch.ones(2, 2) >>> torch.special.softmax(t, 0) tensor([[0.5000, 0.5000], [0.5000, 0.5000]]) """) log_softmax = _add_docstr(_special.special_log_softmax, r""" log_softmax(input, dim, *, dtype=None) -> Tensor Computes softmax followed by a logarithm. While mathematically equivalent to log(softmax(x)), doing these two operations separately is slower and numerically unstable. This function is computed as: .. math:: \text{log\_softmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) """ + r""" Args: input (Tensor): input dim (int): A dimension along which log_softmax will be computed. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is cast to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> t = torch.ones(2, 2) >>> torch.special.log_softmax(t, 0) tensor([[-0.6931, -0.6931], [-0.6931, -0.6931]]) """) zeta = _add_docstr(_special.special_zeta, r""" zeta(input, other, *, out=None) -> Tensor Computes the Hurwitz zeta function, elementwise. .. math:: \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x} """ + r""" Args: input (Tensor): the input tensor corresponding to `x`. other (Tensor): the input tensor corresponding to `q`. .. note:: The Riemann zeta function corresponds to the case when `q = 1` Keyword args: {out} Example:: >>> x = torch.tensor([2., 4.]) >>> torch.special.zeta(x, 1) tensor([1.6449, 1.0823]) >>> torch.special.zeta(x, torch.tensor([1., 2.])) tensor([1.6449, 0.0823]) >>> torch.special.zeta(2, torch.tensor([1., 2.])) tensor([1.6449, 0.6449]) """.format(**common_args)) multigammaln = _add_docstr(_special.special_multigammaln, r""" multigammaln(input, p, *, out=None) -> Tensor Computes the `multivariate log-gamma function <https://en.wikipedia.org/wiki/Multivariate_gamma_function>`_ with dimension :math:`p` element-wise, given by .. math:: \log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right) where :math:`C = \log(\pi) \times \frac{p (p - 1)}{4}` and :math:`\Gamma(\cdot)` is the Gamma function. All elements must be greater than :math:`\frac{p - 1}{2}`, otherwise an error would be thrown. """ + """ Args: input (Tensor): the tensor to compute the multivariate log-gamma function p (int): the number of dimensions Keyword args: {out} Example:: >>> a = torch.empty(2, 3).uniform_(1, 2) >>> a tensor([[1.6835, 1.8474, 1.1929], [1.0475, 1.7162, 1.4180]]) >>> torch.special.multigammaln(a, 2) tensor([[0.3928, 0.4007, 0.7586], [1.0311, 0.3901, 0.5049]]) """.format(**common_args)) gammainc = _add_docstr(_special.special_gammainc, r""" gammainc(input, other, *, out=None) -> Tensor Computes the regularized lower incomplete gamma function: .. math:: \text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_0^{\text{other}_i} t^{\text{input}_i-1} e^{-t} dt where both :math:`\text{input}_i` and :math:`\text{other}_i` are weakly positive and at least one is strictly positive. If both are zero or either is negative then :math:`\text{out}_i=\text{nan}`. :math:`\Gamma(\cdot)` in the equation above is the gamma function, .. math:: \Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt. See :func:`torch.special.gammaincc` and :func:`torch.special.gammaln` for related functions. Supports :ref:`broadcasting to a common shape <broadcasting-semantics>` and float inputs. .. note:: The backward pass with respect to :attr:`input` is not yet supported. Please open an issue on PyTorch's Github to request it. """ + r""" Args: input (Tensor): the first non-negative input tensor other (Tensor): the second non-negative input tensor Keyword args: {out} Example:: >>> a1 = torch.tensor([4.0]) >>> a2 = torch.tensor([3.0, 4.0, 5.0]) >>> a = torch.special.gammaincc(a1, a2) tensor([0.3528, 0.5665, 0.7350]) tensor([0.3528, 0.5665, 0.7350]) >>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2) tensor([1., 1., 1.]) """.format(**common_args)) gammaincc = _add_docstr(_special.special_gammaincc, r""" gammaincc(input, other, *, out=None) -> Tensor Computes the regularized upper incomplete gamma function: .. math:: \text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_{\text{other}_i}^{\infty} t^{\text{input}_i-1} e^{-t} dt where both :math:`\text{input}_i` and :math:`\text{other}_i` are weakly positive and at least one is strictly positive. If both are zero or either is negative then :math:`\text{out}_i=\text{nan}`. :math:`\Gamma(\cdot)` in the equation above is the gamma function, .. math:: \Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt. See :func:`torch.special.gammainc` and :func:`torch.special.gammaln` for related functions. Supports :ref:`broadcasting to a common shape <broadcasting-semantics>` and float inputs. .. note:: The backward pass with respect to :attr:`input` is not yet supported. Please open an issue on PyTorch's Github to request it. """ + r""" Args: input (Tensor): the first non-negative input tensor other (Tensor): the second non-negative input tensor Keyword args: {out} Example:: >>> a1 = torch.tensor([4.0]) >>> a2 = torch.tensor([3.0, 4.0, 5.0]) >>> a = torch.special.gammaincc(a1, a2) tensor([0.6472, 0.4335, 0.2650]) >>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2) tensor([1., 1., 1.]) """.format(**common_args)) airy_ai = _add_docstr(_special.special_airy_ai, r""" airy_ai(input, *, out=None) -> Tensor Airy function :math:`\text{Ai}\left(\text{input}\right)`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_j0 = _add_docstr(_special.special_bessel_j0, r""" bessel_j0(input, *, out=None) -> Tensor Bessel function of the first kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_j1 = _add_docstr(_special.special_bessel_j1, r""" bessel_j1(input, *, out=None) -> Tensor Bessel function of the first kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_y0 = _add_docstr(_special.special_bessel_y0, r""" bessel_y0(input, *, out=None) -> Tensor Bessel function of the second kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_y1 = _add_docstr(_special.special_bessel_y1, r""" bessel_y1(input, *, out=None) -> Tensor Bessel function of the second kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_t = _add_docstr(_special.special_chebyshev_polynomial_t, r""" chebyshev_polynomial_t(input, n, *, out=None) -> Tensor Chebyshev polynomial of the first kind :math:`T_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. If :math:`n < 6` or :math:`|\text{input}| > 1` the recursion: .. math:: T_{n + 1}(\text{input}) = 2 \times \text{input} \times T_{n}(\text{input}) - T_{n - 1}(\text{input}) is evaluated. Otherwise, the explicit trigonometric formula: .. math:: T_{n}(\text{input}) = \text{cos}(n \times \text{arccos}(x)) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_u = _add_docstr(_special.special_chebyshev_polynomial_u, r""" chebyshev_polynomial_t(input, n, *, out=None) -> Tensor Chebyshev polynomial of the second kind :math:`U_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`2 \times \text{input}` is returned. If :math:`n < 6` or :math:`|\text{input}| > 1`, the recursion: .. math:: T_{n + 1}(\text{input}) = 2 \times \text{input} \times T_{n}(\text{input}) - T_{n - 1}(\text{input}) is evaluated. Otherwise, the explicit trigonometric formula: .. math:: \frac{\text{sin}((n + 1) \times \text{arccos}(\text{input}))}{\text{sin}(\text{arccos}(\text{input}))} is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_v = _add_docstr(_special.special_chebyshev_polynomial_v, r""" chebyshev_polynomial_v(input, n, *, out=None) -> Tensor Chebyshev polynomial of the third kind :math:`V_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_w = _add_docstr(_special.special_chebyshev_polynomial_w, r""" chebyshev_polynomial_w(input, n, *, out=None) -> Tensor Chebyshev polynomial of the fourth kind :math:`W_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) hermite_polynomial_h = _add_docstr(_special.special_hermite_polynomial_h, r""" hermite_polynomial_h(input, n, *, out=None) -> Tensor Physicist’s Hermite polynomial :math:`H_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: H_{n + 1}(\text{input}) = 2 \times \text{input} \times H_{n}(\text{input}) - H_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) hermite_polynomial_he = _add_docstr(_special.special_hermite_polynomial_he, r""" hermite_polynomial_he(input, n, *, out=None) -> Tensor Probabilist’s Hermite polynomial :math:`He_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: He_{n + 1}(\text{input}) = 2 \times \text{input} \times He_{n}(\text{input}) - He_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) laguerre_polynomial_l = _add_docstr(_special.special_laguerre_polynomial_l, r""" laguerre_polynomial_l(input, n, *, out=None) -> Tensor Laguerre polynomial :math:`L_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: L_{n + 1}(\text{input}) = 2 \times \text{input} \times L_{n}(\text{input}) - L_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) legendre_polynomial_p = _add_docstr(_special.special_legendre_polynomial_p, r""" legendre_polynomial_p(input, n, *, out=None) -> Tensor Legendre polynomial :math:`P_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: P_{n + 1}(\text{input}) = 2 \times \text{input} \times P_{n}(\text{input}) - P_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) modified_bessel_i0 = _add_docstr(_special.special_modified_bessel_i0, r""" modified_bessel_i0(input, *, out=None) -> Tensor Modified Bessel function of the first kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) modified_bessel_i1 = _add_docstr(_special.special_modified_bessel_i1, r""" modified_bessel_i1(input, *, out=None) -> Tensor Modified Bessel function of the first kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) modified_bessel_k0 = _add_docstr(_special.special_modified_bessel_k0, r""" modified_bessel_k0(input, *, out=None) -> Tensor Modified Bessel function of the second kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) modified_bessel_k1 = _add_docstr(_special.special_modified_bessel_k1, r""" modified_bessel_k1(input, *, out=None) -> Tensor Modified Bessel function of the second kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) scaled_modified_bessel_k0 = _add_docstr(_special.special_scaled_modified_bessel_k0, r""" scaled_modified_bessel_k0(input, *, out=None) -> Tensor Scaled modified Bessel function of the second kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) scaled_modified_bessel_k1 = _add_docstr(_special.special_scaled_modified_bessel_k1, r""" scaled_modified_bessel_k1(input, *, out=None) -> Tensor Scaled modified Bessel function of the second kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_t = _add_docstr(_special.special_shifted_chebyshev_polynomial_t, r""" shifted_chebyshev_polynomial_t(input, n, *, out=None) -> Tensor Chebyshev polynomial of the first kind :math:`T_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_u = _add_docstr(_special.special_shifted_chebyshev_polynomial_u, r""" shifted_chebyshev_polynomial_u(input, n, *, out=None) -> Tensor Chebyshev polynomial of the second kind :math:`U_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_v = _add_docstr(_special.special_shifted_chebyshev_polynomial_v, r""" shifted_chebyshev_polynomial_v(input, n, *, out=None) -> Tensor Chebyshev polynomial of the third kind :math:`V_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_w = _add_docstr(_special.special_shifted_chebyshev_polynomial_w, r""" shifted_chebyshev_polynomial_w(input, n, *, out=None) -> Tensor Chebyshev polynomial of the fourth kind :math:`W_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) spherical_bessel_j0 = _add_docstr(_special.special_spherical_bessel_j0, r""" spherical_bessel_j0(input, *, out=None) -> Tensor Spherical Bessel function of the first kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args))
pytorch-master
torch/special/__init__.py
""" This module contains tensor creation utilities. """ import torch from typing import Optional, List, Tuple, Union, cast import math import collections.abc # Used by make_tensor for generating complex tensor. complex_to_corresponding_float_type_map = {torch.complex32: torch.float16, torch.complex64: torch.float32, torch.complex128: torch.float64} float_to_corresponding_complex_type_map = {v: k for k, v in complex_to_corresponding_float_type_map.items()} def make_tensor( *shape: Union[int, torch.Size, List[int], Tuple[int, ...]], dtype: torch.dtype, device: Union[str, torch.device], low: Optional[float] = None, high: Optional[float] = None, requires_grad: bool = False, noncontiguous: bool = False, exclude_zero: bool = False ) -> torch.Tensor: r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with values uniformly drawn from ``[low, high)``. If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable finite values then they are clamped to the lowest or highest representable finite value, respectively. If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`, which depend on :attr:`dtype`. +---------------------------+------------+----------+ | ``dtype`` | ``low`` | ``high`` | +===========================+============+==========+ | boolean type | ``0`` | ``2`` | +---------------------------+------------+----------+ | unsigned integral type | ``0`` | ``10`` | +---------------------------+------------+----------+ | signed integral types | ``-9`` | ``10`` | +---------------------------+------------+----------+ | floating types | ``-9`` | ``9`` | +---------------------------+------------+----------+ | complex types | ``-9`` | ``9`` | +---------------------------+------------+----------+ Args: shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor. dtype (:class:`torch.dtype`): The data type of the returned tensor. device (Union[str, torch.device]): The device of the returned tensor. low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is clamped to the least representable finite value of the given dtype. When ``None`` (default), this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``. high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``. requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``. noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is ignored if the constructed tensor has fewer than two elements. exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the :attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number whose real and imaginary parts are both the smallest positive normal number representable by the complex type. Default ``False``. Raises: ValueError: if ``requires_grad=True`` is passed for integral `dtype` ValueError: If ``low > high``. ValueError: If either :attr:`low` or :attr:`high` is ``nan``. TypeError: If :attr:`dtype` isn't supported by this function. Examples: >>> from torch.testing import make_tensor >>> # Creates a float tensor with values in [-1, 1) >>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1) >>> # xdoctest: +SKIP tensor([ 0.1205, 0.2282, -0.6380]) >>> # Creates a bool tensor on CUDA >>> make_tensor((2, 2), device='cuda', dtype=torch.bool) tensor([[False, False], [False, True]], device='cuda:0') """ def _modify_low_high(low, high, lowest, highest, default_low, default_high, dtype): """ Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high) if required. """ def clamp(a, l, h): return min(max(a, l), h) low = low if low is not None else default_low high = high if high is not None else default_high # Checks for error cases if low != low or high != high: raise ValueError("make_tensor: one of low or high was NaN!") if low > high: raise ValueError("make_tensor: low must be weakly less than high!") low = clamp(low, lowest, highest) high = clamp(high, lowest, highest) if dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]: return math.floor(low), math.ceil(high) return low, high if len(shape) == 1 and isinstance(shape[0], collections.abc.Sequence): shape = shape[0] # type: ignore[assignment] shape = cast(Tuple[int, ...], tuple(shape)) _integral_types = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64] _floating_types = [torch.float16, torch.bfloat16, torch.float32, torch.float64] _complex_types = [torch.complex32, torch.complex64, torch.complex128] if requires_grad and dtype not in _floating_types and dtype not in _complex_types: raise ValueError("make_tensor: requires_grad must be False for integral dtype") if dtype is torch.bool: result = torch.randint(0, 2, shape, device=device, dtype=dtype) # type: ignore[call-overload] elif dtype is torch.uint8: ranges = (torch.iinfo(dtype).min, torch.iinfo(dtype).max) low, high = cast(Tuple[int, int], _modify_low_high(low, high, ranges[0], ranges[1], 0, 10, dtype)) result = torch.randint(low, high, shape, device=device, dtype=dtype) # type: ignore[call-overload] elif dtype in _integral_types: ranges = (torch.iinfo(dtype).min, torch.iinfo(dtype).max) low, high = _modify_low_high(low, high, ranges[0], ranges[1], -9, 10, dtype) result = torch.randint(low, high, shape, device=device, dtype=dtype) # type: ignore[call-overload] elif dtype in _floating_types: ranges_floats = (torch.finfo(dtype).min, torch.finfo(dtype).max) low, high = _modify_low_high(low, high, ranges_floats[0], ranges_floats[1], -9, 9, dtype) rand_val = torch.rand(shape, device=device, dtype=dtype) result = high * rand_val + low * (1 - rand_val) elif dtype in _complex_types: float_dtype = complex_to_corresponding_float_type_map[dtype] ranges_floats = (torch.finfo(float_dtype).min, torch.finfo(float_dtype).max) low, high = _modify_low_high(low, high, ranges_floats[0], ranges_floats[1], -9, 9, dtype) real_rand_val = torch.rand(shape, device=device, dtype=float_dtype) imag_rand_val = torch.rand(shape, device=device, dtype=float_dtype) real = high * real_rand_val + low * (1 - real_rand_val) imag = high * imag_rand_val + low * (1 - imag_rand_val) result = torch.complex(real, imag) else: raise TypeError(f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()." " To request support, file an issue at: https://github.com/pytorch/pytorch/issues") if noncontiguous and result.numel() > 1: result = torch.repeat_interleave(result, 2, dim=-1) result = result[..., ::2] if exclude_zero: if dtype in _integral_types or dtype is torch.bool: replace_with = torch.tensor(1, device=device, dtype=dtype) elif dtype in _floating_types: replace_with = torch.tensor(torch.finfo(dtype).tiny, device=device, dtype=dtype) else: # dtype in _complex_types: float_dtype = complex_to_corresponding_float_type_map[dtype] float_eps = torch.tensor(torch.finfo(float_dtype).tiny, device=device, dtype=float_dtype) replace_with = torch.complex(float_eps, float_eps) result[result == 0] = replace_with if dtype in _floating_types + _complex_types: result.requires_grad = requires_grad return result
pytorch-master
torch/testing/_creation.py
"""This module exists since the `torch.testing` exposed a lot of stuff that shouldn't have been public. Although this was never documented anywhere, some other internal FB projects as well as downstream OSS projects might use this. Thus, we don't internalize without warning, but still go through a deprecation cycle. """ import functools import random import warnings from typing import Any, Callable, Dict, Optional, Tuple, Union import torch from . import _legacy __all__ = [ "rand", "randn", "assert_allclose", "get_all_device_types", "make_non_contiguous", ] def warn_deprecated(instructions: Union[str, Callable[[str, Tuple[Any, ...], Dict[str, Any], Any], str]]) -> Callable: def outer_wrapper(fn: Callable) -> Callable: name = fn.__name__ head = f"torch.testing.{name}() is deprecated since 1.12 and will be removed in 1.14. " @functools.wraps(fn) def inner_wrapper(*args: Any, **kwargs: Any) -> Any: return_value = fn(*args, **kwargs) tail = instructions(name, args, kwargs, return_value) if callable(instructions) else instructions msg = (head + tail).strip() warnings.warn(msg, FutureWarning) return return_value return inner_wrapper return outer_wrapper rand = warn_deprecated("Use torch.rand() instead.")(torch.rand) randn = warn_deprecated("Use torch.randn() instead.")(torch.randn) _DTYPE_PRECISIONS = { torch.float16: (1e-3, 1e-3), torch.float32: (1e-4, 1e-5), torch.float64: (1e-5, 1e-8), } def _get_default_rtol_and_atol(actual: torch.Tensor, expected: torch.Tensor) -> Tuple[float, float]: actual_rtol, actual_atol = _DTYPE_PRECISIONS.get(actual.dtype, (0.0, 0.0)) expected_rtol, expected_atol = _DTYPE_PRECISIONS.get(expected.dtype, (0.0, 0.0)) return max(actual_rtol, expected_rtol), max(actual_atol, expected_atol) @warn_deprecated( "Use torch.testing.assert_close() instead. " "For detailed upgrade instructions see https://github.com/pytorch/pytorch/issues/61844." ) def assert_allclose( actual: Any, expected: Any, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = True, msg: str = "", ) -> None: if not isinstance(actual, torch.Tensor): actual = torch.tensor(actual) if not isinstance(expected, torch.Tensor): expected = torch.tensor(expected, dtype=actual.dtype) if rtol is None and atol is None: rtol, atol = _get_default_rtol_and_atol(actual, expected) torch.testing.assert_close( actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan, check_device=True, check_dtype=False, check_stride=False, msg=msg or None, ) getter_instructions = ( lambda name, args, kwargs, return_value: f"This call can be replaced with {return_value}." # noqa: E731 ) # Deprecate and expose all dtype getters for name in _legacy.__all_dtype_getters__: fn = getattr(_legacy, name) globals()[name] = warn_deprecated(getter_instructions)(fn) __all__.append(name) get_all_device_types = warn_deprecated(getter_instructions)(_legacy.get_all_device_types) @warn_deprecated( "Depending on the use case there a different replacement options:\n\n" "- If you are using `make_non_contiguous` in combination with a creation function to create a noncontiguous tensor " "with random values, use `torch.testing.make_tensor(..., noncontiguous=True)` instead.\n" "- If you are using `make_non_contiguous` with a specific tensor, you can replace this call with " "`torch.repeat_interleave(input, 2, dim=-1)[..., ::2]`.\n" "- If you are using `make_non_contiguous` in the PyTorch test suite, use " "`torch.testing._internal.common_utils.noncontiguous_like` instead." ) def make_non_contiguous(tensor: torch.Tensor) -> torch.Tensor: if tensor.numel() <= 1: # can't make non-contiguous return tensor.clone() osize = list(tensor.size()) # randomly inflate a few dimensions in osize for _ in range(2): dim = random.randint(0, len(osize) - 1) add = random.randint(4, 15) osize[dim] = osize[dim] + add # narrow doesn't make a non-contiguous tensor if we only narrow the 0-th dimension, # (which will always happen with a 1-dimensional tensor), so let's make a new # right-most dimension and cut it off input = tensor.new(torch.Size(osize + [random.randint(2, 3)])) input = input.select(len(input.size()) - 1, random.randint(0, 1)) # now extract the input of correct size from 'input' for i in range(len(osize)): if input.size(i) != tensor.size(i): bounds = random.randint(1, input.size(i) - tensor.size(i)) input = input.narrow(i, bounds, tensor.size(i)) input.copy_(tensor) # Use .data here to hide the view relation between input and other temporary Tensors return input.data
pytorch-master
torch/testing/_deprecated.py
from ._comparison import assert_close from torch._C import FileCheck from ._creation import make_tensor from ._deprecated import * # noqa: F403
pytorch-master
torch/testing/__init__.py
"""This module exist to be able to deprecate functions publicly without doing so internally. The deprecated public versions are defined in torch.testing._deprecated and exposed from torch.testing. The non-deprecated internal versions should be imported from torch.testing._internal """ from typing import List import torch __all_dtype_getters__ = [ "_validate_dtypes", "_dispatch_dtypes", "all_types", "all_types_and", "all_types_and_complex", "all_types_and_complex_and", "all_types_and_half", "complex_types", "empty_types", "floating_and_complex_types", "floating_and_complex_types_and", "floating_types", "floating_types_and", "double_types", "floating_types_and_half", "get_all_complex_dtypes", "get_all_dtypes", "get_all_fp_dtypes", "get_all_int_dtypes", "get_all_math_dtypes", "integral_types", "integral_types_and", ] __all__ = [ *__all_dtype_getters__, "get_all_device_types", ] # Functions and classes for describing the dtypes a function supports # NOTE: these helpers should correspond to PyTorch's C++ dispatch macros # Verifies each given dtype is a torch.dtype def _validate_dtypes(*dtypes): for dtype in dtypes: assert isinstance(dtype, torch.dtype) return dtypes # class for tuples corresponding to a PyTorch dispatch macro class _dispatch_dtypes(tuple): def __add__(self, other): assert isinstance(other, tuple) return _dispatch_dtypes(tuple.__add__(self, other)) _empty_types = _dispatch_dtypes(()) def empty_types(): return _empty_types _floating_types = _dispatch_dtypes((torch.float32, torch.float64)) def floating_types(): return _floating_types _floating_types_and_half = _floating_types + (torch.half,) def floating_types_and_half(): return _floating_types_and_half def floating_types_and(*dtypes): return _floating_types + _validate_dtypes(*dtypes) _floating_and_complex_types = _floating_types + (torch.cfloat, torch.cdouble) def floating_and_complex_types(): return _floating_and_complex_types def floating_and_complex_types_and(*dtypes): return _floating_and_complex_types + _validate_dtypes(*dtypes) _double_types = _dispatch_dtypes((torch.float64, torch.complex128)) def double_types(): return _double_types _integral_types = _dispatch_dtypes((torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)) def integral_types(): return _integral_types def integral_types_and(*dtypes): return _integral_types + _validate_dtypes(*dtypes) _all_types = _floating_types + _integral_types def all_types(): return _all_types def all_types_and(*dtypes): return _all_types + _validate_dtypes(*dtypes) _complex_types = _dispatch_dtypes((torch.cfloat, torch.cdouble)) def complex_types(): return _complex_types def complex_types_and(*dtypes): return _complex_types + _validate_dtypes(*dtypes) _all_types_and_complex = _all_types + _complex_types def all_types_and_complex(): return _all_types_and_complex def all_types_and_complex_and(*dtypes): return _all_types_and_complex + _validate_dtypes(*dtypes) _all_types_and_half = _all_types + (torch.half,) def all_types_and_half(): return _all_types_and_half # The functions below are used for convenience in our test suite and thus have no corresponding C++ dispatch macro # See AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS. def get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=True, include_complex=True, include_complex32=False, include_qint=False, ) -> List[torch.dtype]: dtypes = get_all_int_dtypes() + get_all_fp_dtypes(include_half=include_half, include_bfloat16=include_bfloat16) if include_bool: dtypes.append(torch.bool) if include_complex: dtypes += get_all_complex_dtypes(include_complex32) if include_qint: dtypes += get_all_qint_dtypes() return dtypes def get_all_math_dtypes(device) -> List[torch.dtype]: return get_all_int_dtypes() + get_all_fp_dtypes(include_half=device.startswith('cuda'), include_bfloat16=False) + get_all_complex_dtypes() def get_all_complex_dtypes(include_complex32=False) -> List[torch.dtype]: return [torch.complex32, torch.complex64, torch.complex128] if include_complex32 else [torch.complex64, torch.complex128] def get_all_int_dtypes() -> List[torch.dtype]: return [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64] def get_all_fp_dtypes(include_half=True, include_bfloat16=True) -> List[torch.dtype]: dtypes = [torch.float32, torch.float64] if include_half: dtypes.append(torch.float16) if include_bfloat16: dtypes.append(torch.bfloat16) return dtypes def get_all_qint_dtypes() -> List[torch.dtype]: return [torch.qint8, torch.quint8, torch.qint32, torch.quint4x2, torch.quint2x4] def get_all_device_types() -> List[str]: return ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
pytorch-master
torch/testing/_legacy.py
import abc import cmath import collections.abc import contextlib from typing import NoReturn, Callable, Sequence, List, Union, Optional, Type, Tuple, Any, Collection import torch try: import numpy as np NUMPY_AVAILABLE = True except ModuleNotFoundError: NUMPY_AVAILABLE = False class ErrorMeta(Exception): """Internal testing exception that makes that carries error meta data.""" def __init__(self, type: Type[Exception], msg: str, *, id: Tuple[Any, ...] = ()) -> None: super().__init__( "If you are a user and see this message during normal operation " "please file an issue at https://github.com/pytorch/pytorch/issues. " "If you are a developer and working on the comparison functions, please `raise ErrorMeta().to_error()` " "for user facing errors." ) self.type = type self.msg = msg self.id = id def to_error(self, msg: Optional[Union[str, Callable[[str], str]]] = None) -> Exception: if not isinstance(msg, str): generated_msg = self.msg if self.id: generated_msg += f"\n\nThe failure occurred for item {''.join(str([item]) for item in self.id)}" msg = msg(generated_msg) if callable(msg) else generated_msg return self.type(msg) # Some analysis of tolerance by logging tests from test_torch.py can be found in # https://github.com/pytorch/pytorch/pull/32538. # {dtype: (rtol, atol)} _DTYPE_PRECISIONS = { torch.float16: (0.001, 1e-5), torch.bfloat16: (0.016, 1e-5), torch.float32: (1.3e-6, 1e-5), torch.float64: (1e-7, 1e-7), torch.complex32: (0.001, 1e-5), torch.complex64: (1.3e-6, 1e-5), torch.complex128: (1e-7, 1e-7), } # The default tolerances of torch.float32 are used for quantized dtypes, because quantized tensors are compared in # their dequantized and floating point representation. For more details see `TensorLikePair._compare_quantized_values` _DTYPE_PRECISIONS.update( { dtype: _DTYPE_PRECISIONS[torch.float32] for dtype in (torch.quint8, torch.quint2x4, torch.quint4x2, torch.qint8, torch.qint32) } ) def default_tolerances(*inputs: Union[torch.Tensor, torch.dtype]) -> Tuple[float, float]: """Returns the default absolute and relative testing tolerances for a set of inputs based on the dtype. See :func:`assert_close` for a table of the default tolerance for each dtype. Returns: (Tuple[float, float]): Loosest tolerances of all input dtypes. """ dtypes = [] for input in inputs: if isinstance(input, torch.Tensor): dtypes.append(input.dtype) elif isinstance(input, torch.dtype): dtypes.append(input) else: raise TypeError(f"Expected a torch.Tensor or a torch.dtype, but got {type(input)} instead.") rtols, atols = zip(*[_DTYPE_PRECISIONS.get(dtype, (0.0, 0.0)) for dtype in dtypes]) return max(rtols), max(atols) def get_tolerances( *inputs: Union[torch.Tensor, torch.dtype], rtol: Optional[float], atol: Optional[float], id: Tuple[Any, ...] = () ) -> Tuple[float, float]: """Gets absolute and relative to be used for numeric comparisons. If both ``rtol`` and ``atol`` are specified, this is a no-op. If both are not specified, the return value of :func:`default_tolerances` is used. Raises: ErrorMeta: With :class:`ValueError`, if only ``rtol`` or ``atol`` is specified. Returns: (Tuple[float, float]): Valid absolute and relative tolerances. """ if (rtol is None) ^ (atol is None): # We require both tolerance to be omitted or specified, because specifying only one might lead to surprising # results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0. raise ErrorMeta( ValueError, f"Both 'rtol' and 'atol' must be either specified or omitted, " f"but got no {'rtol' if rtol is None else 'atol'}.", id=id, ) elif rtol is not None and atol is not None: return rtol, atol else: return default_tolerances(*inputs) def _make_mismatch_msg( *, default_identifier: str, identifier: Optional[Union[str, Callable[[str], str]]] = None, extra: Optional[str] = None, abs_diff: float, abs_diff_idx: Optional[Union[int, Tuple[int, ...]]] = None, atol: float, rel_diff: float, rel_diff_idx: Optional[Union[int, Tuple[int, ...]]] = None, rtol: float, ) -> str: """Makes a mismatch error message for numeric values. Args: default_identifier (str): Default description of the compared values, e.g. "Tensor-likes". identifier (Optional[Union[str, Callable[[str], str]]]): Optional identifier that overrides ``default_identifier``. Can be passed as callable in which case it will be called with ``default_identifier`` to create the description at runtime. extra (Optional[str]): Extra information to be placed after the message header and the mismatch statistics. abs_diff (float): Absolute difference. abs_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the absolute difference. atol (float): Allowed absolute tolerance. Will only be added to mismatch statistics if it or ``rtol`` are ``> 0``. rel_diff (float): Relative difference. rel_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the relative difference. rtol (float): Allowed relative tolerance. Will only be added to mismatch statistics if it or ``atol`` are ``> 0``. """ equality = rtol == 0 and atol == 0 def make_diff_msg(*, type: str, diff: float, idx: Optional[Union[int, Tuple[int, ...]]], tol: float) -> str: if idx is None: msg = f"{type.title()} difference: {diff}" else: msg = f"Greatest {type} difference: {diff} at index {idx}" if not equality: msg += f" (up to {tol} allowed)" return msg + "\n" if identifier is None: identifier = default_identifier elif callable(identifier): identifier = identifier(default_identifier) msg = f"{identifier} are not {'equal' if equality else 'close'}!\n\n" if extra: msg += f"{extra.strip()}\n" msg += make_diff_msg(type="absolute", diff=abs_diff, idx=abs_diff_idx, tol=atol) msg += make_diff_msg(type="relative", diff=rel_diff, idx=rel_diff_idx, tol=rtol) return msg.strip() def make_scalar_mismatch_msg( actual: Union[int, float, complex], expected: Union[int, float, complex], *, rtol: float, atol: float, identifier: Optional[Union[str, Callable[[str], str]]] = None, ) -> str: """Makes a mismatch error message for scalars. Args: actual (Union[int, float, complex]): Actual scalar. expected (Union[int, float, complex]): Expected scalar. rtol (float): Relative tolerance. atol (float): Absolute tolerance. identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the scalars. Can be passed as callable in which case it will be called by the default value to create the description at runtime. Defaults to "Scalars". """ abs_diff = abs(actual - expected) rel_diff = float("inf") if expected == 0 else abs_diff / abs(expected) return _make_mismatch_msg( default_identifier="Scalars", identifier=identifier, abs_diff=abs_diff, atol=atol, rel_diff=rel_diff, rtol=rtol, ) def make_tensor_mismatch_msg( actual: torch.Tensor, expected: torch.Tensor, mismatches: torch.Tensor, *, rtol: float, atol: float, identifier: Optional[Union[str, Callable[[str], str]]] = None, ): """Makes a mismatch error message for tensors. Args: actual (torch.Tensor): Actual tensor. expected (torch.Tensor): Expected tensor. mismatches (torch.Tensor): Boolean mask of the same shape as ``actual`` and ``expected`` that indicates the location of mismatches. rtol (float): Relative tolerance. atol (float): Absolute tolerance. identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the tensors. Can be passed as callable in which case it will be called by the default value to create the description at runtime. Defaults to "Tensor-likes". """ def unravel_flat_index(flat_index: int) -> Tuple[int, ...]: if not mismatches.shape: return () inverse_index = [] for size in mismatches.shape[::-1]: div, mod = divmod(flat_index, size) flat_index = div inverse_index.append(mod) return tuple(inverse_index[::-1]) number_of_elements = mismatches.numel() total_mismatches = torch.sum(mismatches).item() extra = ( f"Mismatched elements: {total_mismatches} / {number_of_elements} " f"({total_mismatches / number_of_elements:.1%})" ) a_flat = actual.flatten() b_flat = expected.flatten() matches_flat = ~mismatches.flatten() abs_diff = torch.abs(a_flat - b_flat) # Ensure that only mismatches are used for the max_abs_diff computation abs_diff[matches_flat] = 0 max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0) rel_diff = abs_diff / torch.abs(b_flat) # Ensure that only mismatches are used for the max_rel_diff computation rel_diff[matches_flat] = 0 max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0) return _make_mismatch_msg( default_identifier="Tensor-likes", identifier=identifier, extra=extra, abs_diff=max_abs_diff.item(), abs_diff_idx=unravel_flat_index(int(max_abs_diff_flat_idx)), atol=atol, rel_diff=max_rel_diff.item(), rel_diff_idx=unravel_flat_index(int(max_rel_diff_flat_idx)), rtol=rtol, ) class UnsupportedInputs(Exception): # noqa: B903 """Exception to be raised during the construction of a :class:`Pair` in case it doesn't support the inputs.""" class Pair(abc.ABC): """ABC for all comparison pairs to be used in conjunction with :func:`assert_equal`. Each subclass needs to overwrite :meth:`Pair.compare` that performs the actual comparison. Each pair receives **all** options, so select the ones applicable for the subclass and forward the rest to the super class. Raising an :class:`UnsupportedInputs` during constructions indicates that the pair is not able to handle the inputs and the next pair type will be tried. All other errors should be raised as :class:`ErrorMeta`. After the instantiation, :meth:`Pair._make_error_meta` can be used to automatically handle overwriting the message with a user supplied one and id handling. """ def __init__( self, actual: Any, expected: Any, *, id: Tuple[Any, ...] = (), **unknown_parameters: Any, ) -> None: self.actual = actual self.expected = expected self.id = id self._unknown_parameters = unknown_parameters @staticmethod def _check_inputs_isinstance(*inputs: Any, cls: Union[Type, Tuple[Type, ...]]): """Checks if all inputs are instances of a given class and raise :class:`UnsupportedInputs` otherwise.""" if not all(isinstance(input, cls) for input in inputs): raise UnsupportedInputs() def _make_error_meta(self, type: Type[Exception], msg: str) -> ErrorMeta: """Makes an :class:`ErrorMeta` from a given exception type and message and the stored id. .. warning:: Since this method uses instance attributes of :class:`Pair`, it should not be used before the ``super().__init__(...)`` call in the constructor. """ return ErrorMeta(type, msg, id=self.id) @abc.abstractmethod def compare(self) -> None: """Compares the inputs and returns an :class`ErrorMeta` in case they mismatch.""" def extra_repr(self) -> Sequence[Union[str, Tuple[str, Any]]]: """Returns extra information that will be included in the representation. Should be overwritten by all subclasses that use additional options. The representation of the object will only be surfaced in case we encounter an unexpected error and thus should help debug the issue. Can be a sequence of key-value-pairs or attribute names. """ return [] def __repr__(self) -> str: head = f"{type(self).__name__}(" tail = ")" body = [ f" {name}={value!s}," for name, value in [ ("id", self.id), ("actual", self.actual), ("expected", self.expected), *[(extra, getattr(self, extra)) if isinstance(extra, str) else extra for extra in self.extra_repr()], ] ] return "\n".join((head, *body, *tail)) class ObjectPair(Pair): """Pair for any type of inputs that will be compared with the `==` operator. .. note:: Since this will instantiate for any kind of inputs, it should only be used as fallback after all other pairs couldn't handle the inputs. """ def compare(self) -> None: try: equal = self.actual == self.expected except Exception as error: raise self._make_error_meta( ValueError, f"{self.actual} == {self.expected} failed with:\n{error}." ) from error if not equal: raise self._make_error_meta(AssertionError, f"{self.actual} != {self.expected}") class NonePair(Pair): """Pair for ``None`` inputs.""" def __init__(self, actual: Any, expected: Any, **other_parameters: Any) -> None: if not (actual is None or expected is None): raise UnsupportedInputs() super().__init__(actual, expected, **other_parameters) def compare(self) -> None: if not (self.actual is None and self.expected is None): raise self._make_error_meta(AssertionError, f"None mismatch: {self.actual} is not {self.expected}") class BooleanPair(Pair): """Pair for :class:`bool` inputs. .. note:: If ``numpy`` is available, also handles :class:`numpy.bool_` inputs. """ def __init__(self, actual: Any, expected: Any, *, id: Tuple[Any, ...], **other_parameters: Any) -> None: actual, expected = self._process_inputs(actual, expected, id=id) super().__init__(actual, expected, **other_parameters) @property def _supported_types(self) -> Tuple[Type, ...]: cls: List[Type] = [bool] if NUMPY_AVAILABLE: cls.append(np.bool_) return tuple(cls) def _process_inputs(self, actual: Any, expected: Any, *, id: Tuple[Any, ...]) -> Tuple[bool, bool]: self._check_inputs_isinstance(actual, expected, cls=self._supported_types) actual, expected = [self._to_bool(bool_like, id=id) for bool_like in (actual, expected)] return actual, expected def _to_bool(self, bool_like: Any, *, id: Tuple[Any, ...]) -> bool: if isinstance(bool_like, bool): return bool_like elif isinstance(bool_like, np.bool_): return bool_like.item() else: raise ErrorMeta(TypeError, f"Unknown boolean type {type(bool_like)}.", id=id) def compare(self) -> None: if self.actual is not self.expected: raise self._make_error_meta(AssertionError, f"Booleans mismatch: {self.actual} is not {self.expected}") class NumberPair(Pair): """Pair for Python number (:class:`int`, :class:`float`, and :class:`complex`) inputs. .. note:: If ``numpy`` is available, also handles :class:`numpy.number` inputs. Kwargs: rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default values based on the type are selected with the below table. atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default values based on the type are selected with the below table. equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``. check_dtype (bool): If ``True``, the type of the inputs will be checked for equality. Defaults to ``False``. The following table displays correspondence between Python number type and the ``torch.dtype``'s. See :func:`assert_close` for the corresponding tolerances. +------------------+-------------------------------+ | ``type`` | corresponding ``torch.dtype`` | +==================+===============================+ | :class:`int` | :attr:`~torch.int64` | +------------------+-------------------------------+ | :class:`float` | :attr:`~torch.float64` | +------------------+-------------------------------+ | :class:`complex` | :attr:`~torch.complex64` | +------------------+-------------------------------+ """ _TYPE_TO_DTYPE = { int: torch.int64, float: torch.float64, complex: torch.complex128, } _NUMBER_TYPES = tuple(_TYPE_TO_DTYPE.keys()) def __init__( self, actual: Any, expected: Any, *, id: Tuple[Any, ...] = (), rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = False, check_dtype: bool = False, **other_parameters: Any, ) -> None: actual, expected = self._process_inputs(actual, expected, id=id) super().__init__(actual, expected, id=id, **other_parameters) self.rtol, self.atol = get_tolerances( *[self._TYPE_TO_DTYPE[type(input)] for input in (actual, expected)], rtol=rtol, atol=atol, id=id ) self.equal_nan = equal_nan self.check_dtype = check_dtype @property def _supported_types(self) -> Tuple[Type, ...]: cls = list(self._NUMBER_TYPES) if NUMPY_AVAILABLE: cls.append(np.number) return tuple(cls) def _process_inputs( self, actual: Any, expected: Any, *, id: Tuple[Any, ...] ) -> Tuple[Union[int, float, complex], Union[int, float, complex]]: self._check_inputs_isinstance(actual, expected, cls=self._supported_types) actual, expected = [self._to_number(number_like, id=id) for number_like in (actual, expected)] return actual, expected def _to_number(self, number_like: Any, *, id: Tuple[Any, ...]) -> Union[int, float, complex]: if NUMPY_AVAILABLE and isinstance(number_like, np.number): return number_like.item() elif isinstance(number_like, self._NUMBER_TYPES): return number_like else: raise ErrorMeta(TypeError, f"Unknown number type {type(number_like)}.", id=id) def compare(self) -> None: if self.check_dtype and type(self.actual) is not type(self.expected): raise self._make_error_meta( AssertionError, f"The (d)types do not match: {type(self.actual)} != {type(self.expected)}.", ) if self.actual == self.expected: return if self.equal_nan and cmath.isnan(self.actual) and cmath.isnan(self.expected): return abs_diff = abs(self.actual - self.expected) tolerance = self.atol + self.rtol * abs(self.expected) if cmath.isfinite(abs_diff) and abs_diff <= tolerance: return raise self._make_error_meta( AssertionError, make_scalar_mismatch_msg(self.actual, self.expected, rtol=self.rtol, atol=self.atol) ) def extra_repr(self) -> Sequence[str]: return ( "rtol", "atol", "equal_nan", "check_dtype", ) class TensorLikePair(Pair): """Pair for :class:`torch.Tensor`-like inputs. Kwargs: allow_subclasses (bool): rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default values based on the type are selected. See :func:assert_close: for details. atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default values based on the type are selected. See :func:assert_close: for details. equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``. check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same :attr:`~torch.Tensor.device`. If this check is disabled, tensors on different :attr:`~torch.Tensor.device`'s are moved to the CPU before being compared. check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to :func:`torch.promote_types`) before being compared. check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this check is disabled, tensors with different ``layout``'s are converted to strided tensors before being compared. check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride. check_is_coalesced (bool): If ``True`` (default) and corresponding tensors are sparse COO, checks that both ``actual`` and ``expected`` are either coalesced or uncoalesced. If this check is disabled, tensors are :meth:`~torch.Tensor.coalesce`'ed before being compared. """ def __init__( self, actual: Any, expected: Any, *, id: Tuple[Any, ...] = (), allow_subclasses: bool = True, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = False, check_device: bool = True, check_dtype: bool = True, check_layout: bool = True, check_stride: bool = False, check_is_coalesced: bool = True, **other_parameters: Any, ): actual, expected = self._process_inputs(actual, expected, id=id, allow_subclasses=allow_subclasses) super().__init__(actual, expected, id=id, **other_parameters) self.rtol, self.atol = get_tolerances(actual, expected, rtol=rtol, atol=atol, id=self.id) self.equal_nan = equal_nan self.check_device = check_device self.check_dtype = check_dtype self.check_layout = check_layout self.check_stride = check_stride self.check_is_coalesced = check_is_coalesced def _process_inputs( self, actual: Any, expected: Any, *, id: Tuple[Any, ...], allow_subclasses: bool ) -> Tuple[torch.Tensor, torch.Tensor]: directly_related = isinstance(actual, type(expected)) or isinstance(expected, type(actual)) if not directly_related: raise UnsupportedInputs() if not allow_subclasses and type(actual) is not type(expected): raise UnsupportedInputs() actual, expected = [self._to_tensor(input) for input in (actual, expected)] for tensor in (actual, expected): self._check_supported(tensor, id=id) return actual, expected def _to_tensor(self, tensor_like: Any) -> torch.Tensor: if isinstance(tensor_like, torch.Tensor): return tensor_like try: return torch.as_tensor(tensor_like) except Exception: raise UnsupportedInputs() def _check_supported(self, tensor: torch.Tensor, *, id: Tuple[Any, ...]) -> None: if tensor.layout not in {torch.strided, torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: raise ErrorMeta(ValueError, f"Unsupported tensor layout {tensor.layout}", id=id) def compare(self) -> None: actual, expected = self.actual, self.expected self._compare_attributes(actual, expected) if any(input.device.type == "meta" for input in (actual, expected)): return actual, expected = self._equalize_attributes(actual, expected) self._compare_values(actual, expected) def _compare_attributes( self, actual: torch.Tensor, expected: torch.Tensor, ) -> None: """Checks if the attributes of two tensors match. Always checks - the :attr:`~torch.Tensor.shape`, - whether both inputs are quantized or not, - and if they use the same quantization scheme. Checks for - :attr:`~torch.Tensor.layout`, - :meth:`~torch.Tensor.stride`, - :attr:`~torch.Tensor.device`, and - :attr:`~torch.Tensor.dtype` are optional and can be disabled through the corresponding ``check_*`` flag during construction of the pair. """ def raise_mismatch_error(attribute_name: str, actual_value: Any, expected_value: Any) -> NoReturn: raise self._make_error_meta( AssertionError, f"The values for attribute '{attribute_name}' do not match: {actual_value} != {expected_value}.", ) if actual.shape != expected.shape: raise_mismatch_error("shape", actual.shape, expected.shape) if actual.is_quantized != expected.is_quantized: raise_mismatch_error("is_quantized", actual.is_quantized, expected.is_quantized) elif actual.is_quantized and actual.qscheme() != expected.qscheme(): raise_mismatch_error("qscheme()", actual.qscheme(), expected.qscheme()) if actual.layout != expected.layout: if self.check_layout: raise_mismatch_error("layout", actual.layout, expected.layout) elif actual.layout == torch.strided and self.check_stride and actual.stride() != expected.stride(): raise_mismatch_error("stride()", actual.stride(), expected.stride()) if self.check_device and actual.device != expected.device: raise_mismatch_error("device", actual.device, expected.device) if self.check_dtype and actual.dtype != expected.dtype: raise_mismatch_error("dtype", actual.dtype, expected.dtype) def _equalize_attributes(self, actual: torch.Tensor, expected: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Equalizes some attributes of two tensors for value comparison. If ``actual`` and ``expected`` are ... - ... not on the same :attr:`~torch.Tensor.device`, they are moved CPU memory. - ... not of the same ``dtype``, they are promoted to a common ``dtype`` (according to :func:`torch.promote_types`). - ... not of the same ``layout``, they are converted to strided tensors. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. Returns: (Tuple[Tensor, Tensor]): Equalized tensors. """ # The comparison logic uses operators currently not supported by the MPS backends. # See https://github.com/pytorch/pytorch/issues/77144 for details. # TODO: Remove this conversion as soon as all operations are supported natively by the MPS backend if actual.is_mps or expected.is_mps: # type: ignore[attr-defined] actual = actual.cpu() expected = expected.cpu() if actual.device != expected.device: actual = actual.cpu() expected = expected.cpu() if actual.dtype != expected.dtype: dtype = torch.promote_types(actual.dtype, expected.dtype) actual = actual.to(dtype) expected = expected.to(dtype) if actual.layout != expected.layout: # These checks are needed, since Tensor.to_dense() fails on tensors that are already strided actual = actual.to_dense() if actual.layout != torch.strided else actual expected = expected.to_dense() if expected.layout != torch.strided else expected return actual, expected def _compare_values(self, actual: torch.Tensor, expected: torch.Tensor) -> None: if actual.is_quantized: compare_fn = self._compare_quantized_values elif actual.is_sparse: compare_fn = self._compare_sparse_coo_values elif actual.layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: compare_fn = self._compare_sparse_compressed_values else: compare_fn = self._compare_regular_values_close compare_fn(actual, expected, rtol=self.rtol, atol=self.atol, equal_nan=self.equal_nan) def _compare_quantized_values( self, actual: torch.Tensor, expected: torch.Tensor, *, rtol: float, atol: float, equal_nan: bool ) -> None: """Compares quantized tensors by comparing the :meth:`~torch.Tensor.dequantize`'d variants for closeness. .. note:: A detailed discussion about why only the dequantized variant is checked for closeness rather than checking the individual quantization parameters for closeness and the integer representation for equality can be found in https://github.com/pytorch/pytorch/issues/68548. """ return self._compare_regular_values_close( actual.dequantize(), expected.dequantize(), rtol=rtol, atol=atol, equal_nan=equal_nan, identifier=lambda default_identifier: f"Quantized {default_identifier.lower()}", ) def _compare_sparse_coo_values( self, actual: torch.Tensor, expected: torch.Tensor, *, rtol: float, atol: float, equal_nan: bool ) -> None: """Compares sparse COO tensors by comparing - the number of sparse dimensions, - the number of non-zero elements (nnz) for equality, - the indices for equality, and - the values for closeness. """ if actual.sparse_dim() != expected.sparse_dim(): raise self._make_error_meta( AssertionError, ( f"The number of sparse dimensions in sparse COO tensors does not match: " f"{actual.sparse_dim()} != {expected.sparse_dim()}" ), ) if actual._nnz() != expected._nnz(): raise self._make_error_meta( AssertionError, ( f"The number of specified values in sparse COO tensors does not match: " f"{actual._nnz()} != {expected._nnz()}" ), ) self._compare_regular_values_equal( actual._indices(), expected._indices(), identifier="Sparse COO indices", ) self._compare_regular_values_close( actual._values(), expected._values(), rtol=rtol, atol=atol, equal_nan=equal_nan, identifier="Sparse COO values", ) def _compare_sparse_compressed_values( self, actual: torch.Tensor, expected: torch.Tensor, *, rtol: float, atol: float, equal_nan: bool ) -> None: """Compares sparse compressed tensors by comparing - the number of non-zero elements (nnz) for equality, - the plain indices for equality, - the compressed indices for equality, and - the values for closeness. """ format_name, compressed_indices_method, plain_indices_method = { torch.sparse_csr: ('CSR', torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: ('CSC', torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: ('BSR', torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: ('BSC', torch.Tensor.ccol_indices, torch.Tensor.row_indices), }[actual.layout] if actual._nnz() != expected._nnz(): raise self._make_error_meta( AssertionError, ( f"The number of specified values in sparse {format_name} tensors does not match: " f"{actual._nnz()} != {expected._nnz()}" ), ) self._compare_regular_values_equal( compressed_indices_method(actual), compressed_indices_method(expected), identifier=f"Sparse {format_name} {compressed_indices_method.__name__}", ) self._compare_regular_values_equal( plain_indices_method(actual), plain_indices_method(expected), identifier=f"Sparse {format_name} {plain_indices_method.__name__}", ) self._compare_regular_values_close( actual.values(), expected.values(), rtol=rtol, atol=atol, equal_nan=equal_nan, identifier=f"Sparse {format_name} values", ) def _compare_regular_values_equal( self, actual: torch.Tensor, expected: torch.Tensor, *, equal_nan: bool = False, identifier: Optional[Union[str, Callable[[str], str]]] = None, ) -> None: """Checks if the values of two tensors are equal.""" self._compare_regular_values_close(actual, expected, rtol=0, atol=0, equal_nan=equal_nan, identifier=identifier) def _compare_regular_values_close( self, actual: torch.Tensor, expected: torch.Tensor, *, rtol: float, atol: float, equal_nan: bool, identifier: Optional[Union[str, Callable[[str], str]]] = None, ) -> None: """Checks if the values of two tensors are close up to a desired tolerance.""" actual, expected = self._promote_for_comparison(actual, expected) matches = torch.isclose(actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan) if torch.all(matches): return if actual.shape == torch.Size([]): msg = make_scalar_mismatch_msg(actual.item(), expected.item(), rtol=rtol, atol=atol, identifier=identifier) else: msg = make_tensor_mismatch_msg(actual, expected, ~matches, rtol=rtol, atol=atol, identifier=identifier) raise self._make_error_meta(AssertionError, msg) def _promote_for_comparison( self, actual: torch.Tensor, expected: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Promotes the inputs to the comparison dtype based on the input dtype. Returns: Inputs promoted to the highest precision dtype of the same dtype category. :class:`torch.bool` is treated as integral dtype. """ # This is called after self._equalize_attributes() and thus `actual` and `expected` already have the same dtype. if actual.dtype.is_complex: dtype = torch.complex128 elif actual.dtype.is_floating_point: dtype = torch.float64 else: dtype = torch.int64 return actual.to(dtype), expected.to(dtype) def extra_repr(self) -> Sequence[str]: return ( "rtol", "atol", "equal_nan", "check_device", "check_dtype", "check_layout", "check_stride", "check_is_coalesced", ) def originate_pairs( actual: Any, expected: Any, *, pair_types: Sequence[Type[Pair]], sequence_types: Tuple[Type, ...] = (collections.abc.Sequence,), mapping_types: Tuple[Type, ...] = (collections.abc.Mapping,), id: Tuple[Any, ...] = (), **options: Any, ) -> List[Pair]: """Originates pairs from the individual inputs. ``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s. In this case the pairs are originated by recursing through them. Args: actual (Any): Actual input. expected (Any): Expected input. pair_types (Sequence[Type[Pair]]): Sequence of pair types that will be tried to construct with the inputs. First successful pair will be used. sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise. mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise. id (Tuple[Any, ...]): Optional id of a pair that will be included in an error message. **options (Any): Options passed to each pair during construction. Raises: ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match. ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match. ErrorMeta: With :class`TypeError`, if no pair is able to handle the inputs. ErrorMeta: With any expected exception that happens during the construction of a pair. Returns: (List[Pair]): Originated pairs. """ # We explicitly exclude str's here since they are self-referential and would cause an infinite recursion loop: # "a" == "a"[0][0]... if ( isinstance(actual, sequence_types) and not isinstance(actual, str) and isinstance(expected, sequence_types) and not isinstance(expected, str) ): actual_len = len(actual) expected_len = len(expected) if actual_len != expected_len: raise ErrorMeta( AssertionError, f"The length of the sequences mismatch: {actual_len} != {expected_len}", id=id ) pairs = [] for idx in range(actual_len): pairs.extend( originate_pairs( actual[idx], expected[idx], pair_types=pair_types, sequence_types=sequence_types, mapping_types=mapping_types, id=(*id, idx), **options, ) ) return pairs elif isinstance(actual, mapping_types) and isinstance(expected, mapping_types): actual_keys = set(actual.keys()) expected_keys = set(expected.keys()) if actual_keys != expected_keys: missing_keys = expected_keys - actual_keys additional_keys = actual_keys - expected_keys raise ErrorMeta( AssertionError, ( f"The keys of the mappings do not match:\n" f"Missing keys in the actual mapping: {sorted(missing_keys)}\n" f"Additional keys in the actual mapping: {sorted(additional_keys)}" ), id=id, ) keys: Collection = actual_keys # Since the origination aborts after the first failure, we try to be deterministic with contextlib.suppress(Exception): keys = sorted(keys) pairs = [] for key in keys: pairs.extend( originate_pairs( actual[key], expected[key], pair_types=pair_types, sequence_types=sequence_types, mapping_types=mapping_types, id=(*id, key), **options, ) ) return pairs else: for pair_type in pair_types: try: return [pair_type(actual, expected, id=id, **options)] # Raising an `UnsupportedInputs` during origination indicates that the pair type is not able to handle the # inputs. Thus, we try the next pair type. except UnsupportedInputs: continue # Raising an `ErrorMeta` during origination is the orderly way to abort and so we simply re-raise it. This # is only in a separate branch, because the one below would also except it. except ErrorMeta: raise # Raising any other exception during origination is unexpected and will give some extra information about # what happened. If applicable, the exception should be expected in the future. except Exception as error: raise RuntimeError( f"Originating a {pair_type.__name__}() at item {''.join(str([item]) for item in id)} with\n\n" f"{type(actual).__name__}(): {actual}\n\n" f"and\n\n" f"{type(expected).__name__}(): {expected}\n\n" f"resulted in the unexpected exception above. " f"If you are a user and see this message during normal operation " "please file an issue at https://github.com/pytorch/pytorch/issues. " "If you are a developer and working on the comparison functions, " "please except the previous error and raise an expressive `ErrorMeta` instead." ) from error else: raise ErrorMeta( TypeError, f"No comparison pair was able to handle inputs of type {type(actual)} and {type(expected)}.", id=id, ) def assert_equal( actual: Any, expected: Any, *, pair_types: Sequence[Type[Pair]] = (ObjectPair,), sequence_types: Tuple[Type, ...] = (collections.abc.Sequence,), mapping_types: Tuple[Type, ...] = (collections.abc.Mapping,), msg: Optional[Union[str, Callable[[str], str]]] = None, **options: Any, ) -> None: """Asserts that inputs are equal. ``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s. In this case the comparison happens elementwise by recursing through them. Args: actual (Any): Actual input. expected (Any): Expected input. pair_types (Sequence[Type[Pair]]): Sequence of :class:`Pair` types that will be tried to construct with the inputs. First successful pair will be used. Defaults to only using :class:`ObjectPair`. sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise. mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise. **options (Any): Options passed to each pair during construction. """ # Hide this function from `pytest`'s traceback __tracebackhide__ = True try: pairs = originate_pairs( actual, expected, pair_types=pair_types, sequence_types=sequence_types, mapping_types=mapping_types, **options, ) except ErrorMeta as error_meta: # Explicitly raising from None to hide the internal traceback raise error_meta.to_error() from None error_metas: List[ErrorMeta] = [] for pair in pairs: try: pair.compare() except ErrorMeta as error_meta: error_metas.append(error_meta) # Raising any exception besides `ErrorMeta` while comparing is unexpected and will give some extra information # about what happened. If applicable, the exception should be expected in the future. except Exception as error: raise RuntimeError( f"Comparing\n\n" f"{pair}\n\n" f"resulted in the unexpected exception above. " f"If you are a user and see this message during normal operation " "please file an issue at https://github.com/pytorch/pytorch/issues. " "If you are a developer and working on the comparison functions, " "please except the previous error and raise an expressive `ErrorMeta` instead." ) from error if not error_metas: return # TODO: compose all metas into one AssertionError raise error_metas[0].to_error(msg) def assert_close( actual: Any, expected: Any, *, allow_subclasses: bool = True, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = False, check_device: bool = True, check_dtype: bool = True, check_layout: bool = True, check_stride: bool = False, msg: Optional[Union[str, Callable[[str], str]]] = None, ): r"""Asserts that ``actual`` and ``expected`` are close. If ``actual`` and ``expected`` are strided, non-quantized, real-valued, and finite, they are considered close if .. math:: \lvert \text{actual} - \text{expected} \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert \text{expected} \rvert Non-finite values (``-inf`` and ``inf``) are only considered close if and only if they are equal. ``NaN``'s are only considered equal to each other if ``equal_nan`` is ``True``. In addition, they are only considered close if they have the same - :attr:`~torch.Tensor.device` (if ``check_device`` is ``True``), - ``dtype`` (if ``check_dtype`` is ``True``), - ``layout`` (if ``check_layout`` is ``True``), and - stride (if ``check_stride`` is ``True``). If either ``actual`` or ``expected`` is a meta tensor, only the attribute checks will be performed. If ``actual`` and ``expected`` are sparse (either having COO, CSR, CSC, BSR, or BSC layout), their strided members are checked individually. Indices, namely ``indices`` for COO, ``crow_indices`` and ``col_indices`` for CSR and BSR, or ``ccol_indices`` and ``row_indices`` for CSC and BSC layouts, respectively, are always checked for equality whereas the values are checked for closeness according to the definition above. If ``actual`` and ``expected`` are quantized, they are considered close if they have the same :meth:`~torch.Tensor.qscheme` and the result of :meth:`~torch.Tensor.dequantize` is close according to the definition above. ``actual`` and ``expected`` can be :class:`~torch.Tensor`'s or any tensor-or-scalar-likes from which :class:`torch.Tensor`'s can be constructed with :func:`torch.as_tensor`. Except for Python scalars the input types have to be directly related. In addition, ``actual`` and ``expected`` can be :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s in which case they are considered close if their structure matches and all their elements are considered close according to the above definition. .. note:: Python scalars are an exception to the type relation requirement, because their :func:`type`, i.e. :class:`int`, :class:`float`, and :class:`complex`, is equivalent to the ``dtype`` of a tensor-like. Thus, Python scalars of different types can be checked, but require ``check_dtype=False``. Args: actual (Any): Actual input. expected (Any): Expected input. allow_subclasses (bool): If ``True`` (default) and except for Python scalars, inputs of directly related types are allowed. Otherwise type equality is required. rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table. atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table. equal_nan (Union[bool, str]): If ``True``, two ``NaN`` values will be considered equal. check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same :attr:`~torch.Tensor.device`. If this check is disabled, tensors on different :attr:`~torch.Tensor.device`'s are moved to the CPU before being compared. check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to :func:`torch.promote_types`) before being compared. check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this check is disabled, tensors with different ``layout``'s are converted to strided tensors before being compared. check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride. msg (Optional[Union[str, Callable[[str], str]]]): Optional error message to use in case a failure occurs during the comparison. Can also passed as callable in which case it will be called with the generated message and should return the new message. Raises: ValueError: If no :class:`torch.Tensor` can be constructed from an input. ValueError: If only ``rtol`` or ``atol`` is specified. NotImplementedError: If a tensor is a meta tensor. This is a temporary restriction and will be relaxed in the future. AssertionError: If corresponding inputs are not Python scalars and are not directly related. AssertionError: If ``allow_subclasses`` is ``False``, but corresponding inputs are not Python scalars and have different types. AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match. AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match. AssertionError: If corresponding tensors do not have the same :attr:`~torch.Tensor.shape`. AssertionError: If ``check_layout`` is ``True``, but corresponding tensors do not have the same :attr:`~torch.Tensor.layout`. AssertionError: If only one of corresponding tensors is quantized. AssertionError: If corresponding tensors are quantized, but have different :meth:`~torch.Tensor.qscheme`'s. AssertionError: If ``check_device`` is ``True``, but corresponding tensors are not on the same :attr:`~torch.Tensor.device`. AssertionError: If ``check_dtype`` is ``True``, but corresponding tensors do not have the same ``dtype``. AssertionError: If ``check_stride`` is ``True``, but corresponding strided tensors do not have the same stride. AssertionError: If the values of corresponding tensors are not close according to the definition above. The following table displays the default ``rtol`` and ``atol`` for different ``dtype``'s. In case of mismatching ``dtype``'s, the maximum of both tolerances is used. +---------------------------+------------+----------+ | ``dtype`` | ``rtol`` | ``atol`` | +===========================+============+==========+ | :attr:`~torch.float16` | ``1e-3`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.bfloat16` | ``1.6e-2`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.float32` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.float64` | ``1e-7`` | ``1e-7`` | +---------------------------+------------+----------+ | :attr:`~torch.complex32` | ``1e-3`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.complex64` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.complex128` | ``1e-7`` | ``1e-7`` | +---------------------------+------------+----------+ | :attr:`~torch.quint8` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.quint2x4` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.quint4x2` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.qint8` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.qint32` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | other | ``0.0`` | ``0.0`` | +---------------------------+------------+----------+ .. note:: :func:`~torch.testing.assert_close` is highly configurable with strict default settings. Users are encouraged to :func:`~functools.partial` it to fit their use case. For example, if an equality check is needed, one might define an ``assert_equal`` that uses zero tolrances for every ``dtype`` by default: >>> import functools >>> assert_equal = functools.partial(torch.testing.assert_close, rtol=0, atol=0) >>> assert_equal(1e-9, 1e-10) Traceback (most recent call last): ... AssertionError: Scalars are not equal! <BLANKLINE> Absolute difference: 9.000000000000001e-10 Relative difference: 9.0 Examples: >>> # tensor to tensor comparison >>> expected = torch.tensor([1e0, 1e-1, 1e-2]) >>> actual = torch.acos(torch.cos(expected)) >>> torch.testing.assert_close(actual, expected) >>> # scalar to scalar comparison >>> import math >>> expected = math.sqrt(2.0) >>> actual = 2.0 / math.sqrt(2.0) >>> torch.testing.assert_close(actual, expected) >>> # numpy array to numpy array comparison >>> import numpy as np >>> expected = np.array([1e0, 1e-1, 1e-2]) >>> actual = np.arccos(np.cos(expected)) >>> torch.testing.assert_close(actual, expected) >>> # sequence to sequence comparison >>> import numpy as np >>> # The types of the sequences do not have to match. They only have to have the same >>> # length and their elements have to match. >>> expected = [torch.tensor([1.0]), 2.0, np.array(3.0)] >>> actual = tuple(expected) >>> torch.testing.assert_close(actual, expected) >>> # mapping to mapping comparison >>> from collections import OrderedDict >>> import numpy as np >>> foo = torch.tensor(1.0) >>> bar = 2.0 >>> baz = np.array(3.0) >>> # The types and a possible ordering of mappings do not have to match. They only >>> # have to have the same set of keys and their elements have to match. >>> expected = OrderedDict([("foo", foo), ("bar", bar), ("baz", baz)]) >>> actual = {"baz": baz, "bar": bar, "foo": foo} >>> torch.testing.assert_close(actual, expected) >>> expected = torch.tensor([1.0, 2.0, 3.0]) >>> actual = expected.clone() >>> # By default, directly related instances can be compared >>> torch.testing.assert_close(torch.nn.Parameter(actual), expected) >>> # This check can be made more strict with allow_subclasses=False >>> torch.testing.assert_close( ... torch.nn.Parameter(actual), expected, allow_subclasses=False ... ) Traceback (most recent call last): ... TypeError: No comparison pair was able to handle inputs of type <class 'torch.nn.parameter.Parameter'> and <class 'torch.Tensor'>. >>> # If the inputs are not directly related, they are never considered close >>> torch.testing.assert_close(actual.numpy(), expected) Traceback (most recent call last): ... TypeError: No comparison pair was able to handle inputs of type <class 'numpy.ndarray'> and <class 'torch.Tensor'>. >>> # Exceptions to these rules are Python scalars. They can be checked regardless of >>> # their type if check_dtype=False. >>> torch.testing.assert_close(1.0, 1, check_dtype=False) >>> # NaN != NaN by default. >>> expected = torch.tensor(float("Nan")) >>> actual = expected.clone() >>> torch.testing.assert_close(actual, expected) Traceback (most recent call last): ... AssertionError: Scalars are not close! <BLANKLINE> Absolute difference: nan (up to 1e-05 allowed) Relative difference: nan (up to 1.3e-06 allowed) >>> torch.testing.assert_close(actual, expected, equal_nan=True) >>> expected = torch.tensor([1.0, 2.0, 3.0]) >>> actual = torch.tensor([1.0, 4.0, 5.0]) >>> # The default error message can be overwritten. >>> torch.testing.assert_close(actual, expected, msg="Argh, the tensors are not close!") Traceback (most recent call last): ... AssertionError: Argh, the tensors are not close! >>> # If msg is a callable, it can be used to augment the generated message with >>> # extra information >>> torch.testing.assert_close( ... actual, expected, msg=lambda msg: f"Header\n\n{msg}\n\nFooter" ... ) Traceback (most recent call last): ... AssertionError: Header <BLANKLINE> Tensor-likes are not close! <BLANKLINE> Mismatched elements: 2 / 3 (66.7%) Greatest absolute difference: 2.0 at index (1,) (up to 1e-05 allowed) Greatest relative difference: 1.0 at index (1,) (up to 1.3e-06 allowed) <BLANKLINE> Footer """ # Hide this function from `pytest`'s traceback __tracebackhide__ = True assert_equal( actual, expected, pair_types=( NonePair, BooleanPair, NumberPair, TensorLikePair, ), allow_subclasses=allow_subclasses, rtol=rtol, atol=atol, equal_nan=equal_nan, check_device=check_device, check_dtype=check_dtype, check_layout=check_layout, check_stride=check_stride, msg=msg, )
pytorch-master
torch/testing/_comparison.py