python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. maps = """MIR # 67.40 # QA_mir_lr=3e-5_ep=10_rs=32_rf=3_mcs=256_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json CFT # 61.58 # QA_simplecl_lr=3e-5_ep=10_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json ER # 66.62 # QA_er_lr=3e-5_ep=10_rs=32_rf=3_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json MaxLoss# 66.55 # QA_mir_lr=3e-5_ep=10_rs=32_rf=3_mcs=256_largest_afterloss_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json OnL2Reg # 65.09 # qa_simplecl_lr=3e-5_ep=10_l2w=1_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json OnEWC # 65.31 # qa_oewc_lr=3e-5_ep=10_lbd=250_gm=9e-1_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json *Frozen # 45.77 # QA_nonecl_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json """ """ *Frozen # 45.77 # QA_nonecl_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json """ import os import json import pandas as pd import altair as alt from cmr.notebooks.draw_utils import draw_stacked_bars, draw_curve # os.chdir("experiments/results/qa/") all_data = [] for line in maps.splitlines(): name, OECT, path = [i.strip() for i in line.split("#")] # print(name, OECT, path) o = json.load(open("experiments/results/qa_backup_1113/" + path)) # debugger_args = eval(o["debugger_args"]) # data_args = eval(o["data_args"]) r = o["online_eval_results"] for item in r: item["prefix"] = name if item["timecode"] == 99: item["timecode"] += 1 all_data += r # print(o) # EFRs = [item["EFR"] for item in online] # UKRs = [item["UKR"] for item in online if "UKR" in item] # OKRs = [item["OKR"] for item in online if "OKR" in item] # KGs = [item["KG"] for item in online if "KG" in item] # CSRs = [item["CSR"] for item in online if "CSR" in item] # for item in all_data: # if item["name"] == "*Frozne": # item["OKR"] = 0 # else: # if item["OKR"] all_data = pd.DataFrame(all_data) # all_data = all_data.drop(columns=["before_eval_results", "before_error_ids", "mir_buffer_ids", "retrieved_ids", "OKR_sampled_ids"]) def flatten_list(lst): lst = list(lst) flst = [] for l in lst: flst += l return flst def flatten_predictions(before_eval_results): lst = list(before_eval_results) flst = [] scores = [] for l in lst: flst += l["predictions"] # scores += l["metric_results"]["EM"] return flst, scores def jaccard(list1, list2): list1 = set(list1) list2 = set(list2) intersection = len(list1 & list2) union = (len(list1) + len(list2)) - intersection return float(intersection) / union def error_sim(all_data, span=[0, 10], methods=["CFT", "OnL2Reg", "OnEWC", "ER", "MaxLoss", "MIR"]): df = all_data[(all_data.timecode<=span[1]) & (all_data.timecode>=span[0])] sims = [] for method_1 in methods: for method_2 in methods: if method_1 == method_2: continue # errors1 = flatten_list(df[df.prefix==method_1]["before_error_ids"]) # errors2 = flatten_list(df[df.prefix==method_2]["before_error_ids"]) errors1, scores1 = flatten_predictions(df[df.prefix==method_1]["before_eval_results"]) errors2, scores2 = flatten_predictions(df[df.prefix==method_2]["before_eval_results"]) # if len(errors1) == 0: # continue assert len(errors1) == len(errors2) sim = sum([p1!=p2 for p1, p2 in zip(errors1, errors2)])/len(errors1) # sim = jaccard(errors1, errors2) sims.append({"method1": method_1, "method2": method_2, "sim": sim}) print(f"{method_1}-{method_2}: {sim}") sims = pd.DataFrame(sims) fig = alt.Chart(sims).mark_rect().encode( x=alt.X('method1:O', sort=methods), y=alt.Y('method2:O', sort=methods), # color='sim:Q' color = alt.Color('sim:Q',scale=alt.Scale(domain=[0.35, 0.45])) ) fig = fig.properties(width=500, height=500).configure_title(fontSize=0, ).configure_axis( labelFontSize=30, titleFontSize=0, ) fig.save(f"figures/heatmaps/{span[0]}-{span[1]}.png", scale=5.0) error_sim(all_data, span=[0,10]) error_sim(all_data, span=[10,20]) error_sim(all_data, span=[20,30]) error_sim(all_data, span=[30,40]) error_sim(all_data, span=[50,60]) error_sim(all_data, span=[90,100]) error_sim(all_data, span=[0,20]) error_sim(all_data, span=[40,60]) error_sim(all_data, span=[80,100]) # all_data = all_data.dropna() # all_data['OEC'] = all_data.drop(columns=["timecode", "EFR", "SR", "Overall"]).mean(numeric_only=True, axis=1) # print(all_data) # exit() # print(all_data) # fig = draw_curve(df=all_data[all_data["EFR"].notnull()], fig_title=f"EFR", y_scale=[0.7, 1], x_key="timecode:O", y_key="EFR:Q", y_title="EFR") # fig.save('figures/curves/EFRs.png', scale_factor=2.0) # color_dom = ["CFT", "OnL2Reg", "OnEWC", "ER", "MaxLoss", "MIR"] # color_range = ['gray', 'brown', '#7fc97f', '#D35400', 'purple', '#386cb0'] # fig = draw_curve(df=all_data[all_data["UKR"].notnull()], fig_title=f"UKR", y_scale=[0.66, 0.82], x_key="timecode:O", y_key="UKR:Q", y_title="UKR", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) # fig.save('figures/curves/UKRs.png', scale_factor=3.0) # fig = draw_curve(df=all_data[all_data["OKR"].notnull()], fig_title=f"OKR", y_scale=[0.77, 0.96], x_key="timecode:O", y_key="OKR:Q", y_title="OKR", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) # fig.save('figures/curves/OKRs.png', scale_factor=3.0) # fig = draw_curve(df=all_data[all_data["CSR"].notnull()], fig_title=f"CSR", y_scale=[0.52, 0.67], x_key="timecode:O", y_key="CSR:Q", y_title="CSR", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) # fig.save('figures/curves/CSRs.png', scale_factor=3.0) # fig = draw_curve(df=all_data[all_data["KG"].notnull()], fig_title=f"KG", y_scale=[0.43, 0.54], x_key="timecode:O", y_key="KG:Q", y_title="KG", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) # fig.save('figures/curves/KGs.png', scale_factor=3.0) # fig = draw_curve(df=all_data[all_data["OEC"].notnull()], fig_title=f"OEC", y_scale=[0.61, 0.72], x_key="timecode:O", y_key="OEC:Q", y_title="OEC", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) # fig.save('figures/curves/OECs.png', scale_factor=3.0)
CMR-main
experiments/bakcup/report_heatmap.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. maps = """MIR # 67.40 # QA_mir_lr=3e-5_ep=10_rs=32_rf=3_mcs=256_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json CFT # 61.58 # QA_simplecl_lr=3e-5_ep=10_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json ER # 66.62 # QA_er_lr=3e-5_ep=10_rs=32_rf=3_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json MaxLoss# 66.55 # QA_mir_lr=3e-5_ep=10_rs=32_rf=3_mcs=256_largest_afterloss_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json OnL2Reg # 65.09 # qa_simplecl_lr=3e-5_ep=10_l2w=1_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json OnEWC # 65.31 # qa_oewc_lr=3e-5_ep=10_lbd=250_gm=9e-1_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json """ """ *Frozen # 45.77 # QA_nonecl_T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8_result.json """ import os import json import pandas as pd from cmr.notebooks.draw_utils import draw_stacked_bars, draw_curve # os.chdir("experiments/results/qa/") all_data = [] for line in maps.splitlines(): name, OECT, path = [i.strip() for i in line.split("#")] # print(name, OECT, path) o = json.load(open("experiments/results/qa/" + path)) # debugger_args = eval(o["debugger_args"]) # data_args = eval(o["data_args"]) r = o["online_eval_results"] for item in r: item["prefix"] = name if item["timecode"] == 99: item["timecode"] += 1 all_data += r # print(o) # EFRs = [item["EFR"] for item in online] # UKRs = [item["UKR"] for item in online if "UKR" in item] # OKRs = [item["OKR"] for item in online if "OKR" in item] # KGs = [item["KG"] for item in online if "KG" in item] # CSRs = [item["CSR"] for item in online if "CSR" in item] # for item in all_data: # if item["name"] == "*Frozne": # item["OKR"] = 0 # else: # if item["OKR"] all_data = pd.DataFrame(all_data) all_data = all_data.drop(columns=["before_eval_results", "before_error_ids", "mir_buffer_ids", "retrieved_ids", "OKR_sampled_ids"]) all_data = all_data.dropna() all_data['OEC'] = all_data.drop(columns=["timecode", "EFR", "SR", "Overall"]).mean(numeric_only=True, axis=1) # print(all_data) # exit() # print(all_data) # fig = draw_curve(df=all_data[all_data["EFR"].notnull()], fig_title=f"EFR", y_scale=[0.7, 1], x_key="timecode:O", y_key="EFR:Q", y_title="EFR") # fig.save('figures/curves/EFRs.png', scale_factor=2.0) color_dom = ["CFT", "OnL2Reg", "OnEWC", "ER", "MaxLoss", "MIR"] color_range = ['gray', 'brown', '#7fc97f', '#D35400', 'purple', '#386cb0'] fig = draw_curve(df=all_data[all_data["UKR"].notnull()], fig_title=f"UKR", y_scale=[0.66, 0.82], x_key="timecode:O", y_key="UKR:Q", y_title="UKR", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) fig.save('figures/curves/UKRs.png', scale_factor=3.0) fig = draw_curve(df=all_data[all_data["OKR"].notnull()], fig_title=f"OKR", y_scale=[0.77, 0.96], x_key="timecode:O", y_key="OKR:Q", y_title="OKR", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) fig.save('figures/curves/OKRs.png', scale_factor=3.0) fig = draw_curve(df=all_data[all_data["CSR"].notnull()], fig_title=f"CSR", y_scale=[0.52, 0.67], x_key="timecode:O", y_key="CSR:Q", y_title="CSR", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) fig.save('figures/curves/CSRs.png', scale_factor=3.0) fig = draw_curve(df=all_data[all_data["KG"].notnull()], fig_title=f"KG", y_scale=[0.43, 0.54], x_key="timecode:O", y_key="KG:Q", y_title="KG", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) fig.save('figures/curves/KGs.png', scale_factor=3.0) fig = draw_curve(df=all_data[all_data["OEC"].notnull()], fig_title=f"OEC", y_scale=[0.61, 0.72], x_key="timecode:O", y_key="OEC:Q", y_title="OEC", height=600, width=500, orient="none", color_dom=color_dom, color_range=color_range) fig.save('figures/curves/OECs.png', scale_factor=3.0)
CMR-main
experiments/bakcup/report_curves.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved.
CMR-main
cmr/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This script was based on https://github.com/shmsw25/bart-closed-book-qa. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from cmr.models.utils import set_seeds import sys import argparse import logging import random import numpy as np import torch from cmr.models.run_bart import run def get_parser(): parser = argparse.ArgumentParser() # Basic parameters parser.add_argument("--train_file", default="data", required=False) parser.add_argument("--dev_file", default="data", required=False) parser.add_argument("--test_file", default="data", required=False) parser.add_argument("--dataset", default="None", required=False) parser.add_argument("--model", default="facebook/bart-base", required=False) parser.add_argument("--output_dir", default=None, type=str, required=False) parser.add_argument("--do_train", action='store_true') parser.add_argument("--do_predict", action='store_true') parser.add_argument("--predict_checkpoint", type=str, default="best-model.pt") # Model parameters parser.add_argument("--checkpoint", type=str) parser.add_argument("--do_lowercase", action='store_true', default=False) parser.add_argument("--freeze_embeds", action='store_true', default=False) # Preprocessing/decoding-related parameters parser.add_argument('--max_input_length', type=int, default=128) parser.add_argument('--max_output_length', type=int, default=32) parser.add_argument('--num_beams', type=int, default=4) parser.add_argument("--append_another_bos", action='store_true', default=False) # Training-related parameters parser.add_argument("--train_batch_size", default=64, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--predict_batch_size", default=32, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.") # parser.add_argument("--warmup_proportion", default=0.01, type=float, # help="Weight decay if we apply some.") # Not used parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=0.1, type=float, help="Max gradient norm.") parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=1000.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_steps", default=300, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--total_steps", default=-1, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--wait_step', type=int, default=10) # Other parameters parser.add_argument("--quiet", action='store_true', help="If true, tqdm will not show progress bar") parser.add_argument('--eval_period', type=int, default=100, help="Evaluate & save model") parser.add_argument('--prefix', type=str, default='', help="Prefix for saving predictions") parser.add_argument('--debug', action='store_true', help="Use a subset of data for debugging") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") return parser def main(): args = get_parser().parse_args() # if os.path.exists(args.output_dir) and os.listdir(args.output_dir): # print("Output directory () already exists and is not empty.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir, exist_ok=True) # Start writing logs log_filename = "{}log.txt".format("train_" if args.do_train else "eval_") logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, handlers=[logging.FileHandler(os.path.join(args.output_dir, log_filename)), logging.StreamHandler()]) logger = logging.getLogger(__name__) logger.info(args) logger.info(args.output_dir) set_seeds(args.seed) args.n_gpu = torch.cuda.device_count() if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict: raise ValueError( "At least one of `do_train` or `do_predict` must be True.") if args.do_train: if not args.train_file: raise ValueError( "If `do_train` is True, then `train_dir` must be specified.") if not args.dev_file: raise ValueError( "If `do_train` is True, then `predict_dir` must be specified.") if args.do_predict: if not args.test_file: raise ValueError( "If `do_predict` is True, then `predict_dir` must be specified.") logger.info("Using {} gpus".format(args.n_gpu)) run(args, logger) if __name__ == '__main__': main()
CMR-main
cmr/cli_bart.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from cmr.notebooks.draw_utils import draw_stacked_bars from altair.vegalite.v4.schema.core import ColorName from sklearn.utils import validation import pandas as pd import json def visualize_stream(submission_stream, data_names, cfg): task_name = cfg["task_name"] episode_size = cfg["b"] submission_stat = [] init_error_stat = [] for time_step, episode_data in enumerate(list(submission_stream)): for dn in data_names: examples = [ex for ex in episode_data if ex["data_name"]==dn] num_init_errors = [ex for ex in examples if ex["init_status"]=="error"] if dn == data_names[0]: dn = "*" + dn submission_stat.append(dict(time_step=time_step, num_examples=len(examples), prefix=dn)) init_error_stat.append(dict(time_step=time_step, num_examples=len(num_init_errors), prefix=dn)) submission_stat_pd = pd.DataFrame(submission_stat) filename_str = f"T={cfg['T']},b={cfg['b']},alpha={cfg['alpha']},beta={cfg['beta']},gamma={cfg['gamma']}|[{cfg['stream_id']}]" title_str = f"alpha={cfg['alpha']}, beta={cfg['beta']}, gamma={cfg['gamma']}" fig1 = draw_stacked_bars(df=submission_stat_pd, fig_title=f"Submission Stream ({title_str})", y_scale=[0., episode_size+1], x_key="time_step", y_key="sum(num_examples)", y_title="# of Examples") fig1.save(f'figures/{task_name}.submission.{filename_str}.png', scale_factor=2.0) init_error_stat_pd = pd.DataFrame(init_error_stat) fig2 = draw_stacked_bars(df=init_error_stat_pd, fig_title=f"(Initial) Error Stream ({title_str})", y_scale=[0., episode_size+1], x_key="time_step", y_key="sum(num_examples)", y_title="# of Errors") fig2.save(f'figures/{task_name}.init_error.{filename_str}.png', scale_factor=2.0) # 50-version # color_dom = ["*squad", "hotpot", "news", "nq", "search", "trivia"] # color_range = ["gray", "blue", "orange", "green", "black", "brown"] # color_range = ['#bab0ac', '#f0027f', '#7fc97f', '#D35400', '#9c9ede', '#386cb0'] # color_dom=None; color_range=None # fig1 = draw_stacked_bars(df=submission_stat_pd[submission_stat_pd["time_step"]<=50], x_scale=[0, 50], fig_title=f"Submission Stream ({title_str})", y_scale=[0., 65], x_key="time_step", y_key="sum(num_examples)", y_title="# of Examples", width=1000, bin_width=18, color_dom=color_dom, color_range=color_range) # fig1.save(f'figures/{task_name}.submission.{filename_str}.50.png', scale_factor=2.0) # init_error_stat_pd = pd.DataFrame(init_error_stat) # fig2 = draw_stacked_bars(df=init_error_stat_pd[init_error_stat_pd["time_step"]<=50], x_scale=[0, 50], fig_title=f"(Initial) Error Stream ({title_str})", y_scale=[0., 65], x_key="time_step", y_key="sum(num_examples)", y_title="# of Errors", width=1000, bin_width=18, color_dom=color_dom, color_range=color_range) # fig2.save(f'figures/{task_name}.init_error.{filename_str}.50.png', scale_factor=2.0) return if __name__ == '__main__': qa_data_names = ["squad", "nq", "trivia", "hotpot", "news", "search"] cfg = dict(task_name="qa", upstream="squad") # T=100, b=64, alpha=0.9, beta=0.5, gamma=0.8 with open("experiments/eval_data/qa/submission_stream.T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8-test.json") as f: streams = json.load(f) str_start = f.name.index("submission_stream.") + len("submission_stream.") str_end = f.name.index("-") ns_config_str = f.name[str_start:str_end] ns_config = eval(f"dict({ns_config_str})") cfg.update(ns_config) print(cfg) for stream_id, stream in enumerate(streams): cfg["stream_id"] = stream_id visualize_stream(stream, qa_data_names, cfg)
CMR-main
cmr/benchmark_gen/visualize_streams.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import enum import json import argparse import random from re import S from cmr.models.utils import set_seeds from transformers import T5Tokenizer, T5ForConditionalGeneration import torch import numpy as np from tqdm import tqdm import spacy, nltk parser = argparse.ArgumentParser() parser.add_argument( "--data_stream_path", default="exp_results/data_streams/mrqa_naturalquestions_dev.data_stream.test.wr.json", type=str) parser.add_argument( "--data_stream_path_with_paraphrases", default="exp_results/data_streams/mrqa_naturalquestions_dev.data_stream.test.wr.wpara.json", type=str) parser.add_argument( "--data_paraphrased_dict", default="exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data.json", type=str) parser.add_argument("--mode", default="paraphrasing", type=str) parser.add_argument('--num_shards', type=int, default=4) parser.add_argument('--shard_id', type=int, default=0) def get_duplicate_ids(data_stream): seen_ids = set() examples_to_paraphrase = {} for episode in data_stream: for item in episode: if item["id"] not in seen_ids: seen_ids.add(item["id"]) else: examples_to_paraphrase[item["id"]] = item return examples_to_paraphrase def split_sentences(text): nlp = spacy.load('en_core_web_sm') # python -m spacy download en_core_web_sm # text = "How are you today? I hope you have a great day" docs = nlp(text) sents = [] for sent in docs.sents: sents.append(str(sent).strip()) return sents def inference(tokenizer, model, inputs, K=5, max_input_length=100): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # print("Device: ", device) inputs = add_prompt(inputs) tokenized_input = tokenizer.batch_encode_plus(inputs, pad_to_max_length=True, max_length=max_input_length, return_tensors="pt") batch_input_ids, batch_attention_masks = tokenized_input["input_ids"], tokenized_input["attention_mask"] batch_input_ids = batch_input_ids.to(device) batch_attention_masks = batch_attention_masks.to(device) # batch_outputs = model.generate( # input_ids=batch_input_ids, attention_mask=batch_attention_masks, # max_length=max_input_length, # do_sample=True, # top_k=100, # top_p=0.8, # early_stopping=True, # num_return_sequences=K # ) batch_outputs = model.generate( input_ids=batch_input_ids, attention_mask=batch_attention_masks, max_length=max_input_length, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=min(K, 5) ) results = [] for output in batch_outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) results.append(line) splitted_results = np.array_split(results, len(inputs)) # assert len(splitted_results[0]) == K for id in range(len(splitted_results)): splitted_results[id] = list(splitted_results[id]) splitted_results = list(splitted_results) def is_too_similar(s1, s2): return nltk.edit_distance(s1.lower().replace(" ", ""), s2.lower().replace(" ", "")) <= 10 for id in range(len(inputs)): s = inputs[id] splitted_results[id] = [p for p in splitted_results[id] if not is_too_similar(p, s)] return splitted_results def add_prompt(sentences): return [f"paraphrase: {s} </s>" for s in sentences] def get_paraphrased_example(model, tokenizer, example): context, question = example["input"].split("|") context = context.replace("Context: ", "") question = question.replace("Question: ", "") context_sentences = split_sentences(context) context_paraphrases = inference(tokenizer, model, context_sentences, K=5) question_paraphrases = inference(tokenizer, model, [question], K=7) return context_sentences, context_paraphrases, question_paraphrases # print(len(sentences), len(paraphrases), len(paraphrases[0])) # print(sentences) # print(paraphrases) def init_para_model(): tokenizer = T5Tokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") model = T5ForConditionalGeneration.from_pretrained( "Vamsi/T5_Paraphrase_Paws") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device: ", device) model = model.to(device) return model, tokenizer def sample_from_paras(example): context_paraphrases_sampled = [] not_contain_answer = True loop_times = 0 while not_contain_answer: if loop_times >= 5: # print(example["id"]) pass for ind, candidates in enumerate(example["context_paraphrases"]): if loop_times >= 5 and random.randint(0, 10) <= loop_times and not_contain_answer: context_paraphrases_sampled.append(example["context_sentences"][ind]) else: context_paraphrases_sampled.append(random.choice(candidates)) context = " ".join(context_paraphrases_sampled) if any([a in context for a in example["truth"]]): not_contain_answer = False loop_times += 1 question = random.choice(example["question_paraphrases"][0]) assert len(question.strip()) >= 5 input_text = f"Context: {context} | Question: {question}" return input_text if __name__ == '__main__': # init the paraphrasing model. set_seeds(42) args = parser.parse_args() with open(args.data_stream_path, "r") as f : data_stream = json.load(f) examples_to_paraphrase = get_duplicate_ids(data_stream) print(len(examples_to_paraphrase)) if args.mode == "paraphrasing": model, tokenizer = init_para_model() paraphrased_examples = {} all_ids = sorted(list(examples_to_paraphrase.keys())) current_ids = np.array_split(all_ids, args.num_shards)[args.shard_id] for _id in tqdm(current_ids, desc=f"shard_id: {args.shard_id}"): example = examples_to_paraphrase[_id] context_sentences, context_paraphrases, question_paraphrases = get_paraphrased_example(model, tokenizer, example) example["context_sentences"] = context_sentences example["context_paraphrases"] = context_paraphrases example["question_paraphrases"] = question_paraphrases paraphrased_examples[_id] = example with open(args.data_paraphrased_dict, "w") as f : json.dump(paraphrased_examples, f) else: # to sample from the paraphrased examples. with open(args.data_paraphrased_dict, "r") as f : data_paraphrased_dict = json.load(f) seen_ids = set() for episode in tqdm(data_stream, desc="Sampling from paraphrases"): for item in episode: if item["id"] not in examples_to_paraphrase: # unique examples can pass item["is_paraphrased"] = False continue if item["id"] not in seen_ids: # the first time seeing it. seen_ids.add(item["id"]) item["is_paraphrased"] = False else: # 2nd, 3rd time seeing it paraphrased_input_text = sample_from_paras(data_paraphrased_dict[item["id"]]) item["input"] = paraphrased_input_text item["is_paraphrased"] = True with open(args.data_stream_path_with_paraphrases, "w") as f: json.dump(data_stream, f) """ thread=6 gpu=0 CUDA_VISIBLE_DEVICES=${gpu} python cmr/benchmark_gen/para_stream.py \ --data_paraphrased_dict "exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data_${thread}.json" \ --num_shards $n_threads --shard_id ${thread} & """ """ n_threads=8 n_gpus=8 start_gpuid=0 for (( thread=0; thread<${n_threads}; thread++ )) do gpu=$(($start_gpuid + $thread % n_gpus)) echo $thread, $gpu CUDA_VISIBLE_DEVICES=${gpu} python cmr/benchmark_gen/para_stream.py \ --data_paraphrased_dict "exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data_${thread}_of_${n_threads}.json" \ --num_shards $n_threads --shard_id ${thread} & done # merge the files n_threads=8 python cmr/benchmark_gen/merge_json_file.py \ --input_file_pattern exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data_#_of_${n_threads}.json \ --range "range(${n_threads})" \ --output_file exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data.json # post sampling python cmr/benchmark_gen/para_stream.py \ --mode sampling \ --data_paraphrased_dict "exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data.json" """
CMR-main
cmr/benchmark_gen/para_stream.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import argparse from os import path import random import json from cmr.models.utils import set_seeds from cmr.task_manager.eval_metrics import evaluate_func import numpy as np import matplotlib.pyplot as plt import numpy as np import pandas as pd def formatting_initial_status(data_name, predictions, truth_data, results_all, task="qa"): assert len(predictions) == len(truth_data) == len( results_all["EM"]) == len(results_all["QA-F1"]) formatted_data = [] for p, t, em, f1 in zip(predictions, truth_data, results_all["EM"], results_all["QA-F1"]): item = dict() item["input"] = t[0] item["truth"] = t[1] item["id"] = t[2] item["mistake"] = p.strip() if task == "qa": if 0.5 < f1 < 1 and em == False: # remove the false negative ones.. continue item["score"] = {"EM": int(em == True), "QA-F1": float(f1)} item["data_name"] = data_name if em == False: item["init_status"] = "error" else: item["init_status"] = "pass" formatted_data.append(item) return formatted_data def load_datasets(args): if args.task_name == "QA": truth_paths = { # "squad-train": "data/mrqa_squad/mrqa_squad_train.jsonl", "squad": "data/mrqa_squad/mrqa_squad_dev.jsonl", "nq": "data/mrqa_naturalquestions/mrqa_naturalquestions_dev.jsonl", # "trivia": "data/mrqa_triviaqa/mrqa_triviaqa_dev.jsonl", "hotpot": "data/mrqa_hotpotqa/mrqa_hotpotqa_dev.jsonl", "news": "data/mrqa_newsqa/mrqa_newsqa_dev.jsonl", "search": "data/mrqa_searchqa/mrqa_searchqa_dev.jsonl", } prediction_paths = { # "squad-train": "upstream_resources/qa_upstream_preds/mrqa_squad_train.predictions.json", "squad": "upstream_resources/qa_upstream_preds/mrqa_squad_dev.predictions.json", "nq": "upstream_resources/qa_upstream_preds/mrqa_naturalquestions_dev.predictions.json", "trivia": "upstream_resources/qa_upstream_preds/mrqa_triviaqa_dev.predictions.json", "hotpot": "upstream_resources/qa_upstream_preds/mrqa_hotpotqa_dev.predictions.json", "news": "upstream_resources/qa_upstream_preds/mrqa_newsqa_dev.predictions.json", "search": "upstream_resources/qa_upstream_preds/mrqa_searchqa_dev.predictions.json", } upstream_data_name = "squad" elif args.task_name == "NLI": truth_paths = { # "squad-train": "data/mrqa_squad/mrqa_squad_train.jsonl", "snli": "data/snli/snli_validation.jsonl", "multi_nli_matched": "data/multi_nli/multi_nli_validation_matched.jsonl", # "multi_nli_mismatched": "data/multi_nli/multi_nli_validation_mismatched.jsonl", # "scitail": "data/scitail/scitail_dev.jsonl", "anli": "data/anli/anli_dev.jsonl", } prediction_paths = { "snli": "upstream_resources/nli_upstream_preds/snli-snli_validation.predictions.json", "multi_nli_matched": "upstream_resources/nli_upstream_preds/multi_nli-multi_nli_validation_matched.predictions.json", # "multi_nli_mismatched": "upstream_resources/nli_upstream_preds/multi_nli-multi_nli_validation_mismatched.predictions.json", # "scitail": "upstream_resources/nli_upstream_preds/scitail-scitail_dev.predictions.json", "anli": "upstream_resources/nli_upstream_preds/anli-anli_dev.predictions.json", } upstream_data_name = "snli" all_truth_data = {} submission_data = {} heldout_submission_data = {} upstream_sampled_data = [] for data_name, data_file in truth_paths.items(): truth_data = [] with open(data_file) as fin: lines = fin.readlines() # train_examples = [] for line in lines: d = json.loads(line) truth_data.append((d["input"], d["output"], d["id"])) all_truth_data[data_name] = truth_data for data_name, prediction_file in prediction_paths.items(): with open(prediction_file, "r") as f: predictions = json.load(f) # get evaluation results. results, results_all = evaluate_func( predictions, all_truth_data[data_name], args.metric, return_all=True) print(f"{data_name} --- Evaluation results: {results}") formatted_data = formatting_initial_status(data_name, predictions, all_truth_data[data_name], results_all) random.shuffle(formatted_data) if data_name == upstream_data_name: # random.sample(formatted_data, k=args.upstream_eval_size) upstream_sampled_data = formatted_data[:args.upstream_eval_size] submission_data[upstream_data_name] = formatted_data[args.upstream_eval_size:] # print(f"len(upstream_sampled_data])={len(upstream_sampled_data)}") else: heldout_submission_data[data_name] = formatted_data[:args.heldout_submission_size] # held-out submission_data[data_name] = formatted_data[args.heldout_submission_size:] # print(f"len(heldout_submission_data['{data_name}'])={len(heldout_submission_data[data_name])}") print(f"len(submission_data['{data_name}'])={len(submission_data[data_name])}") for data_name, data in submission_data.items(): num_examples = len(data) error_nums = [1 for item in data if item["init_status"] == "error"] print(f"{data_name} -- # examples = {num_examples}; Error rate: {sum(error_nums)/num_examples}") # QA_submission_data, QA_heldout_submission_data, QA_upstream_sampled_data return submission_data, heldout_submission_data, upstream_sampled_data def generate_submission_stream(submission_data, args, cfg): submission_stream = [] upstream = cfg["upstream"]; T = cfg["T"]; b = cfg["b"] alpha = cfg["alpha"]; beta = cfg["beta"]; gamma = cfg["gamma"] assert upstream in submission_data OODs = [data_name for data_name in submission_data if data_name != upstream] N = len(OODs) # except for the upstream data if beta == 1: if args.task_name.lower() == "qa": current_major_ood = "nq" else: current_major_ood = random.choice(OODs) # the initial major OOD cluster for t in range(1, T+1): S_t = [] if alpha == 0: b_upstream = 0 # special case when upstream data ratio = 0; (because 0^0=1 by definition) else: b_upstream = round(b * (alpha**(t-1))) b_ood = b - b_upstream b_ood_major = round(b_ood * gamma) b_ood_diverse = b_ood - b_ood_major S_t += random.sample(submission_data[upstream], k=b_upstream) S_t += random.sample(submission_data[current_major_ood], k=b_ood_major) other_oods = [o for o in OODs if o != current_major_ood] # diverse_pools = [] for o in other_oods: # diverse_pools += submission_data[o] S_t += random.sample(submission_data[o], k=int(b_ood_diverse/len(other_oods))) if len(S_t) < b: o = random.choice(other_oods) S_t += random.sample(submission_data[o], k=b-len(S_t)) assert len(S_t) == b # deal with the buffer # Switch major ood if random.random() < 1 - beta: current_major_ood = random.choice(other_oods) submission_stream.append(S_t) # visualize_stream(submission_stream, [upstream] + OODs, cfg, args) return submission_stream def main(): parser = argparse.ArgumentParser() parser.add_argument("--upstream_eval_size", type=int, default=512) parser.add_argument("--heldout_submission_size", type=int, default=256) parser.add_argument("--episode_size", type=int, default=64) parser.add_argument("--num_episodes", type=int, default=100) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--metric", default="EM|QA-F1") parser.add_argument("--num_val", type=int, default=3) parser.add_argument("--num_test", type=int, default=5) parser.add_argument("--submission_stream_file", default="experiments/eval_data/qa/submission_stream.#args.json") parser.add_argument("--sampled_upstream_dataset", default="experiments/eval_data/qa/upstream_eval.jsonl") parser.add_argument("--heldout_submission_eval_file", default="experiments/eval_data/qa/heldout_eval.jsonl") parser.add_argument("--task_name", default="QA") args = parser.parse_args() print(args) set_seeds(args.seed) if args.task_name == "NLI": args.submission_stream_file = args.submission_stream_file.replace("qa", "nli") args.sampled_upstream_dataset = args.sampled_upstream_dataset.replace("qa", "nli") args.heldout_submission_eval_file = args.heldout_submission_eval_file.replace("qa", "nli") # QA: configs = {} # configs["QA"] = dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.98, beta=1, gamma=1) configs["QA"] = [] configs["QA"].append(dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.9, gamma=0.8)) configs["QA"].append(dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.5, gamma=0.8)) configs["QA"].append(dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.1, gamma=0.8)) configs["QA"].append(dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.5, gamma=0.5)) configs["QA"].append(dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.5, gamma=0.2)) configs["QA"].append(dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.1, beta=0.5, gamma=0.8)) configs["QA"].append(dict(upstream="squad", T=args.num_episodes, b=args.episode_size, alpha=0.95, beta=0.5, gamma=0.8)) configs["NLI"] = [] configs["NLI"].append(dict(upstream="snli", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.9, gamma=0.8)) configs["NLI"].append(dict(upstream="snli", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.5, gamma=0.8)) configs["NLI"].append(dict(upstream="snli", T=args.num_episodes, b=args.episode_size, alpha=0.9, beta=0.1, gamma=0.8)) # if args.task_name == "QA": submission_data, heldout_submission_data, upstream_sampled_data = load_datasets(args) with open(args.heldout_submission_eval_file, "w") as f: flat_heldout_submission_data = [] for v in list(heldout_submission_data.values()): flat_heldout_submission_data += v for item in flat_heldout_submission_data: f.write(json.dumps(item) + "\n") with open(args.sampled_upstream_dataset, "w") as f: for item in upstream_sampled_data: f.write(json.dumps(item) + "\n") cfgs = configs[args.task_name] for cfg in cfgs: # Generate Validaiton/Test Streams validation_streams = [] test_streams = [] for _ in range(args.num_val): submission_stream = generate_submission_stream(submission_data, args, cfg) validation_streams.append(submission_stream) for _ in range(args.num_test): submission_stream = generate_submission_stream(submission_data, args, cfg) test_streams.append(submission_stream) prefix_title_str = f"T={cfg['T']},b={cfg['b']},alpha={cfg['alpha']},beta={cfg['beta']},gamma={cfg['gamma']}" title_str = prefix_title_str + "-val" with open(args.submission_stream_file.replace("#args", title_str), "w") as f: print(f"To save {f.name}") json.dump(validation_streams, f) title_str = prefix_title_str + "-test" with open(args.submission_stream_file.replace("#args", title_str), "w") as f: print(f"To save {f.name}") json.dump(test_streams, f) if __name__ == '__main__': main() """ python cmr/benchmark_gen/sample_submission_streams.py --task_name QA python cmr/benchmark_gen/sample_submission_streams.py --task_name NLI --episode_size 256 """
CMR-main
cmr/benchmark_gen/sample_submission_streams.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved.
CMR-main
cmr/benchmark_gen/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import json import argparse from types import new_class import random parser = argparse.ArgumentParser() parser.add_argument( "--upstream_file", default="data/mrqa_squad/mrqa_squad_train.jsonl", type=str) parser.add_argument( "--submission_file", default="experiments/eval_data/qa/submission_stream.T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8.json", type=str) parser.add_argument( "--mixed_offline_file", default="experiments/eval_data/qa/offline_retrain.T=100,b=64,alpha=0.9,beta=0.5,gamma=0.8.jsonl", type=str) parser.add_argument( "--heldout_eval_file", default="experiments/eval_data/qa/heldout_eval.jsonl", type=str) parser.add_argument("--ratio", default=-1, type=float) args = parser.parse_args() with open(args.submission_file, "r") as f : data_stream = json.load(f) all_init_errors = [] for data_batch in data_stream: for item in data_batch: if item["init_status"] == "error": data = dict(id=item["id"], input=item["input"], output=item["truth"]) all_init_errors.append(json.dumps(data)) eval_examples = [] with open(args.heldout_eval_file) as f: eval_lines = f.read().splitlines() for line in eval_lines: item = json.loads(line) data = dict(id=item["id"], input=item["input"], output=item["truth"]) eval_examples.append(json.dumps(data)) # heldout_eval_file with open(args.upstream_file) as f: upstream_lines = f.read().splitlines() if args.ratio == 1: upstream_lines = upstream_lines else: upstream_lines = random.sample(upstream_lines, len(all_init_errors)) # same number of examples mixed_lines = upstream_lines + all_init_errors with open(args.mixed_offline_file, "w") as f: for line in mixed_lines: f.write(line+"\n") with open(args.mixed_offline_file.replace(".jsonl", ".dev.jsonl"), "w") as f: for line in eval_examples: f.write(line+"\n") print(f"len(upstream_lines)={len(upstream_lines)}") print(f"len(all_init_errors)={len(all_init_errors)}") print(f"len(mixed_lines)={len(mixed_lines)}") print(f"len(eval_examples)={len(eval_examples)}")
CMR-main
cmr/benchmark_gen/generate_offline_retrainfile.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from __future__ import absolute_import, division, print_function import argparse import json import logging import os import random from cmr.models.utils import set_seeds import sys import numpy as np import torch from cmr.benchmark_gen import bart_api from cmr.task_manager.eval_metrics import (evaluate_func, normalize_answer) def main(): parser = argparse.ArgumentParser() # Mode parser.add_argument("--post_process", action='store_true') # Data distributed parser.add_argument("--data_dist", action='store_true') parser.add_argument('--local_id', type=int, default=-1, help="") parser.add_argument('--num_shards', type=int, default=-1, help="") # Basic parameters parser.add_argument( "--data_file", default="data/mrqa_naturalquestions/mrqa_naturalquestions_dev.100.jsonl", required=False) parser.add_argument( "--prediction_file", default="bug_data/mrqa_naturalquestions_dev.bugs.jsonl", required=False) # parser.add_argument( # "--bug_file", default="bug_data/mrqa_naturalquestions_dev.bugs.jsonl", required=False) parser.add_argument( "--conig_file", default="scripts/infer_mrqa_bart_base.config", required=False) parser.add_argument("--prefix", default="", required=False) # API for Evaluation parser.add_argument("--metric", default="EM|QA-F1", required=False) # Sampling parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") args = parser.parse_args() set_seeds(args.seed) log_filename = "logs/build_bugpool_log_{}.txt".format(args.prefix) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, handlers=[logging.FileHandler(os.path.join(log_filename)), logging.StreamHandler()]) logger = logging.getLogger(__name__) # get the truth data truth_data = [] with open(args.data_file) as fin: lines = fin.readlines() # train_examples = [] for line in lines: # d = line.strip().split("\t") # truth_data.append((d[0], d[1:])) d = json.loads(line) truth_data.append((d["input"], d["output"], d["id"])) # get the predictions of a model via its API and config file. if not args.post_process: predictions = bart_api.inference_api( config_file=args.conig_file, test_file=args.data_file, logger=logger, data_dist=args.data_dist, num_shards=args.num_shards, local_id=args.local_id) with open(args.prediction_file, "w") as f: json.dump(predictions, f) else: # base_path = "bug_data/mrqa_naturalquestions_train.predictions.shard_id.jsonl" # num_shards = 7 predictions = [] for shard_id in range(0, args.num_shards): current_file = args.prediction_file.replace("shard_id", str(shard_id)) print("loading", current_file) with open(current_file, "r") as f: for line in f.read().splitlines(): predictions += json.loads(line) print(len(predictions), len(truth_data)) # get evaluation results. results, results_all = evaluate_func( predictions, truth_data, args.metric, return_all=True) logging.info(f"Evaluation results: {results}") with open(args.prediction_file.replace(".shard_id.", "."), "w") as f: json.dump(predictions, f) # bug_lines, pass_lines = generate_bugs(predictions, truth_data, results_all) # logging.info("{} example are passed. Found {} bugs ".format( # len(pass_lines), len(bug_lines))) # # save the bugs # with open(args.bug_file, "w") as f: # f.write("\n".join(bug_lines)) # # save the passes # with open(args.bug_file.replace("bugs", "pass"), "w") as f: # f.write("\n".join(pass_lines)) if __name__ == '__main__': main() """ python cmr/benchmark_gen/run_bart_infer.py \ -- """
CMR-main
cmr/benchmark_gen/run_bart_infer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import argparse import json import random from cmr.task_manager.eval_metrics import evaluate_func import numpy as np def generate_bugs(predictions, truth_data, results_all, f1_upper_bound=0.5): assert len(predictions) == len(truth_data) == len( results_all["EM"]) == len(results_all["QA-F1"]) bug_lines = [] pass_lines = [] for p, t, em, f1 in zip(predictions, truth_data, results_all["EM"], results_all["QA-F1"]): item = dict() item["input"] = t[0] item["truth"] = t[1] item["id"] = t[2] item["mistake"] = p.strip() item["score"] = {"EM": int(em == True), "QA-F1": float(f1)} if em == False and f1 <= f1_upper_bound: # decide later about the threshold of f1 score bug_lines.append(item) item["init_status"] = "error" if em == True: pass_lines.append(item) item["init_status"] = "pass" return bug_lines, pass_lines def get_data_stream(data_pool, batch_size, num_batches, use_score=False): assert batch_size * num_batches <= len(data_pool) if use_score: # from easier to harder sorted_bugs = sorted(data_pool, key=lambda x: x["score"]["QA-F1"], reverse=True) else: # no sorting, randomly shuffuled random.shuffle(data_pool) sorted_bugs = data_pool data_stream = [] for start in range(0, len(data_pool), batch_size): end = min(start + batch_size, len(data_pool)) data_batch = sorted_bugs[start:end] data_stream.append(data_batch) if len(data_stream) == num_batches: break return data_stream def get_data_stream_with_replacement(data_pool, batch_size, num_batches): assert batch_size * num_batches <= len(data_pool) # no sorting, randomly shuffuled random.shuffle(data_pool) data_stream = [] seen_ids = set() duplicate_ids = set() num_repetition = 0 num_revisited_times = 0 for _ in range(0, num_batches): data_batch = random.sample(data_pool, batch_size) data_stream.append(data_batch) num_repetition += len([_ for item in data_batch if item["id"] in seen_ids]) revisited_ids = [item["id"] for item in data_batch if item["id"] in seen_ids] num_revisited_times += len(revisited_ids) duplicate_ids.update(revisited_ids) seen_ids.update([item["id"] for item in data_batch]) print(f"num_repetition: {num_repetition}; num_total_examples: {len(seen_ids)}; length: {batch_size * num_batches}; ratio: {num_repetition/(batch_size * num_batches)}; num_duplicate_ids: {len(duplicate_ids)}; num_revisited_times: {num_revisited_times}") return data_stream def get_replay_stream(data_stream, replay_eval_size, window_size=10): past_error_pool = {} # errror in terms of the initial model replay_stream = [] for timecode, data_batch in enumerate(data_stream): # add the errors to the pool past_error_pool[timecode] = [] for item in data_batch: if True or item["init_status"] == "error": past_error_pool[timecode].append(item) # build the pool start_ind = max(0, timecode-window_size) end_ind = min(timecode, len(past_error_pool)) candidate_replay_instances = [] if end_ind == 0: continue # do not add for the first episode because there is no history for it for ind in range(start_ind, end_ind): # not including itself candidate_replay_instances += past_error_pool[ind] for _db in data_stream[-5:]: if len(candidate_replay_instances) >= replay_eval_size: break for item in _db: if len(candidate_replay_instances) >= replay_eval_size: break if item["init_status"] == "pass": candidate_replay_instances.append(item) # print(start_ind, end_ind, len(candidate_replay_instances)) assert len(candidate_replay_instances) >= replay_eval_size sampled_replay = random.sample(candidate_replay_instances, replay_eval_size) replay_stream.append(sampled_replay) assert len(replay_stream) == len(data_stream) - 1 return replay_stream def main(): parser = argparse.ArgumentParser() parser.add_argument( "--data_file", default="data/mrqa_naturalquestions/mrqa_naturalquestions_train.jsonl", required=False) parser.add_argument( "--prediction_file", default="bug_data/mrqa_naturalquestions_train.predictions.jsonl", required=False) # Input parser.add_argument( "--data_stream_file", default="bug_data/mrqa_naturalquestions_dev.data_stream.train.json", required=False) # Output parser.add_argument( "--replay_stream_file", default="bug_data/mrqa_naturalquestions_dev.replay_stream.train.json", required=False) # Output parser.add_argument( "--hidden_example_file", default="bug_data/mrqa_naturalquestions.hidden.jsonl", required=False) # Output parser.add_argument("--batch_size", type=int, default=32, required=False) parser.add_argument("--replay_eval_size", type=int, default=-1, required=False) parser.add_argument("--bug_sample_size", type=int, default=1000, required=False) parser.add_argument("--max_bug_each_data", type=int, default=-1, required=False) parser.add_argument("--pass_sample_size", type=int, default=2200, required=False) parser.add_argument("--hidden_sample_size", type=int, default=-1, required=False) parser.add_argument("--num_batches", type=int, default=100, required=False) parser.add_argument("--seed", type=int, default=42, required=False) parser.add_argument("--metric", default="EM|QA-F1", required=False) parser.add_argument("--sample_method", default="no_replace", required=False) # batch_size * num_batches <= # lines of bug_pool_file args = parser.parse_args() print(args) random.seed(args.seed) all_truth_data = [] for data_file in args.data_file.split("#"): truth_data = [] with open(data_file) as fin: lines = fin.readlines() # train_examples = [] for line in lines: # d = line.strip().split("\t") # truth_data.append((d[0], d[1:])) d = json.loads(line) truth_data.append((d["input"], d["output"], d["id"])) all_truth_data.append(truth_data) all_pred_data = [] merged_restuls_all = None for prediction_file in args.prediction_file.split("#"): with open(prediction_file, "r") as f: predictions = json.load(f) # get evaluation results. print(f"len(predictions): {len(predictions)}") print(f"len(all_truth_data[len(all_pred_data)]): {len(all_truth_data[len(all_pred_data)])}") results, results_all = evaluate_func( predictions, all_truth_data[len(all_pred_data)], args.metric, return_all=True) print(f"{prediction_file}; Evaluation results: {results}") all_pred_data.append(predictions) if merged_restuls_all is None: merged_restuls_all = results_all else: for key in merged_restuls_all: merged_restuls_all[key].extend(results_all[key]) merged_truth_data = [] for item in all_truth_data: merged_truth_data.extend(item) merged_predictions = [] for item in all_pred_data: merged_predictions.extend(item) bug_pool, pass_pool = generate_bugs(merged_predictions, merged_truth_data, merged_restuls_all) # make each dataset has the same number of examples if len(all_truth_data) >= 2: filtered_bug_pool = [] counts = {} random.shuffle(bug_pool) for item in bug_pool: dataset_name = item["id"].split("-")[0] if dataset_name not in counts: counts[dataset_name] = 0 if counts[dataset_name] >= args.max_bug_each_data and args.max_bug_each_data > 0: continue filtered_bug_pool.append(item) counts[dataset_name] += 1 bug_pool = filtered_bug_pool else: bug_pool = bug_pool # exit() print(f"len(bug_pool)={len(bug_pool)}; len(pass_pool)={len(pass_pool)} <--- len(predictions)={len(predictions)}") # bug_pool = [] # with open(args.bug_pool_file) as f: # for line in f.read().splitlines(): # bug_pool.append(json.loads(line)) # with open(args.pass_pool_file) as f: # pass_pool = [json.loads(line) for line in f.read().splitlines()] # pass_pool = [item for item in pass_pool if item["score"] # ["EM"] == 1] # only the EM=1 examples random.shuffle(pass_pool) random.shuffle(bug_pool) if args.bug_sample_size >= 0 and args.pass_sample_size >= 0: sampled_bug_pool = bug_pool[:args.bug_sample_size] sampled_pass_pool = pass_pool[:args.pass_sample_size] if args.hidden_sample_size > 0 and args.hidden_sample_size + args.pass_sample_size <= len(pass_pool): if len(all_truth_data) >= 2: # make equal test examples. hidden_examples = [] counts = {} random.shuffle(pass_pool) for item in pass_pool: dataset_name = item["id"].split("-")[0] if dataset_name not in counts: counts[dataset_name] = 0 if counts[dataset_name] >= (args.hidden_sample_size/len(all_truth_data)): continue hidden_examples.append(item) counts[dataset_name] += 1 else: hidden_examples = pass_pool[-args.hidden_sample_size:] with open(args.hidden_example_file, "w") as f: for item in hidden_examples: f.write(json.dumps(item) + "\n") print(len(sampled_bug_pool), len(sampled_pass_pool)) sampled_data_pool = sampled_bug_pool + sampled_pass_pool else: sampled_data_pool = pass_pool + bug_pool sampled_data_pool = sampled_data_pool[:args.batch_size * args.num_batches] if args.sample_method == "no_replace": data_stream = get_data_stream( sampled_data_pool, args.batch_size, args.num_batches, use_score=False) # randomly sorted bugs elif args.sample_method == "with_replace": data_stream = get_data_stream_with_replacement( sampled_data_pool, args.batch_size, args.num_batches) # randomly sorted bugs if args.replay_eval_size > 0: replay_stream = get_replay_stream(data_stream, args.replay_eval_size) # replay_stream.insert(0, random.sample(sampled_bug_pool, args.replay_eval_size)) replay_stream.insert(0, random.sample(sampled_data_pool, args.replay_eval_size)) with open(args.replay_stream_file, "w") as f: json.dump(replay_stream, f) with open(args.data_stream_file, "w") as f: json.dump(data_stream, f) if __name__ == '__main__': main() """ python semanticdebugger/benchmark_gen/sample_stream_data.py \ --sample_method no_replace \ --data_file \ data/mrqa_naturalquestions/mrqa_naturalquestions_dev.jsonl#\ data/mrqa_squad/mrqa_squad_dev.jsonl#\ data/mrqa_triviaqa/mrqa_triviaqa_dev.jsonl#\ data/mrqa_hotpotqa/mrqa_hotpotqa_dev.jsonl \ --prediction_file \ bug_data/mrqa_naturalquestions_dev.predictions.jsonl#\ bug_data/mrqa_squad_dev.predictions.jsonl#\ bug_data/mrqa_triviaqa_dev.predictions.jsonl#\ bug_data/mrqa_hotpotqa_dev.predictions.jsonl \ --data_stream_file exp_results/data_streams/mrqa.mixed.data_stream.test.json \ --hidden_sample_size 1000 \ --hidden_example_file exp_results/data_streams/mrqa.mixed.hidden_passes.jsonl \ --batch_size 32 --num_batches 100 \ --seed 42 \ --max_bug_each_data 800 \ --bug_sample_size 3200 --pass_sample_size 0 # python semanticdebugger/benchmark_gen/sample_stream_data.py \ # --sample_method no_replace \ # --data_file data/mrqa_naturalquestions/mrqa_naturalquestions_train.jsonl \ # --prediction_file bug_data/mrqa_naturalquestions_train.predictions.jsonl \ # --data_stream_file exp_results/data_streams/mrqa_naturalquestions_dev.data_stream.train.wr.json \ # --hidden_example_file exp_results/data_streams/mrqa_naturalquestions_dev.hidden_passes.jsonl \ # --batch_size 32 --num_batches 500 \ # --bug_sample_size 4688 --pass_sample_size 0 \ # --hidden_sample_size -1 """
CMR-main
cmr/benchmark_gen/sample_stream_data.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import json import argparse parser = argparse.ArgumentParser() parser.add_argument( "--input_file_pattern", default="exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data_#.json", type=str) parser.add_argument( "--output_file", default="exp_results/data_streams/paraphrase/mrqa_naturalquestions_dev.data_stream.test.wr.para_data.json", type=str) parser.add_argument( "--range", default="range(16)", type=str) parser.add_argument( "--mode", default="json", type=str) args = parser.parse_args() all_data = None for shard_id in eval(args.range): filename = args.input_file_pattern.replace("#", str(shard_id)) if args.mode == "json": with open(filename) as f: print(f.name) data = json.load(f) elif args.mode == "jsonl": with open(filename) as f: print(f.name) data = [json.loads(line) for line in f.read().splitlines() if line] if all_data is None: all_data = data else: if type(all_data) == dict: all_data.update(data) else: all_data += data with open(args.output_file, "w") as f: if args.mode == "json": json.dump(all_data, f) elif args.mode == "jsonl": for item in all_data: f.write(json.dumps(item) + "\n")
CMR-main
cmr/benchmark_gen/merge_json_file.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import json import os import sys from argparse import Namespace import torch from cmr.models.mybart import MyBart from cmr.models.run_bart import inference from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from cmr.task_manager.dataloader import GeneralDataset from tqdm import tqdm from transformers import BartConfig, BartTokenizer def inference_api(config_file, test_file, logger, data_dist, num_shards, local_id): with open(config_file) as f: config_args = eval(f.read()) # an Namespace object in python language args = config_args logger.info(f"Config args: {config_args}") # load config from json test_data = GeneralDataset( logger, args, test_file, data_type="dev", is_training=False, task_name=args.dataset, data_dist=data_dist, num_shards=num_shards, local_id=local_id) tokenizer = BartTokenizer.from_pretrained("bart-large") test_data.load_dataset(tokenizer, skip_cache=data_dist) test_data.load_dataloader() checkpoint = os.path.join(args.predict_checkpoint) logger.info("Loading checkpoint from {} ....".format(checkpoint)) model = MyBart.from_pretrained(args.model, state_dict=convert_model_to_single_gpu(torch.load(checkpoint))) logger.info("Loading checkpoint from {} .... Done!".format(checkpoint)) if torch.cuda.is_available(): model.to(torch.device("cuda")) model.eval() predictions = inference( model, test_data, save_predictions=False, verbose=True, args=args, logger=logger, return_all=False, predictions_only=True) return predictions # logger.info("%s on %s data: %.s" % (test_data.metric, test_data.data_type, str(result)))
CMR-main
cmr/benchmark_gen/bart_api.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import numpy as np import string import re from collections import Counter from sklearn.metrics import matthews_corrcoef, f1_score from scipy.stats import pearsonr, spearmanr # from rouge import Rouge METRICS = { 'mrqa_naturalquestions': 'EM|QA-F1', 'mrqa': 'EM|QA-F1', 'nli': 'EM', 'csr': 'EM|QA-F1', } def accuracy(prediction, ground_truth): return prediction.lower() == ground_truth.lower() def evaluate_func(predictions, data, metric, return_all=False): def cast_to_float(predictions): new_predictions = [] for prediction in predictions: try: new_predictions.append(float(prediction.strip())) except: new_predictions.append(float('NaN')) assert len(new_predictions) == len(predictions) return new_predictions assert len(predictions) == len(data) all_metrics = [m.strip() for m in metric.split("|")] results = {} results_all = {} for m in all_metrics: if m == "EM": ems = [] for (prediction, dp) in zip(predictions, data): ems.append(get_exact_match_over_list(prediction, dp[1])) results[m] = np.mean(ems) results_all[m] = [bool(_i) for _i in ems] elif m == "ACC": accs = [] for (prediction, dp) in zip(predictions, data): accs.append(get_accruacy_over_list(prediction, dp[1])) results[m] = np.mean(accs) results_all[m] = accs elif m == "QA-F1": f1s = [] for (prediction, dp) in zip(predictions, data): f1s.append(get_f1_over_list(prediction, dp[1])) results[m] = np.mean(f1s) # results_all[m] = f1s results_all[m] = [float(_i) for _i in f1s] elif m == "Classification-F1": results[m] = f1_score([dp[1][0] for dp in data], predictions, average="macro") elif m == "Matthew-Correlation": results[m] = get_matthews_corr(data, predictions) elif m == "Pearson-Correlation": predictions = cast_to_float(predictions) results[m] = pearsonr([float(dp[1][0]) for dp in data], predictions)[0] # elif m == "Rouge-L": # rouges = [] # for (prediction, dp) in zip(predictions, data): # rouges.append(get_rouge_over_list(prediction, dp[1])) # results[m] = np.mean(rouges) if return_all: return results, results_all return results def get_matthews_corr(data, predictions): # only cola is using this...? new_predictions = [] for prediction in predictions: if prediction.strip() == "acceptable": new_predictions.append(1.0) else: new_predictions.append(0.0) new_gold = [] for dp in data: if dp[1][0] == "acceptable": new_gold.append(1.0) else: new_gold.append(0.0) return matthews_corrcoef(new_gold, new_predictions) def qa_f1_score(prediction, ground_truth): prediction_tokens = prediction.split() ground_truth_tokens = ground_truth.split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 # def get_rouge_over_list(prediction, groundtruth): # def remove_punc(text): # exclude = set(string.punctuation) # return ''.join(ch for ch in text if ch not in exclude) # if len(remove_punc(prediction)) == 0: # return 0.0 # during early stages, it might generate nothin? # # print(prediction) # rouge = Rouge() # if type(groundtruth)==list: # if len(groundtruth)==0: # return 0 # return np.max([rouge.get_scores(prediction, gt, avg=True)["rouge-l"]["f"] for gt in groundtruth]) # return rouge.get_scores(prediction, groundtruth, avg=True)["rouge-l"]["f"] def get_accruacy_over_list(prediction, groundtruth): if type(groundtruth) == list: if len(groundtruth) == 0: return 0 return np.max([accuracy(prediction, gt) for gt in groundtruth]) return accuracy(prediction, groundtruth) def get_f1_over_list(prediction, groundtruth): # if type(groundtruth)==list: if len(groundtruth) == 0: return 0 prediction_norm = normalize_answer(prediction) return np.max([qa_f1_score(prediction_norm, normalize_answer(gt)) for gt in groundtruth]) # return qa_f1_score(prediction, groundtruth) def get_exact_match_over_list(prediction, groundtruth): # if type(groundtruth)==list: if len(groundtruth) == 0: return 0 prediction_norm = normalize_answer(prediction) return np.max([(prediction_norm == normalize_answer(gt)) for gt in groundtruth]) # return (normalize_answer(prediction) == groundtruth) def normalize_answer(s): def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))
CMR-main
cmr/task_manager/eval_metrics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved.
CMR-main
cmr/task_manager/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import os import json from .base_datamanager import MyQADataset, MyDataLoader from .eval_metrics import METRICS, evaluate_func import torch import numpy as np class GeneralDataset(object): def __init__(self, logger, args, data_path, data_type, is_training, task_name, given_data=None, data_dist=False, num_shards=-1, local_id=-1): # should give the tasks used in this split in the var "tasks" self.data_path = data_path self.data_type = data_type self.data = [] self.task_name = task_name if given_data is not None: self.data = given_data else: with open(data_path) as fin: lines = fin.readlines() # train_examples = [] for line in lines: # d = line.strip().split("\t") # self.data.append((d[0], d[1:])) d = json.loads(line) self.data.append((d["input"], d["output"], d["id"])) self.is_training = is_training self.load = not args.debug if hasattr(args, "debug") else True self.logger = logger self.args = args self.metric = METRICS[self.task_name] # self.max_input_length = self.args.max_input_length self.tokenizer = None self.dataset = None self.dataloader = None self.cache = None self.gen_early_stop = False if data_dist and local_id >= 0 and num_shards > 0: # num_shards = torch.distributed.get_world_size() # the number of gpus # local_shard_id = torch.distributed.get_rank() # the current process id self.logger.info(f'dataset_size={len(self.data)}, num_shards={num_shards}, local_shard_id={local_id}') self.data = np.array_split(self.data, num_shards)[local_id] # # make it evenly divisible # indices = indices[:shard_size * num_shards] # assert len(indices) == shard_size * num_shards # # subsample # indices = indices[local_shard_id:len(indices):num_shards] # assert len(indices) == shard_size # indices = set(indices) def __len__(self): return len(self.data) def decode(self, tokens): return self.tokenizer.decode(tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True) def decode_batch(self, tokens): return [self.decode(_tokens) for _tokens in tokens] def flatten(self, answers): new_answers, metadata = [], [] for answer in answers: metadata.append((len(new_answers), len(new_answers)+len(answer))) new_answers += answer return new_answers, metadata def load_dataset(self, tokenizer, do_return=False, skip_cache=False, quiet=False): self.tokenizer = tokenizer postfix = "prepro" + tokenizer.__class__.__name__.replace("zer", "zed") inputs = [] outputs = [] uuids = [] for dp in self.data: # Add the task name to the input # inputs.append(" [{}] {}".format(self.task_name, dp[0])) inputs.append(dp[0]) outputs.append(dp[1]) # is a list uuids.append(dp[2]) if not skip_cache: preprocessed_path = os.path.join( "/".join(self.data_path.split("/")[:-1]), self.data_path.split("/")[-1].replace(".jsonl", "-{}.json".format(postfix))) self.logger.info(f"preprocessed_path={preprocessed_path}") if not skip_cache and self.load and os.path.exists(preprocessed_path): # load preprocessed input self.logger.info( "Loading pre-tokenized data from {}".format(preprocessed_path)) with open(preprocessed_path, "r") as f: input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, \ metadata = json.load(f) else: if not quiet: self.logger.info( "Start tokenizing ... {} instances".format(len(self.data))) if not quiet: self.logger.info("Printing 3 examples") for i in range(3): self.logger.info(inputs[i]) self.logger.info(outputs[i]) outputs, metadata = self.flatten(outputs) # what is metadata? # self.logger.info("Printing 3 examples's outputs and metadata after flattening") # for i in range(3): # self.logger.info(outputs[i]) # self.logger.info(metadata[i]) if self.args.do_lowercase: inputs = [input0.lower() for input0 in inputs] outputs = [output0.lower() for output0 in outputs] if self.args.append_another_bos: inputs = ["<s> "+input0 for input0 in inputs] outputs = ["<s> " + output0 for output0 in outputs] if not quiet: self.logger.info("Tokenizing Input ...") tokenized_input = tokenizer.batch_encode_plus(inputs, pad_to_max_length=True, max_length=self.args.max_input_length) if not quiet: self.logger.info("Tokenizing Input ... Done!") self.logger.info("Tokenizing Output ...") tokenized_output = tokenizer.batch_encode_plus(outputs, pad_to_max_length=True, max_length=self.args.max_output_length) if not quiet: self.logger.info("Tokenizing Output ... Done!") input_ids, attention_mask = tokenized_input["input_ids"], tokenized_input["attention_mask"] decoder_input_ids, decoder_attention_mask = tokenized_output[ "input_ids"], tokenized_output["attention_mask"] if self.load and not skip_cache: preprocessed_data = [input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, metadata] self.logger.info("Save preprocessed data ...") with open(preprocessed_path, "w") as f: json.dump([input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, metadata], f) self.logger.info("Save preprocessed data ... Done!") # self.logger.info("len(input_ids): {}".format(len(input_ids))) # self.logger.info("len(decoder_input_ids): {}".format(len(decoder_input_ids))) # self.logger.info("len(attention_mask): {}".format(len(attention_mask))) # self.logger.info("len(decoder_attention_mask): {}".format(len(decoder_attention_mask))) assert len(uuids) == len(input_ids) # make sure self.dataset = MyQADataset(input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, in_metadata=None, out_metadata=metadata, is_training=self.is_training, uuids=uuids) if not quiet: self.logger.info("Loaded {} examples from {} data".format( len(self.dataset), self.data_type)) if do_return: return self.dataset def load_dataloader(self, do_return=False, is_training="self"): if is_training == "self": is_training = self.is_training self.dataloader = MyDataLoader( self.args, self.dataset, is_training) if do_return: return self.dataloader def evaluate(self, predictions, verbose=False): assert len(predictions) == len(self), (len(predictions), len(self)) predictions = [prediction.strip() for prediction in predictions] return evaluate_func(predictions, self.data, self.metric) # ems = [] # for (prediction, dp) in zip(predictions, self.data): # ems.append(get_exact_match(prediction.strip(), [dp[1]])) # return np.mean(ems) def save_predictions(self, predictions, path_to_save=None): assert len(predictions) == len(self), (len(predictions), len(self)) predictions = ['n/a' if len(prediction.strip()) == 0 else prediction for prediction in predictions] prediction_text = [ prediction.strip()+'\n' for prediction in predictions] if path_to_save: save_path = path_to_save else: save_path = os.path.join( self.args.output_dir, "{}_predictions.txt".format(self.args.prefix)) with open(save_path, "w") as f: f.writelines(prediction_text) self.logger.info("Saved prediction in {}".format(save_path))
CMR-main
cmr/task_manager/dataloader.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import numpy as np import torch from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler class MyQADataset(Dataset): def __init__(self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, in_metadata=None, out_metadata=None, is_training=False, uuids=None, seed=42): self.uuids = uuids self.input_ids = torch.LongTensor(input_ids) self.attention_mask = torch.LongTensor(attention_mask) self.decoder_input_ids = torch.LongTensor(decoder_input_ids) self.decoder_attention_mask = torch.LongTensor(decoder_attention_mask) self.in_metadata = list(zip(range(len(input_ids)), range(1, 1+len(input_ids)))) \ if in_metadata is None else in_metadata self.out_metadata = list(zip(range(len(decoder_input_ids)), range(1, 1+len(decoder_input_ids)))) \ if out_metadata is None else out_metadata self.is_training = is_training assert len(self.input_ids) == len( self.attention_mask) == self.in_metadata[-1][-1] assert len(self.decoder_input_ids) == len( self.decoder_attention_mask) == self.out_metadata[-1][-1] np.random.seed(seed) # for selecting the same answer if there are multiple def __len__(self): return len(self.in_metadata) def __getitem__(self, idx): if not self.is_training: idx = self.in_metadata[idx][0] return self.input_ids[idx], self.attention_mask[idx] in_idx = np.random.choice(range(*self.in_metadata[idx])) out_idx = np.random.choice(range(*self.out_metadata[idx])) # if there are multiple answers # TODO: can we pass the self.uuids[in_idx] ? return self.input_ids[in_idx], self.attention_mask[in_idx], \ self.decoder_input_ids[out_idx], self.decoder_attention_mask[out_idx] class MyDataLoader(DataLoader): def __init__(self, args, dataset, is_training): if is_training: sampler = RandomSampler(dataset) batch_size = args.train_batch_size else: sampler = SequentialSampler(dataset) batch_size = args.predict_batch_size super(MyDataLoader, self).__init__( dataset, sampler=sampler, batch_size=batch_size)
CMR-main
cmr/task_manager/base_datamanager.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import torch import torch.nn as nn from transformers import BartModel, RobertaModel from transformers.activations import ACT2FN from typing import List def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight, gain=0.0000001) if bias: nn.init.constant_(m.bias, 0.0) return m # def RegularLinear(in_features, out_features, bias=True): # m = nn.Linear(in_features, out_features, bias) # nn.init.xavier_uniform_(m.weight, gain=1) # if bias: # nn.init.constant_(m.bias, 0.0) # return m # def HNetLinear(config, in_features, out_features, input_dim, output_dim, bias=True): # var_e = 2 / (config.task_emb_dim + config.long_term_task_emb_num) # weight_var_fanin = 1 / (2 * in_features * input_dim * var_e) # weight_var_fanout = 1 / (in_features * output_dim * var_e) # bias_var_fanin = 1 / (2 * config.task_emb_dim * var_e) # bias_var_fanout = max((1 - (input_dim / output_dim)) / (config.task_emb_dim * var_e), 1e-10) # weight_var = 2 / (1 / weight_var_fanin + 1 / weight_var_fanout) # bias_var = 2 / (1 / bias_var_fanin + 1 / bias_var_fanout) # m = nn.Linear(in_features, out_features, bias) # nn.init.normal_(m.weight, 0, weight_var ** 0.5) # if bias: # nn.init.normal_(m.bias, 0, bias_var ** 0.5) # return m class MLP_Task2Adapter(nn.Module): # takes in a encoded task description and generates parameters of an adapter def __init__(self, config): super().__init__() self.input_dim = config.task_emb_dim # 768? self.hidden_dim = config.generator_hdim # TODO: set this output_dim = # params of adapters automatically. self.output_dim = config.d_model * config.adapter_dim * 2 + config.d_model + config.adapter_dim if config.adapt_layer_norm: self.output_dim += 2 * config.d_model self.linear1 = Linear(self.input_dim, self.hidden_dim) self.activation_fn = ACT2FN[config.activation_function] self.linear2 = Linear(self.hidden_dim, self.output_dim) def forward(self, x): x = self.linear1(x) x = self.activation_fn(x) x = self.linear2(x) return x.view(-1) class ParameterGenerator(nn.Module): def __init__(self, config): super().__init__() self.config = config modules = [] num_adapters = config.encoder_layers + config.decoder_layers # int for _ in range(num_adapters): modules.append(MLP_Task2Adapter(config)) self.decoders = nn.ModuleList(modules) def decode(self, task_emb): return [d(task_emb) for d in self.decoders] def forward(self, task_embedding, concat=False): adapter_params = self.decode(task_embedding) if concat: adapter_params = torch.cat(adapter_params) return adapter_params # class GrowingBart(nn.Module): # def __init__(self, model, meta_model, config): # super().__init__() # self.config = config # self.model = model # self.meta_model = meta_model # def set_relation(self, rel_ids, rel_masks): # # generate adapter parameters using task descriptions # generated_params = self.meta_model(rel_ids, attention_mask=rel_masks) # # apply the parameters to the adapters # self.apply_params_to_adapters(generated_params) # def forward(self, rel_ids, rel_masks, input_ids, input_masks, output_ids, output_masks, is_training=False): # # generate adapter parameters using task descriptions # generated_params = self.meta_model(rel_ids, attention_mask=rel_masks) # # apply the parameters to the adapters # self.apply_params_to_adapters(generated_params) # # use the adapted model to make zero-shot inference # ret = self.model(input_ids, attention_mask=input_masks, # decoder_input_ids=output_ids, # decoder_attention_mask=output_masks, # is_training=is_training # ) # return ret # def apply_params_to_adapters(self, generated_params): # encoder_params, decoder_params = generated_params[:self.config.encoder_layers], generated_params[self.config.encoder_layers:] # d_model = self.config.d_model # d_adapter = self.config.adapter_dim # for p, encoder_layer in zip(encoder_params, self.model.encoders()): # # dw, db: down weight, down bias # # uw, ub: up weight, up bias # dw, uw, db, ub = p[0:d_model*d_adapter], \ # p[d_model*d_adapter:d_model*d_adapter*2], \ # p[d_model*d_adapter*2:d_model*d_adapter*2+d_adapter], \ # p[d_model*d_adapter*2+d_adapter:d_model*d_adapter*2+d_adapter+d_model] # encoder_layer.adapter_down_weight = dw.view(d_model, d_adapter) # encoder_layer.adapter_down_bias = db.view(d_adapter) # encoder_layer.adapter_up_weight = uw.view(d_adapter, d_model) # encoder_layer.adapter_up_bias = ub.view(d_model) # if self.config.adapt_layer_norm: # encoder_layer.self_attn_layer_norm.weight.data = encoder_layer.self_attn_layer_norm.weight.data + p[-2*d_model: -1*d_model] # encoder_layer.self_attn_layer_norm.bias.data = encoder_layer.self_attn_layer_norm.bias.data + p[-1*d_model:] # for p, decoder_layer in zip(decoder_params, self.model.decoders()): # dw, uw, db, ub = p[0:d_model*d_adapter], \ # p[d_model*d_adapter:d_model*d_adapter*2], \ # p[d_model*d_adapter*2:d_model*d_adapter*2+d_adapter], \ # p[d_model*d_adapter*2+d_adapter:d_model*d_adapter*2+d_adapter+d_model] # decoder_layer.adapter_down_weight = dw.view(d_model, d_adapter) # decoder_layer.adapter_down_bias = db.view(d_adapter) # decoder_layer.adapter_up_weight = uw.view(d_adapter, d_model) # decoder_layer.adapter_up_bias = ub.view(d_model) # if self.config.adapt_layer_norm: # decoder_layer.self_attn_layer_norm.weight.data = decoder_layer.self_attn_layer_norm.weight.data + p[-2*d_model: -1*d_model] # decoder_layer.self_attn_layer_norm.bias.data = decoder_layer.self_attn_layer_norm.bias.data + p[-1*d_model:] # # a = self.model.decoders()[-4] # # print(a.adapter_down_weight) # # print(a.adapter_down_bias) # # print(a.adapter_up_weight) # # print(a.adapter_up_bias)
CMR-main
cmr/models/hypernet.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved.
CMR-main
cmr/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This script was based on https://github.com/shmsw25/bart-closed-book-qa. import torch import torch.nn.functional as F from torch import Tensor, nn from transformers import T5ForConditionalGeneration, BartForConditionalGeneration from transformers.modeling_bart import shift_tokens_right from .utils import label_smoothed_nll_loss class MyBart(BartForConditionalGeneration): def forward(self, input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_cached_states=None, use_cache=False, is_training=False, return_all_loss=False): if is_training: _decoder_input_ids = shift_tokens_right( decoder_input_ids, self.config.pad_token_id) else: _decoder_input_ids = decoder_input_ids outputs = self.model( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=_decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_cached_states=decoder_cached_states, use_cache=use_cache, ) lm_logits = F.linear( outputs[0], self.model.shared.weight, bias=self.final_logits_bias) if is_training: lprobs = F.log_softmax(lm_logits, dim=-1) loss, nll_loss = label_smoothed_nll_loss( lprobs, decoder_input_ids, epsilon=0.1, ignore_index=self.config.pad_token_id, return_all_loss=return_all_loss) return loss return (lm_logits, ) + outputs[1:]
CMR-main
cmr/models/mybart.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This script was based on https://github.com/shmsw25/bart-closed-book-qa. import os import numpy as np import torch from transformers import BartTokenizer, BartConfig from transformers import AdamW, get_linear_schedule_with_warmup from cmr.task_manager.dataloader import GeneralDataset from .mybart import MyBart from .utils import freeze_embeds, trim_batch, convert_model_to_single_gpu import json from tqdm import tqdm import copy def run(args, logger): tokenizer = BartTokenizer.from_pretrained("bart-large") train_data = GeneralDataset(logger, args, args.train_file, data_type="train", is_training=True, task_name=args.dataset) dev_data = GeneralDataset(logger, args, args.dev_file, data_type="dev", is_training=False, task_name=args.dataset) train_data.load_dataset(tokenizer) train_data.load_dataloader() dev_data.load_dataset(tokenizer) dev_data.load_dataloader() best_dev_performance = None test_performance = None best_model_state_dict = None if args.do_train: if args.checkpoint is not None and args.checkpoint != "None": logger.info(f"Loading checkpoint: {args.checkpoint}") model = MyBart.from_pretrained(args.model, state_dict=convert_model_to_single_gpu(torch.load(args.checkpoint))) else: model = MyBart.from_pretrained(args.model) if args.freeze_embeds: logger.info("Freezing embeddings") freeze_embeds(model) if args.n_gpu > 1: model = torch.nn.DataParallel(model) if torch.cuda.is_available(): model.to(torch.device("cuda")) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any( nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] args.total_steps = args.num_train_epochs * len(train_data.dataloader) logger.info(f"args.total_steps = {args.total_steps}") optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.total_steps) best_dev_performance, best_model_state_dict = train( args, logger, model, train_data, dev_data, optimizer, scheduler) if args.do_predict: if args.do_train and best_model_state_dict is not None: model = MyBart.from_pretrained(args.model, state_dict=best_model_state_dict) logger.info("Loading checkpoint from CPU") else: checkpoint = os.path.join(args.predict_checkpoint) model = MyBart.from_pretrained(args.model, state_dict=convert_model_to_single_gpu(torch.load(checkpoint))) logger.info("Loading checkpoint from {}".format(checkpoint)) if torch.cuda.is_available(): model.to(torch.device("cuda")) model.eval() data_type = "test" if "test" in args.test_file else "dev" test_data = GeneralDataset( logger, args, args.test_file, data_type=data_type, is_training=False, task_name=args.dataset) test_data.load_dataset(tokenizer) test_data.load_dataloader() test_performance = inference( model, test_data, save_predictions=True, verbose=True, args=args, logger=logger) logger.info("%s on %s data: %.s" % (test_data.metric, test_data.data_type, str(test_performance))) return best_dev_performance, test_performance def train(args, logger, model, train_data, dev_data, optimizer, scheduler): model.train() global_step = 0 train_losses = [] best_performance = None stop_training = False logger.info("Starting training!") for epoch in range(int(args.num_train_epochs)): for batch in tqdm(train_data.dataloader, desc="Epoch {}".format(epoch), disable=args.quiet): global_step += 1 if torch.cuda.is_available(): # logger.info(f"torch.cuda.is_available()={torch.cuda.is_available()}") batch = [b.to(torch.device("cuda")) for b in batch] pad_token_id = train_data.tokenizer.pad_token_id batch[0], batch[1] = trim_batch(batch[0], pad_token_id, batch[1]) batch[2], batch[3] = trim_batch(batch[2], pad_token_id, batch[3]) loss = model(input_ids=batch[0], attention_mask=batch[1], decoder_input_ids=batch[2], decoder_attention_mask=batch[3], is_training=True) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if torch.isnan(loss).data: logger.info("Stop training because loss=%s" % (loss.data)) stop_training = True break train_losses.append(loss.detach().cpu()) loss.backward() if global_step % args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), args.max_grad_norm) optimizer.step() # We have accumulated enough gradients scheduler.step() model.zero_grad() if global_step % args.eval_period == 0: model.eval() curr_performance = inference( model if args.n_gpu == 1 else model.module, dev_data, args=args, save_predictions=True, logger=logger) # TODO: save predictions when eval during training logger.info("Step %d Train loss %.2f %s %s on epoch=%d" % ( global_step, np.mean(train_losses), dev_data.metric, curr_performance, epoch)) train_losses = [] def is_improved(best, curr): if best is None: return True return any([best[m] < curr[m] for m in best]) if is_improved(best_performance, curr_performance): best_model_state_dict = {k: v.cpu() for ( k, v) in model.state_dict().items()} # save results logger.info("New best perfromance %s: %s -> %s on epoch=%d, global_step=%d" % (dev_data.metric, best_performance, curr_performance, epoch, global_step)) best_model_path = os.path.join( args.output_dir, "best-model.pt") with open(best_model_path.replace(".pt", "_results.json"), "w") as f: json.dump(curr_performance, f) logger.info( "Saving the new best model to {}".format(best_model_path)) torch.save(best_model_state_dict, best_model_path) best_performance = curr_performance wait_step = 0 stop_training = False else: wait_step += 1 if wait_step >= args.wait_step: stop_training = True break model.train() if global_step >= args.total_steps: stop_training = True break if stop_training: break # model_state_dict = {k:v.cpu() for (k, v) in model.state_dict().items()} # torch.save(model_state_dict, os.path.join(args.output_dir, "last-model.pt")) return best_performance, best_model_state_dict def inference(model, dev_data, save_predictions=False, verbose=False, args=None, logger=None, return_all=False, predictions_only=False, compute_loss=False, loss_only=False): model.eval() predictions = [] bos_token_id = dev_data.tokenizer.bos_token_id losses = [] # if needed if args and hasattr(args, "quiet"): quiet = args.quiet else: quiet = not verbose if not quiet: logger.info("Starting inference ...") for batch in tqdm(dev_data.dataloader, desc="Infernece", disable=quiet): if torch.cuda.is_available(): batch = [b.to(torch.device("cuda")) for b in batch] pad_token_id = dev_data.tokenizer.pad_token_id batch[0], batch[1] = trim_batch(batch[0], pad_token_id, batch[1]) if compute_loss: # to compute loss batch[2], batch[3] = trim_batch(batch[2], pad_token_id, batch[3]) loss = model(input_ids=batch[0], attention_mask=batch[1], decoder_input_ids=batch[2], decoder_attention_mask=batch[3], is_training=True, return_all_loss=True) # TODO: double check this part. are the results correct? # TODO: do we need to use mean? # logger.info(loss.shape) loss = loss.squeeze(-1) # logger.info(loss.shape) loss = loss.detach().cpu() # logger.info(f"torch.sum(loss.squeeze(-1), 1) = {torch.sum(loss.squeeze(-1), 1)}") for each_loss in loss: num_nonzeros = (each_loss!=0).sum(0) norm_loss = each_loss.sum()/ num_nonzeros # add the normalized loss for each sentence. losses.append(norm_loss) if return_all: pass if not loss_only: outputs = model.generate(input_ids=batch[0], attention_mask=batch[1], num_beams=dev_data.args.num_beams, max_length=dev_data.args.max_output_length, decoder_start_token_id=model.config.bos_token_id, early_stopping=dev_data.gen_early_stop,) for input_, output in zip(batch[0], outputs): pred = dev_data.decode(output) predictions.append(pred) if not quiet: logger.info("Starting inference ... Done") if loss_only: return losses if predictions_only: return predictions if save_predictions: dev_data.save_predictions(predictions, ) # logger.info("Starting evaluation metric ...") result = dev_data.evaluate(predictions, verbose=verbose) # logger.info("Starting evaluation metric ... Done!") if return_all: return predictions, result, losses return result
CMR-main
cmr/models/run_bart.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This script was based on https://github.com/shmsw25/bart-closed-book-qa. import copy import torch.nn as nn import random import numpy as np import torch def set_seeds(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def convert_model_to_single_gpu(state_dict): def _convert(key): if key.startswith('module.'): return key[7:] return key return {_convert(key): value for key, value in state_dict.items()} def label_smoothed_nll_loss(lprobs, target, epsilon=0.1, ignore_index=-100, return_all_loss=False): """From fairseq""" if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) if not return_all_loss: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / lprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss, nll_loss def freeze_params(model: nn.Module): """Set requires_grad=False for each of model.parameters()""" for par in model.parameters(): par.requires_grad = False def freeze_embeds(model): """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5.""" model_type = model.config.model_type if model_type == "t5": freeze_params(model.shared) for d in [model.encoder, model.decoder]: freeze_params(d.embed_tokens) elif model_type == "fsmt": for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) else: freeze_params(model.model.shared) for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) def trim_batch( input_ids, pad_token_id, attention_mask=None, ): """Remove columns that are populated exclusively by pad_token_id""" keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
CMR-main
cmr/models/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from transformers.modeling_bart import EncoderLayer, DecoderLayer, BartEncoder, BartDecoder, BartModel, BartForConditionalGeneration from transformers.modeling_bart import shift_tokens_right from transformers.configuration_bart import BartConfig from transformers.configuration_utils import PretrainedConfig from .utils import label_smoothed_nll_loss import torch import torch.nn as nn import torch.nn.functional as F import copy class BartWithAdapterConfig(BartConfig): def __init__( self, activation_dropout=0.0, activation_function="gelu", vocab_size=50265, d_model=1024, encoder_ffn_dim=4096, encoder_layers=12, encoder_attention_heads=16, decoder_ffn_dim=4096, decoder_layers=12, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, attention_dropout=0.0, dropout=0.1, max_position_embeddings=1024, init_std=0.02, classifier_dropout=0.0, num_labels=3, is_encoder_decoder=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, normalize_before=False, add_final_layer_norm=False, scale_embedding=False, normalize_embedding=True, static_position_embeddings=False, add_bias_logits=False, adapter_dim=64, adapt_layer_norm=False, unfreeze_hyper_encoder=False, **common_kwargs ): if "hidden_size" in common_kwargs: raise ValueError("hidden size is called d_model") super().__init__( num_labels=num_labels, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **common_kwargs, ) self.vocab_size = vocab_size self.d_model = d_model # encoder_embed_dim and decoder_embed_dim self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = self.num_hidden_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.max_position_embeddings = max_position_embeddings self.init_std = init_std # Normal(0, this parameter) self.activation_function = activation_function # Params introduced for Mbart self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.normalize_embedding = normalize_embedding # True for mbart, False otherwise self.normalize_before = normalize_before # combo of fairseq's encoder_ and decoder_normalize_before self.add_final_layer_norm = add_final_layer_norm # Params introduced for Marian self.add_bias_logits = add_bias_logits self.static_position_embeddings = static_position_embeddings # 3 Types of Dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.dropout = dropout # Classifier stuff self.classif_dropout = classifier_dropout # Adapter self.adapter_dim = adapter_dim # Hypernet self.generator_hdim = int(self.d_model * 0.25) # TODO: make it a tunable hp. self.adapt_layer_norm = adapt_layer_norm self.unfreeze_hyper_encoder = unfreeze_hyper_encoder # TODO: should be def Linear(in_features, out_features, bias=True, std=0.0000001): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight, gain=std) if bias: nn.init.constant_(m.bias, 0.0) return m class EncoderLayerWithAdapter(EncoderLayer): def __init__(self, config: BartConfig): super(EncoderLayerWithAdapter, self).__init__(config) self.adapter_dim = config.adapter_dim # self.adapter_down_weight = torch.zeros(self.embed_dim, self.adapter_dim) # self.adapter_down_bias = torch.zeros(self.adapter_dim) # self.adapter_up_weight = torch.zeros(self.adapter_dim, self.embed_dim) # self.adapter_up_bias = torch.zeros(self.embed_dim) self.adapter_down_layer = Linear(self.embed_dim, self.adapter_dim, config.init_std) self.adapter_up_layer = Linear(self.adapter_dim, self.embed_dim, config.init_std) def adapter_down(self, x): # print(x.size()) # print(self.adapter_down_weight.size()) # z = x * self.adapter_down_weight # print(z.size()) # return F.linear(x, self.adapter_down_weight.t(), self.adapter_down_bias) # return x * self.adapter_down_weight + self.adapter_down_bias return self.adapter_down_layer(x) def adapter_up(self, x): # return F.linear(x, self.adapter_up_weight.t(), self.adapter_up_bias) # return x * self.adapter_up_weight + self.adapter_up_bias return self.adapter_up_layer(x) def forward(self, x, encoder_padding_mask): residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, attn_weights = self.self_attn( query=x, key=x, key_padding_mask=encoder_padding_mask, need_weights=self.output_attentions ) x = F.dropout(x, p=self.dropout, training=self.training) residual_adapter = x x = self.adapter_down(x) x = self.activation_fn(x) x = self.adapter_up(x) x = residual_adapter + x x = residual + x if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.final_layer_norm(x) return x, attn_weights class DecoderLayerWithAdapter(DecoderLayer): def __init__(self, config: BartConfig): super(DecoderLayerWithAdapter, self).__init__(config) self.adapter_dim = config.adapter_dim # self.adapter_down_weight = torch.zeros(self.embed_dim, self.adapter_dim) # self.adapter_down_bias = torch.zeros(self.adapter_dim) # self.adapter_up_weight = torch.zeros(self.adapter_dim, self.embed_dim) # self.adapter_up_bias = torch.zeros(self.embed_dim) self.adapter_down_layer = Linear(self.embed_dim, self.adapter_dim, config.init_std) self.adapter_up_layer = Linear(self.adapter_dim, self.embed_dim, config.init_std) def adapter_down(self, x): # return F.linear(x, self.adapter_down_weight.t(), self.adapter_down_bias) return self.adapter_down_layer(x) def adapter_up(self, x): # return F.linear(x, self.adapter_up_weight.t(), self.adapter_up_bias) return self.adapter_up_layer(x) def forward( self, x, encoder_hidden_states, encoder_attn_mask=None, layer_state=None, causal_mask=None, decoder_padding_mask=None, ): residual = x if layer_state is None: layer_state = {} if self.normalize_before: x = self.self_attn_layer_norm(x) # Self Attention x, self_attn_weights = self.self_attn( query=x, key=x, layer_state=layer_state, # adds keys to layer state key_padding_mask=decoder_padding_mask, attn_mask=causal_mask, need_weights=self.output_attentions, ) x = F.dropout(x, p=self.dropout, training=self.training) residual_adapter = x x = self.adapter_down(x) x = self.activation_fn(x) x = self.adapter_up(x) x = residual_adapter + x x = residual + x if not self.normalize_before: x = self.self_attn_layer_norm(x) # Cross attention residual = x assert self.encoder_attn.cache_key != self.self_attn.cache_key if self.normalize_before: x = self.encoder_attn_layer_norm(x) x, _ = self.encoder_attn( query=x, key=encoder_hidden_states, key_padding_mask=encoder_attn_mask, layer_state=layer_state, # mutates layer state ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.encoder_attn_layer_norm(x) # Fully Connected residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.final_layer_norm(x) return ( x, self_attn_weights, layer_state, ) # just self_attn weights for now, following t5, layer_state = cache for decoding class BartEncodeWithAdapter(BartEncoder): def __init__(self, config: BartConfig, embed_tokens): super(BartEncodeWithAdapter, self).__init__(config, embed_tokens) self.layers = nn.ModuleList( [EncoderLayerWithAdapter(config) for _ in range(config.encoder_layers)] ) class BartDecoderWithAdapter(BartDecoder): def __init__(self, config: BartConfig, embed_tokens: nn.Embedding): super(BartDecoderWithAdapter, self).__init__(config, embed_tokens) self.layers = nn.ModuleList( [DecoderLayerWithAdapter(config) for _ in range(config.decoder_layers)] ) class BartModelWithAdapter(BartModel): def __init__(self, config: BartConfig): super(BartModelWithAdapter, self).__init__(config) self.encoder = BartEncodeWithAdapter(config, self.shared) self.decoder = BartDecoderWithAdapter(config, self.shared) class BartForConditionalGenerationWithAdapter(BartForConditionalGeneration): def __init__(self, config: BartConfig): super().__init__(config) base_model = BartModelWithAdapter(config) self.model = base_model self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) class MyBartWithAdapter(BartForConditionalGenerationWithAdapter): def forward(self, input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_cached_states=None, use_cache=False, is_training=False): if is_training: _decoder_input_ids = shift_tokens_right(decoder_input_ids, self.config.pad_token_id) else: _decoder_input_ids = decoder_input_ids outputs = self.model( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=_decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_cached_states=decoder_cached_states, use_cache=use_cache, ) lm_logits = F.linear(outputs[0], self.model.shared.weight, bias=self.final_logits_bias) if is_training: # loss_fct = nn.CrossEntropyLoss(reduction="mean", ignore_index=self.config.pad_token_id) # loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), # decoder_input_ids.view(-1)) lprobs = F.log_softmax(lm_logits, dim=-1) loss, _ = label_smoothed_nll_loss(lprobs, decoder_input_ids, epsilon=0.1, ignore_index=self.config.pad_token_id) return loss return (lm_logits, ) + outputs[1:] def encoders(self): return self.model.encoder.layers def decoders(self): return self.model.decoder.layers def backup_layer_norm_parameters(self): for encoder in self.encoders(): encoder.self_attn_layer_norm_bc = copy.deepcopy(encoder.self_attn_layer_norm) for decoder in self.decoders(): decoder.self_attn_layer_norm_bc = copy.deepcopy(decoder.self_attn_layer_norm) def restore_layer_norm_parameters(self): for encoder in self.encoders(): encoder.self_attn_layer_norm = copy.deepcopy(encoder.self_attn_layer_norm_bc) for decoder in self.decoders(): decoder.self_attn_layer_norm = copy.deepcopy(decoder.self_attn_layer_norm_bc)
CMR-main
cmr/models/bart_with_adapater.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from tqdm import tqdm import json import random class OfflineDebugger(ContinualFinetuning): def __init__(self, logger): super().__init__(logger=logger) self.name = "offline_debug" def _check_debugger_args(self): super()._check_debugger_args() required_atts = [ # additional hyper parameters "offline_retrain_upstream",] assert all([hasattr(self.debugger_args, att) for att in required_atts]) def _get_all_init_errors(self): data_args = self.data_args all_init_errors = [] for data_batch in tqdm(self.data_stream, desc="Creating the data loaders."): if data_args.max_timecode > 0 and len(self.data_eval_loaders) >= data_args.max_timecode: break all_init_errors += [item for item in data_batch if item["init_status"] == "error"] all_init_errors = self.data_formatter(all_init_errors) return all_init_errors def offline_debug(self): """"This function is to generate the bound when fixing the errors offline.""" self.logger.info("Start Offline Debugging") self.timecode = -1 # TODO: get the all_bug_examples init_errors = self._get_all_init_errors() # get the upstream examples with open(self.data_args.upstream_data_path) as f: upstream_memory_examples = [json.loads(line)for line in set(f.read().splitlines())] upstream_memory_examples = self.upstream_data_formatter(upstream_memory_examples) if self.debugger_args.offline_retrain_upstream: merged_examples = init_errors + upstream_memory_examples else: merged_examples = init_errors # dl, _ = self.get_dataloader(self.data_args, merged_examples, mode="train") # self.fix_bugs(dl, quiet=False) # self._save_base_model(ckpt_name="offline")
CMR-main
cmr/debug_algs/offline_debug_bounds.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from argparse import Namespace from logging import disable import numpy as np import torch from cmr.models.mybart import MyBart from cmr.models import run_bart from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from cmr.task_manager.dataloader import GeneralDataset from transformers import (AdamW, BartConfig, BartTokenizer, get_linear_schedule_with_warmup) from cmr.debug_algs.commons import OnlineDebuggingMethod from tqdm import tqdm import copy class ContinualFinetuning(OnlineDebuggingMethod): def __init__(self, logger): super().__init__(logger=logger) self.name = "simple_cl" def _check_debugger_args(self): required_atts = ["weight_decay", "learning_rate", "adam_epsilon", "warmup_steps", "total_steps", "num_epochs", "gradient_accumulation_steps", "max_grad_norm", "diff_loss_weight"] assert all([hasattr(self.debugger_args, att) for att in required_atts]) return def load_base_model(self, base_model_args, mode="online_debug"): self.base_model_args = base_model_args model_type, base_model_path = base_model_args.model_type, base_model_args.base_model_path self.logger.info( f"Loading checkpoint from {base_model_path} for {model_type} .....") self.base_model = MyBart.from_pretrained(model_type, state_dict=convert_model_to_single_gpu(torch.load(base_model_path))) self.logger.info( f"Loading checkpoint from {base_model_path} for {model_type} ..... Done!") if self.use_cuda: self.base_model.to(torch.device("cuda")) self.logger.info("Moving to the GPUs.") if self.n_gpu > 1: self.base_model = torch.nn.DataParallel(self.base_model) def base_model_infer(self, eval_dataloader, verbose=False): self.base_model.eval() model = self.base_model if self.n_gpu == 1 else self.base_model.module predictions = run_bart.inference(model, eval_dataloader, save_predictions=False, verbose=verbose, logger=self.logger, return_all=False, predictions_only=True, args=Namespace(quiet=True)) return predictions def data_formatter(self, bug_batch): # The continual fine-tuning method only uses the correct answers for fixing bugs. formatted_bug_batch = [] for bug in bug_batch: # if "id" not in bug: # _id = len(formatted_bug_batch) _id = bug["id"] _input = bug["input"] # _mistake = bug["mistake"] # TODO: only for now debugging. if "truth" in bug: _truth = bug["truth"] # a list of answers else: _truth = bug["output"] # a list of answers formatted_bug_batch.append((_input, _truth, _id)) return formatted_bug_batch def get_dataloader(self, bug_data_args, formatted_bug_batch, mode="both", is_training="self"): # mini bug-batch size. assert hasattr(bug_data_args, "train_batch_size") assert hasattr(bug_data_args, "predict_batch_size") train_bug_dataloader, eval_bug_dataloader = None, None if mode == "both" or mode == "train": # for error-fixing train_bug_dataloader = GeneralDataset(self.logger, bug_data_args, None, data_type="train", is_training=True, task_name=bug_data_args.task_name, given_data=formatted_bug_batch) train_bug_dataloader.load_dataset( self.tokenizer, skip_cache=True, quiet=True) train_bug_dataloader.load_dataloader(is_training=is_training) if mode == "both" or mode == "eval": # for evaluation eval_bug_dataloader = GeneralDataset(self.logger, bug_data_args, None, data_type="dev", is_training=False, task_name=bug_data_args.task_name, given_data=formatted_bug_batch) eval_bug_dataloader.load_dataset( self.tokenizer, skip_cache=True, quiet=True) eval_bug_dataloader.load_dataloader() return train_bug_dataloader, eval_bug_dataloader def reset_optimizer(self): no_decay = ['bias', 'LayerNorm.weight'] self.optimizer_grouped_parameters = [ {'params': [p for n, p in self.base_model.named_parameters() if not any( nd in n for nd in no_decay)], 'weight_decay': self.debugger_args.weight_decay}, {'params': [p for n, p in self.base_model.named_parameters() if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] self.optimizer = AdamW(self.optimizer_grouped_parameters, lr=self.debugger_args.learning_rate, eps=self.debugger_args.adam_epsilon) # TODO: double check the decision about warm up for fine-tuning self.scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=self.debugger_args.warmup_steps, num_training_steps=self.debugger_args.total_steps) self.logger.info(f"optimizer & scheduler Setup ...... Done!") def debugger_setup(self, debugger_args): self.debugger_args = debugger_args self._check_debugger_args() self.logger.info(f"Debugger Setup ......") self.logger.info(f"debugger_args: {debugger_args} ......") self.reset_optimizer() self.logger.info(f"Debugger Setup ...... Done!") return def fix_bugs(self, bug_loader, quiet=True): # bug_dataloader is from self.bug_loaders self.base_model.train() train_losses = [] global_step = 0 if self.debugger_args.diff_loss_weight > 0: last_weights = copy.deepcopy(list(self.base_model.parameters())) for epoch_id in range(int(self.debugger_args.num_epochs)): for batch in tqdm(bug_loader.dataloader, desc=f"Bug-fixing Epoch {epoch_id}", disable=quiet): global_step += 1 # here the batch is a mini batch of the current bug batch if self.use_cuda: # print(type(batch[0]), batch[0]) batch = [b.to(torch.device("cuda")) for b in batch] pad_token_id = self.tokenizer.pad_token_id batch[0], batch[1] = trim_batch( batch[0], pad_token_id, batch[1]) batch[2], batch[3] = trim_batch( batch[2], pad_token_id, batch[3]) loss = self.base_model(input_ids=batch[0], attention_mask=batch[1], decoder_input_ids=batch[2], decoder_attention_mask=batch[3], is_training=True) if self.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. # For L2 norm if self.debugger_args.diff_loss_weight > 0: diff_loss = torch.Tensor([0]).to("cuda" if torch.cuda.is_available() else "cpu") # Iterate over base_weights and curr_weights and accumulate the euclidean norm # of their differences curr_weights = list(self.base_model.parameters()) for base_param, curr_param in zip(last_weights, curr_weights): diff_loss += (curr_param - base_param).pow(2).sum() # self.logger.info(f"loss={loss}; diff_loss={diff_loss}; l2w={self.debugger_args.diff_loss_weight}") loss = loss + self.debugger_args.diff_loss_weight * diff_loss train_losses.append(loss.detach().cpu()) loss.backward() self.model_update_steps += 1 if global_step % self.debugger_args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( self.base_model.parameters(), self.debugger_args.max_grad_norm) self.optimizer.step() # We have accumulated enough gradients self.scheduler.step() self.base_model.zero_grad() # last_weights = copy.deepcopy(list(self.base_model.parameters())) # update the last weights if self.debugger_args.diff_loss_weight > 0: del last_weights return
CMR-main
cmr/debug_algs/cl_simple_alg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import json from altair.vegalite.v4.api import value import numpy as np import sys import os from numpy.lib.function_base import median def get_prefix(filepath): return filepath.split("/")[2].replace("_offline_eval","").replace("nq_dev_", "")[5:] def eval_forgetting(online_debug_result, timecodes): pass_forgetting_data = [] # Eval the forggeting issue. em_on_passes = [] f1_on_passes = [] for timecode in timecodes: item = online_debug_result[str(timecode)] r = item["eval_results_overall_forget"]["metric_results"] em_on_passes.append(r["EM"]) f1_on_passes.append(r["QA-F1"]) worse = np.min(em_on_passes) mean = np.mean(em_on_passes) # median = np.median(em_on_passes) final = em_on_passes[-1] # print(f"Forgetting measure (EM): worse={worse}; mean={mean}; final={final}") return worse, mean, final def eval_error_fixing(online_debug_result, timecodes): final_state_bug_fixing_rate = online_debug_result[str(timecodes[-1])]["eval_results_overall_bug"]["metric_results"]["EM"] bug_fixing_rates = [online_debug_result[str(t)]["eval_results_overall_bug"]["metric_results"]["EM"] for t in timecodes] inter_prefix_efr = [] inter_respon_efr = [] bsz = 20 odr = online_debug_result # TODO: add these back later. # for timecode, ((before, after), em_fixed, f1_fixed, em_prefixed, f1_prefixed) in \ # enumerate(zip(odr["res_on_bugs"], odr["em_fixed_bugs"], odr["f1_fixed_bugs"], odr["em_prefixed_bugs"], odr["f1_prefixed_bugs"])): # inter_prefix_efr.append(len(em_prefixed)/bsz) # inter_respon_efr.append(len(em_fixed)/(bsz-len(em_prefixed))) # mean_ip_efr = np.mean(inter_prefix_efr) # mean_ir_efr = np.mean(inter_respon_efr) # print(f"Bug-Fixing measure (EM): final_state_bug_fixing_rate={final_state_bug_fixing_rate};") # print(f"Bug-Fixing measure (EM): mean_ip_efr={mean_ip_efr}; mean_ir_efr={mean_ir_efr};") mean_ip_efr, mean_ir_efr = 0, 0 best_efr = np.max(bug_fixing_rates) mean_efr = np.mean(bug_fixing_rates) return final_state_bug_fixing_rate, best_efr, mean_efr def print_eval(path="bug_data/output/nq_dev_0625_1e-5_e3_result.json"): # Load the json data lr = path.split("_")[-5] num_epoch = path.split("_")[-4][1:] prefix = get_prefix(path) assert os.path.exists(path) all_results = json.load(open(path)) # print(output_info.keys()) # online_debug_results = output_info["online_debug_results"] timecodes = [int(t) for t in list(all_results.keys())] timecodes = sorted(timecodes, reverse=False) worse_kr, mean_kr, final_kr = eval_forgetting(all_results, timecodes) final_efr, best_efr, mean_efr = eval_error_fixing(all_results, timecodes) final_f1 = 2*(final_kr*final_efr)/(final_kr+final_efr) mean_f1 = 2*(mean_kr*mean_efr)/(mean_kr+mean_efr) print(f"{prefix}, {worse_kr}, {mean_kr}, {final_kr}, {best_efr}, {mean_efr}, {final_efr}, {mean_f1} , {final_f1}") def aggregate_offline_results(path="bug_data/output/nq_dev_0701_v2_offline_eval/"): import glob alltime_results = {} for thread_res_path in sorted(glob.glob(f"{path}/thread_*.json")): with open(thread_res_path) as f: thread_res = json.load(f) # for key, values in single_res.items(): # if key not in alltime_results: # alltime_results[key] = [] # alltime_results[key] += values alltime_results.update(thread_res) with open(f"{path}/alltime_result.json", "w") as f: json.dump(alltime_results, f) if __name__ == '__main__': # aggregate_offline_results("bug_data/output/nq_dev_0706_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0706_3e-5_e3_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0706_1e-5_e3_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0706_1e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_l0.5_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_l5_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_l50_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_l500_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_l5000_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_l50000_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_withup_l500_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0708_ewc_withup_l5000_g1_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0709_simplereplay_rsz30_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0709_simplereplay_rsz10_3e-5_e5_offline_eval") # aggregate_offline_results("bug_data/output/nq_dev_0709_simplereplay_rsz100_3e-5_e5_offline_eval") aggregate_offline_results("bug_data/output/nq_dev_0716_mbpapp_rsz32_rf30_3e-5_e5_offline_eval") aggregate_offline_results("bug_data/output/nq_dev_0716v1_mbpapp_rsz32_rf30_3e-5_e5_woadapt_offline_eval") aggregate_offline_results("bug_data/output/nq_dev_0716_mbpa_3e-5_e5_offline_eval") print("{prefix}, {worse_kr}, {mean_kr}, {final_kr}, {best_efr}, {mean_efr}, {final_efr}, {mean_f1}, {final_f1}") print_eval("bug_data/output/nq_dev_0706_1e-5_e3_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0706_3e-5_e3_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0706_1e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0706_3e-5_e5_offline_eval/alltime_result.json") print("-"*50) print_eval("bug_data/output/nq_dev_0708_ewc_l0.5_g1_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0708_ewc_l5_g1_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0708_ewc_l50_g1_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0708_ewc_l500_g1_3e-5_e5_offline_eval/alltime_result.json") # the best print_eval("bug_data/output/nq_dev_0708_ewc_l5000_g1_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0708_ewc_l50000_g1_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0708_ewc_withup_l500_g1_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0708_ewc_withup_l5000_g1_3e-5_e5_offline_eval/alltime_result.json") print("-"*50) print_eval("bug_data/output/nq_dev_0709_simplereplay_rsz10_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0709_simplereplay_rsz30_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0709_simplereplay_rsz100_3e-5_e5_offline_eval/alltime_result.json") print("-"*50) print_eval("bug_data/output/nq_dev_0716_mbpapp_rsz32_rf30_3e-5_e5_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0716v1_mbpapp_rsz32_rf30_3e-5_e5_woadapt_offline_eval/alltime_result.json") print_eval("bug_data/output/nq_dev_0716_mbpa_3e-5_e5_offline_eval/alltime_result.json")
CMR-main
cmr/debug_algs/evaluation.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from argparse import Namespace import argparse from torch import detach from cmr.models.utils import set_seeds from cmr.debug_algs.cl_none import NoneCL, OfflineCL from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from cmr.debug_algs.cl_online_ewc_alg import OnlineEWC from cmr.debug_algs.offline_debug_bounds import OfflineDebugger from cmr.debug_algs.cl_mbcl_alg import MemoryBasedCL from cmr.debug_algs.index_based.cl_indexed_alg import IndexBasedCL from cmr.debug_algs.cl_hypernet_alg import HyperCL from cmr.debug_algs.distant_supervision import data_collection import logging import os import json from tqdm import tqdm import numpy as np import wandb class TqdmHandler(logging.Handler): def emit(self, record): try: msg = self.format(record) tqdm.write(msg) # , file=sys.stderr) self.flush() except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) def setup_args(args): set_seeds(args.seed) prefix = args.prefix log_filename = f"logs/{prefix}_online_debug.log" logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, handlers=[logging.FileHandler(log_filename), logging.StreamHandler(), TqdmHandler()]) logger = logging.getLogger(__name__) logger.info(args) if args.cl_method_name == "none_cl": debugging_alg = NoneCL(logger=logger) elif args.cl_method_name == "offline_cl": debugging_alg = OfflineCL(logger=logger) elif args.cl_method_name == "simple_cl": debugging_alg = ContinualFinetuning(logger=logger) elif args.cl_method_name == "online_ewc": debugging_alg = OnlineEWC(logger=logger) elif args.cl_method_name == "offline_debug": debugging_alg = OfflineDebugger(logger=logger) elif args.cl_method_name in ["er", "mir"]: # replay only assert args.replay_frequency > 0 assert args.replay_size > 0 if args.cl_method_name == "mir": args.use_mir = True assert args.replay_candidate_size >= args.replay_size assert args.num_adapt_epochs >= 1 # this is for the virtual update else: assert args.num_adapt_epochs <= 0 debugging_alg = MemoryBasedCL(logger=logger) debugging_alg.name = args.cl_method_name elif args.cl_method_name == "mbpa": assert args.num_adapt_epochs > 0 assert args.replay_frequency <= 0 assert args.replay_size <= 0 debugging_alg = MemoryBasedCL(logger=logger) debugging_alg.name = args.cl_method_name elif args.cl_method_name == "mbpa++": assert args.num_adapt_epochs > 0 assert args.replay_frequency > 0 assert args.replay_size > 0 debugging_alg = MemoryBasedCL(logger=logger) debugging_alg.name = args.cl_method_name elif args.cl_method_name == "index_cl": assert args.replay_frequency > 0 assert args.replay_size > 0 assert args.num_adapt_epochs <= 0 debugging_alg = IndexBasedCL(logger=logger) debugging_alg.name = args.cl_method_name elif args.cl_method_name == "hyper_cl": debugging_alg = HyperCL(logger=logger) elif args.cl_method_name == "simple_ds_mine": debugging_alg = data_collection.MiningSupervision(logger=logger) data_args = Namespace( submission_stream_data=args.submission_stream_data, stream_id=args.stream_id, upstream_eval_data=args.upstream_eval_data, heldout_submission_data=args.heldout_submission_data, upstream_data_path=args.upstream_data_path, # sampled_upstream_json_path=args.sampled_upstream_json_path, # pass_sample_size=args.pass_sample_size, do_lowercase=args.do_lowercase, append_another_bos=args.append_another_bos, max_input_length=args.max_input_length, max_output_length=args.max_output_length, task_name=args.task_name, result_file=args.result_file, train_batch_size=args.train_batch_size, predict_batch_size=args.predict_batch_size, num_beams=args.num_beams, max_timecode=args.max_timecode, accumulate_eval_freq=-1, # use_sampled_upstream=args.use_sampled_upstream, ) base_model_args = Namespace( model_type=args.base_model_type, base_model_path=args.base_model_path ) if args.cl_method_name in ["none_cl", "offline_cl", "simple_cl", "online_ewc", "er", "mir", "mbpa", "mbpa++", "index_cl", "hyper_cl", "simple_ds_mine"]: debugger_args = Namespace( weight_decay=args.weight_decay, learning_rate=args.learning_rate, adam_epsilon=args.adam_epsilon, warmup_steps=0, total_steps=10000, num_epochs=args.num_train_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, max_grad_norm=args.max_grad_norm, diff_loss_weight=args.diff_loss_weight, save_ckpt_freq=args.save_ckpt_freq, ckpt_dir=args.ckpt_dir, skip_instant_eval=args.skip_instant_eval, kr_eval_freq=args.kr_eval_freq, kr_eval_mode=args.kr_eval_mode, okr_sample_size=args.okr_sample_size, okr_sample_seed=args.okr_sample_seed, kg_eval_freq=args.kg_eval_freq, kg_eval_mode=args.kg_eval_mode, ) if args.cl_method_name == "online_ewc": setattr(debugger_args, "ewc_lambda", args.ewc_lambda) setattr(debugger_args, "ewc_gamma", args.ewc_gamma) elif args.cl_method_name in ["er", "mbpa", "mbpa++", "mir", "index_cl"]: setattr(debugger_args, "use_replay_mix", args.use_replay_mix) setattr(debugger_args, "replay_size", args.replay_size) setattr(debugger_args, "replay_candidate_size", args.replay_candidate_size) setattr(debugger_args, "replay_frequency", args.replay_frequency) setattr(debugger_args, "memory_path", args.memory_path) setattr(debugger_args, "init_memory_cache_path", args.init_memory_cache_path) setattr(debugger_args, "memory_key_encoder", args.memory_key_encoder) setattr(debugger_args, "memory_store_rate", args.memory_store_rate) setattr(debugger_args, "upstream_sample_ratio", args.upstream_sample_ratio) setattr(debugger_args, "num_adapt_epochs", args.num_adapt_epochs) setattr(debugger_args, "inference_query_size", args.inference_query_size) setattr(debugger_args, "local_adapt_lr", args.local_adapt_lr) if args.cl_method_name == "mir" or args.use_mir: setattr(debugger_args, "mir_abalation_args", args.mir_abalation_args) if args.cl_method_name == "index_cl": setattr(debugger_args, "use_mir", args.use_mir) setattr(debugger_args, "index_rank_method", args.index_rank_method) setattr(debugger_args, "indexing_method", args.indexing_method) setattr(debugger_args, "indexing_args_path", args.indexing_args_path) elif args.cl_method_name in ["hyper_cl"]: setattr(debugger_args, "adapter_dim", args.adapter_dim) setattr(debugger_args, "example_encoder_name", args.example_encoder_name) setattr(debugger_args, "task_emb_dim", args.task_emb_dim) return debugging_alg, data_args, base_model_args, debugger_args, logger def run(args): debugging_alg, data_args, base_model_args, debugger_args, logger = setup_args(args) # The Online Debugging Mode + Computing offline debugging bounds. # setattr(data_args, "data_stream_json_path", args.data_stream_json_path) # setattr(data_args, "replay_stream_json_path", args.replay_stream_json_path) debugging_alg.load_data(data_args) debugging_alg.load_base_model(base_model_args) debugging_alg.debugger_setup(debugger_args) debugging_alg.online_debug() # logger.info(f'output_info["final_eval_results"]={output_info["final_eval_results"]}') debugging_alg.save_result_file() logger.info(f"Finished. Results saved to {args.result_file}") return def get_cli_parser(): parser = argparse.ArgumentParser() # base_model_args parser.add_argument("--base_model_type", default="facebook/bart-base", required=False) parser.add_argument( "--base_model_path", default="out/mrqa_squad_bart-base_1029_upstream_model/best-model.pt", type=str) # data_args parser.add_argument("--submission_stream_data", default="/path/to/submission_stream") # this will be used for evaluating forgetting parser.add_argument("--upstream_eval_data", default="experiments/eval_data/qa/upstream_eval.v1.jsonl") parser.add_argument("--heldout_submission_data", default="experiments/eval_data/qa/heldout_eval.v1.json") parser.add_argument("--upstream_data_path", default="data/mrqa_squad/mrqa_squad_train.jsonl") # default="bug_data/mrqa_naturalquestions.sampled_upstream.jsonl") parser.add_argument("--task_name", default="mrqa") # base model args. parser.add_argument('--train_batch_size', type=int, default=8) parser.add_argument('--predict_batch_size', type=int, default=16) parser.add_argument('--num_beams', type=int, default=3) parser.add_argument("--do_lowercase", action='store_true', default=False) parser.add_argument("--freeze_embeds", action='store_true', default=False) parser.add_argument('--max_input_length', type=int, default=888) parser.add_argument('--max_output_length', type=int, default=50) parser.add_argument("--append_another_bos", type=int, default=1) # should be true (1) # evalaution related parser.add_argument('--skip_instant_eval', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--use_wandb', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--kr_eval_freq', type=int, default=5) parser.add_argument('--kr_eval_mode', default="loss") # loss or metric parser.add_argument('--okr_sample_size', type=int, default=512) parser.add_argument('--okr_sample_seed', type=int, default=1337) parser.add_argument('--kg_eval_freq', type=int, default=5) parser.add_argument('--kg_eval_mode', default="loss") # loss or metric # feiw-benchmark # debugger_args parser.add_argument('--cl_method_name', type=str, default="none_cl", help="the method name of the continual learning method") ### The HPs for Simple Continual Fine-tuning Method. ### parser.add_argument("--learning_rate", default=1e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=0.1, type=float, help="Max gradient norm.") parser.add_argument("--diff_loss_weight", default=0, type=float, help="For L2 reg") parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") ### The HPs for Online EWC Method. ### parser.add_argument("--ewc_lambda", default=0.5, type=float, help="Max gradient norm.") parser.add_argument("--ewc_gamma", default=1, type=float, help="Max gradient norm.") # parser.add_argument("--use_sampled_upstream", action='store_true', default=False) ### The HPs for replay-based methods and memory-based. parser.add_argument('--replay_size', type=int, default=8) parser.add_argument('--replay_candidate_size', type=int, default=8) parser.add_argument('--replay_frequency', type=int, default=1) # 1 means always replay for every steps, set to 10 means sample after 10 model updates. parser.add_argument('--memory_key_encoder', type=str, default="facebook/bart-base") parser.add_argument('--memory_path', type=str, default="") parser.add_argument('--init_memory_cache_path', type=str, default="bug_data/memory_key_cache.pkl") parser.add_argument('--upstream_sample_ratio', type=float, default=-1) # parser.add_argument('--memory_store_rate', type=float, default=1.0) # 1= always store all examples to the memory. parser.add_argument('--num_adapt_epochs', type=int, default=1) # parser.add_argument('--inference_query_size', type=int, default=1) # parser.add_argument("--use_replay_mix", action='store_true', default=False) # mix the replayed examples with the current error examples. parser.add_argument('--local_adapt_lr', type=float, default=1e-5) # # MIR ablation options parser.add_argument('--mir_abalation_args', type=str, default="none") # Indexbased CL abalation options parser.add_argument('--use_mir', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--index_rank_method', type=str, default="most_similar") parser.add_argument('--indexing_method', type=str, default="bart_index") # bart_index, biencoder parser.add_argument('--indexing_args_path', type=str, default="exp_results/supervision_data/1012_dm_simple.train_args.json") # bart_index, biencoder ### The HPs for HyperCL parser.add_argument('--adapter_dim', type=int, default=32) # 1 means always replay for every steps, set to 10 means sample after 10 model updates. parser.add_argument('--example_encoder_name', type=str, default="roberta-base") parser.add_argument('--task_emb_dim', type=int, default=768) ### The HPs for offline parser.add_argument('--offline_retrain_upstream', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) # To save all ckpts. # I/O parameters parser.add_argument('--prefix', type=str, default="", help="Prefix for saving predictions") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--stream_id', type=int, default=0, help="multiple_streams") parser.add_argument( "--result_file", default="bug_data/results.json", type=str) parser.add_argument("--ckpt_dir", type=str, default="experiments/ckpt_dirs/qa/nonecl", help="path to all ckpts for saving") parser.add_argument("--save_ckpt_freq", type=int, default=5, # 0 means no save for the intermidiate . but we always save the final model ckpt. help="set to 1 if we want all ckpts and eval offline") # Offline Evaluation Mode in Parallel parser.add_argument("--num_threads_eval", type=int, default=0, help="0 means nothing; >0 means the number of gpu threads") parser.add_argument("--current_thread_id", type=int, help="0 to num_threads_eval-1") parser.add_argument("--max_timecode", default=-1, type=int, help="the maximum timecode to eval") parser.add_argument("--path_to_thread_result", type=str, help="the path to save the thread results") return parser if __name__ == '__main__': args = get_cli_parser().parse_args() if args.use_wandb: wandb_mode = "online" else: wandb_mode = "disabled" wandb_run = wandb.init(reinit=True, project="error-nlp", mode=wandb_mode, settings=wandb.Settings(start_method="fork"), name=args.prefix) run_name = wandb.run.name wandb.config.update(args) run(args)
CMR-main
cmr/debug_algs/run_lifelong_finetune.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from cmr.debug_algs.cl_utils import get_top_interfered_examples, local_adaptation, KeyValueMemoryModule from transformers.optimization import AdamW, get_linear_schedule_with_warmup from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from tqdm import tqdm import random import numpy as np import torch import transformers from cmr.debug_algs.index_based.index_manager import RandomMemoryManger from cmr.task_manager.eval_metrics import evaluate_func import copy import pickle import os from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from argparse import Namespace import more_itertools import json class MemoryBasedCL(ContinualFinetuning): def __init__(self, logger): super().__init__(logger=logger) self.name = "tbd" # can be er/mbpa/mbpa++ self.upstream_memory_examples = [] def load_data(self, data_args, given_data_stream=None): super().load_data(data_args, given_data_stream=given_data_stream) with open(data_args.upstream_data_path) as f: upstream_memory_examples = [json.loads(line)for line in set(f.read().splitlines())] self.upstream_memory_examples = self.upstream_data_formatter(upstream_memory_examples) def _check_debugger_args(self): super()._check_debugger_args() required_atts = [ "replay_size", "replay_candidate_size", "replay_frequency", "memory_key_encoder", # 'bert-base-uncased' by default "memory_store_rate", # 0, 0.1, 1 etc. "upstream_sample_ratio", "memory_path", # to save/load the memory module from disk "init_memory_cache_path", "num_adapt_epochs", "inference_query_size", "local_adapt_lr", "use_replay_mix", ] assert all([hasattr(self.debugger_args, att) for att in required_atts]) def debugger_setup(self, debugger_args): super().debugger_setup(debugger_args) # Initializing the Key-Value memory module for MBPA++ if self.name in ["er", "mir"]: self.upstream_memroy_module = RandomMemoryManger(self.logger) self.memroy_module = RandomMemoryManger(self.logger) self.logger.info("Prepare the sampled upstream data as the initial memory for the ER and MIR;") # upstream possible self.upstream_memroy_module.set_up_initial_memory(formatted_examples=self.upstream_memory_examples) if self.debugger_args.upstream_sample_ratio < 0: # mix self.memroy_module = self.upstream_memroy_module self.logger.info(f"Initial memroy_module size: {self.memroy_module.get_memory_size()}") self.logger.info(f"Initial upstream_memroy_module size: {self.upstream_memroy_module.get_memory_size()}") elif self.name in ["mbpa", "mbpa++"]: # TODO: prepare the Memory module for it pass return def online_debug(self): self.logger.info("Start Online Debugging with Dynamic Error Mode") self.logger.info(f"Number of Batches of Data: {self.num_data_batches}") self.logger.info(f"Data Batch Size: {self.data_batch_size};") self.timecode = 0 if self.debugger_args.save_ckpt_freq: # save the initial model as the 0-th model. self._save_base_model() last_steps = 0 for data_eval_loader in tqdm(self.data_eval_loaders, desc="Online Debugging (with Memory Replay)"): result_dict = {"timecode": self.timecode} # start with 0 self.eval_knowledge_retention(result_dict) self.eval_knowledge_generalization(result_dict) ############### CORE ############### # self._replay_based_eval(result_dict) formatted_bug_examples = self._get_dynamic_errors( data_eval_loader, result_dict, return_raw_bug_examples=True) _, bug_eval_loader = self.get_dataloader(self.data_args, formatted_bug_batch=formatted_bug_examples, mode="eval") examples_to_train = formatted_bug_examples[:] if self.timecode % self.debugger_args.replay_frequency == 0 \ and self.debugger_args.replay_frequency > 0 and self.debugger_args.replay_size > 0 \ and self.timecode > 0: # sparse experience replay self.logger.info("Triggering Sampling from Memory and starting to replay.") self.logger.info(f"Current memroy_module size: {self.memroy_module.get_memory_size()}.") self.logger.info(f"Current upstream_memroy_module size: {self.upstream_memroy_module.get_memory_size()}.") if self.name == "mir": def mir_retrieve(mm, sample_size): assert self.debugger_args.replay_candidate_size >= self.debugger_args.replay_size retrieved_examples_candidates = mm.retrieve_from_memory( sample_size=min(self.debugger_args.replay_candidate_size, mm.get_memory_size())) if "mir_buffer_ids" not in result_dict: result_dict["mir_buffer_ids"] = [] result_dict["mir_buffer_ids"] += [_id for (_input, _truth, _id) in retrieved_examples_candidates] retrieved_examples = get_top_interfered_examples(self, K=sample_size, candidate_examples=retrieved_examples_candidates, query_data_loader=bug_train_loader) return retrieved_examples # self.logger.info(f"retrieved_examples (mir)={retrieved_examples}") if self.debugger_args.upstream_sample_ratio > 0: upstream_sample_budget = int(self.debugger_args.upstream_sample_ratio * self.debugger_args.replay_size) self.logger.info(f"Memory from upstream_memroy_module = {upstream_sample_budget}; ") self.logger.info(f"Memory from memroy_module = {self.debugger_args.replay_size-upstream_sample_budget}; ") retrieved_examples = [] if upstream_sample_budget > 0: retrieved_examples += mir_retrieve(mm=self.upstream_memroy_module, sample_size=upstream_sample_budget) retrieved_examples += mir_retrieve(mm=self.memroy_module, sample_size=self.debugger_args.replay_size-upstream_sample_budget) else: retrieved_examples = mir_retrieve(mm=self.memroy_module, sample_size=self.debugger_args.replay_size) else: if self.debugger_args.upstream_sample_ratio > 0: upstream_sample_budget = int(self.debugger_args.upstream_sample_ratio * self.debugger_args.replay_size) self.logger.info(f"Memory from upstream_memroy_module = {upstream_sample_budget}; ") self.logger.info(f"Memory from memroy_module = {self.debugger_args.replay_size-upstream_sample_budget}; ") retrieved_examples = [] if upstream_sample_budget > 0: retrieved_examples += self.upstream_memroy_module.retrieve_from_memory( sample_size=upstream_sample_budget) retrieved_examples += self.memroy_module.retrieve_from_memory( sample_size=self.debugger_args.replay_size-upstream_sample_budget) else: retrieved_examples = self.memroy_module.retrieve_from_memory( sample_size=self.debugger_args.replay_size) self.base_model.train() result_dict["retrieved_ids"] = [_id for (_input, _truth, _id) in retrieved_examples] if self.debugger_args.use_replay_mix: examples_to_train += retrieved_examples self.logger.info(f"Mixed the retrieved examples (len={len(retrieved_examples)}) to the current batch for training.") else: self.logger.info(f"Replay-Training Start! Using the retrieved examples (len={len(retrieved_examples)}) ") replay_data_loader, _ = self.get_dataloader( self.data_args, retrieved_examples, mode="train") self.fix_bugs(replay_data_loader, quiet=False) # sparse replay self.logger.info("Replay-Training done.") last_steps = self.model_update_steps # Fix the bugs by mini-batch based "training" self.logger.info(f"Start error-fixing (len(examples_to_train)={len(examples_to_train)}) .... Timecode: {self.timecode}") bug_train_loader, _ = self.get_dataloader( self.data_args, examples_to_train, mode="train") self.fix_bugs(bug_train_loader) # for debugging self.logger.info("Start error-fixing .... Done!") # Store to memory _max = 1000000 # flag_store_examples = bool(random.randrange(0, _max)/_max >= # 1 - self.debugger_args.memory_store_rate) flag_store_examples = True if flag_store_examples: self.logger.info(f"Saving the current error examples (len={len(formatted_bug_examples)}) to the memory.") self.logger.info(f"Current memory size: {self.memroy_module.get_memory_size()}.") self.memroy_module.store_examples(formatted_bug_examples) self.logger.info(".................. Done.") ############### CORE ############### self.evaluate_error_fixing(result_dict, bug_eval_loader) self._update_result_dict(result_dict) if self.debugger_args.save_ckpt_freq > 0 and self.timecode % self.debugger_args.save_ckpt_freq == 0: self._save_base_model() self.save_result_file() self.logger.info("-"*50) self.timecode += 1 #### Final evaluation #### self.final_evaluation() #### Save the final model #### self._save_base_model() # Save to path self.memroy_module.save_memory_to_path(self.debugger_args.memory_path) def evaluate(self, eval_dataloader=None, verbose=False): """Evaluates the performance""" if self.name not in ["mbpa", "mbpa++"]: # ER (no local adpatation). # This is for the equvilent version of the replay as the baseline (MbPA++ w/o local adaptation when inference or just simple replay.) return super().evaluate(eval_dataloader, verbose) if not eval_dataloader: eval_dataloader = self.submission_eval_loaders[self.timecode] # TODO: reset the bsz for the local adaptation. # prepare adapt_dataloaders adapt_dataloaders = self.get_adapt_dataloaders(eval_dataloader, verbose=True) predictions = self.base_model_infer_with_adaptation( eval_dataloader, adapt_dataloaders, verbose) assert len(predictions) == len(eval_dataloader) predictions = [p.strip() for p in predictions] results, return_all = evaluate_func( predictions, eval_dataloader.data, self.metric, return_all=True) return predictions, results, return_all ### The Adapatation Related Functions ### def get_adapt_dataloaders(self, eval_dataloader=None, verbose=False): """Get the adapt_dataloader.""" adapt_dataloaders = [] num_batches = len(eval_dataloader.dataloader) example_batches = np.array_split(eval_dataloader.data, num_batches) # Only allow retrieving from the past memory. (due to offline evaluation) past_memory_keys = [] for key, values in self.memroy_module.memory.items(): if values[3]-1 <= self.timecode: past_memory_keys.append(key) if not past_memory_keys: adapt_dataloaders = [None for _ in range(len(example_batches))] return adapt_dataloaders past_memory_keys = np.frombuffer(np.asarray( past_memory_keys), dtype=np.float32).reshape(len(past_memory_keys), -1) for example_batch in tqdm(example_batches, desc="Retrieving Data from Memory", disable=not verbose): # self.logger.info("Memory Retrieving ...") # local adaptation for self.base_model of retrieved examples from memory. # self.logger.info("Encoding the examples to evaluate...") keys = self.memroy_module.encode_examples(example_batch) # self.logger.info("Reading memory to get the KNN examples for local adaptation...") retrieved_examples = self.memroy_module.query_examples( keys, past_memory_keys, k=self.debugger_args.inference_query_size) replay_data_loader, _ = self.get_dataloader( self.data_args, retrieved_examples, mode="train") adapt_dataloaders.append(replay_data_loader) # self.logger.info("Memory Retrieving Done ...") return adapt_dataloaders def base_model_infer_with_adaptation(self, eval_dataloader, adapt_dataloaders, verbose=False): self.base_model.eval() model = self.base_model if self.n_gpu == 1 else self.base_model.module predictions = self.inference_with_adaptation(model, eval_dataloader, adapt_dataloaders, save_predictions=False, verbose=verbose, logger=self.logger, return_all=False, predictions_only=True, args=Namespace(quiet=True)) return predictions def inference_with_adaptation(self, model, dev_data, adapt_dataloaders, save_predictions=False, verbose=False, args=None, logger=None, return_all=False, predictions_only=False): # model.eval() predictions = [] bos_token_id = dev_data.tokenizer.bos_token_id loss = [] # if needed if args: quiet = args.quiet else: quiet = False if not quiet: logger.info("Starting inference ...") current_index = 0 for batch in tqdm(dev_data.dataloader, desc="Inference", disable=not verbose): ### Local Adaptation: Start ### _model = copy.deepcopy(model) adapt_dataloader = adapt_dataloaders[current_index] if adapt_dataloader: # TODO: debug. deactivate this step? then it should be the same as ER. _model = local_adaptation(self, _model, adapt_dataloader) pass ### Local Adaptation: End ### _model.eval() ### Inference: Start ### if torch.cuda.is_available(): batch = [b.to(torch.device("cuda")) for b in batch] pad_token_id = dev_data.tokenizer.pad_token_id batch[0], batch[1] = trim_batch(batch[0], pad_token_id, batch[1]) outputs = _model.generate(input_ids=batch[0], attention_mask=batch[1], num_beams=dev_data.args.num_beams, max_length=dev_data.args.max_output_length, decoder_start_token_id=_model.config.bos_token_id, early_stopping=dev_data.gen_early_stop,) for input_, output in zip(batch[0], outputs): pred = dev_data.decode(output) predictions.append(pred) ### Inference: End ### current_index += 1 del _model if not quiet: logger.info("Starting inference ... Done") if predictions_only: return predictions if save_predictions: dev_data.save_predictions(predictions, ) # logger.info("Starting evaluation metric ...") result = dev_data.evaluate(predictions, verbose=verbose) # logger.info("Starting evaluation metric ... Done!") if return_all: return predictions, result, loss return result
CMR-main
cmr/debug_algs/cl_mbcl_alg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import random import copy from cmr.models.mybart import MyBart from cmr.models import run_bart import torch import transformers from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from transformers.optimization import AdamW, get_linear_schedule_with_warmup from tqdm import tqdm import more_itertools import pickle import numpy as np def get_virtual_updated_model(cl_trainer, query_data_loader): before_model = copy.deepcopy(cl_trainer.base_model) virtual_adapt_args = copy.deepcopy(cl_trainer.data_args) virtual_adapt_args.train_batch_size = 4 # change the batch size for the training. query_data_loader, _ = cl_trainer.get_dataloader(virtual_adapt_args, query_data_loader.data, mode="train") # fix of the order after_model = local_adaptation(cl_trainer, before_model, query_data_loader, diff_loss_weight=0) del before_model return after_model def get_top_interfered_examples(cl_trainer, K, candidate_examples, query_data_loader): """ This is for the MIR method. 1) use query examples to train current_model for getting a virtual model. 2) test the current_model and the virtual model seperately on the candidate examples 3) compare the loss udpate of each example and rank them by the delta. 4) return the top K examples with the largest positive loss changes. """ # assert cl_trainer.name == "mir" cl_trainer.logger.info( f"get_top_interfered_examples: len(candidate_examples)={len(candidate_examples)};") if cl_trainer.debugger_args.mir_abalation_args == "random": cl_trainer.logger.info(f"ablation mode: randomly sample {K} examples from the candidate_examples") random.shuffle(candidate_examples) return candidate_examples[:K] ##################### Prepare the candidate examples as Memory Buffer ##################### mlr_data_args = copy.deepcopy(cl_trainer.data_args) mlr_data_args.predict_batch_size = 8 # to get the loss for each example # TODO: debug_MIR # TODO: give the same random seed for selecting the same answer (if there are multiple answers) # only keep one possible correct answers for computing the loss consistnetly. candidate_examples_single_ans = _keep_first_answer(candidate_examples) memory_buffer_loader, _ = cl_trainer.get_dataloader( mlr_data_args, candidate_examples_single_ans, mode="train", is_training=False) # fix of the order ##################### End ##################### before_model = copy.deepcopy(cl_trainer.base_model) before_losses = run_bart.inference( before_model, memory_buffer_loader, compute_loss=True, loss_only=True, logger=cl_trainer.logger) if cl_trainer.debugger_args.mir_abalation_args == "largest_beforeloss": after_losses = before_losses else: # virtual udpate virtual_adapt_args = copy.deepcopy(cl_trainer.data_args) virtual_adapt_args.train_batch_size = 4 # change the batch size for the training. query_data_loader, _ = cl_trainer.get_dataloader(virtual_adapt_args, query_data_loader.data, mode="train") # fix of the order after_model = local_adaptation(cl_trainer, before_model, query_data_loader, diff_loss_weight=0) after_losses = run_bart.inference( after_model, memory_buffer_loader, compute_loss=True, loss_only=True, logger=cl_trainer.logger) # cl_trainer.logger.info( # f"len(before_losses)={len(before_losses)}; len(after_losses)={len(after_losses)};") assert len(before_losses) == len(after_losses) == len(candidate_examples) # cl_trainer.logger.info(f"candidate_examples IDs: {[x[2] for x in candidate_examples]}") # it's a virtual update and we need to recover it. # del cl_trainer.base_model # del after_model # cl_trainer.base_model = before_model interference_scores = [] for example, before_loss, after_loss in zip(candidate_examples, before_losses, after_losses): if cl_trainer.debugger_args.mir_abalation_args == "largest_afterloss": loss_delta = after_loss # only for debugging MIR; biggest losers afterwards elif cl_trainer.debugger_args.mir_abalation_args == "largest_beforeloss": loss_delta = before_loss else: # standard MIR loss_delta = after_loss - before_loss interference_scores.append((example, loss_delta)) # cl_trainer.logger.info(f"before_losses={before_losses}") # cl_trainer.logger.info(f"after_losses={after_losses}") # cl_trainer.logger.info(f"interference_scores={[x[1] for x in interference_scores]}") interference_scores.sort(key=lambda x: x[1], reverse=True) if cl_trainer.debugger_args.mir_abalation_args == "reverse": interference_scores.reverse() # only for debugging MIR. it's actually reverse=Yes top_K_examples = [x[0] for x in interference_scores][:K] # cl_trainer.logger.info(f"retrieved candidates ids = {[x[2] for x in top_K_examples]}") del before_model del before_losses del after_model del after_losses del memory_buffer_loader return top_K_examples def local_adaptation(cl_trainer, model, adapt_dataloader, diff_loss_weight=1e-3): pad_token_id = cl_trainer.tokenizer.pad_token_id base_weights = list(cl_trainer.base_model.parameters()) curr_weights = list(model.parameters()) global_step = 0 pad_token_id = cl_trainer.tokenizer.pad_token_id # super().debugger_setup(cl_trainer.debugger_args) # reset the optimizier and schduler model.train() no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any( nd in n for nd in no_decay)], 'weight_decay': cl_trainer.debugger_args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=cl_trainer.debugger_args.local_adapt_lr, eps=cl_trainer.debugger_args.adam_epsilon) # TODO: double check the decision about warm up for fine-tuning scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=cl_trainer.debugger_args.warmup_steps, num_training_steps=cl_trainer.debugger_args.total_steps) for epoch_id in range(int(cl_trainer.debugger_args.num_adapt_epochs)): for batch in tqdm(adapt_dataloader.dataloader, desc=f"Local Adaptation Epoch {epoch_id}", disable=False): global_step += 1 if cl_trainer.use_cuda: # print(type(batch[0]), batch[0]) batch = [b.to(torch.device("cuda")) for b in batch] batch[0], batch[1] = trim_batch( batch[0], pad_token_id, batch[1]) batch[2], batch[3] = trim_batch( batch[2], pad_token_id, batch[3]) # this is the task loss w/o any regularization loss = model(input_ids=batch[0], attention_mask=batch[1], decoder_input_ids=batch[2], decoder_attention_mask=batch[3], is_training=True) if cl_trainer.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if diff_loss_weight != 0: diff_loss = torch.Tensor([0]).to("cuda" if torch.cuda.is_available() else "cpu") # Iterate over base_weights and curr_weights and accumulate the euclidean norm # of their differences for base_param, curr_param in zip(base_weights, curr_weights): diff_loss += (curr_param - base_param).pow(2).sum() loss = loss + diff_loss_weight * diff_loss loss.backward() if global_step % cl_trainer.debugger_args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), cl_trainer.debugger_args.max_grad_norm) optimizer.step() # We have accumulated enough gradients scheduler.step() model.zero_grad() return model def _keep_first_answer(examples_with_multiple_ans): examples_with_single_ans = [] for item in examples_with_multiple_ans: examples_with_single_ans.append((item[0], item[1][0:1], item[2])) return examples_with_single_ans class KeyValueMemoryModule(object): def __init__(self, logger): self.logger = logger self.memory = {} self.keys_over_time = {} self.memory_key_cache = {} self.memory_key_encoder = "" def load_key_encoder(self, memory_key_encoder='facebook/bart-base'): # https://huggingface.co/transformers/model_doc/bart.html#bartmodel # TODO: consider the SentenceBERT-like sentence encoders. self.memory_key_encoder = memory_key_encoder self.logger.info( f"Starting to load the key encoder ({memory_key_encoder}) for the memory module.") if "bart" in memory_key_encoder.lower(): self.tokenizer = transformers.BartTokenizer.from_pretrained(memory_key_encoder) self.key_encoder = transformers.BartModel.from_pretrained(memory_key_encoder) elif "distilbert" in memory_key_encoder.lower(): self.tokenizer = transformers.DistilBertTokenizer.from_pretrained(memory_key_encoder) self.key_encoder = transformers.DistilBertModel.from_pretrained(memory_key_encoder) elif "roberta" in memory_key_encoder.lower(): self.key_encoder = transformers.RobertaModel.from_pretrained(memory_key_encoder) self.tokenizer = transformers.RobertaTokenizer.from_pretrained(memory_key_encoder) elif "bert" in memory_key_encoder.lower(): self.key_encoder = transformers.BertModel.from_pretrained(memory_key_encoder) self.tokenizer = transformers.BertTokenizer.from_pretrained(memory_key_encoder) self.key_encoder.cuda() self.logger.info(f"Finished.") return self.key_encoder, self.tokenizer def get_key_content(self, inputs): key_texts = [] trigger_str = "Question: " for _input in inputs: start_ind = _input.index(trigger_str) + len(trigger_str) key_texts.append(_input[start_ind:]) return key_texts def load_memory_key_cache(self, init_memory_cache_path): if os.path.exists(init_memory_cache_path): self.logger.info(f"Loading init_memory_cache_path from {init_memory_cache_path}") with open(init_memory_cache_path, "rb") as f: self.memory_key_cache = pickle.load(f)[self.memory_key_encoder] else: self.logger.info(f"Initializing an empty memory key cache.") self.memory_key_cache = None def encode_examples_for_caching(self, all_examples, batch_size=1, return_tensors=False): """ Return key representation of the documents """ # Freeze the weights of the key network to prevent key # representations from drifting as data distribution changes # with torch.no_grad(): # last_hidden_states, _ # = self.key_encoder(contents, attention_mask=attn_masks) # Obtain key representation of every text content by selecting the its [CLS] hidden representation # keys = last_hidden_states[:, 0, :] all_vectors = {} all_tensors = [] batches = list(more_itertools.chunked(all_examples, batch_size)) for examples in tqdm(batches, desc="Caching the examples"): inputs = [d[0] for d in examples] with torch.no_grad(): # only use the questions as the key text for encoding. key_texts = self.get_key_content(inputs) inputs = self.tokenizer.batch_encode_plus( key_texts, return_tensors="pt", pad_to_max_length=True) input_ids = inputs["input_ids"].to(torch.device("cuda")) attention_mask = inputs["attention_mask"].to(torch.device("cuda")) # last_hidden_states, _ = self.key_encoder(**inputs) results = self.key_encoder(input_ids, attention_mask) last_hidden_states = results[0] key_vectors = last_hidden_states[:, 0, :] key_vectors_npy = key_vectors.cpu().numpy() all_tensors += list(key_vectors) for key_text, key_vector in zip(key_texts, key_vectors_npy): all_vectors[key_text] = key_vector if return_tensors: return all_tensors return all_vectors def encode_examples(self, examples, use_random_keys=False): """ Return key representation of the documents """ inputs = [d[0] for d in examples] # only use the questions as the key text for encoding. key_texts = self.get_key_content(inputs) key_vectors = None if use_random_keys: self.logger.info("Using randomly generated memory keys for ER and MIR.") key_vectors = np.random.rand(len(examples), 128) return key_vectors if self.memory_key_cache: # self.logger.info("Using the cache.") key_vectors = [] for key_text in key_texts: assert key_text in self.memory_key_cache, key_text key_vectors.append(self.memory_key_cache[key_text]) else: # on the fly with torch.no_grad(): inputs = self.tokenizer.batch_encode_plus( key_texts, return_tensors="pt", pad_to_max_length=True) input_ids = inputs["input_ids"].to(torch.device("cuda")) attention_mask = inputs["attention_mask"].to(torch.device("cuda")) # last_hidden_states, _ = self.key_encoder(**inputs) results = self.key_encoder(input_ids, attention_mask) last_hidden_states = results[0] key_vectors = last_hidden_states[:, 0, :] key_vectors = key_vectors.cpu().numpy() return key_vectors def store_examples(self, keys, examples, timecode=0): """ Add the examples as key-value pairs to the memory dictionary with content,attention_mask,label tuple as value and key determined by key network """ assert len(keys) == len(examples) # update the memory dictionary for i, key in enumerate(keys): # numpy array cannot be used as key since it is non-hashable, hence convert it to bytes to use as key. values = list(examples[i]) values.append(timecode) self.memory.update({key.tobytes(): tuple(values)}) def query_examples(self, keys, past_memory_keys, k=32): """ Returns samples from buffer using K-nearest neighbour approach """ retrieved_examples = [] # Iterate over all the input keys # to find neigbours for each of them k = min(k, len(past_memory_keys)) for key in keys: # compute similarity scores based on Euclidean distance metric similarity_scores = np.dot(past_memory_keys, key.T) K_neighbour_keys = past_memory_keys[np.argpartition(similarity_scores, -k)[-k:]] neighbours = [self.memory[nkey.tobytes()] for nkey in K_neighbour_keys] # converts experiences into batch # retrieved_examples.append(neighbours) retrieved_examples += neighbours # self.logger.info(f"Retrieved {len(retrieved_examples)} examples from memory; {len(retrieved_examples)/len(keys)} examples per key.") return retrieved_examples def random_sample(self, sample_size): sample_size = min(len(self.memory), sample_size) keys = random.sample(list(self.memory), sample_size) _inputs = [self.memory[k][0] for k in keys] _outputs = [self.memory[k][1] for k in keys] _ids = [self.memory[k][2] for k in keys] # _timecodes = [self.memory[k][3] for k in keys] examples = list(zip(_inputs, _outputs, _ids)) return examples def save_memory_to_path(self, memory_path): if self.memory is not None: with open(memory_path, "wb") as f: self.logger.info(f"Saving the memory to {memory_path}") pickle.dump(self.memory, f) def load_memory_from_path(self, memory_path): if os.path.exists(memory_path): with open(memory_path, "rb") as f: self.logger.info(f"Loading the memory from {memory_path}") self.memory = pickle.load(f) total_keys = len(self.memory.keys()) # convert the keys from np.bytes to np.float32 self.all_keys = np.frombuffer( np.asarray(list(self.memory.keys())), dtype=np.float32).reshape(total_keys, -1) else: self.logger.info(f"Warning: {memory_path} doesn't exist.") def KVMemory_init(): from cmr.debug_algs.cl_simple_alg import ContinualFinetuning import argparse import json import logging parser = argparse.ArgumentParser() parser.add_argument('--memory_key_encoder', type=str, default="facebook/bart-base") parser.add_argument('--init_memory_cache_path', type=str, default="bug_data/memory_key_cache.pkl") parser.add_argument('--batch_size', type=int, default=32) parser.add_argument("--bug_stream_json_path", default="bug_data/mrqa_naturalquestions_dev.static_bug_stream.json") parser.add_argument("--upstream_eval_data", default="bug_data/mrqa_naturalquestions_dev.sampled_pass.jsonl") parser.add_argument("--sampled_upstream_json_path", default="bug_data/mrqa_naturalquestions.sampled_upstream.jsonl") args = parser.parse_args() log_filename = f'logs/memory_cache_building_{args.memory_key_encoder.replace("/", "_")}.log' logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, handlers=[logging.FileHandler(log_filename), logging.StreamHandler()]) logger = logging.getLogger(__name__) logger.info(args) cl_trainer = ContinualFinetuning(logger) # Load bugs with open(args.bug_stream_json_path) as f: bug_stream = json.load(f) all_examples = [] for bug_batch in tqdm(bug_stream, desc="Creating the bug data loaders."): formatted_bug_batch = cl_trainer.data_formatter(bug_batch) all_examples += formatted_bug_batch # Load pass cases with open(args.upstream_eval_data) as f: pass_examples = [json.loads(line) for line in set(f.read().splitlines())] all_examples += cl_trainer.data_formatter(pass_examples) memory_module = KeyValueMemoryModule(logger) logger.info(f"All examples: {len(all_examples)}") memory_module.load_key_encoder(memory_key_encoder=args.memory_key_encoder) all_key_vectors = memory_module.encode_examples_for_caching( all_examples, batch_size=args.batch_size) logger.info( f"all_key_vectors.shape: {len(all_key_vectors)} x {len(all_key_vectors[list(all_key_vectors.keys())[0]])}") if os.path.exists(args.init_memory_cache_path): with open(args.init_memory_cache_path, "rb") as f: memory_key_cache = pickle.load(f) else: memory_key_cache = {} memory_key_cache[args.memory_key_encoder] = all_key_vectors with open(args.init_memory_cache_path, "wb") as f: pickle.dump(memory_key_cache, f) logger.info(f"Saved the cache to {f.name}")
CMR-main
cmr/debug_algs/cl_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import copy import logging import random from cmr.debug_algs.cl_utils import _keep_first_answer from cmr.models import run_bart from cmr.task_manager.eval_metrics import evaluate_func import torch from transformers import BartTokenizer, BartConfig import json from tqdm import tqdm import os import numpy as np import wandb def _pack_as_dict(predictions, results, results_all): return {"predictions": predictions, "metric_results": results, "metric_results_detailed": results_all} class OnlineDebuggingMethod(): def __init__(self, logger=None): self.name = "base_class" # logger self.logger = logger # args self.debugger_args = None self.base_model_args = None self.data_args = None # modules self.base_model = None self.debugger = None # data self.num_bug_batches = None self.bug_batch_size = None self.submission_eval_loaders = [] # for online dynamic streams self.upstream_eval_loader = None # for UKR self.heldout_submission_eval_loader = None # for KG eval # utils self.use_cuda = torch.cuda.is_available() self.tokenizer = BartTokenizer.from_pretrained("bart-large") self.timecode = None self.metric = "EM|QA-F1" # for dynamic stream mode self.data_eval_loaders = [] self.online_eval_results = [] self.last_OKR = None; self.last_UKR = None; self.last_KG = None if self.use_cuda: self.n_gpu = torch.cuda.device_count() else: self.n_gpu = 0 self.model_update_steps = 0 # number of updates over the base model. self.past_errors = [] self.past_submissions = [] return def save_result_file(self): output_info = {} output_info["method_class"] = self.name output_info["base_model_args"] = str(self.base_model_args) output_info["debugger_args"] = str(self.debugger_args) output_info["data_args"] = str(self.data_args) output_info["model_update_steps"] = self.model_update_steps output_info["online_eval_results"] = self.online_eval_results # if args.cl_method_name in ["offline_debug"]: # output_info["offline_bound_results"] = offline_bound_results # logger.info(f"eval_results_overall_bug: {offline_bound_results['eval_results_overall_bug']['metric_results']}") # logger.info(f"eval_results_overall_forget: {offline_bound_results['eval_results_overall_forget']['metric_results']}") with open(self.data_args.result_file, "w") as f: json.dump(output_info, f) self.logger.info(f"Updated result file: {self.data_args.result_file} at Timecode: {self.timecode}.") def _check_data_args(self, additional_args=[]): required_atts = ["submission_stream_data", "stream_id", "upstream_eval_data", "heldout_submission_data", "do_lowercase", "append_another_bos", "max_input_length", "max_output_length", "task_name", "num_beams", "max_timecode", "result_file"] + additional_args assert all([hasattr(self.data_args, att) for att in required_atts]) return def load_data(self, data_args, given_data_stream=None): """"For loading the data stream for dynamic building the errors.""" self.data_args = data_args self._check_data_args() # additional_args=["data_stream_json_path", "accumulate_eval_freq"] # Load bug stream if given_data_stream: data_stream = given_data_stream else: with open(data_args.submission_stream_data) as f: data_stream = json.load(f)[data_args.stream_id] self.logger.info(f"Loading the stream from {f.name} and use the ${data_args.stream_id} part.") self.data_stream = data_stream self.num_data_batches = len(data_stream) self.data_batch_size = len(data_stream[0]) # Create data loaders for each error batch. all_formatted_data = [] self.data_eval_loaders = [] self.online_eval_results = [] for data_batch in tqdm(self.data_stream, desc="Creating the data loaders."): if data_args.max_timecode > 0 and len(self.data_eval_loaders) >= data_args.max_timecode: break formatted_data_batch = self.data_formatter(data_batch) all_formatted_data += formatted_data_batch _, eval_data_dataloader = self.get_dataloader( data_args, formatted_data_batch, mode="eval") self.data_eval_loaders.append(eval_data_dataloader) self.all_formatted_data = all_formatted_data # Create loaders for the sampled pass examples for evaluation. with open(data_args.upstream_eval_data) as f: upstream_eval_examples = [json.loads(line) for line in f.read().splitlines()] upstream_eval_examples = self.data_formatter(upstream_eval_examples) self.logger.info(f"load_data: len(upstream_eval_examples)={len(upstream_eval_examples)}") _, self.upstream_eval_loader = self.get_dataloader( data_args, upstream_eval_examples, mode="eval") # Create loaders for the sampled pass examples for evaluation. with open(data_args.heldout_submission_data) as f: heldout_eval_examples = [json.loads(line) for line in f.read().splitlines()] heldout_eval_examples = self.data_formatter(heldout_eval_examples) self.logger.info(f"load_data: len(heldout_eval_examples)={len(heldout_eval_examples)}") _, self.heldout_submission_eval_loader = self.get_dataloader( data_args, heldout_eval_examples, mode="eval") def _get_dynamic_errors(self, data_eval_loader, result_dict, return_raw_bug_examples=False): ############### Get the errors dynamically. ############### self.logger.info( f"Evaluating to get errors .... Timecode: {self.timecode}") self.past_submissions += data_eval_loader.data predictions, results, results_all = self.evaluate(data_eval_loader) self.logger.info(f"Before Error Fixing: {results}") # self.logger.info( # f"Doing-Nothing Instant EM: {self.instant_doing_nothing_EM[self.timecode]}") ### Pack the error examples for training. ### errors = [] error_ids = [] for (_input, _truth, _id), prediction, em, f1 in zip(data_eval_loader.data, predictions, results_all["EM"], results_all["QA-F1"]): # self.logger.info(f"{example}") # self.logger.info(f"{prediction}") # self.logger.info(f"{em}") if em == 0: # TODO: this is the condition to judge if it is a bug. bug = {} bug["id"] = _id bug["input"] = _input bug["truth"] = _truth bug["mistake"] = prediction errors.append(bug) error_ids.append(_id) self.past_errors.append(bug) formatted_bug_batch = self.data_formatter(errors) self.logger.info(f"Found {len(formatted_bug_batch)} errors.") SR = 1 - len(error_ids)/len(predictions) CSR = 1 - len(self.past_errors) / len(self.past_submissions) wandb.log({"num_errors": len(formatted_bug_batch)}, step=self.timecode) wandb.log({"CSR": CSR}, step=self.timecode) wandb.log({"SR": SR}, step=self.timecode) result_dict["before_eval_results"] = _pack_as_dict(predictions, results, results_all) result_dict["before_error_ids"] = error_ids result_dict["SR"] = SR result_dict["CSR"] = CSR if return_raw_bug_examples: return formatted_bug_batch else: bug_train_loader, bug_eval_loader = self.get_dataloader( self.data_args, formatted_bug_batch, mode="both") return bug_train_loader, bug_eval_loader def _update_result_dict(self, result_dict): # if self.last_OKR is None or self.last_KG is None or self.last_UKR is None: # pass # else: scores = [result_dict.get("CSR", 0.0), result_dict.get("EFR", 0.0)] if self.last_OKR: scores.append(self.last_OKR) scores.append(self.last_UKR) scores.append(self.last_KG) result_dict["Overall"] = float(np.mean(scores)) wandb.log({"Overall": result_dict["Overall"]}, step=self.timecode) self.logger.info(f'Overall: {result_dict["Overall"]} from scores={scores}') self.online_eval_results.append(result_dict) def online_debug(self): self.logger.info("Start Online Debugging with Dynamic Error Mode") self.logger.info(f"Number of Batches of Data: {self.num_data_batches}") self.logger.info(f"Data Batch Size: {self.data_batch_size};") self.timecode = 0 if self.debugger_args.save_ckpt_freq: # save the initial model as the 0-th model. self._save_base_model() for data_eval_loader in tqdm(self.data_eval_loaders, desc="Online Debugging"): result_dict = {"timecode": self.timecode} # start with 0 self.eval_knowledge_retention(result_dict) self.eval_knowledge_generalization(result_dict) # self._replay_based_eval(result_dict) bug_train_loader, bug_eval_loader = self._get_dynamic_errors(data_eval_loader, result_dict) ############### CORE ############### # Fix the bugs by mini-batch based "training" self.logger.info(f"Start error-fixing .... Timecode: {self.timecode}") self.fix_bugs(bug_train_loader) # for debugging self.logger.info("Start error-fixing .... Done!") ############### CORE ############### self.evaluate_error_fixing(result_dict, bug_eval_loader) self._update_result_dict(result_dict) if self.debugger_args.save_ckpt_freq > 0 and self.timecode % self.debugger_args.save_ckpt_freq == 0: self._save_base_model() self.save_result_file() self.logger.info("-"*50) self.timecode += 1 #### Final evaluation #### self.final_evaluation() #### Save the final model #### self._save_base_model() def final_evaluation(self): self.logger.info("Start the final evaluation.") # TODO: self.logger.info("Nothing here.") def eval_knowledge_retention(self, result_dict): if self.timecode == self.data_args.max_timecode-1: pass elif self.timecode % self.debugger_args.kr_eval_freq == 0: pass else: return ######################## UKR ######################## self.logger.info(f"Start eval_knowledge_retention for UKR @ Timecode={self.timecode}") if self.debugger_args.kr_eval_mode == "loss": UKR_loss = self.evaluate(self.upstream_eval_loader, mode="loss") elif self.debugger_args.kr_eval_mode == "metric": predictions, results, results_all = self.evaluate(self.upstream_eval_loader) scores = results_all["EM"] UKR = len([1 for s in scores if s == 1]) / len(scores) result_dict["UKR"] = UKR wandb.log({"UKR": UKR}, step=self.timecode) self.last_UKR = UKR # UKR_loss = self.evaluate(self.upstream_eval_loader, mode="loss") # wandb.log({"UKR_loss": UKR_loss}, step=self.timecode) self.logger.info(f"Upstream Knowledge Retation (UKR@{self.timecode}): {UKR:.4f}") ######################## OKR ######################## if not self.past_submissions: return rng = random.Random(self.debugger_args.okr_sample_seed) # fixed for different methods e.g., 1337 if len(self.past_submissions) < self.debugger_args.okr_sample_size: self.logger.info(f"len(self.past_submissions) = {len(self.past_submissions)} \ < self.debugger_args.okr_sample_size = {self.debugger_args.okr_sample_size}") return sampled_past_submissions = rng.sample(self.past_submissions, k=self.debugger_args.okr_sample_size) result_dict["OKR_sampled_ids"] = [_id for _input, _truth, _id in sampled_past_submissions] result_dict["OKR_sampled_ids"].sort() _, past_submission_eval_loader = self.get_dataloader(self.data_args, sampled_past_submissions, mode="eval") self.logger.info(f"Start eval_knowledge_retention for OKR @ Timecode={self.timecode}") if self.debugger_args.kr_eval_mode == "loss": OKR = self.evaluate(past_submission_eval_loader, mode="loss") elif self.debugger_args.kr_eval_mode == "metric": predictions, results, results_all = self.evaluate(past_submission_eval_loader) scores = results_all["EM"] OKR = len([1 for s in scores if s == 1]) / len(scores) self.logger.info(f"Online Knowledge Retation (OKR@{self.timecode}): {OKR:.4f}") result_dict["OKR"] = OKR self.last_OKR = OKR wandb.log({"OKR": OKR}, step=self.timecode) def eval_knowledge_generalization(self, result_dict): if self.timecode == self.data_args.max_timecode-1: pass elif self.timecode % self.debugger_args.kg_eval_freq == 0: pass else: return ######################## KG ######################## self.logger.info(f"Start eval_knowledge_generalization for KG @ Timecode={self.timecode}") if self.debugger_args.kg_eval_mode == "loss": KG_loss = self.evaluate(self.heldout_submission_eval_loader, mode="loss") elif self.debugger_args.kg_eval_mode == "metric": # TODO: get a decomposed version? predictions, results, results_all = self.evaluate(self.heldout_submission_eval_loader) scores = results_all["EM"] KG = len([1 for s in scores if s == 1]) / len(scores) result_dict["KG"] = KG wandb.log({"KG": KG}, step=self.timecode) self.last_KG = KG self.logger.info(f"Future Knowledge Generalization (KG@{self.timecode}): {KG:.4f}") def evaluate_error_fixing(self, result_dict, bug_eval_loader): after_predictions, after_results, after_results_all = self.evaluate(bug_eval_loader) fixed_ids = [] unfixed_ids = [] for (_input, _truth, _id), score_after in zip(bug_eval_loader.data, after_results_all["EM"]): if score_after == 1: fixed_ids.append(_id) else: unfixed_ids.append(_id) EFR = len(fixed_ids) / len(fixed_ids+unfixed_ids) result_dict["EFR"] = EFR wandb.log({"EFR": EFR}, step=self.timecode) self.logger.info(f"EFR={EFR}") return EFR # So the 0-th checkpoint should be the original base model. def _save_base_model(self, ckpt_name=None): output_dir = self.debugger_args.ckpt_dir if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True) model_state_dict = {k: v.cpu() for ( k, v) in self.base_model.state_dict().items()} if ckpt_name: model_path = os.path.join(output_dir, f"model_ckpt_{ckpt_name}.pt") else: model_path = os.path.join( output_dir, f"model_ckpt_{self.timecode:03d}.pt") torch.save(model_state_dict, model_path) self.logger.info(f"Model saved to {model_path}.") def evaluate(self, eval_dataloader=None, verbose=False, mode="metric"): """Evaluates the performance""" if not eval_dataloader: self.logger.info("evaluate with submission eval loaders") eval_dataloader = self.submission_eval_loaders[self.timecode] if mode == "metric": predictions = self.base_model_infer(eval_dataloader, verbose) assert len(predictions) == len(eval_dataloader) predictions = [p.strip() for p in predictions] results, results_all = evaluate_func( predictions, eval_dataloader.data, self.metric, return_all=True) return predictions, results, results_all elif mode == "loss": examples = eval_dataloader.data _examples = _keep_first_answer(examples) tmp_data_args = copy.deepcopy(self.data_args) tmp_data_args.predict_batch_size = 8 # TODO: set an arg. eval_loader, _ = self.get_dataloader(tmp_data_args, _examples, mode="train", is_training=False) # fix of the order losses = run_bart.inference( self.base_model, eval_loader, compute_loss=True, loss_only=True, logger=self.logger) mean_loss = sum(losses) / len(examples) return mean_loss def base_model_infer(self, eval_dataloader, verbose): raise NotImplementedError( "Please Implement the `base_model_infer` method in your class.") def check_debugger_args(self): raise NotImplementedError( "Please Implement the `check_debugger_args` method in your class.") def data_formatter(self, bug_batch): raise NotImplementedError( "Please Implement the `data_formatter` method in your class.") def get_dataloader(self, data_args, formatted_bug_batch): raise NotImplementedError( "Please Implement the `get_dataloader` method in your class.") def load_base_model(self, base_model_args, mode="online_debug"): raise NotImplementedError( "Please Implement the `load_base_model` method in your class.") def debugger_setup(self): raise NotImplementedError( "Please Implement the `debugger_setup` method in your class.") def fix_bugs(self, bug_loader, quiet=True): raise NotImplementedError( "Please Implement the `fix_bugs` method in your class.") def upstream_data_formatter(self, examples): # The continual fine-tuning method only uses the correct answers for fixing bugs. formatted_examples = [] for example in examples: _id = example["id"] _input = example["input"] _truth = example["output"] # a list of answers formatted_examples.append((_input, _truth, _id)) return formatted_examples
CMR-main
cmr/debug_algs/commons.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # TODO: remove this as we have the offline evaluation function now. def _eval_before_fixing(self): # Before Bug-Fixing assert self.online_debug_results is not None bug_eval_loader = self.bug_eval_loaders[self.timecode] bug_before_predictions, bug_before_results, bug_before_results_all = self.evaluate( bug_eval_loader) self.logger.info("-"*10+f"Timecode: {self.timecode}"+"-"*10) self.logger.info( f"Before Bug-fixing the results on bug-batch-{self.timecode} = {bug_before_results}") if len(self.online_debug_results["res_on_passes"]) == 0: pass_before_predictions, pass_before_results, pass_before_results_all = self.evaluate( self.forget_eval_loader) self.online_debug_results["res_on_passes"].append( (pass_before_results, pass_before_results_all)) else: pass_before_predictions = None # TODO: pass_before_results, pass_before_results_all = self.online_debug_results[ "res_on_passes"][-1] self.logger.info( f"Before Bug-fixing the results on the sampled pass cases = {pass_before_results}") return bug_before_results, bug_before_results_all, pass_before_results, pass_before_results_all # TODO: remove this as we have the offline evaluation function now. def _eval_after_fixing(self, bug_before_results, bug_before_results_all, pass_before_results, pass_before_results_all): # After Bug-Fixing assert self.online_debug_results is not None bug_eval_loader = self.bug_eval_loaders[self.timecode] bug_after_predictions, bug_after_results, bug_after_results_all = self.evaluate( bug_eval_loader) self.logger.info( f"After Bug-fixing the results on bug-batch-{self.timecode} = {bug_after_results}") pass_after_predictions, pass_after_results, pass_after_results_all = self.evaluate( self.forget_eval_loader) self.logger.info( f"After Bug-fixing the results on the sampled pass cases = {pass_after_results}") # Log the overall results self.online_debug_results["res_on_bugs"].append( (bug_before_results, bug_after_results)) self.online_debug_results["res_on_passes"].append( (pass_after_results, pass_after_results_all)) self._check_fixing( bug_eval_loader, bug_before_results_all, bug_after_results_all) self._check_forgetting(pass_before_results_all, pass_after_results_all) if self.debugger_args.overtime_overall_bug_eval: all_bug_after_predictions, all_bug_after_results, all_bug_after_results_all = self.evaluate( self.bug_all_eval_loader) self.logger.info( f"Current Overall Bug-fixing Results = {all_bug_after_results}") self.online_debug_results["overtime_all_bug_eval"].append( all_bug_after_results) # TODO: remove this as we have the offline evaluation function now. def _eval_overall_bugs(self): all_bug_after_predictions, all_bug_after_results, all_bug_after_results_all = self.evaluate( self.bug_all_eval_loader) self.online_debug_results["final_all_bug_eval"] = all_bug_after_results self.logger.info( f"Final Overall Bug-fixing Results = {all_bug_after_results}") # TODO: move to evaluation analysis part. def _check_fixing(self, bug_eval_loader, bug_before_results_all, bug_after_results_all): # Log the specific fixed bugs and forget examples em_prefixed_bugs = [] f1_prefixed_bugs = [] em_fixed_bugs = [] f1_fixed_bugs = [] assert len(bug_eval_loader.data) == len( bug_before_results_all["EM"]) == len(bug_after_results_all["EM"]) for ind in range(len(bug_eval_loader.data)): em_before = bug_before_results_all["EM"][ind] em_after = bug_after_results_all["EM"][ind] f1_before = bug_before_results_all["QA-F1"][ind] f1_after = bug_after_results_all["QA-F1"][ind] uuid = bug_eval_loader.data[ind][2] # (input, output, uuid) if em_before == 1: em_prefixed_bugs.append(uuid) if f1_after > 0.5: f1_prefixed_bugs.append(uuid) if em_before == 0 and em_after == 1: em_fixed_bugs.append(uuid) if f1_before < 0.5 and f1_after > 0.5 and f1_after-f1_before >= 0.25: f1_fixed_bugs.append(uuid) self.online_debug_results["em_fixed_bugs"].append(em_fixed_bugs) self.online_debug_results["f1_fixed_bugs"].append(f1_fixed_bugs) self.online_debug_results["em_prefixed_bugs"].append(em_prefixed_bugs) self.online_debug_results["f1_prefixed_bugs"].append(f1_prefixed_bugs) self.logger.info( f"Number of em_prefixed_bugs = {len(em_prefixed_bugs)}; Number of f1_prefixed_bugs = {len(f1_prefixed_bugs)}") self.logger.info( f"Number of em_fixed_bugs = {len(em_fixed_bugs)}; Number of f1_fixed_bugs = {len(f1_fixed_bugs)}") # TODO: move to evaluation analysis part. def _check_forgetting(self, pass_before_results_all, pass_after_results_all): # log the forgotten bugs em_forgotten_passes = [] for ind in range(len(self.forget_eval_loader.data)): em_before = pass_before_results_all["EM"][ind] em_after = pass_after_results_all["EM"][ind] # f1_before = pass_before_results_all["QA-F1"][ind] # f1_after = pass_after_results_all["QA-F1"][ind] uuid = self.forget_eval_loader.data[ind][2] # (input, output, uuid) if em_before == 1 and em_after == 0: em_forgotten_passes.append(uuid) self.online_debug_results["forgotten_passes"].append( em_forgotten_passes) self.logger.info( f"Number of em_forgotten_passes = {len(em_forgotten_passes)}.") # self.logger.info(f"UUIDS of fixed bugs = {em_fixed_bugs}") def evaluate_v1(self, eval_dataloader=None, verbose=False): """Evaluates the performance""" # backup the base model. self.logger.info("Backing up the base model ...") base_model_backup = copy.deepcopy(self.base_model) self.logger.info("Backking up the base model ... Done!") self.logger.info("Memory Retrieving ...") # local adaptation for self.base_model of retrieved examples from memory. keys = self.memroy_module.encode_examples(eval_dataloader.data) retrieved_examples = self.memroy_module.query_examples(keys, k=self.debugger_args.replay_size) replay_data_loader, _ = self.get_dataloader(self.data_args, retrieved_examples, mode="train") self.logger.info("Memory Retrieving Done ...") self.logger.info("Temp local adaptation ...") self.fix_bugs(replay_data_loader) # local adaptation self.logger.info("Temp local adaptation ... Done") # get inference as usual. predictions, results, return_all = super().evaluate(eval_dataloader=None, verbose=False) del self.base_model self.base_model = base_model_backup # restore to the original base_model return predictions, results, return_all ### Check the accumulative results. ### if (self.data_args.accumulate_eval_freq > 0 and (self.timecode + 1) % self.data_args.accumulate_eval_freq == 0): accumu_EM, forgotten_ids, fixed_ids, total_len = self.get_accumulative_results() result_dict["accumulative_EM"] = accumu_EM result_dict["accumulative_forgotten_ids"] = forgotten_ids result_dict["accumulative_fixed_ids"] = fixed_ids result_dict["accumulative_forgotten_rate"] = len(forgotten_ids) / total_len result_dict["accumulative_fixed_rate"] = len(fixed_ids) / total_len self.logger.info(" ") self.logger.info( f"Doing-Nothing Accumulative EM: {self.accumulate_doing_nothing_EM[self.timecode]}") self.logger.info(f"My Accumulative EM: {accumu_EM}") self.logger.info( f"accumulative_forgotten_rate: {result_dict['accumulative_forgotten_rate']}") self.logger.info( f"accumulative_fixed_rate: {result_dict['accumulative_fixed_rate']}") def get_accumulative_results(self): EMs = [] forgotten_ids = [] fixed_ids = [] total_len = 0 for data_eval_loader in tqdm(self.data_eval_loaders[:self.timecode], desc="Evaluate Accumulative Results"): predictions, results, results_all = self.evaluate(data_eval_loader) EMs.append(results["EM"]) for (_, _, _id), em in zip(data_eval_loader.data, results_all["EM"]): if _id in self.all_initial_error_ids and em == 1: fixed_ids.append(_id) if _id in self.all_initial_pass_ids and em == 0: forgotten_ids.append(_id) total_len += 1 return float(np.mean(EMs)), forgotten_ids, fixed_ids, total_len def single_timecode_eval(self, timecode): """Used only for offline eval of a single checkpoint of a specific timecode.""" self.timecode = timecode result_dict = {} # initialize for the given time code self.logger.info("Start the Overall Error-Fixing Results....") # Overall Error-Fixing Results eval_results_overall_bug = self.evaluate( self.bug_all_eval_loader, verbose=True) result_dict["eval_results_overall_bug"] = _pack_as_dict( *eval_results_overall_bug) self.logger.info("Start the Overall Error-Fixing Results....Done") self.logger.info( "Start the Overall Forgetting Results (Knowledge Retain Acc)....") # Overall Forgetting Results (Knowledge Retain Acc) eval_results_overall_forget = self.evaluate( self.forget_eval_loader, verbose=True) result_dict["eval_results_overall_forget"] = _pack_as_dict( *eval_results_overall_forget) self.logger.info( "Start the Overall Forgetting Results (Knowledge Retain Acc)....Done") if self.name == "offline_debug": # only overall evaluation for the offline debugging. return result_dict # Error-Fixing performance on the current batch of errors. if self.timecode > 0: self.logger.info( "Start Error-Fixing performance on the Current batch of errors.....") bug_eval_loader = self.bug_eval_loaders[self.timecode-1] eval_results_current_errors = self.evaluate(bug_eval_loader) result_dict["eval_results_current_errors"] = _pack_as_dict( *eval_results_current_errors) self.logger.info( "Start Error-Fixing performance on the Current batch of errors.....Done") # Error-Fixing performance on the next batch of errors. (for the computation of real responsive efr) if self.timecode < len(self.bug_eval_loaders): self.logger.info( "Start Error-Fixing performance on the Next batch of errors.....") bug_eval_loader = self.bug_eval_loaders[self.timecode] eval_results_next_errors = self.evaluate(bug_eval_loader) result_dict["eval_results_next_errors"] = _pack_as_dict( *eval_results_next_errors) self.logger.info( "Start Error-Fixing performance on the Next batch of errors.....Done") return result_dict def load_data_static(self, data_args): self.data_args = data_args self._check_data_args() # Load bug stream with open(data_args.bug_stream_json_path) as f: bug_stream = json.load(f) self.bug_stream = bug_stream self.num_bug_batches = len(bug_stream) self.bug_batch_size = len(bug_stream[0]) # Create data loaders for each error batch. all_formatted_bugs = [] for bug_batch in tqdm(self.bug_stream, desc="Creating the bug data loaders."): formatted_bug_batch = self.data_formatter(bug_batch) all_formatted_bugs += formatted_bug_batch train_bug_dataloader, eval_bug_dataloader = self.get_dataloader( data_args, formatted_bug_batch, mode="both") self.bug_train_loaders.append(train_bug_dataloader) self.bug_eval_loaders.append(eval_bug_dataloader) assert len(self.bug_train_loaders) == self.num_bug_batches self.all_bug_examples = all_formatted_bugs # Create the all bug loaders. self.bug_all_train_loader, self.bug_all_eval_loader = self.get_dataloader( data_args, all_formatted_bugs, mode="both") # Create the pass pool evaluation loader for the final forgetting issue. if data_args.upstream_eval_data: # Create loaders for the sampled pass examples with open(data_args.upstream_eval_data) as f: pass_examples = [json.loads(line) for line in set(f.read().splitlines())] self.sampled_passes = pass_examples pass_examples = self.data_formatter(pass_examples) _, self.forget_eval_loader = self.get_dataloader( data_args, pass_examples, mode="eval") if data_args.sampled_upstream_json_path: # Create loaders for the sampled pass examples with open(data_args.sampled_upstream_json_path) as f: sampled_upstream_examples = [json.loads(line) for line in set(f.read().splitlines())] self.sampled_upstream_examples = self.upstream_data_formatter( sampled_upstream_examples) # self.sampled_upstream_trainloader, self.sampled_upstream_evalloader = self.get_dataloader( # data_args, sampled_upstream_examples, mode="eval") return def online_debug_static(self): """For the static error stream.""" self.logger.info("Start Online Debugging with Static Error Mode") self.logger.info(f"Number of Batches of Bugs: {self.num_bug_batches}") self.logger.info(f"Bug Batch Size: {self.bug_batch_size}") self.timecode = 0 if self.debugger_args.save_ckpt_freq: # save the initial model as the 0-th model. self._save_base_model() for bug_train_loader in tqdm(self.bug_train_loaders, desc="Online Debugging (Static)", total=self.num_bug_batches): ############### CORE ############### # Fix the bugs by mini-batch based "training" self.logger.info(f"Start bug-fixing .... Timecode: {self.timecode}") self.fix_bugs(bug_train_loader) # for debugging self.logger.info("Start bug-fixing .... Done!") ############### CORE ############### self.timecode += 1 if self.debugger_args.save_ckpt_freq: self._save_base_model() # Note that we save the model from the id=1. # cmr/debug_algs/cl_mbcl_alg.py def online_debug_static(self): self.logger.info("Start Online Debugging") self.logger.info(f"Number of Batches of Bugs: {self.num_bug_batches}") self.logger.info(f"Bug Batch Size: {self.bug_batch_size}") self.logger.info(f"Replay Size: {self.debugger_args.replay_size}") self.logger.info(f"Replay Frequency: {self.debugger_args.replay_frequency}") self.timecode = 0 if self.debugger_args.save_ckpt_freq: # save the initial model as the 0-th model. self._save_base_model() # For the initial memory. # TODO: sample and save to the memory. last_steps = 0 for bug_train_loader in tqdm(self.bug_train_loaders, desc="Online Debugging", total=self.num_bug_batches): if (self.model_update_steps - last_steps) >= self.debugger_args.replay_frequency \ and self.debugger_args.replay_frequency > 0 and self.debugger_args.replay_size > 0: # sparse experience replay self.logger.info("Triggering Sampling from Memory and starting to replay.") retrieved_examples = self.memroy_module.random_sample( sample_size=self.debugger_args.replay_size) replay_data_loader, _ = self.get_dataloader( self.data_args, retrieved_examples, mode="train") self.fix_bugs(replay_data_loader) # sparse replay self.logger.info("Replay-Training done.") last_steps = self.model_update_steps ############### CORE START ############### # Fix the bugs by mini-batch based "training" self.logger.info(f"Start bug-fixing .... Timecode: {self.timecode}") self.fix_bugs(bug_train_loader) # for debugging self.logger.info("Start bug-fixing .... Done!") ############### CORE END ############### self.timecode += 1 if self.debugger_args.save_ckpt_freq: self._save_base_model() # Note that we save the model from the id=1. # So the 0-th checkpoint should be the original base model. _max = 1000000 flag_store_examples = bool(random.randrange(0, _max)/_max >= 1 - self.debugger_args.memory_store_rate) if flag_store_examples: self.logger.info("Saving examples to the memory.") key_vectors = self.memroy_module.encode_examples(bug_train_loader.data, use_random_keys=bool(self.name in ["er", "mir"])) self.memroy_module.store_examples( key_vectors, bug_train_loader.data, timecode=self.timecode) self.logger.info("Finished.") self.memroy_module.save_memory_to_path(self.debugger_args.memory_path)
CMR-main
cmr/debug_algs/_legacy_functions.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from argparse import Namespace from logging import disable import numpy as np import torch from cmr.models.mybart import MyBart from cmr.models import run_bart from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from cmr.task_manager.dataloader import GeneralDataset from transformers import (AdamW, BartConfig, BartTokenizer, get_linear_schedule_with_warmup) from cmr.debug_algs.commons import OnlineDebuggingMethod from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from tqdm import tqdm from torch import nn import torch from torch.nn import functional as F import abc import copy class EWCRegularizer(nn.Module, metaclass=abc.ABCMeta): '''Abstract module to add continual learning capabilities to a classifier. ''' def __init__(self, ): super().__init__() self.base_model = None # the bart model or other possible models to # -EWC: # -> hyperparam: how strong to weigh EWC-loss ("regularisation strength") self.ewc_lambda = 0 # -> hyperparam (online EWC): decay-term for old tasks' contribution to quadratic term self.gamma = 1. # -> "online" (=single quadratic term) or "offline" (=quadratic term per task) EWC self.online = True # -> sample size for estimating FI-matrix (if "None", full pass over dataset) self.fisher_n = None # -> if True, use provided labels to calculate FI ("empirical FI"); else predicted labels self.emp_FI = True # otherwise we need to do the inference decoding. # -> keeps track of number of quadratic loss terms (for "offline EWC") self.EWC_task_count = 0 def estimate_fisher(self, data_loader, pad_token_id): '''After completing training on a task, estimate diagonal of Fisher Information matrix. [data_loader]: <DataSet> to be used to estimate FI-matrix; give batches of size 1 ''' # Prepare <dict> to store estimated Fisher Information matrix est_fisher_info = {} for n, p in self.base_model.named_parameters(): if p.requires_grad: n = n.replace('.', '__') est_fisher_info[n] = p.detach().clone().zero_() # Set model to evaluation mode mode = self.base_model.training self.base_model.eval() # Create data-loader to give batches of size 1 # data_loader = utils.get_data_loader( # dataset, batch_size=1, cuda=self._is_on_cuda(), collate_fn=collate_fn) # TODO: why batch size =1 ? # Estimate the FI-matrix for [self.fisher_n] batches of size 1 for index, batch in enumerate(data_loader): # break from for-loop if max number of samples has been reached if self.fisher_n is not None: if index >= self.fisher_n: break # run forward pass of model # x = x.to(self.base_model._device()) batch = [b.to(torch.device("cuda")) for b in batch] batch[0], batch[1] = trim_batch( batch[0], pad_token_id, batch[1]) batch[2], batch[3] = trim_batch( batch[2], pad_token_id, batch[3]) # output = self.base_model(x) assert self.emp_FI # -use provided label to calculate loglikelihood --> "empirical Fisher": # label = torch.LongTensor([y]) if type(y) == int else y # label = label.to(self.base_model._device()) # calculate negative log-likelihood # negloglikelihood = F.nll_loss(F.log_softmax(output, dim=1), label) nll_loss = self.base_model(input_ids=batch[0], attention_mask=batch[1], decoder_input_ids=batch[2], decoder_attention_mask=batch[3], is_training=True) # Calculate gradient of negative loglikelihood self.base_model.zero_grad() nll_loss.backward() ### # Square gradients and keep running sum for n, p in self.base_model.named_parameters(): if p.requires_grad: n = n.replace('.', '__') if p.grad is not None: est_fisher_info[n] += p.grad.detach() ** 2 # Normalize by sample size used for estimation est_fisher_info = {n: p/index for n, p in est_fisher_info.items()} # Store new values in the network for n, p in self.base_model.named_parameters(): if p.requires_grad: n = n.replace('.', '__') # -mode (=MAP parameter estimate) self.register_buffer('{}_EWC_prev_task{}'.format(n, "" if self.online else self.EWC_task_count+1), p.detach().clone()) # -precision (approximated by diagonal Fisher Information matrix) if self.online and self.EWC_task_count == 1: existing_values = getattr(self, '{}_EWC_estimated_fisher'.format(n)) est_fisher_info[n] += self.gamma * existing_values self.register_buffer('{}_EWC_estimated_fisher{}'.format(n, "" if self.online else self.EWC_task_count+1), est_fisher_info[n]) # If "offline EWC", increase task-count (for "online EWC", set it to 1 to indicate EWC-loss can be calculated) self.EWC_task_count = 1 if self.online else self.EWC_task_count + 1 # Set model back to its initial mode self.base_model.train(mode=mode) def ewc_loss(self): '''Calculate EWC-loss.''' if self.EWC_task_count > 0: losses = [] # If "offline EWC", loop over all previous tasks (if "online EWC", [EWC_task_count]=1 so only 1 iteration) for task in range(1, self.EWC_task_count+1): for n, p in self.base_model.named_parameters(): if p.requires_grad: # Retrieve stored mode (MAP estimate) and precision (Fisher Information matrix) n = n.replace('.', '__') mean = getattr(self, '{}_EWC_prev_task{}'.format( n, "" if self.online else task)) if self.gamma > 0 : fisher = getattr(self, '{}_EWC_estimated_fisher{}'.format( n, "" if self.online else task)) # If "online EWC", apply decay-term to the running sum of the Fisher Information matrices fisher = self.gamma*fisher if self.online else fisher # Calculate EWC-loss losses.append((fisher * (p-mean)**2).sum()) else: # This is just the L2 norm w/o computing the fisher info for weighting losses.append(((p-mean)**2).sum()) # Sum EWC-loss from all parameters (and from all tasks, if "offline EWC") return (1./2)*sum(losses) else: # EWC-loss is 0 if there are no stored mode and precision yet # TODO: instead of 0, let's use the normal L2 norm? return torch.tensor(0., device=torch.device("cuda")) class OnlineEWC(ContinualFinetuning): def __init__(self, logger): super().__init__(logger=logger) self.name = "online_ewc" def _check_debugger_args(self): super()._check_debugger_args() required_atts = [ # ewc-related hyper parameters "ewc_lambda", "ewc_gamma", # "use_sampled_upstream" ] assert all([hasattr(self.debugger_args, att) for att in required_atts]) return # ### END ### def debugger_setup(self, debugger_args): super().debugger_setup(debugger_args) # Initializing the EWC Regularzier. self.regularizer = EWCRegularizer() self.regularizer.online = True self.regularizer.ewc_lambda = self.debugger_args.ewc_lambda self.regularizer.gamma = self.debugger_args.ewc_gamma self.regularizer.emp_FI = True # TODO: check later. self.regularizer.base_model = self.base_model return def fix_bugs(self, bug_loader, quiet=True): # bug_dataloader is from self.bug_loaders self.base_model.train() train_losses = [] global_step = 0 pad_token_id = self.tokenizer.pad_token_id # #### For the first update ### # if self.data_args.use_sampled_upstream and self.timecode==0: # self.logger.info("Start the initial fisher info matrix computation....") # upstream_dl, _ = self.get_dataloader(self.data_args, self.sampled_upstream_examples, mode="train") # upstream_dl.args.train_batch_size = 1 # upstream_fi_dl = upstream_dl.load_dataloader(do_return=True) # self.regularizer.estimate_fisher(upstream_fi_dl, pad_token_id) # self.logger.info("Start the initial fisher info matrix computation....Done!") for epoch_id in range(int(self.debugger_args.num_epochs)): for batch in tqdm(bug_loader.dataloader, desc=f"Bug-fixing Epoch {epoch_id}", disable=quiet): # here the batch is a mini batch of the current bug batch global_step += 1 if self.use_cuda: # print(type(batch[0]), batch[0]) batch = [b.to(torch.device("cuda")) for b in batch] batch[0], batch[1] = trim_batch( batch[0], pad_token_id, batch[1]) batch[2], batch[3] = trim_batch( batch[2], pad_token_id, batch[3]) # this is the task loss w/o any regularization loss = self.base_model(input_ids=batch[0], attention_mask=batch[1], decoder_input_ids=batch[2], decoder_attention_mask=batch[3], is_training=True) if self.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if self.regularizer.ewc_lambda > 0: # a hp to control the penalty weight. # add the regularzation term. ewc_loss = self.regularizer.ewc_loss() loss = loss + self.regularizer.ewc_lambda * ewc_loss train_losses.append(loss.detach().cpu()) loss.backward() self.model_update_steps += 1 if global_step % self.debugger_args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( self.base_model.parameters(), self.debugger_args.max_grad_norm) self.optimizer.step() # We have accumulated enough gradients self.scheduler.step() self.base_model.zero_grad() # TODO: build bsz=1 dataloader for update the fisher information matrix bug_loader.logger = None fisher_dataloader = copy.deepcopy(bug_loader) fisher_dataloader.logger = self.logger fisher_dataloader.args.train_batch_size = 1 fi_dl = fisher_dataloader.load_dataloader(do_return=True) self.regularizer.estimate_fisher(fi_dl, pad_token_id) return
CMR-main
cmr/debug_algs/cl_online_ewc_alg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from argparse import Namespace from logging import disable from cmr.task_manager.eval_metrics import evaluate_func from cmr.models.bart_with_adapater import BartWithAdapterConfig, MyBartWithAdapter from cmr.debug_algs.cl_mbcl_alg import KeyValueMemoryModule from cmr.models.hypernet import ParameterGenerator import numpy as np import torch from cmr.models.mybart import MyBart from cmr.models import run_bart from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from cmr.task_manager.dataloader import GeneralDataset from transformers import (AdamW, BartConfig, BartTokenizer, get_linear_schedule_with_warmup) from cmr.debug_algs.commons import OnlineDebuggingMethod from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from tqdm import tqdm from torch import log, nn import torch from torch.nn import functional as F import transformers class HyperBart(nn.Module): def __init__(self, logger, config): super().__init__() self.logger = logger self.config = config self.bart_model = None self.weight_generator = None self.example_encoder, self.example_tokenizer = None, None # self.stored_task_embs = nn.Parameter(torch.zeros(self.config.num_tasks, self.task_emb_dim)) # for Trainable # self.register_buffer('stored_task_embs', torch.zeros(self.config.num_tasks, self.task_emb_dim)) # fixed def apply_adapter_weights(self, adapter_weights): encoder_params, decoder_params = adapter_weights[:self.config.encoder_layers], adapter_weights[self.config.encoder_layers:] d_model = self.config.d_model d_adapter = self.config.adapter_dim for p, encoder_layer in zip(encoder_params, self.bart_model.encoders()): # dw, db: down weight, down bias # uw, ub: up weight, up bias dw, uw, db, ub = p[0:d_model*d_adapter], \ p[d_model*d_adapter:d_model*d_adapter*2], \ p[d_model*d_adapter*2:d_model*d_adapter*2+d_adapter], \ p[d_model*d_adapter*2+d_adapter:d_model*d_adapter*2+d_adapter+d_model] encoder_layer.adapter_down_weight = dw.view(d_model, d_adapter) encoder_layer.adapter_down_bias = db.view(d_adapter) encoder_layer.adapter_up_weight = uw.view(d_adapter, d_model) encoder_layer.adapter_up_bias = ub.view(d_model) if self.config.adapt_layer_norm: encoder_layer.self_attn_layer_norm.weight.data = encoder_layer.self_attn_layer_norm.weight.data + p[-2*d_model: -1*d_model] encoder_layer.self_attn_layer_norm.bias.data = encoder_layer.self_attn_layer_norm.bias.data + p[-1*d_model:] for p, decoder_layer in zip(decoder_params, self.bart_model.decoders()): dw, uw, db, ub = p[0:d_model*d_adapter], \ p[d_model*d_adapter:d_model*d_adapter*2], \ p[d_model*d_adapter*2:d_model*d_adapter*2+d_adapter], \ p[d_model*d_adapter*2+d_adapter:d_model*d_adapter*2+d_adapter+d_model] decoder_layer.adapter_down_weight = dw.view(d_model, d_adapter) decoder_layer.adapter_down_bias = db.view(d_adapter) decoder_layer.adapter_up_weight = uw.view(d_adapter, d_model) decoder_layer.adapter_up_bias = ub.view(d_model) if self.config.adapt_layer_norm: decoder_layer.self_attn_layer_norm.weight.data = decoder_layer.self_attn_layer_norm.weight.data + p[-2*d_model: -1*d_model] decoder_layer.self_attn_layer_norm.bias.data = decoder_layer.self_attn_layer_norm.bias.data + p[-1*d_model:] def forward(self, input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_cached_states=None, use_cache=False, is_training=False, task_emb=None): """"overwrite the bart.forward function""" # assert task_emb.dim() == 1 # generated_weights = None generated_weights = self.weight_generator(task_emb.unsqueeze(0)) # self.bart_model.set_adapter_weights(generated_weights) self.apply_adapter_weights(adapter_weights=generated_weights) ret = self.bart_model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, is_training=is_training, use_cache=use_cache) return ret def load_example_encoder(self): tmp = KeyValueMemoryModule(self.logger) self.example_encoder, self.example_tokenizer = tmp.load_key_encoder(memory_key_encoder=self.config.example_encoder_name) def get_task_embeddings(self, dataloader): # TODO: get the ids of the examples # TODO: get the vectors of these ids # TODO: aggreagte the vectors (with mean) to get a task embedding vector. examples = dataloader.data tmp = KeyValueMemoryModule(self.logger) tmp.tokenizer = self.example_tokenizer tmp.key_encoder = self.example_encoder all_vectors = tmp.encode_examples_for_caching(examples, return_tensors=True) all_vectors = torch.stack(all_vectors) # print(all_vectors) mean_embedding = torch.mean(all_vectors, 0) # print(mean_embedding) return mean_embedding # def init_weight_generator(self): # # make sure config has such attrs # # config.encoder_layers # # config.decoder_layers # # config.activation_function # # config.activation_function # # config.generator_hdim # # config.task_emb_dim # # config.d_model # # config.adapter_dim # # config.adapt_layer_norm # self.weight_generator = ParameterGenerator(self.config) class HyperCL(ContinualFinetuning): def __init__(self, logger): super().__init__(logger=logger) self.name = "hyper_cl" def _check_debugger_args(self): super()._check_debugger_args() required_atts = ["adapter_dim", "example_encoder_name", "task_emb_dim"] assert all([hasattr(self.debugger_args, att) for att in required_atts]) def debugger_setup(self, debugger_args): self.debugger_args = debugger_args self._check_debugger_args() model_type, base_model_path = self.base_model_args.model_type, self.base_model_args.base_model_path # Set up the additional configs config = BartWithAdapterConfig.from_pretrained(model_type) config.adapter_dim = debugger_args.adapter_dim config.adapt_layer_norm = False # debugger_args.adapt_layer_norm # config.unfreeze_hyper_encoder = debugger_args.unfreeze_hyper_encoder # config.num_tasks = len(self.all_bug_examples) # number of the overall examples in the error stream. config.task_emb_dim = debugger_args.task_emb_dim # the dim of the CLS token embedding of the below model. config.example_encoder_name = debugger_args.example_encoder_name # Set up the HyperBart model self.base_model = HyperBart(self.logger, config) hyper_bart = self.base_model # make an alias to indicate the special arch. hyper_bart.bart_model = MyBartWithAdapter(config) hyper_bart.weight_generator = ParameterGenerator(config) hyper_bart.load_example_encoder() # Load the bart model of the HyperBart model. self.logger.info(f"Loading checkpoint from {base_model_path} for {model_type} .....") mybart_model = MyBart.from_pretrained(model_type, state_dict=convert_model_to_single_gpu(torch.load(base_model_path))) hyper_bart.bart_model.model.load_state_dict(mybart_model.model.state_dict(), strict=False) # TODO: load the cache of both bart and the weight generator if self.use_cuda: # Enable multi-gpu training. hyper_bart.to(torch.device("cuda")) self.logger.info("Moving to the GPUs.") if self.n_gpu > 1: hyper_bart = torch.nn.DataParallel(hyper_bart) hyper_bart = hyper_bart.module if self.n_gpu > 1 else hyper_bart # TODO: set up the memory for the "task embedding" self.stored_task_embs = None ## we can assume that we have a pre-defined number of incoming examples. ## pre-computed by a frozen bert for each example. ## set up a method to extend the look-up table. # Set up the optimizer. no_decay = ['bias', 'LayerNorm.weight'] self.optimizer_grouped_parameters = [ # Note that we only update the hypernetwork. {'params': [p for n, p in hyper_bart.weight_generator.decoders.named_parameters() if not any( nd in n for nd in no_decay)], 'weight_decay': debugger_args.weight_decay}, {'params': [p for n, p in hyper_bart.weight_generator.decoders.named_parameters() if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] self.optimizer = AdamW(self.optimizer_grouped_parameters, lr=debugger_args.learning_rate, eps=debugger_args.adam_epsilon) # TODO: double check the decision about warm up for fine-tuning self.scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=debugger_args.warmup_steps, num_training_steps=debugger_args.total_steps) self.logger.info(f"Debugger Setup ...... Done!") return def load_base_model(self, base_model_args, mode="online_debug"): self.base_model_args = base_model_args if mode=="offline_eval": model_type, base_model_path = self.base_model_args.model_type, self.base_model_args.base_model_path # Set up the additional configs config = BartWithAdapterConfig.from_pretrained(model_type) config.adapter_dim = self.debugger_args.adapter_dim config.adapt_layer_norm = False # self.debugger_args.adapt_layer_norm # config.unfreeze_hyper_encoder = debugger_args.unfreeze_hyper_encoder # config.num_tasks = len(self.all_bug_examples) # number of the overall examples in the error stream. config.task_emb_dim = self.debugger_args.task_emb_dim # the dim of the CLS token embedding of the below model. config.example_encoder_name = self.debugger_args.example_encoder_name # Set up the HyperBart model self.base_model = HyperBart(self.logger, config) else: pass # the base_model is initiated in the debugger_setup return def fix_bugs(self, bug_loader, quiet=True): # set the states of the hypernetwork and the base model for inference self.base_model.train() train_losses = [] global_step = 0 pad_token_id = self.tokenizer.pad_token_id hyper_bart = self.base_model # alias task_emb = hyper_bart.get_task_embeddings(bug_loader) self.base_model.train() train_losses = [] global_step = 0 for epoch_id in range(int(self.debugger_args.num_epochs)): for batch in tqdm(bug_loader.dataloader, desc=f"Bug-fixing Epoch {epoch_id}", disable=quiet): global_step += 1 # here the batch is a mini batch of the current bug batch if self.use_cuda: # print(type(batch[0]), batch[0]) batch = [b.to(torch.device("cuda")) for b in batch] pad_token_id = self.tokenizer.pad_token_id batch[0], batch[1] = trim_batch( batch[0], pad_token_id, batch[1]) batch[2], batch[3] = trim_batch( batch[2], pad_token_id, batch[3]) loss = hyper_bart(task_emb=task_emb, input_ids=batch[0], attention_mask=batch[1], decoder_input_ids=batch[2], decoder_attention_mask=batch[3], is_training=True) if self.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. train_losses.append(loss.detach().cpu()) loss.backward() self.model_update_steps += 1 if global_step % self.debugger_args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( hyper_bart.parameters(), self.debugger_args.max_grad_norm) self.optimizer.step() # We have accumulated enough gradients self.scheduler.step() hyper_bart.zero_grad() return def get_task_split_for_inference(self): pass def evaluate(self, eval_dataloader=None, verbose=False): """Evaluates the performance""" if not eval_dataloader: eval_dataloader = self.submission_eval_loaders[self.timecode] # prepare adapt_dataloaders adapt_dataloaders = self.get_adapt_dataloaders(eval_dataloader, verbose=True) predictions = self.base_model_infer_with_adaptation(eval_dataloader, adapt_dataloaders, verbose) assert len(predictions) == len(eval_dataloader) predictions = [p.strip() for p in predictions] results, return_all = evaluate_func( predictions, eval_dataloader.data, self.metric, return_all=True) return predictions, results, return_all
CMR-main
cmr/debug_algs/cl_hypernet_alg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from argparse import Namespace from datetime import time from logging import disable from cmr.debug_algs.cl_simple_alg import ContinualFinetuning import numpy as np import torch from cmr.models.mybart import MyBart from cmr.models import run_bart from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from cmr.task_manager.dataloader import GeneralDataset from transformers import (AdamW, BartConfig, BartTokenizer, get_linear_schedule_with_warmup) from tqdm import tqdm class NoneCL(ContinualFinetuning): def __init__(self, logger): super().__init__(logger=logger) self.name = "none_cl" def _check_debugger_args(self): return def debugger_setup(self, debugger_args): self.logger.info(f"No debugger!") self.debugger_args = debugger_args self._check_debugger_args() return def fix_bugs(self, bug_loader, quiet=True): # bug_dataloader is from self.bug_loaders self.logger.info("No debugging at all.") return class OfflineCL(NoneCL): def __init__(self, logger): super().__init__(logger=logger) self.name = "none_cl_offline_eval" def _check_debugger_args(self): return def online_debug(self): self.logger.info("Start Online Debugging with Dynamic Error Mode") self.logger.info(f"Number of Batches of Data: {self.num_data_batches}") self.logger.info(f"Data Batch Size: {self.data_batch_size};") self.timecode = 0 # if self.debugger_args.save_ckpt_freq: # # save the initial model as the 0-th model. # self._save_base_model() data_args = self.data_args bug_eval_loaders = [] for data_batch in tqdm(self.data_stream, desc="Creating the data loaders."): data_batch += [item for item in data_batch if item["init_status"] == "error"] # keep only the initial errors formatted_data_batch = self.data_formatter(data_batch) _, eval_data_dataloader = self.get_dataloader( data_args, formatted_data_batch, mode="eval") bug_eval_loaders.append(eval_data_dataloader) for bug_eval_loader, data_eval_loader in tqdm(zip(bug_eval_loaders, self.data_eval_loaders), desc="Online Evaluation"): result_dict = {"timecode": self.timecode} # start with 0 if self.timecode+1 == len(self.data_eval_loaders): self.eval_knowledge_retention(result_dict) self.eval_knowledge_generalization(result_dict) # self._replay_based_eval(result_dict) _ = self._get_dynamic_errors(data_eval_loader, result_dict, return_raw_bug_examples=True) # we don't need the dataloader and empty cause false # bug_eval_loader = bug_eval_loaders[self.timecode] self.evaluate_error_fixing(result_dict, bug_eval_loader) self._update_result_dict(result_dict) # if self.debugger_args.save_ckpt_freq > 0 and self.timecode % self.debugger_args.save_ckpt_freq == 0: # # self._save_base_model() # self.save_result_file() self.logger.info("-"*50) self.timecode += 1 #### Final evaluation #### self.final_evaluation() #### Save the final model #### self._save_base_model()
CMR-main
cmr/debug_algs/cl_none.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import json import random from cmr.benchmark_gen import sample_stream_data from cmr.task_manager.eval_metrics import evaluate_func def create_training_stream(args, logger): assert not args.use_dev_stream # setattr(data_args, "data_stream_json_path", args.data_stream_json_path) # setattr(data_args, "replay_stream_json_path", args.replay_stream_json_path) # with open(data_args.data_stream_json_path) as f: # data_stream = json.load(f) upstream_truth_data = [] with open(args.upstream_data_file) as fin: lines = fin.readlines() for line in lines: # d = line.strip().split("\t") # truth_data.append((d[0], d[1:])) d = json.loads(line) upstream_truth_data.append((d["input"], d["output"], d["id"])) with open(args.upstream_data_prediction_file, "r") as f: M0_predictions = json.load(f) logger.info(f"len(predictions): {len(M0_predictions)}") logger.info(f"len(upstream_truth_data]): {len(upstream_truth_data)}") results, results_all = evaluate_func( M0_predictions, upstream_truth_data , "EM|QA-F1", return_all=True) logger.info(f"Upstream evaluation results: {results}") bug_pool, pass_pool = sample_stream_data.generate_bugs(M0_predictions, upstream_truth_data, results_all, f1_upper_bound=1.0) logger.info(f"len(bug_pool)={len(bug_pool)}") logger.info(f"len(pass_pool)={len(pass_pool)}") # TODO: add some pass_pool examples in bug pool? sampled_M0_errors = random.sample(bug_pool, args.train_stream_length * args.train_stream_episode_size) sampled_init_memory = random.sample(pass_pool, args.init_memory_size) sampled_train_stream = sample_stream_data.get_data_stream( sampled_M0_errors, args.train_stream_episode_size, args.train_stream_length, use_score=False) # randomly sorted bugs return sampled_init_memory, sampled_train_stream def create_training_stream_with_dev(args, logger): assert args.use_dev_stream dev_memory = [] with open(args.dev_memory) as f: for line in f.read().splitlines(): d = json.loads(line) dev_memory.append(d) sampled_init_memory = random.sample(dev_memory, args.init_memory_size) with open(args.dev_stream) as f: dev_stream = json.load(f) dev_stream_examples = [] # print(len(dev_stream)) for batch in dev_stream: for item in batch: # print(item.keys()) dev_stream_examples.append(item) # print(dev_stream_examples[:3]) # print(len(dev_stream_examples)) random.shuffle(dev_stream_examples) sampled_M0_errors = random.sample(dev_stream_examples, args.train_stream_length * args.train_stream_episode_size) sampled_train_stream = sample_stream_data.get_data_stream( sampled_M0_errors, args.train_stream_episode_size, args.train_stream_length, use_score=False) # randomly sorted bugs return sampled_init_memory, sampled_train_stream
CMR-main
cmr/debug_algs/distant_supervision/ds_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. """ This script is used to get the training data for learning a retriever that can get back the most forgettable examples given a batch of error cases to fix. Input: - The training streams. ---> get the error cases. - model. Output: - The pairs between error cases and associated forgettable examples. Key logic: - Use the simple_CL method and put it work on the training streams (can be randomly sampled.) - For each episode, before and after the error-fixing (continual fine-tuning) step, we record the forgetted the examples. """ import copy import pickle from cmr.debug_algs.cl_utils import _keep_first_answer from cmr.debug_algs.distant_supervision.ds_utils import create_training_stream, create_training_stream_with_dev from cmr.debug_algs.index_based.index_manager import RandomMemoryManger from cmr.debug_algs.index_based.index_utils import get_bart_dual_representation from cmr.models import run_bart from cmr.models.utils import set_seeds, trim_batch import torch from scipy.stats.stats import describe from cmr.debug_algs.cl_simple_alg import ContinualFinetuning import random from tqdm import tqdm from cmr.debug_algs import run_lifelong_finetune from cmr.benchmark_gen import sample_stream_data import json from cmr.task_manager.eval_metrics import evaluate_func from collections import OrderedDict from operator import getitem class MiningSupervision(ContinualFinetuning): def __init__(self, logger): super().__init__(logger=logger) self.name = "simple_ds_mine" self.init_model = None def _check_data_args(self, additional_args): pass def compute_MIR_scores(self, before_model, after_model, examples): _examples = _keep_first_answer(examples) mlr_data_args = copy.deepcopy(self.data_args) mlr_data_args.predict_batch_size = 4 # TODO: set an arg. memory_buffer_loader, _ = self.get_dataloader( mlr_data_args, _examples, mode="train", is_training=False) # fix of the order before_losses = run_bart.inference( before_model, memory_buffer_loader, compute_loss=True, loss_only=True, logger=self.logger) after_losses = run_bart.inference( after_model, memory_buffer_loader, compute_loss=True, loss_only=True, logger=self.logger) MIR_scores = {} for example, before_loss, after_loss in zip(examples, before_losses, after_losses): loss_delta = after_loss - before_loss MIR_scores[example[2]] = loss_delta # id, score. return MIR_scores def get_pos_neg_results(self, examples, scores, positive_size=8, negative_size=8): examples_dict = {ex[2]: ex for ex in examples} sorted_scores = sorted(scores.items(), key = lambda x:x[1], reverse = True) pos_ids = [x[0] for x in sorted_scores[:positive_size]] neg_ids = [x[0] for x in sorted_scores[-negative_size:]] positive_results = [examples_dict[ex_id] for ex_id in pos_ids] negative_results = [examples_dict[ex_id] for ex_id in neg_ids] return positive_results, negative_results def wrap_supervision(self, before_model, after_model, query_examples, positive_results, negative_results): cl_trainer = self tokenizer = self.tokenizer data_args = copy.deepcopy(self.data_args) data_args.predict_batch_size = 4 # TODO: two options here: if self.all_args.long_term_delta: # Optional: using the delta versus the init model self.logger.info("Using initial model as the before model for computing query vecs.") before_model = self.init_model supervision = {} supervision["mode"] = "all_hiddens" if self.all_args.save_all_hiddens else "mean_reps" supervision["positive"] = {} supervision["negative"] = {} top_examples = [] if self.all_args.save_all_hiddens: supervision["query_before"] = {} supervision["query_after"] = {} query_hiddens_before = get_bart_dual_representation(cl_trainer, before_model, tokenizer, data_args, query_examples, return_all_hidden=True) query_hiddens_after = get_bart_dual_representation(cl_trainer, after_model, tokenizer, data_args, query_examples, return_all_hidden=True) positive_hiddens = get_bart_dual_representation(cl_trainer, self.init_model, tokenizer, data_args, positive_results, return_all_hidden=True) negative_hiddens = get_bart_dual_representation(cl_trainer, self.init_model, tokenizer, data_args, negative_results, return_all_hidden=True) for ind, example in enumerate(query_examples): supervision["query_before"][example[2]] = {k: v[ind] for k, v in query_hiddens_before.items()} supervision["query_after"][example[2]] = {k: v[ind] for k, v in query_hiddens_after.items()} for ind, example in enumerate(positive_results): supervision["positive"][example[2]] = {k: v[ind] for k, v in positive_hiddens.items()} for ind, example in enumerate(negative_hiddens): supervision["negative"][example[2]] = {k: v[ind] for k, v in negative_hiddens.items()} else: supervision["query"] = {} query_vectors_before = get_bart_dual_representation(cl_trainer, before_model, tokenizer, data_args, query_examples) query_vectors_after = get_bart_dual_representation(cl_trainer, after_model, tokenizer, data_args, query_examples) assert len(query_vectors_before) == len(query_vectors_after) == len(query_examples) for example, q1, q2 in zip(query_examples, query_vectors_before, query_vectors_after): supervision["query"][example[2]] = list(q1) + list(q2) # concat positive_vectors = get_bart_dual_representation(cl_trainer, self.init_model, tokenizer, data_args, positive_results) negative_vectors = get_bart_dual_representation(cl_trainer, self.init_model, tokenizer, data_args, negative_results) for example, vector in zip(positive_results, positive_vectors): supervision["positive"][example[2]] = list(vector) top_examples.append(example) for example, vector in zip(negative_results, negative_vectors): supervision["negative"][example[2]] = list(vector) return supervision, top_examples def mine_supervision(self, memory_manager=None, all_args=None): self.all_args = all_args self.logger.info("Start Mining Distant Supervision (as online debugging).") sub_stream_dataloaders = self.data_eval_loaders self.logger.info(f"Number of Batches of Data: {len(sub_stream_dataloaders)}") self.logger.info(f"Data Batch Size: {self.data_batch_size};") self.timecode = 0 mined_supervision = [] for data_eval_loader in tqdm(sub_stream_dataloaders, desc="Mining Supervision from Dynamic Error Stream"): episode_data = data_eval_loader.data bug_train_loader, _ = self.get_dataloader( self.data_args, episode_data, mode="train") # TODO: this is actually not errors for M_t, it is just M_0's errors model_copy = copy.deepcopy(self.base_model) ############### CORE ############### # Fix the bugs by mini-batch based "training" self.logger.info(f"Start error-fixing .... Timecode: {self.timecode}") self.fix_bugs(bug_train_loader) # for debugging self.logger.info("Start error-fixing .... Done!") ############### CORE ############### updated_model = self.base_model sampled_examples = memory_manager.retrieve_from_memory(sample_size=all_args.mir_buffer_size) MIR_scores = self.compute_MIR_scores(model_copy, updated_model, sampled_examples) self.timecode += 1 positive_results, negative_results = self.get_pos_neg_results(sampled_examples, MIR_scores, positive_size=all_args.positive_size, negative_size=all_args.negative_size) supervision, top_examples = self.wrap_supervision(model_copy, updated_model, episode_data, positive_results, negative_results) self.logger.info(f"Get an instance for supervision at {self.timecode}") mined_supervision.append(supervision) memory_manager.store_examples(episode_data) # update with the sampled examples self.base_model = model_copy self.reset_optimizer() mixed_data = episode_data + top_examples mixed_bug_train_loader, _ = self.get_dataloader( self.data_args, mixed_data, mode="train") self.fix_bugs(mixed_bug_train_loader) # for debugging # del model_copy return mined_supervision # if self.debugger_args.save_ckpt_freq: # self._save_base_model() if __name__ == '__main__': parser = run_lifelong_finetune.get_cli_parser() parser.add_argument("--upstream_data_file", type=str, default="data/mrqa_naturalquestions/mrqa_naturalquestions_train.jsonl", help="the path to upstream data") parser.add_argument("--upstream_data_prediction_file", type=str, # by the initial model M_0 default="bug_data/mrqa_naturalquestions_train.predictions.jsonl", help="the path to initial model's predictions on the upstream data") parser.add_argument("--dev_memory", type=str, # by the initial model M_0 default="exp_results/data_streams/mrqa.nq_train.memory.jsonl", help="the path to initial model's predictions on the upstream data") parser.add_argument("--dev_stream", type=str, # by the initial model M_0 default="exp_results/data_streams/mrqa.mixed.data_stream.test.json", help="the path to initial model's predictions on the upstream data") parser.add_argument("--output_supervision", type=str, help="the path to save the thread results") parser.add_argument('--train_stream_length', type=int, default=100) parser.add_argument('--train_stream_episode_size', type=int, default=16) parser.add_argument('--init_memory_size', type=int, default=10000) parser.add_argument('--num_rounds', type=int, default=1) parser.add_argument('--positive_size', type=int, default=8) parser.add_argument('--negative_size', type=int, default=8) parser.add_argument('--mir_buffer_size', type=int, default=256) parser.add_argument('--use_dev_stream', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--long_term_delta', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--save_all_hiddens', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--debug_mode', default=True, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) args = parser.parse_args() # debuggging args.cl_method_name = "simple_ds_mine" if args.debug_mode: args.use_dev_stream = True args.long_term_delta = True assert args.cl_method_name == "simple_ds_mine" ## init the useful args ## cl_supervision_miner, data_args, base_model_args, debugger_args, logger = run_lifelong_finetune.setup_args( args) setattr(data_args, "replay_stream_json_path", "") ## Init the cl_supervision_miner cl_supervision_miner.load_base_model(base_model_args) cl_supervision_miner.init_model = copy.deepcopy(cl_supervision_miner.base_model) # maintain M0 ## Create Training Stream ## for _rid in range(args.num_rounds): logger.info(f"Starting Round {_rid} ....") seeds = list(range(100000)) random.shuffle(seeds) selected_seed = seeds[args.seed] # actually the index logger.info(f"Active Seed = {selected_seed}") set_seeds(selected_seed) if not args.use_dev_stream: initial_memory, sampled_train_stream = create_training_stream(args, logger) else: initial_memory, sampled_train_stream = create_training_stream_with_dev(args, logger) ## Init the RandomMemroy module ## memory_manager = RandomMemoryManger(logger) # TODO: try the BART-base one? formatted_initial_memory = cl_supervision_miner.data_formatter(initial_memory) memory_manager.set_up_initial_memory(formatted_examples=formatted_initial_memory) logger.info(f"Initial memory size: {memory_manager.get_memory_size()}") cl_supervision_miner.load_data(data_args, given_data_stream=sampled_train_stream) cl_supervision_miner.debugger_setup(debugger_args) mined_supervision = cl_supervision_miner.mine_supervision(memory_manager, all_args=args) path_to_save = args.output_supervision.replace(".pkl", f"-{_rid}.pkl") with open(path_to_save, "wb") as f: logger.info(f"Saving {f.name}") pickle.dump(mined_supervision, f) logger.info(f"Saving {f.name}...Done!") logger.info(f"Finished Round {_rid} !") """ # debug index=0 gpu=0 prefix=data_collection_simple_${thread} log_file=exp_results/supervision_data/logs/run_${prefix}.log CUDA_VISIBLE_DEVICES=${gpu} python cmr/debug_algs/distant_supervision/data_collection.py \ --cl_method_name simple_ds_mine \ --seed ${thread} \ --output_supervision "exp_results/supervision_data/simple_mir_dm/dm.${thread}.pkl" \ --learning_rate 3e-5 --num_train_epochs 5 --train_batch_size 10 \ --prefix ${prefix} \ --stream_mode dynamic \ --replay_stream_json_path "" \ --upstream_eval_data exp_results/data_streams/mrqa_naturalquestions_dev.hidden_passes.jsonl \ --save_ckpt_freq 0 > ${log_file} 2>&1 & echo $log_file """
CMR-main
cmr/debug_algs/distant_supervision/data_collection.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import torch from tqdm import tqdm from transformers.modeling_bart import _prepare_bart_decoder_inputs from transformers.tokenization_utils import trim_batch import numpy as np from cmr.debug_algs.cl_utils import _keep_first_answer def masked_mean(reps, masks): masks = masks.view(reps.size()[0], reps.size()[1], 1) masked_reps = reps * masks masked_reps_sum = masked_reps.sum(dim=1) length_reps = masks.sum(dim=1).view(masked_reps_sum.size()[0], 1) mean_reps = masked_reps_sum / length_reps return mean_reps def get_bart_dual_representation(cl_trainer, bart_model, tokenizer, data_args, examples, return_all_hidden=False, agg_method="mean"): examples_with_single_ans = _keep_first_answer(examples) data_manager, _ = cl_trainer.get_dataloader(data_args, examples_with_single_ans, mode="train", is_training=False) all_vectors = [] bart_model = bart_model if cl_trainer.n_gpu == 1 else bart_model.module bart_model.eval() all_hiddens = {"input_reps":[], "input_masks": [], "output_reps": [] , "output_masks": []} for batch in tqdm(data_manager.dataloader, desc="Computing BART representation"): # self.logger.info(f"len(batch)={len(batch)}") if cl_trainer.use_cuda: # print(type(batch[0]), batch[0]) batch = [b.to(torch.device("cuda")) for b in batch] pad_token_id = tokenizer.pad_token_id batch[0], batch[1] = trim_batch( batch[0], pad_token_id, batch[1]) batch[2], batch[3] = trim_batch( batch[2], pad_token_id, batch[3]) # Encode the input text with BART-encoder input_ids = batch[0] input_attention_mask = batch[1] encoder_outputs = bart_model.model.encoder( input_ids, input_attention_mask) x = encoder_outputs[0] # if agg_method == "mean": x = masked_mean(x, input_attention_mask) # use the mean instead of the first elif agg_method == "first": x = x[:, 0, :] input_vectors = x.detach().cpu().numpy() # self.logger.info(f"input_vectors.shape = {input_vectors.shape}") # Encode the output text with BART-decoder output_ids = batch[2] output_attention_mask = batch[3] decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_bart_decoder_inputs( bart_model.model.config, input_ids, decoder_input_ids=output_ids, decoder_padding_mask=output_attention_mask, causal_mask_dtype=bart_model.model.shared.weight.dtype, ) decoder_outputs = bart_model.model.decoder( decoder_input_ids, encoder_outputs[0], input_attention_mask, decoder_padding_mask, decoder_causal_mask=causal_mask, decoder_cached_states=None, use_cache=False ) y = decoder_outputs[0] if agg_method == "mean": y = masked_mean(y, output_attention_mask) # use the mean instead of the first elif agg_method == "first": y = y[:, 0, :] output_vectors = y.detach().cpu().numpy() # self.logger.info(f"output_vectors.shape = {output_vectors.shape}") # concatenate the vectors vectors = np.concatenate([input_vectors, output_vectors], axis=1) if return_all_hidden: all_hiddens["input_reps"] += list(encoder_outputs[0].detach().cpu().numpy()) all_hiddens["output_reps"] += list(decoder_outputs[0].detach().cpu().numpy()) all_hiddens["input_masks"] += list(input_attention_mask.detach().cpu().numpy()) all_hiddens["output_masks"] += list(output_attention_mask.detach().cpu().numpy()) # self.logger.info(f"vectors.shape = {vectors.shape}") all_vectors += list(vectors) del batch del encoder_outputs del decoder_outputs if return_all_hidden: return all_hiddens else: return all_vectors
CMR-main
cmr/debug_algs/index_based/index_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved.
CMR-main
cmr/debug_algs/index_based/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from cmr.debug_algs.cl_utils import get_top_interfered_examples, get_virtual_updated_model from cmr.debug_algs.index_based.IO_each_index import BartIOIndexManager from cmr.debug_algs.index_based.biencoder import BiEncoderIndexManager from cmr.debug_algs.index_based.index_manager import BartIndexManager, RandomMemoryManger from transformers.optimization import AdamW, get_linear_schedule_with_warmup from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from tqdm import tqdm import random import numpy as np import torch import transformers from cmr.task_manager.eval_metrics import evaluate_func import copy import pickle import os from cmr.models.mybart import MyBart from cmr.models import run_bart from cmr.models.utils import (convert_model_to_single_gpu, freeze_embeds, trim_batch) from argparse import Namespace import more_itertools import json class IndexBasedCL(ContinualFinetuning): def __init__(self, logger): super().__init__(logger=logger) self.name = "tbd" def _check_debugger_args(self): super()._check_debugger_args() required_atts = [ "replay_size", "replay_candidate_size", "replay_frequency", "memory_store_rate", # 0, 0.1, 1 etc. "upstream_sample_ratio", "memory_path", # to save the memory module from disk "use_replay_mix", "init_memory_cache_path", "index_rank_method" ] assert all([hasattr(self.debugger_args, att) for att in required_atts]) # assert self.debugger_args.index_rank_method in ["most_similar", "most_different"] def debugger_setup(self, debugger_args): super().debugger_setup(debugger_args) self.memroy_module = None # if online is used seperately self.upstream_memroy_module = None def setup_bart_index(): mm = BartIndexManager(self.logger) mm.set_up_data_args(self.data_args) mm.data_args.predict_batch_size = 4 mm.load_encoder_model(self.base_model_args) return mm def setup_bart_io_index(): mm = BartIOIndexManager(self.logger) mm.set_up_data_args(self.data_args) mm.data_args.predict_batch_size = 4 mm.load_encoder_model(self.base_model_args) return mm def setup_biencoder(): with open(debugger_args.indexing_args_path) as f: train_args_dict = json.load(f) mm = BiEncoderIndexManager(self.logger) mm.train_args = Namespace(**train_args_dict) mm.set_up_data_args(self.data_args) mm.data_args.predict_batch_size = 4 mm.load_encoder_model( self.base_model_args, mm.train_args.memory_encoder_path, mm.train_args.query_encoder_path) return mm # Initializing the BartIndexManager self.logger.info(f"indexing_method={debugger_args.indexing_method}") self.name = f"index_cl_{debugger_args.indexing_method}" if debugger_args.indexing_method == "bart_index": self.logger.info("setup_bart_index") self.upstream_memroy_module = setup_bart_index() elif debugger_args.indexing_method == "bart_io_index": self.logger.info("bart_io_index") self.upstream_memroy_module = setup_bart_io_index() elif debugger_args.indexing_method == "biencoder": self.logger.info("biencoder") self.upstream_memroy_module = setup_biencoder() assert self.upstream_memroy_module is not None if debugger_args.init_memory_cache_path: self.upstream_memroy_module.load_memory_from_path(debugger_args.init_memory_cache_path) else: self.upstream_memroy_module.set_up_initial_memory( formatted_examples=self.sampled_upstream_examples) if self.debugger_args.upstream_sample_ratio < 0: self.logger.info("upstream_sample_ratio < 0 ; self.memroy_module <---> self.upstream_memroy_module") self.memroy_module = self.upstream_memroy_module else: self.logger.info("upstream_sample_ratio > 0 ; two seperate memory module") if debugger_args.indexing_method == "bart_io_index": self.memroy_module = setup_bart_io_index() elif debugger_args.indexing_method == "biencoder": self.memroy_module = setup_biencoder() elif debugger_args.indexing_method == "bart_index": self.memroy_module = setup_bart_index() return def online_debug(self): self.logger.info("Start Online Debugging with Dynamic Error Mode") self.logger.info(f"Number of Batches of Data: {self.num_data_batches}") self.logger.info(f"Data Batch Size: {self.data_batch_size};") self.timecode = 0 if self.debugger_args.save_ckpt_freq > 0 and self.timecode % self.debugger_args.save_ckpt_freq == 0: # save the initial model as the 0-th model. self._save_base_model() self.past_errors = [] self.past_submission = [] last_steps = 0 self.logger.info("Copying initial model") initial_model = copy.deepcopy(self.base_model) # for the use of query for data_eval_loader in tqdm(self.data_eval_loaders, desc="Online Debugging (with Index-based replay)"): result_dict = {"timecode": self.timecode} # start with 0 self.eval_knowledge_retention(result_dict) self.eval_knowledge_generalization(result_dict) ############### CORE ############### # self._replay_based_eval(result_dict) formatted_bug_examples = self._get_dynamic_errors( data_eval_loader, result_dict, return_raw_bug_examples=True) _, bug_eval_loader = self.get_dataloader(self.data_args, formatted_bug_batch=formatted_bug_examples, mode="eval") examples_to_train = formatted_bug_examples[:] # if (self.model_update_steps - last_steps) >= self.debugger_args.replay_frequency \ if self.timecode % self.debugger_args.replay_frequency == 0 \ and self.debugger_args.replay_frequency > 0 and self.debugger_args.replay_size > 0 \ and self.timecode > 0: # sparse experience replay self.logger.info("Triggering Sampling from Memory and starting to replay.") self.logger.info(f"Current memroy_module size: {self.memroy_module.get_memory_size()}.") if self.upstream_memroy_module: self.logger.info(f"Current upstream_memroy_module size: {self.upstream_memroy_module.get_memory_size()}.") if self.debugger_args.indexing_method == "biencoder": # self.memroy_module.before_model = initial_model # if for longer-delta self.upstream_memroy_module.before_model = initial_model self.upstream_memroy_module.after_model = get_virtual_updated_model(self, bug_train_loader) elif self.debugger_args.indexing_method == "bart_io_index": # self.upstream_memroy_module.bart_model = initial_model if self.debugger_args.upstream_sample_ratio > 0: # a seperate online memory module self.memroy_module.bart_model = self.base_model elif self.debugger_args.indexing_method == "bart_index": # self.upstream_memroy_module.bart_model = initial_model if self.debugger_args.upstream_sample_ratio > 0: # a seperate online memory module self.memroy_module.bart_model = self.base_model if self.debugger_args.use_mir: assert self.debugger_args.replay_candidate_size >= self.debugger_args.replay_size def mir_retrieve(mm, sample_size): effective_cand_size = min(self.debugger_args.replay_candidate_size, mm.get_memory_size()) self.logger.info(f"effective_cand_size={effective_cand_size}") each_sample_size = int(effective_cand_size*1.1/sample_size) self.logger.info(f"each_sample_size={each_sample_size}") assert effective_cand_size >= self.debugger_args.replay_size retrieved_examples_candidates = mm.retrieve_from_memory( query_examples=formatted_bug_examples, sample_size=effective_cand_size, rank_method=self.debugger_args.index_rank_method, agg_method="each_topk_then_random", each_sample_size=each_sample_size, each_sim_sample_size=min(each_sample_size*5, mm.get_memory_size()), # only used for the bart-IO ) if "mir_buffer_ids" not in result_dict: result_dict["mir_buffer_ids"] = [] result_dict["mir_buffer_ids"] += [_id for (_input, _truth, _id) in retrieved_examples_candidates] retrieved_examples = get_top_interfered_examples(self, K=sample_size, candidate_examples=retrieved_examples_candidates, query_data_loader=bug_train_loader) return retrieved_examples if self.debugger_args.upstream_sample_ratio > 0: upstream_sample_budget = int(self.debugger_args.upstream_sample_ratio * self.debugger_args.replay_size) self.logger.info(f"Memory from upstream_memroy_module = {upstream_sample_budget}; ") self.logger.info(f"Memory from memroy_module = {self.debugger_args.replay_size-upstream_sample_budget}; ") retrieved_examples = [] if upstream_sample_budget > 0: retrieved_examples += mir_retrieve(mm=self.upstream_memroy_module, sample_size=upstream_sample_budget) retrieved_examples += mir_retrieve(mm=self.memroy_module, sample_size=self.debugger_args.replay_size-upstream_sample_budget) else: retrieved_examples = mir_retrieve(mm=self.memroy_module, sample_size=self.debugger_args.replay_size) else: each_sample_size=5 each_sim_sample_size=30 retrieved_examples = [] upstream_sample_budget = 0 if self.debugger_args.upstream_sample_ratio > 0: upstream_sample_budget = int(self.debugger_args.upstream_sample_ratio * self.debugger_args.replay_size) self.logger.info(f"Memory from upstream_memroy_module = {upstream_sample_budget}; ") self.logger.info(f"Memory from memroy_module = {self.debugger_args.replay_size-upstream_sample_budget}; ") retrieved_examples += self.upstream_memroy_module.retrieve_from_memory( query_examples=formatted_bug_examples, sample_size=upstream_sample_budget, agg_method="each_topk_then_random", rank_method=self.debugger_args.index_rank_method, each_sample_size=each_sample_size, each_sim_sample_size=each_sim_sample_size) retrieved_examples += self.memroy_module.retrieve_from_memory( query_examples=formatted_bug_examples, sample_size=self.debugger_args.replay_size-upstream_sample_budget, agg_method="each_topk_then_random", rank_method=self.debugger_args.index_rank_method, each_sample_size=each_sample_size, each_sim_sample_size=each_sample_size*5) # self.logger.info(f"retrieved_examples (index)={retrieved_examples}") result_dict["retrieved_ids"] = [_id for (_input, _truth, _id) in retrieved_examples] if self.debugger_args.use_replay_mix: examples_to_train += retrieved_examples self.logger.info( f"Mixed the retrieved examples (len={len(retrieved_examples)}) to the current batch for training.") else: self.logger.info( f"Replay-Training Start! Using the retrieved examples (len={len(retrieved_examples)}) ") replay_data_loader, _ = self.get_dataloader( self.data_args, retrieved_examples, mode="train") self.fix_bugs(replay_data_loader, quiet=False) # sparse replay self.logger.info("Replay-Training done.") last_steps = self.model_update_steps # Fix the bugs by mini-batch based "training" self.logger.info( f"Start error-fixing (len(examples_to_train)={len(examples_to_train)}) .... Timecode: {self.timecode}") bug_train_loader, _ = self.get_dataloader( self.data_args, examples_to_train, mode="train") self.fix_bugs(bug_train_loader) # for debugging self.logger.info("Start error-fixing .... Done!") flag_store_examples = True if flag_store_examples: self.logger.info( f"Saving the current error examples (len={len(formatted_bug_examples)}) to the memory.") self.logger.info(f"Current memroy_module size: {self.memroy_module.get_memory_size()}.") if self.upstream_memroy_module: self.logger.info(f"Current upstream_memroy_module size: {self.upstream_memroy_module.get_memory_size()}.") self.memroy_module.store_examples(formatted_bug_examples) self.logger.info("Finished.") ############### CORE ############### self.evaluate_error_fixing(result_dict, bug_eval_loader) self._update_result_dict(result_dict) if self.debugger_args.save_ckpt_freq > 0 and self.timecode % self.debugger_args.save_ckpt_freq == 0: self._save_base_model() self.save_result_file() self.logger.info("-"*50) self.timecode += 1 #### Final evaluation #### self.final_evaluation() #### Save the final model #### self._save_base_model() # Save to path self.memroy_module.save_memory_to_path(self.debugger_args.memory_path)
CMR-main
cmr/debug_algs/index_based/cl_indexed_alg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from argparse import Namespace from cmr.debug_algs.cl_utils import _keep_first_answer from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from tqdm import tqdm import torch from cmr.debug_algs.index_based.index_utils import get_bart_dual_representation from cmr.models.utils import trim_batch import json from transformers.modeling_bart import _prepare_bart_decoder_inputs import numpy as np import faiss import pickle import random class BaseMemoryManager(): def __init__(self, logger): super().__init__() self.logger = logger self.name = "base_memory_manager" self.memory_examples = {} def get_memory_size(self): return len(self.memory_examples) def _load_init_memory_examples(self, initial_memory_path="", formatted_examples=None, cut_off=None): assert len(self.memory_examples) == 0 if initial_memory_path: with open(initial_memory_path) as f: initial_memory_examples = [json.loads(line) for line in set(f.read().splitlines())][:] initial_memory_examples = self.cl_utils.upstream_data_formatter(initial_memory_examples) elif formatted_examples: initial_memory_examples = formatted_examples for item in initial_memory_examples: # Note that we only keep the all answers here now. self.memory_examples[item[2]] = (item[0], item[1], item[2]) self.logger.info(f"Set up the initial memory with {len(self.memory_examples)} examples.") def set_up_initial_memory(self, initial_memory_path="", formatted_examples=None): raise NotImplementedError def load_memory_from_path(self, init_memory_cache_path): raise NotImplementedError def save_memory_to_path(self, memory_pkl_path): raise NotImplementedError def retrieve_from_memory(self, query_examples, sample_size, **kwargs): raise NotImplementedError def store_examples(self, examples): raise NotImplementedError class RandomMemoryManger(BaseMemoryManager): ### Mainly used for ER, MIR def __init__(self, logger): super().__init__(logger=logger) self.logger = logger self.name = "random_memory_manager" self.memory_examples = {} def set_up_initial_memory(self, initial_memory_path="", formatted_examples=None, cut_off=None): self._load_init_memory_examples(initial_memory_path, formatted_examples, cut_off=None) def load_memory_from_path(self, init_memory_cache_path): with open(init_memory_cache_path, "rb") as f: memory_cache = pickle.load(f) self.logger.info(f"Load the cache to {f.name}") self.memory_examples = memory_cache["memory_examples"] def save_memory_to_path(self, memory_pkl_path): memory_cache = {} memory_cache["memory_examples"] = self.memory_examples with open(memory_pkl_path, "wb") as f: pickle.dump(memory_cache, f) self.logger.info(f"Saved the cache to {f.name}") def retrieve_from_memory(self, query_examples=None, sample_size=-1, **kwargs): assert sample_size > 0 sample_size = min(sample_size, self.get_memory_size()) self.logger.info("Randomly retrieve from the memory. `query_examples` not used") retrieved_example_ids = random.sample(list(self.memory_examples.keys()), sample_size) retrieved_examples = [self.memory_examples[rid] for rid in retrieved_example_ids] return retrieved_examples def store_examples(self, examples): for item in examples: # Note that we only keep the all answers here now. self.memory_examples[item[2]] = (item[0], item[1], item[2]) self.logger.info(f"Save {len(examples)} examples to the memory.") class BartIndexManager(BaseMemoryManager): def __init__(self, logger): super().__init__(logger=logger) self.logger = logger self.name = "bart_index_manager" self.memory_index = None self.memory_examples = {} self.bart_model = None self.tokenizer = None self.cl_utils = ContinualFinetuning(logger=logger) self.data_args = None self.dim_vector = 2*768 self.memory_index_sorted_ids = [] def set_up_data_args(self, args): self.data_args = Namespace( do_lowercase=args.do_lowercase, append_another_bos=args.append_another_bos, max_input_length=args.max_input_length, max_output_length=args.max_output_length, task_name=args.task_name, train_batch_size=args.train_batch_size, predict_batch_size=args.predict_batch_size, ) def set_up_initial_memory(self, initial_memory_path="", formatted_examples=None, cut_off=None): assert self.bart_model is not None self._load_init_memory_examples(initial_memory_path, formatted_examples) # build index initial_memory_example_ids = sorted(list(self.memory_examples.keys()))[:cut_off] examples = self.get_examples_by_ids(initial_memory_example_ids) vectors = self.get_representation(examples) self.update_index(initial_memory_example_ids, vectors) def update_index(self, example_ids, vectors): assert len(example_ids) == len(vectors) if not self.memory_index: self.memory_index = faiss.IndexFlatL2(self.dim_vector) self.memory_index_sorted_ids += example_ids # for ex_id in example_ids: # self.memory_examples[ex_id]["memory_index_id"] = len(self.memory_index_sorted_ids) # self.memory_index_sorted_ids.append(ex_id) vectors = np.array(vectors) faiss.normalize_L2(vectors) self.memory_index.add(vectors) def set_up_model(self, model, tokenizer): del self.bart_model del self.tokenizer self.bart_model = model self.tokenizer = tokenizer def get_examples_by_ids(self, example_ids): return [self.memory_examples[eid] for eid in example_ids] def load_memory_from_path(self, init_memory_cache_path): with open(init_memory_cache_path, "rb") as f: memory_cache = pickle.load(f) self.logger.info(f"Load the cache to {f.name}") self.memory_index_sorted_ids = memory_cache["memory_index_sorted_ids"] self.memory_index = memory_cache["memory_index"] self.memory_examples = memory_cache["memory_examples"] def save_memory_to_path(self, memory_pkl_path): memory_cache = {} memory_cache["memory_index_sorted_ids"] = self.memory_index_sorted_ids memory_cache["memory_index"] = self.memory_index memory_cache["memory_examples"] = self.memory_examples with open(memory_pkl_path, "wb") as f: pickle.dump(memory_cache, f) self.logger.info(f"Saved the cache to {f.name}") def search_index(self, query_vector, k=5): q = np.array([query_vector]) faiss.normalize_L2(q) D, I = self.memory_index.search(q, k) retrieved_example_ids = [self.memory_index_sorted_ids[int(eid)] for eid in I[0]] scores = [float(s) for s in D[0]] return retrieved_example_ids, scores def get_query_representation(self, query_examples): return self.get_representation(query_examples) def retrieve_from_memory(self, query_examples, sample_size, **kwargs): input_vectors = self.get_query_representation(query_examples) agg_method = kwargs.get("agg_method", "each_topk_then_random") rank_method = kwargs.get("rank_method", "most_similar") if agg_method == "each_topk_then_random": each_sample_size = kwargs.get("each_sample_size", 5) retrieved_example_ids = [] retrieved_scores = [] for query_vector in input_vectors: ids, scores = self.search_index(query_vector, each_sample_size) retrieved_example_ids += ids retrieved_scores += scores # retrieved_example_ids = set(retrieved_example_ids) # TODO: decide later. # retrieved_example_ids = random.sample(retrieved_example_ids, sample_size) sorted_retrieved_example_ids = [x for _, x in sorted(zip(retrieved_scores, retrieved_example_ids), reverse=False)] retrieved_examples = self.get_examples_by_ids(sorted_retrieved_example_ids) self.logger.info(f"index_manager.retrieve_from_memory --> len(retrieved_examples)={len(retrieved_examples)}") return retrieved_examples[:sample_size] def store_examples(self, examples): example_ids = [] for item in examples: self.memory_examples[item[2]] = item example_ids.append(item[2]) vectors = self.get_representation(examples) self.update_index(example_ids, vectors) def get_representation(self, examples): all_vectors = get_bart_dual_representation(cl_trainer=self.cl_utils, bart_model=self.bart_model, tokenizer=self.tokenizer, data_args=self.data_args, examples=examples, agg_method="mean") return all_vectors def load_encoder_model(self, base_model_args): self.cl_utils.load_base_model(base_model_args) self.set_up_model(model=self.cl_utils.base_model, tokenizer=self.cl_utils.tokenizer) if __name__ == '__main__': from cmr.debug_algs import run_lifelong_finetune parser = run_lifelong_finetune.get_cli_parser() args = parser.parse_args() debugging_alg, data_args, base_model_args, debugger_args, logger = run_lifelong_finetune.setup_args( args) args.predict_batch_size = 8 index_manager = BartIndexManager(logger=logger) index_manager.set_up_data_args(args) index_manager.load_encoder_model(base_model_args) # index_manager.initial_memory_path = "exp_results/data_streams/mrqa.nq_train.memory.jsonl" index_manager.initial_memory_path = "data/mrqa_naturalquestions/mrqa_naturalquestions_train.jsonl" index_manager.set_up_initial_memory(index_manager.initial_memory_path, cut_off=None) index_manager.save_memory_to_path("exp_results/data_streams/bart_index.upstream_memory.full.pkl") # copy_item = [0,0,0] # copy_item[2] = "mrqa_naturalquestions-train-10-copy" # copy_item[0] = "Context: The movie was shot in LA and the Hawaiian islands of Bologno and Kologno between March 3 , 2020 and May 25 , 2020 . The movie is deliberately vague about which Hawaiian island its latter portion depicts ; thus , the characters hike across a rope bridge on Bologno and arrive in the next scene at a spectacular waterfall on Kologno , rather than the ordinary irrigation dam and pond on Bologno where the actual trail terminates . | Question: which did they hike in just go with it ?" # copy_item[1] = ['Kauai ', 'Maui .'] # index_manager.store_examples([copy_item]) # # sanity check # # # index_manager.load_memory_from_path("exp_results/data_streams/bart_index.init_memory.pkl") # query_ids = ["mrqa_naturalquestions-train-10", "mrqa_naturalquestions-train-10600"] # print(query_ids) # print(index_manager.memory_examples[query_ids[0]]) # retrieved_exmaples = index_manager.retrieve_from_memory(query_examples=[ # index_manager.memory_examples[qid] for qid in query_ids], sample_size=15, each_sample_size=10, rank_method="most_similar", agg_method="each_topk_then_random") # for item in retrieved_exmaples: # print("-"*50) # print(item[2]) # print(item[0]) # print(item[1])
CMR-main
cmr/debug_algs/index_based/index_manager.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from argparse import Namespace from cmr.debug_algs.cl_utils import _keep_first_answer from cmr.debug_algs.cl_simple_alg import ContinualFinetuning from tqdm import tqdm import torch from cmr.debug_algs.index_based.index_manager import BartIndexManager, BaseMemoryManager from cmr.debug_algs.index_based.index_utils import get_bart_dual_representation from cmr.models.utils import trim_batch import json from transformers.modeling_bart import _prepare_bart_decoder_inputs import numpy as np import faiss import pickle import random from scipy.spatial import distance class BartIOIndexManager(BartIndexManager): def __init__(self, logger): super().__init__(logger=logger) self.logger = logger self.name = "bart_io_index_manager" self.memory_index = {"input": None, "output": None} self.dim_vector = 768 def set_up_data_args(self, args): self.data_args = Namespace( do_lowercase=args.do_lowercase, append_another_bos=args.append_another_bos, max_input_length=args.max_input_length, max_output_length=args.max_output_length, task_name=args.task_name, train_batch_size=args.train_batch_size, predict_batch_size=args.predict_batch_size, ) def update_index(self, example_ids, vectors): assert len(example_ids) == len(vectors) if not self.memory_index["input"]: self.memory_index["input"] = faiss.IndexFlatL2(self.dim_vector) self.memory_index["output"] = faiss.IndexFlatL2(self.dim_vector) self.memory_index_sorted_ids += example_ids ## add to input input_vectors = np.array([v[:self.dim_vector] for v in vectors]) self.memory_index["input"].add(input_vectors) ## add to output output_vectors = np.array([v[self.dim_vector:] for v in vectors]) self.memory_index["output"].add(output_vectors) def search_index(self, query_vector, k=5, partition="input", return_index_ids=False): if partition=="input": query_vector = query_vector[:self.dim_vector] elif partition=="output": query_vector = query_vector[self.dim_vector:] D, I = self.memory_index[partition].search(np.array([query_vector]), k) scores = D[0] if return_index_ids: return I[0] else: retrieved_example_ids = [self.memory_index_sorted_ids[int(eid)] for eid in I[0]] return retrieved_example_ids def retrieve_from_memory(self, query_examples, sample_size, **kwargs): input_vectors = self.get_query_representation(query_examples) agg_method = kwargs.get("agg_method", "each_topk_then_random") rank_method = kwargs.get("rank_method", "most_sim_input") if agg_method == "each_topk_then_random": each_sample_size = kwargs.get("each_sample_size", 5) each_sim_sample_size = kwargs.get("each_sim_sample_size", 30) retrieved_example_ids = [] retrieved_example_scores = [] for query_vector in input_vectors: sim_input_index_ids = self.search_index(query_vector, each_sim_sample_size, partition="input", return_index_ids=True) if rank_method == "most_sim_input": retrieved_ids = sim_input_index_ids elif rank_method == "most_sim_input_most_diff_output": sim_output_vectors = [self.memory_index["output"].reconstruct(int(eid)) for eid in sim_input_index_ids] query_output_vector = query_vector[self.dim_vector:] distances = [distance.cosine(query_output_vector, s) for s in sim_output_vectors] retrieved_ids = [int(x) for _, x in sorted(zip(distances, sim_input_index_ids), reverse=True)] retrieved_example_ids += [self.memory_index_sorted_ids[int(eid)] for eid in retrieved_ids][:each_sample_size] # retrieved_example_scores += # TODO: self.logger.info(f"IO index -- retrieved_example_ids={len(retrieved_example_ids)}") retrieved_examples = self.get_examples_by_ids(retrieved_example_ids) retrieved_examples = random.sample(retrieved_examples, sample_size) # TODO: consider ranking # retrieved_examples = retrieved_examples[:sample_size] return retrieved_examples if __name__ == '__main__': from cmr.debug_algs import run_lifelong_finetune parser = run_lifelong_finetune.get_cli_parser() args = parser.parse_args() debugging_alg, data_args, base_model_args, debugger_args, logger = run_lifelong_finetune.setup_args( args) base_model_args.base_model_path = "out/mrqa_squad_bart-base_1029_upstream_model//best-model.pt" args.predict_batch_size = 8 index_manager = BartIOIndexManager(logger=logger) index_manager.set_up_data_args(args) index_manager.load_encoder_model(base_model_args) # index_manager.initial_memory_path = "exp_results/data_streams/mrqa.nq_train.memory.jsonl" # index_manager.set_up_initial_memory(index_manager.initial_memory_path, cut_off=None) # index_manager.save_memory_to_path("exp_results/data_streams/bart_io_index.sample_init_memory.pkl") index_manager.initial_memory_path = "data/mrqa_squad/mrqa_squad_train.jsonl" index_manager.set_up_initial_memory(index_manager.initial_memory_path, cut_off=None) index_manager.save_memory_to_path("experiments/eval_data/qa/bart_io_index.init_memory.pkl") # query_ids = ["mrqa_squad-train-10"] # print(index_manager.memory_examples[query_ids[0]]) # retrieved_exmaples = index_manager.retrieve_from_memory(query_examples=[ # index_manager.memory_examples[qid] for qid in query_ids], each_sample_size=10, sample_size=10, rank_method="most_sim_input") # for item in retrieved_exmaples: # print("-"*50) # print(item[2]) # print(item[0]) # print(item[1])
CMR-main
cmr/debug_algs/index_based/IO_each_index.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import argparse from logging import Logger import logging from torch.cuda import memory from tqdm.utils import disp_trim from cmr.debug_algs.index_based.index_manager import BartIndexManager import torch from torch import Tensor, combinations, normal import torch.nn as nn from torch.nn import functional as F from torch.nn import Module import random import glob import os import pickle from tqdm import tqdm import numpy as np import faiss import json import wandb from cmr.debug_algs.index_based.index_utils import get_bart_dual_representation from cmr.models.run_bart import train from cmr.models.utils import set_seeds from faiss import normalize_L2 def load_distant_supervision(folder_name, sample_size=1, logger=None, specified_names=None, exclude_files=[], train_args=None): pkl_files = glob.glob(os.path.join(folder_name, '*.pkl'))[:] pkl_files = [f for f in pkl_files if f not in exclude_files] if specified_names: pkl_files = [p for p in pkl_files if p.split( "/")[-1].replace(".pkl", "") in specified_names] else: pkl_files = random.choices(pkl_files, k=sample_size) ds_items = [] logger.info(f"Loading {pkl_files}") for pkl_path in tqdm(pkl_files, desc="loading pkl files"): with open(pkl_path, "rb") as f: ds_items += pickle.load(f) for item in ds_items: for q in item["query"]: original_dim = len(item["query"][q]) if train_args.query_only_after: item["query"][q] = item["query"][q][original_dim//2:] if train_args.query_only_before: item["query"][q] = item["query"][q][:original_dim//2] if train_args.query_delta: before = item["query"][q][original_dim//2:] after = item["query"][q][:original_dim//2] item["query"][q] = before + [i-j for i, j in zip(before, after)] # np.random.seed(42) # # # For Debugging the data-distribution # # print("generating random data") # for item in ds_items: # for q in item["query"]: # item["query"][q] = np.random.normal(0, 0.1, 768*2*2) # for q in item["positive"]: # item["positive"][q] = np.random.normal(0, 0.1, 768*2) # for q in item["negative"]: # item["negative"][q] = np.random.normal(0.6, 0.1, 768*2) # pass # if exclude_files: # np.random.seed(45) # print("generating purturbs on the test data") # for item in ds_items: # for q in item["query"]: # item["query"][q] += np.random.normal(0, 5e-2, 768*2*2) # for q in item["positive"]: # item["positive"][q] += np.random.normal(0, 5e-2, 768*2) # for q in item["negative"]: # item["negative"][q] += np.random.normal(0, 5e-2, 768*2) return ds_items, pkl_files class MLP(Module): def __init__(self, input_dim, output_dim, hidden_dim, droprate=0): super().__init__() if hidden_dim > 0: self.layers = torch.nn.Sequential( # torch.nn.Flatten(), # nn.BatchNorm1d(input_dim), # nn.LayerNorm(input_dim), nn.Linear(input_dim, hidden_dim), # nn.LayerNorm(hidden_dim), # nn.Sigmoid(), nn.Dropout(droprate), nn.ReLU(), nn.Linear(hidden_dim, output_dim), ) else: self.layers = torch.nn.Sequential( # torch.nn.Flatten(), # nn.BatchNorm1d(input_dim), # nn.Linear(input_dim, hidden_dim), # nn.BatchNorm1d(hidden_dim), # nn.ReLU(), # nn.Sigmoid(), # nn.Dropout(droprate), # nn.Linear(hidden_dim, output_dim), nn.BatchNorm1d(input_dim), # nn.LayerNorm(input_dim), nn.Linear(input_dim, output_dim), ) self.init_weights() def init_weights(self): for module in self.layers: if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def forward(self, X): X = self.layers(X) # X = normalize(X) return X def create_batch_from_groups(groups, qry_size=1, pos_size=1, neg_size=1, seen_query_ids=None, seen_memory_ids=None, query_mean=True): if query_mean: qry_sample_size = qry_size qry_size = 1 # effective qry size else: qry_sample_size = qry_size queries, candidates, targets = [], [], [] for group in groups: # TODO: this is overly recorded.. if seen_query_ids is not None: seen_query_ids.update(set(list(group["query"].keys()))) if seen_memory_ids is not None: seen_memory_ids.update((set(list(group["positive"].keys())))) seen_memory_ids.update((set(list(group["negative"].keys())))) # queries.append(random.choice(list(group["query"].values()))) selected_queries = random.choices(list(group["query"].values()), k=qry_sample_size) if query_mean: selected_queries = np.array(selected_queries) queries.append(np.mean(selected_queries, axis=0)) else: queries += selected_queries target = len(candidates) candidates += random.choices(list(group["positive"].values()), k=pos_size) # for training, it must be a single positive candidates += random.choices(list(group["negative"].values()), k=neg_size) if pos_size > 1: targets += [list(range(target, target+pos_size))] * qry_size # N*C elif pos_size == 1: targets += [target] * qry_size # N*1 assert len(queries) == len(targets) == len(groups) * qry_size assert len(candidates) == len(groups) * (pos_size + neg_size) if pos_size > 1: return np.array(queries), np.array(candidates), targets else: return np.array(queries), np.array(candidates), np.array(targets) class BiEncoderIndexManager(BartIndexManager): def __init__(self, logger): super().__init__(logger=logger) self.logger = logger self.name = "biencoder_index_manager" self.query_input_dim = 768*2*2 self.memory_input_dim = 768*2 self.hidden_dim = 512 self.dim_vector = 256 # final dim self.memory_encoder = None self.query_encoder = None self.train_args = None # cl self.before_model = None self.after_model = None def load_encoder_model(self, base_model_args, memory_encoder_path, query_encoder_path): super().load_encoder_model(base_model_args) if self.memory_encoder is None: self.init_biencoder_modules() self.memory_encoder.load_state_dict(torch.load(memory_encoder_path)) self.query_encoder.load_state_dict(torch.load(query_encoder_path)) self.logger.info(f"Loading bi-encoders.memory_encoder from {memory_encoder_path}") self.logger.info(f"Loading bi-encoders.query_encoder from {query_encoder_path}") def init_biencoder_modules(self): self.query_input_dim = self.train_args.query_input_dim self.memory_input_dim = self.train_args.memory_input_dim self.hidden_dim = self.train_args.hidden_dim self.dim_vector = self.train_args.dim_vector self.memory_encoder = MLP(self.memory_input_dim, self.dim_vector, self.hidden_dim, droprate=self.train_args.droprate) self.query_encoder = MLP(self.query_input_dim, self.dim_vector, self.hidden_dim, droprate=self.train_args.droprate) def get_representation(self, examples): """only for the memory encoding here""" bart_reps = super().get_representation(examples) bart_reps = np.array(bart_reps) self.memory_encoder.eval() all_vectors = self.memory_encoder(torch.Tensor(bart_reps)).detach().numpy() return all_vectors def train_biencoder(self, train_data, eval_data): trainable_params = list(self.query_encoder.parameters()) + \ list(self.memory_encoder.parameters()) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) self.logger.info(f"# params of query_encoder = {count_parameters(self.query_encoder)}") self.logger.info(f"# params of memory_encoder = {count_parameters(self.memory_encoder)}") optimizer = torch.optim.Adam(trainable_params, lr=self.train_args.lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1000, gamma=0.99, last_epoch=-1) gradient_acc_steps = 1 if self.train_args.use_cuda: self.query_encoder.to(torch.device("cuda")) self.memory_encoder.to(torch.device("cuda")) seen_query_ids = set() seen_memory_ids = set() eval_at_K = 16 best_eval_acc = self.eval_func_v1( eval_data, k=eval_at_K, seen_query_ids=seen_query_ids, seen_memory_ids=seen_memory_ids) self.logger.info(f"Valid Acc @ 0: Top-{eval_at_K} acc: {best_eval_acc}") if self.train_args.wandb: wandb.log({"valid_accuracy": best_eval_acc}, step=0) wandb.log({"best_valid_acc": best_eval_acc}, step=0) losses = [] no_up = 0 for _step in tqdm(range(self.train_args.n_steps), desc="Training steps"): self.memory_encoder.train() self.query_encoder.train() # self.logger.info(f"Training step {_step}/{self.train_args.n_steps}") sampled_groups = random.choices(train_data, k=self.train_args.batch_size) queries, candidates, targets = create_batch_from_groups( sampled_groups, qry_size=self.train_args.qry_size, pos_size=self.train_args.pos_size, neg_size=self.train_args.neg_size, seen_query_ids=seen_query_ids, seen_memory_ids=seen_memory_ids, query_mean=self.train_args.use_query_mean) optimizer.zero_grad() qry_tensors = torch.Tensor(queries) mem_tensors = torch.Tensor(candidates) if self.train_args.use_cuda: qry_tensors = qry_tensors.to(torch.device("cuda")) mem_tensors = mem_tensors.to(torch.device("cuda")) query_inputs = self.query_encoder(qry_tensors) memory_inputs = self.memory_encoder(mem_tensors) scores = torch.matmul(query_inputs, memory_inputs.transpose(0, 1)) if self.train_args.pos_size == 1: tgt_tensors = torch.LongTensor(targets) if self.train_args.use_cuda: tgt_tensors = tgt_tensors.to(torch.device("cuda")) loss = F.cross_entropy(scores, tgt_tensors, reduction="mean") elif self.train_args.pos_size > 1: multi_hot_targets = [] for target in targets: labels = torch.LongTensor(target) labels = labels.unsqueeze(0) multi_hot_targets.append(torch.zeros(labels.size(0), len(candidates)).scatter_(1, labels, 1.)) multi_hot_targets = torch.stack(multi_hot_targets, dim=1) multi_hot_targets = multi_hot_targets.view(scores.size()) tgt_tensors = torch.Tensor(multi_hot_targets) criterion = torch.nn.BCEWithLogitsLoss(reduction="mean") if self.train_args.use_cuda: tgt_tensors = tgt_tensors.to(torch.device("cuda")) loss = criterion(scores, tgt_tensors) # self.logger.info(f"loss.item()={loss.item()};") losses.append(loss.item()) loss.backward() if self.train_args.wandb: wandb.log({"lr": float(optimizer.param_groups[0]['lr'])}, step=_step) wandb.log({"loss": float(loss)}, step=_step) wandb.log({"avg_loss": float(sum(losses)/len(losses))}, step=_step) # clip torch.nn.utils.clip_grad_norm_(trainable_params, 1.0) optimizer.step() scheduler.step() # self.logger.info(f"self.query_encoder.layers[0].weight = {self.query_encoder.layers[0].weight}") # self.logger.info(f"self.memory_encoder.layers[0].weight = {self.memory_encoder.layers[0].weight}") if _step > 0 and _step % self.train_args.eval_per_steps == 0: self.logger.info(f"---- Completed epoch with avg training loss {sum(losses)/len(losses)}.") train_acc = self.eval_func_v1(train_data[:], k=eval_at_K) self.logger.info( f"Train Acc: Top-{eval_at_K} acc @ {_step}: {train_acc} | ") valid_acc = self.eval_func_v1(eval_data, k=eval_at_K, seen_query_ids=seen_query_ids, seen_memory_ids=seen_memory_ids) best_eval_acc = max(best_eval_acc, valid_acc) if self.train_args.wandb: wandb.log({"train_accuracy": train_acc}, step=_step) wandb.log({"valid_accuracy": valid_acc}, step=_step) wandb.log({"best_valid_acc": best_eval_acc}, step=_step) self.logger.info( f"Valid ACc: Top-{eval_at_K} acc @ {_step}: {valid_acc} | best_eval_acc={best_eval_acc}") if best_eval_acc == valid_acc: self.logger.info("new record; saving the biencoder ckpts.") no_up = 0 elif best_eval_acc > valid_acc: no_up += 1 if no_up >= self.train_args.patience: break if self.train_args.save_ckpt: self.save_biencoder() def eval_func_v2(self, eval_data, k=None, seen_query_ids=None, seen_memory_ids=None, filter=False): # based on pair-wise comparisions self.query_encoder.eval() self.memory_encoder.eval() eval_scores = [] for group in eval_data: queries, candidates, targets = create_batch_from_groups([group], qry_size=16, pos_size=8, neg_size=8) # query_inputs = self.query_encoder(torch.Tensor(queries)) # memory_inputs = self.memory_encoder(torch.Tensor(candidates)) qry_tensors = torch.Tensor(queries) mem_tensors = torch.Tensor(candidates) if self.train_args.use_cuda: qry_tensors = qry_tensors.to(torch.device("cuda")) mem_tensors = mem_tensors.to(torch.device("cuda")) query_inputs = self.query_encoder(qry_tensors) memory_inputs = self.memory_encoder(mem_tensors) scores = torch.matmul(query_inputs, memory_inputs.transpose(0, 1)) querywise_scores = [] for qid in range(len(queries)): pairwise_comp = [] pos_start = 0 # always 0 pos_end = pos_start + 8 neg_start = pos_end neg_end = neg_start + 8 for pos_ind in range(pos_start, pos_end): for neg_ind in range(neg_start, neg_end): score_pos = scores[qid][pos_ind] score_neg = scores[qid][neg_ind] pairwise_comp.append(int(score_pos > score_neg)) pairwise_score = np.mean(pairwise_comp) querywise_scores.append(pairwise_score) group_score = np.mean(querywise_scores) eval_scores.append(group_score) return np.mean(eval_scores) def eval_func_v1(self, eval_data, k=5, seen_query_ids=None, seen_memory_ids=None, filter=False): top_k_accs = [] tested_query_ids = set() tested_memory_ids = set() for item in eval_data: query_vectors = [] query_ids = [] for qry_id, qry_vec in item["query"].items(): if filter and seen_query_ids is not None and qry_id in seen_query_ids: # Remove the seen qry ids continue query_ids.append(qry_id) query_vectors.append(qry_vec) if len(query_ids) == 0: continue tested_query_ids.update(query_ids) positive_ids = set() all_candidaites = [] all_candidate_vectors = [] for ex_id, vector in item["positive"].items(): positive_ids.add(ex_id) memory_items = list(item["negative"].items()) + list(item["positive"].items()) random.shuffle(memory_items) # to avoid the case where they have the same scores for ex_id, vector in memory_items: all_candidaites.append(ex_id) tested_memory_ids.add(ex_id) all_candidate_vectors.append(vector) if filter and seen_memory_ids is not None and ex_id in seen_memory_ids: # Remove the seen memory ids continue all_candidaites.append(ex_id) tested_memory_ids.add(ex_id) all_candidate_vectors.append(vector) # all_candidate_vectors.append([v-1 for v in vector]) # DEBUG: query_vectors = np.array(query_vectors) all_candidate_vectors = np.array(all_candidate_vectors) self.query_encoder.eval() self.memory_encoder.eval() q_inputs = torch.Tensor(query_vectors) m_inputs = torch.Tensor(all_candidate_vectors) if self.train_args.use_cuda: q_inputs = q_inputs.to(torch.device("cuda")) m_inputs = m_inputs.to(torch.device("cuda")) q = self.query_encoder(q_inputs).detach().cpu().numpy() m = self.memory_encoder(m_inputs).detach().cpu().numpy() memory_index = faiss.IndexFlatL2(m.shape[1]) memory_index.add(m) Ds, Is = memory_index.search(q, k) for index_list in Is: retrieved_top_ids = [all_candidaites[ind] for ind in index_list] top_k_accs.append(len([x for x in retrieved_top_ids if x in positive_ids])/k) del memory_index if seen_query_ids is not None: coverage = len(tested_query_ids & seen_query_ids)/len(tested_query_ids) self.logger.info(f"#tested_query_ids={len(tested_query_ids)}; coverage={coverage}") if seen_memory_ids is not None: coverage = len(tested_memory_ids & seen_memory_ids)/len(tested_memory_ids) self.logger.info(f"#tested_memory_ids={len(tested_memory_ids)}; coverage={coverage}") # self.logger.info(f"top_k_accs = {top_k_accs}; ") return np.mean(top_k_accs) def save_biencoder(self, query_encoder_path=None, memory_encoder_path=None): if not query_encoder_path: query_encoder_path = self.train_args.query_encoder_path if not memory_encoder_path: memory_encoder_path = self.train_args.memory_encoder_path def save_module(module, path): model_state_dict = {k: v.cpu() for ( k, v) in module.state_dict().items()} torch.save(model_state_dict, path) self.logger.info(f"Model saved to {path}.") save_module(self.query_encoder, query_encoder_path) save_module(self.memory_encoder, memory_encoder_path) def get_query_representation(self, query_examples): """Using the concatenation""" before_all_vectors = get_bart_dual_representation(cl_trainer=self.cl_utils, bart_model=self.before_model, tokenizer=self.tokenizer, data_args=self.data_args, examples=query_examples) after_all_vectors = get_bart_dual_representation(cl_trainer=self.cl_utils, bart_model=self.after_model, tokenizer=self.tokenizer, data_args=self.data_args, examples=query_examples) bart_reps = [] for b, a in zip(before_all_vectors, after_all_vectors): bart_reps.append(list(b)+list(a)) bart_reps = np.array(bart_reps) self.query_encoder.eval() all_vectors = self.query_encoder(torch.Tensor(bart_reps)).detach().numpy() return all_vectors def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--ds_dir_path", default="exp_results/supervision_data/1020_dm_simple/") parser.add_argument("--num_ds_train_file", type=int, default=24) parser.add_argument("--num_ds_dev_file", type=int, default=8) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--run_mode", type=str, default="train") # TODO: parser.add_argument("--query_encoder_path", type=str, default="exp_results/supervision_data/$prefix.qry_encoder.pt") parser.add_argument("--memory_encoder_path", type=str, default="exp_results/supervision_data/$prefix.mem_encoder.pt") parser.add_argument("--memory_index_path", type=str, default="exp_results/supervision_data/$prefix.memory.index") parser.add_argument("--train_args_path", type=str, default="exp_results/supervision_data/$prefix.train_args.json") # train_args parser.add_argument("--query_input_dim", type=int, default=768*2*2) parser.add_argument("--memory_input_dim", type=int, default=768*2) parser.add_argument("--hidden_dim", type=int, default=-1) # -1 means no hidden layer; 256 for example parser.add_argument("--dim_vector", type=int, default=128) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--n_steps", type=int, default=8000) parser.add_argument("--eval_per_steps", type=int, default=100) parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--qry_size", type=int, default=8) # 1-16 parser.add_argument("--pos_size", type=int, default=16) # 1-8 parser.add_argument("--neg_size", type=int, default=1) # 1-8 parser.add_argument("--patience", type=int, default=8) parser.add_argument("--droprate", type=float, default=0) parser.add_argument('--use_query_mean', default=True, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--run_name', default="1020_dm_simple", type=str) parser.add_argument('--save_ckpt', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--use_cuda', default=True, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--wandb', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--query_only_after', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--query_only_before', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) parser.add_argument('--query_delta', default=False, type=lambda x: (str(x).lower() in ['true','1', 'yes'])) return parser if __name__ == '__main__': biencoder_args = get_parser().parse_args() logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) if biencoder_args.wandb and biencoder_args.run_mode == "train": run = wandb.init(reinit=True, project="FAIR_Biencoder", settings=wandb.Settings(start_method="fork")) run_name = wandb.run.name biencoder_args.run_name = run_name logger.info(f"run_name = {run_name}") biencoder_args.query_encoder_path = biencoder_args.query_encoder_path.replace("$prefix", biencoder_args.run_name) biencoder_args.memory_encoder_path = biencoder_args.memory_encoder_path.replace("$prefix", biencoder_args.run_name) biencoder_args.memory_index_path = biencoder_args.memory_index_path.replace("$prefix", biencoder_args.run_name) biencoder_args.train_args_path = biencoder_args.train_args_path.replace("$prefix", biencoder_args.run_name) set_seeds(biencoder_args.seed) if biencoder_args.run_mode == "train": with open(biencoder_args.train_args_path, "w") as f: json.dump(vars(biencoder_args), f) if biencoder_args.wandb: wandb.config.update(biencoder_args) if biencoder_args.query_only_after or biencoder_args.query_only_before: # or biencoder_args.query_delta biencoder_args.query_input_dim = biencoder_args.query_input_dim // 2 train_data, train_files = load_distant_supervision( biencoder_args.ds_dir_path, sample_size=biencoder_args.num_ds_train_file, logger=logger, train_args=biencoder_args) logger.info(f"num_groups = {len(train_data)}") eval_data, eval_files = load_distant_supervision( biencoder_args.ds_dir_path, sample_size=biencoder_args.num_ds_dev_file, logger=logger, exclude_files=train_files, train_args=biencoder_args) biencoder_memory_module = BiEncoderIndexManager(logger) biencoder_memory_module.train_args = biencoder_args biencoder_memory_module.init_biencoder_modules() biencoder_memory_module.train_biencoder(train_data, eval_data) if biencoder_args.save_ckpt: biencoder_memory_module.save_biencoder( biencoder_args.query_encoder_path, biencoder_args.memory_encoder_path) run.finish() elif biencoder_args.run_mode == "index": # json.dump(vars(biencoder_args), open(biencoder_args.train_args_path, "w")) with open(biencoder_args.train_args_path, "r") as f: backup_args = json.load(f) biencoder_args.hidden_dim = backup_args["hidden_dim"] biencoder_args.query_input_dim = backup_args["query_input_dim"] biencoder_args.memory_input_dim = backup_args["memory_input_dim"] biencoder_args.hidden_dim = backup_args["hidden_dim"] biencoder_args.dim_vector = backup_args["dim_vector"] biencoder_args.use_query_mean = backup_args["use_query_mean"] from cmr.debug_algs import run_lifelong_finetune parser = run_lifelong_finetune.get_cli_parser() cl_args = parser.parse_args("") debugging_alg, data_args, base_model_args, debugger_args, logger = run_lifelong_finetune.setup_args( cl_args) cl_args.predict_batch_size = 8 index_manager = BiEncoderIndexManager(logger) index_manager.train_args = biencoder_args index_manager.set_up_data_args(cl_args) index_manager.load_encoder_model( base_model_args, biencoder_args.memory_encoder_path, biencoder_args.query_encoder_path) index_manager.initial_memory_path = "data/mrqa_naturalquestions/mrqa_naturalquestions_train.jsonl" index_manager.set_up_initial_memory(index_manager.initial_memory_path) index_manager.save_memory_to_path("exp_results/data_streams/1021_biencoder_init_memory.pkl")
CMR-main
cmr/debug_algs/index_based/biencoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import altair as alt from altair.vegalite.v4.schema.core import Axis, Legend def draw_curve(df, y_scale=[0, 1], fig_title="", y_title="Y Title", x_key="timecode", y_key="em:Q", height=800, width=1150, x_scale=[0, 100], color_dom=None, color_range=None, orient="top-right"): df = df[(df["timecode"] <= x_scale[1]) & (df["timecode"] >= x_scale[0])] x = alt.X(x_key, type="ordinal", title="", axis=alt.Axis(tickCount=10, grid=False)) if color_dom and color_range: color=alt.Color('prefix:N', scale=alt.Scale(domain=color_dom, range=color_range), sort=color_dom) color_wo_lengend = alt.Color('prefix:N', scale=alt.Scale(domain=color_dom, range=color_range), sort=color_dom, legend=None) shape=alt.Shape('prefix:N', sort=color_dom) shape_wo_legend = shape=alt.Shape('prefix:N', sort=color_dom, legend=None) else: color=alt.Color('prefix:N', ) color_wo_lengend = alt.Color('prefix:N', legend=None) shape=alt.Shape('prefix:N', ) shape_wo_legend = shape=alt.Shape('prefix:N', legend=None) # scale=alt.Scale(range=['cross', 'circle', 'square', 'triangle-right', 'diamond']) y=alt.Y(y_key, stack=None, title="", scale=alt.Scale(domain=y_scale), axis=alt.Axis(tickCount=10, grid=False)) points = alt.Chart(df).mark_point(opacity=0.8, filled=True, size=350).encode(x=x, y=y, shape=shape ,color=color).properties(title=fig_title) lines = alt.Chart(df).mark_line(point=False).encode(x=x, y=y, color=color).properties(title=fig_title) fig = alt.layer(points, lines).resolve_scale(color="independent", shape="independent") # fig = points fig = fig.properties(width=width, height=height).configure_axis( labelFontSize=30, titleFontSize=30, ).configure_view(stroke="black", strokeWidth=3) if orient != "none": fig = fig.configure_legend(titleFontSize=0, labelFontSize=30, symbolSize=300, orient=orient, strokeColor='gray', fillColor='#EEEEEE', padding=5, cornerRadius=3,).configure_title( fontSize=30, font='Courier', anchor='middle', orient="top", align="center", color='black' ) return fig def draw_stacked_bars(df, y_scale=[0, 1], fig_title="", y_title="Y Title", x_key="timecode", y_key="em:Q", height=800, width=1150, x_scale=[0, 100], bin_width=10, color_dom=None, color_range=None): if color_dom and color_range: color=alt.Color('prefix:N', scale=alt.Scale(domain=color_dom, range=color_range)) else: color=alt.Color('prefix:N') dom = ['Europe', 'Japan', 'USA'] rng = ['red', 'green', 'black'] fig = alt.Chart(df).mark_bar().encode(x=alt.X(x_key, title="Time Step", axis=alt.Axis(tickMinStep=10, tickOffset=0, tickWidth=5,), scale=alt.Scale(domain=x_scale)), y=alt.Y(y_key, title=y_title, scale=alt.Scale(domain=y_scale)), color=color,).properties(title=fig_title) fig = alt.layer(fig).resolve_scale() fig = fig.properties(width=width, height=height).configure_title(fontSize=50, ).configure_bar(binSpacing=0, width=bin_width).configure_axis( labelFontSize=25, titleFontSize=25, ).configure_legend(titleFontSize=0, labelFontSize=30, orient='top-left', strokeColor='gray', fillColor='#EEEEEE', padding=5, cornerRadius=3,).configure_title( fontSize=30, font='Courier', anchor='middle', orient="top", align="center", color='black' ) return fig def draw_grouped_bars(df, y_scale=[0, 1], fig_title="", y_title="Y Title", x_key="timecode", group_key="", y_key="em:Q", height=800, width=1150, x_scale=[0, 100], bin_width=10, color_dom=None, color_range=None, orient = "none"): if color_dom and color_range: color=alt.Color(x_key, scale=alt.Scale(domain=color_dom, range=color_range), sort=color_dom, legend=None) else: color=alt.Color(x_key) bars = alt.Chart(df).mark_bar(clip=True).encode(x=alt.X(x_key, title="CL Method", sort=color_dom), y=alt.Y(y_key, title=y_title, scale=alt.Scale(domain=y_scale), axis=alt.Axis(grid=False)), color=color).properties(title=fig_title) text = bars.mark_text( align='left', baseline='middle', dx=3 # Nudges text to right so it doesn't appear on top of the bar ).encode( text=y_key ) fig = bars # fig = alt.layer(fig).resolve_scale() fig = fig.properties(width=width, height=height).configure_title(fontSize=0, ).configure_bar(binSpacing=0, width=bin_width).configure_axis( labelFontSize=10, titleFontSize=10, ) if orient != "none": fig = fig.configure_legend(titleFontSize=0, labelFontSize=30, orient='top-left', strokeColor='gray', fillColor='#EEEEEE', padding=5, cornerRadius=3,) fig = fig.configure_title( fontSize=10, font='Courier', anchor='middle', orient="top", align="center", color='black' ) return fig
CMR-main
cmr/notebooks/draw_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from enum import unique from posixpath import split from re import L import datasets import numpy as np import os import gzip import sys import json def show_statistics(lines): len_list = [] for l in lines: item = json.loads(l) len_list.append(len(item["input"].split())) print(np.min(len_list), np.max(len_list), np.mean(len_list), np.median(len_list)) return def escape(s): # TODO: remove the markups filter_words = ["</P>", "<P>", "<Li>", "</Li>", "<Ul>", "</Ul>", "[DOC]", "[TLE]", "[PAR]", "[SEP]", "\n", "\t"] for fw in filter_words: s = s.replace(fw, "") return s.strip() # Filtering the bad examples. def example_pass(context): if "<table>" in context.lower() or "<td>" in context.lower(): return False else: return True def add_qmark(s): return s if s.endswith("?") else s + " ?" def write_to_jsonl(lst, out_file): with open(out_file, "w") as fout: fout.write("\n".join(lst)) # for line in lst: # fout.write("{}\t{}\n".format(line[0], line[1])) def deduplicate(lines): seen_inputs = set() unique_lines = [] for line in lines: # print(line) item = json.loads(line) if item['input'] not in seen_inputs: unique_lines.append(line) seen_inputs.add(f"{item['input']}") # result = list(set(lines)) print("deduplicate", len(lines), len(unique_lines)) return unique_lines class TextToTextDataset(): def get_all_lines(self, dataset): train_lines = deduplicate(self.map_to_list(dataset, "train")) val_lines = deduplicate(self.map_to_list(dataset, "validation")) test_lines = deduplicate(self.map_to_list(dataset, "test")) show_statistics(train_lines) show_statistics(val_lines) # TODO: de-duplicate the lines! return train_lines, val_lines, test_lines def write_dataset(self, path): """ return train, dev, test """ # load dataset dataset = self.load_dataset() # formulate into list (for consistency in np.random) train_lines, val_lines, test_lines = self.get_all_lines(dataset) # shuffle the data # np.random.seed(seed) # np.random.shuffle(train_lines) os.makedirs(os.path.join(path, self.task_identifier), exist_ok=True) prefix = os.path.join(path, self.task_identifier, "{}".format(self.task_identifier)) write_to_jsonl(train_lines, prefix + "_train.jsonl") write_to_jsonl(val_lines, prefix + "_dev.jsonl") if test_lines: write_to_jsonl(test_lines, prefix + "_test.jsonl") class MRQA(TextToTextDataset): def __init__(self, task_identifier="mrqa", subset="SQuAD", mrqa_path="data/mrqa"): self.task_identifier = task_identifier + "_" + subset.lower() self.mrqa_path = mrqa_path self.subset = subset def map_to_list(self, dataset, split_name): if split_name not in dataset: print("No such split_name:", split_name) return [] lines = [] for datapoint in dataset[split_name]: if not datapoint["answers"]: print("empty answer") continue if not example_pass(datapoint["context"]): continue # add question mark! # lines.append(("Context: " + escape(datapoint["context"]) + # " | Question: " + # add_qmark(escape(datapoint["question"])), # "\t".join([escape(a) for a in datapoint["answers"]]))) # _input = "Context: " + escape(datapoint["context"]) + \ # " | " + "Question: " + add_qmark(escape(datapoint["question"])) # TODO: need re-training _input = f'Question: {add_qmark(escape(datapoint["question"]))} </s> Context: {escape(datapoint["context"])}' _output = [escape(a) for a in datapoint["answers"]] _id = f"{self.task_identifier}-{split_name}-{len(lines)}" instance = {"id": _id, "input": _input, "output": _output} lines.append(json.dumps(instance)) print("Three examples: \n" + "\n".join([str(_) for _ in lines[:3]])) return lines def load_dataset(self): def load_jsonl_gz(gzpath): data = [] with gzip.open(gzpath, 'rb') as myzip: for example in myzip: json_line = json.loads(example) if "header" in json_line: print(json_line["header"]) pass else: context = json_line["context"] qa_items = [] for item in json_line["qas"]: qa_items.append(dict(context=context, qid=item["qid"], question=item["question"], answers=list(set(item["answers"])))) data.extend(qa_items) return data path_to_train = os.path.join( self.mrqa_path, "mrqa_train", self.subset+".jsonl.gz") path_to_dev = os.path.join( self.mrqa_path, "mrqa_dev", self.subset+".jsonl.gz") dataset = {} dataset["train"] = load_jsonl_gz(path_to_train) dataset["validation"] = load_jsonl_gz(path_to_dev) return dataset class NLI(TextToTextDataset): def __init__(self, task_identifier="snli"): self.task_identifier = task_identifier # for classification tasks, specify the meaning of each label self.prompt = " " # are two sentences entailment or not entailment? if self.task_identifier in ["snli", "anli", "multi_nli"]: self.label = { 0: ["entailment"], 1: ["neutral"], 2: ["contradiction"] } elif self.task_identifier == "qnli": self.label = { 0: ["entailment"], 1: ["neutral"], } elif self.task_identifier == "scitail": self.label = { "entails": ["entailment"], "neutral": ["neutral"], } def get_all_lines(self, dataset, splits=["train", "validation", "test"]): all_lines = {} for split in splits: all_lines[split] = deduplicate(self.map_to_list(dataset, split)) show_statistics(all_lines[split]) # TODO: de-duplicate the lines! return all_lines def write_dataset(self, path): """ return train, dev, test """ # load dataset dataset = self.load_dataset() # formulate into list (for consistency in np.random) if self.task_identifier in ["snli", "scitail", "qnli"]: splits = ["train", "validation", "test"] elif self.task_identifier == "anli": splits = ['train_r1', 'dev_r1', 'test_r1', 'train_r2', 'dev_r2', 'test_r2', 'train_r3', 'dev_r3', 'test_r3'] elif self.task_identifier == "multi_nli": splits = ['validation_matched', 'validation_mismatched'] all_lines = self.get_all_lines(dataset, splits) # shuffle the data # np.random.seed(seed) # np.random.shuffle(train_lines) os.makedirs(os.path.join(path, self.task_identifier), exist_ok=True) prefix = os.path.join(path, self.task_identifier, "{}".format(self.task_identifier)) for split in splits: write_to_jsonl(all_lines[split], f"{prefix}_{split}.jsonl") def map_to_list(self, dataset, split_name): lines = [] for datapoint in dataset[split_name]: # print(datapoint["label"]) if datapoint["label"] not in self.label: continue # lines.append(("Premise: " + datapoint["premise"] + " | Hypothesis: " + # datapoint["hypothesis"], self.label[datapoint["label"]])) _id = f"{self.task_identifier}-{split_name}-{len(lines)}" if self.task_identifier == "qnli": _input = f'Premise: {datapoint["sentence"]} </s> Hypothesis: {datapoint["question"]}' else: _input = f'Premise: {datapoint["premise"]} </s> Hypothesis: {datapoint["hypothesis"]}' _input += " | Options: entailment, neutral, contradiction " _output = self.label[datapoint["label"]] instance = {"id": _id, "input": _input, "output": _output} lines.append(json.dumps(instance)) print("Three examples: \n" + "\n".join([str(_) for _ in lines[:3]])) return lines def load_dataset(self): if self.task_identifier == "scitail": return datasets.load_dataset("scitail", "dgem_format") elif self.task_identifier == "qnli": return datasets.load_dataset("glue", "qnli") else: return datasets.load_dataset(self.task_identifier) class CSR(TextToTextDataset): def __init__(self, task_identifier="commonsense_qa"): self.task_identifier = task_identifier # for classification tasks, specify the meaning of each label # self.prompt = " " # are two sentences entailment or not entailment? # if self.task_identifier in ["snli", "anli", "multi_nli"]: # self.label = { # 0: ["entailment"], # 1: ["neutral"], # 2: ["contradiction"] # } # elif self.task_identifier == "qnli": # self.label = { # 0: ["entailment"], # 1: ["neutral"], # } # elif self.task_identifier == "scitail": # self.label = { # "entails": ["entailment"], # "neutral": ["neutral"], # } def get_all_lines(self, dataset, splits=["train", "validation", "test"]): all_lines = {} for split in splits: all_lines[split] = deduplicate(self.map_to_list(dataset, split)) show_statistics(all_lines[split]) # TODO: de-duplicate the lines! return all_lines def write_dataset(self, path): """ return train, dev, test """ # load dataset dataset = self.load_dataset() # formulate into list (for consistency in np.random) # if self.task_identifier in ["snli", "scitail", "qnli"]: # splits = ["train", "validation", "test"] # elif self.task_identifier == "anli": # splits = ['train_r1', 'dev_r1', 'test_r1', 'train_r2', 'dev_r2', 'test_r2', 'train_r3', 'dev_r3', 'test_r3'] # elif self.task_identifier == "multi_nli": # splits = ['validation_matched', 'validation_mismatched'] splits = ["train", "validation"] all_lines = self.get_all_lines(dataset, splits) # shuffle the data # np.random.seed(seed) # np.random.shuffle(train_lines) os.makedirs(os.path.join(path, self.task_identifier), exist_ok=True) prefix = os.path.join(path, self.task_identifier, "{}".format(self.task_identifier)) for split in splits: write_to_jsonl(all_lines[split], f"{prefix}_{split}.jsonl") def map_to_list(self, dataset, split_name): lines = [] for datapoint in dataset[split_name]: choices = datapoint["choices"] choices_map = {} choice_strs = [] for ind, (key, choice) in enumerate(list(zip(choices["label"], choices["text"]))): if self.task_identifier == "openbookqa": key = list("ABCDEF")[ind] choices_map[key] = choice choice_strs.append(f"{key}: {choice}") _id = f"{self.task_identifier}-{split_name}-{len(lines)}" if self.task_identifier == "openbookqa": _input = f'Question: {datapoint["question_stem"]} </s> {" | ".join(choice_strs)}' else: _input = f'Question: {datapoint["question"]} </s> {" | ".join(choice_strs)}' _output = [choices_map[datapoint["answerKey"]]] instance = {"id": _id, "input": _input, "output": _output} lines.append(json.dumps(instance)) print("Three examples: \n" + "\n".join([str(_) for _ in lines[:3]])) return lines def load_dataset(self): if self.task_identifier == "ai2_arc-easy": return datasets.load_dataset("ai2_arc", "ARC-Easy") elif self.task_identifier == "ai2_arc-hard": return datasets.load_dataset("ai2_arc", "ARC-Challenge") elif self.task_identifier == "openbookqa": return datasets.load_dataset("openbookqa", "main") return datasets.load_dataset(self.task_identifier) def format(dataset_name, path="./"): print("Formatting ", dataset_name) if dataset_name.startswith("mrqa_"): data = MRQA(subset=dataset_name.split("_")[1]) data.write_dataset(path) elif dataset_name.startswith("nli#"): name = dataset_name.split("#")[1] data = NLI(task_identifier=name) data.write_dataset(path) elif dataset_name.startswith("csr#"): name = dataset_name.split("#")[1] data = CSR(task_identifier=name) data.write_dataset(path) path = "data/" if len(sys.argv) >= 2: path = sys.argv[1] format("mrqa_SQuAD", path) format("mrqa_TriviaQA", path) format("mrqa_NaturalQuestions", path) format("mrqa_HotpotQA", path) format("mrqa_NewsQA", path) format("mrqa_SearchQA", path) # format("nli#snli", path) # format("nli#anli", path) # format("nli#multi_nli", path) # format("nli#scitail", path) # format("csr#commonsense_qa", path) # format("csr#riddle_sense", path) # format("csr#ai2_arc-easy", path) # format("csr#ai2_arc-hard", path) # format("csr#openbookqa", path)
CMR-main
data/data_formatter.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import distutils.command.clean import os import shutil import subprocess from pathlib import Path from setuptools import find_packages, setup cwd = os.path.dirname(os.path.abspath(__file__)) version_txt = os.path.join(cwd, "version.txt") with open(version_txt, "r") as f: version = f.readline().strip() ROOT_DIR = Path(__file__).parent.resolve() try: sha = ( subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd) .decode("ascii") .strip() ) except Exception: sha = "Unknown" package_name = "rlhive" if os.getenv("BUILD_VERSION"): version = os.getenv("BUILD_VERSION") elif sha != "Unknown": version += "+" + sha[:7] def write_version_file(): version_path = os.path.join(cwd, "rlhive", "version.py") with open(version_path, "w") as f: f.write("__version__ = '{}'\n".format(version)) f.write("git_version = {}\n".format(repr(sha))) def _get_pytorch_version(): # if "PYTORCH_VERSION" in os.environ: # return f"torch=={os.environ['PYTORCH_VERSION']}" return "torch" def _get_packages(): exclude = [ "build*", "test*", # "rlhive.csrc*", # "third_party*", # "tools*", ] return find_packages(exclude=exclude) ROOT_DIR = Path(__file__).parent.resolve() class clean(distutils.command.clean.clean): def run(self): # Run default behavior first distutils.command.clean.clean.run(self) # Remove rlhive extension for path in (ROOT_DIR / "rlhive").glob("**/*.so"): print(f"removing '{path}'") path.unlink() # Remove build directory build_dirs = [ ROOT_DIR / "build", ] for path in build_dirs: if path.exists(): print(f"removing '{path}' (and everything under it)") shutil.rmtree(str(path), ignore_errors=True) def _check_robohive(): import importlib import sys name = "robohive" spam_loader = importlib.find_loader(name) found = spam_loader is not None if name in sys.modules: print(f"{name!r} already in sys.modules") # elif (spec := importlib.util.find_spec(name)) is not None: elif found: print(f"{name!r} is importable") else: raise ImportError( f"can't find {name!r}: check README.md for " f"install instructions" ) def _main(): pytorch_package_dep = _get_pytorch_version() print("-- PyTorch dependency:", pytorch_package_dep) # branch = _run_cmd(["git", "rev-parse", "--abbrev-ref", "HEAD"]) # tag = _run_cmd(["git", "describe", "--tags", "--exact-match", "@"]) this_directory = Path(__file__).parent long_description = (this_directory / "README.md").read_text() # install robohive locally # subprocess.run( # [ # "git", # "clone", # "-c", # "submodule.robohive/sims/neuromuscular_sim.update=none", # "--branch", # "non-local-install", # "--recursive", # "https://github.com/vikashplus/robohive.git", # "third_party/robohive", # ] # ) # subprocess.run( # [ # "git", # "clone", # "--branch", # "main", # "https://github.com/pytorch/rl.git", # "third_party/rl", # ] # ) # mj_env_path = os.path.join(os.getcwd(), "third_party", "robohive#egg=robohive") # rl_path = os.path.join(os.getcwd(), "third_party", "rl#egg=torchrl") setup( # Metadata name="rlhive", version=version, author="rlhive contributors", author_email="[email protected]", url="https://github.com/fairinternal/rlhive", long_description=long_description, long_description_content_type="text/markdown", license="BSD", # Package info packages=find_packages(exclude=("test", "tutorials", "third_party")), # ext_modules=get_extensions(), # cmdclass={ # "build_ext": BuildExtension.with_options(no_python_abi_suffix=True), # "clean": clean, # }, install_requires=[ pytorch_package_dep, # "torchrl @ git+ssh://[email protected]/pytorch/rl@main#egg=torchrl", # f"torchrl @ file://{rl_path}", "torchrl", "gym==0.13", # "robohive", # f"robohive @ file://{mj_env_path}", "numpy", "packaging", "cloudpickle", "hydra-core", "dm_control", ], zip_safe=False, dependency_links=[ # location to your egg file ], extra_requires={ "tests": ["pytest", "pyyaml", "pytest-instafail"], }, ) if __name__ == "__main__": write_version_file() print("Building wheel {}-{}".format(package_name, version)) print(f"BUILD_VERSION is {os.getenv('BUILD_VERSION')}") # _check_robohive() _main()
agenthive-dev
setup.py
import robohive import torchrl from rlhive import RoboHiveEnv
agenthive-dev
test/smoke_test.py
import argparse import pytest import torch from rlhive.rl_envs import RoboHiveEnv from torchrl.envs import ( CatTensors, EnvCreator, ParallelEnv, R3MTransform, TransformedEnv, ) from torchrl.envs.utils import check_env_specs def test_state_env(): pass def test_pixel_env(): pass @pytest.mark.parametrize( "env_name", [ "visual_franka_slide_random-v3", "visual_franka_slide_close-v3", "visual_franka_slide_open-v3", "visual_franka_micro_random-v3", "visual_franka_micro_close-v3", "visual_franka_micro_open-v3", "visual_kitchen_knob1_off-v3", "visual_kitchen_knob1_on-v3", "visual_kitchen_knob2_off-v3", "visual_kitchen_knob2_on-v3", "visual_kitchen_knob3_off-v3", "visual_kitchen_knob3_on-v3", "visual_kitchen_knob4_off-v3", "visual_kitchen_knob4_on-v3", "visual_kitchen_light_off-v3", "visual_kitchen_light_on-v3", "visual_kitchen_sdoor_close-v3", "visual_kitchen_sdoor_open-v3", "visual_kitchen_ldoor_close-v3", "visual_kitchen_ldoor_open-v3", "visual_kitchen_rdoor_close-v3", "visual_kitchen_rdoor_open-v3", "visual_kitchen_micro_close-v3", "visual_kitchen_micro_open-v3", "visual_kitchen_close-v3", ], ) def test_mixed_env(env_name): base_env = RoboHiveEnv( env_name, ) assert base_env.from_pixels env = TransformedEnv( base_env, CatTensors( [key for key in base_env.observation_spec.keys() if "pixels" not in key], "observation", ), ) # reset tensordict = env.reset() assert {"done", "observation", "pixels"} == set(tensordict.keys()) assert tensordict["pixels"].shape[0] == 2 # step env.rand_step(tensordict) assert { "reward", "done", "observation", "pixels", "action", ("next", "observation"), ("next", "pixels"), "next", } == set(tensordict.keys(True)) # rollout tensordict = env.rollout(10) assert { "reward", "done", "observation", "pixels", "action", ("next", "observation"), ("next", "pixels"), "next", } == set(tensordict.keys(True)) assert tensordict.shape == torch.Size([10]) env.close() @pytest.mark.parametrize( "env_name", [ "visual_franka_slide_random-v3", "visual_franka_slide_close-v3", "visual_franka_slide_open-v3", "visual_franka_micro_random-v3", "visual_franka_micro_close-v3", "visual_franka_micro_open-v3", "visual_kitchen_knob1_off-v3", "visual_kitchen_knob1_on-v3", "visual_kitchen_knob2_off-v3", "visual_kitchen_knob2_on-v3", "visual_kitchen_knob3_off-v3", "visual_kitchen_knob3_on-v3", "visual_kitchen_knob4_off-v3", "visual_kitchen_knob4_on-v3", "visual_kitchen_light_off-v3", "visual_kitchen_light_on-v3", "visual_kitchen_sdoor_close-v3", "visual_kitchen_sdoor_open-v3", "visual_kitchen_ldoor_close-v3", "visual_kitchen_ldoor_open-v3", "visual_kitchen_rdoor_close-v3", "visual_kitchen_rdoor_open-v3", "visual_kitchen_micro_close-v3", "visual_kitchen_micro_open-v3", "visual_kitchen_close-v3", ], ) def test_specs(env_name): base_env = RoboHiveEnv( env_name, ) check_env_specs(base_env) env = TransformedEnv( base_env, CatTensors( [key for key in base_env.observation_spec.keys() if "pixels" not in key], "observation", ), ) check_env_specs(env) @pytest.mark.parametrize( "env_name", [ "visual_franka_slide_random-v3", "visual_franka_slide_close-v3", "visual_franka_slide_open-v3", "visual_franka_micro_random-v3", "visual_franka_micro_close-v3", "visual_franka_micro_open-v3", "visual_kitchen_knob1_off-v3", "visual_kitchen_knob1_on-v3", "visual_kitchen_knob2_off-v3", "visual_kitchen_knob2_on-v3", "visual_kitchen_knob3_off-v3", "visual_kitchen_knob3_on-v3", "visual_kitchen_knob4_off-v3", "visual_kitchen_knob4_on-v3", "visual_kitchen_light_off-v3", "visual_kitchen_light_on-v3", "visual_kitchen_sdoor_close-v3", "visual_kitchen_sdoor_open-v3", "visual_kitchen_ldoor_close-v3", "visual_kitchen_ldoor_open-v3", "visual_kitchen_rdoor_close-v3", "visual_kitchen_rdoor_open-v3", "visual_kitchen_micro_close-v3", "visual_kitchen_micro_open-v3", "visual_kitchen_close-v3", ], ) def test_parallel(env_name): def make_env(): base_env = RoboHiveEnv( env_name, ) check_env_specs(base_env) env = TransformedEnv( base_env, CatTensors( [ key for key in base_env.observation_spec.keys() if "pixels" not in key ], "observation", ), ) return env env = ParallelEnv(3, make_env) env.reset() env.rollout(3) @pytest.mark.parametrize("parallel", [False, True]) def test_env_render_native(parallel): if not parallel: env = RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0") else: env = ParallelEnv(3, lambda: RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0")) td = env.reset() assert set(td.keys(True)) == { "done", "observation", "pixels", } td = env.rand_step(td) assert set(td.keys(True)) == { "done", "next", ("next", "pixels"), "pixels", "observation", ("next", "observation"), "reward", "action", } td = env.rollout(50) if not parallel: assert td.shape == torch.Size([50]) else: assert td.shape == torch.Size([3, 50]) assert set(td.keys(True)) == { "done", "next", ("next", "pixels"), "pixels", "observation", ("next", "observation"), "reward", "action", } env.close() @pytest.mark.parametrize( "parallel,env_creator", [[True, True], [True, False], [False, True]] ) def test_env_r3m_native(parallel, env_creator): if not parallel: base_env = RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0") else: if env_creator: env_creator = EnvCreator( lambda: RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0") ) else: env_creator = lambda: RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0") base_env = ParallelEnv(3, env_creator) env = TransformedEnv( base_env, R3MTransform( "resnet18", ["pixels"], ["pixels_embed"], ), ) td = env.reset() _ = env.rand_step(td) td = env.rollout(50) if parallel: assert td.shape == torch.Size([3, 50]) else: assert td.shape == torch.Size([50]) env.close() if __name__ == "__main__": args, unknown = argparse.ArgumentParser().parse_known_args() pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)
agenthive-dev
test/test_envs.py
import torch def get_available_devices(): devices = [torch.device("cpu")] n_cuda = torch.cuda.device_count() if n_cuda > 0: for i in range(n_cuda): devices += [torch.device(f"cuda:{i}")] return devices
agenthive-dev
test/utils.py
import argparse import pytest import torch from omegaconf import OmegaConf from rlhive.sim_algos.helpers import EnvConfig from rlhive.sim_algos.run import make_env_constructor from utils import get_available_devices @pytest.mark.parametrize("device", get_available_devices()) def test_make_r3menv(device): cfg = EnvConfig # hacky way of create a config that can be shared across processes cfg = OmegaConf.create(OmegaConf.to_yaml(cfg)) cfg.env_name = "FrankaReachRandom_v2d-v0" cfg.r3m = "resnet50" cfg.collector_devices = str(device) cfg.norm_stats = False cfg.env_per_collector = 2 cfg.pin_memory = False cfg.batch_transform = True single_env_constructor, multi_env_constructor = make_env_constructor(cfg) env = single_env_constructor() print(env) td = env.reset() assert {"done", "observation_vector"} == set(td.keys()) td = env.rollout(10) assert { "action", "done", ( "next", "observation_vector", ), "next", "observation_vector", "reward", } == set(td.keys()) assert td.shape == torch.Size([10]) env = multi_env_constructor print(env) td = env.reset() assert {"done", "observation_vector"} == set(td.keys()) td = env.rollout(10) assert { "action", "done", ( "next", "observation_vector", ), "next", "observation_vector", "reward", } == set(td.keys()) assert td.shape == torch.Size([2, 10]) env.close() if __name__ == "__main__": args, unknown = argparse.ArgumentParser().parse_known_args() pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)
agenthive-dev
test/test_helpers.py
''' Use this script to comapare multiple results \n Usage: python viz_resulyts.py -j expdir1_group0 expdir2_group0 -j expdir3_group1 expdir4_group1 -k "key1" "key2"... ''' from vtils.plotting import simple_plot import argparse from scipy import signal import pandas import glob def get_files(search_path, file_name): search_path = search_path[:-1] if search_path.endswith('/') else search_path search_path = search_path+"*/**/"+file_name filenames = glob.glob(search_path, recursive=True) assert (len(filenames) > 0), "No file found at: {}".format(search_path) return filenames # Another example, Python 3.5+ def get_files_p35(search_path, file_name): from pathlib import Path filenames = [] for path in Path(search_path).rglob(file_name): filenames.append(path) return filenames def get_log(filename, format="csv"): try: if format=="csv": data = pandas.read_csv(filename) elif format=="json": data = pandas.read_json(filename) except Exception as e: print("WARNING: Can't read %s." % filename) quit() return data def smooth_data(y, window_length=101, polyorder=3): window_length = min(int(len(y) / 2), window_length) # set maximum valid window length # if window not off if window_length % 2 == 0: window_length = window_length + 1 try: return signal.savgol_filter(y, window_length, polyorder) except Exception as e: return y # nans # MAIN ========================================================= def main(): # Parse arguments parser = argparse.ArgumentParser() parser.add_argument( '-j', '--job', required=True, action='append', nargs='?', help='job group') parser.add_argument( '-lf', '--log_file', type=str, default="log.csv", help='name of log file (with extension)') parser.add_argument( '-cf', '--config_file', type=str, default="job_config.json", help='name of config file (with extension)') parser.add_argument( '-t', '--title', type=str, default=None, help='Title of the plot') parser.add_argument( '-l', '--label', action='append', nargs='?', help='job group label') parser.add_argument( '-s', '--smooth', type=int, default=21, help='window for smoothing') parser.add_argument( '-y', '--ykeys', nargs='+', default=["eval_score", 'norm_score'], help='yKeys to plot') parser.add_argument( '-x', '--xkey', default="total_num_samples", help='xKey to plot') parser.add_argument( '-i', '--index', type=int, default=-4, help='index in log filename to use as labels') args = parser.parse_args() # scan labels if args.label is not None: assert (len(args.job) == len(args.label)), "The number of labels has to be same as the number of jobs" else: args.label = [''] * len(args.job) # for all the algo jobs for ialgo, algo_dir in enumerate(args.job): print("algo> "+algo_dir) envs_dirs = glob.glob(algo_dir+"/*/") # for all envs inside the algo nenv = len(envs_dirs) for ienv, env_dir in enumerate(sorted(envs_dirs)): print("env>> "+env_dir) run_dirs = glob.glob(env_dir+"/*/") # all the seeds/ variations within the env for irun, run_dir in enumerate(sorted(run_dirs)): print("run> "+run_dir) title = run_dir.split('/')[3] title = title[:title.find('-v')] # for log_file in get_files(env_dir, args.file): log_file = get_files(run_dir, args.log_file) log = get_log(filename=log_file[0], format="csv") # validate keys for key in [args.xkey]+args.ykeys: assert key in log.keys(), "{} not present in available keys {}".format(key, log.keys()) nykeys = len(args.ykeys) for iykey, ykey in enumerate(sorted(args.ykeys)): simple_plot.plot(xdata=log[args.xkey]/1e6, ydata=smooth_data(log[ykey], args.smooth), legend='job_name', subplot_id=(nenv, nykeys, nykeys*ienv+iykey+1), xaxislabel=args.xkey+'(M)', plot_name=title, yaxislabel=ykey, fig_size=(4*nykeys, 4*nenv), fig_name='SAC performance' ) # simple_plot.show_plot() simple_plot.save_plot(args.job[0]+'RS-SAC.pdf') if __name__ == '__main__': main()
agenthive-dev
agents/utils/plot_all_sac.py
''' Use this script to comapare multiple results \n Usage: python agents/NPG/plot_all_npg.py -j agents/v0.1/kitchen/NPG/outputs_kitchenJ5c_3.8/ -j agents/v0.1/kitchen/NPG/outputs_kitchenJ5d_3.9/ -j /Users/vikashplus/Projects/mj_envs/kitchen/outputs_kitchenJ8a/ -l 'v0.1(fixed_init)' -l 'v0.1(random_init)' -l 'v0.2(random_init)' -pt True ''' from vtils.plotting import simple_plot import argparse from scipy import signal import pandas import glob import numpy as np import os def get_files(search_path, file_name): search_path = search_path[:-1] if search_path.endswith('/') else search_path search_path = search_path+"*/**/"+file_name filenames = glob.glob(search_path, recursive=True) assert (len(filenames) > 0), "No file found at: {}".format(search_path) return filenames # Another example, Python 3.5+ def get_files_p35(search_path, file_name): from pathlib import Path filenames = [] for path in Path(search_path).rglob(file_name): filenames.append(path) return filenames def get_log(filename, format="csv"): try: if format=="csv": data = pandas.read_csv(filename) elif format=="json": data = pandas.read_json(filename) except Exception as e: print("WARNING: Can't read %s." % filename) quit() return data def smooth_data(y, window_length=101, polyorder=3): window_length = min(int(len(y) / 2), window_length) # set maximum valid window length # if window not off if window_length % 2 == 0: window_length = window_length + 1 try: return signal.savgol_filter(y, window_length, polyorder) except Exception as e: return y # nans # MAIN ========================================================= def main(): # Parse arguments parser = argparse.ArgumentParser() parser.add_argument( '-j', '--job', required=True, action='append', nargs='?', help='job group') parser.add_argument( '-lf', '--run_log', type=str, default="log.csv", help='name of log file (with extension)') parser.add_argument( '-cf', '--config_file', type=str, default="job_config.json", help='name of config file (with extension)') parser.add_argument( '-t', '--title', type=str, default=None, help='Title of the plot') parser.add_argument( '-l', '--label', action='append', nargs='?', help='job group label') parser.add_argument( '-s', '--smooth', type=int, default=21, help='window for smoothing') parser.add_argument( '-y', '--ykeys', nargs='+', default=['success_percentage', 'rwd_sparse', 'rwd_dense'], help='yKeys to plot') parser.add_argument( '-x', '--xkey', default="num_samples", help='xKey to plot') parser.add_argument( '-ei', '--env_index', type=int, default=-2, help='index in log filename to use as labels') parser.add_argument( '-pt', '--plot_train', type=bool, default=False, help='plot train perf') parser.add_argument( '-od', '--output_dir', type=str, default=None, help='Save outputs here') args = parser.parse_args() # init nykeys = len(args.ykeys) njob = len(args.job) nenv = -1 env_labels = [] # scan labels if args.label is not None: assert (njob == len(args.label)), "The number of labels has to be same as the number of jobs" else: args.label = [''] * njob # for all the jobs for ijob, job_dir in enumerate(args.job): print("Job> "+job_dir) envs_dirs = glob.glob(job_dir+"/*/") if nenv ==-1: nenv = len(envs_dirs) else: assert nenv == len(envs_dirs), f"Number of envs changed {envs_dirs}" for env_dir in sorted(envs_dirs): env_labels.append(env_dir.split('/')[args.env_index]) # for all envs inside the exp env_means = [] env_stds = [] for ienv, env_dir in enumerate(sorted(envs_dirs)): print(" env> "+env_dir) # all the seeds/ variations runs within the env yruns = [] xruns = [] # known bug: Logs will different lengths will cause a bug. Its hacked via using [:len(xdata)] for irun, run_log in enumerate(sorted(get_files(env_dir, args.run_log))): print(" run> "+run_log, flush=True) log = get_log(filename=run_log, format="csv") # validate keys for key in [args.xkey]+args.ykeys: assert key in log.keys(), "{} not present in available keys {}".format(key, log.keys()) if 'sample' in args.xkey: #special keys xdata = np.cumsum(log[args.xkey])/1e6 plot_xkey = args.xkey+"(M)" else: xdata = log[args.xkey] plot_xkey = args.xkey yruns.append(log[args.ykeys]) # print(xdata.shape, log[args.ykeys].shape) del log # stats over keys yruns = pandas.concat(yruns) yruns_stacked = yruns.groupby(yruns.index) yruns_mean = yruns_stacked.mean() yruns_min = yruns_stacked.min() yruns_max = yruns_stacked.max() yruns_std = yruns_stacked.std() # stats over jobs env_means.append(yruns_mean.tail(1)) env_stds.append(yruns_std.tail(1)) if args.plot_train: for iykey, ykey in enumerate(sorted(args.ykeys)): h_figp,_,_= simple_plot.plot(xdata=xdata, ydata=smooth_data(yruns_mean[ykey][:len(xdata)], args.smooth), errmin=yruns_min[ykey][:len(xdata)], errmax=yruns_max[ykey][:len(xdata)], legend=args.label[ijob], subplot_id=(nenv, nykeys, nykeys*ienv+iykey+1), xaxislabel=plot_xkey, plot_name=env_labels[ienv], yaxislabel=ykey, fig_size=(4*nykeys, 3*nenv), fig_name='NPG performance', ) env_means = pandas.concat(env_means) env_stds = pandas.concat(env_stds) width = 1/(njob+1) for iykey, ykey in enumerate(sorted(args.ykeys)): h_figb, h_axisb, h_bar = simple_plot.bar( xdata=np.arange(nenv)+width*ijob, ydata=env_means[ykey], errdata=env_stds[ykey], width=width, subplot_id=(nykeys, 1, iykey+1), fig_size=(2+0.2*nenv, 4*nykeys), fig_name="Env perfs", yaxislabel=ykey, legend=args.label[ijob], xticklabels=env_labels[:nenv], # plot_name="Performance using 5M samples" ) args.output_dir = args.job[-1] if args.output_dir == None else args.output_dir if args.plot_train: simple_plot.save_plot(os.path.join(args.output_dir, 'TrainPerf-NPG.pdf'), h_figp) simple_plot.save_plot(os.path.join(args.output_dir,'FinalPerf-NPG.pdf'), h_figb) if __name__ == '__main__': main()
agenthive-dev
agents/utils/plot_all_npg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from tensordict.tensordict import make_tensordict, TensorDictBase from torchrl.data import BoundedTensorSpec, CompositeSpec, UnboundedContinuousTensorSpec from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform, _has_gym, GymEnv from torchrl.envs.transforms import CatTensors, Compose, R3MTransform, TransformedEnv from torchrl.envs.utils import make_composite_from_td from torchrl.trainers.helpers.envs import LIBS if _has_gym: import gym class RoboHiveEnv(GymEnv): # info_keys = ["time", "rwd_dense", "rwd_sparse", "solved"] def _build_env( self, env_name: str, from_pixels: bool = False, pixels_only: bool = False, **kwargs, ) -> "gym.core.Env": self.pixels_only = pixels_only try: render_device = int(str(self.device)[-1]) except ValueError: render_device = 0 print(f"rendering device: {render_device}, device is {self.device}") if not _has_gym: raise RuntimeError( f"gym not found, unable to create {env_name}. " f"Consider downloading and installing dm_control from" f" {self.git_url}" ) try: env = self.lib.make( env_name, frameskip=self.frame_skip, device_id=render_device, return_dict=True, **kwargs, ) self.wrapper_frame_skip = 1 from_pixels = bool(len(env.visual_keys)) except TypeError as err: if "unexpected keyword argument 'frameskip" not in str(err): raise TypeError(err) kwargs.pop("framek_skip") env = self.lib.make( env_name, return_dict=True, device_id=render_device, **kwargs ) self.wrapper_frame_skip = self.frame_skip self.from_pixels = from_pixels self.render_device = render_device self.info_dict_reader = self.read_info return env def _make_specs(self, env: "gym.Env") -> None: if self.from_pixels: num_cams = len(env.visual_keys) # n_pix = 224 * 224 * 3 * num_cams # env.observation_space = gym.spaces.Box( # -8 * np.ones(env.obs_dim - n_pix), # 8 * np.ones(env.obs_dim - n_pix), # dtype=np.float32, # ) self.action_spec = _gym_to_torchrl_spec_transform( env.action_space, device=self.device ) observation_spec = _gym_to_torchrl_spec_transform( env.observation_space, device=self.device, ) if not isinstance(observation_spec, CompositeSpec): observation_spec = CompositeSpec(observation=observation_spec) self.observation_spec = observation_spec if self.from_pixels: self.observation_spec["pixels"] = BoundedTensorSpec( torch.zeros( num_cams, 224, # working with 640 224, # working with 480 3, device=self.device, dtype=torch.uint8, ), 255 * torch.ones( num_cams, 224, 224, 3, device=self.device, dtype=torch.uint8, ), torch.Size(torch.Size([num_cams, 224, 224, 3])), dtype=torch.uint8, device=self.device, ) self.reward_spec = UnboundedContinuousTensorSpec( device=self.device, ) # default rollout = self.rollout(2).get("next").exclude("done", "reward")[0] self.observation_spec.update(make_composite_from_td(rollout)) def set_from_pixels(self, from_pixels: bool) -> None: """Sets the from_pixels attribute to an existing environment. Args: from_pixels (bool): new value for the from_pixels attribute """ if from_pixels is self.from_pixels: return self.from_pixels = from_pixels self._make_specs(self.env) def read_obs(self, observation): # the info is missing from the reset observations = self.env.obs_dict visual = self.env.get_exteroception() try: del observations["t"] except KeyError: pass # recover vec obsvec = [] pixel_list = [] observations.update(visual) for key in observations: if key.startswith("rgb"): pix = observations[key] if not pix.shape[0] == 1: pix = pix[None] pixel_list.append(pix) elif key in self._env.obs_keys: value = observations[key] if not value.shape: value = value[None] obsvec.append(value) # ravel helps with images if obsvec: obsvec = np.concatenate(obsvec, 0) if self.from_pixels: out = {"observation": obsvec, "pixels": np.concatenate(pixel_list, 0)} else: out = {"observation": obsvec} return super().read_obs(out) def read_info(self, info, tensordict_out): out = {} for key, value in info.items(): if key in ("obs_dict", "done", "reward"): continue if isinstance(value, dict): value = {key: _val for key, _val in value.items() if _val is not None} value = make_tensordict(value, batch_size=[]) out[key] = value tensordict_out.update(out) return tensordict_out def to(self, *args, **kwargs): out = super().to(*args, **kwargs) try: render_device = int(str(out.device)[-1]) except ValueError: render_device = 0 if render_device != self.render_device: out._build_env(**self._constructor_kwargs) return out def make_r3m_env(env_name, model_name="resnet50", download=True, **kwargs): base_env = RoboHiveEnv(env_name, from_pixels=True, pixels_only=False) vec_keys = [k for k in base_env.observation_spec.keys() if k not in "pixels"] env = TransformedEnv( base_env, Compose( R3MTransform( model_name, keys_in=["pixels"], keys_out=["pixel_r3m"], download=download, **kwargs, ), CatTensors(keys_in=["pixel_r3m", *vec_keys], out_key="observation_vector"), ), ) return env LIBS["robohive"] = RoboHiveEnv
agenthive-dev
rlhive/rl_envs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Custom env reg for RoboHive usage in TorchRL # Pixel rendering will be queried by torchrl, so we don't include those keys in visual_obs_keys_wt import os import warnings from pathlib import Path import robohive.envs.multi_task.substeps1 from robohive.envs.env_variants import register_env_variant visual_obs_keys_wt = robohive.envs.multi_task.substeps1.visual_obs_keys_wt class set_directory(object): """Sets the cwd within the context Args: path (Path): The path to the cwd """ def __init__(self, path: Path): self.path = path self.origin = Path().absolute() def __enter__(self): os.chdir(self.path) def __exit__(self, *args, **kwargs): os.chdir(self.origin) def __call__(self, fun): def new_fun(*args, **kwargs): with set_directory(Path(self.path)): return fun(*args, **kwargs) return new_fun CURR_DIR = robohive.envs.multi_task.substeps1.CURR_DIR MODEL_PATH = robohive.envs.multi_task.substeps1.MODEL_PATH CONFIG_PATH = robohive.envs.multi_task.substeps1.CONFIG_PATH RANDOM_ENTRY_POINT = robohive.envs.multi_task.substeps1.RANDOM_ENTRY_POINT FIXED_ENTRY_POINT = robohive.envs.multi_task.substeps1.FIXED_ENTRY_POINT ENTRY_POINT = RANDOM_ENTRY_POINT override_keys = [ "objs_jnt", "end_effector", "knob1_site_err", "knob2_site_err", "knob3_site_err", "knob4_site_err", "light_site_err", "slide_site_err", "leftdoor_site_err", "rightdoor_site_err", "microhandle_site_err", "kettle_site0_err", "rgb:right_cam:224x224:2d", "rgb:left_cam:224x224:2d", ] @set_directory(CURR_DIR) def register_kitchen_envs(): print("RLHive:> Registering Kitchen Envs") env_list = [ "kitchen_knob1_off-v3", "kitchen_knob1_on-v3", "kitchen_knob2_off-v3", "kitchen_knob2_on-v3", "kitchen_knob3_off-v3", "kitchen_knob3_on-v3", "kitchen_knob4_off-v3", "kitchen_knob4_on-v3", "kitchen_light_off-v3", "kitchen_light_on-v3", "kitchen_sdoor_close-v3", "kitchen_sdoor_open-v3", "kitchen_ldoor_close-v3", "kitchen_ldoor_open-v3", "kitchen_rdoor_close-v3", "kitchen_rdoor_open-v3", "kitchen_micro_close-v3", "kitchen_micro_open-v3", "FK1_RelaxFixed-v4", # "kitchen_close-v3", ] obs_keys_wt = { "robot_jnt": 1.0, "end_effector": 1.0, } visual_obs_keys = { "rgb:right_cam:224x224:2d": 1.0, "rgb:left_cam:224x224:2d": 1.0, } for env in env_list: try: new_env_name = "visual_" + env register_env_variant( env, variants={"obs_keys_wt": obs_keys_wt, "visual_keys": list(visual_obs_keys.keys())}, variant_id=new_env_name, override_keys=override_keys, ) except AssertionError as err: warnings.warn( f"Could not register {new_env_name}, the following error was raised: {err}" ) @set_directory(CURR_DIR) def register_franka_envs(): print("RLHive:> Registering Franka Envs") env_list = [ "franka_slide_random-v3", "franka_slide_close-v3", "franka_slide_open-v3", "franka_micro_random-v3", "franka_micro_close-v3", "franka_micro_open-v3", ] # Franka Appliance ====================================================================== obs_keys_wt = { "robot_jnt": 1.0, "end_effector": 1.0, } visual_obs_keys = { "rgb:right_cam:224x224:2d": 1.0, "rgb:left_cam:224x224:2d": 1.0, } for env in env_list: try: new_env_name = "visual_" + env register_env_variant( env, variants={"obs_keys_wt": obs_keys_wt, "visual_keys": visual_obs_keys}, variant_id=new_env_name, override_keys=override_keys, ) except AssertionError as err: warnings.warn( f"Could not register {new_env_name}, the following error was raised: {err}" ) @set_directory(CURR_DIR) def register_hand_envs(): print("RLHive:> Registering Arm Envs") env_list = ["door-v1", "hammer-v1", "pen-v1", "relocate-v1"] visual_obs_keys = [ "rgb:vil_camera:224x224:2d", "rgb:fixed:224x224:2d", ] # Hand Manipulation Suite ====================================================================== for env in env_list: try: new_env_name = "visual_" + env register_env_variant( env, variants={ "obs_keys": [ "hand_jnt", ], "visual_keys": visual_obs_keys, }, variant_id=new_env_name, ) except AssertionError as err: warnings.warn( f"Could not register {new_env_name}, the following error was raised: {err}" ) @set_directory(CURR_DIR) def register_myo_envs(): print("RLHive:> Registering Myo Envs") env_list = ["motorFingerReachFixed-v0"] visual_keys = [ "rgb:vil_camera:224x224:2d", "rgb:fixed:224x224:2d", ] # Hand Manipulation Suite ====================================================================== for env in env_list: try: new_env_name = "visual_" + env register_env_variant( env, variants={ "obs_keys": [ "hand_jnt", ], "visual_keys": visual_keys, }, variant_id=new_env_name, ) except AssertionError as err: warnings.warn( f"Could not register {new_env_name}, the following error was raised: {err}" )
agenthive-dev
rlhive/envs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .envs import ( register_franka_envs, register_hand_envs, register_kitchen_envs, register_myo_envs, ) register_franka_envs() register_kitchen_envs() register_hand_envs() register_myo_envs() from .rl_envs import RoboHiveEnv
agenthive-dev
rlhive/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional, Union import torch from torch.nn import Identity from torchrl.data.tensor_specs import ( CompositeSpec, TensorSpec, UnboundedContinuousTensorSpec, ) from torchrl.data.utils import DEVICE_TYPING from torchrl.envs.transforms.transforms import ( CatTensors, Compose, FlattenObservation, ObservationNorm, Resize, ToTensorImage, Transform, UnsqueezeTransform, ) try: from torchvision import models _has_tv = True except ImportError: _has_tv = False class _RRLNet(Transform): inplace = False def __init__(self, in_keys, out_keys, model_name, del_keys: bool = True): if not _has_tv: raise ImportError( "Tried to instantiate RRL without torchvision. Make sure you have " "torchvision installed in your environment." ) if model_name == "resnet18": self.model_name = "rrl_18" self.outdim = 512 convnet = models.resnet18(pretrained=True) elif model_name == "resnet34": self.model_name = "rrl_34" self.outdim = 512 convnet = models.resnet34(pretrained=True) elif model_name == "resnet50": self.model_name = "rrl_50" self.outdim = 2048 convnet = models.resnet50(pretrained=True) else: raise NotImplementedError( f"model {model_name} is currently not supported by RRL" ) convnet.fc = Identity() super().__init__(in_keys=in_keys, out_keys=out_keys) self.convnet = convnet self.del_keys = del_keys def _call(self, tensordict): tensordict_view = tensordict.view(-1) super()._call(tensordict_view) if self.del_keys: tensordict.exclude(*self.in_keys, inplace=True) return tensordict @torch.no_grad() def _apply_transform(self, obs: torch.Tensor) -> None: shape = None if obs.ndimension() > 4: shape = obs.shape[:-3] obs = obs.flatten(0, -4) out = self.convnet(obs) if shape is not None: out = out.view(*shape, *out.shape[1:]) return out def transform_observation_spec(self, observation_spec: TensorSpec) -> TensorSpec: if not isinstance(observation_spec, CompositeSpec): raise ValueError("_RRLNet can only infer CompositeSpec") keys = [key for key in observation_spec._specs.keys() if key in self.in_keys] device = observation_spec[keys[0]].device dim = observation_spec[keys[0]].shape[:-3] observation_spec = CompositeSpec(observation_spec) if self.del_keys: for in_key in keys: del observation_spec[in_key] for out_key in self.out_keys: observation_spec[out_key] = UnboundedContinuousTensorSpec( shape=torch.Size([*dim, self.outdim]), device=device ) return observation_spec # @staticmethod # def _load_weights(model_name, r3m_instance, dir_prefix): # if model_name not in ("r3m_50", "r3m_34", "r3m_18"): # raise ValueError( # "model_name should be one of 'r3m_50', 'r3m_34' or 'r3m_18'" # ) # # url = "https://download.pytorch.org/models/rl/r3m/" + model_name # url = "https://pytorch.s3.amazonaws.com/models/rl/r3m/" + model_name + ".pt" # d = load_state_dict_from_url( # url, # progress=True, # map_location=next(r3m_instance.parameters()).device, # model_dir=dir_prefix, # ) # td = TensorDict(d["r3m"], []).unflatten_keys(".") # td_flatten = td["module"]["convnet"].flatten_keys(".") # state_dict = td_flatten.to_dict() # r3m_instance.convnet.load_state_dict(state_dict) # def load_weights(self, dir_prefix=None): # self._load_weights(self.model_name, self, dir_prefix) def _init_first(fun): def new_fun(self, *args, **kwargs): if not self.initialized: self._init() return fun(self, *args, **kwargs) return new_fun class RRLTransform(Compose): """RRL Transform class. RRL provides pre-trained ResNet weights aimed at facilitating visual embedding for robotic tasks. The models are trained using Ego4d. See the paper: Shah, Rutav, and Vikash Kumar. "RRl: Resnet as representation for reinforcement learning." arXiv preprint arXiv:2107.03380 (2021). The RRLTransform is created in a lazy manner: the object will be initialized only when an attribute (a spec or the forward method) will be queried. The reason for this is that the :obj:`_init()` method requires some attributes of the parent environment (if any) to be accessed: by making the class lazy we can ensure that the following code snippet works as expected: Examples: >>> transform = RRLTransform("resnet50", in_keys=["pixels"]) >>> env.append_transform(transform) >>> # the forward method will first call _init which will look at env.observation_spec >>> env.reset() Args: model_name (str): one of resnet50, resnet34 or resnet18 in_keys (list of str): list of input keys. If left empty, the "pixels" key is assumed. out_keys (list of str, optional): list of output keys. If left empty, "rrl_vec" is assumed. size (int, optional): Size of the image to feed to resnet. Defaults to 244. stack_images (bool, optional): if False, the images given in the :obj:`in_keys` argument will be treaded separetely and each will be given a single, separated entry in the output tensordict. Defaults to :obj:`True`. download (bool, optional): if True, the weights will be downloaded using the torch.hub download API (i.e. weights will be cached for future use). Defaults to False. download_path (str, optional): path where to download the models. Default is None (cache path determined by torch.hub utils). tensor_pixels_keys (list of str, optional): Optionally, one can keep the original images (as collected from the env) in the output tensordict. If no value is provided, this won't be collected. """ @classmethod def __new__(cls, *args, **kwargs): cls.initialized = False cls._device = None cls._dtype = None return super().__new__(cls) def __init__( self, model_name: str, in_keys: List[str], out_keys: List[str] = None, size: int = 244, stack_images: bool = True, download: bool = False, download_path: Optional[str] = None, tensor_pixels_keys: List[str] = None, ): super().__init__() self.in_keys = in_keys if in_keys is not None else ["pixels"] self.download = download self.download_path = download_path self.model_name = model_name self.out_keys = out_keys self.size = size self.stack_images = stack_images self.tensor_pixels_keys = tensor_pixels_keys self._init() def _init(self): """Initializer for RRL.""" self.initialized = True in_keys = self.in_keys model_name = self.model_name out_keys = self.out_keys size = self.size stack_images = self.stack_images tensor_pixels_keys = self.tensor_pixels_keys # ToTensor transforms = [] if tensor_pixels_keys: for i in range(len(in_keys)): transforms.append( CatTensors( in_keys=[in_keys[i]], out_key=tensor_pixels_keys[i], del_keys=False, ) ) totensor = ToTensorImage( unsqueeze=False, in_keys=in_keys, ) transforms.append(totensor) # Normalize mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] normalize = ObservationNorm( in_keys=in_keys, loc=torch.tensor(mean).view(3, 1, 1), scale=torch.tensor(std).view(3, 1, 1), standard_normal=True, ) transforms.append(normalize) # Resize: note that resize is a no-op if the tensor has the desired size already resize = Resize(size, size, in_keys=in_keys) transforms.append(resize) # RRL if out_keys is None: if stack_images: out_keys = ["rrl_vec"] else: out_keys = [f"rrl_vec_{i}" for i in range(len(in_keys))] self.out_keys = out_keys elif stack_images and len(out_keys) != 1: raise ValueError( f"out_key must be of length 1 if stack_images is True. Got out_keys={out_keys}" ) elif not stack_images and len(out_keys) != len(in_keys): raise ValueError( "out_key must be of length equal to in_keys if stack_images is False." ) if stack_images and len(in_keys) > 1: unsqueeze = UnsqueezeTransform( in_keys=in_keys, out_keys=in_keys, unsqueeze_dim=-4, ) transforms.append(unsqueeze) cattensors = CatTensors( in_keys, out_keys[0], dim=-4, ) network = _RRLNet( in_keys=out_keys, out_keys=out_keys, model_name=model_name, del_keys=False, ) flatten = FlattenObservation(-2, -1, out_keys) transforms = [*transforms, cattensors, network, flatten] else: network = _RRLNet( in_keys=in_keys, out_keys=out_keys, model_name=model_name, del_keys=True, ) transforms = [*transforms, network] for transform in transforms: self.append(transform) # if self.download: # self[-1].load_weights(dir_prefix=self.download_path) if self._device is not None: self.to(self._device) if self._dtype is not None: self.to(self._dtype) def to(self, dest: Union[DEVICE_TYPING, torch.dtype]): if isinstance(dest, torch.dtype): self._dtype = dest else: self._device = dest return super().to(dest) @property def device(self): return self._device @property def dtype(self): return self._dtype
agenthive-dev
rlhive/sim_algos/helpers/rrl_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Multi-node distributed data collection with submitit in contexts where jobs can't launch other jobs. The default configuration will ask for 8 nodes with 1 GPU each and 32 procs / node. It should reach a collection speed of roughly 15-25K fps, or better depending on the cluster specs. The logic of the script is the following: we create a `main()` function that executes or code (in this case just a data collection but in practice a training loop should be present). Since this `main()` function cannot launch sub-jobs by design, we launch the script from the jump host and pass the slurm specs to submitit. *Note*: Although we don't go in much details into this in this script, the specs of the training node and the specs of the inference nodes can differ (look at the DEFAULT_SLURM_CONF and DEFAULT_SLURM_CONF_MAIN dictionaries below). """ import time from argparse import ArgumentParser import torch from torchrl.collectors.distributed import submitit_delayed_launcher from torchrl.collectors.distributed.default_configs import ( DEFAULT_SLURM_CONF, DEFAULT_SLURM_CONF_MAIN, ) parser = ArgumentParser() parser.add_argument("--partition", "-p", help="slurm partition to use") parser.add_argument("--num_jobs", type=int, default=8, help="Number of jobs") parser.add_argument("--tcp_port", type=int, default=1234, help="TCP port") parser.add_argument( "--num_workers", type=int, default=8, help="Number of workers per node" ) parser.add_argument( "--gpus_per_node", "--gpus-per-node", "-G", type=int, default=1, help="Number of GPUs per node. If greater than 0, the backend used will be NCCL.", ) parser.add_argument( "--cpus_per_task", "--cpus-per-task", "-c", type=int, default=32, help="Number of CPUs per node.", ) parser.add_argument( "--sync", action="store_true", help="Use --sync to collect data synchronously." ) parser.add_argument( "--frames_per_batch", "--frames-per-batch", default=4000, type=int, help="Number of frames in each batch of data. Must be " "divisible by the product of nodes and workers if sync, by the number of " "workers otherwise.", ) parser.add_argument( "--total_frames", "--total-frames", default=10_000_000, type=int, help="Total number of frames collected by the collector.", ) parser.add_argument( "--time", "-t", default="1:00:00", help="Timeout for the nodes", ) parser.add_argument( "--backend", "-b", default="gloo", help="Backend for the collector", ) parser.add_argument("--env_name", default="franka_micro_random-v3") parser.add_argument("--r3m", action="store_true") args = parser.parse_args() slurm_gpus_per_node = args.gpus_per_node slurm_time = args.time backend = args.backend DEFAULT_SLURM_CONF["slurm_gpus_per_node"] = slurm_gpus_per_node DEFAULT_SLURM_CONF["slurm_time"] = slurm_time DEFAULT_SLURM_CONF["slurm_cpus_per_task"] = args.cpus_per_task DEFAULT_SLURM_CONF["slurm_partition"] = args.partition DEFAULT_SLURM_CONF_MAIN["slurm_partition"] = args.partition DEFAULT_SLURM_CONF_MAIN["slurm_time"] = slurm_time num_jobs = args.num_jobs tcp_port = args.tcp_port num_workers = args.num_workers sync = args.sync total_frames = args.total_frames frames_per_batch = args.frames_per_batch device = "cpu" if backend == "gloo" else "cuda:0" def make_env(args): def constructor(): from rlhive import RoboHiveEnv from torchrl.envs import EnvCreator, ParallelEnv, R3MTransform, TransformedEnv from torchrl.envs.libs.gym import GymEnv if args.num_workers > 1: penv = ParallelEnv( args.num_workers, # EnvCreator(lambda: RoboHiveEnv(args.env_name, device="cuda:0")), EnvCreator(lambda: GymEnv("Pendulum-v0", device="cuda:0")), ) else: # penv = RoboHiveEnv(args.env_name, device="cuda:0") penv = GymEnv("Pendulum-v0", device="cuda:0") if "visual" in args.env_name: if args.r3m: tenv = TransformedEnv( penv, R3MTransform( in_keys=["pixels"], download=True, model_name="resnet50" ), ) else: tenv = penv else: tenv = penv return tenv return constructor @submitit_delayed_launcher( num_jobs=num_jobs, backend=backend, tcpport=tcp_port, ) def main(): assert torch.cuda.device_count() import tqdm from torchrl.collectors import SyncDataCollector from torchrl.collectors.collectors import RandomPolicy from torchrl.collectors.distributed.generic import DistributedDataCollector from torchrl.envs import EnvCreator collector_class = SyncDataCollector collector = DistributedDataCollector( [EnvCreator(make_env(args))] * num_jobs, policy=RandomPolicy(make_env(args)().action_spec), launcher="submitit_delayed", frames_per_batch=frames_per_batch, total_frames=total_frames, tcp_port=tcp_port, collector_class=collector_class, num_workers_per_collector=args.num_workers, collector_kwargs={ "device": "cuda:0" if slurm_gpus_per_node else "cpu", "storing_device": device, }, storing_device="cpu", backend=backend, sync=sync, ) counter = 0 pbar = tqdm.tqdm(total=collector.total_frames) for i, data in enumerate(collector): pbar.update(data.numel()) pbar.set_description(f"data shape: {data.shape}, data device: {data.device}") if i >= 10: counter += data.numel() if i == 10: t0 = time.time() t1 = time.time() print(f"time elapsed: {t1-t0}s, rate: {counter/(t1-t0)} fps") collector.shutdown() exit() if __name__ == "__main__": main()
agenthive-dev
examples/collection_speed_delayed.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from omegaconf import DictConfig os.environ["sim_backend"] = "MUJOCO" def main(args: DictConfig): import numpy as np import torch.cuda import tqdm from rlhive.rl_envs import RoboHiveEnv from tensordict import TensorDict from torch import nn, optim from torchrl.collectors import MultiaSyncDataCollector from torchrl.data import TensorDictPrioritizedReplayBuffer, TensorDictReplayBuffer from torchrl.data.replay_buffers.storages import LazyMemmapStorage # from torchrl.envs import SerialEnv as ParallelEnv, R3MTransform, SelectTransform, TransformedEnv from torchrl.envs import ( CatTensors, EnvCreator, ParallelEnv, R3MTransform, SelectTransform, TransformedEnv, ) from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling from torchrl.envs.utils import set_exploration_mode, step_mdp from torchrl.modules import MLP, NormalParamWrapper, SafeModule from torchrl.modules.distributions import TanhNormal from torchrl.modules.tensordict_module.actors import ( ProbabilisticActor, ValueOperator, ) from torchrl.objectives import SoftUpdate from torchrl.objectives.deprecated import REDQLoss_deprecated as REDQLoss from torchrl.record import VideoRecorder from torchrl.record.loggers.wandb import WandbLogger from torchrl.trainers import Recorder # =========================================================================================== # Env constructor # --------------- # - Use the RoboHiveEnv class to wrap robohive envs in torchrl's GymWrapper # - Add transforms immediately after that: # - SelectTransform: selects the relevant kesy from our output # - R3MTransform # - FlattenObservation: The images delivered by robohive have a singleton dim to start with, we need to flatten that # - RewardScaling # # One can also possibly use ObservationNorm. # # TIPS: # - For faster execution, you should follow this abstract scheme, where we reduce the data # to be passed from worker to worker to a minimum, we apply R3M to a batch and append the # rest of the transforms afterward: # # >>> env = TransformedEnv( # ... ParallelEnv(N, lambda: TransformedEnv(RoboHiveEnv(...), SelectTransform(...))), # ... Compose( # ... R3MTransform(...), # ... FlattenObservation(...), # ... *other_transforms, # ... )) # def traj_is_solved(done, solved): solved = solved.view_as(done) done_cumsum = done.cumsum(-2) count = 0 _i = 0 for _i, u in enumerate(done_cumsum.unique()): is_solved = solved[done_cumsum == u].any() count += is_solved return count / (_i + 1) def traj_total_reward(done, reward): reward = reward.view_as(done) done_cumsum = done.cumsum(-2) count = 0 _i = 0 for _i, u in enumerate(done_cumsum.unique()): count += reward[done_cumsum == u].sum() return count / (_i + 1) def make_env(num_envs, task, visual_transform, reward_scaling, device): if num_envs > 1: base_env = ParallelEnv( num_envs, EnvCreator(lambda: RoboHiveEnv(task, device=device)) ) else: base_env = RoboHiveEnv(task, device=device) env = make_transformed_env( env=base_env, reward_scaling=reward_scaling, visual_transform=visual_transform, ) return env def make_transformed_env( env, reward_scaling=5.0, visual_transform="r3m", ): """ Apply transforms to the env (such as reward scaling and state normalization) """ env = TransformedEnv( env, SelectTransform( "solved", "pixels", "observation", "rwd_dense", "rwd_sparse" ), ) if visual_transform == "r3m": vec_keys = ["r3m_vec"] selected_keys = ["observation", "r3m_vec"] env.append_transform( Compose( R3MTransform("resnet50", in_keys=["pixels"], download=True).eval(), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 elif visual_transform == "rrl": vec_keys = ["r3m_vec"] selected_keys = ["observation", "r3m_vec"] env.append_transform( Compose( R3MTransform( "resnet50", in_keys=["pixels"], download="IMAGENET1K_V2" ).eval(), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 elif not visual_transform: selected_keys = ["observation"] else: raise NotImplementedError(visual_transform) env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling)) out_key = "observation_vector" env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key)) return env # =========================================================================================== # Making a recorder # ----------------- # # A `Recorder` is a dedicated torchrl class that will run the policy in the test env # once every X steps (eg X=1M). # def make_recorder( task: str, frame_skip: int, record_interval: int, actor_model_explore: object, eval_traj: int, env_configs: dict, wandb_logger: WandbLogger, num_envs: int, ): test_env = make_env(num_envs=num_envs, task=task, **env_configs) if "visual" in task: test_env.insert_transform( 0, VideoRecorder(wandb_logger, "test", in_keys=["pixels"]) ) test_env.reset() recorder_obj = Recorder( record_frames=eval_traj * test_env.horizon, frame_skip=frame_skip, policy_exploration=actor_model_explore, recorder=test_env, exploration_mode="mean", record_interval=record_interval, log_keys=["reward", "solved", "done", "rwd_sparse"], out_keys={ "reward": "r_evaluation", "solved": "success", "done": "done", "rwd_sparse": "rwd_sparse", }, ) return recorder_obj # =========================================================================================== # Relplay buffers # --------------- # # TorchRL also provides prioritized RBs if needed. # def make_replay_buffer( prb: bool, buffer_size: int, buffer_scratch_dir: str, device: torch.device, prefetch: int = 10, ): if prb: replay_buffer = TensorDictPrioritizedReplayBuffer( alpha=0.7, beta=0.5, pin_memory=False, prefetch=prefetch, storage=LazyMemmapStorage( buffer_size, scratch_dir=buffer_scratch_dir, device=device, ), ) else: replay_buffer = TensorDictReplayBuffer( pin_memory=False, prefetch=prefetch, storage=LazyMemmapStorage( buffer_size, scratch_dir=buffer_scratch_dir, device=device, ), ) return replay_buffer # =========================================================================================== # Dataloader # ---------- # # This is a simplified version of the dataloder # @torch.no_grad() @set_exploration_mode("random") def dataloader( total_frames, fpb, train_env, actor, actor_collection, device_collection ): params = TensorDict( {k: v for k, v in actor.named_parameters()}, batch_size=[] ).unflatten_keys(".") params_collection = TensorDict( {k: v for k, v in actor_collection.named_parameters()}, batch_size=[] ).unflatten_keys(".") _prev = None collected_frames = 0 while collected_frames < total_frames: params_collection.update_(params) batch = TensorDict( {}, batch_size=[fpb, *train_env.batch_size], device=device_collection ) for t in range(fpb): if _prev is None: _prev = train_env.reset() _reset = _prev["_reset"] = _prev["done"].clone().squeeze(-1) if _reset.any(): _prev = train_env.reset(_prev) _new = train_env.step(actor_collection(_prev)) batch[t] = _new _prev = step_mdp(_new, exclude_done=False) collected_frames += batch.numel() yield batch # customize device at will device = args.device torch.manual_seed(args.seed) np.random.seed(args.seed) # Create Environment env_configs = { "reward_scaling": args.reward_scaling, "visual_transform": args.visual_transform, "device": "cpu", } train_env = make_env(num_envs=args.env_per_collector, task=args.task, **env_configs) # add forward pass for initialization with proof env proof_env = make_env(num_envs=1, task=args.task, **env_configs) # Create Agent # Define Actor Network in_keys = ["observation_vector"] action_spec = proof_env.action_spec actor_net_kwargs = { "num_cells": [256, 256], "out_features": 2 * action_spec.shape[-1], "activation_class": nn.ReLU, } actor_net = MLP(**actor_net_kwargs) dist_class = TanhNormal dist_kwargs = { "min": action_spec.space.minimum, "max": action_spec.space.maximum, "tanh_loc": True, } actor_net = NormalParamWrapper( actor_net, scale_mapping=f"biased_softplus_{1.0}", scale_lb=0.1, ) in_keys_actor = in_keys actor_module = SafeModule( actor_net, in_keys=in_keys_actor, out_keys=[ "loc", "scale", ], ) actor = ProbabilisticActor( spec=action_spec, in_keys=["loc", "scale"], module=actor_module, distribution_class=dist_class, distribution_kwargs=dist_kwargs, default_interaction_mode="random", return_log_prob=True, ) # Define Critic Network qvalue_net_kwargs = { "num_cells": [256, 256], "out_features": 1, "activation_class": nn.ReLU, } qvalue_net = MLP( **qvalue_net_kwargs, ) qvalue = ValueOperator( in_keys=["action"] + in_keys, module=qvalue_net, ) model = actor, qvalue = nn.ModuleList([actor, qvalue]).to(device) # init nets with torch.no_grad(), set_exploration_mode("random"): td = proof_env.reset() td = td.to(device) for net in model: net(td) del td proof_env.close() actor_model_explore = model[0] # Create REDQ loss loss_module = REDQLoss( actor_network=model[0], qvalue_network=model[1], gamma=args.gamma, loss_function="smooth_l1", ) # Define Target Network Updater target_net_updater = SoftUpdate(loss_module, args.target_update_polyak) # Make Replay Buffer replay_buffer = make_replay_buffer( prb=args.prb, buffer_size=args.buffer_size, buffer_scratch_dir=args.buffer_scratch_dir, device="cpu", ) # Optimizers params = list(loss_module.parameters()) optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay) rewards = [] rewards_eval = [] # Main loop target_net_updater.init_() collected_frames = 0 episodes = 0 optim_steps = 0 pbar = tqdm.tqdm(total=args.total_frames) r0 = None loss = None logger = WandbLogger( exp_name=args.task, project=args.wandb_project, name=args.exp_name, config=args, entity=args.wandb_entity, mode=args.wandb_mode, ) # Trajectory recorder for evaluation recorder = make_recorder( task=args.task, frame_skip=args.frame_skip, record_interval=args.record_interval, actor_model_explore=actor_model_explore, eval_traj=args.eval_traj, env_configs=env_configs, wandb_logger=logger, num_envs=args.num_record_envs, ) collector_device = args.device_collection if isinstance(collector_device, str): collector_device = [collector_device] collector = MultiaSyncDataCollector( create_env_fn=[train_env for _ in collector_device], policy=actor_model_explore, total_frames=args.total_frames, max_frames_per_traj=args.frames_per_batch, frames_per_batch=args.frames_per_batch, init_random_frames=args.init_random_frames, reset_at_each_iter=False, postproc=None, split_trajs=False, devices=collector_device, # device for execution passing_devices=collector_device, # device where data will be stored and passed seed=args.seed, pin_memory=False, update_at_each_batch=False, exploration_mode="random", ) for i, batch in enumerate(collector): collector.update_policy_weights_() if r0 is None: r0 = batch["reward"].sum(-1).mean().item() pbar.update(batch.numel()) # extend the replay buffer with the new data batch = batch.cpu().view(-1) current_frames = batch.numel() collected_frames += current_frames episodes += batch["done"].sum() replay_buffer.extend(batch) # optimization steps if collected_frames >= args.init_random_frames: ( total_losses, actor_losses, q_losses, alpha_losses, alphas, entropies, ) = ([], [], [], [], [], []) for _ in range( max(1, args.frames_per_batch * args.utd_ratio // args.batch_size) ): optim_steps += 1 # sample from replay buffer sampled_tensordict = ( replay_buffer.sample(args.batch_size).clone().to(device) ) loss_td = loss_module(sampled_tensordict) actor_loss = loss_td["loss_actor"] q_loss = loss_td["loss_qvalue"] alpha_loss = loss_td["loss_alpha"] loss = actor_loss + q_loss + alpha_loss optimizer.zero_grad() loss.backward() gn = torch.nn.utils.clip_grad_norm_(params, args.clip_norm) optimizer.step() # update qnet_target params target_net_updater.step() # update priority if args.prb: replay_buffer.update_tensordict_priority(sampled_tensordict) total_losses.append(loss.item()) actor_losses.append(actor_loss.item()) q_losses.append(q_loss.item()) alpha_losses.append(alpha_loss.item()) alphas.append(loss_td["alpha"].item()) entropies.append(loss_td["entropy"].item()) rewards.append((i, batch["reward"].mean().item())) logger.log_scalar("train_reward", rewards[-1][1], step=collected_frames) logger.log_scalar("optim_steps", optim_steps, step=collected_frames) logger.log_scalar("episodes", episodes, step=collected_frames) if loss is not None: logger.log_scalar( "total_loss", np.mean(total_losses), step=collected_frames ) logger.log_scalar( "actor_loss", np.mean(actor_losses), step=collected_frames ) logger.log_scalar("q_loss", np.mean(q_losses), step=collected_frames) logger.log_scalar( "alpha_loss", np.mean(alpha_losses), step=collected_frames ) logger.log_scalar("alpha", np.mean(alphas), step=collected_frames) logger.log_scalar("entropy", np.mean(entropies), step=collected_frames) logger.log_scalar("grad_norm", gn, step=collected_frames) td_record = recorder(None) if td_record is not None: rewards_eval.append( ( i, td_record["r_evaluation"] / recorder.recorder.batch_size.numel(), # divide by number of eval worker ) ) logger.log_scalar("test_reward", rewards_eval[-1][1], step=collected_frames) solved = traj_is_solved(td_record["done"], td_record["success"]) logger.log_scalar("success", solved, step=collected_frames) rwd_sparse = traj_total_reward(td_record["done"], td_record["rwd_sparse"]) logger.log_scalar("rwd_sparse", rwd_sparse, step=collected_frames) if len(rewards_eval): pbar.set_description( f"reward: {rewards[-1][1]: 4.4f} (r0 = {r0: 4.4f}), test reward: {rewards_eval[-1][1]: 4.4f}, solved: {solved}" ) del batch # gc.collect() if __name__ == "__main__": main()
agenthive-dev
examples/redq.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from omegaconf import DictConfig os.environ["sim_backend"] = "MUJOCO" os.environ["MUJOCO_GL"] = "egl" def main(args: DictConfig): import numpy as np import torch.cuda import tqdm from rlhive.rl_envs import RoboHiveEnv from sac_loss import SACLoss from tensordict import TensorDict from torch import nn, optim from torchrl.collectors import MultiaSyncDataCollector from torchrl.data import TensorDictPrioritizedReplayBuffer, TensorDictReplayBuffer from torchrl.data.replay_buffers.storages import LazyMemmapStorage # from torchrl.envs import SerialEnv as ParallelEnv, R3MTransform, SelectTransform, TransformedEnv from torchrl.envs import ( CatTensors, EnvCreator, ParallelEnv, R3MTransform, SelectTransform, TransformedEnv, ) from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling from torchrl.envs.utils import set_exploration_mode, step_mdp from torchrl.modules import MLP, NormalParamWrapper, SafeModule from torchrl.modules.distributions import TanhNormal from torchrl.modules.tensordict_module.actors import ( ProbabilisticActor, ValueOperator, ) from torchrl.objectives import SoftUpdate from torchrl.record import VideoRecorder from torchrl.record.loggers.wandb import WandbLogger from torchrl.trainers import Recorder # =========================================================================================== # Env constructor # --------------- # - Use the RoboHiveEnv class to wrap robohive envs in torchrl's GymWrapper # - Add transforms immediately after that: # - SelectTransform: selects the relevant kesy from our output # - R3MTransform # - FlattenObservation: The images delivered by robohive have a singleton dim to start with, we need to flatten that # - RewardScaling # # One can also possibly use ObservationNorm. # # TIPS: # - For faster execution, you should follow this abstract scheme, where we reduce the data # to be passed from worker to worker to a minimum, we apply R3M to a batch and append the # rest of the transforms afterward: # # >>> env = TransformedEnv( # ... ParallelEnv(N, lambda: TransformedEnv(RoboHiveEnv(...), SelectTransform(...))), # ... Compose( # ... R3MTransform(...), # ... FlattenObservation(...), # ... *other_transforms, # ... )) # def traj_is_solved(done, solved): solved = solved.view_as(done) done_cumsum = done.cumsum(-2) count = 0 _i = 0 for _i, u in enumerate(done_cumsum.unique()): is_solved = solved[done_cumsum == u].any() count += is_solved return count / (_i + 1) def traj_total_reward(done, reward): reward = reward.view_as(done) done_cumsum = done.cumsum(-2) count = 0 _i = 0 for _i, u in enumerate(done_cumsum.unique()): count += reward[done_cumsum == u].sum() return count / (_i + 1) def make_env(num_envs, task, visual_transform, reward_scaling, device): if num_envs > 1: base_env = ParallelEnv( num_envs, EnvCreator(lambda: RoboHiveEnv(task, device=device)) ) else: base_env = RoboHiveEnv(task, device=device) env = make_transformed_env( env=base_env, reward_scaling=reward_scaling, visual_transform=visual_transform, ) return env def make_transformed_env( env, reward_scaling=5.0, visual_transform="r3m", ): """ Apply transforms to the env (such as reward scaling and state normalization) """ env = TransformedEnv( env, SelectTransform( "solved", "pixels", "observation", "rwd_dense", "rwd_sparse" ), ) if visual_transform == "r3m": vec_keys = ["r3m_vec"] selected_keys = ["observation", "r3m_vec"] env.append_transform( Compose( R3MTransform("resnet50", in_keys=["pixels"], download=True).eval(), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 elif visual_transform == "rrl": vec_keys = ["r3m_vec"] selected_keys = ["observation", "r3m_vec"] env.append_transform( Compose( R3MTransform( "resnet50", in_keys=["pixels"], download="IMAGENET1K_V2" ).eval(), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 elif not visual_transform: selected_keys = ["observation"] else: raise NotImplementedError(visual_transform) env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling)) out_key = "observation_vector" env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key)) return env # =========================================================================================== # Making a recorder # ----------------- # # A `Recorder` is a dedicated torchrl class that will run the policy in the test env # once every X steps (eg X=1M). # def make_recorder( task: str, frame_skip: int, record_interval: int, actor_model_explore: object, eval_traj: int, env_configs: dict, wandb_logger: WandbLogger, num_envs: int, ): test_env = make_env(num_envs=num_envs, task=task, **env_configs) if "visual" in task: test_env.insert_transform( 0, VideoRecorder(wandb_logger, "test", in_keys=["pixels"]) ) test_env.reset() recorder_obj = Recorder( record_frames=eval_traj * test_env.horizon, frame_skip=frame_skip, policy_exploration=actor_model_explore, recorder=test_env, exploration_mode="mean", record_interval=record_interval, log_keys=["reward", "solved", "done", "rwd_sparse"], out_keys={ "reward": "r_evaluation", "solved": "success", "done": "done", "rwd_sparse": "rwd_sparse", }, ) return recorder_obj # =========================================================================================== # Relplay buffers # --------------- # # TorchRL also provides prioritized RBs if needed. # def make_replay_buffer( prb: bool, buffer_size: int, buffer_scratch_dir: str, device: torch.device, prefetch: int = 10, ): if prb: replay_buffer = TensorDictPrioritizedReplayBuffer( alpha=0.7, beta=0.5, pin_memory=False, prefetch=prefetch, storage=LazyMemmapStorage( buffer_size, scratch_dir=buffer_scratch_dir, device=device, ), ) else: replay_buffer = TensorDictReplayBuffer( pin_memory=False, prefetch=prefetch, storage=LazyMemmapStorage( buffer_size, scratch_dir=buffer_scratch_dir, device=device, ), ) return replay_buffer # =========================================================================================== # Dataloader # ---------- # # This is a simplified version of the dataloder # @torch.no_grad() @set_exploration_mode("random") def dataloader( total_frames, fpb, train_env, actor, actor_collection, device_collection ): params = TensorDict( {k: v for k, v in actor.named_parameters()}, batch_size=[] ).unflatten_keys(".") params_collection = TensorDict( {k: v for k, v in actor_collection.named_parameters()}, batch_size=[] ).unflatten_keys(".") _prev = None collected_frames = 0 while collected_frames < total_frames: params_collection.update_(params) batch = TensorDict( {}, batch_size=[fpb, *train_env.batch_size], device=device_collection ) for t in range(fpb): if _prev is None: _prev = train_env.reset() _reset = _prev["_reset"] = _prev["done"].clone().squeeze(-1) if _reset.any(): _prev = train_env.reset(_prev) _new = train_env.step(actor_collection(_prev)) batch[t] = _new _prev = step_mdp(_new, exclude_done=False) collected_frames += batch.numel() yield batch # customize device at will device = args.device torch.manual_seed(args.seed) np.random.seed(args.seed) # Create Environment env_configs = { "reward_scaling": args.reward_scaling, "visual_transform": args.visual_transform, "device": device, } train_env = make_env(num_envs=args.env_per_collector, task=args.task, **env_configs) # add forward pass for initialization with proof env proof_env = make_env(num_envs=1, task=args.task, **env_configs) # Create Agent # Define Actor Network in_keys = ["observation_vector"] action_spec = proof_env.action_spec actor_net_kwargs = { "num_cells": [256, 256], "out_features": 2 * action_spec.shape[-1], "activation_class": nn.ReLU, } actor_net = MLP(**actor_net_kwargs) dist_class = TanhNormal dist_kwargs = { "min": action_spec.space.minimum, "max": action_spec.space.maximum, "tanh_loc": True, } actor_net = NormalParamWrapper( actor_net, scale_mapping=f"biased_softplus_{1.0}", scale_lb=0.1, ) in_keys_actor = in_keys actor_module = SafeModule( actor_net, in_keys=in_keys_actor, out_keys=[ "loc", "scale", ], ) actor = ProbabilisticActor( spec=action_spec, in_keys=["loc", "scale"], module=actor_module, distribution_class=dist_class, distribution_kwargs=dist_kwargs, default_interaction_mode="random", return_log_prob=True, ) # Define Critic Network qvalue_net_kwargs = { "num_cells": [256, 256], "out_features": 1, "activation_class": nn.ReLU, } qvalue_net = MLP( **qvalue_net_kwargs, ) qvalue = ValueOperator( in_keys=["action"] + in_keys, module=qvalue_net, ) model = actor, qvalue = nn.ModuleList([actor, qvalue]).to(device) # init nets with torch.no_grad(), set_exploration_mode("random"): td = proof_env.reset() td = td.to(device) for net in model: net(td) del td proof_env.close() actor_model_explore = model[0] # Create SAC loss loss_module = SACLoss( actor_network=model[0], qvalue_network=model[1], num_qvalue_nets=2, gamma=args.gamma, loss_function="smooth_l1", ) # Define Target Network Updater target_net_updater = SoftUpdate(loss_module, args.target_update_polyak) # Make Replay Buffer replay_buffer = make_replay_buffer( prb=args.prb, buffer_size=args.buffer_size, buffer_scratch_dir=args.buffer_scratch_dir, device=args.device, ) # Optimizers params = list(loss_module.parameters()) optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay) rewards = [] rewards_eval = [] # Main loop target_net_updater.init_() collected_frames = 0 episodes = 0 optim_steps = 0 pbar = tqdm.tqdm(total=args.total_frames) r0 = None loss = None logger = WandbLogger( exp_name=args.task, project=args.wandb_project, name=args.exp_name, config=args, entity=args.wandb_entity, mode=args.wandb_mode, ) # Trajectory recorder for evaluation recorder = make_recorder( task=args.task, frame_skip=args.frame_skip, record_interval=args.record_interval, actor_model_explore=actor_model_explore, eval_traj=args.eval_traj, env_configs=env_configs, wandb_logger=logger, num_envs=args.num_record_envs, ) collector_device = args.device_collection if isinstance(collector_device, str): collector_device = [collector_device] collector = MultiaSyncDataCollector( create_env_fn=[train_env for _ in collector_device], policy=actor_model_explore, total_frames=args.total_frames, max_frames_per_traj=args.frames_per_batch, frames_per_batch=args.frames_per_batch, init_random_frames=args.init_random_frames, reset_at_each_iter=False, postproc=None, split_trajs=False, devices=collector_device, # device for execution storing_devices=collector_device, # device where data will be stored and passed seed=args.seed, pin_memory=False, update_at_each_batch=False, exploration_mode="random", ) for i, batch in enumerate(collector): collector.update_policy_weights_() if r0 is None: r0 = batch["reward"].sum(-1).mean().item() pbar.update(batch.numel()) # extend the replay buffer with the new data batch = batch.cpu().view(-1) current_frames = batch.numel() collected_frames += current_frames episodes += batch["done"].sum() replay_buffer.extend(batch) # optimization steps if collected_frames >= args.init_random_frames: ( total_losses, actor_losses, q_losses, alpha_losses, alphas, entropies, ) = ([], [], [], [], [], []) for _ in range( max(1, args.frames_per_batch * args.utd_ratio // args.batch_size) ): optim_steps += 1 # sample from replay buffer sampled_tensordict = ( replay_buffer.sample(args.batch_size).clone().to(device) ) loss_td = loss_module(sampled_tensordict) actor_loss = loss_td["loss_actor"] q_loss = loss_td["loss_qvalue"] alpha_loss = loss_td["loss_alpha"] loss = actor_loss + q_loss + alpha_loss optimizer.zero_grad() loss.backward() gn = torch.nn.utils.clip_grad_norm_(params, args.clip_norm) optimizer.step() # update qnet_target params target_net_updater.step() # update priority if args.prb: replay_buffer.update_tensordict_priority(sampled_tensordict) total_losses.append(loss.item()) actor_losses.append(actor_loss.item()) q_losses.append(q_loss.item()) alpha_losses.append(alpha_loss.item()) alphas.append(loss_td["alpha"].item()) entropies.append(loss_td["entropy"].item()) rewards.append((i, batch["reward"].mean().item())) logger.log_scalar("train_reward", rewards[-1][1], step=collected_frames) logger.log_scalar("optim_steps", optim_steps, step=collected_frames) logger.log_scalar("episodes", episodes, step=collected_frames) if loss is not None: logger.log_scalar( "total_loss", np.mean(total_losses), step=collected_frames ) logger.log_scalar( "actor_loss", np.mean(actor_losses), step=collected_frames ) logger.log_scalar("q_loss", np.mean(q_losses), step=collected_frames) logger.log_scalar( "alpha_loss", np.mean(alpha_losses), step=collected_frames ) logger.log_scalar("alpha", np.mean(alphas), step=collected_frames) logger.log_scalar("entropy", np.mean(entropies), step=collected_frames) logger.log_scalar("grad_norm", gn, step=collected_frames) td_record = recorder(None) if td_record is not None: rewards_eval.append( ( i, td_record["r_evaluation"] / recorder.recorder.batch_size.numel(), # divide by number of eval worker ) ) logger.log_scalar("test_reward", rewards_eval[-1][1], step=collected_frames) solved = traj_is_solved(td_record["done"], td_record["success"]) logger.log_scalar("success", solved, step=collected_frames) rwd_sparse = traj_total_reward(td_record["done"], td_record["rwd_sparse"]) logger.log_scalar("rwd_sparse", rwd_sparse, step=collected_frames) if len(rewards_eval): pbar.set_description( f"reward: {rewards[-1][1]: 4.4f} (r0 = {r0: 4.4f}), test reward: {rewards_eval[-1][1]: 4.4f}, solved: {solved}" ) del batch # gc.collect()
agenthive-dev
examples/sac.py
"""Entry point for RLHive""" import hydra from omegaconf import DictConfig from redq import main as train_redq from sac import main as train_sac @hydra.main(config_name="sac_mixed.yaml", config_path="config") def main(args: DictConfig): if args.algo == "sac": train_sac(args) if args.algo == "redq": train_redq(args) else: raise NotImplementedError if __name__ == "__main__": main()
agenthive-dev
examples/train.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os os.environ["sim_backend"] = "MUJOCO" import argparse import time import tqdm from rlhive.rl_envs import RoboHiveEnv from torchrl.collectors.collectors import MultiaSyncDataCollector, RandomPolicy from torchrl.collectors.distributed import DistributedDataCollector, RPCDataCollector from torchrl.envs import EnvCreator, ParallelEnv, R3MTransform, TransformedEnv parser = argparse.ArgumentParser() parser.add_argument("--num_workers", default=2, type=int) parser.add_argument("--num_collectors", default=4, type=int) parser.add_argument("--frames_per_batch", default=200, type=int) parser.add_argument("--total_frames", default=20_000, type=int) parser.add_argument("--r3m", action="store_true") parser.add_argument("--env_name", default="franka_micro_random-v3") if __name__ == "__main__": args = parser.parse_args() if args.num_workers > 1: penv = ParallelEnv( args.num_workers, EnvCreator(lambda: RoboHiveEnv(args.env_name, device="cpu")), ) else: penv = RoboHiveEnv(args.env_name, device="cpu") if "visual" in args.env_name: if args.r3m: tenv = TransformedEnv( penv, R3MTransform(in_keys=["pixels"], download=True, model_name="resnet50"), ) else: tenv = penv else: tenv = penv # tenv.transform[-1].init_stats(reduce_dim=(0, 1), cat_dim=1, # num_iter=1000) policy = RandomPolicy(tenv.action_spec) # some random policy device = "cpu" slurm_conf = { "timeout_min": 100, "slurm_partition": "train", "slurm_cpus_per_gpu": 12, "slurm_gpus_per_task": 1, } collector = DistributedDataCollector( [tenv] * args.num_collectors, policy=policy, frames_per_batch=args.frames_per_batch, total_frames=args.total_frames, storing_device=device, split_trajs=False, sync=True, launcher="mp", slurm_kwargs=slurm_conf, backend="gloo", ) pbar = tqdm.tqdm(total=args.total_frames) for i, data in enumerate(collector): if i == 3: t0 = time.time() total = 0 if i >= 3: total += data.numel() pbar.update(data.numel()) t = time.time() - t0 print(f"{args.env_name}, Time: {t:4.4f}, Rate: {args.total_frames / t: 4.4f} fps") del collector del tenv
agenthive-dev
examples/collection_speed.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from numbers import Number from typing import Union import numpy as np import torch from tensordict.nn import TensorDictSequential from tensordict.tensordict import TensorDict, TensorDictBase from torch import Tensor from torchrl.envs.utils import set_exploration_mode, step_mdp from torchrl.modules import SafeModule from torchrl.objectives.common import LossModule from torchrl.objectives.utils import ( distance_loss, next_state_value as get_next_state_value, ) try: from functorch import vmap FUNCTORCH_ERR = "" _has_functorch = True except ImportError as err: FUNCTORCH_ERR = str(err) _has_functorch = False class SACLoss(LossModule): """SAC Loss module. Args: actor_network (SafeModule): the actor to be trained qvalue_network (SafeModule): a single Q-value network that will be multiplicated as many times as needed. num_qvalue_nets (int, optional): Number of Q-value networks to be trained. Default is 10. gamma (Number, optional): gamma decay factor. Default is 0.99. priotity_key (str, optional): Key where to write the priority value for prioritized replay buffers. Default is `"td_error"`. loss_function (str, optional): loss function to be used for the Q-value. Can be one of `"smooth_l1"`, "l2", "l1", Default is "smooth_l1". alpha_init (float, optional): initial entropy multiplier. Default is 1.0. min_alpha (float, optional): min value of alpha. Default is 0.1. max_alpha (float, optional): max value of alpha. Default is 10.0. fixed_alpha (bool, optional): whether alpha should be trained to match a target entropy. Default is :obj:`False`. target_entropy (Union[str, Number], optional): Target entropy for the stochastic policy. Default is "auto". delay_qvalue (bool, optional): Whether to separate the target Q value networks from the Q value networks used for data collection. Default is :obj:`False`. gSDE (bool, optional): Knowing if gSDE is used is necessary to create random noise variables. Default is False """ delay_actor: bool = False _explicit: bool = False def __init__( self, actor_network: SafeModule, qvalue_network: SafeModule, num_qvalue_nets: int = 2, gamma: Number = 0.99, priotity_key: str = "td_error", loss_function: str = "smooth_l1", alpha_init: float = 1.0, min_alpha: float = 0.1, max_alpha: float = 10.0, fixed_alpha: bool = False, target_entropy: Union[str, Number] = "auto", delay_qvalue: bool = True, gSDE: bool = False, ): if not _has_functorch: raise ImportError( f"Failed to import functorch with error message:\n{FUNCTORCH_ERR}" ) super().__init__() self.convert_to_functional( actor_network, "actor_network", create_target_params=self.delay_actor, funs_to_decorate=["forward", "get_dist_params"], ) # let's make sure that actor_network has `return_log_prob` set to True self.actor_network.return_log_prob = True self.delay_qvalue = delay_qvalue self.convert_to_functional( qvalue_network, "qvalue_network", num_qvalue_nets, create_target_params=self.delay_qvalue, compare_against=list(actor_network.parameters()), ) self.num_qvalue_nets = num_qvalue_nets self.register_buffer("gamma", torch.tensor(gamma)) self.priority_key = priotity_key self.loss_function = loss_function try: device = next(self.parameters()).device except AttributeError: device = torch.device("cpu") self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device)) self.register_buffer( "min_log_alpha", torch.tensor(min_alpha, device=device).log() ) self.register_buffer( "max_log_alpha", torch.tensor(max_alpha, device=device).log() ) self.fixed_alpha = fixed_alpha if fixed_alpha: self.register_buffer( "log_alpha", torch.tensor(math.log(alpha_init), device=device) ) else: self.register_parameter( "log_alpha", torch.nn.Parameter(torch.tensor(math.log(alpha_init), device=device)), ) if target_entropy == "auto": if actor_network.spec["action"] is None: raise RuntimeError( "Cannot infer the dimensionality of the action. Consider providing " "the target entropy explicitely or provide the spec of the " "action tensor in the actor network." ) target_entropy = -float(np.prod(actor_network.spec["action"].shape)) self.register_buffer( "target_entropy", torch.tensor(target_entropy, device=device) ) self.gSDE = gSDE @property def alpha(self): self.log_alpha.data.clamp_(self.min_log_alpha, self.max_log_alpha) with torch.no_grad(): alpha = self.log_alpha.exp() return alpha def forward(self, tensordict: TensorDictBase) -> TensorDictBase: if self._explicit: # slow but explicit version return self._forward_explicit(tensordict) else: return self._forward_vectorized(tensordict) def _loss_alpha(self, log_pi: Tensor) -> Tensor: if torch.is_grad_enabled() and not log_pi.requires_grad: raise RuntimeError( "expected log_pi to require gradient for the alpha loss)" ) if self.target_entropy is not None: # we can compute this loss even if log_alpha is not a parameter alpha_loss = -self.log_alpha.exp() * (log_pi.detach() + self.target_entropy) else: # placeholder alpha_loss = torch.zeros_like(log_pi) return alpha_loss def _forward_vectorized(self, tensordict: TensorDictBase) -> TensorDictBase: obs_keys = self.actor_network.in_keys tensordict_select = tensordict.select( "reward", "done", "next", *obs_keys, "action" ) actor_params = torch.stack( [self.actor_network_params, self.target_actor_network_params], 0 ) tensordict_actor_grad = tensordict_select.select( *obs_keys ) # to avoid overwriting keys next_td_actor = step_mdp(tensordict_select).select( *self.actor_network.in_keys ) # next_observation -> tensordict_actor = torch.stack([tensordict_actor_grad, next_td_actor], 0) tensordict_actor = tensordict_actor.contiguous() with set_exploration_mode("random"): if self.gSDE: tensordict_actor.set( "_eps_gSDE", torch.zeros(tensordict_actor.shape, device=tensordict_actor.device), ) # vmap doesn't support sampling, so we take it out from the vmap td_params = vmap(self.actor_network.get_dist_params)( tensordict_actor, actor_params, ) if isinstance(self.actor_network, TensorDictSequential): sample_key = self.actor_network[-1].out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) else: sample_key = self.actor_network.out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) tensordict_actor[sample_key] = self._rsample(tensordict_actor_dist) tensordict_actor["sample_log_prob"] = tensordict_actor_dist.log_prob( tensordict_actor[sample_key] ) # repeat tensordict_actor to match the qvalue size _actor_loss_td = ( tensordict_actor[0] .select(*self.qvalue_network.in_keys) .expand(self.num_qvalue_nets, *tensordict_actor[0].batch_size) ) # for actor loss _qval_td = tensordict_select.select(*self.qvalue_network.in_keys).expand( self.num_qvalue_nets, *tensordict_select.select(*self.qvalue_network.in_keys).batch_size, ) # for qvalue loss _next_val_td = ( tensordict_actor[1] .select(*self.qvalue_network.in_keys) .expand(self.num_qvalue_nets, *tensordict_actor[1].batch_size) ) # for next value estimation tensordict_qval = torch.cat( [ _actor_loss_td, _next_val_td, _qval_td, ], 0, ) # cat params q_params_detach = self.qvalue_network_params.detach() qvalue_params = torch.cat( [ q_params_detach, self.target_qvalue_network_params, self.qvalue_network_params, ], 0, ) tensordict_qval = vmap(self.qvalue_network)( tensordict_qval, qvalue_params, ) state_action_value = tensordict_qval.get("state_action_value").squeeze(-1) ( state_action_value_actor, next_state_action_value_qvalue, state_action_value_qvalue, ) = state_action_value.split( [self.num_qvalue_nets, self.num_qvalue_nets, self.num_qvalue_nets], dim=0, ) sample_log_prob = tensordict_actor.get("sample_log_prob").squeeze(-1) ( action_log_prob_actor, next_action_log_prob_qvalue, ) = sample_log_prob.unbind(0) # E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized loss_actor = -( state_action_value_actor.min(0)[0] - self.alpha * action_log_prob_actor ).mean() next_state_value = ( next_state_action_value_qvalue.min(0)[0] - self.alpha * next_action_log_prob_qvalue ) target_value = get_next_state_value( tensordict, gamma=self.gamma, pred_next_val=next_state_value, ) pred_val = state_action_value_qvalue td_error = (pred_val - target_value).pow(2) loss_qval = ( distance_loss( pred_val, target_value.expand_as(pred_val), loss_function=self.loss_function, ) .mean(-1) .sum() * 0.5 ) tensordict.set("td_error", td_error.detach().max(0)[0]) loss_alpha = self._loss_alpha(sample_log_prob) if not loss_qval.shape == loss_actor.shape: raise RuntimeError( f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}" ) td_out = TensorDict( { "loss_actor": loss_actor.mean(), "loss_qvalue": loss_qval.mean(), "loss_alpha": loss_alpha.mean(), "alpha": self.alpha.detach(), "entropy": -sample_log_prob.mean().detach(), "state_action_value_actor": state_action_value_actor.mean().detach(), "action_log_prob_actor": action_log_prob_actor.mean().detach(), "next.state_value": next_state_value.mean().detach(), "target_value": target_value.mean().detach(), }, [], ) return td_out def _forward_explicit(self, tensordict: TensorDictBase) -> TensorDictBase: loss_actor, sample_log_prob = self._loss_actor_explicit(tensordict.clone(False)) loss_qval, td_error = self._loss_qval_explicit(tensordict.clone(False)) tensordict.set("td_error", td_error.detach().max(0)[0]) loss_alpha = self._loss_alpha(sample_log_prob) td_out = TensorDict( { "loss_actor": loss_actor.mean(), "loss_qvalue": loss_qval.mean(), "loss_alpha": loss_alpha.mean(), "alpha": self.alpha.detach(), "entropy": -sample_log_prob.mean().detach(), # "state_action_value_actor": state_action_value_actor.mean().detach(), # "action_log_prob_actor": action_log_prob_actor.mean().detach(), # "next.state_value": next_state_value.mean().detach(), # "target_value": target_value.mean().detach(), }, [], ) return td_out def _rsample( self, dist, ): # separated only for the purpose of making the sampling # deterministic to compare methods return dist.rsample() def _sample_reparam(self, tensordict, params): """Given a policy param batch and input data in a tensordict, writes a reparam sample and log-prob key.""" with set_exploration_mode("random"): if self.gSDE: raise NotImplementedError # vmap doesn't support sampling, so we take it out from the vmap td_params = self.actor_network.get_dist_params( tensordict, params, ) if isinstance(self.actor_network, TensorDictSequential): sample_key = self.actor_network[-1].out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) else: sample_key = self.actor_network.out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) tensordict[sample_key] = self._rsample(tensordict_actor_dist) tensordict["sample_log_prob"] = tensordict_actor_dist.log_prob( tensordict[sample_key] ) return tensordict def _loss_actor_explicit(self, tensordict): tensordict_actor = tensordict.clone(False) actor_params = self.actor_network_params tensordict_actor = self._sample_reparam(tensordict_actor, actor_params) action_log_prob_actor = tensordict_actor["sample_log_prob"] tensordict_qval = tensordict_actor.select(*self.qvalue_network.in_keys).expand( self.num_qvalue_nets, *tensordict_actor.batch_size ) # for actor loss qvalue_params = self.qvalue_network_params.detach() tensordict_qval = vmap(self.qvalue_network)( tensordict_qval, qvalue_params, ) state_action_value_actor = tensordict_qval.get("state_action_value").squeeze(-1) state_action_value_actor = state_action_value_actor.min(0)[0] # E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized loss_actor = ( self.alpha * action_log_prob_actor - state_action_value_actor ).mean() return loss_actor, action_log_prob_actor def _loss_qval_explicit(self, tensordict): next_tensordict = step_mdp(tensordict) next_tensordict = self._sample_reparam( next_tensordict, self.target_actor_network_params ) next_action_log_prob_qvalue = next_tensordict["sample_log_prob"] next_state_action_value_qvalue = vmap(self.qvalue_network, (None, 0))( next_tensordict, self.target_qvalue_network_params, )["state_action_value"].squeeze(-1) next_state_value = ( next_state_action_value_qvalue.min(0)[0] - self.alpha * next_action_log_prob_qvalue ) pred_val = vmap(self.qvalue_network, (None, 0))( tensordict, self.qvalue_network_params, )["state_action_value"].squeeze(-1) target_value = get_next_state_value( tensordict, gamma=self.gamma, pred_next_val=next_state_value, ) # 1/2 * E[Q(s,a) - (r + gamma * (Q(s,a)-alpha log pi(s, a))) loss_qval = ( distance_loss( pred_val, target_value.expand_as(pred_val), loss_function=self.loss_function, ) .mean(-1) .sum() * 0.5 ) td_error = (pred_val - target_value).pow(2) return loss_qval, td_error if __name__ == "__main__": from tensordict.nn import TensorDictModule from torch import nn from torchrl.data import BoundedTensorSpec # Tests the vectorized version of SAC-v2 against plain implementation from torchrl.modules import ProbabilisticActor, ValueOperator from torchrl.modules.distributions import TanhNormal torch.manual_seed(0) action_spec = BoundedTensorSpec(-1, 1, shape=(3,)) class Splitter(nn.Linear): def forward(self, x): loc, scale = super().forward(x).chunk(2, -1) return loc, scale.exp() actor_module = TensorDictModule( Splitter(6, 6), in_keys=["obs"], out_keys=["loc", "scale"] ) actor = ProbabilisticActor( spec=action_spec, in_keys=["loc", "scale"], module=actor_module, distribution_class=TanhNormal, default_interaction_mode="random", return_log_prob=False, ) class QVal(nn.Linear): def forward(self, s: Tensor, a: Tensor) -> Tensor: return super().forward(torch.cat([s, a], -1)) qvalue = ValueOperator(QVal(9, 1), in_keys=["obs", "action"]) _rsample_old = SACLoss._rsample def _rsample_new(self, dist): return torch.ones_like(_rsample_old(self, dist)) SACLoss._rsample = _rsample_new loss = SACLoss(actor, qvalue) for batch in ((), (2, 3)): td_input = TensorDict( { "obs": torch.rand(*batch, 6), "action": torch.rand(*batch, 3).clamp(-1, 1), "next": {"obs": torch.rand(*batch, 6)}, "reward": torch.rand(*batch, 1), "done": torch.zeros(*batch, 1, dtype=torch.bool), }, batch, ) loss._explicit = True loss0 = loss(td_input) loss._explicit = False loss1 = loss(td_input) print("a", loss0["loss_actor"] - loss1["loss_actor"]) print("q", loss0["loss_qvalue"] - loss1["loss_qvalue"])
agenthive-dev
examples/sac_loss.py
import json import random import torch import numpy as np class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def control_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True def stack_tensor_list(tensor_list): return np.array(tensor_list) def stack_tensor_dict_list(tensor_dict_list): """ Stack a list of dictionaries of {tensors or dictionary of tensors}. :param tensor_dict_list: a list of dictionaries of {tensors or dictionary of tensors}. :return: a dictionary of {stacked tensors or dictionary of stacked tensors} """ keys = list(tensor_dict_list[0].keys()) ret = dict() for k in keys: example = tensor_dict_list[0][k] if isinstance(example, dict): v = stack_tensor_dict_list([x[k] for x in tensor_dict_list]) else: v = stack_tensor_list([x[k] for x in tensor_dict_list]) ret[k] = v return ret def tensorize(var, device='cpu'): """ Convert input to torch.Tensor on desired device :param var: type either torch.Tensor or np.ndarray :param device: desired device for output (e.g. cpu, cuda) :return: torch.Tensor mapped to the device """ if type(var) == torch.Tensor: return var.to(device) elif type(var) == np.ndarray: return torch.from_numpy(var).float().to(device) elif type(var) == float: return torch.tensor(var).float() else: print("Variable type not compatible with function.") return None
agenthive-dev
scripts/bc/misc.py
""" Minimize bc loss (MLE, MSE, RWR etc.) with pytorch optimizers """ import logging logging.disable(logging.CRITICAL) import numpy as np import torch import time as timer from tqdm import tqdm from misc import tensorize class BC: def __init__(self, expert_paths, policy, epochs = 5, batch_size = 64, lr = 1e-3, optimizer = None, loss_type = 'MSE', # can be 'MLE' or 'MSE' save_logs = True, logger = None, set_transforms = False, *args, **kwargs, ): self.policy = policy self.expert_paths = expert_paths self.epochs = epochs self.mb_size = batch_size self.logger = logger self.loss_type = loss_type self.save_logs = save_logs self.device = self.policy.device assert (self.loss_type == 'MSE' or self.loss_type == 'MLE') if self.save_logs: assert not self.logger is None if set_transforms: in_shift, in_scale, out_shift, out_scale = self.compute_transformations() self.set_transformations(in_shift, in_scale, out_shift, out_scale) #self.set_variance_with_data(out_scale) # construct optimizer self.optimizer = torch.optim.Adam(self.policy.trainable_params, lr=lr) if optimizer is None else optimizer # Loss criterion if required if loss_type == 'MSE': self.loss_criterion = torch.nn.MSELoss() def compute_transformations(self): # get transformations if self.expert_paths == [] or self.expert_paths is None: in_shift, in_scale, out_shift, out_scale = None, None, None, None else: print(type(self.expert_paths)) if type(self.expert_paths) is list: observations = np.concatenate([path["observations"] for path in self.expert_paths]) actions = np.concatenate([path["actions"] for path in self.expert_paths]) else: # 'h5py._hl.files.File' observations = np.concatenate([self.expert_paths[k]['observations'] for k in self.expert_paths.keys()]) actions = np.concatenate([self.expert_paths[k]['actions'] for k in self.expert_paths.keys()]) in_shift, in_scale = np.mean(observations, axis=0), np.std(observations, axis=0) out_shift, out_scale = np.mean(actions, axis=0), np.std(actions, axis=0) return in_shift, in_scale, out_shift, out_scale def set_transformations(self, in_shift=None, in_scale=None, out_shift=None, out_scale=None): # set scalings in the target policy self.policy.set_transformations(in_shift, in_scale, out_shift, out_scale) def set_variance_with_data(self, out_scale): # set the variance of gaussian policy based on out_scale out_scale = tensorize(out_scale, device=self.policy.device) data_log_std = torch.log(out_scale + 1e-3) self.policy.set_log_std(data_log_std) def loss(self, data, idx=None): if self.loss_type == 'MLE': return self.mle_loss(data, idx) elif self.loss_type == 'MSE': return self.mse_loss(data, idx) else: print("Please use valid loss type") return None def mle_loss(self, data, idx): # use indices if provided (e.g. for mini-batching) # otherwise, use all the data idx = range(data['observations'].shape[0]) if idx is None else idx if type(data['observations']) == torch.Tensor: idx = torch.LongTensor(idx) obs = data['observations'][idx] act = data['expert_actions'][idx] mu, LL = self.policy.mean_LL(obs, act) # minimize negative log likelihood return -torch.mean(LL) def mse_loss(self, data, idx=None): idx = range(data['observations'].shape[0]) if idx is None else idx if type(data['observations']) is torch.Tensor: idx = torch.LongTensor(idx) obs = data['observations'][idx] act_expert = data['expert_actions'][idx] act_expert = tensorize(act_expert, device=self.policy.device) act_pi = self.policy.forward(obs) return self.loss_criterion(act_pi, act_expert.detach()) def fit(self, data, suppress_fit_tqdm=False, **kwargs): # data is a dict # keys should have "observations" and "expert_actions" validate_keys = all([k in data.keys() for k in ["observations", "expert_actions"]]) assert validate_keys is True ts = timer.time() num_samples = data["observations"].shape[0] # log stats before if self.save_logs: loss_val = self.loss(data, idx=range(num_samples)).to('cpu').data.numpy().ravel()[0] self.logger.log_scalar("train/loss_before", loss_val, step=0) print('BC loss before', loss_val) # train loop for ep in config_tqdm(range(self.epochs), suppress_fit_tqdm): avg_loss = 0.0 step = 0 for mb in range(int(num_samples / self.mb_size)): rand_idx = np.random.choice(num_samples, size=self.mb_size) self.optimizer.zero_grad() loss = self.loss(data, idx=rand_idx) loss.backward() self.optimizer.step() avg_loss = (avg_loss*step + loss.item())/(step+1) step += 1 if self.save_logs: self.logger.log_scalar("train/bc_loss", avg_loss, step=ep+1) # log stats after if self.save_logs: loss_val = self.loss(data, idx=range(num_samples)).to('cpu').data.numpy().ravel()[0] self.logger.log_scalar("train/loss_after", loss_val, step=self.epochs) print('BC val loss', loss_val) def train(self, **kwargs): if not hasattr(self, 'data'): observations = np.concatenate([path["observations"] for path in self.expert_paths]) expert_actions = np.concatenate([path["actions"] for path in self.expert_paths]) observations = tensorize(observations, device=self.policy.device) expert_actions = tensorize(expert_actions, self.policy.device) self.data = dict(observations=observations, expert_actions=expert_actions) self.fit(self.data, **kwargs) def train_h5(self, **kwargs): if not hasattr(self, 'data'): observations = np.concatenate([self.expert_paths[k]['observations'] for k in self.expert_paths.keys()]) expert_actions = np.concatenate([self.expert_paths[k]['actions'] for k in self.expert_paths.keys()]) observations = tensorize(observations, device=self.policy.device) expert_actions = tensorize(expert_actions, self.policy.device) self.data = dict(observations=observations, expert_actions=expert_actions) self.fit(self.data, **kwargs) def config_tqdm(range_inp, suppress_tqdm=False): if suppress_tqdm: return range_inp else: return tqdm(range_inp)
agenthive-dev
scripts/bc/behavior_cloning.py
""" Job script to learn policy using BC """ import os import time from os import environ environ['CUDA_DEVICE_ORDER']='PCI_BUS_ID' environ['MKL_THREADING_LAYER']='GNU' import pickle import yaml import hydra import gym import wandb import numpy as np from omegaconf import DictConfig, OmegaConf, ListConfig from batch_norm_mlp import BatchNormMLP from gmm_policy import GMMPolicy from behavior_cloning import BC from misc import control_seed, \ bcolors, stack_tensor_dict_list from torchrl.record.loggers.wandb import WandbLogger from robohive.logger.grouped_datasets import Trace as Trace def evaluate_policy( policy, env, num_episodes, epoch, horizon=None, gamma=1, percentile=[], get_full_dist=False, eval_logger=None, device='cpu', seed=123, verbose=True, ): env.seed(seed) horizon = env.horizon if horizon is None else horizon mean_eval, std, min_eval, max_eval = 0.0, 0.0, -1e8, -1e8 ep_returns = np.zeros(num_episodes) policy.eval() paths = [] for ep in range(num_episodes): observations=[] actions=[] rewards=[] agent_infos = [] env_infos = [] o = env.reset() t, done = 0, False while t < horizon and (done == False): a = policy.get_action(o)[1]['evaluation'] next_o, r, done, env_info = env.step(a) ep_returns[ep] += (gamma ** t) * r observations.append(o) actions.append(a) rewards.append(r) agent_infos.append(None) env_infos.append(env_info) o = next_o t += 1 if verbose: print("Episode: {}; Reward: {}".format(ep, ep_returns[ep])) path = dict( observations=np.array(observations), actions=np.array(actions), rewards=np.array(rewards), #agent_infos=stack_tensor_dict_list(agent_infos), env_infos=stack_tensor_dict_list(env_infos), terminated=done ) paths.append(path) mean_eval, std = np.mean(ep_returns), np.std(ep_returns) min_eval, max_eval = np.amin(ep_returns), np.amax(ep_returns) base_stats = [mean_eval, std, min_eval, max_eval] percentile_stats = [] for p in percentile: percentile_stats.append(np.percentile(ep_returns, p)) full_dist = ep_returns if get_full_dist is True else None success = env.evaluate_success(paths, logger=None) ## Don't use the mj_envs logging function if not eval_logger is None: rwd_sparse = np.mean([np.mean(p['env_infos']['rwd_sparse']) for p in paths]) # return rwd/step rwd_dense = np.mean([np.sum(p['env_infos']['rwd_dense'])/env.horizon for p in paths]) # return rwd/step eval_logger.log_scalar('eval/rwd_sparse', rwd_sparse, step=epoch) eval_logger.log_scalar('eval/rwd_dense', rwd_dense, step=epoch) eval_logger.log_scalar('eval/success', success, step=epoch) return [base_stats, percentile_stats, full_dist], success class ObservationWrapper: def __init__(self, env_name, visual_keys, encoder): self.env = gym.make(env_name, visual_keys=visual_keys) self.horizon = self.env.horizon self.encoder = encoder def reset(self, **kwargs): obs = self.env.reset(**kwargs) return self.get_obs(obs) def step(self, action): observation, reward, terminated, info = self.env.step(action) return self.get_obs(observation), reward, terminated, info def get_obs(self, observation=None): if self.encoder == 'proprio': proprio_vec = self.env.get_proprioception()[1] return proprio_vec if len(self.env.visual_keys) > 0: visual_obs = self.env.get_exteroception() final_visual_obs = None for key in self.env.visual_keys: if final_visual_obs is None: final_visual_obs = visual_obs[key] else: final_visual_obs = np.concatenate((final_visual_obs, visual_obs[key]), axis=-1) _, proprio_vec, _ = self.env.get_proprioception() observation = np.concatenate((final_visual_obs, proprio_vec)) else: observation = self.env.get_obs() if observation is None else observation return observation def seed(self, seed): return self.env.seed(seed) def set_env_state(self, state_dict): return self.env.set_env_state(state_dict) def evaluate_success(self, paths, logger=None): return self.env.evaluate_success(paths, logger=logger) def make_env(env_name, cam_name, encoder, from_pixels): if from_pixels: visual_keys = [] assert encoder in ["vc1s", "vc1l", "r3m18", "rrl18", "rrl50", "r3m50", "2d", "1d", "proprio"] if encoder == "1d" or encoder == "2d": visual_keys = [f'rgb:{cam_name}:84x84:{encoder}'] elif encoder == 'proprio': visual_keys = [] else: # cam_name is a list of cameras if type(cam_name) == ListConfig: visual_keys = [] for cam in cam_name: visual_keys.append(f'rgb:{cam}:224x224:{encoder}') else: visual_keys = [f'rgb:{cam_name}:224x224:{encoder}'] print(f"Using visual keys {visual_keys}") env = ObservationWrapper(env_name, visual_keys=visual_keys, encoder=encoder) else: env = gym.make(env_name) return env @hydra.main(config_name="bc.yaml", config_path="config") def main(job_data: DictConfig): OmegaConf.resolve(job_data) job_data['policy_size'] = tuple(job_data['policy_size']) exp_start = time.time() OUT_DIR = os.getcwd() if not os.path.exists(OUT_DIR): os.mkdir(OUT_DIR) if not os.path.exists(OUT_DIR+'/iterations'): os.mkdir(OUT_DIR+'/iterations') if not os.path.exists(OUT_DIR+'/logs'): os.mkdir(OUT_DIR+'/logs') if job_data['from_pixels'] == False: job_data['env_name'] = job_data['env_name'].replace('_v2d', '') #exp_name = OUT_DIR.split('/')[-1] ## TODO: Customizer for logging # Unpack args and make files for easy access #logger = DataLog() exp_name = job_data['env_name'] + '_pixels' + str(job_data['from_pixels']) + '_' + job_data['encoder'] logger = WandbLogger( exp_name=exp_name, config=job_data, name=exp_name, project=job_data['wandb_project'], entity=job_data['wandb_entity'], mode=job_data['wandb_mode'], ) ENV_NAME = job_data['env_name'] EXP_FILE = OUT_DIR + '/job_data.yaml' SEED = job_data['seed'] # base cases if 'device' not in job_data.keys(): job_data['device'] = 'cpu' assert 'data_file' in job_data.keys() yaml_config = OmegaConf.to_yaml(job_data) with open(EXP_FILE, 'w') as file: yaml.dump(yaml_config, file) env = make_env( env_name=job_data["env_name"], cam_name=job_data["cam_name"], encoder=job_data["encoder"], from_pixels=job_data["from_pixels"] ) # =============================================================================== # Setup functions and environment # =============================================================================== control_seed(SEED) env.seed(SEED) paths_trace = Trace.load(job_data['data_file']) bc_paths = [] for key, path in paths_trace.items(): path_dict = {} traj_len = path['observations'].shape[0] obs_list = [] ep_reward = 0.0 env.reset() init_state_dict = {} t0 = time.time() for key, value in path['env_infos']['state'].items(): init_state_dict[key] = value[0] env.set_env_state(init_state_dict) obs = env.get_obs() for step in range(traj_len-1): next_obs, reward, done, env_info = env.step(path["actions"][step]) ep_reward += reward obs_list.append(obs) obs = next_obs t1 = time.time() obs_np = np.stack(obs_list, axis=0) path_dict['observations'] = obs_np # [:-1] path_dict['actions'] = path['actions'][()][:-1] path_dict['env_infos'] = {'solved': path['env_infos']['solved'][()]} print(f"Time to convert one trajectory: {(t1-t0)/60:4.2f}") print("Converted episode reward:", ep_reward) print("Original episode reward:", np.sum(path["rewards"])) print(key, path_dict['observations'].shape, path_dict['actions'].shape) bc_paths.append(path_dict) expert_success = env.evaluate_success(bc_paths) print(f"{bcolors.BOLD}{bcolors.OKGREEN}{exp_name} {bcolors.ENDC}") print(f"{bcolors.BOLD}{bcolors.OKGREEN}Expert Success Rate: {expert_success}. {bcolors.ENDC}") observation_dim = bc_paths[0]['observations'].shape[-1] action_dim = bc_paths[0]['actions'].shape[-1] print(f'Policy obs dim {observation_dim} act dim {action_dim}') policy = GMMPolicy( # network_kwargs input_size=observation_dim, output_size=action_dim, hidden_size=job_data['policy_size'][0], num_layers=len(job_data['policy_size']), min_std=0.0001, num_modes=5, activation="softplus", low_eval_noise=False, # loss_kwargs ) set_transforms = False # =============================================================================== # Model training # =============================================================================== print(f"{bcolors.OKBLUE}Training BC{bcolors.ENDC}") policy.to(job_data['device']) bc_agent = BC( bc_paths, policy, epochs=job_data['eval_every_n'], batch_size=job_data['bc_batch_size'], lr=job_data['bc_lr'], loss_type='MLE', save_logs=True, logger=logger, set_transforms=set_transforms, ) for ind in range(0, job_data['bc_epochs'], job_data['eval_every_n']): policy.train() bc_agent.train() # bc_agent.train_h5() policy.eval() _, success_rate = evaluate_policy( env=env, policy=policy, eval_logger=logger, epoch=ind+job_data['eval_every_n'], num_episodes=job_data['eval_traj'], seed=job_data['seed'] + 123, verbose=True, device='cpu', ) policy.to(job_data['device']) exp_end = time.time() print(f"{bcolors.BOLD}{bcolors.OKGREEN}Success Rate: {success_rate}. Time: {(exp_end - exp_start)/60:4.2f} minutes.{bcolors.ENDC}") exp_end = time.time() print(f"{bcolors.BOLD}{bcolors.OKGREEN}Success Rate: {success_rate}. Time: {(exp_end - exp_start)/60:4.2f} minutes.{bcolors.ENDC}") # pickle.dump(bc_agent, open(OUT_DIR + '/iterations/agent_final.pickle', 'wb')) pickle.dump(policy, open(OUT_DIR + '/iterations/policy_final.pickle', 'wb')) wandb.finish() if __name__ == '__main__': main()
agenthive-dev
scripts/bc/run_bc_h5.py
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable class FCNetworkWithBatchNorm(nn.Module): def __init__(self, obs_dim, act_dim, hidden_sizes=(64,64), nonlinearity='relu', # either 'tanh' or 'relu' dropout=0, # probability to dropout activations (0 means no dropout) *args, **kwargs, ): super(FCNetworkWithBatchNorm, self).__init__() self.obs_dim = obs_dim self.act_dim = act_dim assert type(hidden_sizes) == tuple self.layer_sizes = (obs_dim, ) + hidden_sizes + (act_dim, ) self.device = 'cpu' # hidden layers self.fc_layers = nn.ModuleList([nn.Linear(self.layer_sizes[i], self.layer_sizes[i+1]) \ for i in range(len(self.layer_sizes) -1)]) self.nonlinearity = torch.relu if nonlinearity == 'relu' else torch.tanh self.input_batchnorm = nn.BatchNorm1d(num_features=obs_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): out = x.to(self.device) out = self.input_batchnorm(out) for i in range(len(self.fc_layers)-1): out = self.fc_layers[i](out) out = self.dropout(out) out = self.nonlinearity(out) out = self.fc_layers[-1](out) return out def to(self, device): self.device = device return super().to(device) def set_transformations(self, *args, **kwargs): pass class BatchNormMLP(nn.Module): def __init__(self, env_spec=None, action_dim=None, observation_dim=None, hidden_sizes=(64,64), min_log_std=-3, init_log_std=0, seed=None, nonlinearity='relu', dropout=0, device='cpu', *args, **kwargs, ): """ :param env_spec: specifications of the env (see utils/gym_env.py) :param hidden_sizes: network hidden layer sizes (currently 2 layers only) :param min_log_std: log_std is clamped at this value and can't go below :param init_log_std: initial log standard deviation :param seed: random seed """ super(BatchNormMLP, self).__init__() self.device = device self.n = env_spec.observation_dim if observation_dim is None else observation_dim # number of states self.m = env_spec.action_dim if action_dim is None else action_dim # number of actions self.min_log_std = min_log_std # Set seed # ------------------------ if seed is not None: torch.manual_seed(seed) np.random.seed(seed) # Policy network # ------------------------ self.model = FCNetworkWithBatchNorm(self.n, self.m, hidden_sizes, nonlinearity, dropout) # make weights small for param in list(self.model.parameters())[-2:]: # only last layer param.data = 1e-2 * param.data self.log_std = Variable(torch.ones(self.m) * init_log_std, requires_grad=True) self.trainable_params = list(self.model.parameters()) + [self.log_std] self.model.eval() # Easy access variables # ------------------------- self.log_std_val = np.float64(self.log_std.data.numpy().ravel()) self.param_shapes = [p.data.numpy().shape for p in self.trainable_params] self.param_sizes = [p.data.numpy().size for p in self.trainable_params] self.d = np.sum(self.param_sizes) # total number of params # Placeholders # ------------------------ self.obs_var = Variable(torch.randn(self.n), requires_grad=False) # Utility functions # ============================================ def to(self, device): super().to(device) self.model = self.model.to(device) print(self.model) self.device = device return self # Main functions # ============================================ def get_action(self, observation): o = np.float32(observation.reshape(1, -1)) self.obs_var.data = torch.from_numpy(o) mean = self.model(self.obs_var).to('cpu').data.numpy().ravel() noise = np.exp(self.log_std_val) * np.random.randn(self.m) action = mean + noise return [action, {'mean': mean, 'log_std': self.log_std_val, 'evaluation': mean}] # ============================================ def forward(self, observations): if type(observations) == np.ndarray: observations = torch.from_numpy(observations).float() assert type(observations) == torch.Tensor observations = observations.to(self.device) out = self.model(observations) return out
agenthive-dev
scripts/bc/batch_norm_mlp.py
import torch import numpy as np import torch.nn as nn import torch.distributions as D import torch.nn.functional as F class GMMPolicy(nn.Module): def __init__(self, # network_kwargs input_size, output_size, hidden_size=1024, num_layers=2, min_std=0.0001, num_modes=5, activation="softplus", low_eval_noise=False, # loss_kwargs loss_coef=1.0): super().__init__() self.num_modes = num_modes self.output_size = output_size self.min_std = min_std if num_layers > 0: sizes = [input_size] + [hidden_size] * num_layers layers = [nn.BatchNorm1d(num_features=input_size)] for i in range(num_layers): layers += [nn.Linear(sizes[i], sizes[i+1]), nn.ReLU()] layers += [nn.Linear(sizes[-2], sizes[-1])] self.share = nn.Sequential(*layers) else: self.share = nn.Identity() self.mean_layer = nn.Linear(hidden_size, output_size * num_modes) self.logstd_layer = nn.Linear(hidden_size, output_size * num_modes) self.logits_layer = nn.Linear(hidden_size, num_modes) self.low_eval_noise = low_eval_noise self.loss_coef = loss_coef if activation == "softplus": self.actv = F.softplus else: self.actv = torch.exp self.trainable_params = list(self.share.parameters()) + \ list(self.mean_layer.parameters()) + \ list(self.logstd_layer.parameters()) + \ list(self.logits_layer.parameters()) def to(self, device): super().to(device) self.device = device return self def forward_fn(self, x): # x: (B, input_size) share = self.share(x) means = self.mean_layer(share).view(-1, self.num_modes, self.output_size) means = torch.tanh(means) logits = self.logits_layer(share) if self.training or not self.low_eval_noise: logstds = self.logstd_layer(share).view(-1, self.num_modes, self.output_size) stds = self.actv(logstds) + self.min_std else: stds = torch.ones_like(means) * 1e-4 return means, stds, logits def get_action(self, observation): o = np.float32(observation.reshape(1, -1)) o = torch.from_numpy(o).to(self.device) means, stds, logits = self.forward_fn(o) compo = D.Normal(loc=means, scale=stds) compo = D.Independent(compo, 1) mix = D.Categorical(logits=logits) gmm = D.MixtureSameFamily(mixture_distribution=mix, component_distribution=compo) action = gmm.sample() mean = gmm.mean mean = mean.detach().cpu().numpy().ravel() return [action, {'mean': mean, 'std': stds, 'evaluation': mean}] def forward(self, x): means, scales, logits = self.forward_fn(x) compo = D.Normal(loc=means, scale=scales) compo = D.Independent(compo, 1) mix = D.Categorical(logits=logits) gmm = D.MixtureSameFamily(mixture_distribution=mix, component_distribution=compo) return gmm def mean_LL(self, x, target): gmm_dist = self.forward(x) # return mean, log_prob of the gmm return gmm_dist.mean, gmm_dist.log_prob(target) def loss_fn(self, gmm, target, reduction='mean'): log_probs = gmm.log_prob(target) loss = -log_probs if reduction == 'mean': return loss.mean() * self.loss_coef elif reduction == 'none': return loss * self.loss_coef elif reduction == 'sum': return loss.sum() * self.loss_coef else: raise NotImplementedError
agenthive-dev
scripts/bc/gmm_policy.py
import torch from rlhive.rl_envs import RoboHiveEnv from rlhive.sim_algos.helpers.rrl_transform import RRLTransform from torchrl.envs import ( CatTensors, DoubleToFloat, ObservationNorm, R3MTransform, SelectTransform, TransformedEnv, ) from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling from torchrl.envs.utils import set_exploration_mode def make_env(task, visual_transform, reward_scaling, device): assert visual_transform in ("rrl", "r3m") base_env = RoboHiveEnv(task, device=device) env = make_transformed_env( env=base_env, reward_scaling=reward_scaling, visual_transform=visual_transform ) print(env) # exit() return env def make_transformed_env( env, reward_scaling=5.0, visual_transform="r3m", stats=None, ): """ Apply transforms to the env (such as reward scaling and state normalization) """ env = TransformedEnv(env, SelectTransform("solved", "pixels", "observation")) if visual_transform == "rrl": vec_keys = ["rrl_vec"] selected_keys = ["observation", "rrl_vec"] env.append_transform( Compose( RRLTransform("resnet50", in_keys=["pixels"], download=True), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 elif visual_transform == "r3m": vec_keys = ["r3m_vec"] selected_keys = ["observation", "r3m_vec"] env.append_transform( Compose( R3MTransform("resnet50", in_keys=["pixels"], download=True), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 else: raise NotImplementedError env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling)) out_key = "observation_vector" env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key)) # we normalize the states if stats is None: _stats = {"loc": 0.0, "scale": 1.0} else: _stats = stats env.append_transform( ObservationNorm(**_stats, in_keys=[out_key], standard_normal=True) ) env.append_transform(DoubleToFloat(in_keys=[out_key], in_keys_inv=[])) return env env = make_env( task="visual_franka_slide_random-v3", reward_scaling=5.0, device=torch.device("cuda:0"), visual_transform="rrl", ) with torch.no_grad(), set_exploration_mode("random"): td = env.reset() td = env.rand_step() print(td)
agenthive-dev
scripts/sac_mujoco/test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import gc import os import hydra import numpy as np import torch import torch.cuda import tqdm import wandb from omegaconf import DictConfig from rlhive.rl_envs import RoboHiveEnv from rlhive.sim_algos.helpers.rrl_transform import RRLTransform # from torchrl.objectives import SACLoss from sac_loss import SACLoss from torch import nn, optim from torchrl.collectors import MultiaSyncDataCollector from torchrl.data import TensorDictPrioritizedReplayBuffer, TensorDictReplayBuffer from torchrl.data.replay_buffers.storages import LazyMemmapStorage from torchrl.envs import ( CatTensors, DoubleToFloat, ObservationNorm, R3MTransform, SelectTransform, TransformedEnv, ) from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling from torchrl.envs.utils import set_exploration_mode from torchrl.modules import MLP, NormalParamWrapper, SafeModule from torchrl.modules.distributions import TanhNormal from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator from torchrl.objectives import SoftUpdate from torchrl.trainers import Recorder os.environ["WANDB_MODE"] = "offline" # offline sync. TODO: Remove this behavior def make_env(task, visual_transform, reward_scaling, device, from_pixels): assert visual_transform in ("rrl", "r3m") base_env = RoboHiveEnv(task, device=device) env = make_transformed_env( env=base_env, reward_scaling=reward_scaling, visual_transform=visual_transform, from_pixels=from_pixels, ) print(env) return env def make_transformed_env( env, from_pixels, reward_scaling=5.0, visual_transform="r3m", stats=None, ): """ Apply transforms to the env (such as reward scaling and state normalization) """ if from_pixels: env = TransformedEnv(env, SelectTransform("solved", "pixels", "observation")) if visual_transform == "rrl": vec_keys = ["rrl_vec"] selected_keys = ["observation", "rrl_vec"] env.append_transform( Compose( RRLTransform("resnet50", in_keys=["pixels"], download=True), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 elif visual_transform == "r3m": vec_keys = ["r3m_vec"] selected_keys = ["observation", "r3m_vec"] env.append_transform( Compose( R3MTransform("resnet50", in_keys=["pixels"], download=True), FlattenObservation(-2, -1, in_keys=vec_keys), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 else: raise NotImplementedError else: env = TransformedEnv(env, SelectTransform("solved", "observation")) selected_keys = ["observation"] env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling)) out_key = "observation_vector" env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key)) # we normalize the states if stats is None: _stats = {"loc": 0.0, "scale": 1.0} else: _stats = stats env.append_transform( ObservationNorm(**_stats, in_keys=[out_key], standard_normal=True) ) env.append_transform(DoubleToFloat(in_keys=[out_key], in_keys_inv=[])) return env def make_recorder( task: str, frame_skip: int, record_interval: int, actor_model_explore: object, eval_traj: int, env_configs: dict, ): test_env = make_env(task=task, **env_configs) recorder_obj = Recorder( record_frames=eval_traj * test_env.horizon, frame_skip=frame_skip, policy_exploration=actor_model_explore, recorder=test_env, exploration_mode="mean", record_interval=record_interval, log_keys=["reward", "solved"], out_keys={"reward": "r_evaluation", "solved": "success"}, ) return recorder_obj def make_replay_buffer( prb: bool, buffer_size: int, buffer_scratch_dir: str, device: torch.device, make_replay_buffer: int = 3, ): if prb: replay_buffer = TensorDictPrioritizedReplayBuffer( alpha=0.7, beta=0.5, pin_memory=False, prefetch=make_replay_buffer, storage=LazyMemmapStorage( buffer_size, scratch_dir=buffer_scratch_dir, device=device, ), ) else: replay_buffer = TensorDictReplayBuffer( pin_memory=False, prefetch=make_replay_buffer, storage=LazyMemmapStorage( buffer_size, scratch_dir=buffer_scratch_dir, device=device, ), ) return replay_buffer def evaluate_success(env_success_fn, td_record: dict, eval_traj: int): td_record["success"] = td_record["success"].reshape((eval_traj, -1)) paths = [] for solved_traj in td_record["success"]: path = {"env_infos": {"solved": solved_traj.data.cpu().numpy()}} paths.append(path) success_percentage = env_success_fn(paths) return success_percentage @hydra.main(config_name="sac.yaml", config_path="config") def main(args: DictConfig): device = ( torch.device("cuda:0") if torch.cuda.is_available() and torch.cuda.device_count() > 0 and args.device == "cuda:0" else torch.device("cpu") ) torch.manual_seed(args.seed) np.random.seed(args.seed) # Create Environment env_configs = { "reward_scaling": args.reward_scaling, "visual_transform": args.visual_transform, "device": args.device, "from_pixels": args.from_pixels, } train_env = make_env(task=args.task, **env_configs) # Create Agent # Define Actor Network in_keys = ["observation_vector"] action_spec = train_env.action_spec actor_net_kwargs = { "num_cells": [256, 256], "out_features": 2 * action_spec.shape[-1], "activation_class": nn.ReLU, } actor_net = MLP(**actor_net_kwargs) dist_class = TanhNormal dist_kwargs = { "min": action_spec.space.minimum, "max": action_spec.space.maximum, "tanh_loc": False, } actor_net = NormalParamWrapper( actor_net, scale_mapping=f"biased_softplus_{1.0}", scale_lb=0.1, ) in_keys_actor = in_keys actor_module = SafeModule( actor_net, in_keys=in_keys_actor, out_keys=[ "loc", "scale", ], ) actor = ProbabilisticActor( spec=action_spec, in_keys=["loc", "scale"], module=actor_module, distribution_class=dist_class, distribution_kwargs=dist_kwargs, default_interaction_mode="random", return_log_prob=False, ) # Define Critic Network qvalue_net_kwargs = { "num_cells": [256, 256], "out_features": 1, "activation_class": nn.ReLU, } qvalue_net = MLP( **qvalue_net_kwargs, ) qvalue = ValueOperator( in_keys=["action"] + in_keys, module=qvalue_net, ) model = nn.ModuleList([actor, qvalue]).to(device) # add forward pass for initialization with proof env proof_env = make_env(task=args.task, **env_configs) # init nets with torch.no_grad(), set_exploration_mode("random"): td = proof_env.reset() td = td.to(device) for net in model: net(td) del td proof_env.close() actor_model_explore = model[0] # Create SAC loss loss_module = SACLoss( actor_network=model[0], qvalue_network=model[1], num_qvalue_nets=2, gamma=args.gamma, loss_function="smooth_l1", ) # Define Target Network Updater target_net_updater = SoftUpdate(loss_module, args.target_update_polyak) # Make Off-Policy Collector collector = MultiaSyncDataCollector( create_env_fn=[train_env], policy=actor_model_explore, total_frames=args.total_frames, max_frames_per_traj=args.frames_per_batch, frames_per_batch=args.env_per_collector * args.frames_per_batch, init_random_frames=args.init_random_frames, reset_at_each_iter=False, postproc=None, split_trajs=True, devices=[device], # device for execution passing_devices=[device], # device where data will be stored and passed seed=None, pin_memory=False, update_at_each_batch=False, exploration_mode="random", ) collector.set_seed(args.seed) # Make Replay Buffer replay_buffer = make_replay_buffer( prb=args.prb, buffer_size=args.buffer_size, buffer_scratch_dir=args.buffer_scratch_dir, device=device, ) # Trajectory recorder for evaluation recorder = make_recorder( task=args.task, frame_skip=args.frame_skip, record_interval=args.record_interval, actor_model_explore=actor_model_explore, eval_traj=args.eval_traj, env_configs=env_configs, ) # Optimizers params = list(loss_module.parameters()) + [loss_module.log_alpha] optimizer_actor = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay) rewards = [] rewards_eval = [] # Main loop target_net_updater.init_() collected_frames = 0 episodes = 0 pbar = tqdm.tqdm(total=args.total_frames) r0 = None loss = None with wandb.init(project="SAC_TorchRL", name=args.exp_name, config=args): for i, tensordict in enumerate(collector): # update weights of the inference policy collector.update_policy_weights_() if r0 is None: r0 = tensordict["reward"].sum(-1).mean().item() pbar.update(tensordict.numel()) # extend the replay buffer with the new data if "mask" in tensordict.keys(): # if multi-step, a mask is present to help filter padded values current_frames = tensordict["mask"].sum() tensordict = tensordict[tensordict.get("mask").squeeze(-1)] else: tensordict = tensordict.view(-1) current_frames = tensordict.numel() collected_frames += current_frames episodes += args.env_per_collector replay_buffer.extend(tensordict.cpu()) # optimization steps if collected_frames >= args.init_random_frames: ( total_losses, actor_losses, q_losses, alpha_losses, alphas, entropies, ) = ([], [], [], [], [], []) for _ in range( args.env_per_collector * args.frames_per_batch * args.utd_ratio ): # sample from replay buffer sampled_tensordict = replay_buffer.sample(args.batch_size).clone() loss_td = loss_module(sampled_tensordict) actor_loss = loss_td["loss_actor"] q_loss = loss_td["loss_qvalue"] alpha_loss = loss_td["loss_alpha"] loss = actor_loss + q_loss + alpha_loss optimizer_actor.zero_grad() loss.backward() optimizer_actor.step() # update qnet_target params target_net_updater.step() # update priority if args.prb: replay_buffer.update_priority(sampled_tensordict) total_losses.append(loss.item()) actor_losses.append(actor_loss.item()) q_losses.append(q_loss.item()) alpha_losses.append(alpha_loss.item()) alphas.append(loss_td["alpha"].item()) entropies.append(loss_td["entropy"].item()) rewards.append( (i, tensordict["reward"].sum().item() / args.env_per_collector) ) wandb.log( { "train_reward": rewards[-1][1], "collected_frames": collected_frames, "episodes": episodes, } ) if loss is not None: wandb.log( { "total_loss": np.mean(total_losses), "actor_loss": np.mean(actor_losses), "q_loss": np.mean(q_losses), "alpha_loss": np.mean(alpha_losses), "alpha": np.mean(alphas), "entropy": np.mean(entropies), } ) td_record = recorder(None) success_percentage = evaluate_success( env_success_fn=train_env.evaluate_success, td_record=td_record, eval_traj=args.eval_traj, ) if td_record is not None: rewards_eval.append( ( i, td_record["total_r_evaluation"] / 1, # divide by number of eval worker ) ) wandb.log({"test_reward": rewards_eval[-1][1]}) wandb.log({"success": success_percentage}) if len(rewards_eval): pbar.set_description( f"reward: {rewards[-1][1]: 4.4f} (r0 = {r0: 4.4f}), test reward: {rewards_eval[-1][1]: 4.4f}" ) del tensordict gc.collect() collector.shutdown() if __name__ == "__main__": main()
agenthive-dev
scripts/sac_mujoco/sac.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from numbers import Number from typing import Union import numpy as np import torch from tensordict.nn import TensorDictSequential from tensordict.tensordict import TensorDict, TensorDictBase from torch import Tensor from torchrl.envs.utils import set_exploration_mode, step_mdp from torchrl.modules import SafeModule from torchrl.objectives.common import LossModule from torchrl.objectives.utils import ( distance_loss, next_state_value as get_next_state_value, ) try: from functorch import vmap FUNCTORCH_ERR = "" _has_functorch = True except ImportError as err: FUNCTORCH_ERR = str(err) _has_functorch = False class SACLoss(LossModule): """SAC Loss module. Args: actor_network (SafeModule): the actor to be trained qvalue_network (SafeModule): a single Q-value network that will be multiplicated as many times as needed. num_qvalue_nets (int, optional): Number of Q-value networks to be trained. Default is 10. gamma (Number, optional): gamma decay factor. Default is 0.99. priotity_key (str, optional): Key where to write the priority value for prioritized replay buffers. Default is `"td_error"`. loss_function (str, optional): loss function to be used for the Q-value. Can be one of `"smooth_l1"`, "l2", "l1", Default is "smooth_l1". alpha_init (float, optional): initial entropy multiplier. Default is 1.0. min_alpha (float, optional): min value of alpha. Default is 0.1. max_alpha (float, optional): max value of alpha. Default is 10.0. fixed_alpha (bool, optional): whether alpha should be trained to match a target entropy. Default is :obj:`False`. target_entropy (Union[str, Number], optional): Target entropy for the stochastic policy. Default is "auto". delay_qvalue (bool, optional): Whether to separate the target Q value networks from the Q value networks used for data collection. Default is :obj:`False`. gSDE (bool, optional): Knowing if gSDE is used is necessary to create random noise variables. Default is False """ delay_actor: bool = False _explicit: bool = True def __init__( self, actor_network: SafeModule, qvalue_network: SafeModule, num_qvalue_nets: int = 2, gamma: Number = 0.99, priotity_key: str = "td_error", loss_function: str = "smooth_l1", alpha_init: float = 1.0, min_alpha: float = 0.1, max_alpha: float = 10.0, fixed_alpha: bool = False, target_entropy: Union[str, Number] = "auto", delay_qvalue: bool = True, gSDE: bool = False, ): if not _has_functorch: raise ImportError( f"Failed to import functorch with error message:\n{FUNCTORCH_ERR}" ) super().__init__() self.convert_to_functional( actor_network, "actor_network", create_target_params=self.delay_actor, funs_to_decorate=["forward", "get_dist_params"], ) # let's make sure that actor_network has `return_log_prob` set to True self.actor_network.return_log_prob = True self.delay_qvalue = delay_qvalue self.convert_to_functional( qvalue_network, "qvalue_network", num_qvalue_nets, create_target_params=self.delay_qvalue, compare_against=list(actor_network.parameters()), ) self.num_qvalue_nets = num_qvalue_nets self.register_buffer("gamma", torch.tensor(gamma)) self.priority_key = priotity_key self.loss_function = loss_function try: device = next(self.parameters()).device except AttributeError: device = torch.device("cpu") self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device)) self.register_buffer( "min_log_alpha", torch.tensor(min_alpha, device=device).log() ) self.register_buffer( "max_log_alpha", torch.tensor(max_alpha, device=device).log() ) self.fixed_alpha = fixed_alpha if fixed_alpha: self.register_buffer( "log_alpha", torch.tensor(math.log(alpha_init), device=device) ) else: self.register_parameter( "log_alpha", torch.nn.Parameter(torch.tensor(math.log(alpha_init), device=device)), ) if target_entropy == "auto": if actor_network.spec["action"] is None: raise RuntimeError( "Cannot infer the dimensionality of the action. Consider providing " "the target entropy explicitely or provide the spec of the " "action tensor in the actor network." ) target_entropy = -float(np.prod(actor_network.spec["action"].shape)) self.register_buffer( "target_entropy", torch.tensor(target_entropy, device=device) ) self.gSDE = gSDE @property def alpha(self): self.log_alpha.data.clamp_(self.min_log_alpha, self.max_log_alpha) with torch.no_grad(): alpha = self.log_alpha.exp() return alpha def forward(self, tensordict: TensorDictBase) -> TensorDictBase: if self._explicit: # slow but explicit version return self._forward_explicit(tensordict) else: return self._forward_vectorized(tensordict) def _loss_alpha(self, log_pi: Tensor) -> Tensor: if torch.is_grad_enabled() and not log_pi.requires_grad: raise RuntimeError( "expected log_pi to require gradient for the alpha loss)" ) if self.target_entropy is not None: # we can compute this loss even if log_alpha is not a parameter alpha_loss = -self.log_alpha.exp() * (log_pi.detach() + self.target_entropy) else: # placeholder alpha_loss = torch.zeros_like(log_pi) return alpha_loss def _forward_vectorized(self, tensordict: TensorDictBase) -> TensorDictBase: obs_keys = self.actor_network.in_keys tensordict_select = tensordict.select( "reward", "done", "next", *obs_keys, "action" ) actor_params = torch.stack( [self.actor_network_params, self.target_actor_network_params], 0 ) tensordict_actor_grad = tensordict_select.select( *obs_keys ) # to avoid overwriting keys next_td_actor = step_mdp(tensordict_select).select( *self.actor_network.in_keys ) # next_observation -> tensordict_actor = torch.stack([tensordict_actor_grad, next_td_actor], 0) tensordict_actor = tensordict_actor.contiguous() with set_exploration_mode("random"): if self.gSDE: tensordict_actor.set( "_eps_gSDE", torch.zeros(tensordict_actor.shape, device=tensordict_actor.device), ) # vmap doesn't support sampling, so we take it out from the vmap td_params = vmap(self.actor_network.get_dist_params)( tensordict_actor, actor_params, ) if isinstance(self.actor_network, TensorDictSequential): sample_key = self.actor_network[-1].out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) else: sample_key = self.actor_network.out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) tensordict_actor[sample_key] = self._rsample(tensordict_actor_dist) tensordict_actor["sample_log_prob"] = tensordict_actor_dist.log_prob( tensordict_actor[sample_key] ) # repeat tensordict_actor to match the qvalue size _actor_loss_td = ( tensordict_actor[0] .select(*self.qvalue_network.in_keys) .expand(self.num_qvalue_nets, *tensordict_actor[0].batch_size) ) # for actor loss _qval_td = tensordict_select.select(*self.qvalue_network.in_keys).expand( self.num_qvalue_nets, *tensordict_select.select(*self.qvalue_network.in_keys).batch_size, ) # for qvalue loss _next_val_td = ( tensordict_actor[1] .select(*self.qvalue_network.in_keys) .expand(self.num_qvalue_nets, *tensordict_actor[1].batch_size) ) # for next value estimation tensordict_qval = torch.cat( [ _actor_loss_td, _next_val_td, _qval_td, ], 0, ) # cat params q_params_detach = self.qvalue_network_params.detach() qvalue_params = torch.cat( [ q_params_detach, self.target_qvalue_network_params, self.qvalue_network_params, ], 0, ) tensordict_qval = vmap(self.qvalue_network)( tensordict_qval, qvalue_params, ) state_action_value = tensordict_qval.get("state_action_value").squeeze(-1) ( state_action_value_actor, next_state_action_value_qvalue, state_action_value_qvalue, ) = state_action_value.split( [self.num_qvalue_nets, self.num_qvalue_nets, self.num_qvalue_nets], dim=0, ) sample_log_prob = tensordict_actor.get("sample_log_prob").squeeze(-1) ( action_log_prob_actor, next_action_log_prob_qvalue, ) = sample_log_prob.unbind(0) # E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized loss_actor = -( state_action_value_actor.min(0)[0] - self.alpha * action_log_prob_actor ).mean() next_state_value = ( next_state_action_value_qvalue.min(0)[0] - self.alpha * next_action_log_prob_qvalue ) target_value = get_next_state_value( tensordict, gamma=self.gamma, pred_next_val=next_state_value, ) pred_val = state_action_value_qvalue td_error = (pred_val - target_value).pow(2) loss_qval = ( distance_loss( pred_val, target_value.expand_as(pred_val), loss_function=self.loss_function, ) .mean(-1) .sum() * 0.5 ) tensordict.set("td_error", td_error.detach().max(0)[0]) loss_alpha = self._loss_alpha(sample_log_prob) if not loss_qval.shape == loss_actor.shape: raise RuntimeError( f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}" ) td_out = TensorDict( { "loss_actor": loss_actor.mean(), "loss_qvalue": loss_qval.mean(), "loss_alpha": loss_alpha.mean(), "alpha": self.alpha.detach(), "entropy": -sample_log_prob.mean().detach(), "state_action_value_actor": state_action_value_actor.mean().detach(), "action_log_prob_actor": action_log_prob_actor.mean().detach(), "next.state_value": next_state_value.mean().detach(), "target_value": target_value.mean().detach(), }, [], ) return td_out def _forward_explicit(self, tensordict: TensorDictBase) -> TensorDictBase: loss_actor, sample_log_prob = self._loss_actor_explicit(tensordict.clone(False)) loss_qval, td_error = self._loss_qval_explicit(tensordict.clone(False)) tensordict.set("td_error", td_error.detach().max(0)[0]) loss_alpha = self._loss_alpha(sample_log_prob) td_out = TensorDict( { "loss_actor": loss_actor.mean(), "loss_qvalue": loss_qval.mean(), "loss_alpha": loss_alpha.mean(), "alpha": self.alpha.detach(), "entropy": -sample_log_prob.mean().detach(), # "state_action_value_actor": state_action_value_actor.mean().detach(), # "action_log_prob_actor": action_log_prob_actor.mean().detach(), # "next.state_value": next_state_value.mean().detach(), # "target_value": target_value.mean().detach(), }, [], ) return td_out def _rsample( self, dist, ): # separated only for the purpose of making the sampling # deterministic to compare methods return dist.rsample() def _sample_reparam(self, tensordict, params): """Given a policy param batch and input data in a tensordict, writes a reparam sample and log-prob key.""" with set_exploration_mode("random"): if self.gSDE: raise NotImplementedError # vmap doesn't support sampling, so we take it out from the vmap td_params = self.actor_network.get_dist_params( tensordict, params, ) if isinstance(self.actor_network, TensorDictSequential): sample_key = self.actor_network[-1].out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) else: sample_key = self.actor_network.out_keys[0] tensordict_actor_dist = self.actor_network.build_dist_from_params( td_params ) tensordict[sample_key] = self._rsample(tensordict_actor_dist) tensordict["sample_log_prob"] = tensordict_actor_dist.log_prob( tensordict[sample_key] ) return tensordict def _loss_actor_explicit(self, tensordict): tensordict_actor = tensordict.clone(False) actor_params = self.actor_network_params tensordict_actor = self._sample_reparam(tensordict_actor, actor_params) action_log_prob_actor = tensordict_actor["sample_log_prob"] tensordict_qval = tensordict_actor.select(*self.qvalue_network.in_keys).expand( self.num_qvalue_nets, *tensordict_actor.batch_size ) # for actor loss qvalue_params = self.qvalue_network_params.detach() tensordict_qval = vmap(self.qvalue_network)( tensordict_qval, qvalue_params, ) state_action_value_actor = tensordict_qval.get("state_action_value").squeeze(-1) state_action_value_actor = state_action_value_actor.min(0)[0] # E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized loss_actor = ( self.alpha * action_log_prob_actor - state_action_value_actor ).mean() return loss_actor, action_log_prob_actor def _loss_qval_explicit(self, tensordict): next_tensordict = step_mdp(tensordict) next_tensordict = self._sample_reparam( next_tensordict, self.target_actor_network_params ) next_action_log_prob_qvalue = next_tensordict["sample_log_prob"] next_state_action_value_qvalue = vmap(self.qvalue_network, (None, 0))( next_tensordict, self.target_qvalue_network_params, )["state_action_value"].squeeze(-1) next_state_value = ( next_state_action_value_qvalue.min(0)[0] - self.alpha * next_action_log_prob_qvalue ) pred_val = vmap(self.qvalue_network, (None, 0))( tensordict, self.qvalue_network_params, )["state_action_value"].squeeze(-1) target_value = get_next_state_value( tensordict, gamma=self.gamma, pred_next_val=next_state_value, ) # 1/2 * E[Q(s,a) - (r + gamma * (Q(s,a)-alpha log pi(s, a))) loss_qval = ( distance_loss( pred_val, target_value.expand_as(pred_val), loss_function=self.loss_function, ) .mean(-1) .sum() * 0.5 ) td_error = (pred_val - target_value).pow(2) return loss_qval, td_error if __name__ == "__main__": from tensordict.nn import TensorDictModule from torch import nn from torchrl.data import BoundedTensorSpec # Tests the vectorized version of SAC-v2 against plain implementation from torchrl.modules import ProbabilisticActor, ValueOperator from torchrl.modules.distributions import TanhNormal torch.manual_seed(0) action_spec = BoundedTensorSpec(-1, 1, shape=(3,)) class Splitter(nn.Linear): def forward(self, x): loc, scale = super().forward(x).chunk(2, -1) return loc, scale.exp() actor_module = TensorDictModule( Splitter(6, 6), in_keys=["obs"], out_keys=["loc", "scale"] ) actor = ProbabilisticActor( spec=action_spec, in_keys=["loc", "scale"], module=actor_module, distribution_class=TanhNormal, default_interaction_mode="random", return_log_prob=False, ) class QVal(nn.Linear): def forward(self, s: Tensor, a: Tensor) -> Tensor: return super().forward(torch.cat([s, a], -1)) qvalue = ValueOperator(QVal(9, 1), in_keys=["obs", "action"]) _rsample_old = SACLoss._rsample def _rsample_new(self, dist): return torch.ones_like(_rsample_old(self, dist)) SACLoss._rsample = _rsample_new loss = SACLoss(actor, qvalue) for batch in ((), (2, 3)): td_input = TensorDict( { "obs": torch.rand(*batch, 6), "action": torch.rand(*batch, 3).clamp(-1, 1), "next": {"obs": torch.rand(*batch, 6)}, "reward": torch.rand(*batch, 1), "done": torch.zeros(*batch, 1, dtype=torch.bool), }, batch, ) loss._explicit = True loss0 = loss(td_input) loss._explicit = False loss1 = loss(td_input) print("a", loss0["loss_actor"] - loss1["loss_actor"]) print("q", loss0["loss_qvalue"] - loss1["loss_qvalue"])
agenthive-dev
scripts/sac_mujoco/sac_loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import dataclasses import hydra import torch.cuda from hydra.core.config_store import ConfigStore from rlhive.rl_envs import RoboHiveEnv from torchrl.envs import ( CatTensors, DoubleToFloat, EnvCreator, ObservationNorm, ParallelEnv, R3MTransform, SelectTransform, TransformedEnv, ) from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling from torchrl.envs.utils import set_exploration_mode from torchrl.modules import OrnsteinUhlenbeckProcessWrapper from torchrl.record import VideoRecorder from torchrl.trainers.helpers.collectors import ( make_collector_offpolicy, OffPolicyCollectorConfig, ) from torchrl.trainers.helpers.envs import ( EnvConfig, initialize_observation_norm_transforms, retrieve_observation_norms_state_dict, ) from torchrl.trainers.helpers.logger import LoggerConfig from torchrl.trainers.helpers.losses import LossConfig, make_redq_loss from torchrl.trainers.helpers.models import make_redq_model, REDQModelConfig from torchrl.trainers.helpers.replay_buffer import make_replay_buffer, ReplayArgsConfig from torchrl.trainers.helpers.trainers import make_trainer, TrainerConfig from torchrl.trainers.loggers.utils import generate_exp_name, get_logger def make_env( task, reward_scaling, device, obs_norm_state_dict=None, action_dim_gsde=None, state_dim_gsde=None, ): base_env = RoboHiveEnv(task, device=device) env = make_transformed_env(env=base_env, reward_scaling=reward_scaling) if obs_norm_state_dict is not None: obs_norm = ObservationNorm( **obs_norm_state_dict, in_keys=["observation_vector"] ) env.append_transform(obs_norm) if action_dim_gsde is not None: env.append_transform( gSDENoise(action_dim=action_dim_gsde, state_dim=state_dim_gsde) ) return env def make_transformed_env( env, reward_scaling=5.0, stats=None, ): """ Apply transforms to the env (such as reward scaling and state normalization) """ env = TransformedEnv(env, SelectTransform("solved", "pixels", "observation")) env.append_transform( Compose( R3MTransform("resnet50", in_keys=["pixels"], download=True), FlattenObservation(-2, -1, in_keys=["r3m_vec"]), ) ) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802 env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling)) selected_keys = ["r3m_vec", "observation"] out_key = "observation_vector" env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key)) # we normalize the states if stats is None: _stats = {"loc": 0.0, "scale": 1.0} else: _stats = stats env.append_transform( ObservationNorm(**_stats, in_keys=[out_key], standard_normal=True) ) env.append_transform(DoubleToFloat(in_keys=[out_key], in_keys_inv=[])) return env config_fields = [ (config_field.name, config_field.type, config_field) for config_cls in ( TrainerConfig, OffPolicyCollectorConfig, EnvConfig, LossConfig, REDQModelConfig, LoggerConfig, ReplayArgsConfig, ) for config_field in dataclasses.fields(config_cls) ] Config = dataclasses.make_dataclass(cls_name="Config", fields=config_fields) cs = ConfigStore.instance() cs.store(name="config", node=Config) DEFAULT_REWARD_SCALING = { "Hopper-v1": 5, "Walker2d-v1": 5, "HalfCheetah-v1": 5, "cheetah": 5, "Ant-v2": 5, "Humanoid-v2": 20, "humanoid": 100, } @hydra.main(version_base=None, config_path=".", config_name="config") def main(cfg: "DictConfig"): # noqa: F821 device = ( torch.device("cpu") if torch.cuda.device_count() == 0 else torch.device("cuda:0") ) exp_name = generate_exp_name("REDQ", cfg.exp_name) logger = get_logger( logger_type=cfg.logger, logger_name="redq_logging", experiment_name=exp_name ) key, init_env_steps = None, None if not cfg.vecnorm and cfg.norm_stats: if not hasattr(cfg, "init_env_steps"): raise AttributeError("init_env_steps missing from arguments.") key = ("next", "observation_vector") init_env_steps = cfg.init_env_steps proof_env = make_env( task=cfg.env_name, reward_scaling=cfg.reward_scaling, device=device, ) initialize_observation_norm_transforms( proof_environment=proof_env, num_iter=init_env_steps, key=key ) _, obs_norm_state_dict = retrieve_observation_norms_state_dict(proof_env)[0] print(proof_env) model = make_redq_model( proof_env, cfg=cfg, device=device, in_keys=["observation_vector"], ) loss_module, target_net_updater = make_redq_loss(model, cfg) actor_model_explore = model[0] if cfg.ou_exploration: if cfg.gSDE: raise RuntimeError("gSDE and ou_exploration are incompatible") actor_model_explore = OrnsteinUhlenbeckProcessWrapper( actor_model_explore, annealing_num_steps=cfg.annealing_frames, sigma=cfg.ou_sigma, theta=cfg.ou_theta, ).to(device) if device == torch.device("cpu"): # mostly for debugging actor_model_explore.share_memory() if cfg.gSDE: with torch.no_grad(), set_exploration_mode("random"): # get dimensions to build the parallel env proof_td = actor_model_explore(proof_env.reset().to(device)) action_dim_gsde, state_dim_gsde = proof_td.get("_eps_gSDE").shape[-2:] del proof_td else: action_dim_gsde, state_dim_gsde = None, None proof_env.close() create_env_fn = make_env( # Pass EnvBase instead of the create_env_fn task=cfg.env_name, reward_scaling=cfg.reward_scaling, device=device, obs_norm_state_dict=obs_norm_state_dict, action_dim_gsde=action_dim_gsde, state_dim_gsde=state_dim_gsde, ) collector = make_collector_offpolicy( make_env=create_env_fn, actor_model_explore=actor_model_explore, cfg=cfg, # make_env_kwargs=[ # {"device": device} if device >= 0 else {} # for device in args.env_rendering_devices # ], ) replay_buffer = make_replay_buffer(device, cfg) # recorder = transformed_env_constructor( # cfg, # video_tag=video_tag, # norm_obs_only=True, # obs_norm_state_dict=obs_norm_state_dict, # logger=logger, # use_env_creator=False, # )() recorder = make_env( task=cfg.env_name, reward_scaling=cfg.reward_scaling, device=device, obs_norm_state_dict=obs_norm_state_dict, action_dim_gsde=action_dim_gsde, state_dim_gsde=state_dim_gsde, ) # remove video recorder from recorder to have matching state_dict keys if cfg.record_video: recorder_rm = TransformedEnv(recorder.base_env) for transform in recorder.transform: if not isinstance(transform, VideoRecorder): recorder_rm.append_transform(transform.clone()) else: recorder_rm = recorder if isinstance(create_env_fn, ParallelEnv): recorder_rm.load_state_dict(create_env_fn.state_dict()["worker0"]) create_env_fn.close() elif isinstance(create_env_fn, EnvCreator): recorder_rm.load_state_dict(create_env_fn().state_dict()) else: recorder_rm.load_state_dict(create_env_fn.state_dict()) # reset reward scaling for t in recorder.transform: if isinstance(t, RewardScaling): t.scale.fill_(1.0) t.loc.fill_(0.0) trainer = make_trainer( collector, loss_module, recorder, target_net_updater, actor_model_explore, replay_buffer, logger, cfg, ) final_seed = collector.set_seed(cfg.seed) print(f"init seed: {cfg.seed}, final seed: {final_seed}") trainer.train() return (logger.log_dir, trainer._log_dict) if __name__ == "__main__": main()
agenthive-dev
scripts/redq/redq.py
""" This is a job script for running policy gradient algorithms on gym tasks. Separate job scripts are provided to run few other algorithms - For DAPG see here: https://github.com/aravindr93/hand_dapg/tree/master/dapg/examples - For model-based NPG see here: https://github.com/aravindr93/mjrl/tree/master/mjrl/algos/model_accel """ from mjrl.utils.gym_env import GymEnv from mjrl.policies.gaussian_mlp import MLP from mjrl.baselines.mlp_baseline import MLPBaseline from mjrl.algos.npg_cg import NPG from mjrl.algos.batch_reinforce import BatchREINFORCE from mjrl.algos.ppo_clip import PPO from mjrl.utils.train_agent import train_agent from mjrl.utils.logger import DataLog from omegaconf import open_dict import os import json import gym # import mjrl.envs import time as timer import robohive from robohive.envs.env_variants import register_env_variant def train_loop(job_data) -> None: if 'env_hyper_params' in job_data.keys(): job_data.env = register_env_variant(job_data.env, job_data.env_hyper_params) e = GymEnv(job_data.env) policy_size = tuple(eval(job_data.policy_size)) vf_hidden_size = tuple(eval(job_data.vf_hidden_size)) policy = MLP(e.spec, hidden_sizes=policy_size, seed=job_data.seed, init_log_std=job_data.init_log_std, min_log_std=job_data.min_log_std) baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=job_data.vf_batch_size, hidden_sizes=vf_hidden_size, epochs=job_data.vf_epochs, learn_rate=job_data.vf_learn_rate) # Construct the algorithm if job_data.algorithm == 'NPG': # Other hyperparameters (like number of CG steps) can be specified in config for pass through # or default hyperparameters will be used agent = NPG(e, policy, baseline, normalized_step_size=job_data.rl_step_size, seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params) elif job_data.algorithm == 'VPG': agent = BatchREINFORCE(e, policy, baseline, learn_rate=job_data.rl_step_size, seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params) elif job_data.algorithm == 'NVPG': agent = BatchREINFORCE(e, policy, baseline, desired_kl=job_data.rl_step_size, seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params) elif job_data.algorithm == 'PPO': # There are many hyperparameters for PPO. They can be specified in config for pass through # or defaults in the PPO algorithm will be used agent = PPO(e, policy, baseline, save_logs=True, **job_data.alg_hyper_params) else: NotImplementedError("Algorithm not found") # Update logger if WandB in Config if 'wandb_params' in job_data.keys() and job_data['wandb_params']['use_wandb']==True: if 'wandb_logdir' in job_data['wandb_params']: job_data['wandb_params']['wandb_logdir'] = job_data['wandb_params']['wandb_logdir'] else: with open_dict(job_data): job_data.wandb_params.wandb_logdir = os.getcwd() agent.logger = DataLog(**job_data['wandb_params'], wandb_config=job_data) print("========================================") print("Starting policy learning") print("========================================") ts = timer.time() train_agent(job_name='.', agent=agent, seed=job_data.seed, niter=job_data.rl_num_iter, gamma=job_data.rl_gamma, gae_lambda=job_data.rl_gae, num_cpu=job_data.num_cpu, sample_mode=job_data.sample_mode, num_traj=job_data.rl_num_traj, num_samples=job_data.rl_num_samples, save_freq=job_data.save_freq, evaluation_rollouts=job_data.eval_rollouts) print("========================================") print("Job Finished. Time taken = %f" % (timer.time()-ts)) print("========================================")
agenthive-dev
baselines/mjrl/mjrl_job_script.py
""" This is a launcher script for launching mjrl training using hydra """ import os import time as timer import hydra from omegaconf import DictConfig, OmegaConf from mjrl_job_script import train_loop # =============================================================================== # Process Inputs and configure job # =============================================================================== @hydra.main(config_name="hydra_npg_config", config_path="config") def configure_jobs(job_data): print("========================================") print("Job Configuration") print("========================================") OmegaConf.resolve(job_data) # resolve configs assert 'algorithm' in job_data.keys() assert any([job_data.algorithm == a for a in ['NPG', 'NVPG', 'VPG', 'PPO']]) assert 'sample_mode' in job_data.keys() assert any([job_data.sample_mode == m for m in ['samples', 'trajectories']]) job_data.alg_hyper_params = dict() if 'alg_hyper_params' not in job_data.keys() else job_data.alg_hyper_params with open('job_config.yaml', 'w') as fp: OmegaConf.save(config=job_data, f=fp.name) if job_data.sample_mode == 'trajectories': assert 'rl_num_traj' in job_data.keys() job_data.rl_num_samples = 0 # will be ignored elif job_data.sample_mode == 'samples': assert 'rl_num_samples' in job_data.keys() job_data.rl_num_traj = 0 # will be ignored else: print("Unknown sampling mode. Choose either trajectories or samples") exit() print(OmegaConf.to_yaml(job_data, resolve=True)) train_loop(job_data) if __name__ == "__main__": configure_jobs()
agenthive-dev
baselines/mjrl/hydra_mjrl_launcher.py
import robohive import click DESC=""" Script to render trajectories embeded in the env" """ @click.command(help=DESC) @click.option('-s', '--suite', type=str, help='environment suite to train', default="arms") @click.option('-l', '--launcher', type=click.Choice(['', None, "local", "slurm"]), default='') @click.option('-cn', '--config_name', type=str, default=None) @click.option('-cp', '--config_path', type=str, default='config') def get_train_cmd(suite, launcher, config_name, config_path): # Resolve Suite if suite=="multitask_": envs = ",".join(robohive.robohive_multitask_suite) if config_name==None: config_name="hydra_kitchen_config.yaml" elif suite=="arms": envs = ",".join(robohive.robohive_arm_suite) if config_name==None: config_name="hydra_arms_config.yaml" elif suite=="hands": envs = ",".join(robohive.robohive_hand_suite) if config_name==None: config_name="hydra_hand_config.yaml" elif suite=="quads": envs = ",".join(robohive.robohive_quad_suite) if config_name==None: config_name="hydra_quads_config.yaml" elif suite=="myobase": envs = ",".join(robohive.robohive_myobase_suite) if config_name==None: config_name="hydra_myo_config.yaml" elif suite=="myochallenge": envs = ",".join(robohive.robohive_myochal_suite) if config_name==None: config_name="hydra_myo_config.yaml" elif suite=="myodm": envs = ",".join(robohive.robohive_myodm_suite) if config_name==None: config_name="hydra_myo_config.yaml" else: raise ValueError(f"Unsupported suite:{suite}") # Resolve launcher if launcher=='' or launcher==None: launcher_spec = '' else: launcher_spec = f"--multirun hydra/output={launcher} hydra/launcher={launcher}" # Get final training command print(f"To train NPG via mjrl on {suite} suite, run the following command: ") print(f"python hydra_mjrl_launcher.py --config-path {config_path} --config-name {config_name} {launcher_spec} env={envs} seed=1,2,3") if __name__ == '__main__': get_train_cmd()
agenthive-dev
baselines/mjrl/get_trian_cmd.py
#!/usr/bin/env python """ MIT License Copyright (c) 2017 Guillaume Papin Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. A wrapper script around clang-format, suitable for linting multiple files and to use for continuous integration. This is an alternative API for the clang-format command line. It runs over multiple files and directories in parallel. A diff output is produced and a sensible exit code is returned. """ import argparse import difflib import fnmatch import multiprocessing import os import signal import subprocess import sys import traceback from functools import partial try: from subprocess import DEVNULL # py3k except ImportError: DEVNULL = open(os.devnull, "wb") DEFAULT_EXTENSIONS = "c,h,C,H,cpp,hpp,cc,hh,c++,h++,cxx,hxx,cu" class ExitStatus: SUCCESS = 0 DIFF = 1 TROUBLE = 2 def list_files(files, recursive=False, extensions=None, exclude=None): if extensions is None: extensions = [] if exclude is None: exclude = [] out = [] for file in files: if recursive and os.path.isdir(file): for dirpath, dnames, fnames in os.walk(file): fpaths = [os.path.join(dirpath, fname) for fname in fnames] for pattern in exclude: # os.walk() supports trimming down the dnames list # by modifying it in-place, # to avoid unnecessary directory listings. dnames[:] = [ x for x in dnames if not fnmatch.fnmatch(os.path.join(dirpath, x), pattern) ] fpaths = [x for x in fpaths if not fnmatch.fnmatch(x, pattern)] for f in fpaths: ext = os.path.splitext(f)[1][1:] if ext in extensions: out.append(f) else: out.append(file) return out def make_diff(file, original, reformatted): return list( difflib.unified_diff( original, reformatted, fromfile=f"{file}\t(original)", tofile=f"{file}\t(reformatted)", n=3, ) ) class DiffError(Exception): def __init__(self, message, errs=None): super().__init__(message) self.errs = errs or [] class UnexpectedError(Exception): def __init__(self, message, exc=None): super().__init__(message) self.formatted_traceback = traceback.format_exc() self.exc = exc def run_clang_format_diff_wrapper(args, file): try: ret = run_clang_format_diff(args, file) return ret except DiffError: raise except Exception as e: raise UnexpectedError(f"{file}: {e.__class__.__name__}: {e}", e) def run_clang_format_diff(args, file): try: with open(file, encoding="utf-8") as f: original = f.readlines() except OSError as exc: raise DiffError(str(exc)) invocation = [args.clang_format_executable, file] # Use of utf-8 to decode the process output. # # Hopefully, this is the correct thing to do. # # It's done due to the following assumptions (which may be incorrect): # - clang-format will returns the bytes read from the files as-is, # without conversion, and it is already assumed that the files use utf-8. # - if the diagnostics were internationalized, they would use utf-8: # > Adding Translations to Clang # > # > Not possible yet! # > Diagnostic strings should be written in UTF-8, # > the client can translate to the relevant code page if needed. # > Each translation completely replaces the format string # > for the diagnostic. # > -- http://clang.llvm.org/docs/InternalsManual.html#internals-diag-translation try: proc = subprocess.Popen( invocation, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, encoding="utf-8", ) except OSError as exc: raise DiffError( f"Command '{subprocess.list2cmdline(invocation)}' failed to start: {exc}" ) proc_stdout = proc.stdout proc_stderr = proc.stderr # hopefully the stderr pipe won't get full and block the process outs = list(proc_stdout.readlines()) errs = list(proc_stderr.readlines()) proc.wait() if proc.returncode: raise DiffError( "Command '{}' returned non-zero exit status {}".format( subprocess.list2cmdline(invocation), proc.returncode ), errs, ) return make_diff(file, original, outs), errs def bold_red(s): return "\x1b[1m\x1b[31m" + s + "\x1b[0m" def colorize(diff_lines): def bold(s): return "\x1b[1m" + s + "\x1b[0m" def cyan(s): return "\x1b[36m" + s + "\x1b[0m" def green(s): return "\x1b[32m" + s + "\x1b[0m" def red(s): return "\x1b[31m" + s + "\x1b[0m" for line in diff_lines: if line[:4] in ["--- ", "+++ "]: yield bold(line) elif line.startswith("@@ "): yield cyan(line) elif line.startswith("+"): yield green(line) elif line.startswith("-"): yield red(line) else: yield line def print_diff(diff_lines, use_color): if use_color: diff_lines = colorize(diff_lines) sys.stdout.writelines(diff_lines) def print_trouble(prog, message, use_colors): error_text = "error:" if use_colors: error_text = bold_red(error_text) print(f"{prog}: {error_text} {message}", file=sys.stderr) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--clang-format-executable", metavar="EXECUTABLE", help="path to the clang-format executable", default="clang-format", ) parser.add_argument( "--extensions", help=f"comma separated list of file extensions (default: {DEFAULT_EXTENSIONS})", default=DEFAULT_EXTENSIONS, ) parser.add_argument( "-r", "--recursive", action="store_true", help="run recursively over directories", ) parser.add_argument("files", metavar="file", nargs="+") parser.add_argument("-q", "--quiet", action="store_true") parser.add_argument( "-j", metavar="N", type=int, default=0, help="run N clang-format jobs in parallel (default number of cpus + 1)", ) parser.add_argument( "--color", default="auto", choices=["auto", "always", "never"], help="show colored diff (default: auto)", ) parser.add_argument( "-e", "--exclude", metavar="PATTERN", action="append", default=[], help="exclude paths matching the given glob-like pattern(s) from recursive search", ) args = parser.parse_args() # use default signal handling, like diff return SIGINT value on ^C # https://bugs.python.org/issue14229#msg156446 signal.signal(signal.SIGINT, signal.SIG_DFL) try: signal.SIGPIPE except AttributeError: # compatibility, SIGPIPE does not exist on Windows pass else: signal.signal(signal.SIGPIPE, signal.SIG_DFL) colored_stdout = False colored_stderr = False if args.color == "always": colored_stdout = True colored_stderr = True elif args.color == "auto": colored_stdout = sys.stdout.isatty() colored_stderr = sys.stderr.isatty() version_invocation = [args.clang_format_executable, "--version"] try: subprocess.check_call(version_invocation, stdout=DEVNULL) except subprocess.CalledProcessError as e: print_trouble(parser.prog, str(e), use_colors=colored_stderr) return ExitStatus.TROUBLE except OSError as e: print_trouble( parser.prog, f"Command '{subprocess.list2cmdline(version_invocation)}' failed to start: {e}", use_colors=colored_stderr, ) return ExitStatus.TROUBLE retcode = ExitStatus.SUCCESS files = list_files( args.files, recursive=args.recursive, exclude=args.exclude, extensions=args.extensions.split(","), ) if not files: return njobs = args.j if njobs == 0: njobs = multiprocessing.cpu_count() + 1 njobs = min(len(files), njobs) if njobs == 1: # execute directly instead of in a pool, # less overhead, simpler stacktraces it = (run_clang_format_diff_wrapper(args, file) for file in files) pool = None else: pool = multiprocessing.Pool(njobs) it = pool.imap_unordered(partial(run_clang_format_diff_wrapper, args), files) while True: try: outs, errs = next(it) except StopIteration: break except DiffError as e: print_trouble(parser.prog, str(e), use_colors=colored_stderr) retcode = ExitStatus.TROUBLE sys.stderr.writelines(e.errs) except UnexpectedError as e: print_trouble(parser.prog, str(e), use_colors=colored_stderr) sys.stderr.write(e.formatted_traceback) retcode = ExitStatus.TROUBLE # stop at the first unexpected error, # something could be very wrong, # don't process all files unnecessarily if pool: pool.terminate() break else: sys.stderr.writelines(errs) if outs == []: continue if not args.quiet: print_diff(outs, use_color=colored_stdout) if retcode == ExitStatus.SUCCESS: retcode = ExitStatus.DIFF return retcode if __name__ == "__main__": sys.exit(main())
agenthive-dev
.circleci/unittest/linux/scripts/run-clang-format.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup, find_packages setup( name="psvi", version="0.1.0", description="Setting up a python package for Bayesian inference using variational coresets", author="Dionysis Manousakas", author_email="[email protected]", license="LICENSE", packages=find_packages(include=["psvi", "psvi.*"]), install_requires=[ "iopath==0.1.10", "matplotlib>=3.5.2", "numpy>=1.22.4", "pandas>=1.4.3", "Pillow==9.2.0", "requests==2.25.1", "scikit_learn>=1.1.1", "setuptools>=59.6.0", "torch>=1.12.0", "torchvision==0.13.0", "tqdm==4.64.0", "TyXe @ git+https://github.com/TyXe-BDL/TyXe", "arff==0.9", "pystan==3.5.0", ], keywords=[ "bilevel optimization", "hypergradient", "sampling", "importance sampling", "variational inference", "Monte Carlo", "Bayesian", "neural networks", "pruning", "sparsity", "coresets", "distillation", "meta-learning", "inducing points", "pseudodata", "neural networks", ], )
Blackbox-Coresets-VI-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
Blackbox-Coresets-VI-main
psvi/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. r""" Experiment execution script: Users can specify the dataset, the statistical model and the inference methods, and this script will generate a dictionary with the predictive performance. """ # Import libraries import argparse import os import pickle from collections import defaultdict from platform import architecture from typing import Any, Dict, List from psvi.inference.baselines import ( run_giga, run_mfvi, run_mfvi_subset, run_opsvi, run_random, run_sparsevi, run_mfvi_regressor, run_mfvi_subset_regressor ) from psvi.inference.psvi_classes import ( PSVI, PSVIAFixedU, PSVIAV, PSVIFixedU, PSVILearnV, PSVI_Ablated, PSVI_No_IW, PSVI_No_Rescaling, PSVIFreeV, PSVI_regressor, PSVILearnV_regressor, PSVIAV_regressor, ) from psvi.inference.sparsebbvi import run_sparsevi_with_bb_elbo from psvi.models.logreg import * from experiments_utils import read_dataset, read_regression_dataset torch.autograd.set_detect_anomaly(True) parser = argparse.ArgumentParser() # Arguments for the experiment workflow parser.add_argument( "--fnm", default="results", type=str, help="Filename where results are stored" ) parser.add_argument( "--datasets", default=["phishing"], nargs="+", choices=["webspam", "phishing", "adult", "MNIST", "halfmoon", "four_blobs", "sinus", "concrete", "energy", "power", "kin8nm", "protein", "naval", "yacht", "boston", "wine", "year", "synth_lr_10", "synth_lr_50", "synth_lr_200"], type=str, help="List of dataset names", ) parser.add_argument( "--methods", default=["psvi_learn_v", "mfvi", "mfvi_subset"], nargs="+", type=str, help="List of inference method names", ) parser.add_argument("--mc_samples", default=10, type=int, help="Monte Carlo samples") parser.add_argument("--num_epochs", default=301, type=int, help="Training epochs") parser.add_argument( "--num_trials", default=3, type=int, help="Trials executed for each inference method", ) parser.add_argument( "--data_minibatch", default=128, type=int, help="Data minibatch size" ) parser.add_argument( "--inner_it", default=100, type=int, help="Gradient steps in the inner problem of nested optimization", ) parser.add_argument( "--outer_it", default=100, type=int, help="Gradient steps in the outer problem of nested optimization", ) parser.add_argument( "--trainer", default="nested", choices=["nested", "hyper", "joint"], type=str, help="Method for computation of hypergradient", ) parser.add_argument( "--diagonal", action=argparse.BooleanOptionalAction, help="Diagonal approximation of Gaussian covariance matrices used", ) parser.add_argument( "--architecture", default="logistic_regression", choices=["logistic_regression", "logistic_regression_fullcov", "fn", "fn2", "lenet", "regressor_net"], type=str, help="Model architecture", ) parser.add_argument( "--n_hidden", default=40, type=int, help="Number of hidden units in feedforward neural architectures", ) parser.add_argument( "--n_layers", default=1, type=int, help="Number of layers in feedforward neural architectures", ) parser.add_argument( "--log_every", default=150, type=int, help="Frequency of logging evaluation results throughout training (in number of outer gradient iterations)", ) parser.add_argument( "--register_elbos", action=argparse.BooleanOptionalAction, help="Saving variational objectives values throughout inference for plotting", ) parser.add_argument( "--init_sd", default=1e-6, type=float, help="Initialization of standard deviation for variational parameters", ) parser.add_argument( "--lr0net", default=1e-3, type=float, help="Initial learning rate for model parameters optimizer", ) parser.add_argument( "--lr0u", default=1e-4, type=float, help="Initial learning rate for optimizer of pseudocoreset point input coordinates u", ) parser.add_argument( "--lr0v", default=1e-3, type=float, help="Initial learning rate for optimizer of coreset support coefficients", ) parser.add_argument( "--lr0z", default=1e-3, type=float, help="Initial learning rate for optimizer of coreset points labels", ) parser.add_argument( "--lr0alpha", default=1e-3, type=float, help="Initial learning rate for coreset likelihood rescaling coefficient", ) parser.add_argument( "--init_at", default="subsample", choices=["subsample", "random"], type=str, help="Method for coreset points initialization", ) parser.add_argument( "--compute_weights_entropy", action=argparse.BooleanOptionalAction, help="Comput entropy of weights for plotting", ) parser.add_argument( "--coreset_sizes", default=[100], nargs="+", type=int, help="List of sizes for coresets computed throughout the experiment, or subsamples used for baselines mfvi_subset and random", ) parser.add_argument( "--reset", action=argparse.BooleanOptionalAction, help="Reset model parameters over intervals during training", ) parser.add_argument( "--prune", action=argparse.BooleanOptionalAction, help="Prune to coreset of smaller size", ) parser.add_argument( "--prune_interval", default=400, type=int, help="Gradient steps in the outer problem of nested optimization between prunning steps", ) parser.add_argument( "--prune_sizes", default=[20], nargs="+", type=int, help="List of sizes for coresets in a pruning experiment (decreasing)", ) parser.add_argument( "--increment", action=argparse.BooleanOptionalAction, help="Learn tasks incrementally", ) parser.add_argument( "--increment_interval", default=1000, type=int, help="Gradient steps in the outer problem of nested optimization between incremental learning stages", ) parser.add_argument( "--increment_sizes", default=[20], nargs="+", type=int, help="List of sizes for coresets in the incremental learning setting (non-decreasing)", ) parser.add_argument( "--retrain_on_coreset", action=argparse.BooleanOptionalAction, help="Retrain the variational model restricted only on the extracted coreset datapoints for the same number of epochs", ) parser.add_argument( "--save_input_data", action=argparse.BooleanOptionalAction, help="Save input dataset", ) parser.add_argument( "--test_ratio", default=0.2, type=float, help="Ratio of test dataset size" ) parser.add_argument( "--log_pseudodata", action=argparse.BooleanOptionalAction, help="Store pseudodata for visualisation", ) parser.add_argument( "--data_folder", default="../data", type=str, help="Folder where dataset gets stored", ) parser.add_argument( "--results_folder", default="../results", type=str, help="Folder where evaluation files get stored", ) parser.add_argument( "--learn_z", action=argparse.BooleanOptionalAction, help="Learn soft labels for distilled data", ) parser.add_argument( "--gamma", default=1., type=float, help="Decay factor of learning rate" ) parser.set_defaults( diagonal=True, reset=False, compute_weights_entropy=False, register_elbos=False, save_input_data=False, prune=False, increment=False, log_pseudodata=False, retrain_on_coreset=False, learn_z=False, ) parsed_args = parser.parse_args() method_args = vars(parsed_args) datasets, methods = method_args["datasets"], method_args["methods"] method_args["logistic_regression"] = method_args['architecture'] == 'logistic_regression' [ os.makedirs(fold) for fold in [method_args["data_folder"], method_args["results_folder"]] if not os.path.exists(fold) ] # make folders for data and results storage def rec_dd(): return defaultdict(rec_dd) results = rec_dd() # recursive dictionary for storage of inference results # Specify inference methods inf_dict = { "psvi": (lambda *args, **kwargs: PSVI(*args, **kwargs).run_psvi(*args, **kwargs)), "psvi_ablated": ( lambda *args, **kwargs: PSVI_Ablated(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_learn_v": ( lambda *args, **kwargs: PSVILearnV(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_alpha_v": ( lambda *args, **kwargs: PSVIAV(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_no_iw": ( lambda *args, **kwargs: PSVI_No_IW(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_free_v": ( lambda *args, **kwargs: PSVIFreeV(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_no_rescaling": ( lambda *args, **kwargs: PSVI_No_Rescaling(*args, **kwargs).run_psvi( *args, **kwargs ) ), "psvi_fixed_u": ( lambda *args, **kwargs: PSVIFixedU(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_alpha_fixed_u": ( lambda *args, **kwargs: PSVIAFixedU(*args, **kwargs).run_psvi( *args, **kwargs ) ), "psvi_regressor": ( lambda *args, **kwargs: PSVI_regressor(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_alpha_v_regressor": ( lambda *args, **kwargs: PSVIAV_regressor(*args, **kwargs).run_psvi(*args, **kwargs) ), "psvi_learn_v_regressor": ( lambda *args, **kwargs: PSVILearnV_regressor(*args, **kwargs).run_psvi(*args, **kwargs) ), "sparsebbvi": run_sparsevi_with_bb_elbo, "opsvi": run_opsvi, "random": run_random, "sparsevi": run_sparsevi, "giga": run_giga, "mfvi": run_mfvi, "mfvi_subset": run_mfvi_subset, "mfvi_regressor": run_mfvi_regressor, "mfvi_subset_regressor": run_mfvi_subset_regressor, } def experiment_driver( datasets: List[str], methods: Dict[str, bool], method_args: Dict[str, Any], ) -> None: r""" Run experiment """ for dnm in datasets: # Read the dataset print(f"\nReading/Generating the dataset {dnm.upper()}") x, y, xt, yt, N, D, train_dataset, test_dataset, num_classes = read_dataset( dnm, method_args ) print( f"\nBayesian {'logistic regression' if method_args['logistic_regression'] else 'neural network'} experiment.\nInference via {' '.join(map(lambda x:x.upper(), methods))} on {dnm} data over {method_args['num_trials']} {'independent trials.' if method_args['num_trials']>1 else 'trial.'}\n\n\n" ) for nm_alg in methods: print(f"\n\nRunning {nm_alg}\n") logistic_regression = method_args.get( "logistic_regression", method_args.get("architecture") == "logreg" ) inf_alg = inf_dict[nm_alg] compute_weights_entropy = ( not nm_alg.startswith(("opsvi", "mfvi_subset")) ) and method_args["compute_weights_entropy"] tps = ( method_args["coreset_sizes"] if nm_alg.startswith(("psvi", "opsvi", "mfvi_subset")) else [-1] ) # alias for baselines with no explicit constraint on dataset size for t in range(method_args["num_trials"]): print(f"Trial #{t}") for ( ps ) in tps: # range of pseudocoreset sizes tested over the experiment print( f"Coreset/Subset with {ps if not method_args['increment'] else method_args['increment_sizes'][0]} datapoints" ) if ps != -1 else print("Unconstrained data access") results[dnm][nm_alg][ps][t] = inf_alg( mc_samples=method_args["mc_samples"], num_epochs=method_args["num_epochs"], data_minibatch=method_args["data_minibatch"], D=D, N=N, tr=t, diagonal=method_args["diagonal"], x=x, y=y, xt=xt, yt=yt, inner_it=method_args["inner_it"], outer_it=method_args["outer_it"], scatterplot_coreset=method_args.get( "scatterplot_coreset" ), # not parsed for some methods atm logistic_regression=logistic_regression, trainer=method_args["trainer"], log_every=method_args["log_every"], register_elbos=method_args["register_elbos"], lr0u=method_args["lr0u"], lr0net=method_args["lr0net"], lr0v=method_args["lr0v"], lr0z=method_args["lr0z"], lr0alpha=method_args["lr0alpha"], init_args=method_args["init_at"], init_sd=method_args[ "init_sd" ], # initialization of variance in variational model num_pseudo=ps, seed=t, # map random seed to the trial number for reproducibility of inference result at the beginning of each of the baseline compute_weights_entropy=compute_weights_entropy, reset=method_args.get("reset"), reset_interval=method_args.get("reset_interval"), architecture=method_args.get("architecture"), log_pseudodata=method_args.get("log_pseudodata"), n_hidden=method_args.get( "n_hidden", 40 ), # hidden units in nn architecture n_layers=method_args.get("n_layers", 1), train_dataset=train_dataset, test_dataset=test_dataset, dnm=dnm, nc=num_classes, prune=method_args.get("prune"), prune_interval=method_args.get("prune_interval"), prune_sizes=method_args.get("prune_sizes"), increment=method_args.get("increment"), increment_interval=method_args.get("increment_interval"), increment_sizes=method_args.get("increment_sizes"), retrain_on_coreset=method_args.get("retrain_on_coreset"), learn_z=method_args["learn_z"], ) print("Trial completed!\n") return write_to_files(results, method_args["fnm"]) def regressor_experiment_driver( datasets: List[str], methods: Dict[str, bool], method_args: Dict[str, Any], ) -> None: r""" Run BNN regression experiment """ for dnm in datasets: # Read the dataset print(f"\nReading/Generating the dataset {dnm.upper()}") method_args["seed"], method_args["num_test"] = 42, .15 x, y, xv, yv, xt, yt, N, D, train_dataset, val_dataset, test_dataset, y_mean, y_std, taus = read_regression_dataset( dnm, method_args ) print( f"\nRegression experiment using BNNs.\nInference via {' '.join(map(lambda x:x.upper(), methods))} on {dnm} data over {method_args['num_trials']} {'independent trials.' if method_args['num_trials']>1 else 'trial.'}\n\n\n" ) for nm_alg in methods: print(f"\n\nRunning {nm_alg}\n") logistic_regression = False inf_alg = inf_dict[nm_alg + "_regressor"] compute_weights_entropy = ( not nm_alg.startswith("mfvi_subset") ) and method_args["compute_weights_entropy"] tps = ( method_args["coreset_sizes"] if nm_alg.startswith(("psvi", "mfvi_subset")) else [-1] ) # alias for baselines with no explicit constraint on dataset size for t in range(method_args["num_trials"]): print(f"Trial #{t}") for ( ps ) in tps: # range of pseudocoreset sizes tested over the experiment print( f"Coreset/Subset with {ps} datapoints" ) if ps != -1 else print("Unconstrained data access") results[dnm][nm_alg][ps][t] = inf_alg( mc_samples=method_args["mc_samples"], num_epochs=method_args["num_epochs"], data_minibatch=method_args["data_minibatch"], D=D, N=N, tr=t, diagonal=method_args["diagonal"], x=x, y=y, xv=xv, yv=yv, xt=xt, yt=yt, inner_it=method_args["inner_it"], outer_it=method_args["outer_it"], scatterplot_coreset=method_args.get( "scatterplot_coreset" ), # not parsed for some methods atm logistic_regression=logistic_regression, trainer=method_args["trainer"], log_every=method_args["log_every"], register_elbos=method_args["register_elbos"], lr0u=method_args["lr0u"], lr0net=method_args["lr0net"], lr0v=method_args["lr0v"], init_args=method_args["init_at"], init_sd=method_args[ "init_sd" ], # initialization of variance in variational model num_pseudo=ps, seed=t, # map random seed to the trial number for reproducibility of inference result at the beginning of each of the baseline compute_weights_entropy=compute_weights_entropy, reset=method_args.get("reset"), reset_interval=method_args.get("reset_interval"), architecture=method_args.get("architecture"), log_pseudodata=method_args.get("log_pseudodata"), n_hidden=method_args.get( "n_hidden", 40 ), # hidden units in nn architecture n_layers=method_args.get("n_layers", 1), train_dataset=train_dataset, val_dataset=val_dataset, test_dataset=test_dataset, dnm=dnm, y_mean=y_mean, y_std=y_std, taus=taus, ) print("Trial completed!\n") return write_to_files(results, method_args["fnm"]) def write_to_files(results: Dict[str, Any], fnm: str) -> None: r""" Write results to pk files """ res_fnm = f"{method_args['results_folder']}/{fnm}.pk" print(f"Storing results in {res_fnm}") with open(res_fnm, "wb") as outfile: pickle.dump(results, outfile) ## Entry point if __name__ == "__main__": (experiment_driver( datasets, methods, method_args, ) if method_args.get("architecture") != "regressor_net" else regressor_experiment_driver( datasets, methods, method_args))# run experiment
Blackbox-Coresets-VI-main
psvi/experiments/flow_psvi.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
Blackbox-Coresets-VI-main
psvi/experiments/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ ADAPTATION OF flow_psvi FOR MULTI-GPU PLATFORMS """ r""" Experiment execution script: Users can specify the dataset, the statistical model and the inference methods, and this script will generate a dictionary with the predictive performance. """ # Import libraries import argparse import os import pickle from collections import defaultdict from platform import architecture from typing import Any, Dict, List import concurrent import tqdm import random from psvi.inference.baselines import ( run_giga, run_mfvi, run_mfvi_subset, run_opsvi, run_random, run_sparsevi, run_mfvi_regressor, run_mfvi_subset_regressor ) from psvi.inference.psvi_classes import ( PSVI, PSVIAFixedU, PSVIAV, PSVIFixedU, PSVILearnV, PSVI_Ablated, PSVI_No_IW, PSVI_No_Rescaling, PSVIFreeV, PSVI_regressor, PSVILearnV_regressor, PSVIAV_regressor, ) from psvi.inference.sparsebbvi import run_sparsevi_with_bb_elbo from psvi.models.logreg import * from experiments_utils import read_dataset, read_regression_dataset import multiprocessing from multiprocessing import set_start_method torch.autograd.set_detect_anomaly(True) NUM_GPUS = 8 parser = argparse.ArgumentParser() # Arguments for the experiment workflow parser.add_argument( "--fnm", default="results", type=str, help="Filename where results are stored" ) parser.add_argument( "--datasets", default=["phishing"], nargs="+", choices=["webspam", "phishing", "adult", "MNIST", "halfmoon", "four_blobs", "sinus", "concrete", "energy", "power", "kin8nm", "protein", "naval", "yacht", "boston", "wine", "year", "synth_lr_10", "synth_lr_50", "synth_lr_200"], type=str, help="List of dataset names", ) parser.add_argument( "--methods", default=["psvi_learn_v", "mfvi", "mfvi_subset"], nargs="+", type=str, help="List of inference method names", ) parser.add_argument("--mc_samples", default=10, type=int, help="Monte Carlo samples") parser.add_argument("--num_epochs", default=301, type=int, help="Training epochs") parser.add_argument( "--num_trials", default=3, type=int, help="Trials executed for each inference method", ) parser.add_argument( "--data_minibatch", default=128, type=int, help="Data minibatch size" ) parser.add_argument( "--inner_it", default=100, type=int, help="Gradient steps in the inner problem of nested optimization", ) parser.add_argument( "--outer_it", default=100, type=int, help="Gradient steps in the outer problem of nested optimization", ) parser.add_argument( "--trainer", default="nested", choices=["nested", "hyper", "joint"], type=str, help="Method for computation of hypergradient", ) parser.add_argument( "--diagonal", action=argparse.BooleanOptionalAction, help="Diagonal approximation of Gaussian covariance matrices used", ) parser.add_argument( "--architecture", default="logistic_regression", choices=["logistic_regression", "logistic_regression_fullcov", "fn", "fn2", "lenet", "regressor_net"], type=str, help="Model architecture", ) parser.add_argument( "--n_hidden", default=40, type=int, help="Number of hidden units in feedforward neural architectures", ) parser.add_argument( "--n_layers", default=1, type=int, help="Number of layers in feedforward neural architectures", ) parser.add_argument( "--log_every", default=150, type=int, help="Frequency of logging evaluation results throughout training (in number of outer gradient iterations)", ) parser.add_argument( "--register_elbos", action=argparse.BooleanOptionalAction, help="Saving variational objectives values throughout inference for plotting", ) parser.add_argument( "--init_sd", default=1e-6, type=float, help="Initialization of standard deviation for variational parameters", ) parser.add_argument( "--lr0net", default=1e-3, type=float, help="Initial learning rate for model parameters optimizer", ) parser.add_argument( "--lr0u", default=1e-4, type=float, help="Initial learning rate for optimizer of pseudocoreset point input coordinates u", ) parser.add_argument( "--lr0v", default=1e-3, type=float, help="Initial learning rate for optimizer of coreset support coefficients", ) parser.add_argument( "--lr0z", default=1e-3, type=float, help="Initial learning rate for optimizer of coreset points labels", ) parser.add_argument( "--lr0alpha", default=1e-3, type=float, help="Initial learning rate for coreset likelihood rescaling coefficient", ) parser.add_argument( "--init_at", default="subsample", choices=["subsample", "random"], type=str, help="Method for coreset points initialization", ) parser.add_argument( "--compute_weights_entropy", action=argparse.BooleanOptionalAction, help="Comput entropy of weights for plotting", ) parser.add_argument( "--coreset_sizes", default=[100], nargs="+", type=int, help="List of sizes for coresets computed throughout the experiment, or subsamples used for baselines mfvi_subset and random", ) parser.add_argument( "--reset", action=argparse.BooleanOptionalAction, help="Reset model parameters over intervals during training", ) parser.add_argument( "--prune", action=argparse.BooleanOptionalAction, help="Prune to coreset of smaller size", ) parser.add_argument( "--prune_interval", default=400, type=int, help="Gradient steps in the outer problem of nested optimization between prunning steps", ) parser.add_argument( "--prune_sizes", default=[20], nargs="+", type=int, help="List of sizes for coresets in a pruning experiment (decreasing)", ) parser.add_argument( "--increment", action=argparse.BooleanOptionalAction, help="Learn tasks incrementally", ) parser.add_argument( "--increment_interval", default=1000, type=int, help="Gradient steps in the outer problem of nested optimization between incremental learning stages", ) parser.add_argument( "--increment_sizes", default=[20], nargs="+", type=int, help="List of sizes for coresets in the incremental learning setting (non-decreasing)", ) parser.add_argument( "--retrain_on_coreset", action=argparse.BooleanOptionalAction, help="Retrain the variational model restricted only on the extracted coreset datapoints for the same number of epochs", ) parser.add_argument( "--save_input_data", action=argparse.BooleanOptionalAction, help="Save input dataset", ) parser.add_argument( "--test_ratio", default=0.2, type=float, help="Ratio of test dataset size" ) parser.add_argument( "--log_pseudodata", action=argparse.BooleanOptionalAction, help="Store pseudodata for visualisation", ) parser.add_argument( "--data_folder", default="../data", type=str, help="Folder where dataset gets stored", ) parser.add_argument( "--results_folder", default="../results", type=str, help="Folder where evaluation files get stored", ) parser.add_argument( "--learn_z", action=argparse.BooleanOptionalAction, help="Learn soft labels for distilled data", ) parser.add_argument( "--gamma", default=1., type=float, help="Decay factor of learning rate" ) parser.set_defaults( diagonal=True, reset=False, compute_weights_entropy=False, register_elbos=False, save_input_data=False, prune=False, increment=False, log_pseudodata=False, retrain_on_coreset=False, learn_z=False, ) parsed_args = parser.parse_args() method_args = vars(parsed_args) datasets, methods = method_args["datasets"], method_args["methods"] method_args["logistic_regression"] = method_args['architecture'] == 'logistic_regression' [ os.makedirs(fold) for fold in [method_args["data_folder"], method_args["results_folder"]] if not os.path.exists(fold) ] # make folders for data and results storage def pass_dict(d, f): return f(**d) def rec_dd(): return defaultdict(rec_dd) results = rec_dd() # recursive dictionary for storage of inference results # Specify inference methods def inf_alg(**kwargs): if kwargs["nm_alg"]=="psvi": return PSVI(**kwargs).run_psvi( **kwargs) elif kwargs["nm_alg"]=="psvi_ablated": return PSVI_Ablated( **kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_learn_v": return PSVILearnV( **kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_alpha_v": return PSVIAV(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_no_iw": return PSVI_No_IW(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_free_v": return PSVIFreeV(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_no_rescaling": return PSVI_No_Rescaling(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_fixed_u": return PSVIFixedU(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_alpha_fixed_u": return PSVIAFixedU(**kwargs).run_psvi(**kwargs ) elif kwargs["nm_alg"]=="psvi_regressor": return PSVI_regressor(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_alpha_v_regressor": return PSVIAV_regressor(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="psvi_learn_v_regressor": return PSVILearnV_regressor(**kwargs).run_psvi(**kwargs) elif kwargs["nm_alg"]=="sparsebbvi": return run_sparsevi_with_bb_elbo elif kwargs["nm_alg"]=="opsvi": return run_opsvi elif kwargs["nm_alg"]=="random": return run_random elif kwargs["nm_alg"]=="sparsevi": return run_sparsevi elif kwargs["nm_alg"]=="giga": return run_giga elif kwargs["nm_alg"]=="mfvi": return run_mfvi elif kwargs["nm_alg"]=="mfvi_subset": return run_mfvi_subset elif kwargs["nm_alg"]=="mfvi_regressor": return run_mfvi_regressor elif kwargs["nm_alg"]=="mfvi_subset_regressor": return run_mfvi_subset_regressor def experiment_driver( datasets: List[str], methods: Dict[str, bool], method_args: Dict[str, Any], ) -> None: r""" Run experiment """ job_args = list() for dnm in datasets: # Read the dataset print(f"\nReading/Generating the dataset {dnm.upper()}") x, y, xt, yt, N, D, train_dataset, test_dataset, num_classes = read_dataset( dnm, method_args ) print( f"\nBayesian {'logistic regression' if method_args['logistic_regression'] else 'neural network'} experiment.\nInference via {' '.join(map(lambda x:x.upper(), methods))} on {dnm} data over {method_args['num_trials']} {'independent trials.' if method_args['num_trials']>1 else 'trial.'}\n\n\n" ) for nm_alg in methods: print(f"\n\nRunning {nm_alg}\n") logistic_regression = method_args.get( "logistic_regression", method_args.get("architecture") == "logreg" ) compute_weights_entropy = ( not nm_alg.startswith(("opsvi", "mfvi_subset")) ) and method_args["compute_weights_entropy"] tps = ( method_args["coreset_sizes"] if nm_alg.startswith(("psvi", "opsvi", "mfvi_subset")) else [-1] ) # alias for baselines with no explicit constraint on dataset size for t in range(method_args["num_trials"]): print(f"Trial #{t}") for ( ps ) in tps: # range of pseudocoreset sizes tested over the experiment print( f"Coreset/Subset with {ps if not method_args['increment'] else method_args['increment_sizes'][0]} datapoints" ) if ps != -1 else print("Unconstrained data access") idx = len(job_args) job_args.append({"mc_samples":method_args["mc_samples"], "num_epochs":method_args["num_epochs"], "data_minibatch":method_args["data_minibatch"], "D":D, "N":N, "tr":t, "diagonal":method_args["diagonal"], "x":x, "y":y, "xt":xt, "yt":yt, "inner_it":method_args["inner_it"], "outer_it":method_args["outer_it"], "scatterplot_coreset":method_args.get( "scatterplot_coreset" ), # not parsed for some methods atm "logistic_regression":logistic_regression, "trainer":method_args["trainer"], "log_every":method_args["log_every"], "register_elbos":method_args["register_elbos"], "lr0u":method_args["lr0u"], "lr0net":method_args["lr0net"], "lr0v":method_args["lr0v"], "lr0z":method_args["lr0z"], "lr0alpha":method_args["lr0alpha"], "init_args":method_args["init_at"], "init_sd":method_args[ "init_sd" ], # initialization of variance in variational model "num_pseudo":ps, "seed":t, # map random seed to the trial number for reproducibility of inference result at the beginning of each of the baseline "compute_weights_entropy":compute_weights_entropy, "reset":method_args.get("reset"), "reset_interval":method_args.get("reset_interval"), "architecture":method_args.get("architecture"), "log_pseudodata":method_args.get("log_pseudodata"), "n_hidden":method_args.get( "n_hidden", 40 ), # hidden units in nn architecture "n_layers":method_args.get("n_layers", 1), "train_dataset":train_dataset, "test_dataset":test_dataset, "dnm":dnm, "nc":num_classes, "prune":method_args.get("prune"), "prune_interval":method_args.get("prune_interval"), "prune_sizes":method_args.get("prune_sizes"), "increment":method_args.get("increment"), "increment_interval":method_args.get("increment_interval"), "increment_sizes":method_args.get("increment_sizes"), "retrain_on_coreset":method_args.get("retrain_on_coreset"), "learn_z":method_args["learn_z"], "nm_alg":nm_alg, "device_id":idx % NUM_GPUS, }) pool = multiprocessing.Pool(NUM_GPUS) # first arg is the number of workers results_pool = [pool.apply_async(inf_alg, kwds=job_arg) for job_arg in job_args] ii=0 for result in results_pool: _job_arg = job_args[ii] ii+=1 results[_job_arg["dnm"]][_job_arg["nm_alg"]][_job_arg["num_pseudo"]][_job_arg["tr"]] = result.get() return write_to_files(results, method_args["fnm"]) def write_to_files(results: Dict[str, Any], fnm: str) -> None: r""" Write results to pk files """ res_fnm = f"{method_args['results_folder']}/{fnm}.pk" print(f"Storing results in {res_fnm}") with open(res_fnm, "wb") as outfile: pickle.dump(results, outfile) ## Entry point if __name__ == "__main__": set_start_method('spawn') (experiment_driver( datasets, methods, method_args, ) if method_args.get("architecture") != "regressor_net" else regressor_experiment_driver( datasets, methods, method_args))# run experiment
Blackbox-Coresets-VI-main
psvi/experiments/flow-psvi-parallel.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import contextlib import os import requests import urllib.request import zipfile from collections import namedtuple from io import BytesIO import arff import json import numpy as np import pandas as pd import requests import torch import torch.nn as nn import torchvision from PIL import Image from psvi.models.neural_net import ( make_fc2net, make_fcnet, make_lenet, make_regressor_net, VILinear, VILinearMultivariateNormal, ) from sklearn.datasets import make_moons from sklearn.decomposition import PCA from sklearn.preprocessing import OneHotEncoder, StandardScaler from torch.utils.data import Dataset r""" Statistics used for normalization of some benchmark vision datasets """ dataset_normalization = dict( MNIST=((0.1307,), (0.3081,)), Cifar10=((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), ) r""" Classes of some benchmark vision datasets """ dataset_labels = dict( MNIST=list(range(10)), Cifar10=( "plane", "car", "bird", "cat", "deer", "dog", "monkey", "horse", "ship", "truck", ), ) DatasetStats = namedtuple( "DatasetStats", " ".join(["num_channels", "real_size", "num_classes"]) ) r""" Dimensions of vision benchmark datasets """ dataset_stats = dict( MNIST=DatasetStats(1, 28, 10), Cifar10=DatasetStats(3, 32, 10), ) class SynthDataset(Dataset): r""" Custom torch dataset class supporting transforms """ def __init__(self, x, y=None, transforms=None): self.data = x self.targets = y self.transforms = transforms def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index], self.targets[index] def subset_where(self, cs=[0, 1]): r""" Returns subset of data corresponding to given list of classes """ idcs = torch.isin(self.targets, torch.tensor(cs)) return SynthDataset(self.data[idcs], self.targets[idcs]) def concatenate(self, u, z): return SynthDataset(torch.cat((self.data, u)), y=torch.cat((self.targets, z))) def split_data(N, p_split=(0.6, 0.2, 0.2), n_split=None, shuffle=True, seed=None): r""" Helper function for splitting data into train / validation / test """ if seed is not None: np.random.seed(seed) if n_split is None: p_split = np.array(p_split) assert np.sum(p_split == -1) <= 1 p_split[p_split == -1] = 1 - (np.sum(p_split) + 1) assert np.sum(p_split) == 1.0 p_train, p_val, p_test = p_split train_idx = int(np.ceil(p_train * N)) val_idx = int(np.ceil(train_idx + p_val * N)) else: n_split = np.array(n_split) assert np.sum(n_split == -1) <= 1 n_split[n_split == -1] = N - (np.sum(n_split) + 1) assert np.sum(n_split) == N n_train, n_val, n_test = n_split train_idx = int(n_train) val_idx = int(train_idx + n_val) idx = np.arange(N) if shuffle: np.random.shuffle(idx) return { "train": idx[:train_idx], "val": idx[train_idx:val_idx], "test": idx[val_idx:], } # custom dataset class BaseDataset(Dataset): def __init__(self, x, y=None, randomize=False): self.data = ( x.mean() + 1.0 * torch.randn_like(x) if randomize else x ) # if randomize return a randomized replica of the data centered around the mean of the empirical distribution self.targets = y def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index], self.targets[index] def read_regression_dataset(dnm, method_args): (X, Y), indices = get_regression_benchmark( dnm, seed=method_args["seed"], p_split=(-1, 0.1, method_args["num_test"]), ) taus = hyperparams_for_regression()[dnm] # split into training and test sets x, y, xv, yv, xt, yt = ( X[indices["train"]], Y[indices["train"]], X[indices["val"]], Y[indices["val"]], X[indices["test"]], Y[indices["test"]], ) N, D = x.shape # compute training set statistics for normalization x_mean, y_mean, x_std, y_std = ( np.mean(x, 0), np.mean(y), np.std(x, 0), np.std(y), ) # Parse in torch dataloaders train_dataset, val_dataset, test_dataset, y_mean, y_std = ( BaseDataset( torch.from_numpy( ((x - np.full(x.shape, x_mean)) / np.full(x.shape, x_std)).astype( np.float32 ) ), torch.from_numpy(((y - y_mean) / y_std).astype(np.float32)), ), BaseDataset( torch.from_numpy( ( (xv - np.full(xv.shape, x_mean)) / np.full(xv.shape, x_std) ).astype(np.float32) ), torch.from_numpy(yv.astype(np.float32)), ), BaseDataset( torch.from_numpy( ( (xt - np.full(xt.shape, x_mean)) / np.full(xt.shape, x_std) ).astype(np.float32) ), torch.from_numpy(yt.astype(np.float32)), ), torch.tensor(y_mean), torch.tensor(y_std), ) return x, y, xv, yv, xt, yt, N, D, train_dataset, val_dataset, test_dataset, y_mean, y_std, taus def get_regression_benchmark(name, seed=111, data_dir="psvi/data/", **kwargs): r""" Return data from UCI sets - param name: (str) Name of dataset to be used - param seed: (int) Random seed for splitting data into train and test - param kwargs: (dict) Additional arguments for splits - return: Inputs, outputs, and data-splits """ np.random.seed(seed) if not os.path.exists(data_dir): os.mkdir(data_dir) urllinks = {"concrete": "http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls", "energy": "https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx", "power": "https://archive.ics.uci.edu/ml/machine-learning-databases/00294/CCPP.zip", "kin8nm": "https://www.openml.org/data/download/3626/dataset_2175_kin8nm.arff", "protein": "https://archive.ics.uci.edu/ml/machine-learning-databases/00265/CASP.csv", "naval": "http://archive.ics.uci.edu/ml/machine-learning-databases/00316/UCI%20CBM%20Dataset.zip", "yacht": "http://archive.ics.uci.edu/ml/machine-learning-databases/00243/yacht_hydrodynamics.data", "boston": "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data", "wine": "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv", "year": "https://archive.ics.uci.edu/ml/machine-learning-databases/00203/YearPredictionMSD.txt.zip"} filename = urllinks[name].split('/')[-1] if not os.path.exists(data_dir + filename): urllib.request.urlretrieve( urllinks[name], data_dir + filename) if name in ["concrete", "energy"]: data = np.array(pd.read_excel(data_dir + filename)) elif name == "power": zipfile.ZipFile(data_dir + filename).extractall(data_dir) data = pd.read_excel(data_dir + 'CCPP/Folds5x2_pp.xlsx', header=0).values elif name == "kin8nm": dataset = arff.load(open(data_dir + filename)) data = np.array(dataset['data']) elif name == "protein": data = np.array(pd.read_csv(data_dir + filename)) elif name == "naval": zipfile.ZipFile(data_dir + filename).extractall(data_dir) data = np.loadtxt(data_dir + "UCI CBM Dataset/data.txt") elif name in ["yacht", "boston"]: data = np.loadtxt(data_dir + filename) elif name == "wine": data = np.array(pd.read_csv(data_dir + filename, delimiter=";")) elif name == "year": zipfile.ZipFile(data_dir + "/YearPredictionMSD.txt.zip").extractall(data_dir) data = np.loadtxt(data_dir + "/YearPredictionMSD.txt" , delimiter=",") elif name == "sinus": X = np.random.rand(10**3) * 2 * np.pi Y = np.sin(X) data = np.stack((X, Y), axis=-1) else: raise ValueError("Unsupported dataset: {}".format(data_dir, name)) if name in ["energy", "naval"]: # dataset has 2 response values X = data[:, :-2] Y = data[:, -2:-1] # pick first response value else: X = data[:, :-1] Y = data[:, -1:] return (X, Y), split_data(len(X), **kwargs) def hyperparams_for_regression(): r""" Grid search space for precision in the regression BNN model """ return { "concrete": [0.025, 0.05, 0.075], "energy": [0.25, 0.5, 0.75], "power": [0.05, 0.1, 0.15], "kin8nm": [150, 200, 250], "protein": [0.025, 0.05, 0.075], "naval": [30000, 40000, 50000], "yacht": [0.25, 0.5, 0.75], "boston": [0.1, 0.15, 0.2], "wine": [2.5, 3.0, 3.5], "year":[0.1, 1., 10.] } def make_four_class_dataset(N_K=250): r""" Return two-dimensional four_blobs dataset with datapoints equally distributed among 4 classes :param N_K (int): number of datapoints per class """ X1 = torch.cat( [ 0.8 + 0.4 * torch.randn(N_K, 1), 1.5 + 0.4 * torch.randn(N_K, 1), ], dim=-1, ) Y1 = 0 * torch.ones(X1.size(0)).long() X2 = torch.cat( [ 0.5 + 0.6 * torch.randn(N_K, 1), -0.2 - 0.1 * torch.randn(N_K, 1), ], dim=-1, ) Y2 = 1 * torch.ones(X2.size(0)).long() X3 = torch.cat( [ 2.5 - 0.1 * torch.randn(N_K, 1), 1.0 + 0.6 * torch.randn(N_K, 1), ], dim=-1, ) Y3 = 2 * torch.ones(X3.size(0)).long() X4 = torch.distributions.MultivariateNormal( torch.Tensor([-0.5, 1.5]), covariance_matrix=torch.Tensor([[0.2, 0.1], [0.1, 0.1]]), ).sample(torch.Size([N_K])) Y4 = 3 * torch.ones(X4.size(0)).long() X = torch.cat([X1, X2, X3, X4], dim=0) X[:, 1] -= 1 X[:, 0] -= 0.5 Y = torch.cat([Y1, Y2, Y3, Y4]) rows_permutations = torch.randperm(X.size()[0]) return ( X[rows_permutations, :], Y[rows_permutations], ) # shuffle rows for our train/test split def set_up_model( D=None, n_hidden=None, nc=None, mc_samples=None, architecture=None, **kwargs, ): r""" Return torch nn model with the desired architecture :param D (int): dimensionality of input data :param n_hidden (int): number of units in each hidden layer :param nc (int): dimensionality of last layer :param mc_samples (int): number of samples produced at each forward pass through the nn :param architecture (str): nn architecture - "fn": fully connected feedforward network with diagonal Gaussian on variational layers - "residual_fn": fn with residual connections - "fn2": fn with full covariance matrix on variational layers - "lenet": LeNet architecture - "logistic_regression": single layer nn (no hidden layers) implementing the logistic regression model - "logistic_regression_fullcov": single layer nn (no hidden layers) implementing the logistic regression model with full covariance variational approximations """ if architecture in {"fn", "residual_fn"}: return make_fcnet( D, n_hidden, nc, linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=mc_samples, residual=(architecture == "residual_fn"), **kwargs, ) elif architecture in {"fn2"}: return make_fc2net( D, n_hidden, nc, # does not support argument on the number of chanells linear_class=VILinearMultivariateNormal, nonl_class=nn.ReLU, mc_samples=mc_samples, **kwargs, ) elif architecture == "lenet": return make_lenet( linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=mc_samples ) elif architecture in { "regressor_net", }: # feed forward VI BNN for regression with diagonal covariance (optional arg for residual connections) return make_regressor_net( D, n_hidden, nc, linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=mc_samples, residual=(architecture == "residual_fn"), **kwargs, ) elif architecture == "logistic_regression": return nn.Sequential(VILinear(D, nc, mc_samples=mc_samples)) elif architecture == "logistic_regression_fullcov": return nn.Sequential(VILinearMultivariateNormal(D, nc, mc_samples=mc_samples)) else: raise ValueError( "Architecture should be one of \n'lenet', 'logistic_regression', 'logistic_regression_fullcov', 'fn', 'fn2', 'residual_fn'" ) @contextlib.contextmanager def suppress_stdout(): with open(os.devnull, "w") as f, contextlib.redirect_stdout(f): yield def get_torchvision_info(name): r""" Returns statistical information for specified torchvision benchmark dataset """ assert name in dataset_stats, "Unsupported dataset: {}".format(name) num_channels, input_size, num_classes = dataset_stats[name] normalization = dataset_normalization[name] labels = dataset_labels[name] return num_channels, input_size, num_classes, normalization, labels def load_dataset(path, urls): r""" Writes on a file a dataset living on a given URL """ if not os.path.exists(path): os.mkdir(path) for url in urls: data = requests.get(url).content filename = os.path.join(path, os.path.basename(url)) with open(filename, "wb") as file: file.write(data) return def read_adult(data_folder): r""" Returns the adult dataset for logistic regression """ urls = [ "http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names", "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", ] load_dataset(data_folder, urls) columns = [ "age", "workClass", "fnlwgt", "education", "education-num", "marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country", "income", ] train_data = pd.read_csv( data_folder + "/adult.data", names=columns, sep=" *, *", na_values="?", engine="python", ).dropna() test_data = pd.read_csv( data_folder + "/adult.test", names=columns, sep=" *, *", skiprows=1, na_values="?", engine="python", ).dropna() X, Xt = train_data[columns[::-1]], test_data[columns[::-1]] Y = np.array([0 if s == "<=50K" else 1 for s in train_data["income"]]) Yt = np.array([0 if s == "<=50K." else 1 for s in test_data["income"]]) # numerical columns : standardize numcols = ["age", "education-num", "capital-gain", "capital-loss", "hours-per-week"] ss = StandardScaler() ss.fit(X[numcols]) Xnum, Xtnum = ss.transform(X[numcols]), ss.transform(Xt[numcols]) # categorical columns: apply 1-hot-encoding catcols = [ "workClass", "marital-status", "occupation", "relationship", "race", "sex", "native-country", ] enc = OneHotEncoder() enc.fit(X[catcols]) Xcat, Xtcat = ( enc.transform(X[catcols]).toarray(), enc.transform(Xt[catcols]).toarray(), ) X, Xt = np.concatenate((Xnum, Xcat), axis=1), np.concatenate((Xtnum, Xtcat), axis=1) pca = PCA(n_components=10) pca.fit(X) X = pca.transform(X) Xt = pca.transform(Xt) X = np.c_[X, np.ones(X.shape[0])] Xt = np.c_[Xt, np.ones(Xt.shape[0])] return X, Y, Xt, Yt def read_phishing(data_folder, dnm="phishing"): r""" Returns the phishing dataset for logistic regression """ filename, urllink = ( f"{data_folder}/{dnm}.npz", f"https://github.com/trevorcampbell/bayesian-coresets/blob/master/examples/data/{dnm}.npz?raw=true", ) if not os.path.isfile(filename): response = requests.get(urllink) response.raise_for_status() data = np.load(BytesIO(response.content)) else: data = np.load(filename) return data["X"], data["y"] def read_webspam(data_folder, dnm="webspam"): r""" Returns the webspam dataset for logistic regression """ import sklearn.datasets as skl_ds from sklearn import preprocessing import scipy.sparse as sp import numpy as np fnm_train, urllink_train = ( f"{data_folder}/{dnm}_train.svm", "https://bitbucket.org/jhhuggins/lrcoresets/raw/cdcda24b5854ef380795ec11ab5321d0ec53c3fe/data/webspam_train.svm", ) fnm_test, urllink_test = ( f"{data_folder}/{dnm}_test.svm", "https://bitbucket.org/jhhuggins/lrcoresets/raw/cdcda24b5854ef380795ec11ab5321d0ec53c3fe/data/webspam_test.svm", ) import urllib.request if not os.path.isfile(fnm_train): urllib.request.urlretrieve(urllink_train, fnm_train) if not os.path.isfile(fnm_test): urllib.request.urlretrieve(urllink_test, fnm_test) def _load_svmlight_data(path): X, y = skl_ds.load_svmlight_file(path) return X, y def load_data(path, file_type, max_data=0, max_dim=0, preprocess=True, include_offset=True): """Load data from a variety of file types. Parameters ---------- path : string Data file path. file_type : string Supported file types are: 'svmlight', 'npy' (with the labels y in the rightmost col), 'npz', 'hdf5' (with datasets 'x' and 'y'), and 'csv' (with the labels y in the rightmost col) max_data : int If positive, maximum number of data points to use. If zero or negative, all data is used. Default is 0. max_dim : int If positive, maximum number of features to use. If zero or negative, all features are used. Default is 0. preprocess : boolean or Transformer, optional Flag indicating whether the data should be preprocessed. For sparse data, the features are scaled to [-1, 1]. For dense data, the features are scaled to have mean zero and variance one. Default is True. include_offset : boolean, optional Flag indicating that an offset feature should be added. Default is False. Returns ------- X : array-like matrix, shape=(n_samples, n_features) y : int ndarray, shape=(n_samples,) Each entry indicates whether each example is negative (-1 value) or positive (+1 value) pp_obj : None or Transformer Transformer object used on data, or None if ``preprocess=False`` """ if not isinstance(path, str): raise ValueError("'path' must be a string") if file_type in ["svmlight", "svm"]: X, y = _load_svmlight_data(path) else: raise ValueError("unsupported file type, %s" % file_type) y_vals = set(y) if len(y_vals) != 2: raise ValueError('Only expected y to take on two values, but instead' 'takes on the values ' + ', '.join(y_vals)) if 1.0 not in y_vals: raise ValueError('y does not take on 1.0 as one on of its values, but ' 'instead takes on the values ' + ', '.join(y_vals)) if -1.0 not in y_vals: y_vals.remove(1.0) print('converting y values of %s to -1.0' % y_vals.pop()) y[y != 1.0] = -1.0 if preprocess is False: pp_obj = None else: if preprocess is True: if sp.issparse(X): pp_obj = preprocessing.MaxAbsScaler(copy=False) else: pp_obj = preprocessing.StandardScaler(copy=False) pp_obj.fit(X) else: pp_obj = preprocess X = pp_obj.transform(X) if include_offset: X = preprocessing.add_dummy_feature(X) X = np.flip(X, -1) # move intercept to the last column of the array if sp.issparse(X) and (X.nnz > np.prod(X.shape) / 10 or X.shape[1] <= 20): print("X is either low-dimensional or not very sparse, so converting " "to a numpy array") X = X.toarray() if isinstance(max_data, int) and max_data > 0 and max_data < X.shape[0]: X = X[:max_data,:] y = y[:max_data] if isinstance(max_dim, int) and max_dim > 0 and max_dim < X.shape[1]: X = X[:,:max_dim] return X, y, pp_obj X, y, _ = load_data(fnm_train, 'svm') # load testing data if it exists Xt, yt, _ = load_data(fnm_test, 'svm') y[y==-1], yt[yt==-1] = 0, 0 np.savez('webspam', X=X, y=y, Xt=Xt, yt=yt) return X, y, Xt, yt def make_synthetic(num_datapoints=1000, D=2): r""" Generate D-dimensional synthetic dataset for logistic regression """ mu = np.array([0]*D) cov = np.eye(D) th = np.array([5]*D) X = np.random.multivariate_normal(mu, cov, num_datapoints) ps = 1.0/(1.0+np.exp(-(X*th).sum(axis=1))) y = (np.random.rand(num_datapoints) <= ps).astype(int) y[y==0] = -1 return torch.from_numpy(X.astype(np.float32)), torch.from_numpy(y.astype(np.float32)) def read_dataset(dnm, method_args): r""" Returns one of the supported benchmark or synthetic dataset for the experiments in logistic regression, classification or regression via Bayesian nns """ # TBC: check if inference methods are compatible with the dataset and raise exceptions accordingly if dnm != "MNIST": # UCI or synthetic datasets if dnm == "halfmoon": # Generate HalfMoon data (X, Y), num_classes = ( make_moons(n_samples=1000, noise=0.1, random_state=42), 2, ) X, Y = torch.from_numpy(X.astype(np.float32)), torch.from_numpy( Y.astype(np.float32) ) elif dnm == "four_blobs": # Generate synthetic multiclass data (X, Y), num_classes = make_four_class_dataset(N_K=250), 4 elif dnm == "phishing": (X, Y), num_classes = read_phishing(method_args["data_folder"]), 2 X, Y = torch.from_numpy(X.astype(np.float32)), torch.from_numpy( Y.astype(np.float32) ) elif dnm == "adult": (x, y, xt, yt), num_classes = read_adult(method_args["data_folder"]), 2 x, y, xt, yt = ( torch.from_numpy(x.astype(np.float32)), torch.from_numpy(y.astype(np.float32)), torch.from_numpy(xt.astype(np.float32)), torch.from_numpy(yt.astype(np.float32)), ) elif dnm == "webspam": (x, y, xt, yt), num_classes = read_webspam(method_args["data_folder"]), 2 x, y, xt, yt = ( torch.from_numpy(x.astype(np.float32)), torch.from_numpy(y.astype(np.float32)), torch.from_numpy(xt.astype(np.float32)), torch.from_numpy(yt.astype(np.float32)), ) elif dnm.startswith("synth_lr"): (X, Y), num_classes = make_synthetic(D=int(dnm.split('_')[-1]), num_datapoints=1000), 2 if dnm.startswith(("halfmoon", "four_blobs", "phishing", "synth_lr")): # splite in train / test data Y[Y == -1] = 0 test_size = int(method_args["test_ratio"] * X.shape[0]) x, y, xt, yt = ( X[:-test_size], Y[:-test_size], X[-test_size:], Y[-test_size:], ) N, D = x.shape (train_dataset, test_dataset) = ( (SynthDataset(x, y), SynthDataset(xt, yt)) if dnm.startswith(("halfmoon", "four_blobs", "phishing", "synth_lr", "webspam", "adult")) else (None, None) ) else: _, input_size, num_classes, normalization, _ = get_torchvision_info(dnm) real_size = dataset_stats[dnm].real_size N, D = 60000, input_size if input_size != real_size: transform_list = [ torchvision.transforms.Resize([input_size, input_size], Image.BICUBIC) ] else: transform_list = [] transform_list += [ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(*normalization), ] with suppress_stdout(): train_dataset, test_dataset = torchvision.datasets.MNIST( root=method_args["data_folder"], download=True, train=True, transform=torchvision.transforms.Compose(transform_list), ), torchvision.datasets.MNIST( root=method_args["data_folder"], download=True, train=False, transform=torchvision.transforms.Compose(transform_list), ) x, y, xt, yt = None, None, None, None return x, y, xt, yt, N, D, train_dataset, test_dataset, num_classes from json.decoder import JSONDecodeError def update_hyperparams_dict(dnm, best_tau, fnm='psvi/data/opt_regr_hyperparams.json'): pass ''' with open(fnm, "a+") as f: try: opt_taus = json.loads(f) except JSONDecodeError: opt_taus = {"init":0} json.dumps(opt_taus, f) opt_taus = json.load(f) opt_taus[dnm] = opt_taus.get(dnm, best_tau) '''
Blackbox-Coresets-VI-main
psvi/experiments/experiments_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
Blackbox-Coresets-VI-main
psvi/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import operator as op from functools import reduce import numpy as np import torch import torch.distributions as dist import torch.nn as nn import torch.nn.functional as F def gaussian_fn(loc=None, scale=None): return dist.normal.Normal(loc, scale) def categorical_fn(logits=None, probs=None): return dist.Categorical(logits=logits, probs=probs) def set_mc_samples(net, mc_samples): for module in net.modules(): if isinstance(module, VIMixin): module.mc_samples = mc_samples def inverse_softplus(x): if torch.is_tensor(x): return x.expm1().log() return np.log(np.expm1(x)) def prod(a): return reduce(op.mul, a) def deep_getattr(obj, name): return reduce(getattr, name.split("."), obj) def deep_delattr(obj, name): lpart, _, rpart = name.rpartition(".") if lpart: obj = deep_getattr(obj, lpart) delattr(obj, rpart) def deep_setattr(obj, name, value): lpart, _, rpart = name.rpartition(".") if lpart: obj = deep_getattr(obj, lpart) setattr(obj, rpart, value) class VIMixin(nn.Module): def __init__(self, *args, init_sd=0.01, prior_sd=1.0, mc_samples=1, **kwargs): super().__init__(*args, **kwargs) self._weight_sd = nn.Parameter( inverse_softplus(torch.full_like(self.weight, init_sd)) ) if self.bias is not None: self._bias_sd = nn.Parameter( nn.Parameter(inverse_softplus(torch.full_like(self.bias, init_sd))) ) else: self.register_parameter("_bias_sd", None) ( self.prior_sd, self.mc_samples, self._cached_weight, self._cached_bias, self._init_sd, ) = ( prior_sd, mc_samples, None, None, init_sd, ) self.reset_parameters_variational() def reset_parameters_variational(self) -> None: super().reset_parameters() # pyre-ignore self._weight_sd.data.copy_( inverse_softplus(torch.full_like(self.weight, self._init_sd)) ) if self.bias is not None: self._bias_sd.data.copy_( inverse_softplus(torch.full_like(self.bias, self._init_sd)) ) self._cached_weight, self._cached_bias = ( None, None, ) def kl(self): w_kl = dist.kl_divergence(self.weight_dist, self.prior_weight_dist) b_kl = ( dist.kl_divergence(self.bias_dist, self.prior_bias_dist) if self.bias is not None else 0.0 ) return w_kl + b_kl def sampled_nkl(self): w = self._cached_weight w_kl = self.prior_weight_dist.log_prob(w) - self.weight_dist.log_prob(w) b = self._cached_bias.squeeze(1) if self.mc_samples > 1 else self._cached_bias b_kl = self.prior_bias_dist.log_prob(b) - self.bias_dist.log_prob(b) return w_kl + b_kl @property def weight_dist(self): return dist.Independent( dist.Normal(self.weight, self.weight_sd), self.weight.ndim ) @property def prior_weight_dist(self): return dist.Independent( dist.Normal(torch.zeros_like(self.weight), self.prior_sd), self.weight.ndim ) @property def weight_sd(self): return F.softplus(self._weight_sd) @property def bias_dist(self): if self.bias is not None: return dist.Independent( dist.Normal(self.bias, self.bias_sd), self.bias.ndim ) return None @property def prior_bias_dist(self): if self.bias is not None: return dist.Independent( dist.Normal(torch.zeros_like(self.bias), self.prior_sd), self.bias.ndim ) return None @property def bias_sd(self): if self.bias is not None: return F.softplus(self._bias_sd) return None def rsample(self): weight = self.weight_dist.rsample(self.weight_batch_shape) bias = ( self.bias_dist.rsample(self.bias_batch_shape) if self.bias is not None else None ) return weight, bias @property def weight_batch_shape(self): return torch.Size((self.mc_samples,) if self.mc_samples > 1 else ()) @property def bias_batch_shape(self): return torch.Size((self.mc_samples, 1) if self.mc_samples > 1 else ()) def extra_repr(self): return f"{super().extra_repr()}, mc_samples={self.mc_samples}" class VILinear(VIMixin, nn.Linear): def forward(self, x): self._cached_weight, self._cached_bias = self.rsample() return x.matmul(self._cached_weight.transpose(-2, -1)) + self._cached_bias """ class ResNet(torch.nn.Module): def __init__(self, module, skip_connection): super().__init__() self.module = module self.skip_connection = skip_connection def forward(self, x): return self.module(x) + self.skip_connection(x) """ class VIConv2d(VIMixin, nn.Conv2d): def __init__(self, *args, **kwargs): if "groups" in kwargs: raise ValueError( "Cannot use groups argument for variational conv layer as this is used for parallelizing across samples." ) super().__init__(*args, **kwargs) def forward(self, x): # x: S x N x C x H x W # or # x: N x C x H x W # reshape to: N x SC x H x W # so that when we convolve with # w: SK x C x h x w # we get an output with shape # N x SK x H' x W' # that we reshape to # S x N x K x H' x W' if self.mc_samples > 1: if x.ndim == 4: x = x.repeat(1, self.mc_samples, 1, 1) else: x = x.transpose(0, 1).flatten(1, 2) self._cached_weight, self._cached_bias = self.rsample() w = ( self._cached_weight.flatten(0, 1) if self.mc_samples > 1 else self._cached_weight ) b = self._cached_bias.flatten() a = F.conv2d( x, w, b, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.mc_samples, ) if self.mc_samples > 1: return a.view( -1, self.mc_samples, self.out_channels, *a.shape[-2:] ).transpose(0, 1) return a class BatchMaxPool2d(nn.MaxPool2d): def forward(self, x): if x.shape == 4: return super().forward(x) d0, d1 = x.shape[:2] x = super().forward(x.flatten(0, 1)) return x.view(d0, d1, *x.shape[1:]) def make_fcnet( in_dim, h_dim, out_dim, n_layers=2, linear_class=None, nonl_class=None, mc_samples=4, residual=False, **kwargs, ): if linear_class is None: linear_class = VILinear if nonl_class is None: nonl_class = nn.ReLU net = nn.Sequential() for i in range(n_layers): net.add_module( f"lin{i}", linear_class(in_dim if i == 0 else h_dim, h_dim, **kwargs) ) net.add_module(f"nonl{i}", nonl_class()) """ if residual: skip_connection = nn.Linear(in_dim, h_dim) net = ResNet(net, skip_connection) """ net.add_module("classifier", linear_class(h_dim, out_dim, **kwargs)) for module in net.modules(): module.mc_samples = mc_samples return net def make_regressor_net( in_dim, h_dim, out_dim=1, n_layers=2, linear_class=None, nonl_class=None, mc_samples=4, residual=False, **kwargs, ): if linear_class is None: linear_class = VILinear if nonl_class is None: nonl_class = nn.ReLU net = nn.Sequential() for i in range(n_layers): net.add_module( f"lin{i}", linear_class(in_dim if i == 0 else h_dim, h_dim, **kwargs), ) net.add_module(f"nonl{i}", nonl_class()) """ if residual: skip_connection = nn.Linear(in_dim, h_dim) net = ResNet(net, skip_connection) """ net.add_module("regressor", linear_class(h_dim, out_dim, **kwargs)) for module in net.modules(): module.mc_samples = mc_samples return net def make_lenet( conv_class=None, linear_class=None, pool_class=None, nonl_class=None, **kwargs ): if conv_class is None: conv_class = VIConv2d if linear_class is None: linear_class = VILinear if pool_class is None: pool_class = BatchMaxPool2d if nonl_class is None: nonl_class = nn.ReLU return nn.Sequential( conv_class(1, 6, 5, padding=2, **kwargs), nonl_class(), pool_class(2, 2), conv_class(6, 16, 5, padding=0, **kwargs), nonl_class(), pool_class(2, 2), nn.Flatten(-3, -1), linear_class(400, 120, **kwargs), nonl_class(), linear_class(120, 84, **kwargs), nonl_class(), linear_class(84, 10), ) def make_alexnet( conv_class=None, linear_class=None, pool_class=None, nonl_class=None, local_response_norm_class=None, **kwargs, ): if conv_class is None: conv_class = VIConv2d if linear_class is None: linear_class = VILinear if pool_class is None: pool_class = BatchMaxPool2d if nonl_class is None: nonl_class = nn.ReLU if local_response_norm_class is None: local_response_norm_class = nn.LocalResponseNorm return nn.Sequential( conv_class(3, 64, 5, stride=1, padding=2), nonl_class(), pool_class(kernel_size=3, stride=2, padding=1), local_response_norm_class(4, alpha=0.001 / 9.0, beta=0.75, k=1), conv_class(64, 64, kernel_size=5, padding=2, stride=1), nonl_class(), local_response_norm_class(4, alpha=0.001 / 9.0, beta=0.75, k=1), pool_class(kernel_size=3, stride=2, padding=1), nn.Flatten(-3, -1), linear_class( 4096, 384, **kwargs ), # add kwargs so that mc_samples arg gets correctly passed nonl_class(), linear_class(384, 192, **kwargs), nonl_class(), linear_class(192, 10), ) class network(torch.nn.Module): def __init__(self, **kwargs): self.upscale = nn.Upsample(scale_factor=2, mode="bilinear") self.conv1 = nn.Conv2d(963, 128, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 2, kernel_size=3, padding=1) class MultivariateNormalVIMixin(nn.Module): def __init__(self, *args, init_sd=0.01, prior_sd=1., mc_samples=1, **kwargs): super().__init__(*args, **kwargs) self.mc_samples = mc_samples self.prior_sd = prior_sd self.param_names = [] self.param_shapes = [] for n, p in list(self.named_parameters()): self.param_names.append(n) self.param_shapes.append(p.shape) deep_delattr(self, n) self.param_numels = list(map(prod, self.param_shapes)) n = sum(self.param_numels) self.mean = nn.Parameter(p.new_zeros(n)) self._sd = nn.Parameter(inverse_softplus(p.new_full((n,), init_sd))) n_corr = torch.tril_indices(n - 1, n - 1, offset=-1)[0].numel() self._corr = nn.Parameter(p.new_zeros(n_corr)) self.num_params = n def reset_parameters_variational(self) -> None: raise NotImplementedError def kl(self): return dist.kl_divergence(self.param_dist, self.prior_dist) def sampled_nkl(self): x = torch.cat( [deep_getattr(self, n).flatten(1) for n in self.param_names], dim=1 ) return self.prior_dist.log_prob(x) - self.param_dist.log_prob(x) ''' def sampled_nkl(self): w = self._cached_weight w_kl = self.prior_weight_dist.log_prob(w) - self.weight_dist.log_prob(w) b = self._cached_bias.squeeze(1) if self.mc_samples > 1 else self._cached_bias b_kl = self.prior_bias_dist.log_prob(b) - self.bias_dist.log_prob(b) return w_kl + b_kl ''' @property def scale_tril(self): k = self.mean.new_zeros(self.num_params, self.num_params) k[torch.arange(self.num_params), torch.arange(self.num_params)] = F.softplus( self._sd ) d = self.mean.size(-1) - 1 i = torch.tril_indices(d, d, offset=-1) k[i[0], i[1]] = self._corr return k @property def param_dist(self): return dist.MultivariateNormal(self.mean, scale_tril=self.scale_tril) def rsample(self): x = self.param_dist.rsample((self.mc_samples,)) return [ xx.reshape(self.mc_samples, *shape) for xx, shape in zip(x.split(self.param_numels, dim=-1), self.param_shapes) ] def cached_rsample(self): for name, sample in zip(self.param_names, self.rsample()): deep_setattr(self, name, sample) @property def prior_dist(self): m = torch.zeros_like(self.mean) sd = torch.full_like(self.mean, self.prior_sd).diag_embed() return dist.MultivariateNormal(m, scale_tril=sd) class VILinearMultivariateNormal(MultivariateNormalVIMixin, nn.Linear): def forward(self, x, **kwargs): super().cached_rsample() x = x.matmul(self.weight.transpose(-1, -2)) if self.bias is not None: x = x + self.bias.unsqueeze(-2) return x def make_fc2net( in_dim, h_dim, out_dim, n_layers=2, linear_class=None, nonl_class=None, mc_samples=4, residual=False, **kwargs, ): if linear_class is None: linear_class = VILinearMultivariateNormal if nonl_class is None: nonl_class = nn.ReLU net = nn.Sequential() for i in range(n_layers): net.add_module( f"lin{i}", linear_class(in_dim if i == 0 else h_dim, h_dim, mc_samples=mc_samples, **kwargs) ) net.add_module(f"nonl{i}", nonl_class()) """ if residual: skip_connection = nn.Linear(in_dim, h_dim) net = ResNet(net, skip_connection) """ net.add_module("classifier", linear_class(h_dim, out_dim, mc_samples=mc_samples, **kwargs)) for module in net.modules(): module.mc_samples = mc_samples return net
Blackbox-Coresets-VI-main
psvi/models/neural_net.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import stan import torch from torch.distributions.normal import Normal def logreg_forward(thetas, x): return x.matmul(thetas.T).sigmoid().mean(axis=1).squeeze() def model(thetas, mu0, sigma0, x, y, single=False): prior_val = Normal(mu0, sigma0).log_prob(thetas).sum() if single: return -torch.nn.BCEWithLogitsLoss(reduction="none")(x @ thetas, y), prior_val return ( -torch.nn.BCEWithLogitsLoss(reduction="none")( x.matmul(thetas.T).squeeze(), y.repeat(thetas.shape[0], 1).T ), prior_val, ) def prior(D): mu0_w, sigma0_w, mu0_b, sigma0_b = ( torch.zeros(D), torch.ones(D), torch.zeros(1), torch.ones(1), ) return mu0_w, sigma0_w, mu0_b, sigma0_b def inverse_softplus(x): if torch.is_tensor(x): return x.expm1().log() return np.log(np.expm1(x)) # Stan model used for coreset posterior sampling in the original Sparse VI implementation stan_representation = """ data { int<lower=0> d; // 1 + dimensionality of x int<lower=0> n; // number of observations matrix[n,d] x; // inputs int<lower=0,upper=1> y[n]; // outputs in {0, 1} vector[n] w; // weights } parameters { real theta0; // intercept vector[d] theta; // logreg params } model { theta0 ~ normal(0, 1); theta ~ normal(0, 1); for(i in 1:n){ target += w[i]*bernoulli_logit_lpmf(y[i]| theta0 + x[i]*theta); } } """ def mcmc_sample(sml, core_idcs, x, y, w, N_per=2000, seed=42, n_samples=5): np.random.seed(seed=seed) torch.manual_seed(seed) sampler_data = { "x": x[core_idcs, :].detach().cpu().numpy(), "y": y[core_idcs].detach().cpu().numpy().astype(int), "d": x.shape[1], "n": len(core_idcs), "w": w[core_idcs].detach().cpu().numpy(), } sml = stan.build(stan_representation, data=sampler_data, seed=seed) sampling_output = sml.sample( num_samples=N_per, chains=1, control={"adapt_delta": 0.9, "max_treedepth": 15}, verbose=False, )[:, -n_samples:] param_samples = torch.cat( ( torch.tensor([d["theta"] for d in sampling_output]), torch.tensor([d["theta0"] for d in sampling_output]).unsqueeze(axis=1), ), axis=1, ) return param_samples def laplace_precision(z_core, theta, w, diagonal=False): with torch.no_grad(): m = z_core @ theta idcs = w > 0 p = m[idcs].sigmoid() d = p * (1 - p) * w[idcs] a = z_core[idcs].T * d.sqrt() if diagonal: return a.pow(2).sum(1) + 1 else: nll_hessian = a.matmul(a.T) negative_log_prior_hessian = torch.eye(z_core.shape[1]) return negative_log_prior_hessian + nll_hessian
Blackbox-Coresets-VI-main
psvi/models/logreg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. """from https://github.com/lrjconan/RBP/blob/9c6e68d1a7e61b1f4c06414fae04aeb43c8527cb/utils/model_helper.py""" import torch def cg(Ax, b, max_iter=100, epsilon=1.0e-5): """Conjugate Gradient Args: Ax: function, takes list of tensors as input b: list of tensors Returns: x_star: list of tensors """ x_last = [torch.zeros_like(bb) for bb in b] r_last = [torch.zeros_like(bb).copy_(bb) for bb in b] p_last = [torch.zeros_like(rr).copy_(rr) for rr in r_last] for _ in range(max_iter): Ap = Ax(p_last) Ap_vec = cat_list_to_tensor(Ap) p_last_vec = cat_list_to_tensor(p_last) r_last_vec = cat_list_to_tensor(r_last) rTr = torch.sum(r_last_vec * r_last_vec) pAp = torch.sum(p_last_vec * Ap_vec) alpha = rTr / pAp x = [xx + alpha * pp for xx, pp in zip(x_last, p_last)] r = [rr - alpha * pp for rr, pp in zip(r_last, Ap)] r_vec = cat_list_to_tensor(r) if float(torch.norm(r_vec)) < epsilon: break beta = torch.sum(r_vec * r_vec) / rTr p = [rr + beta * pp for rr, pp in zip(r, p_last)] x_last = x p_last = p r_last = r return x_last def cat_list_to_tensor(list_tx): return torch.cat([xx.view([-1]) for xx in list_tx])
Blackbox-Coresets-VI-main
psvi/hypergrad/CG_torch.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. from itertools import repeat import torch class DifferentiableOptimizer: def __init__(self, loss_f, dim_mult, data_or_iter=None): """ Args: loss_f: callable with signature (params, hparams, [data optional]) -> loss tensor data_or_iter: (x, y) or iterator over the data needed for loss_f """ self.data_iterator = None if data_or_iter: self.data_iterator = ( data_or_iter if hasattr(data_or_iter, "__next__") else repeat(data_or_iter) ) self.loss_f = loss_f self.dim_mult = dim_mult self.curr_loss = None def get_opt_params(self, params): opt_params = list(params) for _ in range(self.dim_mult - 1): opt_params.extend([torch.zeros_like(p) for p in params]) return opt_params def step(self, params, hparams, create_graph): raise NotImplementedError def __call__(self, params, hparams, create_graph=True): with torch.enable_grad(): return self.step(params, hparams, create_graph) def get_loss(self, params, hparams): if self.data_iterator: data = next(self.data_iterator) self.curr_loss = self.loss_f(params, hparams, data) else: self.curr_loss = self.loss_f(params, hparams) return self.curr_loss class GradientDescent(DifferentiableOptimizer): def __init__(self, loss_f, step_size, data_or_iter=None): super(GradientDescent, self).__init__( loss_f, dim_mult=1, data_or_iter=data_or_iter ) self.step_size_f = step_size if callable(step_size) else lambda x: step_size def step(self, params, hparams, create_graph): loss = self.get_loss(params, hparams) sz = self.step_size_f(hparams) return gd_step(params, loss, sz, create_graph=create_graph) class HeavyBall(DifferentiableOptimizer): def __init__(self, loss_f, step_size, momentum, data_or_iter=None): super(HeavyBall, self).__init__(loss_f, dim_mult=2, data_or_iter=data_or_iter) self.loss_f = loss_f self.step_size_f = step_size if callable(step_size) else lambda x: step_size self.momentum_f = momentum if callable(momentum) else lambda x: momentum def step(self, params, hparams, create_graph): n = len(params) // 2 p, p_aux = params[:n], params[n:] loss = self.get_loss(p, hparams) sz, mu = self.step_size_f(hparams), self.momentum_f(hparams) p_new, p_new_aux = heavy_ball_step( p, p_aux, loss, sz, mu, create_graph=create_graph ) return [*p_new, *p_new_aux] class Momentum(DifferentiableOptimizer): """ GD with momentum step as implemented in torch.optim.SGD .. math:: v_{t+1} = \mu * v_{t} + g_{t+1} \\ p_{t+1} = p_{t} - lr * v_{t+1} """ def __init__(self, loss_f, step_size, momentum=0.9, data_or_iter=None): super(Momentum, self).__init__(loss_f, dim_mult=2, data_or_iter=data_or_iter) self.loss_f = loss_f self.step_size_f = step_size if callable(step_size) else lambda x: step_size self.momentum_f = momentum if callable(momentum) else lambda x: momentum def step(self, params, hparams, create_graph): n = len(params) // 2 p, p_aux = params[:n], params[n:] loss = self.get_loss(p, hparams) sz, mu = self.step_size_f(hparams), self.momentum_f(hparams) p_new, p_new_aux = torch_momentum_step( p, p_aux, loss, sz, mu, create_graph=create_graph ) return [*p_new, *p_new_aux] class DifferentiableAdam(DifferentiableOptimizer): """ DifferentiableAdam optimizer as implemented in torch.optim.Adam .. math:: m_{t+1} = beta_1 * m_{t} + (1 - beta1) * g_{t} u_{t+1} = beta_2 * u_{t} + (1 - beta2) * g_{t}^2 mh_{t+1} = mh_{t+1} / (1 - beta1**t) uh_{t+1} = uh_{t+1} / (1 - beta2**t) p_{t+1} = p_{t} - lr * mh_{t+1} / (sqrt(uh_{t+1} + eps)) """ def __init__( self, loss_f, step_size, data_or_iter=None, betas=(0.9, 0.999), eps=1e-8, step_cnt=1, ): super(DifferentiableAdam, self).__init__( loss_f, dim_mult=3, data_or_iter=data_or_iter ) self.step_size_f = step_size if callable(step_size) else lambda x: step_size (self.beta1, self.beta2) = betas self.eps = eps self.step_cnt = step_cnt def step(self, params, hparams, create_graph): n = len(params) // 3 p, m, u = params[:n], params[n : 2 * n], params[2 * n :] loss = self.get_loss(p, hparams) sz = self.step_size_f(hparams) p_new, m_new, u_new = adam_step( p, m, u, loss, sz, self.step_cnt, self.beta1, self.beta2, self.eps, create_graph=create_graph, ) self.step_cnt += 1 return [*p_new, *m_new, *u_new] def gd_step(params, loss, step_size, create_graph=True): grads = torch.autograd.grad(loss, params, create_graph=create_graph) return [w - step_size * g for w, g in zip(params, grads)] def heavy_ball_step(params, aux_params, loss, step_size, momentum, create_graph=True): grads = torch.autograd.grad(loss, params, create_graph=create_graph) return [ w - step_size * g + momentum * (w - v) for g, w, v in zip(grads, params, aux_params) ], params def torch_momentum_step( params, aux_params, loss, step_size, momentum=0.9, create_graph=True ): """ GD with momentum step as implemented in torch.optim.SGD .. math:: v_{t+1} = \mu * v_{t} + g_{t+1} \\ p_{t+1} = p_{t} - lr * v_{t+1} """ grads = torch.autograd.grad(loss, params, create_graph=create_graph) new_aux_params = [momentum * v + g for v, g in zip(aux_params, grads)] return [w - step_size * nv for w, nv in zip(params, new_aux_params)], new_aux_params def adam_step( params, ms, us, loss, step_size, step_cnt, beta1, beta2, eps, momentum=0.9, create_graph=True, # False when used with approximate implicit gradient; should be True otherwise ): grads = torch.autograd.grad(loss, params, create_graph=create_graph) new_m = [beta1 * m + (1.0 - beta1) * g for m, g in zip(ms, grads)] new_u = [beta2 * u + (1.0 - beta2) * g**2 + 1e-12 for u, g in zip(us, grads)] return ( [ w - step_size * ( m / (1.0 - beta1**step_cnt) / (torch.sqrt(u / (1 - beta2**step_cnt)) + eps) ) for w, m, u in zip(params, new_m, new_u) ], new_m, new_u, )
Blackbox-Coresets-VI-main
psvi/hypergrad/diff_optimizers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. from .hypergradients import * from .diff_optimizers import *
Blackbox-Coresets-VI-main
psvi/hypergrad/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. from typing import Callable, List import torch from torch import Tensor from torch.autograd import grad as torch_grad from . import CG_torch # noinspection PyUnusedLocal def reverse_unroll( params: List[Tensor], hparams: List[Tensor], outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor], set_grad=True, ) -> List[Tensor]: """ Computes the hypergradient by backpropagating through a previously employed inner solver procedure. Args: params: the output of a torch differentiable inner solver (it must depend on hparams in the torch graph) hparams: the outer variables (or hyperparameters), each element needs requires_grad=True outer_loss: computes the outer objective taking parameters and hyperparameters as inputs set_grad: if True set t.grad to the hypergradient for every t in hparams Returns: the list of hypergradients for each element in hparams """ o_loss = outer_loss(params, hparams) grads = torch.autograd.grad(o_loss, hparams, retain_graph=True) if set_grad: update_tensor_grads(hparams, grads) return grads # noinspection PyUnusedLocal def reverse( params_history: List[List[Tensor]], hparams: List[Tensor], update_map_history: List[Callable[[List[Tensor], List[Tensor]], List[Tensor]]], outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor], set_grad=True, ) -> List[Tensor]: """ Computes the hypergradient by recomputing and backpropagating through each inner update using the inner iterates and the update maps previously employed by the inner solver. Similarly to checkpointing, this allows to save memory w.r.t. reverse_unroll by increasing computation time. Truncated reverse can be performed by passing only part of the trajectory information, i.e. only the last k inner iterates and updates. Args: params_history: the inner iterates (from first to last) hparams: the outer variables (or hyperparameters), each element needs requires_grad=True update_map_history: updates used to solve the inner problem (from first to last) outer_loss: computes the outer objective taking parameters and hyperparameters as inputs set_grad: if True set t.grad to the hypergradient for every t in hparams Returns: the list of hypergradients for each element in hparams """ params_history = [ [w.detach().requires_grad_(True) for w in params] for params in params_history ] o_loss = outer_loss(params_history[-1], hparams) grad_outer_w, grad_outer_hparams = get_outer_gradients( o_loss, params_history[-1], hparams ) alphas = grad_outer_w grads = [torch.zeros_like(w) for w in hparams] K = len(params_history) - 1 for k in range(-2, -(K + 2), -1): w_mapped = update_map_history[k + 1](params_history[k], hparams) bs = grad_unused_zero(w_mapped, hparams, grad_outputs=alphas, retain_graph=True) grads = [g + b for g, b in zip(grads, bs)] alphas = torch_grad(w_mapped, params_history[k], grad_outputs=alphas) grads = [g + v for g, v in zip(grads, grad_outer_hparams)] if set_grad: update_tensor_grads(hparams, grads) return grads def fixed_point( params: List[Tensor], hparams: List[Tensor], K: int, fp_map: Callable[[List[Tensor], List[Tensor]], List[Tensor]], outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor], tol=1e-10, set_grad=True, stochastic=False, ) -> List[Tensor]: """ Computes the hypergradient by applying K steps of the fixed point method (it can end earlier when tol is reached). Args: params: the output of the inner solver procedure. hparams: the outer variables (or hyperparameters), each element needs requires_grad=True K: the maximum number of fixed point iterations fp_map: the fixed point map which defines the inner problem outer_loss: computes the outer objective taking parameters and hyperparameters as inputs tol: end the method earlier when the normed difference between two iterates is less than tol set_grad: if True set t.grad to the hypergradient for every t in hparams stochastic: set this to True when fp_map is not a deterministic function of its inputs Returns: the list of hypergradients for each element in hparams """ params = [w.detach().requires_grad_(True) for w in params] o_loss = outer_loss(params, hparams) grad_outer_w, grad_outer_hparams = get_outer_gradients(o_loss, params, hparams) if not stochastic: w_mapped = fp_map(params, hparams) vs = [torch.zeros_like(w) for w in params] vs_vec = cat_list_to_tensor(vs) for _ in range(K): vs_prev_vec = vs_vec if stochastic: w_mapped = fp_map(params, hparams) vs = torch_grad(w_mapped, params, grad_outputs=vs, retain_graph=False) else: vs = torch_grad(w_mapped, params, grad_outputs=vs, retain_graph=True) vs = [v + gow for v, gow in zip(vs, grad_outer_w)] vs_vec = cat_list_to_tensor(vs) if float(torch.norm(vs_vec - vs_prev_vec)) < tol: break if stochastic: w_mapped = fp_map(params, hparams) grads = torch_grad(w_mapped, hparams, grad_outputs=vs, allow_unused=True) grads = [g + v if g is not None else v for g, v in zip(grads, grad_outer_hparams)] if set_grad: update_tensor_grads(hparams, grads) return grads def CG( params: List[Tensor], hparams: List[Tensor], K: int, fp_map: Callable[[List[Tensor], List[Tensor]], List[Tensor]], outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor], tol=1e-10, set_grad=True, stochastic=False, ) -> List[Tensor]: """ Computes the hypergradient by applying K steps of the conjugate gradient method (CG). It can end earlier when tol is reached. Args: params: the output of the inner solver procedure. hparams: the outer variables (or hyperparameters), each element needs requires_grad=True K: the maximum number of conjugate gradient iterations fp_map: the fixed point map which defines the inner problem outer_loss: computes the outer objective taking parameters and hyperparameters as inputs tol: end the method earlier when the norm of the residual is less than tol set_grad: if True set t.grad to the hypergradient for every t in hparams stochastic: set this to True when fp_map is not a deterministic function of its inputs Returns: the list of hypergradients for each element in hparams """ params = [w.detach().requires_grad_(True) for w in params] o_loss = outer_loss(params, hparams) grad_outer_w, grad_outer_hparams = get_outer_gradients(o_loss, params, hparams) if not stochastic: w_mapped = fp_map(params, hparams) def dfp_map_dw(xs): if stochastic: w_mapped_in = fp_map(params, hparams) Jfp_mapTv = torch_grad( w_mapped_in, params, grad_outputs=xs, retain_graph=False ) else: Jfp_mapTv = torch_grad(w_mapped, params, grad_outputs=xs, retain_graph=True) return [v - j for v, j in zip(xs, Jfp_mapTv)] vs = CG_torch.cg( dfp_map_dw, grad_outer_w, max_iter=K, epsilon=tol ) # K steps of conjugate gradient if stochastic: w_mapped = fp_map(params, hparams) grads = torch_grad(w_mapped, hparams, grad_outputs=vs) grads = [g + v for g, v in zip(grads, grad_outer_hparams)] if set_grad: update_tensor_grads(hparams, grads) return grads def CG_normaleq( params: List[Tensor], hparams: List[Tensor], K: int, fp_map: Callable[[List[Tensor], List[Tensor]], List[Tensor]], outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor], tol=1e-10, set_grad=True, ) -> List[Tensor]: """Similar to CG but the conjugate gradient is applied on the normal equation (has a higher time complexity)""" params = [w.detach().requires_grad_(True) for w in params] o_loss = outer_loss(params, hparams) grad_outer_w, grad_outer_hparams = get_outer_gradients(o_loss, params, hparams) w_mapped = fp_map(params, hparams) def dfp_map_dw(xs): Jfp_mapTv = torch_grad(w_mapped, params, grad_outputs=xs, retain_graph=True) v_minus_Jfp_mapTv = [v - j for v, j in zip(xs, Jfp_mapTv)] # normal equation part Jfp_mapv_minus_Jfp_mapJfp_mapTv = jvp( lambda _params: fp_map(_params, hparams), params, v_minus_Jfp_mapTv ) return [ v - vv for v, vv in zip(v_minus_Jfp_mapTv, Jfp_mapv_minus_Jfp_mapJfp_mapTv) ] v_minus_Jfp_mapv = [ g - jfp_mapv for g, jfp_mapv in zip( grad_outer_w, jvp(lambda _params: fp_map(_params, hparams), params, grad_outer_w), ) ] vs = CG_torch.cg( dfp_map_dw, v_minus_Jfp_mapv, max_iter=K, epsilon=tol ) # K steps of conjugate gradient grads = torch_grad(w_mapped, hparams, grad_outputs=vs, allow_unused=True) grads = [g + v if g is not None else v for g, v in zip(grads, grad_outer_hparams)] if set_grad: update_tensor_grads(hparams, grads) return grads def neumann( params: List[Tensor], hparams: List[Tensor], K: int, fp_map: Callable[[List[Tensor], List[Tensor]], List[Tensor]], outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor], tol=1e-10, set_grad=True, ) -> List[Tensor]: """Saves one iteration from the fixed point method""" # from https://arxiv.org/pdf/1803.06396.pdf, should return the same gradient of fixed point K+1 params = [w.detach().requires_grad_(True) for w in params] o_loss = outer_loss(params, hparams) grad_outer_w, grad_outer_hparams = get_outer_gradients(o_loss, params, hparams) w_mapped = fp_map(params, hparams) vs, gs = grad_outer_w, grad_outer_w gs_vec = cat_list_to_tensor(gs) for k in range(K): gs_prev_vec = gs_vec vs = torch_grad(w_mapped, params, grad_outputs=vs, retain_graph=True) gs = [g + v for g, v in zip(gs, vs)] gs_vec = cat_list_to_tensor(gs) if float(torch.norm(gs_vec - gs_prev_vec)) < tol: break grads = torch_grad(w_mapped, hparams, grad_outputs=gs) grads = [g + v for g, v in zip(grads, grad_outer_hparams)] if set_grad: update_tensor_grads(hparams, grads) return grads def exact( opt_params_f: Callable[[List[Tensor]], List[Tensor]], hparams: List[Tensor], outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor], set_grad=True, ) -> List[Tensor]: """ Computes the exact hypergradient using backpropagation and exploting the closed form torch differentiable function that computes the optimal parameters given the hyperparameters (opt_params_f). """ grads = torch_grad(outer_loss(opt_params_f(hparams), hparams), hparams) if set_grad: update_tensor_grads(hparams, grads) return grads # UTILS def grd(a, b): return torch.autograd.grad(a, b, create_graph=True, retain_graph=True) def list_dot(l1, l2): # extended dot product for lists return torch.stack([(a * b).sum() for a, b in zip(l1, l2)]).sum() def jvp(fp_map, params, vs): dummy = [torch.ones_like(phw).requires_grad_(True) for phw in fp_map(params)] g1 = grd(list_dot(fp_map(params), dummy), params) return grd(list_dot(vs, g1), dummy) def get_outer_gradients(outer_loss, params, hparams, retain_graph=True): grad_outer_w = grad_unused_zero(outer_loss, params, retain_graph=retain_graph) grad_outer_hparams = grad_unused_zero( outer_loss, hparams, retain_graph=retain_graph ) return grad_outer_w, grad_outer_hparams def cat_list_to_tensor(list_tx): return torch.cat([xx.view([-1]) for xx in list_tx]) def update_tensor_grads(hparams, grads): for k, g in zip(hparams, grads): if k.grad is None: k.grad = torch.zeros_like(k) if g is not None: k.grad += g def grad_unused_zero( output, inputs, grad_outputs=None, retain_graph=False, create_graph=False ): grads = torch.autograd.grad( output, inputs, grad_outputs=grad_outputs, allow_unused=True, retain_graph=retain_graph, create_graph=create_graph, ) def grad_or_zeros(grad, var): return torch.zeros_like(var) if grad is None else grad return tuple(grad_or_zeros(g, v) for g, v in zip(grads, inputs))
Blackbox-Coresets-VI-main
psvi/hypergrad/hypergradients.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import random import time import numpy as np import torch import torch.distributions as dist from torch.distributions.normal import Normal from typing import Any, Dict from psvi.models.logreg import model, laplace_precision, mcmc_sample, logreg_forward from psvi.models.neural_net import categorical_fn, gaussian_fn, VILinear from tqdm import tqdm from psvi.experiments.experiments_utils import set_up_model, update_hyperparams_dict from psvi.inference.utils import * from torch.utils.data import DataLoader from psvi.inference.psvi_classes import SubsetPreservingTransforms from functools import partial r""" Implementations of baseline inference methods. """ def run_laplace( theta, mu0, sigma0, x_core, y_core, w_core, optim_net, inner_it=1000, diagonal=True, mc_samples=4, seed=0, **kwargs, ): r""" Returns samples from Laplace approximation """ random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) for _ in range( inner_it ): # inner loop for Laplace approximation of current coreset iterate optim_net.zero_grad() ll_core, prior = model(theta, mu0, sigma0, x_core, y_core, single=True) loss = -w_core.dot(ll_core) - prior # negative log-joint loss.backward() optim_net.step() optim_net.zero_grad() with torch.no_grad(): # samples from coreset iterate prec = laplace_precision(x_core, theta, w_core, diagonal=diagonal) laplace_approx = ( dist.MultivariateNormal(theta, precision_matrix=prec) if not diagonal else Normal(theta, prec**-0.5) ) return laplace_approx.rsample((mc_samples,)).squeeze() def run_random( x=None, y=None, xt=None, yt=None, mc_samples=4, num_epochs=100, log_every=10, N=None, D=None, seed=0, mcmc=False, lr0net=1e-3, # initial learning rate for optimizer **kwargs, ) -> Dict[str, Any]: r""" Returns diagnostics from a Laplace or an MCMC fit on a random subset of the training data """ random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) w = torch.zeros(N).clone().detach() # coreset weights nlls_random, accs_random, idcs_random, times_random, core_idcs = [], [], [], [0], [] x_test_aug = torch.cat((xt, torch.ones(xt.shape[0], 1)), dim=1) x_aug = torch.cat((x, torch.ones(x.shape[0], 1)), dim=1) t_start = time.time() num_epochs = min(num_epochs, 2000) if mcmc else num_epochs for it in tqdm(range(num_epochs)): # Evaluate predictive performance of current coreset posterior if it % log_every == 0: if mcmc: param_samples = mcmc_sample(sml, core_idcs, x, y, w, seed=seed) else: # model params prior mu0, sigma0 = ( torch.zeros(D + 1), torch.ones(D + 1), ) theta0 = Normal(mu0, sigma0).rsample() theta = torch.nn.Parameter(theta0, requires_grad=True) optim_net = torch.optim.Adam([theta], lr0net) param_samples = run_laplace( theta, mu0, sigma0, x_aug[core_idcs, :], y[core_idcs], w[core_idcs], optim_net, inner_it=1000, diagonal=True, mc_samples=mc_samples, seed=seed, ) times_random.append(times_random[-1] + time.time() - t_start) test_probs = logreg_forward(param_samples, x_test_aug) test_acc = test_probs.gt(0.5).float().eq(yt).float().mean() test_nll = -dist.Bernoulli(probs=test_probs).log_prob(yt).mean() nlls_random.append(test_nll.item()), accs_random.append( test_acc.item() ), idcs_random.append(len(core_idcs)) print(f"predictive accuracy: {(100*test_acc.item()):.2f}%") new_coreset_point = random.choice( tuple(set(range(N)).difference(set(core_idcs))) ) core_idcs.append(new_coreset_point) # attach a new random point w[core_idcs] = N / len(core_idcs) # store results return { "accs": accs_random, "nlls": nlls_random, "csizes": idcs_random, "times": times_random[1:], } def run_giga( x=None, y=None, xt=None, yt=None, mc_samples=100, data_minibatch=512, num_epochs=100, log_every=10, N=None, D=None, seed=0, mcmc=False, subset_size=200, lr0net=1e-3, **kwargs, ) -> Dict[str, Any]: r""" Returns diagnostics of a fit using the GIGA coreset (Campbell & Broderick, 2018) """ random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) mc_samples = max( mc_samples, 50, # overwrite arg for num of mc_samples for more fine grained vectors ) w = ( torch.zeros(N) .clone() .detach() .requires_grad_( requires_grad=False, ) ) # coreset weights w_pred = ( torch.zeros(N) .clone() .detach() .requires_grad_( requires_grad=False, ) ) # rescaled weights for predictions # model params prior mu0, sigma0 = ( torch.zeros(D + 1), torch.ones(D + 1), ) nlls_giga, accs_giga, idcs_giga, times_giga = [], [], [], [0] x_aug, x_test_aug = torch.cat((x, torch.ones(x.shape[0], 1)), dim=1), torch.cat( (xt, torch.ones(xt.shape[0], 1)), dim=1 ) core_idcs = [] t_start = time.time() # Approximate the true posterior via MCMC sampling on a random subset # [this computation occurs once] sub_idcs, sum_scaling = ( np.random.randint(x.shape[0], size=subset_size), x.shape[0] / data_minibatch, ) # sample minibatch when accessing full data and rescale corresponding log-likelihood if mcmc: with torch.no_grad(): param_samples = mcmc_sample( sml, core_idcs, x[sub_idcs, :], y[sub_idcs], sum_scaling * torch.ones_like(y[sub_idcs]), n_samples=mc_samples, ) else: theta0 = Normal(mu0, sigma0).rsample() theta = torch.nn.Parameter(theta0, requires_grad=True) param_samples = run_laplace( theta, mu0, sigma0, x_aug[sub_idcs, :], y[sub_idcs], sum_scaling * torch.ones_like(y[sub_idcs]), torch.optim.Adam([theta], lr0net), inner_it=1000, diagonal=True, mc_samples=mc_samples, seed=seed, ) lw = torch.zeros(mc_samples) # initial vector of weighted log-likelihood of coreset # Grow the coreset for a number of iterations for it in tqdm(range(num_epochs)): x_core, y_core = x_aug[core_idcs, :], y[core_idcs] sub_idcs, _ = ( np.random.randint(x.shape[0], size=data_minibatch), x.shape[0] / data_minibatch, ) # sample minibatch when accessing full data and rescale corresponding log-likelihood ll_all, _ = model( param_samples, mu0, sigma0, torch.cat((x_aug[sub_idcs, :], x_core)), torch.cat((y[sub_idcs], y_core)), ) ll_data, ll_core = ll_all[: len(sub_idcs), :], ll_all[len(sub_idcs) :, :] ll_data, ll_core = ( ll_data - ll_data.mean(axis=1).repeat(ll_data.shape[1], 1).T, ll_core - ll_core.mean(axis=1).repeat(ll_core.shape[1], 1).T, ) sum_lls = ll_data.sum(axis=0) norm_lls = torch.nn.functional.normalize(ll_data, dim=1) # ell_n norm_sumlls = torch.nn.functional.normalize(sum_lls, dim=0) # ell denom_sumlls = sum_lls.norm(p=2, dim=0) # ||L|| if it % log_every == 0: # log predictive performance # Rescaling weights for unnormalized likelihoods in predictions if len(core_idcs) > 0: w_pred[core_idcs] = ( w[core_idcs] * denom_sumlls / ll_core.norm(p=2, dim=1) * lw.dot(norm_sumlls) ) if mcmc: predictive_samples = mcmc_sample(sml, core_idcs, x, y, w_pred) else: theta0 = Normal(mu0, sigma0).rsample() theta = torch.nn.Parameter(theta0, requires_grad=True) optim_net = torch.optim.Adam([theta], lr0net) predictive_samples = run_laplace( theta, mu0, sigma0, x_aug[core_idcs, :], y[core_idcs], w[core_idcs].detach(), optim_net, inner_it=100, diagonal=True, mc_samples=mc_samples, seed=seed, ) times_giga.append(times_giga[-1] + time.time() - t_start) test_probs = logreg_forward(predictive_samples, x_test_aug) test_acc = test_probs.gt(0.5).float().eq(yt).float().mean() test_nll = -dist.Bernoulli(probs=test_probs).log_prob(yt).mean() print(f"predictive accuracy: {(100*test_acc.item()):.2f}%") nlls_giga.append(test_nll.item()) accs_giga.append(test_acc.item()) idcs_giga.append(len(w[w > 0])) # Compute geodesic direction of each datapoint, make greedy next point selection and compute the step size d = torch.nn.functional.normalize( norm_sumlls - norm_sumlls.dot(lw) * lw, dim=0 ) lwr = lw.repeat(len(sub_idcs), 1) dns = torch.nn.functional.normalize( norm_lls - torch.einsum( "n, ns -> ns", torch.einsum("ns, ns -> n", lwr, norm_lls), lwr ), dim=1, ) # new datapoint selection pt_idx = sub_idcs[torch.argmax(torch.einsum("s, ns -> n", d, dns))] if pt_idx not in core_idcs: core_idcs.append(pt_idx) # list of coreset point indices idx_new = -1 x_core, y_core = ( x_aug[core_idcs, :], y[core_idcs], ) # updated coreset support ll_all, _ = model( param_samples, mu0, sigma0, torch.cat((x_aug[sub_idcs, :], x_core)), torch.cat((y[sub_idcs], y_core)), ) ll_core = ll_all[len(sub_idcs) :, :] ll_core = ll_core - ll_core.mean(axis=1).repeat(ll_core.shape[1], 1).T norm_ll_core = torch.nn.functional.normalize( ll_core, dim=1 ) # ell_n_core else: idx_new = core_idcs.index(pt_idx) zeta0, zeta1, zeta2 = ( norm_sumlls.dot(norm_ll_core[idx_new, :]), norm_sumlls.dot(lw), norm_ll_core[idx_new, :].dot(lw), ) gamma = (zeta0 - zeta1 * zeta2) / ( zeta0 - zeta1 * zeta2 + zeta1 - zeta0 * zeta2 ) lw = torch.nn.functional.normalize( (1 - gamma) * lw + gamma * norm_ll_core[idx_new, :], dim=0 ) # Optimal weight calibration w = ( (1 - gamma) * w + gamma * torch.nn.functional.one_hot(torch.tensor(pt_idx), num_classes=N) ) / torch.norm((1 - gamma) * lw + gamma * norm_ll_core[idx_new, :]) with torch.no_grad(): torch.clamp_(w, min=0) # store results return { "accs": accs_giga, "nlls": nlls_giga, "csizes": idcs_giga, "times": times_giga[1:], } def run_sparsevi( x=None, y=None, xt=None, yt=None, mc_samples=4, data_minibatch=128, num_epochs=100, log_every=10, N=None, D=None, diagonal=True, inner_it=10, outer_it=10, lr0net=1e-3, lr0v=1e-1, seed=0, mcmc=False, **kwargs, ) -> Dict[str, Any]: # max coreset size r""" Returns diagnostics of a fit using Sparse VI (Campbell & Beronov, 2019) """ def resc(N, w, core_idcs): return 1. #N/sum(w[core_idcs]) if sum(w[core_idcs])>0 else 1 outer_it = min(outer_it, 500) # cap to maximum value for num_epochs and outer_it num_epochs = min(num_epochs, 2000) if mcmc else num_epochs random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) w = ( torch.zeros(N) .clone() .detach() .requires_grad_( requires_grad=True, ) ) # coreset weights # model params prior mu0, sigma0 = ( torch.zeros(D + 1), torch.ones(D + 1), ) nlls_svi, accs_svi, idcs_svi, times_svi = [], [], [], [0] x_aug, x_test_aug = torch.cat((x, torch.ones(x.shape[0], 1)), dim=1), torch.cat( (xt, torch.ones(xt.shape[0], 1)), dim=1 ) # Grow the coreset for a number of iterations core_idcs = [] t_start = time.time() for it in tqdm(range(num_epochs)): # Evaluate predictive performance of current coreset posterior if it % log_every == 0: if mcmc: param_samples = mcmc_sample(sml, core_idcs, x, y, w) else: theta0 = Normal(mu0, sigma0).rsample() theta = torch.nn.Parameter(theta0, requires_grad=True) optim_net = torch.optim.Adam([theta], lr0net) param_samples = run_laplace( theta, mu0, sigma0, x_aug[core_idcs, :], y[core_idcs], resc(N, w.detach(), core_idcs)*w[core_idcs].detach(), torch.optim.Adam([theta], lr0net), inner_it=1000, diagonal=True, mc_samples=mc_samples, ) times_svi.append(times_svi[-1] + time.time() - t_start) test_probs = logreg_forward(param_samples, x_test_aug) test_acc = test_probs.gt(0.5).float().eq(yt).float().mean() test_nll = -dist.Bernoulli(probs=test_probs).log_prob(yt).mean() nlls_svi.append(test_nll.item()) accs_svi.append(test_acc.item()) idcs_svi.append(len(core_idcs)) print(f"predictive accuracy: {(100*test_acc.item()):.2f}%") # 1. Compute current coreset posterior using Laplace approximation on coreset points sub_idcs, sum_scaling = ( np.random.randint(x.shape[0], size=data_minibatch), x.shape[0] / data_minibatch, ) # sample minibatch when accessing full data and rescale corresponding log-likelihood x_core, y_core = x_aug[core_idcs, :], y[core_idcs] theta0 = Normal(mu0, sigma0).rsample() theta = torch.nn.Parameter(theta0, requires_grad=True) optim_net = torch.optim.Adam([theta], lr0net) for _ in range( inner_it ): # inner loop for Laplace approximation of current coreset iterate optim_net.zero_grad() ll_core, prior = model(theta, mu0, sigma0, x_core, y_core, single=True) loss = -resc(N, w, core_idcs)*w[core_idcs].dot(ll_core) - prior # negative log-joint loss.backward() optim_net.step() with torch.no_grad(): # samples from coreset iterate prec = laplace_precision(x_core, theta, resc(N, w, core_idcs)*w[core_idcs], diagonal=diagonal) laplace_approx = ( dist.MultivariateNormal(theta, precision_matrix=prec) if not diagonal else Normal(theta, prec**-0.5) ) param_samples = laplace_approx.rsample((mc_samples,)).squeeze() # 2. Compute loglikelihoods for each sample ll_all, _ = model( param_samples, mu0, sigma0, torch.cat((x_aug[sub_idcs, :], x_core)), torch.cat((y[sub_idcs], y_core)), ) ll_data, ll_core = ll_all[: len(sub_idcs), :], ll_all[len(sub_idcs) :, :] cll_data, cll_core = ( ll_data - ll_data.mean(axis=1).repeat(ll_data.shape[1], 1).T, ll_core - ll_core.mean(axis=1).repeat(ll_core.shape[1], 1).T, ) # 3. Select point to attach to the coreset next resid = sum_scaling * cll_data.sum(axis=0) - resc(N, w, core_idcs)*w[core_idcs].matmul(cll_core) corrs = ( cll_data.matmul(resid) / torch.sqrt((cll_data**2).sum(axis=1)) / cll_data.shape[1] ) corecorrs = ( torch.abs(cll_core.matmul(resid)) / torch.sqrt((cll_core**2).sum(axis=1)) / cll_core.shape[1] ) if corecorrs.shape[0] == 0 or corrs.max() > corecorrs.max(): pt_idx = sub_idcs[torch.argmax(corrs)] print(f"\nAdding new point. Support increased to {len(core_idcs)+1} \n") if pt_idx not in core_idcs else print("\nImproving fit with current support \n") core_idcs.append(pt_idx) if pt_idx not in core_idcs else None else: print("\nImproving fit with current support \n") print(f"weights vector {(resc(N, w, core_idcs)*w[w>0]).sum()}") # 4. Sample for updated weights and take projected gradient descent steps on the weights # sample from updated model x_core, y_core = x_aug[core_idcs, :], y[core_idcs] optim_w = torch.optim.Adam([w], lr0v) #/(1. + it)) theta0 = Normal(mu0, sigma0).rsample() theta = torch.nn.Parameter(theta0, requires_grad=True) for _ in range(outer_it): optim_net = torch.optim.Adam([theta], lr0net) for _ in range( inner_it ): # inner loop for Laplace approximation of current coreset iterate # negative log-joint optim_net.zero_grad() ll, prior = model(theta, mu0, sigma0, x_core, y_core, single=True) loss = -resc(N, w, core_idcs)*w[core_idcs].dot(ll) - prior loss.backward() optim_net.step() with torch.no_grad(): # samples from coreset iterate prec = laplace_precision(x_core, theta, resc(N, w, core_idcs)*w[core_idcs], diagonal=diagonal) laplace_approx = ( dist.MultivariateNormal(theta, precision_matrix=prec) if not diagonal else Normal(theta, prec**-0.5) ) param_samples = laplace_approx.rsample((mc_samples,)).squeeze() sub_idcs, sum_scaling = ( np.random.randint(x_aug.shape[0], size=data_minibatch), x.shape[0] / data_minibatch, ) # sample minibatch when accessing full data and rescale corresponding log-likelihood # compute w_grad ll_all, _ = model( param_samples, mu0, sigma0, torch.cat((x_aug[sub_idcs, :], x_core)), torch.cat((y[sub_idcs], y_core)), ) ll_data, ll_core = ( ll_all[: len(sub_idcs), :], ll_all[len(sub_idcs) :, :], ) cll_data, cll_core = ( ll_data - ll_data.mean(axis=1).repeat(ll_data.shape[1], 1).T, ll_core - ll_core.mean(axis=1).repeat(ll_core.shape[1], 1).T, ) resid = sum_scaling * cll_data.sum(axis=0) - resc(N, w, core_idcs) * w[core_idcs].matmul( cll_core ) w.grad.data[core_idcs] = (-cll_core.matmul(resid) / cll_core.shape[1]) / resc(N, w, core_idcs) optim_w.step() with torch.no_grad(): torch.clamp_(w, 0) # store results return { "nlls": nlls_svi, "accs": accs_svi, "csizes": idcs_svi, "times": times_svi[1:], } def run_opsvi( x=None, y=None, xt=None, yt=None, mc_samples=10, data_minibatch=128, num_epochs=100, log_every=10, N=None, D=None, num_pseudo=10, inner_it=10, diagonal=True, lr0net=1e-3, lr0u=1e-3, lr0v=1e-3, register_elbos=False, init_args="subsample", seed=0, mcmc=False, log_pseudodata=False, **kwargs, ) -> Dict[str, Any]: r""" Returns diagnostics of a fit using the original PSVI construction (Manousakas et al, 2020) """ random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) us, zs, ws, core_idcs_opsvi, elbos_opsvi = [], [], [], [], [] nlls_opsvi, accs_opsvi, idcs_opsvi, times_opsvi = [], [], [], [0] with torch.no_grad(): w = N / num_pseudo * (torch.ones(num_pseudo).clone().detach()) w.requires_grad_( requires_grad=True, ) # coreset weights # model params prior mu0, sigma0 = ( torch.zeros(D + 1), torch.ones(D + 1), ) theta0 = Normal(mu0, sigma0).rsample() theta = torch.nn.Parameter(theta0, requires_grad=True) x_aug, x_test_aug = torch.cat((x, torch.ones(x.shape[0], 1)), dim=1), torch.cat( (xt, torch.ones(xt.shape[0], 1)), dim=1 ) # initialization of pseudodata with torch.no_grad(): u, z = ( pseudo_rand_init(x, y, num_pseudo=num_pseudo, seed=seed) if init_args == "random" else pseudo_subsample_init(x, y, num_pseudo=num_pseudo, seed=seed) ) u, z = ( torch.cat((u, torch.ones(u.shape[0], 1)), dim=1) .clone() .detach() .requires_grad_(True) ).float(), z.float() optim_net = torch.optim.Adam([theta], lr0net) optim_u = torch.optim.Adam([u], lr0u) optim_w = torch.optim.Adam([w], lr0v * N) t_start = time.time() for it in tqdm(range(num_epochs)): # Evaluate predictive performance of current coreset posterior if it % log_every == 0: param_samples = ( mcmc_sample(sml, list(range(num_pseudo)), u[:, :-1], z, w) if mcmc else run_laplace( theta, mu0, sigma0, u, z, w.detach(), torch.optim.Adam([theta], lr0net), inner_it=inner_it, diagonal=True, mc_samples=mc_samples, seed=seed, ) ) times_opsvi.append(times_opsvi[-1] + time.time() - t_start) test_probs = logreg_forward(param_samples, x_test_aug) test_acc = test_probs.gt(0.5).float().eq(yt).float().mean() test_nll = -dist.Bernoulli(probs=test_probs).log_prob(yt).mean() core_idcs_opsvi.append(num_pseudo) nlls_opsvi.append(test_nll.item()) accs_opsvi.append(test_acc.item()) idcs_opsvi.append(num_pseudo) print(f"predictive accuracy: {(100*test_acc.item()):.2f}%") us.append(u.detach().numpy()) zs.append(z.detach().numpy()) ws.append(w.detach().numpy()) # 1. Compute current coreset posterior using Laplace approximation on coreset points x_core, y_core = u, z # Sample for updated weights and take projected gradient descent steps on the weights optim_net = torch.optim.Adam([theta], lr0net) for in_it in range( inner_it ): # inner loop for Laplace approximation of current coreset iterate # negative log-joint optim_net.zero_grad() ll, prior = model(theta, mu0, sigma0, x_core, y_core, single=True) loss = -w.dot(ll) - prior loss.backward() if register_elbos and in_it % log_every == 0: with torch.no_grad(): elbos_opsvi.append((1, -loss.item())) optim_net.step() optim_w.zero_grad() optim_u.zero_grad() with torch.no_grad(): # samples from coreset iterate prec = laplace_precision(x_core, theta, w, diagonal=diagonal) laplace_approx = ( dist.MultivariateNormal(theta, precision_matrix=prec) if not diagonal else Normal(theta, prec**-0.5) ) param_samples = laplace_approx.rsample((mc_samples,)).squeeze() sub_idcs, sum_scaling = ( np.random.randint(x_aug.shape[0], size=data_minibatch), x.shape[0] / data_minibatch, ) # sample minibatch when accessing full data and rescale corresponding log-likelihood # compute w_grad and u_grad ll_all, _ = model( param_samples, mu0, sigma0, torch.cat((x_aug[sub_idcs, :], x_core)), torch.cat((y[sub_idcs], y_core)), ) ll_data, ll_core = ( ll_all[: len(sub_idcs), :], ll_all[len(sub_idcs) :, :], ) cll_data, cll_core = ( ll_data - ll_data.mean(axis=1).repeat(ll_data.shape[1], 1).T, ll_core - ll_core.mean(axis=1).repeat(ll_core.shape[1], 1).T, ) resid = sum_scaling * cll_data.sum(axis=0) - w.matmul(cll_core) w.grad.data = -cll_core.matmul(resid) / cll_core.shape[1] u_function = ( torch.matmul(torch.einsum("m,ms->s", -w.detach(), cll_core), resid.detach()) / cll_core.shape[1] ) u.grad.data = torch.autograd.grad(u_function, u)[0] u.grad.data[:, -1] = 0 # zero gradient on the last column optim_w.step() optim_u.step() with torch.no_grad(): torch.clamp_(w, 0) # store results results = { "accs": accs_opsvi, "nlls": nlls_opsvi, "csizes": core_idcs_opsvi, "times": times_opsvi[1:], "elbos": elbos_opsvi, } if log_pseudodata: results["us"], results["zs"], results["vs"] = us, zs, ws return results def run_mfvi( xt=None, yt=None, mc_samples=4, data_minibatch=128, num_epochs=100, log_every=10, N=None, D=None, lr0net=1e-3, # initial learning rate for optimizer mul_fact=2, # multiplicative factor for total number of gradient iterations in classical vi methods seed=0, distr_fn=categorical_fn, architecture=None, n_hidden=None, nc=2, log_pseudodata=False, train_dataset=None, test_dataset=None, init_sd=None, **kwargs, ) -> Dict[str, Any]: r""" Returns diagnostics using a mean-field VI fit on the full training dataset. Implementation supporting pytorch dataloaders (To be used only in the BNN experiment flows) """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) nlls_mfvi, accs_mfvi, times_mfvi, elbos_mfvi, grid_preds = [], [], [0], [], [] t_start = time.time() net = set_up_model( architecture=architecture, D=D, n_hidden=n_hidden, nc=nc, mc_samples=mc_samples, init_sd=init_sd, ).to(device) train_loader = DataLoader( train_dataset, batch_size=data_minibatch, pin_memory=True, shuffle=True, ) n_train = len(train_loader.dataset) test_loader = DataLoader( test_dataset, batch_size=data_minibatch, pin_memory=True, shuffle=True, ) optim_vi = torch.optim.Adam(net.parameters(), lr0net) total_iterations = mul_fact * num_epochs checkpts = list(range(mul_fact * num_epochs))[::log_every] lpit = [checkpts[idx] for idx in [0, len(checkpts) // 2, -1]] for i in tqdm(range(total_iterations)): xbatch, ybatch = next(iter(train_loader)) xbatch, ybatch = xbatch.to(device, non_blocking=True), ybatch.to( device, non_blocking=True ) optim_vi.zero_grad() data_nll = -( n_train / xbatch.shape[0] * distr_fn(logits=net(xbatch).squeeze(-1)).log_prob(ybatch).sum() ) kl = sum(m.kl() for m in net.modules() if isinstance(m, VILinear)) mfvi_loss = data_nll + kl mfvi_loss.backward() optim_vi.step() with torch.no_grad(): elbos_mfvi.append(-mfvi_loss.item()) if i % log_every == 0 or i == total_iterations -1: total, test_nll, corrects = 0, 0, 0 for xt, yt in test_loader: xt, yt = xt.to(device, non_blocking=True), yt.to( device, non_blocking=True ) with torch.no_grad(): test_logits = net(xt).squeeze(-1).mean(0) corrects += test_logits.argmax(-1).float().eq(yt).float().sum() total += yt.size(0) test_nll += -distr_fn(logits=test_logits).log_prob(yt).sum() if log_pseudodata and i in lpit: grid_preds.append(pred_on_grid(net, device=device).detach().cpu().numpy().T) times_mfvi.append(times_mfvi[-1] + time.time() - t_start) nlls_mfvi.append((test_nll / float(total)).item()) accs_mfvi.append((corrects / float(total)).item()) print(f"predictive accuracy: {(100*accs_mfvi[-1]):.2f}%") # store results results = { "accs": accs_mfvi, "nlls": nlls_mfvi, "times": times_mfvi[1:], "elbos": elbos_mfvi, "csizes": None, } if log_pseudodata: results["grid_preds"] = grid_preds return results def run_mfvi_subset( x=None, y=None, xt=None, yt=None, mc_samples=4, data_minibatch=128, num_epochs=100, log_every=10, D=None, lr0net=1e-3, # initial learning rate for optimizer mul_fact=2, # multiplicative factor for total number of gradient iterations in classical vi methods seed=0, distr_fn=categorical_fn, log_pseudodata=False, train_dataset=None, test_dataset=None, num_pseudo=100, # constrain on random subset with size equal to the max coreset size in the experiment init_args="subsample", architecture=None, n_hidden=None, nc=2, dnm=None, init_sd=None, **kwargs, ) -> Dict[str, Any]: r""" Returns diagnostics using a mean-field VI fit on a random subset of the training dataset with specified size. Implementation supporting pytorch dataloaders (To be used only in the BNN experiment flows) """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) nlls_mfvi, accs_mfvi, times_mfvi, elbos_mfvi, grid_preds = [], [], [0], [], [] t_start = time.time() net = set_up_model( architecture=architecture, D=D, n_hidden=n_hidden, nc=nc, mc_samples=mc_samples, init_sd=init_sd, ).to(device) if dnm=="MNIST": train_loader = DataLoader( train_dataset, batch_size=data_minibatch, # pin_memory=True, shuffle=True, ) n_train = len(train_loader.dataset) points_per_class = [num_pseudo // nc] * nc # split equally among classes points_per_class[-1] = num_pseudo - sum(points_per_class[:-1]) ybatch = ( torch.tensor( [ item for sublist in [[i] * ppc for i, ppc in enumerate(points_per_class)] for item in sublist ] ) .float() .to(device, non_blocking=True) ) def get_x_from_label(ipc, _l): indices = ( torch.as_tensor(train_dataset.targets).clone().detach() == _l ).nonzero() return torch.utils.data.DataLoader( SubsetPreservingTransforms(train_dataset, indices=indices, dnm=dnm), batch_size=ipc, shuffle=True, ) distilled_lst = [] for c in range(nc): u0 = next(iter(get_x_from_label(points_per_class[c], c))) distilled_lst.append(u0.to(device=device, non_blocking=True)) xbatch = torch.cat(distilled_lst).to(device, non_blocking=True) else: xbatch, ybatch = ( pseudo_rand_init(x, y, num_pseudo=num_pseudo, seed=seed, nc=nc) if init_args == "random" else pseudo_subsample_init(x, y, num_pseudo=num_pseudo, seed=seed, nc=nc) ) n_train = len(train_dataset) test_loader = DataLoader( test_dataset, batch_size=data_minibatch, pin_memory=True, shuffle=True, ) optim_vi = torch.optim.Adam(net.parameters(), lr0net) sum_scaling = n_train / num_pseudo total_iterations = mul_fact * num_epochs checkpts = list(range(mul_fact * num_epochs))[::log_every] lpit = [checkpts[idx] for idx in [0, len(checkpts) // 2, -1]] for i in tqdm(range(total_iterations)): xbatch, ybatch = xbatch.to(device), ybatch.to(device) optim_vi.zero_grad() data_nll = ( -sum_scaling * distr_fn(logits=net(xbatch).squeeze(-1)).log_prob(ybatch).sum() ) kl = sum(m.kl() for m in net.modules() if isinstance(m, VILinear)) mfvi_loss = data_nll + kl mfvi_loss.backward() optim_vi.step() with torch.no_grad(): elbos_mfvi.append(-mfvi_loss.item()) if i % log_every == 0: total, test_nll, corrects = 0, 0, 0 for xt, yt in test_loader: xt, yt = xt.to(device, non_blocking=True), yt.to( device, non_blocking=True ) with torch.no_grad(): test_logits = net(xt).squeeze(-1).mean(0) corrects += test_logits.argmax(-1).float().eq(yt).float().sum() total += yt.size(0) test_nll += -distr_fn(logits=test_logits).log_prob(yt).sum() if log_pseudodata and i in lpit: grid_preds.append(pred_on_grid(net, device= device).detach().cpu().numpy().T) times_mfvi.append(times_mfvi[-1] + time.time() - t_start) nlls_mfvi.append((test_nll / float(total)).item()) accs_mfvi.append((corrects / float(total)).item()) print(f"predictive accuracy: {(100*accs_mfvi[-1]):.2f}%") # store results results = { "accs": accs_mfvi, "nlls": nlls_mfvi, "times": times_mfvi[1:], "elbos": elbos_mfvi, "csizes": [num_pseudo] * (mul_fact * num_epochs), } if log_pseudodata: results["grid_preds"] = grid_preds results["us"], results["zs"], results["vs"] = xbatch.detach(), ybatch.detach(), [sum_scaling]*num_pseudo return results # MFVI for BNN regression def run_mfvi_regressor( mc_samples=4, data_minibatch=128, num_epochs=100, log_every=10, D=None, lr0net=1e-3, # initial learning rate for optimizer seed=0, architecture=None, n_hidden=None, train_dataset=None, val_dataset=None, test_dataset=None, nc=1, y_mean=None, y_std=None, taus=None, init_sd=1e-6, model_selection = True, dnm=None, **kwargs, ) -> Dict[str, Any]: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) # normalized x train, normalized targets train_loader = DataLoader( train_dataset, batch_size=data_minibatch, # pin_memory=True, shuffle=False, ) # normalized x test, unnormalized targets test_loader, val_loader, n_train = ( DataLoader( test_dataset, batch_size=data_minibatch, # pin_memory=True, shuffle=False, ), DataLoader( val_dataset, batch_size=data_minibatch, # pin_memory=True, shuffle=False, ), len(train_loader.dataset), ) bpe = max(1, int(n_train / data_minibatch)) # batches per epoch def revert_norm(y_pred): return y_pred * y_std + y_mean best_tau, best_ll = taus[0], -float("inf") if model_selection: # model selection print("\nOptimizing precision hyperparameter") for tau in taus: print(f"\n\nTrying tau = {tau}") net = set_up_model( architecture=architecture, D=D, n_hidden=n_hidden, nc=nc, mc_samples=mc_samples, init_sd=init_sd, ).to(device) optim_vi = torch.optim.Adam(net.parameters(), lr0net) tau_fit = fit( net=net, optim_vi=optim_vi, train_loader=train_loader, pred_loader=val_loader, revert_norm=revert_norm, log_every=-1, tau=tau, epochs=num_epochs * bpe, device=device, ) if tau_fit["lls"][-1] > best_ll: best_tau, best_ll = tau, tau_fit["lls"][-1] print(f"current best tau, best ll : {best_tau}, {best_ll}") else: best_tau = taus[0] print(f"\n\nselected tau : {best_tau}\n\n") update_hyperparams_dict(dnm, best_tau) net = set_up_model( architecture=architecture, D=D, n_hidden=n_hidden, nc=nc, mc_samples=mc_samples, init_sd=init_sd, ).to(device) optim_vi = torch.optim.Adam(net.parameters(), lr0net) results = fit( net=net, optim_vi=optim_vi, train_loader=train_loader, pred_loader=test_loader, revert_norm=revert_norm, log_every=log_every, tau=best_tau, epochs=num_epochs * bpe, device=device, ) return results # MFVI Subset for BNN regression def run_mfvi_subset_regressor( mc_samples=4, data_minibatch=128, num_epochs=100, log_every=10, D=None, lr0net=1e-3, # initial learning rate for optimizer seed=0, architecture=None, n_hidden=None, train_dataset=None, val_dataset=None, test_dataset=None, nc=1, y_mean=None, y_std=None, init_sd=1e-6, num_pseudo=100, # constrain on random subset with size equal to the max coreset size in the experiment taus=None, model_selection = False, **kwargs, ) -> Dict[str, Any]: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") random.seed(seed), np.random.seed(seed), torch.manual_seed(seed) # normalized x train, normalized targets sample_idcs = random.sample(range(len(train_dataset)), num_pseudo) subset_train_dataset = torch.utils.data.Subset(train_dataset, sample_idcs) subset_train_loader = DataLoader( subset_train_dataset, batch_size=num_pseudo, # pin_memory=True, shuffle=False, ) # normalized x test, unnormalized targets test_loader, val_loader, n_train = ( DataLoader( test_dataset, batch_size=data_minibatch, # pin_memory=True, shuffle=False, ), DataLoader( val_dataset, batch_size=data_minibatch, # pin_memory=True, shuffle=False, ), len(train_dataset), ) bpe = max(1, int(n_train / data_minibatch)) # batches per epoch def revert_norm(y_pred): return y_pred * y_std + y_mean best_tau, best_ll = taus[0], -float("inf") if model_selection: # model selection print("\nOptimizing precision hyperparameter") for tau in taus: print(f"\n\nTrying tau = {tau}") net = set_up_model( architecture=architecture, D=D, n_hidden=n_hidden, nc=nc, mc_samples=mc_samples, init_sd=init_sd, ).to(device) optim_vi = torch.optim.Adam(net.parameters(), lr0net) tau_fit = fit( net=net, optim_vi=optim_vi, train_loader=subset_train_loader, pred_loader=val_loader, revert_norm=revert_norm, log_every=-1, tau=tau, epochs=num_epochs * bpe, device=device, ) if tau_fit["lls"][-1] > best_ll: best_tau, best_ll = tau, tau_fit["lls"][-1] print(f"current best tau, best ll : {best_tau}, {best_ll}") else: best_tau = taus[0] print(f"\n\nselected tau : {best_tau}\n\n") net = set_up_model( architecture=architecture, D=D, n_hidden=n_hidden, nc=nc, mc_samples=mc_samples, init_sd=init_sd, ).to(device) optim_vi = torch.optim.Adam(net.parameters(), lr0net) results = fit( net=net, optim_vi=optim_vi, train_loader=subset_train_loader, pred_loader=test_loader, revert_norm=revert_norm, log_every=log_every, tau=best_tau, epochs=num_epochs * bpe, device=device, ) results["csizes"] = [num_pseudo] return results # fit mean-field BNN using the standard ELBO and log predictive performance def fit( net=None, optim_vi=None, train_loader=None, pred_loader=None, revert_norm=None, log_every=-1, tau=1e-2, epochs=40, device=None, ): distr_fn = partial(gaussian_fn, scale=1.0 / np.sqrt(tau)) logging_checkpoint = ( lambda it: (it % log_every) == 0 if log_every > 0 else it == (epochs - 1) ) # if log_every==-1 then log pred perf only at the end of training lls, rmses, times, elbos = [], [], [0], [] t_start = time.time() n_train = len(train_loader.dataset) for e in tqdm(range(epochs)): xbatch, ybatch = next(iter(train_loader)) xbatch, ybatch = xbatch.to(device, non_blocking=True), ybatch.to( device, non_blocking=True ) optim_vi.zero_grad() data_nll = -( n_train / xbatch.shape[0] * distr_fn(net(xbatch).squeeze(-1)).log_prob(ybatch.squeeze()).sum() ) kl = sum(m.kl() for m in net.modules() if isinstance(m, VILinear)) loss = data_nll + kl loss.backward() optim_vi.step() with torch.no_grad(): elbos.append(-loss.item()) if logging_checkpoint(e): total, test_ll, rmses_unnorm = 0, 0, 0 for (xt, yt) in pred_loader: xt, yt = ( xt.to(device, non_blocking=True), yt.to(device, non_blocking=True).squeeze(), ) with torch.no_grad(): y_pred = net(xt).squeeze(-1) y_pred = revert_norm(y_pred).mean(0).squeeze() rmses_unnorm += (y_pred - yt).square().sum() total += yt.size(0) test_ll += distr_fn(y_pred).log_prob(yt.squeeze()).sum() times.append(times[-1] + time.time() - t_start) lls.append((test_ll / float(total)).item()) rmses.append((rmses_unnorm / float(total)).sqrt().item()) print( f" \n\n\n Predictive rmse {rmses[-1]:.2f} | pred ll {lls[-1]:.2f}" ) results = { "rmses": rmses, "lls": lls, "times": times[1:], "elbos": elbos, "scale": 1.0 / np.sqrt(tau), } return results
Blackbox-Coresets-VI-main
psvi/inference/baselines.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
Blackbox-Coresets-VI-main
psvi/inference/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. r""" Black-box PSVI parent and children classes accessing the dataset via pytorch dataloaders. """ import time import random import numpy as np from sklearn.utils import shuffle import torch import torch.nn as nn from PIL import Image from psvi.experiments.experiments_utils import SynthDataset from psvi.hypergrad.diff_optimizers import DifferentiableAdam, GradientDescent from psvi.hypergrad.hypergradients import CG_normaleq, fixed_point from psvi.models.neural_net import ( set_mc_samples, categorical_fn, gaussian_fn, make_fcnet, make_fc2net, make_lenet, make_alexnet, make_regressor_net, VILinear, VILinearMultivariateNormal, ) from psvi.robust_higher import innerloop_ctx from psvi.robust_higher.patch import monkeypatch from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from functools import partial from psvi.inference.utils import make_dataloader, compute_empirical_mean class SubsetPreservingTransforms(Dataset): r""" Subset of a dataset at specified indices with a specified list of transforms. Arguments: dataset (Dataset): The whole Dataset indices (sequence): Indices in the whole set selected for subset """ def __init__(self, dataset, indices=None, dim=2, dnm="Cifar10"): self.dataset = dataset self.indices = indices self.dnm = dnm self.dim = dim def __getitem__(self, idx): if self.dnm not in {"MNIST", "Cifar10"}: return self.dataset.data[self.indices[idx]].reshape((self.dim,)) im = ( Image.fromarray(self.dataset.data[self.indices[idx]]) # Cifar10 if not self.dnm == "MNIST" else Image.fromarray( np.reshape(self.dataset.data[self.indices[idx]].numpy(), (28, 28)), mode="L", # MNIST ) # TBC: Supporting only Cifar10 and MNIST ) return self.dataset.transform(im) def __len__(self): return len(self.indices) class PSVI(object): r""" PSVI - with fixed rescaled coefficients on pseudodata supporting pytorch dataloaders """ def __init__( self, u=None, # pseudo x-coordinates z=None, # pseudo y-coordinates train_dataset=None, # true training data test_dataset=None, # test data N=None, # size of training data D=None, # dimensionality of training data model=None, # statistical model optim=None, # joint variational model/pseudodata optimizer optim_u=None, # optimizer for pseudodata optim_net=None, # optimizer for variational model parameters optim_v=None, # optimizer for log-likelihood rescaling vector optim_z=None, # optimizer for soft labels on distilled data register_elbos=True, # register values of objectives over inference num_pseudo=None, # number of pseudodata seed=0, # random seed for instantiation of the method (for reproducibility) compute_weights_entropy=True, # compute the entropy of weights distribution used in importance sampling mc_samples=None, # number of MC samples for computation of variational objectives and predictions on unseen data reset=False, # reset variational parameters to initialization reset_interval=10, # number of outer gradient steps between reinitializations learn_v=False, # boolean indicating if the v vector is learnable f=lambda *x: x[0], # transformation applied on the v vector distr_fn=categorical_fn, # distribution of last nn layer dnm="MNIST", # dataset name nc=10, # number of classes (argument supported only for the psvi dataloader subclasses) init_dataset=None, # populated when picking initializations from a disturbed version of the original datapoints parameterised=False, learn_z=False, # optimize in the label space prune=False, # apply prunning over coreset training prune_interval=None, # corresponding number of outer updates for prunning prune_sizes=None, # list with budgets for pruned coreset increment=False, # incremental learning setting increment_interval=None, # corresponding number of outer updates between incrementing with new learning task increment_sizes=None, # list of increasing coreset sizes after incrementally introducing new learning tasks lr0alpha=1e-3, retrain_on_coreset=False, # retrain variational parameters only on coreset datapoints after extracting a coreset using joint optimizer on the PSVI ELBO device_id=None, **kwargs, ): np.random.seed(seed), torch.manual_seed(seed) self.device = torch.device( f"cuda:{device_id}" if device_id else ("cuda" if torch.cuda.is_available() else "cpu")) self.u, self.z = u, z self.train_dataset, self.test_dataset = ( train_dataset, test_dataset, ) self.N, self.D, self.dnm = N, D, dnm self.nc = nc # number of classes self.distr_fn = distr_fn ( self.model, self.optim, self.optim_u, self.optim_net, self.optim_v, self.optim_z, ) = ( model, optim, optim_u, optim_net, optim_v, optim_z, ) self.register_elbos, self.compute_weights_entropy = ( register_elbos, compute_weights_entropy, ) self.elbos = [] self.num_pseudo, self.mc_samples = num_pseudo if not increment else increment_sizes[0], mc_samples self.reset, self.reset_interval, self.learn_v, self.learn_z = ( reset, reset_interval, learn_v, learn_z, ) with torch.no_grad(): self.v = ( 1.0 / self.num_pseudo * torch.ones(self.num_pseudo, device=self.device) ) self.v.requires_grad_( self.learn_v ) # initialize weights of coreset pseudodata to uniform and set to differentiable or not according to attribute learn_v self.f, self.parameterised = f, parameterised self.init_dataset = init_dataset self.results = {} self.prune, self.prune_interval, self.prune_sizes = ( prune, prune_interval, prune_sizes, ) self.increment, self.increment_interval, self.increment_sizes = ( increment, increment_interval, increment_sizes, ) if self.increment: self.historical_coresets = [] self.lr0alpha = lr0alpha self.retrain_on_coreset = retrain_on_coreset def pseudo_subsample_init(self): r""" Initialization of pseudodata on random data subset with equal number of datapoints from each class """ chosen_dataset = ( self.train_dataset if self.init_dataset is None else self.init_dataset ) # set up pseudodata by initializing to random subset from the existing dataset points_per_class = [ self.num_pseudo // self.nc ] * self.nc # split equally among classes points_per_class[-1] = self.num_pseudo - sum( points_per_class[:-1] ) # assigning the remainder to the last class with torch.no_grad(): self.z = ( torch.tensor( [ item for sublist in [ [i] * ppc for i, ppc in enumerate(points_per_class) ] for item in sublist ] ) .float() .to(self.device, non_blocking=True) ) if self.learn_z: self.z = torch.nn.functional.one_hot( self.z.to(torch.int64), num_classes=self.nc, ).float() # initialize target logits close to one-hot-encoding [0,..., class, ..., 0]-vectors self.z.requires_grad_(True) def get_x_from_label(ipc, _l): indices = ( torch.as_tensor(chosen_dataset.targets).clone().detach() == _l ).nonzero() return torch.utils.data.DataLoader( SubsetPreservingTransforms( chosen_dataset, indices=indices, dnm=self.dnm, dim=self.D, ), batch_size=ipc, shuffle=True, ) distilled_lst = [] for c in range(self.nc): u0 = next(iter(get_x_from_label(points_per_class[c], c))) distilled_lst.append(u0.to(device=self.device, non_blocking=True)) self.u = torch.cat(distilled_lst).requires_grad_(True) def pseudo_rand_init(self, variance=1.): r""" Initialize on noisy means of the observed datapoints and random labels equally split among classes """ # print(f"is leaf : {self.u.is_leaf}") self.u = ( (compute_empirical_mean(self.train_loader) + variance * torch.randn(self.num_pseudo, self.D)) .clone() ).to(self.device).requires_grad_(True) self.z = torch.Tensor([]) for c in range(self.nc): self.z = torch.cat( ( self.z.to(self.device), c * torch.ones( self.num_pseudo // self.nc if c < self.nc - 1 else self.num_pseudo - (self.nc - 1) * (self.num_pseudo // self.nc) ).to(self.device), ) ) def psvi_elbo(self, xbatch, ybatch, model=None, params=None, hyperopt=False): r""" PSVI objective computation [negative PSVI-ELBO] """ assert self.mc_samples > 1 Nu, Nx = self.u.shape[0], xbatch.shape[0] all_data, all_labels = torch.cat((self.u, xbatch)), torch.cat( ( self.z, ybatch if not self.learn_z else self.nc * torch.nn.functional.one_hot( ybatch.to(torch.int64), num_classes=self.nc, ).float(), ) ) logits = model(all_data) if not hyperopt else model(all_data, params=params) log_probs = (nn.LogSoftmax(dim=-1)(logits)).permute(1, 2, 0) all_nlls = ( -self.distr_fn(logits=logits.squeeze(-1)).log_prob(all_labels) if not self.learn_z else torch.nn.KLDivLoss(reduction="none")( log_probs, all_labels.softmax(0).unsqueeze(-1).expand(log_probs.shape), ) .sum(1) .T ) pseudo_nll = ( all_nlls[:, :Nu].matmul(self.N * self.f(self.v, 0)) if Nu > 0 else 0.0 ) data_nll = self.N / Nx * all_nlls[:, Nu:].sum(-1) sampled_nkl = sum( m.sampled_nkl() for m in model.modules() if (isinstance(m, VILinear) or isinstance(m, VILinearMultivariateNormal)) ) log_weights = -pseudo_nll + sampled_nkl weights = log_weights.softmax(0) return weights.mul(data_nll - pseudo_nll).sum() - log_weights.mean() def inner_elbo(self, model=None, params=None, hyperopt=False): r""" Inner VI objective computation [negative ELBO] """ logits = model(self.u) if not hyperopt else model(self.u, params=params) if len(logits.shape)==2: logits.unsqueeze_(1) log_probs = (nn.LogSoftmax(dim=-1)(logits)).permute(1, 2, 0) pseudodata_nll = ( -self.distr_fn(logits=logits.squeeze(-1)).log_prob(self.z) if not self.learn_z else torch.nn.KLDivLoss(reduction="none")( log_probs, self.z.softmax(0).unsqueeze(-1).expand(log_probs.shape), ) .sum(1) .T ).matmul(self.N * self.f(self.v, 0)) kl = sum( m.kl() for m in model.modules() if (isinstance(m, VILinear) or isinstance(m, VILinearMultivariateNormal)) ) return pseudodata_nll.sum() + kl if self.u.shape[0] > 0 else kl r""" Optimization methods """ def joint_step(self, xbatch, ybatch): self.optim.zero_grad() loss = self.psvi_elbo(xbatch, ybatch, model=self.model) with torch.no_grad(): if self.register_elbos: self.elbos.append((2, -loss.item())) loss.backward() self.optim.step() return loss def alternating_step(self, xbatch, ybatch): for i in range(2): self.optim = self.optim_net if i == 0 else self.optim_u self.optim.zero_grad() loss = self.psvi_elbo(xbatch, ybatch, model=self.model) with torch.no_grad(): if self.register_elbos: self.elbos.append( (1, -loss.item()) ) if i == 1 else self.elbos.append((0, -loss.item())) loss.backward() self.optim.step() return loss def nested_step(self, xbatch, ybatch, truncated=False, K=5): self.optim_u.zero_grad() self.optim_net.zero_grad() if self.learn_v: self.optim_v.zero_grad() if self.learn_z: self.optim_z.zero_grad() if not truncated: with innerloop_ctx(self.model, self.optim_net) as (fmodel, diffopt): for in_it in range(self.inner_it): mfvi_loss = self.inner_elbo(model=fmodel) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) diffopt.step(mfvi_loss) psvi_loss = self.psvi_elbo(xbatch, ybatch, model=fmodel) with torch.no_grad(): if self.register_elbos: self.elbos.append((0, -psvi_loss.item())) psvi_loss.backward() else: inner_opt = torch.optim.Adam(list(self.model.parameters()), 1e-4) for in_it in range(self.inner_it - K): mfvi_loss = self.inner_elbo(model=self.model) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) mfvi_loss.backward() inner_opt.step() print('done non-differentiable part') inner_opt.zero_grad() with innerloop_ctx(self.model, self.optim_net) as (fmodel, diffopt): for in_it in range(K): mfvi_loss = self.inner_elbo(model=fmodel) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) diffopt.step(mfvi_loss) psvi_loss = self.psvi_elbo(xbatch, ybatch, model=fmodel) with torch.no_grad(): if self.register_elbos: self.elbos.append((0, -psvi_loss.item())) psvi_loss.backward() self.optim_u.step() if self.learn_v: self.optim_v.step() if not self.parameterised: with torch.no_grad(): torch.clamp_( self.v, min=0.0 ) # clamp weights of coreset data point to be non-negative if self.scheduler_optim_net: self.scheduler_optim_net.step() if self.learn_z: self.optim_z.step() nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(list(fmodel.parameters())), self.model.parameters(), ) return psvi_loss def hyper_step( self, xbatch, ybatch, T=50, # iterations for inner problem solver inner_opt_class=DifferentiableAdam, # optimizer type for inner problem solver K=30, # iterations for linear system solver (in approximate implicit differentiation methods) linsys_lr=1e-4, # lr for the SGD optimizer used to solve the linear system on the Jacobian-vector products hypergrad_approx="CG_normaleq", **kwargs, ): T = self.inner_it inner_opt_kwargs = {"step_size": self.optim_net.param_groups[0]["lr"]} fmodel = monkeypatch(self.model, copy_initial_weights=True) self.optim_u.zero_grad() if self.learn_v: self.optim_v.zero_grad() if self.learn_z: raise NotImplementedError def inner_loop(hparams, params, optim, n_steps, create_graph=False): params_history = [optim.get_opt_params(params)] for _ in range(n_steps): params_history.append( optim(params_history[-1], hparams, create_graph=create_graph) ) return params_history def get_inner_opt(train_loss): return inner_opt_class(train_loss, **inner_opt_kwargs) def inner_loss_function(p, hp, hyperopt=True): if self.learn_v: self.u, self.v = hp[0], hp[1] else: self.u = hp[0] return self.inner_elbo(model=fmodel, params=p, hyperopt=hyperopt) def outer_loss_function(p, hp): if self.learn_v: self.u, self.v = hp[0], hp[1] else: self.u = hp[0] return self.psvi_elbo(xbatch, ybatch, model=fmodel, params=p, hyperopt=True) inner_opt = get_inner_opt(inner_loss_function) params = [p.detach().clone().requires_grad_(True) for p in fmodel.parameters()] params_history = inner_loop( [self.u] + [self.v] if self.learn_v else [self.u], params, inner_opt, T, ) last_param = params_history[-1][: len(params)] linear_opt = GradientDescent(loss_f=inner_loss_function, step_size=linsys_lr) if hypergrad_approx == "fixed_point": # fixed-point AID fixed_point( last_param, [self.u] + [self.v] if self.learn_v else [self.u], K=K, fp_map=linear_opt, outer_loss=outer_loss_function, stochastic=True, ) elif hypergrad_approx == "CG_normaleq": # CG on normal equations AID CG_normaleq( last_param, [self.u] + [self.v] if self.learn_v else [self.u], K=K, fp_map=linear_opt, outer_loss=outer_loss_function, set_grad=True, ) self.optim_u.step() if self.learn_v: self.optim_v.step() if not self.parameterised: with torch.no_grad(): torch.clamp_(self.v, min=0.0) ll = outer_loss_function(last_param, [self.u] + [self.v]) nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(last_param), self.model.parameters(), ) return ll.item() def set_up_model(self): r""" Specify the statistical model """ print("SETTING UP THE MODEL \n\n") if self.logistic_regression: self.model = nn.Sequential( VILinear( self.D, self.nc, init_sd=self.init_sd, mc_samples=self.mc_samples ), ).to(self.device) elif self.architecture=="logistic_regression_fullcov": self.model = nn.Sequential( VILinearMultivariateNormal( self.D, self.nc, init_sd=self.init_sd, mc_samples=self.mc_samples ), ).to(self.device) elif self.architecture in {"fn", "residual_fn"}: self.model = make_fcnet( self.D, self.n_hidden, self.nc, n_layers=self.n_layers, linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=self.mc_samples, residual=(self.architecture == "residual_fn"), init_sd=self.init_sd, ).to(self.device) elif self.architecture == "fn2": print(f"architecture : {self.architecture}") self.model = make_fc2net( self.D, self.n_hidden, self.nc, # does not support argument on the number of channels linear_class=VILinearMultivariateNormal, nonl_class=nn.ReLU, mc_samples=self.mc_samples, init_sd=self.init_sd, ).to(self.device) elif self.architecture == "lenet": self.model = make_lenet( linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=self.mc_samples, init_sd=self.init_sd, ).to(self.device) elif self.architecture == "alexnet": self.model = make_alexnet( linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=self.mc_samples, init_sd=self.init_sd, ).to(self.device) elif self.architecture == "regressor_net": self.model = make_regressor_net( self.D, self.n_hidden, self.nc, linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=self.mc_samples, residual=(self.architecture == "residual_fn"), init_sd=self.init_sd, ).to(self.device) def run_psvi( self, init_args="subsample", trainer="nested", n_layers=1, logistic_regression=True, n_hidden=None, architecture=None, log_every=10, inner_it=10, data_minibatch=None, lr0net=1e-3, lr0u=1e-3, lr0joint=1e-3, lr0v=1e-2, lr0z=1e-2, init_sd=1e-3, num_epochs=1000, log_pseudodata=False, prune_idx=0, increment_idx=0, gamma=1.0, **kwargs, ): r""" Run inference """ # experiment-specific hyperparameters self.init_args = init_args self.trainer = trainer self.logistic_regression = logistic_regression self.architecture, self.n_hidden, self.n_layers, self.init_sd = ( architecture, n_hidden, n_layers, init_sd, ) self.log_every, self.log_pseudodata = log_every, log_pseudodata self.data_minibatch = data_minibatch self.inner_it, self.num_epochs = inner_it, num_epochs self.scheduler_optim_net = None self.gamma = gamma epoch_quarter = (self.N // self.data_minibatch) // 4 scheduler_kwargs = { "step_size": epoch_quarter if epoch_quarter > 0 else 10000, "gamma": self.gamma, } # load the training and test data on dataloaders self.train_loader = DataLoader( self.train_dataset, batch_size=self.data_minibatch, pin_memory=True, shuffle=True, ) self.test_loader = DataLoader( self.test_dataset, batch_size=self.data_minibatch, pin_memory=True, shuffle=False, ) # setup for training and test sets in incremental learning: we start with 2 classes, and keep adding 1 new class at a time if self.increment: self.incremental_train_datasets, self.incremental_test_datasets = [None]*(self.nc - 1), [None]*(self.nc - 1) for c in range(1, self.nc): self.incremental_train_datasets[c-1] = self.train_dataset.subset_where(cs=list(range(c+1)) if c==1 else [c]) self.incremental_test_datasets[c-1] = self.test_dataset.subset_where(cs=list(range(c+1))) (self.train_loader, self.test_loader) = (make_dataloader(self.incremental_train_datasets[0], self.data_minibatch), make_dataloader(self.incremental_test_datasets[0], self.data_minibatch, shuffle=False)) self.train_data_so_far = len(self.train_loader.dataset) self.nc = 2 # in the incremental learning case start with a 2-class classification problem self.set_up_model() # initialization of results data structures ( nlls_psvi, accs_psvi, core_idcs_psvi, iws_entropy, nesses, vs_entropy, us, zs, vs, grid_preds, times, ) = ([], [], [], [], [], [], [], [], [], [], [0]) # initialization of pseudodata pseudodata_init = { "random": self.pseudo_rand_init, # different transformations applied on `train_dataset` "subsample": self.pseudo_subsample_init, } pseudodata_init[self.init_args]() # optimization method self.optim_net, self.optim_u = ( torch.optim.Adam(list(self.model.parameters()), lr0net), torch.optim.Adam([self.u], lr0u), ) self.scheduler_optim_net = torch.optim.lr_scheduler.StepLR( self.optim_net, **scheduler_kwargs ) if self.learn_v: self.optim_v = torch.optim.Adam([self.v], lr0v) if self.learn_z: self.optim_z = torch.optim.Adam([self.z], lr0z) optimizers = { "alternating": self.alternating_step, "nested": self.nested_step, "hyper": self.hyper_step, } if self.trainer == "joint": variational_params = ( list(self.model.parameters()) + [self.u] + [self.v] if self.learn_v else list(self.model.parameters()) + [self.u] ) self.optim = torch.optim.Adam(variational_params, lr0joint) psvi_step = self.joint_step else: psvi_step = optimizers[self.trainer] t_start = time.time() # training loop total_checkpts = list(range(self.num_epochs))[::log_every] downsample = 1 # downsample checkpoints for logging predictive uncertainty over a grid lpit = total_checkpts[::downsample] for it in tqdm(range(self.num_epochs)): xbatch, ybatch = next(iter(self.train_loader)) xbatch, ybatch = xbatch.to(self.device, non_blocking=True), ybatch.to( self.device, non_blocking=True ) # evaluation if it % self.log_every == 0: test_acc, test_nll, iw_ent, ness, v_ent = self.evaluate() if ( self.log_pseudodata and it in lpit and self.dnm not in {"MNIST", "Cifar10", "adult", "phishing", "webspam"} ): print(f"\nlogging predictive grid at {it}") grid_preds.append(self.pred_on_grid().detach().cpu().numpy().T) with torch.no_grad(): nlls_psvi.append(test_nll.item()) accs_psvi.append(test_acc.item()) print(f"\npredictive accuracy: {(100*test_acc.item()):.2f}%") core_idcs_psvi.append(self.num_pseudo) times.append(times[-1] + time.time() - t_start) vs.append((self.f(self.v, 0)).clone().cpu().detach().numpy()) if iw_ent is not None: iws_entropy.append(iw_ent.item()) if ness is not None: nesses.append(ness.item()) if v_ent is not None: vs_entropy.append(v_ent.item()) if self.log_pseudodata: us.append(self.u.clone().cpu().detach().numpy()) zs.append(self.z.clone().cpu().detach().numpy()) # variational nn reinitialization if self.reset and it % self.reset_interval == 0: self.weight_reset() # take a single optimization step psvi_step(xbatch, ybatch) # prune coreset to smaller sizes if self.prune and it > 0 and it % self.prune_interval == 0: if prune_idx < len(self.prune_sizes): self.prune_coreset( to_size=self.prune_sizes[prune_idx], lr0v=lr0v, lr0net=lr0net ) prune_idx += 1 self.weight_reset() # reset model upon pruning # add new learning task and increment coreset to enable fitting it if self.increment and it > 0 and it % self.increment_interval == 0: if increment_idx < len(self.increment_sizes)-1: # self.historical_coresets.append({'v': self.v, 'u':self.u, 'z':self.z}) increment_idx += 1 #samples_from_coresets = [torch.multinomial(self.f(self.historical_coresets[_i]['v'], 0), self.train_data_so_far//increment_idx, replacement=True) for _i in range(increment_idx)] # sample summarising data from tasks so far using coreset points weighting samples_from_coreset = torch.multinomial(self.f(self.v, 0), self.train_data_so_far, replacement=True) # sample summarising data from tasks so far using coreset points weighting self.nc += 1 # added new class in training dataset self.set_up_model() # reset model self.increment_coreset( to_size=self.increment_sizes[increment_idx], lr0v=lr0v, lr0u=lr0u, lr0net=lr0net, new_class=increment_idx+1, increment_idx=increment_idx ) #self.train_loader = make_dataloader(self.incremental_train_datasets[increment_idx].concatenate(torch.cat([self.historical_coresets[_i]['u'][samples_from_coresets[_i]].clone().detach() for _i in range(increment_idx)], axis=0), # torch.cat([self.historical_coressets[_i]['z'][samples_from_coresets[_i]].clone().detach() for _i in range(increment_idx)], axis=0)), # self.data_minibatch) # augment with new training data self.train_loader = make_dataloader(self.incremental_train_datasets[increment_idx].concatenate(self.u[samples_from_coreset].clone().detach(), self.z[samples_from_coreset].clone().detach()), self.data_minibatch) # augment with new training data self.test_loader = make_dataloader(self.incremental_test_datasets[increment_idx], self.data_minibatch, shuffle=False) # augment with new test data self.train_data_so_far = len(self.train_loader.dataset) # retrain restricting only on coreset datapoints if self.retrain_on_coreset: print("\n\nRetrain on the extracted coreset for the same number of epochs") self.weight_reset() self.optim_retrain = torch.optim.Adam(list(self.model.parameters()), lr0joint) for it in tqdm(range(self.num_epochs)): # evaluation if it % self.log_every == 0: test_acc, test_nll, iw_ent, ness, v_ent = self.evaluate(correction=False) if ( self.log_pseudodata and it in lpit and self.dnm not in {"MNIST", "Cifar10", "adult", "phishing", "webspam"} ): print(f"\nlogging predictive grid at {it}") grid_preds.append(self.pred_on_grid(correction=False).detach().cpu().numpy().T) with torch.no_grad(): nlls_psvi.append(test_nll.item()) accs_psvi.append(test_acc.item()) print(f"\npredictive accuracy: {(100*test_acc.item()):.2f}%") core_idcs_psvi.append(self.num_pseudo) times.append(times[-1] + time.time() - t_start) vs.append((self.f(self.v, 0)).clone().cpu().detach().numpy()) if iw_ent is not None: iws_entropy.append(iw_ent.item()) if ness is not None: nesses.append(ness.item()) if v_ent is not None: vs_entropy.append(v_ent.item()) if self.log_pseudodata: us.append(self.u.clone().cpu().detach().numpy()) zs.append(self.z.clone().cpu().detach().numpy()) self.optim_retrain.zero_grad() loss = self.inner_elbo(model=self.model) loss.backward() self.optim_retrain.step() # store results self.results["accs"] = accs_psvi self.results["nlls"] = nlls_psvi self.results["csizes"] = core_idcs_psvi self.results["times"] = times[1:] self.results["elbos"] = self.elbos self.results["went"] = iws_entropy self.results["ness"] = nesses self.results["vent"] = vs_entropy self.results["vs"] = vs if self.log_pseudodata: self.results["us"], self.results["zs"], self.results["grid_preds"] = ( us, zs, grid_preds, ) return self.results ## Compute predictive metrics def evaluate( self, correction=True, **kwargs, ): assert self.mc_samples > 1 total, test_nll, corrects = 0, 0, 0 for xt, yt in self.test_loader: xt, yt = xt.to(self.device, non_blocking=True), yt.to( self.device, non_blocking=True ) with torch.no_grad(): all_data = torch.cat((self.u, xt)) all_logits = self.model(all_data) pseudo_logits = all_logits[:, : self.num_pseudo] log_probs = (nn.LogSoftmax(dim=-1)(pseudo_logits)).permute(1, 2, 0) pseudo_nll = ( ( ( self.distr_fn(logits=pseudo_logits).log_prob(self.z) if not self.learn_z else torch.nn.KLDivLoss(reduction="none")( log_probs, self.z.softmax(0).unsqueeze(-1).expand(log_probs.shape), ).sum((1, 2)) ).matmul(self.N * self.f(self.v, 0)) ) if self.num_pseudo > 0 else 0.0 ) test_data_logits = all_logits[:, self.num_pseudo :] sampled_nkl = sum( m.sampled_nkl() for m in self.model.modules() if ( isinstance(m, VILinear) or isinstance(m, VILinearMultivariateNormal) ) ) log_weights = -pseudo_nll + sampled_nkl weights = log_weights.softmax(0) test_probs = ( ( test_data_logits.softmax(-1) .mul(weights.unsqueeze(-1).unsqueeze(-1)) .sum(0) ) if correction else test_data_logits.softmax(-1).mean(0) ) corrects += test_probs.argmax(-1).float().eq(yt).float().sum() total += yt.size(0) test_nll += -self.distr_fn(probs=test_probs).log_prob(yt).sum() iw_entropy = ( -weights[weights > 0].log().mul(weights[weights > 0]).sum() if self.compute_weights_entropy else None ) # entropy of the importance weighting distribution ness = ( weights.sum().square() / weights.square().sum() / weights.shape[0] ) # normalized effective sample size vs = self.f(self.v, 0) v_entropy = ( vs.sum().square() / vs.square().sum() / self.num_pseudo # normalize entropy with coreset size if self.compute_weights_entropy else None ) return ( corrects / float(total), test_nll / float(total), iw_entropy, ness, v_entropy, ) def weight_reset(self): r""" Reset variational parameters to initialization """ for layer in self.model.modules(): if ( isinstance(layer, VILinear) or isinstance(layer, VILinearMultivariateNormal) ) and hasattr(layer, "reset_parameters_variational"): layer.reset_parameters_variational() elif ( isinstance(layer, nn.Conv2d) or ( isinstance(layer, VILinear) or isinstance(layer, VILinearMultivariateNormal) ) and hasattr(layer, "reset_parameters") ): layer.reset_parameters() def pred_on_grid( self, n_test_per_dim=250, correction=True, **kwargs, ): r""" Predictions over a 2-d grid for visualization of predictive posterior on 2-d synthetic datasets """ _x0_test = torch.linspace(-3, 4, n_test_per_dim) _x1_test = torch.linspace(-2, 3, n_test_per_dim) x_test = torch.stack(torch.meshgrid(_x0_test, _x1_test), dim=-1).to(self.device) with torch.no_grad(): all_data = torch.cat((self.u, x_test.view(-1, 2))) all_logits = self.model(all_data).squeeze(-1) pseudo_nll = ( ( self.distr_fn(logits=all_logits[:, : self.num_pseudo]) .log_prob(self.z) .matmul(self.N * self.f(self.v, 0)) ) if self.num_pseudo > 0 else 0.0 ) grid_data_logits = all_logits[:, self.num_pseudo :] sampled_nkl = sum( m.sampled_nkl() for m in self.model.modules() if ( isinstance(m, VILinear) or isinstance(m, VILinearMultivariateNormal) ) ) log_weights = -pseudo_nll + sampled_nkl weights = log_weights.softmax(0) grid_probs = ( ( grid_data_logits.softmax(-1) .mul(weights.unsqueeze(-1).unsqueeze(-1)) .sum(0) ) if correction else grid_data_logits.softmax(-1).mean(0) ) return grid_probs def prune_coreset( self, to_size, lr0v=1e-3, lr0net=1e-4, ): # designed to work only for the fixed u methods r""" Prune coreset to a given smaller size """ self.num_pseudo = to_size keep_v = torch.multinomial(self.f(self.v, 0), to_size, replacement=False) # torch.topk(self.v, to_size) self.v = torch.zeros_like(self.v[keep_v]).clone().detach().requires_grad_(True) self.optim_v = torch.optim.Adam([self.v], lr0v) self.u = torch.index_select(self.u, 0, keep_v) self.z = torch.index_select(self.z, 0, keep_v) self.optim_net = torch.optim.Adam(list(self.model.parameters()), lr0net) def increment_coreset( self, to_size, lr0v=1e-3, lr0u=1e-3, lr0net=1e-4, variance=1., # variance for random initialization of coreset for new class new_class=2, increment_idx=1, ): r""" Increment coreset to a given larger size """ self.num_pseudo, num_extra_points = to_size, to_size - len(self.v) extra_weights = torch.ones(num_extra_points, device=self.device) self.v = torch.cat(( self.v, 1. / (len(self.v) + num_extra_points) * self.v.sum() * extra_weights )).detach().requires_grad_(True) self.optim_v = torch.optim.Adam([self.v], lr0v) (new_us, new_zs) = ( ((compute_empirical_mean(self.train_loader) + variance * torch.randn(num_extra_points, self.D)).clone(), new_class * torch.ones(num_extra_points)) if self.init_args == "random" else self.incremental_train_datasets[increment_idx][torch.randperm(len(self.incremental_train_datasets[increment_idx]))[:num_extra_points]]) self.u, self.z = torch.cat((self.u, new_us)).detach().requires_grad_(True), torch.cat((self.z, new_zs)) self.optim_u = torch.optim.Adam([self.u], lr0u) self.optim_net = torch.optim.Adam(list(self.model.parameters()), lr0net) class PSVILearnV(PSVI): r""" PSVI - with learnable v on a simplex (with constant sum constraint) """ def __init__(self, learn_v=True, parameterised=True, **kwargs): super().__init__(**kwargs) self.learn_v, self.parameterised = learn_v, parameterised with torch.no_grad(): self.v = torch.zeros(self.num_pseudo, device=self.device) self.v.requires_grad_( True ) # initialize learnable weights of coreset pseudodata to uniform self.f = ( torch.softmax ) # transform v via softmax to keep the sum over the pseudodata fixed class PSVI_No_Rescaling(PSVI): r""" PSVI - with no fixed or learnable coefficients on coreset datapoints whatsoever """ def __init__(self, **kwargs): super().__init__(**kwargs) self.v *= ( 1.0 / self.N ) # we remove log-likelihood rescaling dependency on the true dataset size N class PSVIFreeV(PSVI): r""" PSVI - with learnable v (subject only to non-negativity constraints) """ def __init__(self, learn_v=True, **kwargs): super().__init__(**kwargs) self.learn_v = True self.v.requires_grad_(True) class PSVI_Ablated(PSVILearnV): r""" PSVI - with ablated importance sampling from coreset variational posterior """ def __init__(self, **kwargs): super().__init__(**kwargs) def psvi_elbo(self, xbatch, ybatch, model=None, params=None, hyperopt=False): r""" Ablated PSVI objective computation """ Nx = xbatch.shape[0] logits = model(xbatch) if not hyperopt else model(xbatch, params=params) nlls = -self.distr_fn(logits=logits.squeeze(-1)).log_prob(ybatch) data_nll = self.N / Nx * nlls.sum(-1) # multi-sample training sampled_nkl = sum( m.sampled_nkl() for m in model.modules() if isinstance(m, VILinear) ) return data_nll.mean() - sampled_nkl.mean() class PSVI_No_IW(PSVI_Ablated): r""" PSVI - with single-sample training / multi-sample testing """ def __init__(self, **kwargs): super().__init__(**kwargs) self.mc_samples = 1 def evaluate( self, correction=True, mc_samples_eval=5, mc_samples_train=1, **kwargs, ): r""" Compute predictive metrics """ with torch.no_grad(): self.mc_samples = mc_samples_eval set_mc_samples( self.model, self.mc_samples ) # set to multi-sample for testing test_acc, test_nll, iw_entropy, ness, v_entropy = super().evaluate( correction=True, **kwargs, ) self.mc_samples = 1 set_mc_samples( self.model, mc_samples_train ) # set to single-sample for training return test_acc, test_nll, iw_entropy, ness, v_entropy def pred_on_grid( self, correction=True, n_test_per_dim=250, mc_samples_eval=5, mc_samples_train=1, **kwargs, ): r""" Predictions over a 2-d grid for visualization of predictive posterior on 2-d synthetic datasets """ # TODO: fix for correction via importance weighting with torch.no_grad(): self.mc_samples = mc_samples_eval set_mc_samples( self.model, self.mc_samples ) # set to multi-sample for testing test_probs = super().pred_on_grid( correction=correction, n_test_per_dim=n_test_per_dim, **kwargs, ) self.mc_samples = mc_samples_train set_mc_samples( self.model, mc_samples_train ) # set to single-sample for training return test_probs class PSVIAV(PSVILearnV): r""" PSVI subclass with - learnable coreset point weights on a simplex, - learnable rescaling of total coreset evidence """ def __init__(self, learn_v=True, **kwargs): super().__init__(**kwargs) self.alpha = torch.tensor([0.0], device=self.device) self.alpha.requires_grad_(True) self.f = lambda *x: ( torch.exp(self.alpha) * torch.softmax(x[0], x[1]) ) # transform v via softmax to keep the sum over the pseudodata fixed and multiply by a learnable non-negative coefficient self.optim_alpha = torch.optim.Adam([self.alpha], self.lr0alpha) self.results["alpha"] = [] def evaluate(self, **kwargs): self.results["alpha"].append( self.alpha.clone() .cpu() .detach() .numpy() # store the extra variational parameter ) return super().evaluate(**kwargs) def increment_coreset(self, lr0alpha=1e-3, **kwargs): super().increment_coreset(**kwargs) self.optim_alpha = torch.optim.Adam([self.alpha], lr0alpha) def hyper_step( self, xbatch, ybatch, T=10, # iterations for inner problem solver inner_opt_class=DifferentiableAdam, # optimizer type for inner problem solver K=10, # iterations for linear system solver (in approximate implicit differentiation methods) linsys_lr=1e-1, # lr for the SGD optimizer used to solve the linear system on the Jacobian-vector products hypergrad_approx="CG_normaleq", **kwargs, ): T = self.inner_it inner_opt_kwargs = {"step_size": self.optim_net.param_groups[0]["lr"]} fmodel = monkeypatch(self.model, copy_initial_weights=True) self.optim_u.zero_grad() self.optim_v.zero_grad() self.optim_alpha.zero_grad() if self.optim_z: raise NotImplementedError def inner_loop(hparams, params, optim, n_steps, create_graph=False): params_history = [optim.get_opt_params(params)] for _ in range(n_steps): params_history.append( optim(params_history[-1], hparams, create_graph=create_graph) ) return params_history def get_inner_opt(train_loss): return inner_opt_class(train_loss, **inner_opt_kwargs) def inner_loss_function(p, hp, hyperopt=True): self.u, self.v, self.alpha = hp[0], hp[1], hp[2] return self.inner_elbo(model=fmodel, params=p, hyperopt=hyperopt) def outer_loss_function(p, hp): self.u, self.v, self.alpha = hp[0], hp[1], hp[2] return self.psvi_elbo(xbatch, ybatch, model=fmodel, params=p, hyperopt=True) inner_opt = get_inner_opt(inner_loss_function) params = [p.detach().clone().requires_grad_(True) for p in fmodel.parameters()] params_history = inner_loop( [self.u] + [self.v] + [self.alpha], params, inner_opt, T, ) last_param = params_history[-1][: len(params)] linear_opt = GradientDescent( loss_f=inner_loss_function, step_size=linsys_lr ) # GradientDescent(loss_f=inner_loss_function, step_size=linsys_lr) if hypergrad_approx == "fixed_point": # fixed-point AID fixed_point( last_param, [self.u] + [self.v] + [self.alpha], K=K, fp_map=linear_opt, outer_loss=outer_loss_function, stochastic=True, ) elif hypergrad_approx == "CG_normaleq": # CG on normal equations AID CG_normaleq( last_param, [self.u] + [self.v] + [self.alpha], K=K, fp_map=linear_opt, outer_loss=outer_loss_function, set_grad=True, ) self.optim_u.step() if self.learn_v: self.optim_v.step() self.optim_alpha.step() ll = outer_loss_function(last_param, [self.u] + [self.v] + [self.alpha]) nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(last_param), self.model.parameters(), ) return ll.item() def nested_step(self, xbatch, ybatch): self.optim_u.zero_grad() self.optim_net.zero_grad() self.optim_alpha.zero_grad() if self.learn_v: self.optim_v.zero_grad() if self.learn_z: self.optim_z.zero_grad() with innerloop_ctx(self.model, self.optim_net) as (fmodel, diffopt): for in_it in range(self.inner_it): mfvi_loss = self.inner_elbo(model=fmodel) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) diffopt.step(mfvi_loss) psvi_loss = self.psvi_elbo(xbatch, ybatch, model=fmodel) with torch.no_grad(): if self.register_elbos: self.elbos.append((0, -psvi_loss.item())) psvi_loss.backward() self.optim_u.step() if self.learn_v: self.optim_v.step() self.optim_alpha.step() if self.learn_z: self.optim_z.step() if self.scheduler_optim_net: self.scheduler_optim_net.step() nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(list(fmodel.parameters())), self.model.parameters(), ) return psvi_loss class PSVIFixedU(PSVILearnV): r""" PSVI subclass - with fixed coreset point locations """ def __init__(self, **kwargs): super().__init__(**kwargs) def nested_step(self, xbatch, ybatch): self.u.requires_grad_(False) self.optim_net.zero_grad() if self.learn_v: self.optim_v.zero_grad() with innerloop_ctx(self.model, self.optim_net) as (fmodel, diffopt): for in_it in range(self.inner_it): mfvi_loss = self.inner_elbo(model=fmodel) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) diffopt.step(mfvi_loss) psvi_loss = self.psvi_elbo(xbatch, ybatch, model=fmodel) with torch.no_grad(): if self.register_elbos: self.elbos.append((0, -psvi_loss.item())) psvi_loss.backward() if self.learn_v: self.optim_v.step() if self.scheduler_optim_net: self.scheduler_optim_net.step() nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(list(fmodel.parameters())), self.model.parameters(), ) return psvi_loss def hyper_step( self, xbatch, ybatch, T=20, # iterations for inner problem solver inner_opt_class=DifferentiableAdam, # optimizer type for inner problem solver K=20, # iterations for linear system solver (in approximate implicit differentiation methods) linsys_lr=1e-3, # lr for the SGD optimizer used to solve the linear system on the Jacobian-vector products hypergrad_approx="CG_normaleq", **kwargs, ): self.u.requires_grad_(False) T = self.inner_it inner_opt_kwargs = {"step_size": self.optim_net.param_groups[0]["lr"]} fmodel = monkeypatch(self.model, copy_initial_weights=True) if self.learn_v: self.optim_v.zero_grad() def inner_loop(hparams, params, optim, n_steps, create_graph=False): params_history = [optim.get_opt_params(params)] for _ in range(n_steps): params_history.append( optim(params_history[-1], hparams, create_graph=create_graph) ) return params_history def get_inner_opt(train_loss): return inner_opt_class(train_loss, **inner_opt_kwargs) def inner_loss_function(p, hp, hyperopt=True): if self.learn_v: self.v = hp[0] else: pass return self.inner_elbo(model=fmodel, params=p, hyperopt=hyperopt) def outer_loss_function(p, hp): if self.learn_v: self.v = hp[0] else: pass return self.psvi_elbo(xbatch, ybatch, model=fmodel, params=p, hyperopt=True) inner_opt = get_inner_opt(inner_loss_function) params = [p.detach().clone().requires_grad_(True) for p in fmodel.parameters()] params_history = inner_loop( [self.v] if self.learn_v else None, params, inner_opt, T, ) last_param = params_history[-1][: len(params)] fp_map = DifferentiableAdam( loss_f=inner_loss_function, step_size=linsys_lr ) # GradientDescent(loss_f=inner_loss_function, step_size=linsys_lr) if hypergrad_approx == "fixed_point": # fixed-point AID fixed_point( last_param, [self.v] if self.learn_v else None, K=K, fp_map=fp_map, outer_loss=outer_loss_function, stochastic=True, ) elif hypergrad_approx == "CG_normaleq": # CG on normal equations AID CG_normaleq( last_param, [self.v] if self.learn_v else None, K=K, fp_map=fp_map, outer_loss=outer_loss_function, set_grad=True, ) if self.learn_v: self.optim_v.step() ll = outer_loss_function(last_param, [self.v]) if self.scheduler_optim_net: self.scheduler_optim_net.step() nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(last_param), self.model.parameters(), ) return ll.item() class PSVIAFixedU(PSVILearnV): r""" PSVI subclass with - fixed coreset point locations - learnable coreset weights on a simplex - learnable rescaling of total coreset evidence """ def __init__(self, learn_v=True, **kwargs): super().__init__(**kwargs) self.alpha = torch.tensor([0.0], device=self.device) self.alpha.requires_grad_(True) self.f = lambda *x: ( torch.exp(self.alpha) * torch.softmax(x[0], x[1]) ) # transform v via softmax to keep the sum over the pseudodata fixed and multiply by a learnable non-negative coefficient self.optim_alpha = torch.optim.Adam([self.alpha], self.lr0alpha) self.results["alpha"] = [] def evaluate(self, **kwargs): self.results["alpha"].append( self.alpha.clone() .cpu() .detach() .numpy() # store the extra variational parameter ) return super().evaluate(**kwargs) def hyper_step( self, xbatch, ybatch, T=5, # iterations for inner problem solver inner_opt_class=DifferentiableAdam, # optimizer type for inner problem solver K=5, # iterations for linear system solver (in approximate implicit differentiation methods) linsys_lr=1e-1, # lr for the SGD optimizer used to solve the linear system on the Jacobian-vector products hypergrad_approx="CG_normaleq", **kwargs, ): T = self.inner_it inner_opt_kwargs = {"step_size": self.optim_net.param_groups[0]["lr"]} fmodel = monkeypatch(self.model, copy_initial_weights=True) self.optim_v.zero_grad() self.optim_alpha.zero_grad() self.u.requires_grad_(False) def inner_loop(hparams, params, optim, n_steps, create_graph=False): params_history = [optim.get_opt_params(params)] for _ in range(n_steps): params_history.append( optim(params_history[-1], hparams, create_graph=create_graph) ) return params_history def get_inner_opt(train_loss): return inner_opt_class(train_loss, **inner_opt_kwargs) def inner_loss_function(p, hp, hyperopt=True): self.v, self.alpha = hp[0], hp[1] return self.inner_elbo(model=fmodel, params=p, hyperopt=hyperopt) def outer_loss_function(p, hp): self.v, self.alpha = hp[0], hp[1] return self.psvi_elbo(xbatch, ybatch, model=fmodel, params=p, hyperopt=True) inner_opt = get_inner_opt(inner_loss_function) params = [p.detach().clone().requires_grad_(True) for p in fmodel.parameters()] params_history = inner_loop( [self.v] + [self.alpha], params, inner_opt, T, ) last_param = params_history[-1][: len(params)] linear_opt = GradientDescent(loss_f=inner_loss_function, step_size=linsys_lr) if hypergrad_approx == "fixed_point": # fixed-point AID fixed_point( last_param, [self.v] + [self.alpha], K=K, fp_map=linear_opt, outer_loss=outer_loss_function, stochastic=True, ) elif hypergrad_approx == "CG_normaleq": # CG on normal equations AID CG_normaleq( last_param, [self.v] + [self.alpha], K=K, fp_map=linear_opt, outer_loss=outer_loss_function, set_grad=True, ) if self.learn_v: self.optim_v.step() self.optim_alpha.step() ll = outer_loss_function(last_param, [self.v] + [self.alpha]) nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(last_param), self.model.parameters(), ) return ll.item() def nested_step(self, xbatch, ybatch): self.optim_net.zero_grad() self.optim_alpha.zero_grad() if self.learn_v: self.optim_v.zero_grad() self.u.requires_grad_(False) with innerloop_ctx(self.model, self.optim_net) as (fmodel, diffopt): for in_it in range(self.inner_it): mfvi_loss = self.inner_elbo(model=fmodel) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) diffopt.step(mfvi_loss) psvi_loss = self.psvi_elbo(xbatch, ybatch, model=fmodel) with torch.no_grad(): if self.register_elbos: self.elbos.append((0, -psvi_loss.item())) psvi_loss.backward() if self.learn_v: self.optim_v.step() self.optim_alpha.step() if self.scheduler_optim_net: self.scheduler_optim_net.step() nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(list(fmodel.parameters())), self.model.parameters(), ) return psvi_loss ## PSVI subclass supporting regression class PSVI_regressor(PSVI): def __init__( self, u=None, # pseudo x-coordinates z=None, # pseudo y-coordinates train_dataset=None, # true training data val_dataset=None, test_dataset=None, # test data y_mean=None, y_std=None, N=None, # size of training data D=None, # dimensionality of training data optim=None, # joint variational model/pseudodata optimizer optim_u=None, # optimizer for pseudodata optim_net=None, # optimizer for variational model parameters optim_v=None, # optimizer for log-likelihood rescaling vector optim_z=None, # optimizer for outputs on distilled data register_elbos=False, # register values of objectives over inference num_pseudo=None, # number of pseudodata seed=0, # random seed for instantiation of the method (for reproducibility) compute_weights_entropy=True, # compute the entropy of weights distribution used in importance sampling mc_samples=None, # number of MC samples for computation of variational objectives and predictions on unseen data learn_v=False, # boolean indicating if the v vector is learnable f=lambda *x: x[0], # transformation applied on the v vector dnm=None, # dataset name nc=1, # dimension of output space init_dataset=None, # populated when picking initializations from a disturbed version of the original datapoints parameterised=False, learn_z=True, # optimize in the label space lr0alpha=1e-3, tau=0.1, logistic_regression=False, **kwargs, ): np.random.seed(seed), torch.manual_seed(seed) print(f'device id {device_id} ') self.device = torch.device( f"cuda:{device_id}" if device_id else ("cuda" if torch.cuda.is_available() else "cpu")) self.u, self.z = u, z self.train_dataset, self.val_dataset, self.test_dataset = ( train_dataset, val_dataset, test_dataset, ) self.logistic_regression = logistic_regression self.N, self.D, self.dnm = N, D, dnm self.nc = nc # dimensionality of output self.distr_fn = partial(gaussian_fn, scale=1.0 / np.sqrt(tau)) (self.optim, self.optim_u, self.optim_net, self.optim_v, self.optim_z,) = ( optim, optim_u, optim_net, optim_v, optim_z, ) self.register_elbos, self.compute_weights_entropy = ( register_elbos, compute_weights_entropy, ) if self.register_elbos: self.elbos = [] self.num_pseudo, self.mc_samples = num_pseudo, mc_samples self.learn_v, self.learn_z = ( learn_v, learn_z, ) with torch.no_grad(): self.v = ( 1.0 / self.num_pseudo * torch.ones(self.num_pseudo, device=self.device) ) self.v.requires_grad_( self.learn_v ) # initialize weights of coreset pseudodata to uniform and set to differentiable or not according to attribute learn_v self.f, self.parameterised = f, parameterised self.init_dataset = init_dataset self.results = {} self.lr0alpha = lr0alpha self.y_mean, self.y_std = y_mean, y_std ### Initialization methods for the pseudodata def pseudo_subsample_init(self): sample_idcs = random.sample(range(len(self.train_dataset)), self.num_pseudo) subset_train_dataset = torch.utils.data.Subset(self.train_dataset, sample_idcs) self.cs_support = DataLoader( subset_train_dataset, batch_size=self.num_pseudo, # pin_memory=True, shuffle=False, ) with torch.no_grad(): self.u, self.z = next(iter(self.cs_support)) self.u, self.z = self.u.to(self.device), self.z.to(self.device) self.u.requires_grad_(True), self.z.requires_grad_(True) ## PSVI objective computation [negative PSVI-ELBO] def psvi_elbo(self, xbatch, ybatch, model=None, params=None, hyperopt=False): assert self.mc_samples > 1 Nu, Nx = self.u.shape[0], xbatch.shape[0] all_xs, all_ys = torch.cat((self.u, xbatch)), torch.cat((self.z, ybatch)) all_nlls = -self.distr_fn(model(all_xs).squeeze(-1)).log_prob(all_ys.squeeze()) pseudo_nll = ( all_nlls[:, :Nu].matmul(self.N * self.f(self.v, 0)) if Nu > 0 else 0.0 ) data_nll = self.N / Nx * all_nlls[:, Nu:].sum(-1) sampled_nkl = sum( m.sampled_nkl() for m in model.modules() if isinstance(m, VILinear) ) log_weights = -pseudo_nll + sampled_nkl weights = log_weights.softmax(0) return weights.mul(data_nll - pseudo_nll).sum() - log_weights.mean() ## Inner VI objective computation [negative ELBO] def inner_elbo(self, model=None, params=None, hyperopt=False): pseudodata_nll = ( -self.distr_fn(model(self.u).squeeze(-1)).log_prob(self.z.squeeze()) ).matmul(self.N * self.f(self.v, 0)) kl = sum(m.kl() for m in model.modules() if isinstance(m, VILinear)) return pseudodata_nll.sum() + kl if self.u.shape[0] > 0 else kl ## Optimization methods def nested_step(self, xbatch, ybatch): self.optim_u.zero_grad() self.optim_net.zero_grad() if self.learn_v: self.optim_v.zero_grad() if self.learn_z: self.optim_z.zero_grad() with innerloop_ctx(self.model, self.optim_net) as (fmodel, diffopt): for in_it in range(self.inner_it): mfvi_loss = self.inner_elbo(model=fmodel) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) diffopt.step(mfvi_loss) psvi_loss = self.psvi_elbo(xbatch, ybatch, model=fmodel) with torch.no_grad(): if self.register_elbos: self.elbos.append((0, -psvi_loss.item())) psvi_loss.backward() self.optim_u.step() if self.learn_v: self.optim_v.step() if not self.parameterised: with torch.no_grad(): torch.clamp_( self.v, min=0.0 ) # clamp weights of coreset data point to be non-negative if self.learn_z: self.optim_z.step() nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(list(fmodel.parameters())), self.model.parameters(), ) return psvi_loss ## Execution of inference def run_psvi( self, init_args="subsample", trainer="nested", n_layers=1, n_hidden=None, architecture=None, log_every=10, inner_it=10, data_minibatch=None, lr0net=1e-3, lr0u=1e-3, lr0v=1e-2, lr0z=1e-2, init_sd=1e-3, num_epochs=1000, log_pseudodata=False, **kwargs, ): # experiment-specific hyperparameters self.init_args = init_args self.trainer = trainer self.architecture, self.n_hidden, self.n_layers, self.init_sd = ( architecture, n_hidden, n_layers, init_sd, ) self.log_every, self.log_pseudodata = log_every, log_pseudodata self.data_minibatch = data_minibatch self.inner_it, self.num_epochs = inner_it, num_epochs self.set_up_model() # initialization of results data structures ( lls_psvi, rmses_psvi, core_idcs_psvi, iws_entropy, nesses, vs_entropy, us, zs, vs, times, ) = ([], [], [], [], [], [], [], [], [], [0]) # load the training and test data on dataloaders self.train_loader = DataLoader( self.train_dataset, batch_size=self.data_minibatch, pin_memory=True, shuffle=True, ) self.val_loader = DataLoader( self.val_dataset, batch_size=self.data_minibatch, pin_memory=True, shuffle=False, ) self.test_loader = DataLoader( self.test_dataset, batch_size=self.data_minibatch, pin_memory=True, shuffle=False, ) # initialization of pseudodata pseudodata_init = { "subsample": self.pseudo_subsample_init, } pseudodata_init[self.init_args]() # optimization method self.optim_net, self.optim_u = ( torch.optim.Adam(list(self.model.parameters()), lr0net), torch.optim.Adam([self.u], lr0u), ) if self.learn_v: self.optim_v = torch.optim.Adam([self.v], lr0v) if self.learn_z: self.optim_z = torch.optim.Adam([self.z], lr0z) optimizers = { "nested": self.nested_step, } psvi_step = optimizers[self.trainer] t_start = time.time() # training loop for it in tqdm(range(self.num_epochs)): xbatch, ybatch = next(iter(self.train_loader)) xbatch, ybatch = xbatch.to(self.device, non_blocking=True), ybatch.to( self.device, non_blocking=True ) # evaluation if it % self.log_every == 0: test_rmse, test_ll = self.evaluate(**kwargs) with torch.no_grad(): lls_psvi.append(test_ll.item()) rmses_psvi.append(test_rmse.item()) core_idcs_psvi.append(self.num_pseudo) times.append(times[-1] + time.time() - t_start) vs.append((self.f(self.v, 0)).clone().cpu().detach().numpy()) if self.log_pseudodata: us.append(self.u.clone().cpu().detach().numpy()) zs.append(self.z.clone().cpu().detach().numpy()) # take a single optimization step outer_loss = psvi_step(xbatch, ybatch) if it % self.log_every == 0: print( f" \n\n\n Predictive rmse {test_rmse.item():.2f} | pred ll {test_ll.item():.2f}| outer loss {outer_loss:.0f}" ) # store results self.results["rmses"] = rmses_psvi self.results["lls"] = lls_psvi self.results["csizes"] = core_idcs_psvi self.results["times"] = times[1:] self.results["went"] = iws_entropy self.results["ness"] = nesses self.results["vent"] = vs_entropy self.results["vs"] = vs print("rmses : ", ["%.4f" % el for el in self.results["rmses"]]) print("lls : ", ["%.4f" % el for el in self.results["lls"]]) return self.results ## Compute predictive metrics def evaluate( self, correction=True, **kwargs, ): def revert_norm(y_pred): return y_pred * self.y_std + self.y_mean assert self.mc_samples > 1 total, test_ll, rmses_unnorm = 0, 0, 0 for xt, yt in self.test_loader: xt, yt = ( xt.to(self.device, non_blocking=True), yt.to(self.device, non_blocking=True).squeeze(), ) with torch.no_grad(): all_data = torch.cat((self.u, xt)).squeeze(-1) model_out = self.model(all_data).squeeze(-1) pseudo_out = model_out[:, : self.num_pseudo] pseudo_ll = ( self.distr_fn(pseudo_out) .log_prob(self.z.squeeze()) .mul(self.N * self.f(self.v, 0)) if self.num_pseudo > 0 else 0.0 ).sum() test_data_out = model_out[:, self.num_pseudo :] sampled_nkl = sum( m.sampled_nkl() for m in self.model.modules() if isinstance(m, VILinear) ) log_weights = -pseudo_ll + sampled_nkl weights = log_weights.softmax(0) y_pred = torch.matmul(revert_norm(test_data_out).T, weights) rmses_unnorm += (y_pred - yt).square().sum() total += yt.size(0) test_ll += self.distr_fn(y_pred).log_prob(yt.squeeze()).sum() return ( (rmses_unnorm / float(total)).sqrt(), test_ll / float(total), ) ## PSVI with learnable v on a simplex (with constant sum constraint) class PSVILearnV_regressor(PSVI_regressor): def __init__(self, learn_v=True, parameterised=True, **kwargs): super().__init__(**kwargs) self.learn_v, self.parameterised = learn_v, parameterised with torch.no_grad(): self.v = torch.zeros(self.num_pseudo, device=self.device) self.v.requires_grad_( True ) # initialize learnable weights of coreset pseudodata to uniform self.f = ( torch.softmax ) # transform v via softmax to keep the sum over the pseudodata fixed ## PSVI with learnable v on a simplex and learnable rescaling on total coreset likelihood class PSVIAV_regressor(PSVILearnV_regressor): def __init__(self, learn_v=True, **kwargs): super().__init__(**kwargs) self.alpha = torch.tensor([0.0], device=self.device) self.alpha.requires_grad_(True) self.f = lambda *x: ( torch.exp(self.alpha) * torch.softmax(x[0], x[1]) ) # transform v via softmax to keep the sum over the pseudodata fixed and multiply by a learnable non-negative coefficient self.optim_alpha = torch.optim.Adam([self.alpha], self.lr0alpha) self.results["alpha"] = [] def evaluate(self, **kwargs): self.results["alpha"].append( self.alpha.clone() .cpu() .detach() .numpy() # store the extra variational parameter ) return super().evaluate(**kwargs) def nested_step(self, xbatch, ybatch): self.optim_u.zero_grad() self.optim_net.zero_grad() self.optim_alpha.zero_grad() if self.learn_v: self.optim_v.zero_grad() if self.learn_z: self.optim_z.zero_grad() with innerloop_ctx(self.model, self.optim_net) as (fmodel, diffopt): for in_it in range(self.inner_it): mfvi_loss = self.inner_elbo(model=fmodel) with torch.no_grad(): if self.register_elbos and in_it % self.log_every == 0: self.elbos.append((1, -mfvi_loss.item())) diffopt.step(mfvi_loss) psvi_loss = self.psvi_elbo(xbatch, ybatch, model=fmodel) with torch.no_grad(): if self.register_elbos: self.elbos.append((0, -psvi_loss.item())) psvi_loss.backward() self.optim_u.step() if self.learn_v: self.optim_v.step() self.optim_alpha.step() if self.learn_z: self.optim_z.step() if self.scheduler_optim_net: self.scheduler_optim_net.step() nn.utils.vector_to_parameters( nn.utils.parameters_to_vector(list(fmodel.parameters())), self.model.parameters(), ) return psvi_loss
Blackbox-Coresets-VI-main
psvi/inference/psvi_classes.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.distributions as dist from psvi.models.neural_net import VILinear from torch.utils.data import DataLoader def pseudo_subsample_init(x, y, num_pseudo=20, nc=2, seed=0): r""" Initialize on random subsets from each class with approximately equal """ torch.manual_seed(seed) N, _ = x.shape cnt = 0 u, z = torch.Tensor([]), torch.Tensor([]) for c in range(nc): idx_c, pts_with_c = ( torch.arange(N)[y == c], num_pseudo // nc if c < nc - 1 else num_pseudo - cnt, ) u, z = torch.cat( (u, x[idx_c[torch.randperm(len(idx_c))[:pts_with_c]]]) ), torch.cat((z, c * torch.ones(pts_with_c))) cnt += num_pseudo // nc return u.requires_grad_(True), z def pseudo_rand_init(x, y, num_pseudo=20, nc=2, seed=0, variance=0.1): r""" Initialize on noisy means of the observed datapoints and random labels equally split among classes """ torch.manual_seed(seed) _, D = x.shape u = ( (x[:, :].mean() + variance * torch.randn(num_pseudo, D)) .clone() .requires_grad_(True) ) z = torch.Tensor([]) for c in range(nc): z = torch.cat( ( z, c * torch.ones( num_pseudo // nc if c < nc - 1 else num_pseudo - (nc - 1) * (num_pseudo // nc) ), ) ) return u, z r""" Model specific computations for psvi variational objective used to estimate the coreset posterior over black-box sparsevi construction """ def elbo(net, u, z, w): r""" ELBO computed on (u,z): variational objective for posterior approximation using only the coreset datapoints """ pseudo_nll = -dist.Bernoulli(logits=net(u).squeeze(-1)).log_prob(z).matmul(w) sampled_nkl = sum(m.sampled_nkl() for m in net.modules() if isinstance(m, VILinear)) return (pseudo_nll.sum() - sampled_nkl).sum() def sparsevi_psvi_elbo(net, x, u, y, z, w, N): # variational objective for r""" PSVI-ELBO: variational objective for true data conditioned on coreset data (called in outer optimization of the sparse-bbvi construction) """ Nu, Nx = u.shape[0], x.shape[0] all_data, all_labels = torch.cat((u, x)), torch.cat((z, y)) all_nlls = -dist.Bernoulli(logits=net(all_data).squeeze(-1)).log_prob(all_labels) pseudo_nll, data_nll = N / Nu * all_nlls[:, :Nu].matmul(w), all_nlls[:, Nu:].sum(-1) sampled_nkl = sum(m.sampled_nkl() for m in net.modules() if isinstance(m, VILinear)) log_weights = -pseudo_nll + sampled_nkl weights = log_weights.softmax(-1).squeeze() return weights.mul(N / Nx * data_nll - pseudo_nll).sum() - log_weights.mean() def forward_through_coreset(net, u, x, z, y, w): r""" Likelihood computations for coreset next datapoint selection step """ Nu = u.shape[0] with torch.no_grad(): all_data, all_labels = torch.cat((u, x)), torch.cat((z, y)) all_lls = dist.Bernoulli(logits=net(all_data).squeeze(-1)).log_prob(all_labels) core_ll, data_ll = all_lls[:, :Nu], all_lls[:, Nu:] sampled_nkl = sum( m.sampled_nkl() for m in net.modules() if isinstance(m, VILinear) ) log_weights = core_ll.matmul(w) + sampled_nkl weights = log_weights.softmax(-1).squeeze() return core_ll.T, data_ll.T, weights def predict_through_coreset(net, xt, x, y, w=None): r""" Importance-weight correction for predictions using the coreset posterior """ Ntest = xt.shape[0] with torch.no_grad(): all_data = torch.cat((xt, x)) all_logits = net(all_data).squeeze(-1) pnlls = -dist.Bernoulli(logits=all_logits[:, Ntest:]).log_prob(y) pseudo_nll = pnlls.matmul(w) if w is not None else pnlls.sum(-1) test_data_logits = all_logits[:, :Ntest] sampled_nkl = sum( m.sampled_nkl() for m in net.modules() if isinstance(m, VILinear) ) log_weights = -pseudo_nll + sampled_nkl weights = log_weights.softmax(-1).squeeze() return test_data_logits, weights def make_dataloader(data, minibatch, shuffle=True): r""" Create pytorch dataloader from given dataset and minibatch size """ return DataLoader(data, batch_size=minibatch, pin_memory=True, shuffle=shuffle) def compute_empirical_mean(dloader): r""" Compute the mean of the observed data distribution """ trainsum, nb_samples = 0., 0. # compute statistics of the training data for data, _ in dloader: batch_samples = data.size(0) data = data.view(batch_samples, data.size(1), -1) trainsum += data.mean(2).sum(0) # use with caution: might raise overflow for large datasets nb_samples += batch_samples return trainsum / nb_samples def pred_on_grid( model, n_test_per_dim=250, device=None, **kwargs, ): r""" Predictifons over a 2-d grid for visualization of predictive posterior on 2-d synthetic datasets """ _x0_test = torch.linspace(-3, 4, n_test_per_dim) _x1_test = torch.linspace(-2, 3, n_test_per_dim) x_test = torch.stack(torch.meshgrid(_x0_test, _x1_test), dim=-1).to(device) with torch.no_grad(): return model(x_test.view(-1, 2)).squeeze(-1).softmax(-1).mean(0)
Blackbox-Coresets-VI-main
psvi/inference/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. r""" Incremental variational coreset utilising the PSVI objective """ import time import numpy as np import torch import torch.distributions as dist import torch.nn as nn from psvi.inference.utils import ( elbo, forward_through_coreset, predict_through_coreset, sparsevi_psvi_elbo, ) from psvi.models.neural_net import make_fcnet, VILinear from tqdm import tqdm def run_sparsevi_with_bb_elbo( n_layers=1, logistic_regression=True, n_hidden=40, log_every=10, lr0=1e-3, register_elbos=False, seed=0, **kwargs, ): r""" Inremental variational coreset construction, with greedy selection step and coreset points weight vector optimization using our generalized ELBO """ saved_args = locals() print("saved_args is", saved_args) np.random.seed(seed), torch.manual_seed(seed) elbos = [] results = {} num_epochs, inner_it, outer_it = ( kwargs["num_epochs"], kwargs["inner_it"], kwargs["outer_it"], ) x, y, xt, yt, mc_samples, data_minibatch = ( kwargs["x"], kwargs["y"], kwargs["xt"], kwargs["yt"], kwargs["mc_samples"], kwargs["data_minibatch"], ) N, D = x.shape net = ( nn.Sequential( VILinear(D, 1, mc_samples=mc_samples), ) if logistic_regression else make_fcnet( D, n_hidden, 1, n_layers=n_layers, linear_class=VILinear, nonl_class=nn.ReLU, mc_samples=mc_samples, ) ) w = ( torch.zeros(N).clone().detach().requires_grad_(True) ) # coreset weights initialised to 0 nlls_sbbvi, accs_sbbvi, core_idcs_sbbvi = [], [], [] optim_net0 = torch.optim.Adam( list(net.parameters()), lr0 ) # optimizer for ELBO on coreset datapoints optim_w = torch.optim.Adam([w], lr0) # optimizer for PSVI-ELBO core_idcs = [] times = [0] t_start = time.time() # Grow the coreset for num_epochs iterations for it in tqdm(range(num_epochs)): # Evaluate coreset posterior if it % log_every == 0: with torch.no_grad(): test_data_logits, weights = predict_through_coreset(net, xt, x, y, w) test_probs = torch.clamp(weights @ (test_data_logits.sigmoid()), max=1) test_acc = test_probs.gt(0.5).float().eq(yt).float().mean() test_nll = -dist.Bernoulli(probs=test_probs).log_prob(yt).mean() nlls_sbbvi.append(test_nll.item()) accs_sbbvi.append(test_acc.item()) print(f"predictive accuracy: {(100*test_acc.item()):.2f}%") core_idcs_sbbvi.append(len(core_idcs)) times.append(times[-1] + time.time() - t_start) if kwargs["scatterplot_coreset"]: if it == num_epochs - 1: test_data_logits, weights = predict_through_coreset( net, kwargs["xgrid"], x, y, w ) test_probs = torch.clamp(weights @ (test_data_logits.sigmoid()), max=1) r = ( test_probs.reshape( ( int(np.sqrt(kwargs["xgrid"].shape[0])), int(np.sqrt(kwargs["xgrid"].shape[0])), ) ), xt, kwargs["plot_data"], kwargs["plot_preds"], x[w > 0], y[w > 0], ) kwargs["plot_classification_with_coreset"](*r, 1, "sparse bbvi") x_core, y_core = x[core_idcs, :], y[core_idcs] sub_idcs, sum_scaling = ( np.random.randint(x.shape[0], size=data_minibatch), x.shape[0] / data_minibatch, ) # sample minibatch when accessing full data and rescale corresponding log-likelihood # 1. Approximate current coreset posterior via minimizing the ELBO on the coreset support optim_net0.zero_grad() for in_it in range(inner_it): loss = elbo(net, x_core, y_core, w[core_idcs]) if register_elbos and in_it % log_every == 0: with torch.no_grad(): elbos.append((1, -loss.item())) loss.backward() optim_net0.step() with torch.no_grad(): # 2. Compute loglikelihoods for each sample using samples from the approximation to the coreset posterior ll_core, ll_data, weights = forward_through_coreset( net, x_core, x[sub_idcs, :], y_core, y[sub_idcs], w[core_idcs] ) cll_data, cll_core = ll_data - torch.einsum( "s, ns ->ns", weights, ll_data ), ll_core - torch.einsum("s, ms ->ms", weights, ll_core) # 3. Select point to attach to the coreset next via max correlation with residual error resid = sum_scaling * cll_data.sum(axis=0) - torch.einsum( "m, ms ->s", w[core_idcs], cll_core ) corrs = ( cll_data.matmul(resid) / torch.sqrt((cll_data**2).sum(axis=1)) / cll_data.shape[1] ) corecorrs = ( torch.abs(cll_core.matmul(resid)) / torch.sqrt((cll_core**2).sum(axis=1)) / cll_core.shape[1] if len(core_idcs) > 0 else None ) if corecorrs is None or corrs.max() > corecorrs.max(): pt_idx = sub_idcs[torch.argmax(torch.max(corrs))] core_idcs.append(pt_idx) if pt_idx not in core_idcs else None # 4. Sample for updated weights and take projected gradient descent steps on the weights x_core, y_core = x[core_idcs, :], y[core_idcs] sub_idcs, sum_scaling = ( np.random.randint(x.shape[0], size=data_minibatch), x.shape[0] / data_minibatch, ) # sample minibatch when accessing full data and rescale corresponding log-likelihood for out_it in range(outer_it): optim_w.zero_grad() loss_joint = sparsevi_psvi_elbo( net, x[sub_idcs, :], x_core, y[sub_idcs], y_core, w[core_idcs], N ) if register_elbos and out_it % log_every == 0: with torch.no_grad(): elbos.append((0, -loss_joint.item())) loss_joint.backward() optim_w.step() with torch.no_grad(): torch.clamp_(w, 0) # store results results["accs"] = accs_sbbvi results["nlls"] = nlls_sbbvi results["csizes"] = core_idcs_sbbvi results["times"] = times[1:] results["elbos"] = elbos return results
Blackbox-Coresets-VI-main
psvi/inference/sparsebbvi.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. # # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for making ``torch.nn.Module`` subclass instances stateless.""" import abc as _abc import typing as _typing import warnings as _warnings import weakref as _weakref from collections import OrderedDict as _OrderedDict from contextlib import contextmanager as _contextmanager import torch as _torch from . import utils as _utils # ============================================================================== # Helper functions and attributes for MonkeyPatch modules. # ============================================================================== _internal_attrs = { "_backend", "_parameters", "_buffers", "_backward_hooks", "_forward_hooks", "_forward_pre_hooks", "_state_dict_hooks", "_load_state_dict_pre_hooks", "_modules", } _BufferType = _typing.Dict[str, _typing.Optional[_torch.Tensor]] @_contextmanager def _modify_internally(fmodule): fmodule._being_modified_internally = True yield fmodule._being_modified_internally = False def _patched_parameters( self, recurse: bool = True, time: _typing.Optional[int] = None ) -> _typing.Iterable[_torch.Tensor]: r"""Returns an iterator over monkey patched module fast parameters. Args: recurse (bool): if True, then yields fast parameters of this module and all submodules. Otherwise, this *still* yields parameters of this module and all submodules, and raises a warning. This keyword exists only to satisfy API compatibility with ``torch.nn.Module.parameters``. time (int or None): if None, the most recent fast parameters are provided. The int provided stands for the number of steps since the module was created. *Note* that the step counter is incremented every time parameters are updated, so this may not align with number of training or evaluations steps. Yields: Parameter: module fast weights. """ if getattr(self, "_fast_params", None) is None: raise Exception( "Tried to get fast weights of a monkey patched module which does " "not encapsulate fast weights." ) if not recurse: _warnings.warn( "Calling parameters with recurse=False on a monkey patched module " "still returns all the fast weights of of nested patched modules." ) time = -1 if time is None else time if not self.track_higher_grads and time not in (-1, 0): raise ValueError( "The patched model is not tracking higher gradients. Only the " "latest parameters are available." ) return iter(self._fast_params[time]) class _MonkeyPatchBase(_abc.ABC, _torch.nn.Module): @_abc.abstractmethod def __init__(self) -> None: self._param_mapping: _typing.List[int] = [] self._being_modified_internally: bool = True self._track_higher_grads: bool = True def forward(self): raise NotImplementedError( "The monkey-patching logic has failed to override self.forward " "on the new module, or you tried calling forward on a patched " "version of a module which doesn't have forward (e.g. ModuleList)." ) def _expand_params( self, params: _typing.List[_torch.Tensor] ) -> _typing.List[_torch.Tensor]: expanded = [] for index in self._param_mapping: expanded.append(params[index]) return expanded @property def init_fast_params(self): if not self.track_higher_grads: raise Exception( "Cannot get initial parameters when not tracking higher " "gradients." ) return self._fast_params[0] @property def fast_params(self): return None if self._fast_params is None else self._fast_params[-1] @fast_params.setter def fast_params(self, value): value = list(value) if self._fast_params is None: self._fast_params = [] if self.track_higher_grads: self._fast_params.append(value) else: self._fast_params[0] = value @property def track_higher_grads(self): return self._track_higher_grads @track_higher_grads.setter def track_higher_grads(self, value): if not isinstance(value, bool): raise ValueError("Expected boolean argument. Got: {}.".format(type(value))) self._track_higher_grads = value def buffer_sync( module: _torch.nn.Module, fmodule: _MonkeyPatchBase, device: _typing.Optional[_torch.device] = None, ) -> None: r"""One off sync (copy) of buffers in ``fmodule`` with those from ``module``.""" for key, value in module._buffers.items(): if not _torch.is_tensor(value): fmodule._buffers[key] = value elif device is None: fmodule._buffers[key] = value.clone().detach() else: fmodule._buffers[key] = value.clone().detach().to(device) for name, child in module._modules.items(): if name in fmodule._modules: buffer_sync(child, fmodule._modules[name], device) else: raise KeyError( "Did not find expected submodule " "{} of monkey-patched module {}.".format(name, fmodule) ) # ============================================================================== # Helper class to use instead of actual torch.nn.Parameters when patching. # ============================================================================== class _ParameterPlaceholder: def __init__(self, name: str) -> None: self._param_name = name def __repr__(self) -> str: return 'Parameter placeholder ("{}")'.format(self._param_name) _ParameterPlaceholder.__name__ = "ParameterPlaceholder" _ParameterPlaceholder.__qualname__ = "ParameterPlaceholder" # ============================================================================== # Helper function for recursively patching submodules. # ============================================================================== def _make_functional( module: _torch.nn.Module, params_box: _typing.Sequence[_typing.Optional[_typing.List[_torch.Tensor]]], params_offset: int, root_patched: _typing.Optional[_MonkeyPatchBase] = None, ) -> _typing.Tuple[int, _MonkeyPatchBase, _typing.Type[_MonkeyPatchBase]]: if isinstance(module, _MonkeyPatchBase): raise ValueError( "Monkey-patching monkey-patched modules is untested uncharted " "territory, so we're going to assume it's done in error. If you " "are doing this intentionally and need this to be supported, " "contact the developers of this library." ) param_names = list( name for name in module._parameters.keys() if module._parameters[name] is not None ) _ModuleType: _typing.Type[_torch.nn.Module] = module.__class__ # type checking of next line disabled as mypy is iffy with dynamic types class MonkeyPatched(_ModuleType, _MonkeyPatchBase): # type: ignore _wrapped_name = type(module).__name__ def __init__(self, original_params, root) -> None: _torch.nn.Module.__init__(self) _MonkeyPatchBase.__init__(self) self._root_ref = _weakref.ref(root) if root else None self._fast_params = None self._param_names = param_names self._original_params = original_params # for pretty printing self._parameters = _OrderedDict( (name, _ParameterPlaceholder(name)) for name in self._param_names ) self._modules: _typing.Dict[str, _MonkeyPatchBase] = _OrderedDict() @property def direct_submodule_call(self): return params_box[0] is None @property def is_root(self): return self._root_ref is None @property def root(self): if self.is_root: return self else: return self._root_ref() def __setattr__(self, name, value): def remove_from(*dicts): for d in dicts: if name in d: del d[name] params = self.__dict__.get("_parameters") if params is not None and name in params: if not isinstance(value, _torch.Tensor): raise TypeError( "Require Tensor as fast weights. " "Got {}".format(_torch.typename(value)) ) if not self._being_modified_internally: # Additional behaviour for when fast weights are being # directly modified goes here: old_value = self._parameters[name] fast_params = self.root.fast_params[:] if not fast_params: raise Exception( "Cannot assign parameters to patched module which " "does not have implicit fast parameters." ) replacement_index = _utils._find_param_in_list( old_value, fast_params ) fast_params[replacement_index] = value self.update_params(fast_params) # Change parameters in place, usually during boxed_forward pass self._parameters[name] = value else: modules = self.__dict__.get("_modules") if isinstance(value, _torch.nn.Module): if modules is None: raise AttributeError( "cannot assign module before Module.__init__() " "call" ) remove_from(self.__dict__, self._parameters, self._buffers) modules[name] = value elif modules is not None and name in modules: if value is not None: raise TypeError( ( "cannot assign '{}' " "as child module '{}'" "(torch.nn.Module or None expected)" ).format(_torch.typename(value), name) ) modules[name] = value else: buffers = self.__dict__.get("_buffers") if buffers is not None and name in buffers: if value is not None and not isinstance(value, _torch.Tensor): raise TypeError( "cannot assign '{}' as buffer '{}' " "(torch.Tensor or None expected)".format( _torch.typename(value), name ) ) buffers[name] = value else: object.__setattr__(self, name, value) MonkeyPatched.__name__ = "InnerFunctional" + type(module).__name__ MonkeyPatched.__qualname__ = MonkeyPatched.__name__ fmodule = MonkeyPatched(module.parameters(), root=root_patched) # If a root module hasn't been defined yet, this fmodule is the root if not root_patched: root_patched = fmodule # use 1 as dummy list item since we are only counting num_params = len([1 for p in module._parameters.values() if p is not None]) # Copy over all attributes for name, attr in module.__dict__.items(): if name in _internal_attrs: continue setattr(fmodule, name, attr) # Deal with "None"-style params with _modify_internally(fmodule): for name, attr in module.__dict__["_parameters"].items(): if isinstance(attr, _torch.nn.Parameter): continue else: setattr(fmodule, name, attr) child_params_offset = params_offset + num_params for name, child in module._modules.items(): child_params_offset, fchild, _ = _make_functional( child, params_box, child_params_offset, root_patched ) fmodule._modules[name] = fchild setattr(fmodule, name, fchild) true_forward = type(module).forward def patched_forward(self, *args, params=None, **kwargs): if self.direct_submodule_call: # If submodule was called directly, run intialisation that happens # at top level call. If *full set of params* is provided here, it # will use those. If not, it will fall back on fast weights. # In the future, we should be able to support passing only the # submodule (+ children) weights here, but that's not simple. self.root._refill_params_box(params) with _modify_internally(self): for name, param in zip( self._param_names, params_box[0][params_offset : params_offset + num_params], ): setattr(self, name, param) # This snippet deals with torch.nn.{RNN,GRU,LSTM} if hasattr(self, "_flat_weights_names"): self._flat_weights = [ self._parameters[wn] for wn in self._flat_weights_names ] # Call true_forward after some checks with _warnings.catch_warnings(): # If running RNNs on GPU, surpress the warnings due to flattening # not happening here. Maybe we should raise a warning of our own? is_RNN = isinstance(module, _torch.nn.RNNBase) if is_RNN and _torch.cuda.is_available(): _warnings.simplefilter("ignore", category=UserWarning) return true_forward(self, *args, **kwargs) setattr(MonkeyPatched, "forward", patched_forward) def flatten_parameters(self): return # no-op # This (hopefully) avoids trouble on GPU with torch.nn.{RNN,GRU,LSTM} if hasattr(module, "flatten_parameters"): setattr(MonkeyPatched, "flatten_parameters", flatten_parameters) return child_params_offset, fmodule, type(fmodule) def _update_patched_params( fmodule: _MonkeyPatchBase, params_box: _typing.Sequence[_typing.List[_torch.Tensor]], params_offset: int, ) -> int: num_params = len([1 for p in fmodule._parameters.values() if p is not None]) child_params_offset = params_offset + num_params for name, child in fmodule._modules.items(): child_params_offset = _update_patched_params( child, params_box, child_params_offset ) with _modify_internally(fmodule): for name, param in zip( fmodule._param_names, params_box[0][params_offset : params_offset + num_params], ): setattr(fmodule, name, param) return child_params_offset # ============================================================================== # The main function which does the monkey patching. # ============================================================================== _EncapsulatorType = _typing.Optional[ _typing.Callable[[_MonkeyPatchBase, _torch.nn.Module], None] ] def make_functional( module: _torch.nn.Module, encapsulator: _EncapsulatorType = None ) -> _MonkeyPatchBase: r"""Returns a stateless version of an ``nn.Module`` instance.""" params_box = [None] _, fmodule, MonkeyPatched = _make_functional(module, params_box, 0) top_name = "Functional" + MonkeyPatched._wrapped_name MonkeyPatched.__name__ = MonkeyPatched.__qualname__ = top_name MonkeyPatched.boxed_forward = MonkeyPatched.forward param_mapping = _utils._get_param_mapping(module, [], []) setattr(fmodule, "_param_mapping", param_mapping) def _refill_params_box(self, params): if params is not None: self.fast_params = params # update view on latest fast params elif self.fast_params is None: raise ValueError( "params keyword must be provided if patched module not " "tracking its own fast parameters" ) # Copy fast parameters into params_box for use in boxed_forward params_box[0] = self._expand_params(self.fast_params) def _patched_forward(self, *args, params=None, **kwargs): self._refill_params_box(params) output = self.boxed_forward(*args, **kwargs) # Clean up params_box[0] = None return output def _update_params(self, params): self.fast_params = params params = self._expand_params(params) _update_patched_params(self, [params], 0) setattr(MonkeyPatched, "forward", _patched_forward) setattr(MonkeyPatched, "parameters", _patched_parameters) setattr(MonkeyPatched, "update_params", _update_params) setattr(MonkeyPatched, "_refill_params_box", _refill_params_box) if encapsulator is not None: encapsulator(fmodule, module) return fmodule # ============================================================================== # Convenience functions and decorators for hiding away a lot of the complexity # of creating patched modules, taking their parameters, and linking patched # modules to a differentiable optimizer. # ============================================================================== def monkeypatch( module: _torch.nn.Module, device: _typing.Optional[_torch.device] = None, copy_initial_weights: bool = True, track_higher_grads: bool = True, ) -> _MonkeyPatchBase: r"""Create a monkey-patched stateless version of a module. This function produces a monkey-patched version of a module, and returns a copy of its parameters for use as fast weights. Where the original module or any of its submodules have state (e.g. batch norm), this will be copied too, but further updates (e.g. during inner loop training) will cause these to diverge without changing the state of the original module. Args: module: a ``torch.nn.Module`` subclass instance. device (optional): a device to cast the fast weights and state to. copy_initial_weights: if True, the weights of the patched module are copied to form the initial weights of the patched module, and thus are not part of the gradient tape when unrolling the patched module. If this is set to False, the actual module weights will be the initial weights of the patched module. This is useful when doing MAML, for example. track_higher_grads: if True, during unrolled optimization the graph be retained, and the fast weights will bear grad funcs, so as to permit backpropagation through the optimization process. Setting this to False allows ``monkeypatch`` to be used in "test mode", without potentially tracking higher order gradients. This can be useful when running the training loop at test time, e.g. in k-shot learning experiments, without incurring a significant memory overhead. Returns: ``fmodule``: a "stateless" version of the original module, for which calls to forward take the additional kwarg-only parameter ``params``, which should be a list of torch tensors requiring gradients, ideally provided by this function (see below) or by an update step from one of the optimizers in ``higher.optim``. """ def encapsulator(fmodule: _MonkeyPatchBase, module: _torch.nn.Module) -> None: if copy_initial_weights: params = _utils.get_func_params(module, device=device) else: params = [ p.clone() if device is None else p.clone().to(device) for p in module.parameters() ] buffer_sync(module, fmodule, device) fmodule.update_params(params) fmodule = make_functional(module, encapsulator=encapsulator) fmodule.track_higher_grads = track_higher_grads return fmodule
Blackbox-Coresets-VI-main
psvi/robust_higher/patch.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. # # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing as _typing from contextlib import contextmanager as _contextmanager import torch as _torch from . import optim from .patch import monkeypatch @_contextmanager def innerloop_ctx( model: _torch.nn.Module, opt: _torch.optim.Optimizer, device: _typing.Optional[_torch.device] = None, copy_initial_weights: bool = True, override: optim._OverrideType = None, track_higher_grads: bool = True, ): r"""A context manager for writing differentiable inner loops. Args: model: a ``torch.nn.Module`` subclass instance. opt: an existing optimizer, assumed to be an instance of ``torch.optim.Optimizer``, of a supported type which is either defined in ``torch.optim``, or a custom implemantation which has been added to higher at runtime by using ``higher.register_optim``. We assume this optimizer tracks the parameters (or some subset thereof) of a single ``torch.nn.Module`` instance, with support for parameter groups. device (optional): a device to cast the fast weights and state to. If not specified, the device used for corresponding weights of ``model`` will be used. copy_initial_weights: if true, the weights of the patched module are copied to form the initial weights of the patched module, and thus are not part of the gradient tape when unrolling the patched module. If this is set to False, the actual module weights will be the initial weights of the patched module. This is useful when doing MAML, for example. override (optional): a dictionary mapping optimizer settings (i.e. those which would be passed to the optimizer constructor or provided within parameter groups) to either singleton lists of override values, or to a list of override values of length equal to the number of parameter groups. If a single override is provided for a keyword, it is used for all parameter groups. If a list is provided, the ``i``\ th element of the list overrides the corresponding setting in the ``i``\ th parameter group. This permits the passing of tensors requiring gradient to differentiable optimizers for use as optimizer settings. track_higher_grads: if True, during unrolled optimization the graph be retained, and the fast weights will bear grad funcs, so as to permit backpropagation through the optimization process. Setting this to False allows ``innerloop_ctx`` to be used in "test mode", without potentially tracking higher order gradients. This can be useful when running the training loop at test time, e.g. in k-shot learning experiments, without incurring a significant memory overhead. Yields: A ``(fmodule, diffopt)`` tuple. where ``fmodule`` is a "stateless" version of the original module, for which calls to forward take the additional kwarg-only parameter ``params``, which should be a list of torch tensors requiring gradients, ideally provided by this function (see below) or by an update step from one of the optimizers in ``higher.optim``. And ``diffopt`` is an initialized ``DifferentiableOptimizer`` instance of the right subtype. """ fmodel = monkeypatch( model, device, copy_initial_weights=copy_initial_weights, track_higher_grads=track_higher_grads, ) diffopt = optim.get_diff_optim( opt, model.parameters(), fmodel=fmodel, device=device, override=override, track_higher_grads=track_higher_grads, ) yield fmodel, diffopt __all__: list = ["innerloop_ctx"]
Blackbox-Coresets-VI-main
psvi/robust_higher/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. # # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for components of ``higher``\ .""" import typing as _typing import torch as _torch _T = _typing.TypeVar("_T") _U = _typing.TypeVar("_U") def _copy_tensor( t: _torch.Tensor, safe_copy: bool, device: _typing.Optional[_torch.device] = None ) -> _torch.Tensor: if safe_copy: t = t.clone().detach().requires_grad_(t.requires_grad) else: t = t.detach().requires_grad_(t.requires_grad) t = t if device is None else t.to(device) return t def _recursive_copy_and_cast( target: _typing.Union[list, tuple, dict, set, _torch.Tensor], device: _typing.Optional[_torch.device], ) -> _torch.Tensor: def map_fn(x): if _torch.is_tensor(x): return _copy_tensor(x, True, device=device) else: return x return _recursive_map(target, map_fn) def _recursive_map( target: _typing.Union[list, tuple, dict, set, _T], map_fn: _typing.Callable[[_T], _U], ) -> _typing.Union[list, tuple, dict, set, _U]: if isinstance(target, list): return type(target)([_recursive_map(x, map_fn) for x in target]) elif isinstance(target, tuple): return type(target)([_recursive_map(x, map_fn) for x in target]) elif isinstance(target, dict): return type(target)({k: _recursive_map(v, map_fn) for k, v in target.items()}) elif isinstance(target, set): return type(target)({_recursive_map(x, map_fn) for x in target}) else: return map_fn(target) def _is_container(target: _typing.Any) -> bool: flag = ( isinstance(target, list) or isinstance(target, tuple) or isinstance(target, dict) or isinstance(target, set) ) return flag def _find_param_in_list( param: _torch.Tensor, l: _typing.Iterable[_torch.Tensor] ) -> _typing.Optional[int]: for i, p in enumerate(l): if p is param: return i else: return None def _get_param_mapping( module: _torch.nn.Module, seen: _typing.List[_torch.Tensor], mapping: _typing.List[int], ) -> _typing.List[int]: for param in module._parameters.values(): if param is None: continue found = _find_param_in_list(param, seen) if found is None: mapping.append(len(seen)) seen.append(param) else: mapping.append(found) for name, child in module._modules.items(): _ = _get_param_mapping(child, seen, mapping) return mapping def flatten(x: _typing.Any) -> _typing.List[_typing.Any]: r"""Returns a flattened list of objects from a nested structure.""" l: _typing.List[_typing.Any] = [] if isinstance(x, dict): for y in x.values(): l.extend(flatten(y)) elif isinstance(x, list) or isinstance(x, set) or isinstance(x, tuple): for y in x: l.extend(flatten(y)) else: l.append(x) return l def get_func_params( module: _torch.nn.Module, device: _typing.Optional[_torch.device] = None, safe_copy: bool = True, ) -> _typing.List[_torch.Tensor]: r"""Returns a detached copy of module parameters which requires gradient.""" params = [_copy_tensor(p, safe_copy, device) for p in module.parameters()] return params
Blackbox-Coresets-VI-main
psvi/robust_higher/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All Rights Reserved. # # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Differentiable optimizer wrappers around ``torch.optim`` instances.""" import abc as _abc import collections as _collections import copy as _copy import math as _math import typing as _typing import warnings as _warnings import torch as _torch from . import patch as _patch, utils as _utils _GroupedGradsType = _typing.List[_typing.List[_torch.Tensor]] _StateType = _typing.List[_typing.DefaultDict[int, _typing.Any]] _GradClosureType = _typing.Callable[[_torch.Tensor], _torch.Tensor] _OverrideType = _typing.Dict[str, _typing.List[_typing.Any]] _GradCallbackType = _typing.Callable[ [_typing.List[_torch.Tensor]], _typing.List[_torch.Tensor] ] def _get_mask_closure(mask: _torch.Tensor) -> _GradClosureType: def closure(grad: _torch.Tensor) -> _torch.Tensor: grad = _torch.where(mask, _torch.zeros_like(grad), grad) if grad.requires_grad: grad.register_hook(_get_mask_closure(mask)) return grad return closure def _maybe_mask(tensor: _torch.Tensor, mask: _torch.Tensor) -> None: if tensor.requires_grad: tensor.register_hook(_get_mask_closure(mask)) class DifferentiableOptimizer(_abc.ABC): def __init__( self, other: _torch.optim.Optimizer, reference_params: _typing.Iterable[_torch.Tensor], fmodel: _typing.Optional[_patch._MonkeyPatchBase] = None, device: _typing.Optional[_torch.device] = None, override: _typing.Optional[_OverrideType] = None, grad_callback: _typing.Optional[_GradCallbackType] = None, track_higher_grads: bool = True, **kwargs, ) -> None: r"""Initialize the optimizer with the state of an existing optimizer. Args: other: an existing optimizer instance. reference_params: an iterable over the parameters of the original model. fmodel (optional): a patched stateless module with a view on weights. device (optional): the device to cast state tensors to. override (optional): a dictionary mapping optimizer settings (i.e. those which would be passed to the optimizer constructor or provided within parameter groups) to either singleton lists of override values, or to a list of override values of length equal to the number of parameter groups. If a single override is provided for a keyword, it is used for all parameter groups. If a list is provided, the ``i``\ th element of the list overrides the corresponding setting in the ``i``\ th parameter group. This permits the passing of tensors requiring gradient to differentiable optimizers for use as optimizer settings. grad_callback: (optional) a single argument function which will be applied to a list of gradients of parameters, which respects the order specified by ``reference_params``. This can be used to apply a function, such as gradient clipping, to all (or a subset) of these gradients every time the step function is called. If this keyword argument is provided when calling the step method, its value will override the default specified here. track_higher_grads: if True, during unrolled optimization the graph be retained, and the fast weights will bear grad funcs, so as to permit backpropagation through the optimization process. Setting this to False allows the differentiable optimizer to be used in "test mode", without potentially tracking higher order gradients. This can be useful when running the training loop at test time, e.g. in k-shot learning experiments, without incurring a significant memory overhead. """ reference_params = list(reference_params) # Copy param groups and set up structures for copy state self.param_groups = _copy.deepcopy(other.param_groups) self._group_to_param_list: _typing.List[_typing.List[int]] = [] self.state: _StateType = [ _collections.defaultdict(dict) for _ in range(len(self.param_groups)) ] # Deal with override if override is not None: self._apply_override(override) self._grad_callback = grad_callback # Copy and cast state zipped = zip(self.param_groups, other.param_groups) for group_idx, (group, orig_group) in enumerate(zipped): local_list = [] for p_idx, p in enumerate(orig_group["params"]): if p in other.state: self.state[group_idx][p_idx] = { k: _utils._recursive_copy_and_cast(v, device) for k, v in other.state[p].items() } index = _utils._find_param_in_list(p, reference_params) if index is None: raise ValueError( "Could not find parameter {} in reference parameters.".format( str(p) ) ) local_list.append(index) group["params"] = [None] * len(group["params"]) self._group_to_param_list.append(local_list) self._fmodel = fmodel self._track_higher_grads = track_higher_grads def _apply_override(self, override: _OverrideType) -> None: for k, v in override.items(): # Sanity check if (len(v) != 1) and (len(v) != len(self.param_groups)): raise ValueError( "Mismatch between the number of override tensors for " "optimizer parameter {} and the number of " "parameter groups.".format(k) ) for group_idx, group in enumerate(self.param_groups): group[k] = v[0] if len(v) == 1 else v[group_idx] def step( self, loss: _torch.Tensor, params: _typing.Iterable[_torch.Tensor] = None, override: _typing.Optional[_OverrideType] = None, grad_callback: _typing.Optional[_GradCallbackType] = None, **kwargs, ) -> _typing.Iterable[_torch.Tensor]: r"""Perform a model update. This would be used by replacing the normal sequence:: opt.zero_grad() loss.backward() opt.step() with:: diffopt.step(loss) Args: loss: the loss tensor. params (optional): the parameters with regard to which we measure the loss. These must be provided if the differentiable optimizer did not receive a patched model with a view over its own fast weights at initialisation. If there is such a model, and params are provided, they will overwrite the params of the encapsulated model. override (optional): a dictionary mapping optimizer settings (i.e. those which would be passed to the optimizer constructor or provided within parameter groups) to either singleton lists of override values, or to a list of override values of length equal to the number of parameter groups. If a single override is provided for a keyword, it is used for all parameter groups. If a list is provided, the ``i``\ th element of the list overrides the corresponding setting in the ``i``\ th parameter group. This permits the passing of tensors requiring gradient to differentiable optimizers for use as optimizer settings. Setting override here has highest precedence, i.e. it will override any tensors provided as override during the creation of the differentiable optimizer, where there is name clash. grad_callback: (optional) a single argument function which will be applied to a list of gradients of parameters, which respects the order specified by ``reference_params``. This can be used to apply a function, such as gradient clipping, to all (or a subset) of these gradients every time the step function is called. This callback overrides the default provided when constructing the differentiable optimizer. Returns: The updated parameters, which will individually have ``grad_fn``\ s of their own. If the optimizer has an encapsulated patched model, its view over its own fast weights will be updated with these params. """ # Deal with override if override is not None: self._apply_override(override) if self._fmodel is None or self._fmodel.fast_params is None: if params is None: raise ValueError( "params kwarg must be passed to step if the differentiable " "optimizer doesn't have a view on a patched model with " "params." ) else: params = self._fmodel.fast_params if params is None else params params = list(params) # This allows us to gracefully deal with cases where params are frozen. grad_targets = [ p if p.requires_grad else _torch.tensor([], requires_grad=True) for p in params ] all_grads = _torch.autograd.grad( loss, grad_targets, create_graph=self._track_higher_grads, allow_unused=True, # boo ) if grad_callback is not None: all_grads = grad_callback(all_grads) elif self._grad_callback is not None: all_grads = self._grad_callback(all_grads) grouped_grads = [] for group, mapping in zip(self.param_groups, self._group_to_param_list): grads = [] for i, index in enumerate(mapping): group["params"][i] = params[index] grads.append(all_grads[index]) grouped_grads.append(grads) self._update(grouped_grads) new_params = params[:] for group, mapping in zip(self.param_groups, self._group_to_param_list): for p, index in zip(group["params"], mapping): if self._track_higher_grads: new_params[index] = p else: new_params[index] = p.detach().requires_grad_() if self._fmodel is not None: self._fmodel.update_params(new_params) return new_params @_abc.abstractmethod def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: pass class DifferentiableSGD(DifferentiableOptimizer): r"""A differentiable version of the SGD optimizer. This optimizer creates a gradient tape as it updates parameters.""" def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): weight_decay = group["weight_decay"] momentum = group["momentum"] dampening = group["dampening"] nesterov = group["nesterov"] for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue if weight_decay != 0: g = _add(g, weight_decay, p) if momentum != 0: param_state = self.state[group_idx][p_idx] if "momentum_buffer" not in param_state: buf = param_state["momentum_buffer"] = g else: buf = param_state["momentum_buffer"] buf = _add(buf.mul(momentum), 1 - dampening, g) param_state["momentum_buffer"] = buf if nesterov: g = _add(g, momentum, buf) else: g = buf group["params"][p_idx] = _add(p, -group["lr"], g) class DifferentiableAdam(DifferentiableOptimizer): r"""A differentiable version of the Adam optimizer. This optimizer creates a gradient tape as it updates parameters.""" def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): amsgrad = group["amsgrad"] beta1, beta2 = group["betas"] weight_decay = group["weight_decay"] for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue state = self.state[group_idx][p_idx] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = _torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = _torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. mov. avg. of sq. grad. vals state["max_exp_avg_sq"] = _torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] state["step"] += 1 bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] if weight_decay != 0: g = g + (weight_decay * p) # Decay the first and second moment running average coefficient state["exp_avg"] = exp_avg = (exp_avg * beta1) + (1 - beta1) * g state["exp_avg_sq"] = exp_avg_sq = (exp_avg_sq * beta2) + ( 1 - beta2 ) * g * g # Deal with stability issues mask = exp_avg_sq == 0.0 _maybe_mask(exp_avg_sq, mask) exp_avg_sq = exp_avg_sq + 1e-8 if amsgrad: # Maintains the max of all 2nd moment running avg. till now state["max_exp_avg_sq"] = max_exp_avg_sq = _torch.max( max_exp_avg_sq, exp_avg_sq ) # Use the max. for normalizing running avg. of gradient denom = _add( max_exp_avg_sq.sqrt() / _math.sqrt(bias_correction2), group["eps"], ) else: denom = _add( exp_avg_sq.sqrt() / _math.sqrt(bias_correction2), group["eps"] ) step_size = group["lr"] / bias_correction1 group["params"][p_idx] = _addcdiv(p, -step_size, exp_avg, denom) class DifferentiableAdamW(DifferentiableOptimizer): r"""A differentiable version of the AdamW optimizer. This optimizer creates a gradient tape as it updates parameters.""" def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): amsgrad = group["amsgrad"] beta1, beta2 = group["betas"] for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue # Perform stepweight decay p = p * (1 - group["lr"] * group["weight_decay"]) if g.is_sparse: raise RuntimeError("AdamW does not support sparse gradients") state = self.state[group_idx][p_idx] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = _torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = _torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. mov. avg. of sq. grad. vals state["max_exp_avg_sq"] = _torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] state["step"] += 1 bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] # Decay the first and second moment running average coefficient state["exp_avg"] = exp_avg = (exp_avg * beta1) + (1 - beta1) * g state["exp_avg_sq"] = exp_avg_sq = (exp_avg_sq * beta2) + ( 1 - beta2 ) * g * g # Deal with stability issues mask = exp_avg_sq == 0.0 _maybe_mask(exp_avg_sq, mask) if amsgrad: # Maintains the max of all 2nd moment running avg. till now state["max_exp_avg_sq"] = max_exp_avg_sq = _torch.max( max_exp_avg_sq, exp_avg_sq ) # Use the max. for normalizing running avg. of gradient denom = _add( max_exp_avg_sq.sqrt() / _math.sqrt(bias_correction2), group["eps"], ) else: denom = _add( exp_avg_sq.sqrt() / _math.sqrt(bias_correction2), group["eps"] ) step_size = group["lr"] / bias_correction1 group["params"][p_idx] = _addcdiv(p, -step_size, exp_avg, denom) class DifferentiableAdadelta(DifferentiableOptimizer): r"""A differentiable version of the Adadelta optimizer. This optimizer creates a gradient tape as it updates parameters.""" def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): rho, eps = group["rho"], group["eps"] for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue if g.data.is_sparse: raise RuntimeError("Adadelta does not support sparse gradients") state = self.state[group_idx][p_idx] # State initialization if len(state) == 0: state["step"] = 0 state["square_avg"] = _torch.zeros_like(p.data) state["acc_delta"] = _torch.zeros_like(p.data) square_avg, acc_delta = state["square_avg"], state["acc_delta"] state["step"] += 1 if group["weight_decay"] != 0: g = _add(g, group["weight_decay"], p) square_avg = _addcmul(square_avg.mul(rho), 1 - rho, g, g) state["square_avg"] = square_avg std = _add(square_avg, eps).sqrt() delta = _add(acc_delta, eps).sqrt().div(std).mul(g) state["acc_delta"] = _addcmul(acc_delta.mul(rho), 1 - rho, delta, delta) group["params"][p_idx] = _add(p, -group["lr"], delta) class DifferentiableAdagrad(DifferentiableOptimizer): r"""A differentiable version of the Adagrad optimizer. This optimizer creates a gradient tape as it updates parameters.""" def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue state = self.state[group_idx][p_idx] state["step"] += 1 if group["weight_decay"] != 0: if g.data.is_sparse: raise RuntimeError( "weight_decay option is not compatible with sparse " "gradients" ) g = _add(g, group["weight_decay"], p) clr = group["lr"] / (1 + (state["step"] - 1) * group["lr_decay"]) if g.is_sparse: # TODO: implement support for sparse gradients. raise NotImplementedError( "sparse gradient support for DifferentiableAdagrad not " "implemented yet." ) else: state["sum"] = sum_ = _addcmul(state["sum"], 1, g, g) mask = sum_ == 0.0 _maybe_mask(sum_, mask) std = _add( state["sum"].sqrt(), group["eps"] if "eps" in group else 1e-10 ) group["params"][p_idx] = _addcdiv(p, -clr, g, std) class DifferentiableAdamax(DifferentiableOptimizer): r"""A differentiable version of the Adamax optimizer. This optimizer creates a gradient tape as it updates parameters.""" def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue if g.is_sparse: raise RuntimeError("Adamax does not support sparse gradients") state = self.state[group_idx][p_idx] # State initialization if len(state) == 0: state["step"] = 0 state["exp_avg"] = _torch.zeros_like(p.data) state["exp_inf"] = _torch.zeros_like(p.data) exp_avg, exp_inf = state["exp_avg"], state["exp_inf"] beta1, beta2 = group["betas"] eps = group["eps"] state["step"] += 1 if group["weight_decay"] != 0: g = _add(g, group["weight_decay"], p) # Update biased first moment estimate state["exp_avg"] = exp_avg = _add(exp_avg.mul(beta1), 1 - beta1, g) # Update the exponentially weighted infinity norm. state["exp_inf"] = exp_inf = exp_inf.mul(beta2).unsqueeze(0) norm_buf = _torch.cat([exp_inf, _add(g.abs(), eps).unsqueeze(0)], 0) exp_inf, _ = _torch.max(norm_buf, 0, keepdim=False) state["exp_inf"] = exp_inf bias_correction = 1 - beta1 ** state["step"] clr = group["lr"] / bias_correction group["params"][p_idx] = _addcdiv(p, -clr, exp_avg, exp_inf) class DifferentiableASGD(DifferentiableOptimizer): r"""A differentiable version of the ASGD optimizer. This optimizer creates a gradient tape as it updates parameters.""" def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue if g.is_sparse: raise RuntimeError("ASGD does not support sparse gradients") state = self.state[group_idx][p_idx] # State initialization if len(state) == 0: state["step"] = 0 state["eta"] = group["lr"] state["mu"] = 1 state["ax"] = _torch.zeros_like(p.data) state["step"] += 1 if group["weight_decay"] != 0: g = _add(g, group["weight_decay"], p) # decay term p = p.mul(1 - group["lambd"] * state["eta"]) # update parameter group["params"][p_idx] = _add(p, -state["eta"], g) # averaging if state["mu"] != 1: state["ax"] = _add(state["ax"], p.sub(state["ax"]).mul(state["mu"])) else: state["ax"] = p # update eta and mu state["eta"] = group["lr"] / _math.pow( (1 + group["lambd"] * group["lr"] * state["step"]), group["alpha"] ) state["mu"] = 1 / max(1, state["step"] - group["t0"]) class DifferentiableRMSprop(DifferentiableOptimizer): r"""A differentiable version of the RMSprop optimizer. This optimizer creates a gradient tape as it updates parameters.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) _warnings.warn( "Differentiable RMSprop suffers from gradient correctness issues. " "Consider using another optimizer until we fix these..." ) def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue if g.is_sparse: raise RuntimeError("RMSprop does not support sparse gradients") state = self.state[group_idx][p_idx] # State initialization if len(state) == 0: state["step"] = 0 state["square_avg"] = _torch.zeros_like(p.data) if group["momentum"] > 0: state["momentum_buffer"] = _torch.zeros_like(p.data) if group["centered"]: state["grad_avg"] = _torch.zeros_like(p.data) square_avg = state["square_avg"] alpha = group["alpha"] state["step"] += 1 if group["weight_decay"] != 0: g = _add(g, group["weight_decay"], p) square_avg = _addcmul(square_avg.mul(alpha), 1 - alpha, g, g) state["square_avg"] = square_avg # NB: This prevents nans but is not sufficient to recover # correct gradients. mask = square_avg == 0.0 _maybe_mask(square_avg, mask) if group["centered"]: grad_avg = state["grad_avg"] grad_avg = _add(grad_avg.mul(alpha), 1 - alpha, g) state["grad_avg"] = grad_avg eps = group["eps"] avg = _add(_addcmul(square_avg, -1, grad_avg, grad_avg).sqrt(), eps) else: avg = _add(square_avg.sqrt(), group["eps"]) if group["momentum"] > 0: buf = state["momentum_buffer"] buf = _addcdiv(buf.mul(group["momentum"]), g, avg) state["momentum_buffer"] = buf p = _add(p, -group["lr"], buf) else: p = _addcdiv(p, -group["lr"], g, avg) group["params"][p_idx] = p class DifferentiableRprop(DifferentiableOptimizer): r"""A differentiable version of the Rprop optimizer. This optimizer creates a gradient tape as it updates parameters.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) _warnings.warn( "Differentiable Rprop (correctly) yields zero second order " "gradients, as only the sign of the gradient is used in updates. " "Future versions will offer higher order gradients based on a " "continuous relaxation of the forward pass." ) def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None: zipped = zip(self.param_groups, grouped_grads) for group_idx, (group, grads) in enumerate(zipped): for p_idx, (p, g) in enumerate(zip(group["params"], grads)): if g is None: continue if g.is_sparse: raise RuntimeError("Rprop does not support sparse gradients") state = self.state[group_idx][p_idx] # State initialization if len(state) == 0: state["step"] = 0 state["prev"] = _torch.zeros_like(p.data) state["step_size"] = g.new().resize_as_(g).fill_(group["lr"]) etaminus, etaplus = group["etas"] step_size_min, step_size_max = group["step_sizes"] step_size = state["step_size"] state["step"] += 1 sign = g.mul(state["prev"]).sign() sign[sign.gt(0)] = etaplus sign[sign.lt(0)] = etaminus sign[sign.eq(0)] = 1 # update stepsizes with step size updates step_size = step_size.mul(sign).clamp(step_size_min, step_size_max) state["step_size"] = step_size # for dir<0, dfdx=0 # for dir>=0 dfdx=dfdx g = _torch.where(sign.eq(etaminus), _torch.zeros_like(g), g) # update parameters group["params"][p_idx] = _addcmul(p, -1, g.sign(), step_size) state["prev"] = g.clone() _OptMappingType = _typing.Dict[ _torch.optim.Optimizer, _typing.Type[DifferentiableOptimizer] ] _opt_mapping: _OptMappingType = { _torch.optim.Adadelta: DifferentiableAdadelta, _torch.optim.Adagrad: DifferentiableAdagrad, _torch.optim.Adam: DifferentiableAdam, _torch.optim.AdamW: DifferentiableAdamW, _torch.optim.Adamax: DifferentiableAdamax, _torch.optim.ASGD: DifferentiableASGD, _torch.optim.RMSprop: DifferentiableRMSprop, _torch.optim.Rprop: DifferentiableRprop, _torch.optim.SGD: DifferentiableSGD, } def get_diff_optim( opt: _torch.optim.Optimizer, reference_params: _typing.Iterable[_torch.Tensor], fmodel: _typing.Optional[_patch._MonkeyPatchBase] = None, device: _typing.Optional[_torch.device] = None, override: _typing.Optional[_OverrideType] = None, track_higher_grads: bool = True, **kwargs, ) -> DifferentiableOptimizer: r"""Construct/initialize a differentiable version of an existing optimizer. Args: opt: an existing optimizer, assumed to be an instance of ``torch.optim.Optimizer``, of a supported type which is either defined in ``torch.optim``, or a custom implemantation which has been added to higher at runtime by using ``higher.register_optim``. We assume this optimizer tracks the parameters (or some subset thereof) of a single ``torch.nn.Module`` instance, with support for parameter groups. reference_params: the parameters of the module tracked by ``opt``, as returned by ``module.parameters()``. fmodel (optional): a patched version of the ``module`` tracked by ``opt``. It is assumed this patched instance has a view on its latest fast weights through ``fmodel.parameters()``. If provided, it is not necessary to pass the fast weights explicitly to the differentiable optimizer's ``step`` function via the keyword arg ``params``. If not provided, the fast weights to update must be provided to ``step``. device (optional): the device to cast the optimizer state to when creating the differentiable optimizer. If not provided, the same device as used for the parameters tracked by ``opt`` will be used. override (optional): a dictionary mapping optimizer settings (i.e. those which would be passed to the optimizer constructor or provided within parameter groups) to either singleton lists of override values, or to a list of override values of length equal to the number of parameter groups. If a single override is provided for a keyword, it is used for all parameter groups. If a list is provided, the ``i``\ th element of the list overrides the corresponding setting in the ``i``\ th parameter group. This permits the passing of tensors requiring gradient to differentiable optimizers for use as optimizer settings. track_higher_grads: if True, during unrolled optimization the graph be retained, and the fast weights will bear grad funcs, so as to permit backpropagation through the optimization process. Setting this to False allows the returned differentiable optimizer to be used in "test mode", without potentially tracking higher order gradients. This can be useful when running the training loop at test time, e.g. in k-shot learning experiments, without incurring a significant memory overhead. Returns: An initialized ``DifferentiableOptimizer`` instance of the right subtype. """ if type(opt) in _opt_mapping: return _opt_mapping[type(opt)]( opt, reference_params, fmodel=fmodel, device=device, override=override, track_higher_grads=track_higher_grads, **kwargs, ) else: raise ValueError( "Optimizer type {} not supported by higher yet.".format(type(opt)) ) def create_diff_optim( opt_type: _typing.Type[_torch.optim.Optimizer], opt_kwargs: _typing.Optional[_typing.Dict[str, _typing.Any]] = None, params: _typing.Optional[_typing.List[_torch.Tensor]] = None, fmodel: _typing.Optional[_patch._MonkeyPatchBase] = None, device: _typing.Optional[_torch.device] = None, override: _typing.Optional[_OverrideType] = None, track_higher_grads: bool = True, **kwargs, ) -> DifferentiableOptimizer: r"""Construct a differentiable version of an new optimizer. Args: opt_type: the type (constructor) for a torch.optim.Optimizer subtype from amongst the types supported by the library, or registered with it a runtime. opt_kwargs: a dictionary of keywords to be passed to the optimizer constructor. params (optional): a list of (fast) weights which the differentiable optimizer will update. These must be provided if fmodel is not provided. If both, these will be used in lieu. These will only be used for shape inference when initializing the optimizer. This argument can also take the same format as parameter groups, i.e. an iterable over dictionaries which contain the 'params' key with fast weights as value, and group-specific hyperparameters. fmodel (optional): a patched version of the ``module`` tracked by ``opt``. It is assumed this patched instance has a view on its latest fast weights through ``fmodel.parameters()``. If provided, it is not necessary to pass the fast weights explicitly to the differentiable optimizer's ``step`` function via the keyword arg ``params``. If not provided, the fast weights to update must be provided to ``step``. device (optional): the device to cast the optimizer state to when creating the differentiable optimizer. If not provided, the same device as used for the parameters tracked by ``opt`` will be used. override (optional): a dictionary mapping optimizer settings (i.e. those which would be passed to the optimizer constructor or provided within parameter groups) to either singleton lists of override values, or to a list of override values of length equal to the number of parameter groups. If a single override is provided for a keyword, it is used for all parameter groups. If a list is provided, the ``i``\ th element of the list overrides the corresponding setting in the ``i``\ th parameter group. This permits the passing of tensors requiring gradient to differentiable optimizers for use as optimizer settings. track_higher_grads: if True, during unrolled optimization the graph be retained, and the fast weights will bear grad funcs, so as to permit backpropagation through the optimization process. Setting this to False allows the returned differentiable optimizer to be used in "test mode", without potentially tracking higher order gradients. This can be useful when running the training loop at test time, e.g. in k-shot learning experiments, without incurring a significant memory overhead. Returns: An initialized ``DifferentiableOptimizer`` instance of the right subtype. """ if opt_type in _opt_mapping: if params is not None: params = list(params) if isinstance(params[0], dict): dummy = [ { k: _torch.zeros_like(v, requires_grad=True) if k == "params" else v for k, v in group.items() } for group in params ] else: dummy = [_torch.zeros_like(p, requires_grad=True) for p in params] elif fmodel is not None: dummy = [ _torch.zeros_like(p, requires_grad=True) for p in fmodel.parameters() ] else: raise ValueError("Must specify one of fmodel or params in kwargs.") opt_kwargs = {} if opt_kwargs is None else opt_kwargs opt = opt_type(dummy, **opt_kwargs) return _opt_mapping[opt_type]( opt, dummy, fmodel=fmodel, device=device, override=override, track_higher_grads=track_higher_grads, **kwargs, ) else: raise ValueError( "Optimizer type {} not supported by higher yet.".format(opt_type) ) def register_optim( optim_type: _torch.optim.Optimizer, diff_optim_type: _typing.Type[DifferentiableOptimizer], ) -> None: r"""Registers a new optimizer type for use with higher functions. Args: optim_type: the type of a new optimizer, assumed to be an instance of ``torch.optim.Optimizer``. diff_optim_type: the type of a new differentiable optimizer, assumed to be an instance of ``higher.optim.DifferentiableOptimizer`` with functionally equivalent logic to ``optim_type``. """ _opt_mapping[optim_type] = diff_optim_type def get_trainable_opt_params( opt: _torch.optim.Optimizer, device: _typing.Optional[_torch.device] = None ) -> _OverrideType: r"""Get an override dictionary from an optimizer instance. Args: opt: the optimizer to obtain an override dictionary from. device (optional): the device to cast the learnable tensors to. Returns: A dictionary of the format expected for the override kwarg of differentiable optimizers. It is initialized with trainable tensors with as values those float and int hyperparameters found in the optimizer's parameter groups (or stuctures containing these). Heuristically, hyperparameters containing mixtures of differentiable and non-differentiable types will be ignored (and must be manually specified when constructing an override dict). """ override: _OverrideType = _collections.defaultdict(list) def map_fn(x: _typing.Union[_torch.Tensor, int, float]) -> _torch.Tensor: if isinstance(x, _torch.Tensor): return x.clone().detach().requires_grad_() else: return _torch.tensor(float(x), device=device, requires_grad=True) for group in opt.param_groups: for k, v in group.items(): if k == "params": # Ignore actual model parameters tracked by optim continue # Ignore hyperparameters that aren't structures containing ints # or floats if all( isinstance(x, int) or isinstance(x, float) for x in _utils.flatten(v) ): override[k].append(_utils._recursive_map(v, map_fn)) return override def apply_trainable_opt_params( opt: _torch.optim.Optimizer, override: _OverrideType ) -> None: r"""Apply learned hyperparameters back to original optimizer. Args: opt: the original optimizer. The hyperparameters in its parameter groups will be modified in place. override: dictionary of the format used for the override kwarg of differentiable optimizers. """ for k, v in override.items(): # Sanity check if (len(v) != 1) and (len(v) != len(opt.param_groups)): raise ValueError( "Mismatch between the number of override tensors for " "optimizer parameter {} and the number of " "parameter groups.".format(k) ) for group_idx, group in enumerate(opt.param_groups): replacement = v[0] if len(v) == 1 else v[group_idx] group[k] = _recursive_apply(replacement, group[k]) ## Local utility functions # TODO(egrefen): use funcs below instead of x._add, in diffopt def _add( tensor: _torch.Tensor, a1: _typing.Union[float, int, _torch.Tensor], a2: _typing.Optional[_torch.Tensor] = None, ) -> _torch.Tensor: if a2 is None: value: _typing.Union[_torch.Tensor, float] = 1.0 other = a1 else: value = a1 other = a2 return tensor + (value * other) def _addcdiv( tensor: _torch.Tensor, a1: _typing.Union[float, int, _torch.Tensor], a2: _torch.Tensor, a3: _typing.Optional[_torch.Tensor] = None, ) -> _torch.Tensor: if a3 is None: value: _typing.Union[_torch.Tensor, float] = 1.0 tensor1 = a1 tensor2 = a2 else: value = a1 tensor1 = a2 tensor2 = a3 return tensor + value * (tensor1 / tensor2) def _addcmul( tensor: _torch.Tensor, a1: _typing.Union[float, int, _torch.Tensor], a2: _torch.Tensor, a3: _typing.Optional[_torch.Tensor] = None, ) -> _torch.Tensor: if a3 is None: value: _typing.Union[_torch.Tensor, float] = 1.0 tensor1 = a1 tensor2 = a2 else: value = a1 tensor1 = a2 tensor2 = a3 return tensor + (value * tensor1 * tensor2) # TODO(egrefen): this probably could be refactored into utils def _recursive_apply( replacement: _typing.Union[list, tuple, dict, set, _torch.Tensor], target: _typing.Union[_torch.Tensor, int, float], ) -> _typing.Union[_torch.Tensor, int, float]: if not isinstance(replacement, type(target)): if isinstance(replacement, _torch.Tensor) and not _utils._is_container(target): return type(target)(replacement.item()) raise ValueError( "Expected an non-container type for target, but got {} with value " "{}".format(type(target), target) ) elif isinstance(replacement, _torch.Tensor) and isinstance(target, _torch.Tensor): replacement = replacement.to(target.device) target.data = replacement.data return target if isinstance(target, list): return type(target)( [_recursive_apply(r, t) for r, t in zip(replacement, target)] ) elif isinstance(target, tuple): return type(target)( [_recursive_apply(r, t) for r, t in zip(replacement, target)] ) elif isinstance(replacement, dict) and isinstance(target, dict): return type(target)( { k: _recursive_apply(r, t) for (_, r), (k, t) in zip(replacement.items(), target.items()) } ) elif isinstance(target, set): return type(target)( {_recursive_apply(r, t) for r, t in zip(replacement, target)} ) else: raise ValueError( "Couldn't apply replacement of type {} to target of type " "{}".format(type(replacement), type(target)) )
Blackbox-Coresets-VI-main
psvi/robust_higher/optim.py
# Copyright (c) Meta Platforms, Inc. and affiliates All Rights Reserved # The script to randomly split a dataset for hyperparameter tunning import os from absl import app from absl import flags import pdb from datasets import load_dataset, concatenate_datasets FLAGS = flags.FLAGS flags.DEFINE_string("input", "", "Input directory that contains train.tsv and test.tsv .") flags.DEFINE_string("dataset", "", "Input dataset name. Output will be stored at dataset_hp") def main(unused_argv): # Concatenate train and test file data_files = {} data_files["train"] = FLAGS.input + '/train.tsv' data_files["test"] = FLAGS.input + '/test.tsv' # pdb.set_trace() raw_datasets = load_dataset("csv", data_files=data_files, sep='\t', column_names=["input", "output"]) concat_data = concatenate_datasets([raw_datasets["train"], raw_datasets["test"]]) # Split the dataset by 90:10 train test ratio splitted = concat_data.train_test_split(test_size=0.1, shuffle=True, seed=42) if not os.path.exists('data/' + FLAGS.dataset + '_hp'): os.makedirs('data/' + FLAGS.dataset + '_hp') # Output the corresponding splits to target directory splitted["train"].to_csv('data/' + FLAGS.dataset + '_hp' + '/train.csv', sep="\t", index=False) splitted["test"].to_csv('data/' + FLAGS.dataset + '_hp' + '/test.csv', sep="\t", index=False) if __name__ == "__main__": app.run(main)
CompGenRep_MLRC2022-main
split_dataset_for_hp.py
# Copyright (c) Meta Platforms, Inc. and affiliates All Rights Reserved # This file include utility functions to compute stats given a dataset import re import os import csv import pdb from prettytable import PrettyTable from torchaudio.functional import edit_distance from transformers import AutoTokenizer from utils.helper_utils.helper_methods import load_dataset_with_name, list_datasets_and_their_splits def build_table_for_all_datasets(data_type, sub_datatype=None, model_name='facebook/bart-base'): """ Build a csv table for all data & splits Input: Data_type in {num_instances, raw_avg_length, tok_seq_length, lexical_overlap} """ base_dir = os.getenv('BASE_DIR') # Construct table with dataset stats tab = PrettyTable(header=True) optim_splits = ['train', 'validation', 'test', 'gen', 'Overall'] tab.field_names = ['Dataset', 'Split'] + optim_splits dataset_names, splits_mapping = list_datasets_and_their_splits(base_dir + '/baseline_replication/TMCD/data') for dataset_name in dataset_names: for split in splits_mapping[dataset_name]: curr_row = [] curr_row.append(dataset_name) curr_row.append(split) # Compute the data if data_type == 'num_instances': res, _ = number_of_instances(dataset_name, split) elif data_type == 'raw_avg_length': input_avg_len, output_avg_len, _ = compute_avg_length(dataset_name, split) if sub_datatype == 'input': res = input_avg_len else: res = output_avg_len elif data_type == 'tok_seq_length': input_avg_len, output_avg_len, _ = compute_avg_tokenized_length_hf(dataset_name, split, target_model_name = model_name) if sub_datatype == 'input': res = input_avg_len else: res = output_avg_len elif data_type == 'lexical_overlap': res, _ = compute_lexical_overlap(dataset_name, split) else: raise ValueError('The data_type can only be {num_instances, raw_avg_length, tok_seq_length, lexical_overlap}.') # Build the table for optim_split in optim_splits: if optim_split in res: curr_row.append(res[optim_split]) elif optim_split == 'Overall' and 'avg' in res: # For seq length, the overall equiv to avg curr_row.append(res['avg']) else: curr_row.append('-') tab.add_row(curr_row) if not os.path.exists(base_dir + '/results/analysis_res/'): os.makedirs(base_dir + '/results/analysis_res/') # Construct CSV filename file_name = data_type if sub_datatype: file_name += '_' + sub_datatype if data_type == 'tok_seq_length': if '/' in model_name: file_name += '_' + model_name.split('/')[-1] else: file_name += '_' + model_name with open(base_dir + '/results/analysis_res/' + file_name + '.csv', 'w', newline='') as f: f.write(tab.get_csv_string()) print(tab) def number_of_instances(): """ Output number of instances for each dataset Outputs: avg_overlap (dict): avg lexical overlap between input and output, keys are train/test/dev """ base_dir = os.getenv('BASE_DIR') # Construct table with dataset stats tab = PrettyTable() optim_splits = ['train', 'validation', 'test', 'gen', 'Overall'] tab.add_row(['Dataset', 'Split'] + optim_splits) dataset_names, splits_mapping = list_datasets_and_their_splits(base_dir + '/baseline_replication/TMCD/data') for dataset_name in dataset_names: for split in splits_mapping[dataset_name]: curr_row = [] # Load the dataset dataset = load_dataset_with_name(dataset_name, split) curr_row.append(dataset_name) curr_row.append(split) for optim_split in optim_splits: if optim_split in dataset: curr_row.append(len(dataset[optim_split])) else: curr_row.append(0.0) # Add up the instance count for overal curr_row[-1] = sum(curr_row[2:]) tab.add_row(curr_row) if not os.path.exists(base_dir + '/results/analysis_res/'): os.makedirs(base_dir + '/results/analysis_res/') with open(base_dir + '/results/analysis_res/num_instances.csv', 'w', newline='') as f: f.write(tab.get_csv_string()) print(tab) def number_of_instances(dataset_name, split): """ Output number of instances for each dataset Outputs: num_instances (dict): number of instance in each optimization split, keys are train/test/dev """ # Construct table with dataset stats tab = PrettyTable() num_instances = dict() split_names = [] overall_num = 0 num_column = [] # Load the dataset dataset = load_dataset_with_name(dataset_name, split) for optim_split in dataset: split_names.append(optim_split) num_instances[optim_split] = len(dataset[optim_split]) num_column.append(len(dataset[optim_split])) overall_num += len(dataset[optim_split]) # Add the instance count for overal num_column.append(overall_num) num_instances['Overall'] = overall_num tab.add_column('Split', split_names + ['Overall']) tab.add_column('Number of Instances', num_column) return num_instances, tab def compute_avg_length(dataset_name, split): """ Computes the average number of words of input and output Outputs: input_avg_len (dict): avg number of words in input, keys are train/test/dev output_avg_len (dict): avg number of words in output, keys are train/test/dev tab (PrettyTable): the table with a display of dataset stat """ # TODO: Maybe plot the distribution of length, too? # Load the dataset dataset = load_dataset_with_name(dataset_name, split) # Construct table with dataset stats tab = PrettyTable() input_avg_len = dict() output_avg_len = dict() # Loop through the split split_names = [] dataset_lens = [] input_lens_column = [] output_lens_column = [] overall_input_len = 0 overall_output_len = 0 for ft_split in dataset: split_names.append(ft_split) dataset_lens.append(len(dataset[ft_split])) tot_input_len = 0 tot_output_len = 0 for instance in dataset[ft_split]: tot_input_len += len(re.findall(r'\w+', instance['input'])) tot_output_len += len(re.findall(r'\w+', instance['output'])) input_avg_len[ft_split] = tot_input_len / len(dataset[ft_split]) output_avg_len[ft_split] = tot_output_len / len(dataset[ft_split]) input_lens_column.append(input_avg_len[ft_split]) output_lens_column.append(output_avg_len[ft_split]) overall_input_len += tot_input_len overall_output_len += tot_output_len # Add the averaged length to table data for display input_lens_column.append(overall_input_len / sum(dataset_lens)) output_lens_column.append(overall_output_len / sum(dataset_lens)) input_avg_len['avg'] = input_lens_column[-1] output_avg_len['avg'] = output_lens_column[-1] tab.add_column('Split', split_names + ['Overall']) tab.add_column('Number of Instances', dataset_lens + [0]) tab.add_column('Avg input length', input_lens_column) tab.add_column('Avg output length', output_lens_column) return input_avg_len, output_avg_len, tab def compute_lexical_overlap(dataset_name, split): """ Computes the average lexical overlap (Levenshtein distance / input_len) between input and output Outputs: avg_overlap (dict): avg lexical overlap between input and output, keys are train/test/dev """ # Load the dataset dataset = load_dataset_with_name(dataset_name, split) # Construct table with dataset stats tab = PrettyTable() avg_overlap = dict() # Loop through the split split_names = [] dataset_lens = [] overlap_column = [] overall_overlap = 0.0 for ft_split in dataset: split_names.append(ft_split) dataset_lens.append(len(dataset[ft_split])) tot_overlap = 0.0 for instance in dataset[ft_split]: tot_overlap += edit_distance(instance['input'], instance['output']) / len(instance['input']) avg_overlap[ft_split] = tot_overlap / len(dataset[ft_split]) overlap_column.append(avg_overlap[ft_split]) overall_overlap += tot_overlap # Add the averaged length to table data for display overlap_column.append(overall_overlap / sum(dataset_lens)) avg_overlap['avg'] = overlap_column[-1] tab.add_column('Split', split_names + ['Overall']) tab.add_column('Number of Instaces', dataset_lens + [0]) tab.add_column('Avg Lev(input, output) / input_len', overlap_column) return avg_overlap, tab def compute_avg_tokenized_length_hf(dataset_name, split, target_model_name, max_seq_length=512, max_output_length=512): """ Computes the average number of tokens of input and output after tokenization Inputs: dataset_name={COGS, geoquery, spider, SCAN} target_model_name=model name from Huggingface that has a tokenizer or a path Outputs: input_avg_len (dict): avg number of tokens in input, keys are train/test/dev output_avg_len (dict): avg number of tokens in output, keys are train/test/dev """ # Construct table with dataset stats tab = PrettyTable() input_avg_len = dict() output_avg_len = dict() # Load the dataset dataset = load_dataset_with_name(dataset_name, split) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(target_model_name, use_fast=True) # Loop through the split split_names = [] dataset_lens = [] input_lens_column = [] output_lens_column = [] overall_input_len = 0 overall_output_len = 0 for optim_split in dataset: # Tokenize inputs = dataset[optim_split]['input'] if 't5' in target_model_name: inputs = ['semanticparse: ' + x for x in inputs] else: inputs = [x for x in inputs] model_inputs = tokenizer(inputs, max_length=max_seq_length, truncation=True) with tokenizer.as_target_tokenizer(): labels = tokenizer(dataset[optim_split]['output'], max_length=max_output_length, truncation=True) # Compute the length split_names.append(optim_split) dataset_lens.append(len(dataset[optim_split])) tot_input_len = 0 tot_output_len = 0 for input_tok, output_tok in zip(model_inputs['input_ids'], labels['input_ids']): tot_input_len += len(input_tok) tot_output_len += len(input_tok) input_avg_len[optim_split] = tot_input_len / len(dataset[optim_split]) output_avg_len[optim_split] = tot_output_len / len(dataset[optim_split]) input_lens_column.append(input_avg_len[optim_split]) output_lens_column.append(output_avg_len[optim_split]) overall_input_len += tot_input_len overall_output_len += tot_output_len # Add the averaged length to table data for display input_lens_column.append(overall_input_len / sum(dataset_lens)) output_lens_column.append(overall_output_len / sum(dataset_lens)) input_avg_len['avg'] = input_lens_column[-1] output_avg_len['avg'] = output_lens_column[-1] tab.add_column('Split', split_names + ['Overall']) tab.add_column('Number of Instances', dataset_lens + [0]) tab.add_column('Avg input length', input_lens_column) tab.add_column('Avg output length', output_lens_column) return input_avg_len, output_avg_len, tab
CompGenRep_MLRC2022-main
utils/dataset_stat.py
# Copyright (c) Meta Platforms, Inc. and affiliates All Rights Reserved import os BASE_DIR = os.environ.get('BASE_DIR') MODEL_DIR = os.path.join(BASE_DIR, 'trained_models/') TMCD_MODEL_DIR = os.path.join(BASE_DIR, 'baseline_replication/TMCD/trained_models/') DATA_DIR = os.path.join(BASE_DIR, 'data/') TMCD_DATA_DIR = os.path.join(BASE_DIR, 'baseline_replication/TMCD/data/') TMCD_DATASETS = {'SCAN', 'geoquery', 'spider'}
CompGenRep_MLRC2022-main
utils/constants.py
# Copyright (c) Meta Platforms, Inc. and affiliates All Rights Reserved import os import json from constants import TMCD_DATASETS, TMCD_MODEL_DIR, MODEL_DIR def load_training_curve_info(model_name, dataset, split, checkpoint=None): """ Returns steps [list], ems [list], best_em float """ ems = [] steps = [] best_em = 0.0 # Find the path to the model if dataset in TMCD_DATASETS: # Load the model in TMCD data dir path = os.path.join(TMCD_MODEL_DIR, dataset, model_name + '_' + split + '_1e-4') else: path = os.path.join(MODEL_DIR, dataset, model_name + '_' + split + '_1e-4') if checkpoint is not None: path = os.path.join(path, 'checkpoint-' + checkpoint) # Load the model's trainer_state trainer_state = json.load(open(path + '/trainer_state.json')) for metrics in trainer_state['log_history']: if 'eval_exact_match' in metrics: ems.append(metrics['eval_exact_match']) steps.append(metrics['step']) if metrics['eval_exact_match'] > best_em: best_em = metrics['eval_exact_match'] return steps, ems, best_em
CompGenRep_MLRC2022-main
utils/analysis_utils.py