python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import torch from transformers import ( PreTrainedModel, PretrainedConfig, AutoConfig, AutoModel, ) from transformers.modeling_outputs import BaseModelOutputWithPooling class SwagConfig(PretrainedConfig): model_type = "swag" def __init__( self, config_name="vit_b16", hidden_size=768, **kwargs ): super().__init__(**kwargs) self.config_name = config_name self.hidden_size = hidden_size AutoConfig.register("swag", SwagConfig) class SwagModel(PreTrainedModel): config_class = SwagConfig @classmethod def from_orig_pretrained(cls, config_name): swag = torch.hub.load("facebookresearch/swag", model=config_name) config = SwagConfig(config_name=config_name, hidden_size=swag.hidden_dim) model = SwagModel(config) model.swag = swag return model @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): import os ckpt_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") state_dict = torch.load(os.path.join(ckpt_path)) config = AutoConfig.from_pretrained(pretrained_model_name_or_path) model = SwagModel(config) model.load_state_dict(state_dict, strict=True) return model def __init__(self, config): super().__init__(config) self.config = config self.swag = torch.hub.load("facebookresearch/swag", model=config.config_name) self.post_init() def _init_weights(self, module): self.swag.init_weights() # check existence. def forward( self, pixel_values=None, # attention_mask=None, # head_mask=None, output_attentions=None, output_hidden_states=None, # interpolate_pos_encoding=None, return_dict=None ): # https://github.com/rwightman/pytorch-image-models/blob/e0c4eec4b66dc14ae96097c7b4a7ef2af45ba309/timm/models/vision_transformer.py#L358 # pre_logits is nn.Identity and token means from CLS [:, 0] sequence_output = self.swag(pixel_values) pooled_output = sequence_output if not return_dict: return (sequence_output, pooled_output) return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=None, # encoder_outputs.hidden_states, attentions=None, # encoder_outputs.attentions, ) AutoModel.register(SwagConfig, SwagModel) if __name__ == '__main__': # dump this model for AutoModel: `python -m hfmodels.swag` models = ["vit_b16", "vit_l16", "vit_h14"] for model in models: vision_model = SwagModel.from_orig_pretrained(model) vision_model.save_pretrained(f"pretrained_models/{model}_swag_hf")
CiT-main
hfmodels/swag.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from .moco import MoCoModel, MoCoConfig from .augreg import AugRegModel, AugRegConfig from .swag import SwagModel, SwagConfig
CiT-main
hfmodels/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import torch import sys sys.path.append("moco-v3") # repo path to moco-v3 from transformers import ( PreTrainedModel, PretrainedConfig, AutoConfig, AutoModel, ) from torch import nn from transformers.modeling_outputs import BaseModelOutputWithPooling from vits import vit_base from functools import partial from moco.builder import MoCo_ViT from collections import OrderedDict class MoCoConfig(PretrainedConfig): """ refer `https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/vit/configuration_vit.py#L29` `model_type` only has three choices. https://github.com/huggingface/transformers/blob/05fa1a7ac17bb7aa07b9e0c1e138ecb31a28bbfe/src/transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py#L94 how to make sure `hidden_size` match checkpoint ? """ model_type = "moco" def __init__( self, config_name="vit_base_patch16", hidden_size=256, **kwargs ): super().__init__(**kwargs) self.config_name = config_name self.hidden_size = hidden_size AutoConfig.register("moco", MoCoConfig) class MoCoModel(PreTrainedModel): config_class = MoCoConfig @classmethod def from_orig_pretrained(cls, ckpt_dir): """load from original checkpoint; used to save a HF checkpoint, see main.""" config = MoCoConfig(hidden_size=256) model = MoCoModel(config) print("loading weights from", ckpt_dir) ckpt = torch.load(ckpt_dir, map_location='cpu') state_dict = OrderedDict() for k, v in ckpt['state_dict'].items(): k = k.replace('module.', '') for prefix in ["momentum_encoder", "predictor"]: if k.startswith(prefix): break else: state_dict[k.replace("base_encoder.", "")] = v model.moco.load_state_dict(state_dict, strict=True) model.eval() return model @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): import os ckpt_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") state_dict = torch.load(os.path.join(ckpt_path)) config = AutoConfig.from_pretrained(pretrained_model_name_or_path) model = MoCoModel(config) model.load_state_dict(state_dict, strict=True) return model def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.moco = MoCo_ViT( partial(vit_base, stop_grad_conv1=True), 256, 4096, 0.2 ).base_encoder self.post_init() def _init_weights(self, m): # borrowed from mae if isinstance(m, nn.Linear): # we use xavier_uniform following official JAX ViT: torch.nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward( self, pixel_values=None, # attention_mask=None, # head_mask=None, output_attentions=None, output_hidden_states=None, # interpolate_pos_encoding=None, return_dict=None ): encoder_outputs = self.moco(pixel_values) sequence_output = encoder_outputs.unsqueeze(1) pooled_output = encoder_outputs if not return_dict: return (sequence_output, pooled_output) # + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=encoder_outputs, hidden_states=None, # encoder_outputs.hidden_states, attentions=None, # encoder_outputs.attentions, ) AutoModel.register(MoCoConfig, MoCoModel) if __name__ == '__main__': # dump this model for AutoModel: `python -m hfmodels.moco` vision_model = MoCoModel.from_orig_pretrained("pretrained_models/moco/vit-b-300ep.pth.tar") vision_model.save_pretrained("pretrained_models/moco_hf")
CiT-main
hfmodels/moco.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. All Rights Reserved import numpy as np import pickle import re import time import sqlite3 import webdataset as wds from urllib.parse import unquote from tqdm import tqdm # Borrowed from SLIP but add tag field to be consistent with LiT: https://lbsn.vgiscience.org/yfcc-introduction/ def to_pkl(): cleanhtml = re.compile('<a.*?>|</a>|<b>|</b>|<i>|</i>') cleanurl = re.compile('http\S+|www\S+') print('=> loading YFCC image ids') image_ids = np.load('data/yfcc15m/flickr_unique_ids.npy') image_ids = set(image_ids) print('=> loading CLIP image ids') print('=> collecting and cleaning subset captions') captioned = [] valid_image_ids = [] with open('/datasets01/yfcc100m/090517/yfcc100m_dataset.txt') as f: for l in tqdm(f): row = l.strip().split('\t') if int(row[0]) in image_ids: title = unquote(row[8]).replace('+', ' ') title = re.sub(cleanhtml, '', title) title = re.sub(cleanurl, '', title).strip() desc = unquote(row[9]).replace('+', ' ') desc = re.sub(cleanhtml, '', desc) desc = re.sub(cleanurl, '', desc).strip() tag = ",".join([row[10].strip(), row[11].strip()]) tag = unquote(tag).replace('+', ' ') tag = re.sub(cleanhtml, '', tag) tag = re.sub(cleanurl, '', tag).strip() if any([len(title) > 0, len(desc) > 0, len(tag) > 0]): captioned.append((int(row[0]), title, desc, tag)) valid_image_ids.append(int(row[0])) with open('data/yfcc100m/yfcc100m_captioned_w_tag.pkl', 'wb') as f: pickle.dump(captioned, f) with open('data/yfcc100m/yfcc100m_image_ids.pkl', 'wb') as f: pickle.dump(valid_image_ids, f) print('Total captioned images:', len(captioned)) # 94514285 def write_json(): with open('data/yfcc100m/yfcc100m_captioned_w_tag.pkl', 'rb') as f: captioned = pickle.load(f) from collections import defaultdict repos = defaultdict(dict) for idx, (image_id, title, desc, tag) in enumerate(captioned): index = format(image_id, "0>8d") repo = index[:2] z = index[2: 5] repos[f"{str(repo).zfill(2)}_{str(z).zfill(3)}"][str(image_id).zfill(8)] = {"title": title, "desc": desc, "tag": tag} import json from pathlib import Path for repo in repos: _repo, z = repo.split("_") Path(f"data/yfcc100m/yfcc100m_captioned_w_tag/{_repo}").mkdir(parents=True, exist_ok=True) with open(f"data/yfcc100m/yfcc100m_captioned_w_tag/{_repo}/{z}.json", "w") as fw: json.dump(repos[repo], fw) to_pkl() write_json()
CiT-main
scripts/make_yfcc100m_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. All Rights Reserved import numpy as np import pickle import re from urllib.parse import unquote from tqdm import tqdm # Borrowed from SLIP but add tag field to be consistent with LiT: https://lbsn.vgiscience.org/yfcc-introduction/ cleanhtml = re.compile('<a.*?>|</a>|<b>|</b>|<i>|</i>') cleanurl = re.compile('http\S+|www\S+') print('=> loading YFCC image ids') image_ids = np.load('data/yfcc15m/flickr_unique_ids.npy') image_ids = set(image_ids) print('=> loading CLIP image ids') clip_ids = set() with open('data/yfcc15m/yfcc100m_subset_data.tsv') as f: for l in tqdm(f.readlines()): row = l.strip().split('\t') clip_ids.add(int(row[0])) print('=> collecting and cleaning subset captions') captioned = [] with open('/datasets01/yfcc100m/090517/yfcc100m_dataset.txt') as f: for l in tqdm(f): row = l.strip().split('\t') if int(row[0]) in image_ids: if int(row[0]) in clip_ids: title = unquote(row[8]).replace('+', ' ') title = re.sub(cleanhtml, '', title) title = re.sub(cleanurl, '', title) desc = unquote(row[9]).replace('+', ' ') desc = re.sub(cleanhtml, '', desc) desc = re.sub(cleanurl, '', desc) tag = ",".join([row[10].strip(), row[11].strip()]) tag = unquote(tag).replace('+', ' ') tag = re.sub(cleanhtml, '', tag) tag = re.sub(cleanurl, '', tag) captioned.append((int(row[0]), title, desc, tag)) with open('data/yfcc15m/yfcc15m_w_tag.pkl', 'wb') as f: pickle.dump(captioned, f) print('Total captioned images:', len(captioned)) # 14689580
CiT-main
scripts/make_yfcc15m_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. All Rights Reserved import json import os import pickle import zipfile import numpy as np import torch import random from PIL import Image, ImageFile from torchvision import datasets as t_datasets ImageFile.LOAD_TRUNCATED_IMAGES = True def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def yfcc_loader(root, index): index = format(index, "0>8d") repo = index[:2] z = index[2: 5] file_img = index[5:] + '.jpg' path_zip = os.path.join(root, 'images', repo, z) + '.zip' with zipfile.ZipFile(path_zip, 'r') as myzip: img = Image.open(myzip.open(file_img)) return img.convert('RGB') def aug_tag(tag): delims = [" ", ",", ";", "/", "\n"] delim = random.choice(delims)[0] segs = [seg.strip() for seg in tag.split(",") if len(seg.strip()) > 0] random.shuffle(segs) tag = delim.join(segs) return tag class ImageCaptionDatasetBase(torch.utils.data.Dataset): def __init__(self, args, dataset, root, metadata, task_example_ids=None, with_vision=True, with_text=True, max_sample=None): self.with_vision = with_vision self.with_text = with_text self.dataset = dataset self.root = root if hasattr(args, "aug_tag"): self.aug_tag = args.aug_tag if self.dataset in ["yfcc100m_tag"]: self.json_root = os.path.join(os.path.dirname(metadata), "yfcc100m_captioned_w_tag") self.samples = [] if task_example_ids is not None: if isinstance(task_example_ids, list): self.samples.extend(task_example_ids) else: self.samples.extend(list(task_example_ids)) print(f"apply task filter with {len(self.samples)} examples.") else: with open(metadata, 'rb') as f: samples = pickle.load(f) self.samples.extend(samples) if max_sample is not None and len(self.samples) >= max_sample: self.samples = self.samples[:max_sample] elif self.dataset in ['yfcc15m_tag', 'yfcc15m']: with open(metadata, 'rb') as f: samples = pickle.load(f) self.samples = [] if task_example_ids is not None: if isinstance(task_example_ids, list): # build the index of sample and follow the list order. image_id_to_sample = {} for image_id, title, desc, tag in samples: title, desc, tag = title.strip(), desc.strip(), tag.strip() if len(title) > 0: image_id_to_sample["_".join([str(image_id).zfill(8), "title"])] = {"image_id": image_id, "title": title} if len(desc) > 0: image_id_to_sample["_".join([str(image_id).zfill(8), "desc"])] = {"image_id": image_id, "desc": desc} if "tag" in self.dataset and len(tag) > 0: image_id_to_sample["_".join([str(image_id).zfill(8), "tag"])] = {"image_id": image_id, "tag": tag} for image_key in task_example_ids: if max_sample is not None and len(self.samples) >= max_sample: break image_id, field = image_key.split("_") image_id = image_id.zfill(8) image_key = "_".join([image_id, field]) self.samples.append(image_id_to_sample[image_key]) else: for image_id, title, desc, tag in samples: title, desc, tag = title.strip(), desc.strip(), tag.strip() if str(image_id).zfill(8) + "_title" in task_example_ids and len(title) > 0: self.samples.append({"image_id": image_id, "title": title}) if str(image_id).zfill(8) + "_desc" in task_example_ids and len(desc) > 0: self.samples.append({"image_id": image_id, "desc": desc}) if "tag" in self.dataset and str(image_id).zfill(8) + "_tag" in task_example_ids and len(tag) > 0: self.samples.append({"image_id": image_id, "tag": tag}) if max_sample is not None and len(self.samples) >= max_sample: break print(f"apply task filter with {len(self.samples)} examples.") else: for image_id, title, desc, tag in samples: title, desc, tag = title.strip(), desc.strip(), tag.strip() rec = {} if len(title) > 0: rec["title"] = title if len(desc) > 0: rec["desc"] = desc if "tag" in self.dataset and len(tag) > 0: rec["tag"] = tag if len(rec) > 0: rec["image_id"] = image_id self.samples.append(rec) if max_sample is not None and len(self.samples) >= max_sample: break else: raise ValueError(f"unknown dataset {self.dataset}") def get_raw_item(self, i): if self.dataset in ["yfcc100m_tag"]: sample = self.samples[i] if isinstance(sample, str): index, key = sample.split("_") else: index = sample index = format(index, "0>8d") img = yfcc_loader(self.root, int(index)) if self.with_vision else None if self.with_text: repo = index[:2] z = index[2: 5] with open(f"{self.json_root}/{repo}/{z}.json") as fr: repo_z = json.load(fr) rec = repo_z[str(index).zfill(8)] if not isinstance(sample, str): key = random.choice([key for key in rec if len(rec[key]) > 0]) index = "_".join([str(index).zfill(8), key]) if key == "tag" and (hasattr(self, "aug_tag") and self.aug_tag): caption = aug_tag(rec[key]) else: caption = rec[key] elif self.dataset in ['yfcc15m_tag', 'yfcc15m']: rec = self.samples[i] index = rec["image_id"] img = yfcc_loader(self.root, index) if self.with_vision else None if self.with_text: key = random.choice([_key for _key in rec if _key != "image_id"]) index = "_".join([str(index).zfill(8), key]) if key == "tag" and hasattr(self, "aug_tag"): caption = aug_tag(rec[key]) else: caption = rec[key] else: raise ValueError(f"unknown dataset {self.dataset}") return index, img, caption def __getitem__(self, i): raise NotImplementedError def __len__(self): return len(self.samples) class ImageCaptionDatasetCLIP(ImageCaptionDatasetBase): def __init__(self, args, dataset, root, metadata, task_example_ids, transform=None, tokenizer=None, max_bert_length=77, with_vision=True, with_text=True, max_sample=None): super().__init__(args, dataset, root, metadata, task_example_ids, with_vision, with_text, max_sample) self.max_bert_length = max_bert_length self.transform = transform self.tokenizer = tokenizer def __getitem__(self, i): index, img, caption = self.get_raw_item(i) result = {"image_ids": index} # apply transformation if img is not None and self.transform is not None: img = self.transform(img) result["pixel_values"] = img # tokenize caption if caption is not None and self.tokenizer is not None: inputs = self.tokenizer(caption, padding="max_length", truncation=True, max_length=self.max_bert_length, return_tensors="pt") for key in inputs: inputs[key] = inputs[key][0] result.update(**inputs) result["captions"] = caption return result class FileListDataset(torch.utils.data.Dataset): def __init__(self, images, labels, transform=None, target_transform=None): self.transform = transform self.target_transform = target_transform self.images = np.load(images) self.labels = np.load(labels) def __getitem__(self, index): img = pil_loader(self.images[index]) target = self.labels[index] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.images) def get_downstream_dataset(catalog, name, is_train, transform): entry = catalog[name] root = entry['path'] if entry['type'] == 'imagefolder': dataset = t_datasets.ImageFolder(os.path.join(root, entry['train'] if is_train else entry['test']), transform=transform) elif entry['type'] == 'special': if name == 'cifar10': dataset = t_datasets.CIFAR10(root, train=is_train, transform=transform, download=True) elif name == 'cifar100': dataset = t_datasets.CIFAR100(root, train=is_train, transform=transform, download=True) elif name == 'stl10': dataset = t_datasets.STL10(root, split='train' if is_train else 'test', transform=transform, download=True) elif name == 'mnist': dataset = t_datasets.MNIST(root, train=is_train, transform=transform, download=True) elif entry['type'] == 'filelist': path = entry['train'] if is_train else entry['test'] val_images = os.path.join(root, path + '_images.npy') val_labels = os.path.join(root, path + '_labels.npy') if name == 'clevr_counts': target_transform = lambda x: ['count_10', 'count_3', 'count_4', 'count_5', 'count_6', 'count_7', 'count_8', 'count_9'].index(x) else: target_transform = None dataset = FileListDataset(val_images, val_labels, transform, target_transform) else: raise Exception('Unknown dataset') return dataset
CiT-main
clipeval/datasets.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch import json import os from sklearn import metrics def load_metadata(metadir="clipeval"): with open(os.path.join(metadir, 'dataset_catalog.json')) as f: catalog = json.load(f) with open(os.path.join(metadir, 'templates.json')) as f: all_templates = json.load(f) with open(os.path.join(metadir, 'labels.json')) as f: all_labels = json.load(f) return catalog, all_templates, all_labels def evaluate(d, val_loader, templates, labels, model, tokenizer, max_bert_length, classnorm=False): print('Evaluating {}'.format(d)) is_acc = d not in ['aircraft', 'pets', 'caltech101', 'flowers', 'kinetics700_frames', 'hateful_memes'] acc_or_outputs = validate_zeroshot(val_loader, templates, labels, model, tokenizer, is_acc, max_bert_length, classnorm) if d in ['aircraft', 'pets', 'caltech101', 'flowers']: metric = mean_per_class(*acc_or_outputs) elif d == 'kinetics700_frames': top1, top5 = accuracy(*acc_or_outputs, topk=(1, 5)) metric = (top1 + top5) / 2 metric = metric.item() elif d == 'hateful_memes': metric = roc_auc(*acc_or_outputs) else: metric = acc_or_outputs return metric @torch.no_grad() def build_text_features(templates, labels, model, tokenizer, max_bert_length=77, skip_text_projection=False, classnorm=False): # (huxu) TODO: add device text_features = [] for label in labels: if isinstance(label, list): texts = [t.format(l) for t in templates for l in label] else: texts = [t.format(label) for t in templates] texts = tokenizer(texts, padding=True, truncation=True, max_length=max_bert_length, return_tensors="pt") for key in texts: texts[key] = texts[key].to(next(model.parameters()).device, non_blocking=True) # texts = texts.view(-1, max_bert_length).contiguous() class_embeddings = model(**texts, skip_text_projection=skip_text_projection)["text_embeds"] class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) class_embeddings = class_embeddings.mean(dim=0) text_features.append(class_embeddings) text_features = torch.stack(text_features, dim=0) mean, std = None, None if classnorm: mean, std = text_features.mean(dim=0)[None, :], text_features.std(dim=0)[None, :] text_features = (text_features - mean) / std text_features = text_features / text_features.norm(dim=-1, keepdim=True) return text_features, mean, std @torch.no_grad() def validate_zeroshot(val_loader, templates, labels, model, tokenizer, is_acc, max_bert_length, classnorm=False): # switch to evaluate mode model.cuda() model.eval() total_top1 = 0 total_images = 0 all_outputs = [] all_targets = [] text_features = None for samples in val_loader: if text_features is None: print('=> encoding captions') text_features, mean, std = build_text_features(templates, labels, model, tokenizer, max_bert_length, classnorm=classnorm) if isinstance(samples, tuple) or isinstance(samples, list): images, target = samples[0], samples[1] elif isinstance(samples, dict): images, target = samples["pixel_values"], samples["targets"] else: raise ValueError("unknown sample type", type(samples)) images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # encode images image_features = model(pixel_values=images)["image_embeds"] if classnorm: image_features = (image_features - mean) / std image_features = image_features / image_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logits_per_image = image_features @ text_features.t() logits_per_image = logits_per_image.cpu() target = target.cpu() if is_acc: # measure accuracy and record loss pred = logits_per_image.argmax(dim=1) correct = pred.eq(target).sum() total_top1 += correct.item() total_images += images.size(0) else: all_outputs.append(logits_per_image) all_targets.append(target) if is_acc: return 100 * total_top1 / total_images else: return torch.cat(all_outputs), torch.cat(all_targets) def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def mean_per_class(outputs, targets): pred = outputs.argmax(1) confusion_matrix = metrics.confusion_matrix(targets, pred) per_classes = confusion_matrix.diagonal() / confusion_matrix.sum(axis=1) return 100 * per_classes.mean() def roc_auc(outputs, targets): pos_score = outputs[:, 1] - outputs[:, 0] metric = metrics.roc_auc_score(targets, pos_score) return 100 * metric if __name__ == '__main__': logits = torch.randn(128, 10) targets = torch.randint(size=(128,), low=0, high=10) evaluate("imagenet", logits, targets)
CiT-main
clipeval/eval_zeroshot.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import time import yaml import torch import utils.logger from utils import main_utils, eval_utils import torch.multiprocessing as mp parser = argparse.ArgumentParser(description='Evaluation on ESC Sound Classification') parser.add_argument('cfg', metavar='CFG', help='config file') parser.add_argument('model_cfg', metavar='CFG', help='config file') parser.add_argument('--quiet', action='store_true') parser.add_argument('--debug', action='store_true') parser.add_argument('--test-only', action='store_true') parser.add_argument('--resume', action='store_true') parser.add_argument('--distributed', action='store_true') parser.add_argument('--port', default='1234') def main(): ngpus = torch.cuda.device_count() args = parser.parse_args() cfg = yaml.safe_load(open(args.cfg)) if args.test_only: cfg['test_only'] = True if args.resume: cfg['resume'] = True if args.debug: cfg['num_workers'] = 1 cfg['dataset']['batch_size'] = 4 if args.distributed: mp.spawn(main_worker, nprocs=ngpus, args=(ngpus, cfg['dataset']['fold'], args, cfg)) else: main_worker(None, ngpus, cfg['dataset']['fold'], args, cfg) def main_worker(gpu, ngpus, fold, args, cfg): args.gpu = gpu args.world_size = ngpus # Prepare folder and logger eval_dir, model_cfg, logger = eval_utils.prepare_environment(args, cfg, fold) # Model model, ckp_manager = eval_utils.build_model(model_cfg, cfg, eval_dir, args, logger) # Optimizer optimizer, scheduler = main_utils.build_optimizer(model.parameters(), cfg['optimizer'], logger) # Datasets train_loader, test_loader, dense_loader = eval_utils.build_dataloaders( cfg['dataset'], fold, cfg['num_workers'], args.distributed, logger) ################################ Train ################################ start_epoch, end_epoch = 0, cfg['optimizer']['num_epochs'] if cfg['resume'] and ckp_manager.checkpoint_exists(last=True): start_epoch = ckp_manager.restore(model, optimizer, scheduler, restore_last=True) logger.add_line("Loaded checkpoint '{}' (epoch {})".format(ckp_manager.last_checkpoint_fn(), start_epoch)) if not cfg['test_only']: logger.add_line("=" * 30 + " Training " + "=" * 30) # Warmup. Train classifier for a few epochs. if start_epoch == 0 and 'warmup_classifier' in cfg['optimizer'] and cfg['optimizer']['warmup_classifier']: n_wu_epochs = cfg['optimizer']['warmup_epochs'] if 'warmup_epochs' in cfg['optimizer'] else 5 cls_opt, _ = main_utils.build_optimizer( params=[p for n, p in model.named_parameters() if 'feature_extractor' not in n], cfg={'lr': {'base_lr': cfg['optimizer']['lr']['base_lr'], 'milestones': [n_wu_epochs,], 'gamma': 1.}, 'weight_decay': cfg['optimizer']['weight_decay'], 'name': cfg['optimizer']['name']} ) for epoch in range(n_wu_epochs): run_phase('train', train_loader, model, cls_opt, epoch, args, cfg, logger) top1, _ = run_phase('test', test_loader, model, None, epoch, args, cfg, logger) # Main training loop for epoch in range(start_epoch, end_epoch): scheduler.step(epoch=epoch) if args.distributed: train_loader.sampler.set_epoch(epoch) test_loader.sampler.set_epoch(epoch) logger.add_line('='*30 + ' Epoch {} '.format(epoch) + '='*30) logger.add_line('LR: {}'.format(scheduler.get_lr())) run_phase('train', train_loader, model, optimizer, epoch, args, cfg, logger) top1, _ = run_phase('test', test_loader, model, None, epoch, args, cfg, logger) ckp_manager.save(model, optimizer, scheduler, epoch, eval_metric=top1) ################################ Eval ################################ logger.add_line('\n' + '=' * 30 + ' Final evaluation ' + '=' * 30) cfg['dataset']['test']['clips_per_video'] = 25 # Evaluate clip-level predictions with 25 clips per video for metric stability train_loader, test_loader, dense_loader = eval_utils.build_dataloaders(cfg['dataset'], fold, cfg['num_workers'], args.distributed, logger) top1, top5 = run_phase('test', test_loader, model, None, end_epoch, args, cfg, logger) top1_dense, top5_dense = run_phase('test_dense', dense_loader, model, None, end_epoch, args, cfg, logger) logger.add_line('\n' + '=' * 30 + ' Evaluation done ' + '=' * 30) logger.add_line('Clip@1: {:6.2f}'.format(top1)) logger.add_line('Clip@5: {:6.2f}'.format(top5)) logger.add_line('Video@1: {:6.2f}'.format(top1_dense)) logger.add_line('Video@5: {:6.2f}'.format(top5_dense)) def run_phase(phase, loader, model, optimizer, epoch, args, cfg, logger): from utils import metrics_utils batch_time = metrics_utils.AverageMeter('Time', ':6.3f', window_size=100) data_time = metrics_utils.AverageMeter('Data', ':6.3f', window_size=100) loss_meter = metrics_utils.AverageMeter('Loss', ':.4e') top1_meter = metrics_utils.AverageMeter('Acc@1', ':6.2f') top5_meter = metrics_utils.AverageMeter('Acc@5', ':6.2f') progress = utils.logger.ProgressMeter(len(loader), meters=[batch_time, data_time, loss_meter, top1_meter, top5_meter], phase=phase, epoch=epoch, logger=logger) # switch to train/test mode model.train(phase == 'train') if phase in {'test_dense', 'test'}: model = eval_utils.BatchWrapper(model, cfg['dataset']['batch_size']) criterion = torch.nn.CrossEntropyLoss() softmax = torch.nn.Softmax(dim=1) end = time.time() logger.add_line('\n{}: Epoch {}'.format(phase, epoch)) for it, sample in enumerate(loader): data_time.update(time.time() - end) video = sample['frames'] target = sample['label'].cuda() if args.gpu is not None: video = video.cuda(args.gpu, non_blocking=True) if torch.cuda.device_count() == 1 and args.gpu is None: video = video.cuda() # compute outputs if phase == 'test_dense': batch_size, clips_per_sample = video.shape[0], video.shape[1] video = video.flatten(0, 1).contiguous() if phase == 'train': logits = model(video) else: with torch.no_grad(): logits = model(video) # compute loss and accuracy if phase == 'test_dense': confidence = softmax(logits).view(batch_size, clips_per_sample, -1).mean(1) labels_tiled = target.unsqueeze(1).repeat(1, clips_per_sample).view(-1) loss = criterion(logits, labels_tiled) else: confidence = softmax(logits) loss = criterion(logits, target) with torch.no_grad(): acc1, acc5 = metrics_utils.accuracy(confidence, target, topk=(1, 5)) loss_meter.update(loss.item(), target.size(0)) top1_meter.update(acc1[0], target.size(0)) top5_meter.update(acc5[0], target.size(0)) # compute gradient and do SGD step if phase == 'train': optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if (it + 1) % 100 == 0 or it == 0 or it + 1 == len(loader): progress.display(it+1) if args.distributed: progress.synchronize_meters(args.gpu) progress.display(len(loader) * args.world_size) return top1_meter.avg, top5_meter.avg if __name__ == '__main__': main()
AVID-CMA-main
eval-action-recg.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import os import random import time import warnings import yaml import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.multiprocessing as mp import utils.logger from utils import main_utils parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('cfg', help='model directory') parser.add_argument('--quiet', action='store_true') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://localhost:15475', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') def main(): args = parser.parse_args() cfg = yaml.safe_load(open(args.cfg)) if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args, cfg)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args, cfg) def main_worker(gpu, ngpus_per_node, args, cfg): args.gpu = gpu # Setup environment args = main_utils.initialize_distributed_backend(args, ngpus_per_node) logger, tb_writter, model_dir = main_utils.prep_environment(args, cfg) # Define model model = main_utils.build_model(cfg['model'], logger) model, args, cfg['dataset']['batch_size'], cfg['num_workers'] = main_utils.distribute_model_to_cuda(model, args, cfg['dataset']['batch_size'], cfg['num_workers'], ngpus_per_node) # Define dataloaders train_loader = main_utils.build_dataloaders(cfg['dataset'], cfg['num_workers'], args.distributed, logger) # Define criterion device = args.gpu if args.gpu is not None else 0 cfg['loss']['args']['embedding_dim'] = model.module.out_dim cfg['loss']['args']['device'] = device train_criterion = main_utils.build_criterion(cfg['loss'], logger=logger) # Define optimizer optimizer, scheduler = main_utils.build_optimizer( params=list(model.parameters())+list(train_criterion.parameters()), cfg=cfg['optimizer'], logger=logger) ckp_manager = main_utils.CheckpointManager(model_dir, rank=args.rank) # Optionally resume from a checkpoint start_epoch, end_epoch = 0, cfg['optimizer']['num_epochs'] if cfg['resume']: if ckp_manager.checkpoint_exists(last=True): start_epoch = ckp_manager.restore(restore_last=True, model=model, optimizer=optimizer, train_criterion=train_criterion) scheduler.step(start_epoch) logger.add_line("Checkpoint loaded: '{}' (epoch {})".format(ckp_manager.last_checkpoint_fn(), start_epoch)) else: logger.add_line("No checkpoint found at '{}'".format(ckp_manager.last_checkpoint_fn())) cudnn.benchmark = True ############################ TRAIN ######################################### test_freq = cfg['test_freq'] if 'test_freq' in cfg else 1 for epoch in range(start_epoch, end_epoch): if epoch in cfg['optimizer']['lr']['milestones']: ckp_manager.save(epoch, model=model, train_criterion=train_criterion, optimizer=optimizer, filename='checkpoint-ep{}.pth.tar'.format(epoch)) if args.distributed: train_loader.sampler.set_epoch(epoch) scheduler.step(epoch) train_criterion.set_epoch(epoch) # Train for one epoch logger.add_line('='*30 + ' Epoch {} '.format(epoch) + '='*30) logger.add_line('LR: {}'.format(scheduler.get_lr())) run_phase('train', train_loader, model, optimizer, train_criterion, epoch, args, cfg, logger, tb_writter) if epoch % test_freq == 0 or epoch == end_epoch - 1: ckp_manager.save(epoch+1, model=model, optimizer=optimizer, train_criterion=train_criterion) def run_phase(phase, loader, model, optimizer, criterion, epoch, args, cfg, logger, tb_writter): from utils import metrics_utils logger.add_line('\n{}: Epoch {}'.format(phase, epoch)) batch_time = metrics_utils.AverageMeter('Time', ':6.3f', window_size=100) data_time = metrics_utils.AverageMeter('Data', ':6.3f', window_size=100) loss_meter = metrics_utils.AverageMeter('Loss', ':.3e') progress = utils.logger.ProgressMeter(len(loader), [batch_time, data_time, loss_meter], phase=phase, epoch=epoch, logger=logger, tb_writter=tb_writter) # switch to train mode model.train(phase == 'train') end = time.time() device = args.gpu if args.gpu is not None else 0 for i, sample in enumerate(loader): # measure data loading time data_time.update(time.time() - end) # Prepare batch video, audio, index = sample['frames'], sample['audio'], sample['index'] video = video.cuda(device, non_blocking=True) audio = audio.cuda(device, non_blocking=True) index = index.cuda(device, non_blocking=True) # compute audio and video embeddings if phase == 'train': video_emb, audio_emb = model(video, audio) else: with torch.no_grad(): video_emb, audio_emb = model(video, audio) # compute loss loss, loss_debug = criterion(video_emb, audio_emb, index) loss_meter.update(loss.item(), video.size(0)) # compute gradient and do SGD step during training if phase == 'train': optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # print to terminal and tensorboard step = epoch * len(loader) + i if (i+1) % cfg['print_freq'] == 0 or i == 0 or i+1 == len(loader): progress.display(i+1) if tb_writter is not None: for key in loss_debug: tb_writter.add_scalar('{}-batch/{}'.format(phase, key), loss_debug[key].item(), step) # Sync metrics across all GPUs and print final averages if args.distributed: progress.synchronize_meters(args.gpu) progress.display(len(loader)*args.world_size) if tb_writter is not None: for meter in progress.meters: tb_writter.add_scalar('{}-epoch/{}'.format(phase, meter.name), meter.avg, epoch) if __name__ == '__main__': main()
AVID-CMA-main
main-avid.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import time import yaml import torch from utils import main_utils, eval_utils import utils.logger import torch.multiprocessing as mp parser = argparse.ArgumentParser(description='Evaluation on ESC Sound Classification') parser.add_argument('cfg', metavar='CFG', help='config file') parser.add_argument('model_cfg', metavar='CFG', help='config file') parser.add_argument('--quiet', action='store_true') parser.add_argument('--test-only', action='store_true') parser.add_argument('--resume', action='store_true') parser.add_argument('--debug', action='store_true') parser.add_argument('--distributed', action='store_true') parser.add_argument('--port', default='1234') def main(): args = parser.parse_args() cfg = yaml.safe_load(open(args.cfg)) if args.test_only: cfg['test_only'] = True if args.resume: cfg['resume'] = True if args.debug: cfg['num_workers'] = 1 cfg['dataset']['batch_size'] = 4 ngpus = torch.cuda.device_count() for fold in range(1, cfg['dataset']['num_folds']+1): if args.distributed: mp.spawn(main_worker, nprocs=ngpus, args=(ngpus, fold, args, cfg)) else: main_worker(None, ngpus, fold, args, cfg) def main_worker(gpu, ngpus, fold, args, cfg): args.gpu = gpu args.world_size = ngpus # Prepare folder and logger eval_dir, model_cfg, logger = eval_utils.prepare_environment(args, cfg, fold) # Model model, ckp_manager = eval_utils.build_model(model_cfg, cfg, eval_dir, args, logger) # Optimizer optimizer, scheduler = main_utils.build_optimizer(model.parameters(), cfg['optimizer'], logger) # Datasets train_loader, test_loader, dense_loader = eval_utils.build_dataloaders( cfg['dataset'], fold, cfg['num_workers'], args.distributed, logger) ################################ Train ################################ start_epoch, end_epoch = 0, cfg['optimizer']['num_epochs'] if (cfg['resume'] or args.test_only) and ckp_manager.checkpoint_exists(last=True): start_epoch = ckp_manager.restore(model, optimizer, scheduler, restore_last=True) logger.add_line("Loaded checkpoint '{}' (epoch {})".format(ckp_manager.last_checkpoint_fn(), start_epoch)) if not cfg['test_only']: logger.add_line("=" * 30 + " Training " + "=" * 30) for epoch in range(start_epoch, end_epoch): scheduler.step(epoch=epoch) if args.distributed: train_loader.sampler.set_epoch(epoch) test_loader.sampler.set_epoch(epoch) logger.add_line('='*30 + ' Epoch {} '.format(epoch) + '='*30) logger.add_line('LR: {}'.format(scheduler.get_lr())) run_phase('train', train_loader, model, optimizer, epoch, args, cfg, logger) run_phase('test', test_loader, model, None, epoch, args, cfg, logger) ckp_manager.save(model, optimizer, scheduler, epoch) ################################ Eval ################################ logger.add_line('\n' + '=' * 30 + ' Final evaluation ' + '=' * 30) cfg['dataset']['test']['clips_per_video'] = 25 train_loader, test_loader, dense_loader = eval_utils.build_dataloaders(cfg['dataset'], fold, cfg['num_workers'], args.distributed, logger) top1_dense, top5_dense = run_phase('test_dense', dense_loader, model, None, end_epoch, args, cfg, logger) top1, top5 = run_phase('test', test_loader, model, None, end_epoch, args, cfg, logger) logger.add_line('\n' + '=' * 30 + ' Evaluation done ' + '=' * 30) for ft in top1: logger.add_line('') logger.add_line('[{}] Clip@1: {:6.2f}'.format(ft, top1[ft])) logger.add_line('[{}] Clip@5: {:6.2f}'.format(ft, top5[ft])) logger.add_line('[{}] Video@1: {:6.2f}'.format(ft, top1_dense[ft])) logger.add_line('[{}] Video@5: {:6.2f}'.format(ft, top5_dense[ft])) def run_phase(phase, loader, model, optimizer, epoch, args, cfg, logger): from utils import metrics_utils logger.add_line('\n{}: Epoch {}'.format(phase, epoch)) feature_names = cfg['model']['args']['feat_names'] batch_time = metrics_utils.AverageMeter('Time', ':6.3f', 100) data_time = metrics_utils.AverageMeter('Data', ':6.3f', 100) loss_meters = {ft: metrics_utils.AverageMeter('Loss', ':.4e', 0) for ft in feature_names} top1_meters = {ft: metrics_utils.AverageMeter('Acc@1', ':6.2f', 0) for ft in feature_names} top5_meters = {ft: metrics_utils.AverageMeter('Acc@5', ':6.2f', 0) for ft in feature_names} progress = {'timers': utils.logger.ProgressMeter(len(loader), meters=[batch_time, data_time], phase=phase, epoch=epoch, logger=logger)} progress.update({ft: utils.logger.ProgressMeter(len(loader), meters=[loss_meters[ft], top1_meters[ft], top5_meters[ft]], phase=phase, epoch=epoch, logger=logger) for ft in feature_names}) # switch to train/test mode model.train(phase == 'train') if phase in {'test_dense', 'test'}: model = BatchWrapper(model, cfg['dataset']['batch_size']) end = time.time() criterion = torch.nn.CrossEntropyLoss() softmax = torch.nn.Softmax(dim=1) for it, sample in enumerate(loader): data_time.update(time.time() - end) video = sample['frames'] target = sample['label'].cuda() if args.gpu is not None: video = video.cuda(args.gpu, non_blocking=True) if phase == 'test_dense': batch_size, clips_per_sample = video.shape[0], video.shape[1] video = video.flatten(0, 1).contiguous() # compute outputs if phase == 'train': logits = model(video) else: with torch.no_grad(): logits = model(video) # compute loss and measure accuracy total_loss = 0. for ft in feature_names: if phase == 'test_dense': confidence = softmax(logits[ft]).view(batch_size, clips_per_sample, -1).mean(1) target_tiled = target.unsqueeze(1).repeat(1, clips_per_sample).view(-1) loss = criterion(logits[ft], target_tiled) else: confidence = softmax(logits[ft]) loss = criterion(logits[ft], target) total_loss += loss with torch.no_grad(): acc1, acc5 = metrics_utils.accuracy(confidence, target, topk=(1, 5)) loss_meters[ft].update(loss.item(), target.size(0)) top1_meters[ft].update(acc1[0].item(), target.size(0)) top5_meters[ft].update(acc5[0].item(), target.size(0)) # compute gradient and do SGD step if phase == 'train': optimizer.zero_grad() total_loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if (it + 1) % 100 == 0 or it == 0 or it + 1 == len(loader): for ft in progress: progress[ft].display(it+1) if args.distributed: for ft in progress: progress[ft].synchronize_meters(args.gpu) progress[ft].display(len(loader) * args.world_size) return {ft: top1_meters[ft].avg for ft in feature_names}, {ft: top5_meters[ft].avg for ft in feature_names} class BatchWrapper: def __init__(self, model, batch_size): self.model = model self.batch_size = batch_size def __call__(self, x): from collections import defaultdict outs = defaultdict(list) for i in range(0, x.shape[0], self.batch_size): odict = self.model(x[i:i + self.batch_size]) for k in odict: outs[k] += [odict[k]] for k in outs: outs[k] = torch.cat(outs[k], 0) return outs if __name__ == '__main__': main()
AVID-CMA-main
eval-action-recg-linear.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import csv import numpy as np import glob from datasets.video_db import VideoDataset DATA_PATH = '/data/datasets/AS240/data/' CACHE_PATH = 'datasets/cache/audioset' class AudiosetClasses: def __init__(self): ann_list = list(csv.DictReader(open(CACHE_PATH + '/class_labels_indices.csv'))) self.classes = [ann['mid'] for ann in ann_list] self.class_label = {ann['mid']: int(ann['index']) for ann in ann_list} self.display_name = {ann['mid']: ann['display_name'] for ann in ann_list} def __getitem__(self, index): return self.display_name[self.classes[index]] def __len__(self): return len(self.classes) def class2index(self, class_string): return self.class_label[class_string] class AudioSet(VideoDataset): def __init__(self, subset, return_video=True, video_clip_duration=1., video_fps=25., video_transform=None, return_audio=False, audio_clip_duration=1., audio_fps=None, audio_fps_out=64, audio_transform=None, return_labels=False, return_index=False, max_offsync_augm=0, mode='clip', clips_per_video=1, ): root = f"{DATA_PATH}/{subset.split('-')[0]}_segments/video" classes = AudiosetClasses() filenames = [f"{ln.strip().split()[0]}" for ln in open(f"{CACHE_PATH}/{subset}.txt")] available = set([fn.split('/')[-1].split('.')[0] for fn in glob.glob(f"{root}/*")]) filenames = [fn for fn in filenames if fn.split('.')[0] in available] assert return_labels is False labels = None super(AudioSet, self).__init__( return_video=return_video, video_clip_duration=video_clip_duration, video_root=root, video_fns=filenames, video_fps=video_fps, video_transform=video_transform, return_audio=return_audio, audio_clip_duration=audio_clip_duration, audio_root=root, audio_fns=filenames, audio_fps=audio_fps, audio_fps_out=audio_fps_out, audio_transform=audio_transform, return_labels=return_labels, labels=labels, return_index=return_index, max_offsync_augm=max_offsync_augm, mode=mode, clips_per_video=clips_per_video, ) self.name = 'AudioSet dataset' self.root = root self.subset = subset self.num_videos = len(filenames) self.num_classes = len(classes) self.sample_id = np.array([fn.split('.')[0].encode('utf-8') for fn in filenames])
AVID-CMA-main
datasets/audioset.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .audioset import AudioSet from .kinetics import Kinetics from .ucf import UCF from .hmdb import HMDB
AVID-CMA-main
datasets/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import numpy as np import random import librosa from utils.videotransforms import video_transforms, volume_transforms, tensor_transforms class VideoPrep_MSC_CJ(object): def __init__(self, crop=(224, 224), color=(0.4, 0.4, 0.4, 0.2), min_area=0.08, augment=True, normalize=True, totensor=True, num_frames=8, pad_missing=False, ): self.crop = crop self.augment = augment self.num_frames = num_frames self.pad_missing = pad_missing if normalize: assert totensor if augment: transforms = [ video_transforms.RandomResizedCrop(crop, scale=(min_area, 1.)), video_transforms.RandomHorizontalFlip(), video_transforms.ColorJitter(*color), ] else: transforms = [ video_transforms.Resize(int(crop[0]/0.875)), video_transforms.CenterCrop(crop), ] if totensor: transforms += [volume_transforms.ClipToTensor()] if normalize: transforms += [tensor_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])] self.transform = video_transforms.Compose(transforms) def __call__(self, frames): frames = self.transform(frames) if self.pad_missing: while True: n_missing = self.num_frames - frames.shape[1] if n_missing > 0: frames = torch.cat((frames, frames[:, :n_missing]), 1) else: break return frames class VideoPrep_Crop_CJ(object): def __init__(self, resize=(256, 256), crop=(224, 224), color=(0.4, 0.4, 0.4, 0.2), num_frames=8, pad_missing=False, augment=True, normalize=True, totensor=True, ): self.resize = resize self.crop = crop self.augment = augment self.num_frames = num_frames self.pad_missing = pad_missing if normalize: assert totensor if augment: transforms = [ video_transforms.Resize(resize), video_transforms.RandomCrop(crop), video_transforms.RandomHorizontalFlip(), video_transforms.ColorJitter(*color), ] else: transforms = [ video_transforms.Resize(resize), video_transforms.CenterCrop(crop), ] if totensor: transforms += [volume_transforms.ClipToTensor()] if normalize: transforms += [tensor_transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])] self.transform = video_transforms.Compose(transforms) def __call__(self, frames): if isinstance(frames[0], list): return torch.stack([self(f) for f in frames]) frames = self.transform(frames) if self.pad_missing: while True: n_missing = self.num_frames - frames.shape[1] if n_missing > 0: frames = torch.cat((frames, frames[:, :n_missing]), 1) else: break return frames class AudioPrep(object): def __init__(self, trim_pad=True, duration=None, missing_as_zero=False, augment=False, to_tensor=False, volume=0.1): self.trim_pad = trim_pad self.missing_as_zero = missing_as_zero self.augment = augment self.to_tensor = to_tensor self.volume = volume if trim_pad: assert duration is not None self.duration = duration def __call__(self, sig, sr, duration=None): if duration is None: duration = self.duration num_frames = int(duration*sr) # Check if audio is missing if self.missing_as_zero and sig is None: sig = np.zeros((1, num_frames), dtype=np.float32) # Downmix to mono sig = sig.mean(0).astype(np.float32) # Trim or pad to constant shape if self.trim_pad: if sig.shape[0] > num_frames: sig = sig[:num_frames] elif sig.shape[0] < num_frames: n_pad = num_frames - sig.shape[0] sig = np.pad(sig, (0, n_pad), mode='constant', constant_values=(0., 0.)) # Augment by changing volume +/- 10% if self.augment: sig *= random.uniform(1.-self.volume, 1.+self.volume) sig = sig[np.newaxis] if self.to_tensor: sig = torch.from_numpy(sig) return sig, sr class LogSpectrogram(object): def __init__(self, fps, n_fft=512, hop_size=0.005, normalize=False): self.inp_fps = fps self.n_fft = n_fft self.hop_size = hop_size self.rate = 1./hop_size self.normalize = normalize if self.normalize: if n_fft == 512 and fps == 24000: stats = np.load('datasets/assets/audio-spectDB-24k-513-norm-stats.npz') elif n_fft == 256 and fps == 24000: stats = np.load('datasets/assets/audio-spectDB-24k-257-norm-stats.npz') self.mean, self.std = stats['mean'], stats['std'] def __call__(self, sig, sr, duration=None): hop_length = int(self.hop_size * sr) spect = np.abs(librosa.stft(sig[0], n_fft=self.n_fft*2, hop_length=hop_length))**2. spect = np.concatenate([spect[:1], spect[1:].reshape(self.n_fft//2, 2, -1).mean(1)], 0) if duration is not None: num_frames = int(duration * self.rate) spect = spect[:, :num_frames] spect = librosa.core.power_to_db(spect, top_db=100) if self.normalize: spect = (spect - self.mean[:, np.newaxis]) / (self.std[:, np.newaxis] + 1e-5) spect_tensor = torch.from_numpy(spect) spect_tensor = torch.transpose(spect_tensor, 0, 1).unsqueeze(0) return spect_tensor, self.rate
AVID-CMA-main
datasets/preprocessing.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import random import torch import numpy as np import torch.utils.data as data from utils.ioutils import av_wrappers from collections import defaultdict def chararray(fn_list): charr = np.chararray(len(fn_list), itemsize=max([len(fn) for fn in fn_list])) for i in range(len(fn_list)): charr[i] = fn_list[i] return charr class VideoDataset(data.Dataset): def __init__(self, return_video=True, video_root=None, video_fns=None, video_clip_duration=1., video_fps=25, video_transform=None, return_audio=True, audio_root=None, audio_fns=None, audio_clip_duration=1., audio_fps=None, audio_fps_out=None, audio_transform=None, return_labels=False, labels=None, return_index=False, mode='clip', clips_per_video=1, max_offsync_augm=0, ): super(VideoDataset, self).__init__() self.num_samples = 0 self.return_video = return_video self.video_root = video_root if return_video: self.video_fns = chararray(video_fns) self.num_samples = self.video_fns.shape[0] self.video_fps = video_fps if video_transform is not None: if not isinstance(video_transform, list): video_transform = [video_transform] self.video_transform = video_transform self.return_audio = return_audio self.audio_root = audio_root if return_audio: self.audio_fns = chararray(audio_fns) self.num_samples = self.audio_fns.shape[0] self.audio_fps = audio_fps self.audio_fps_out = audio_fps_out self.audio_transform = audio_transform self.return_labels = return_labels if return_labels: self.labels = np.array(labels) self.return_index = return_index self.video_clip_duration = video_clip_duration self.audio_clip_duration = audio_clip_duration self.max_offsync_augm = max_offsync_augm self.clips_per_video = clips_per_video self.mode = mode def _load_sample(self, sample_idx): video_ctr = None if self.return_video: video_fn = '{}/{}'.format(self.video_root, self.video_fns[sample_idx].decode()) video_ctr = av_wrappers.av_open(video_fn) audio_ctr = None if self.return_audio: audio_fn = '{}/{}'.format(self.audio_root, self.audio_fns[sample_idx].decode()) if self.return_video and audio_fn == video_fn: audio_ctr = video_ctr else: audio_ctr = av_wrappers.av_open(audio_fn) return video_ctr, audio_ctr def __getitem__(self, index): if self.mode == 'clip': try: sample_idx = index % self.num_samples video_ctr, audio_ctr = self._load_sample(sample_idx) v_ss, v_dur, a_ss, a_dur = self._sample_snippet(video_ctr, audio_ctr) sample = self._get_clip(sample_idx, video_ctr, audio_ctr, v_ss, a_ss, video_clip_duration=v_dur, audio_clip_duration=a_dur) if sample is None: return self[(index+1) % len(self)] return sample except Exception: return self[(index+1) % len(self)] else: video_ctr, audio_ctr = self._load_sample(index) # Load entire video vs, vf, ss, sf = self._get_time_lims(video_ctr, audio_ctr) start_time = vs final_time = vf if self.return_audio: start_time = max(vs, ss) if ss < 0 else vs final_time = min(vf, sf) if ss < 0 else vf if final_time <= start_time: final_time = start_time + max(self.video_clip_duration, self.audio_clip_duration) video_dur = final_time - start_time sample = self._get_clip(index, video_ctr, audio_ctr, start_time, start_time, video_clip_duration=video_dur, audio_clip_duration=video_dur) # Split video into overlapping chunks chunks = defaultdict(list) if self.return_video: nf = sample['frames'].shape[1] chunk_size = int(self.video_clip_duration * self.video_fps) if chunk_size >= nf: chunks['frames'] = torch.stack([sample['frames'] for _ in range(self.clips_per_video)]) else: timestamps = np.linspace(0, max(nf - chunk_size, 1), self.clips_per_video).astype(int) chunks['frames'] = torch.stack([sample['frames'][:, ss:ss+chunk_size] for ss in timestamps]) if self.return_audio: nf = sample['audio'].shape[1] chunk_size = int(self.audio_clip_duration * self.audio_fps_out) if chunk_size >= nf: chunks['audio'] = torch.stack([sample['audio'] for _ in range(self.clips_per_video)]) else: timestamps = np.linspace(0, max(nf - chunk_size, 1), self.clips_per_video).astype(int) chunks['audio'] = torch.stack([sample['audio'][:, ss:ss+chunk_size] for ss in timestamps]) if self.return_labels: chunks['label'] = sample['label'] if self.return_index: ts = torch.from_numpy(np.linspace(start_time, final_time-self.video_clip_duration, self.clips_per_video)) chunks['index'] = torch.stack([sample['index'][:1].repeat(self.clips_per_video), ts.float()], dim=1) return chunks def __len__(self): if self.mode == 'clip': return self.num_samples * self.clips_per_video else: return self.num_samples def __repr__(self): desc = "{}\n - Root: {}\n - Subset: {}\n - Num videos: {}\n - Num samples: {}\n".format( self.name, self.root, self.subset, self.num_videos, self.num_videos * self.clips_per_video) if self.return_video: desc += " - Example video: {}/{}\n".format(self.video_root, self.video_fns[0].decode()) if self.return_audio: desc += " - Example audio: {}/{}\n".format(self.audio_root, self.audio_fns[0].decode()) return desc def _get_time_lims(self, video_ctr, audio_ctr): video_st, video_ft, audio_st, audio_ft = None, None, None, None if video_ctr is not None: video_stream = video_ctr.streams.video[0] tbase = video_stream.time_base video_st = video_stream.start_time * tbase video_dur = video_stream.duration * tbase video_ft = video_st + video_dur if audio_ctr is not None: audio_stream = audio_ctr.streams.audio[0] tbase = audio_stream.time_base audio_st = audio_stream.start_time * tbase audio_dur = audio_stream.duration * tbase audio_ft = audio_st + audio_dur return video_st, video_ft, audio_st, audio_ft def _sample_snippet(self, video_ctr, audio_ctr): video_st, video_ft, audio_st, audio_ft = self._get_time_lims(video_ctr, audio_ctr) if not self.return_audio: video_duration = video_ft - video_st if self.video_clip_duration > video_duration: return 0., video_duration, 0., video_duration else: min_d, max_d = self.video_clip_duration, min(self.video_clip_duration, video_duration) duration = random.uniform(min_d, max_d) sample_ss_v = random.uniform(video_st, video_ft - duration) return sample_ss_v, duration, sample_ss_v, duration else: min_ss = max(audio_st, video_st) max_ss = min(audio_ft - self.audio_clip_duration, video_ft - self.video_clip_duration) assert max_ss > min_ss if self.audio_clip_duration > self.video_clip_duration: sample_ss_a = random.uniform(min_ss, max_ss) sample_tt_a = sample_ss_a + self.audio_clip_duration win_min = max(sample_ss_a - self.max_offsync_augm, video_st) win_max = min(sample_tt_a + self.max_offsync_augm - self.video_clip_duration, video_ft) sample_ss_v = random.uniform(win_min, win_max) return sample_ss_v, self.video_clip_duration, sample_ss_a, self.audio_clip_duration else: sample_ss_v = random.uniform(min_ss, max_ss) sample_tt_v = sample_ss_v + self.video_clip_duration win_min = max(sample_ss_v - self.max_offsync_augm, audio_st) win_max = min(sample_tt_v + self.max_offsync_augm - self.audio_clip_duration, audio_ft) sample_ss_a = random.uniform(win_min, win_max) return sample_ss_v, self.video_clip_duration, sample_ss_a, self.audio_clip_duration def _get_clip(self, clip_idx, video_ctr, audio_ctr, video_start_time, audio_start_time, video_clip_duration=None, audio_clip_duration=None): if video_clip_duration is None: video_clip_duration = self.video_clip_duration if audio_clip_duration is None: audio_clip_duration = self.audio_clip_duration sample = {} if self.return_video: frames, fps, start_time = av_wrappers.av_load_video( video_ctr, video_fps=self.video_fps, start_time=video_start_time, duration=video_clip_duration, ) if self.video_transform is not None: for t in self.video_transform: frames = t(frames) sample['frames'] = frames audio_start_time = audio_start_time - (video_start_time - start_time) if self.return_audio: samples, rate = av_wrappers.av_laod_audio( audio_ctr, audio_fps=self.audio_fps, start_time=audio_start_time, duration=audio_clip_duration, ) if self.audio_transform is not None: if isinstance(self.audio_transform, list): for t in self.audio_transform: samples, rate = t(samples, rate, audio_clip_duration) else: samples, rate = self.audio_transform(samples, rate) sample['audio'] = samples if self.return_labels: lbl = self.labels[clip_idx] if isinstance(lbl, np.ndarray): sample['label'] = torch.from_numpy(lbl) else: sample['label'] = lbl if self.return_index: sample['index'] = clip_idx return sample
AVID-CMA-main
datasets/video_db.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os from datasets.video_db import VideoDataset DATA_PATH = '/data/datasets/hmdb/videos' ANNO_PATH = '/data/datasets/hmdb/splits/' class HMDB(VideoDataset): def __init__(self, subset, return_video=True, video_clip_duration=1., video_fps=25., video_transform=None, return_audio=False, return_labels=False, max_offsync_augm=0, mode='clip', clips_per_video=20, ): assert return_audio is False self.name = 'HMDB-101' self.root = DATA_PATH self.subset = subset # Get filenames classes = sorted(os.listdir(DATA_PATH)) subset, split = subset.split('-') subset_id = {'train': '1', 'test': '2'}[subset] filenames, labels = [], [] for cls in classes: for ln in open(f'{ANNO_PATH}/{cls}_test_{split}.txt'): fn, ss = ln.strip().split() if ss == subset_id: filenames += [f"{cls}/{fn}"] labels += [classes.index(cls)] self.classes = classes self.num_classes = len(self.classes) self.num_videos = len(filenames) super(HMDB, self).__init__( return_video=return_video, video_clip_duration=video_clip_duration, video_root=DATA_PATH, video_fns=filenames, video_fps=video_fps, video_transform=video_transform, return_audio=False, return_labels=return_labels, labels=labels, max_offsync_augm=max_offsync_augm, mode=mode, clips_per_video=clips_per_video, )
AVID-CMA-main
datasets/hmdb.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from datasets.video_db import VideoDataset DATA_PATH = '/data/datasets/UCF101/data' ANNO_PATH = '/data/datasets/UCF101/ucfTrainTestlist/' class UCF(VideoDataset): def __init__(self, subset, video_clip_duration=0.5, return_video=True, video_fps=16., video_transform=None, return_audio=False, return_labels=False, max_offsync_augm=0, mode='clip', clips_per_video=20, ): assert return_audio is False self.name = 'UCF-101' self.root = DATA_PATH self.subset = subset classes_fn = f'{ANNO_PATH}/classInd.txt' self.classes = [l.strip().split()[1] for l in open(classes_fn)] filenames = [ln.strip().split()[0] for ln in open(f'{ANNO_PATH}/{subset}.txt')] labels = [fn.split('/')[0] for fn in filenames] labels = [self.classes.index(cls) for cls in labels] self.num_classes = len(self.classes) self.num_videos = len(filenames) super(UCF, self).__init__( return_video=return_video, video_root=DATA_PATH, video_clip_duration=video_clip_duration, video_fns=filenames, video_fps=video_fps, video_transform=video_transform, return_audio=False, return_labels=return_labels, labels=labels, max_offsync_augm=max_offsync_augm, mode=mode, clips_per_video=clips_per_video, )
AVID-CMA-main
datasets/ucf.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import glob import numpy as np DATA_PATH = '/data/datasets/kinetics/' from datasets.video_db import VideoDataset class Kinetics(VideoDataset): def __init__(self, subset, return_video=True, video_clip_duration=1., video_fps=25., video_transform=None, return_audio=False, audio_clip_duration=1., audio_fps=None, audio_fps_out=64, audio_transform=None, return_labels=False, return_index=False, max_offsync_augm=0, mode='clip', clips_per_video=1, ): classes = sorted(os.listdir(f"{DATA_PATH}/{subset}")) filenames = ['/'.join(fn.split('/')[-2:]) for fn in glob.glob(f"{DATA_PATH}/{subset}/*/*.mp4")] labels = [classes.index(fn.split('/')[-2]) for fn in filenames] super(Kinetics, self).__init__( return_video=return_video, video_root=f"{DATA_PATH}/{subset}", video_fns=filenames, video_clip_duration=video_clip_duration, video_fps=video_fps, video_transform=video_transform, return_audio=return_audio, audio_root=f"{DATA_PATH}/{subset}", audio_fns=filenames, audio_clip_duration=audio_clip_duration, audio_fps=audio_fps, audio_fps_out=audio_fps_out, audio_transform=audio_transform, return_labels=return_labels, labels=labels, return_index=return_index, mode=mode, clips_per_video=clips_per_video, max_offsync_augm=max_offsync_augm, ) self.name = 'Kinetics dataset' self.root = f"{DATA_PATH}/{subset}" self.subset = subset self.classes = classes self.num_videos = len(filenames) self.num_classes = len(classes) self.sample_id = np.array([fn.split('/')[-1].split('.')[0].encode('utf-8') for fn in filenames])
AVID-CMA-main
datasets/kinetics.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
AVID-CMA-main
utils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import datetime import sys import torch from torch import distributed as dist class Logger(object): def __init__(self, quiet=False, log_fn=None, rank=0, prefix=""): self.rank = rank if rank is not None else 0 self.quiet = quiet self.log_fn = log_fn self.prefix = "" if prefix: self.prefix = prefix + ' | ' self.file_pointers = [] if self.rank == 0: if self.quiet: open(log_fn, 'w').close() def add_line(self, content): if self.rank == 0: msg = self.prefix+content if self.quiet: fp = open(self.log_fn, 'a') fp.write(msg+'\n') fp.flush() fp.close() else: print(msg) sys.stdout.flush() class ProgressMeter(object): def __init__(self, num_batches, meters, phase, epoch=None, logger=None, tb_writter=None): self.batches_per_epoch = num_batches self.batch_fmtstr = self._get_batch_fmtstr(epoch, num_batches) self.meters = meters self.phase = phase self.epoch = epoch self.logger = logger self.tb_writter = tb_writter def display(self, batch): step = self.epoch * self.batches_per_epoch + batch date = str(datetime.datetime.now()) entries = ['{} | {} {}'.format(date, self.phase, self.batch_fmtstr.format(batch))] entries += [str(meter) for meter in self.meters] if self.logger is None: print('\t'.join(entries)) else: self.logger.add_line('\t'.join(entries)) if self.tb_writter is not None: for meter in self.meters: self.tb_writter.add_scalar('{}-batch/{}'.format(self.phase, meter.name), meter.val, step) def _get_batch_fmtstr(self, epoch, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' epoch_str = '[{}]'.format(epoch) if epoch is not None else '' return epoch_str+'[' + fmt + '/' + fmt.format(num_batches) + ']' def synchronize_meters(self, cur_gpu): metrics = torch.tensor([m.avg for m in self.progress.meters]).cuda(cur_gpu) metrics_gather = [torch.ones_like(metrics) for _ in range(dist.get_world_size())] dist.all_gather(metrics_gather, metrics) metrics = torch.stack(metrics_gather).mean(0).cpu().numpy() for meter, m in zip(self.progress.meters, metrics): meter.avg = m
AVID-CMA-main
utils/logger.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch import distributed as dist def _gather_from_all(tensor): """ Gather tensors from all gpus """ gathered_tensor = [torch.zeros_like(tensor) for _ in range(dist.get_world_size())] dist.all_gather(gathered_tensor, tensor) gathered_tensor = torch.cat(gathered_tensor, 0) return gathered_tensor
AVID-CMA-main
utils/distributed_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from collections import deque def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f', window_size=0): self.name = name self.fmt = fmt self.window_size = window_size self.reset() def reset(self): if self.window_size > 0: self.q = deque(maxlen=self.window_size) self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val if self.window_size > 0: self.q.append((val, n)) self.count = sum([n for v, n in self.q]) self.sum = sum([v * n for v, n in self.q]) else: self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__)
AVID-CMA-main
utils/metrics_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch class AliasMethod(object): """ From: https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/ """ def __init__(self, probs): if probs.sum() > 1: probs.div_(probs.sum()) K = len(probs) self.prob = torch.zeros(K) self.alias = torch.LongTensor([0]*K) # Sort the data into the outcomes with probabilities # that are larger and smaller than 1/K. smaller = [] larger = [] for kk, prob in enumerate(probs): self.prob[kk] = K*prob if self.prob[kk] < 1.0: smaller.append(kk) else: larger.append(kk) # Loop though and create little binary mixtures that # appropriately allocate the larger outcomes over the # overall uniform mixture. while len(smaller) > 0 and len(larger) > 0: small = smaller.pop() large = larger.pop() self.alias[small] = large self.prob[large] = (self.prob[large] - 1.0) + self.prob[small] if self.prob[large] < 1.0: smaller.append(large) else: larger.append(large) for last_one in smaller+larger: self.prob[last_one] = 1 def to(self, device): self.prob = self.prob.to(device) self.alias = self.alias.to(device) def draw(self, N): """ Draw N samples from multinomial :param N: number of samples :return: samples """ K = self.alias.size(0) kk = torch.zeros(N, dtype=torch.long, device=self.prob.device).random_(0, K) prob = self.prob.index_select(0, kk) alias = self.alias.index_select(0, kk) # b is whether a random number is greater than q b = torch.bernoulli(prob) oq = kk.mul(b.long()) oj = alias.mul((1-b).long()) return oq + oj
AVID-CMA-main
utils/alias_method.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import shutil import torch import numpy as np import torch.distributed as dist import datetime from utils.logger import Logger def initialize_distributed_backend(args, ngpus_per_node): if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + args.gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) if args.rank == -1: args.rank = 0 return args def prep_environment(args, cfg): from torch.utils.tensorboard import SummaryWriter # Prepare loggers (must be configured after initialize_distributed_backend()) model_dir = '{}/{}'.format(cfg['model']['model_dir'], cfg['model']['name']) if args.rank == 0: prep_output_folder(model_dir, False) log_fn = '{}/train.log'.format(model_dir) logger = Logger(quiet=args.quiet, log_fn=log_fn, rank=args.rank) logger.add_line(str(datetime.datetime.now())) if any(['SLURM' in env for env in list(os.environ.keys())]): logger.add_line("=" * 30 + " SLURM " + "=" * 30) for env in os.environ.keys(): if 'SLURM' in env: logger.add_line('{:30}: {}'.format(env, os.environ[env])) logger.add_line("=" * 30 + " Config " + "=" * 30) def print_dict(d, ident=''): for k in d: if isinstance(d[k], dict): logger.add_line("{}{}".format(ident, k)) print_dict(d[k], ident=' '+ident) else: logger.add_line("{}{}: {}".format(ident, k, str(d[k]))) print_dict(cfg) logger.add_line("=" * 30 + " Args " + "=" * 30) for k in args.__dict__: logger.add_line('{:30} {}'.format(k, args.__dict__[k])) tb_writter = None if cfg['log2tb'] and args.rank == 0: tb_dir = '{}/tensorboard'.format(model_dir) os.system('mkdir -p {}'.format(tb_dir)) tb_writter = SummaryWriter(tb_dir) return logger, tb_writter, model_dir def build_model(cfg, logger=None): import models assert cfg['arch'] in models.__dict__, 'Unknown model architecture' model = models.__dict__[cfg['arch']](**cfg['args']) if logger is not None: if isinstance(model, (list, tuple)): logger.add_line("=" * 30 + " Model " + "=" * 30) for m in model: logger.add_line(str(m)) logger.add_line("=" * 30 + " Parameters " + "=" * 30) for m in model: logger.add_line(parameter_description(m)) else: logger.add_line("=" * 30 + " Model " + "=" * 30) logger.add_line(str(model)) logger.add_line("=" * 30 + " Parameters " + "=" * 30) logger.add_line(parameter_description(model)) return model def distribute_model_to_cuda(models, args, batch_size, num_workers, ngpus_per_node): if ngpus_per_node == 0: return models, args, batch_size, num_workers squeeze = False if not isinstance(models, list): models = [models] squeeze = True for i in range(len(models)): if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) models[i].cuda(args.gpu) models[i] = torch.nn.parallel.DistributedDataParallel(models[i], device_ids=[args.gpu]) else: models[i].cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set models[i] = torch.nn.parallel.DistributedDataParallel(models[i]) elif args.gpu is not None: torch.cuda.set_device(args.gpu) models[i] = models[i].cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs models[i] = torch.nn.DataParallel(models[i]).cuda() if squeeze: models = models[0] if args.distributed and args.gpu is not None: # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have batch_size = int(batch_size / ngpus_per_node) num_workers = int((num_workers + ngpus_per_node - 1) / ngpus_per_node) return models, args, batch_size, num_workers def build_dataloaders(cfg, num_workers, distributed, logger): train_loader = build_dataloader(cfg, cfg['train'], num_workers, distributed) logger.add_line("\n"+"="*30+" Train data "+"="*30) logger.add_line(str(train_loader.dataset)) return train_loader def build_dataloader(db_cfg, split_cfg, num_workers, distributed): import torch.utils.data as data import torch.utils.data.distributed from datasets import preprocessing import datasets # Video transforms num_frames = int(db_cfg['video_clip_duration'] * db_cfg['video_fps']) if db_cfg['transforms'] == 'crop+color': video_transform = preprocessing.VideoPrep_Crop_CJ( resize=db_cfg['frame_size'], crop=(db_cfg['crop_size'], db_cfg['crop_size']), augment=split_cfg['use_augmentation'], num_frames=num_frames, pad_missing=True, ) elif db_cfg['transforms'] == 'msc+color': video_transform = preprocessing.VideoPrep_MSC_CJ( crop=(db_cfg['crop_size'], db_cfg['crop_size']), augment=split_cfg['use_augmentation'], num_frames=num_frames, pad_missing=True, ) else: raise ValueError('Unknown transform') # Audio transforms audio_transforms = [ preprocessing.AudioPrep( trim_pad=True, duration=db_cfg['audio_clip_duration'], augment=split_cfg['use_augmentation'], missing_as_zero=True), preprocessing.LogSpectrogram( db_cfg['audio_fps'], n_fft=db_cfg['n_fft'], hop_size=1. / db_cfg['spectrogram_fps'], normalize=True) ] audio_fps_out = db_cfg['spectrogram_fps'] if db_cfg['name'] == 'audioset': dataset = datasets.AudioSet elif db_cfg['name'] == 'kinetics': dataset = datasets.Kinetics else: raise ValueError('Unknown dataset') clips_per_video = split_cfg['clips_per_video'] if 'clips_per_video' in split_cfg else 1 db = dataset( subset=split_cfg['split'], return_video=True, video_clip_duration=db_cfg['video_clip_duration'], video_fps=db_cfg['video_fps'], video_transform=video_transform, return_audio=True, audio_clip_duration=db_cfg['audio_clip_duration'], audio_fps=db_cfg['audio_fps'], audio_fps_out=audio_fps_out, audio_transform=audio_transforms, max_offsync_augm=0.5 if split_cfg['use_augmentation'] else 0, return_labels=False, return_index=True, mode='clip', clips_per_video=clips_per_video, ) if distributed: sampler = torch.utils.data.distributed.DistributedSampler(db) else: sampler = None loader = torch.utils.data.DataLoader( db, batch_size=db_cfg['batch_size'], shuffle=(sampler is None), drop_last=split_cfg['drop_last'], num_workers=num_workers, pin_memory=True, sampler=sampler) return loader def build_criterion(cfg, logger=None): import criterions criterion = criterions.__dict__[cfg['name']](**cfg['args']) if logger is not None: logger.add_line(str(criterion)) return criterion def build_optimizer(params, cfg, logger=None): if cfg['name'] == 'sgd': optimizer = torch.optim.SGD( params=params, lr=cfg['lr']['base_lr'], momentum=cfg['momentum'], weight_decay=cfg['weight_decay'], nesterov=cfg['nesterov'] ) elif cfg['name'] == 'adam': optimizer = torch.optim.Adam( params=params, lr=cfg['lr']['base_lr'], weight_decay=cfg['weight_decay'], betas=cfg['betas'] if 'betas' in cfg else [0.9, 0.999] ) else: raise ValueError('Unknown optimizer.') scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg['lr']['milestones'], gamma=cfg['lr']['gamma']) return optimizer, scheduler class CheckpointManager(object): def __init__(self, checkpoint_dir, rank=0): self.checkpoint_dir = checkpoint_dir self.rank = rank self.best_metric = 0. def save(self, epoch, filename=None, eval_metric=0., **kwargs): if self.rank != 0: return is_best = False if eval_metric > self.best_metric: self.best_metric = eval_metric is_best = True state = {'epoch': epoch} for k in kwargs: state[k] = kwargs[k].state_dict() if filename is None: save_checkpoint(state=state, is_best=is_best, model_dir=self.checkpoint_dir) else: save_checkpoint(state=state, is_best=False, filename='{}/{}'.format(self.checkpoint_dir, filename)) def last_checkpoint_fn(self): return '{}/checkpoint.pth.tar'.format(self.checkpoint_dir) def best_checkpoint_fn(self): return '{}/model_best.pth.tar'.format(self.checkpoint_dir) def checkpoint_fn(self, last=False, best=False): assert best or last assert not (last and best) if last: return self.last_checkpoint_fn() if best: return self.best_checkpoint_fn() def checkpoint_exists(self, last=False, best=False): return os.path.isfile(self.checkpoint_fn(last, best)) def restore(self, fn=None, restore_last=False, restore_best=False, **kwargs): checkpoint_fn = fn if fn is not None else self.checkpoint_fn(restore_last, restore_best) ckp = torch.load(checkpoint_fn, map_location={'cuda:0': 'cpu'}) start_epoch = ckp['epoch'] for k in kwargs: if k == 'train_criterion': kwargs[k].load_state_dict(ckp[k], strict=False) else: kwargs[k].load_state_dict(ckp[k]) return start_epoch def save_checkpoint(state, is_best, model_dir='.', filename=None): if filename is None: filename = '{}/checkpoint.pth.tar'.format(model_dir) torch.save(state, filename) if is_best: shutil.copyfile(filename, '{}/model_best.pth.tar'.format(model_dir)) def prep_output_folder(model_dir, evaluate): if evaluate: assert os.path.isdir(model_dir) else: if not os.path.isdir(model_dir): os.makedirs(model_dir) def parameter_description(model): desc = '' for n, p in model.named_parameters(): desc += "{:70} | {:10} | {:30} | {}\n".format( n, 'Trainable' if p.requires_grad else 'Frozen', ' x '.join([str(s) for s in p.size()]), str(np.prod(p.size()))) return desc
AVID-CMA-main
utils/main_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch import nn import torch.distributed as dist import utils.logger from utils import main_utils import yaml import os def prepare_environment(args, cfg, fold): if args.distributed: while True: try: dist.init_process_group(backend='nccl', init_method='tcp://localhost:{}'.format(args.port), world_size=args.world_size, rank=args.gpu) break except RuntimeError: args.port = str(int(args.port) + 1) model_cfg = yaml.safe_load(open(args.model_cfg))['model'] eval_dir = '{}/{}/eval-{}/fold-{:02d}'.format(model_cfg['model_dir'], model_cfg['name'], cfg['benchmark']['name'], fold) os.makedirs(eval_dir, exist_ok=True) yaml.safe_dump(cfg, open('{}/config.yaml'.format(eval_dir), 'w')) logger = utils.logger.Logger(quiet=args.quiet, log_fn='{}/eval.log'.format(eval_dir), rank=args.gpu) if any(['SLURM' in env for env in list(os.environ.keys())]): logger.add_line("=" * 30 + " SLURM " + "=" * 30) for env in os.environ.keys(): if 'SLURM' in env: logger.add_line('{:30}: {}'.format(env, os.environ[env])) logger.add_line("=" * 30 + " Config " + "=" * 30) def print_dict(d, ident=''): for k in d: if isinstance(d[k], dict): logger.add_line("{}{}".format(ident, k)) print_dict(d[k], ident=' '+ident) else: logger.add_line("{}{}: {}".format(ident, k, str(d[k]))) print_dict(cfg) logger.add_line("=" * 30 + " Model Config " + "=" * 30) print_dict(model_cfg) return eval_dir, model_cfg, logger def distribute_model_to_cuda(model, args, cfg): if torch.cuda.device_count() == 1: model = model.cuda() elif args.distributed: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) cfg['dataset']['batch_size'] = max(cfg['dataset']['batch_size'] // args.world_size, 1) cfg['num_workers'] = max(cfg['num_workers'] // args.world_size, 1) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model = torch.nn.DataParallel(model).cuda() return model def build_dataloader(db_cfg, split_cfg, fold, num_workers, distributed): import torch.utils.data as data from datasets import preprocessing if db_cfg['transform'] == 'msc+color': video_transform = preprocessing.VideoPrep_MSC_CJ( crop=(db_cfg['crop_size'], db_cfg['crop_size']), num_frames=int(db_cfg['video_fps'] * db_cfg['clip_duration']), pad_missing=True, augment=split_cfg['use_augmentation'], min_area=db_cfg['min_area'], color=db_cfg['color'], ) elif db_cfg['transform'] == 'crop+color': video_transform = preprocessing.VideoPrep_Crop_CJ( crop=(db_cfg['crop_size'], db_cfg['crop_size']), num_frames=int(db_cfg['video_fps'] * db_cfg['clip_duration']), pad_missing=True, augment=split_cfg['use_augmentation'], ) else: raise ValueError import datasets if db_cfg['name'] == 'ucf101': dataset = datasets.UCF elif db_cfg['name'] == 'hmdb51': dataset = datasets.HMDB elif db_cfg['name'] == 'kinetics': dataset = datasets.Kinetics else: raise ValueError('Unknown dataset') db = dataset( subset=split_cfg['split'].format(fold=fold), return_video=True, video_clip_duration=db_cfg['clip_duration'], video_fps=db_cfg['video_fps'], video_transform=video_transform, return_audio=False, return_labels=True, mode=split_cfg['mode'], clips_per_video=split_cfg['clips_per_video'], ) if distributed: sampler = torch.utils.data.distributed.DistributedSampler(db) else: sampler = None drop_last = split_cfg['drop_last'] if 'drop_last' in split_cfg else True loader = data.DataLoader( db, batch_size=db_cfg['batch_size'] if split_cfg['mode'] == 'clip' else max(1, db_cfg['batch_size']//split_cfg['clips_per_video']), num_workers=num_workers, pin_memory=True, shuffle=(sampler is None) and split_cfg['use_shuffle'], sampler=sampler, drop_last=drop_last ) return loader def build_dataloaders(cfg, fold, num_workers, distributed, logger): logger.add_line("=" * 30 + " Train DB " + "=" * 30) train_loader = build_dataloader(cfg, cfg['train'], fold, num_workers, distributed) logger.add_line(str(train_loader.dataset)) logger.add_line("=" * 30 + " Test DB " + "=" * 30) test_loader = build_dataloader(cfg, cfg['test'], fold, num_workers, distributed) logger.add_line(str(test_loader.dataset)) logger.add_line("=" * 30 + " Dense DB " + "=" * 30) dense_loader = build_dataloader(cfg, cfg['test_dense'], fold, num_workers, distributed) logger.add_line(str(dense_loader.dataset)) return train_loader, test_loader, dense_loader class CheckpointManager(object): def __init__(self, checkpoint_dir, rank=0): self.checkpoint_dir = checkpoint_dir self.best_metric = 0. self.rank = rank def save(self, model, optimizer, scheduler, epoch, eval_metric=0.): if self.rank is not None and self.rank != 0: return is_best = False if eval_metric > self.best_metric: self.best_metric = eval_metric is_best = True main_utils.save_checkpoint(state={ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), }, is_best=is_best, model_dir=self.checkpoint_dir) def last_checkpoint_fn(self): return '{}/checkpoint.pth.tar'.format(self.checkpoint_dir) def best_checkpoint_fn(self): return '{}/model_best.pth.tar'.format(self.checkpoint_dir) def checkpoint_fn(self, last=False, best=False): assert best or last assert not (last and best) if last: return self.last_checkpoint_fn() if best: return self.best_checkpoint_fn() def checkpoint_exists(self, last=False, best=False): return os.path.isfile(self.checkpoint_fn(last, best)) def restore(self, model, optimizer, scheduler, restore_last=False, restore_best=False): checkpoint_fn = self.checkpoint_fn(restore_last, restore_best) ckp = torch.load(checkpoint_fn, map_location={'cuda:0': 'cpu'}) start_epoch = ckp['epoch'] model.load_state_dict(ckp['state_dict']) optimizer.load_state_dict(ckp['optimizer']) scheduler.load_state_dict(ckp['scheduler']) return start_epoch class ClassificationWrapper(torch.nn.Module): def __init__(self, feature_extractor, n_classes, feat_name, feat_dim, pooling_op=None, use_dropout=False, dropout=0.5): super(ClassificationWrapper, self).__init__() self.feature_extractor = feature_extractor self.feat_name = feat_name self.use_dropout = use_dropout if pooling_op is not None: self.pooling = eval('torch.nn.'+pooling_op) else: self.pooling = None if use_dropout: self.dropout = torch.nn.Dropout(dropout) self.classifier = torch.nn.Linear(feat_dim, n_classes) def forward(self, *inputs): emb = self.feature_extractor(*inputs, return_embs=True)[self.feat_name] emb_pool = self.pooling(emb) if self.pooling is not None else emb emb_pool = emb_pool.view(inputs[0].shape[0], -1) if self.use_dropout: emb_pool = self.dropout(emb_pool) logit = self.classifier(emb_pool) return logit class Classifier(nn.Module): def __init__(self, n_classes, feat_name, feat_dim, pooling, l2_norm=False, use_bn=True, use_dropout=False): super(Classifier, self).__init__() self.use_bn = use_bn self.feat_name = feat_name self.pooling = eval('nn.'+pooling) if pooling is not None else None self.l2_norm = l2_norm if use_bn: self.bn = nn.BatchNorm1d(feat_dim) self.use_dropout = use_dropout if use_dropout: self.dropout = nn.Dropout() self.classifier = nn.Linear(feat_dim, n_classes) def forward(self, x): with torch.no_grad(): if self.use_dropout: x = self.dropout(x) if self.l2_norm: x = nn.functional.normalize(x, p=2, dim=-1) if self.pooling is not None and len(x.shape) > 2: x = self.pooling(x) x = x.view(x.shape[0], -1).contiguous().detach() if self.use_bn: x = self.bn(x) return self.classifier(x) class MOSTCheckpointManager(object): def __init__(self, checkpoint_dir, rank=0): self.rank = rank self.checkpoint_dir = checkpoint_dir self.best_metric = 0. def save(self, model, optimizer, epoch, eval_metric=0.): if self.rank != 0: return is_best = False if eval_metric > self.best_metric: self.best_metric = eval_metric is_best = True try: state_dict = model.classifiers.state_dict() except AttributeError: state_dict = model.module.classifiers.state_dict() main_utils.save_checkpoint(state={ 'epoch': epoch, 'state_dict': state_dict, 'optimizer': optimizer.state_dict(), }, is_best=is_best, model_dir=self.checkpoint_dir) def last_checkpoint_fn(self): return '{}/checkpoint.pth.tar'.format(self.checkpoint_dir) def best_checkpoint_fn(self): return '{}/model_best.pth.tar'.format(self.checkpoint_dir) def checkpoint_fn(self, last=False, best=False): assert best or last # assert not (last and best) if last: return self.last_checkpoint_fn() elif best: return self.best_checkpoint_fn() def checkpoint_exists(self, last=False, best=False): return os.path.isfile(self.checkpoint_fn(last, best)) def restore(self, model, optimizer, restore_last=False, restore_best=False): checkpoint_fn = self.checkpoint_fn(restore_last, restore_best) ckp = torch.load(checkpoint_fn, map_location={'cuda:0': 'cpu'}) start_epoch = ckp['epoch'] try: model.classifiers.load_state_dict(ckp['state_dict']) except AttributeError: model.module.classifiers.load_state_dict(ckp['state_dict']) optimizer.load_state_dict(ckp['optimizer']) return start_epoch class MOSTModel(nn.Module): def __init__(self, feature_extractor, n_classes, feat_names, feat_dims, pooling_ops, l2_norm=None, use_bn=False, use_dropout=False): super(MOSTModel, self).__init__() assert len(feat_dims) == len(pooling_ops) == len(feat_names) n_outputs = len(feat_dims) self.feat_names = feat_names self.feat_dims = feat_dims self.pooling_ops = pooling_ops if l2_norm is None: l2_norm = [False] * len(feat_names) if not isinstance(l2_norm, list): l2_norm = [l2_norm] * len(feat_names) self.l2_norm = l2_norm feature_extractor.train(False) self.feature_extractor = feature_extractor self.classifiers = nn.ModuleList([ Classifier(n_classes, feat_name=feat_names[i], feat_dim=feat_dims[i], pooling=pooling_ops[i], l2_norm=l2_norm[i], use_bn=use_bn, use_dropout=use_dropout) for i in range(n_outputs) ]) for p in self.feature_extractor.parameters(): p.requires_grad = False def forward(self, *x): with torch.no_grad(): embs = self.feature_extractor(*x, return_embs=self.feat_names) embs = {ft: embs[ft] for ft in self.feat_names} for classifier, ft in zip(self.classifiers, self.feat_names): embs[ft] = classifier(embs[ft]) return embs def build_model(feat_cfg, eval_cfg, eval_dir, args, logger): import models pretrained_net = models.__dict__[feat_cfg['arch']](**feat_cfg['args']) # Load from checkpoint checkpoint_fn = '{}/{}/checkpoint.pth.tar'.format(feat_cfg['model_dir'], feat_cfg['name']) ckp = torch.load(checkpoint_fn, map_location='cpu') pretrained_net.load_state_dict({k.replace('module.', ''): ckp['model'][k] for k in ckp['model']}) # Wrap with linear-head classifiers if eval_cfg['model']['name'] == 'ClassificationWrapper': model = ClassificationWrapper(feature_extractor=pretrained_net.video_model, **eval_cfg['model']['args']) ckp_manager = CheckpointManager(eval_dir, rank=args.gpu) elif eval_cfg['model']['name'] == 'MOSTWrapper': model = MOSTModel(feature_extractor=pretrained_net.video_model, **eval_cfg['model']['args']) ckp_manager = MOSTCheckpointManager(eval_dir, rank=args.gpu) else: raise ValueError # Log model description logger.add_line("=" * 30 + " Model " + "=" * 30) logger.add_line(str(model)) logger.add_line("=" * 30 + " Parameters " + "=" * 30) logger.add_line(main_utils.parameter_description(model)) logger.add_line("=" * 30 + " Pretrained model " + "=" * 30) logger.add_line("File: {}\nEpoch: {}".format(checkpoint_fn, ckp['epoch'])) # Distribute model = distribute_model_to_cuda(model, args, eval_cfg) return model, ckp_manager class BatchWrapper: def __init__(self, model, batch_size): self.model = model self.batch_size = batch_size def __call__(self, x): outs = [] for i in range(0, x.shape[0], self.batch_size): outs += [self.model(x[i:i + self.batch_size])] return torch.cat(outs, 0)
AVID-CMA-main
utils/eval_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
AVID-CMA-main
utils/ioutils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import av import numpy as np from fractions import Fraction av.logging.set_level(0) def av_open(inpt): return av.open(inpt) def av_load_video(container, video_fps=None, start_time=0, duration=None): video_stream = container.streams.video[0] _ss = video_stream.start_time * video_stream.time_base _dur = video_stream.duration * video_stream.time_base _ff = _ss + _dur _fps = video_stream.average_rate if video_fps is None: video_fps = _fps if duration is None: duration = _ff - start_time # Figure out which frames to decode outp_times = [t for t in np.arange(start_time, min(start_time + duration - 0.5/_fps, _ff), 1./video_fps)][:int(duration*video_fps)] outp_vframes = [int((t - _ss) * _fps) for t in outp_times] start_time = outp_vframes[0] / float(_fps) # Fast forward container.seek(int(start_time * av.time_base)) # Decode snippet frames = [] for frame in container.decode(video=0): if len(frames) == len(outp_vframes): break # All frames have been decoded frame_no = frame.pts * frame.time_base * _fps if frame_no < outp_vframes[len(frames)]: continue # Not the frame we want # Decode pil_img = frame.to_image() while frame_no >= outp_vframes[len(frames)]: frames += [pil_img] if len(frames) == len(outp_vframes): break # All frames have been decoded return frames, video_fps, start_time def av_laod_audio(container, audio_fps=None, start_time=0, duration=None): audio_stream = container.streams.audio[0] _ss = audio_stream.start_time * audio_stream.time_base if audio_stream.start_time is not None else 0. _dur = audio_stream.duration * audio_stream.time_base _ff = _ss + _dur _fps = audio_stream.rate if audio_fps is None: resample = False audio_fps = _fps else: resample = True audio_resampler = av.audio.resampler.AudioResampler(format="s16p", layout="mono", rate=audio_fps) if duration is None: duration = _ff - start_time duration = min(duration, _ff - start_time) end_time = start_time + duration # Fast forward container.seek(int(start_time * av.time_base)) # Decode snippet data, timestamps = [], [] for frame in container.decode(audio=0): frame_pts = frame.pts * frame.time_base frame_end_pts = frame_pts + Fraction(frame.samples, frame.rate) if frame_end_pts < start_time: # Skip until start time continue if frame_pts > end_time: # Exit if clip has been extracted break try: frame.pts = None if resample: np_snd = audio_resampler.resample(frame).to_ndarray() else: np_snd = frame.to_ndarray() data += [np_snd] timestamps += [frame_pts] except AttributeError: break data = np.concatenate(data, 1) # Trim audio start_decoded_time = timestamps[0] ss = int((start_time - start_decoded_time) * audio_fps) t = int(duration * audio_fps) if ss < 0: data = np.pad(data, ((0, 0), (-ss, 0)), 'constant', constant_values=0) ss = 0 if t > data.shape[1]: data = np.pad(data, ((0, 0), (0, t-data.shape[1])), 'constant', constant_values=0) data = data[:, ss: ss+t] data = data / np.iinfo(data.dtype).max return data, audio_fps
AVID-CMA-main
utils/ioutils/av_wrappers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import random import torch from utils.videotransforms.utils import functional as F class Normalize(object): """Normalize a tensor image with mean and standard deviation Given mean: m and std: s will normalize each channel as channel = (channel - mean) / std Args: mean (int): mean value std (int): std value """ def __init__(self, mean, std): self.mean = torch.tensor(mean).view(3, 1, 1, 1) self.std = torch.tensor(std).view(3, 1, 1, 1) def __call__(self, tensor): """ Args: tensor (Tensor): Tensor of stacked images or image of size (C, H, W) to be normalized Returns: Tensor: Normalized stack of image of image """ return F.normalize(tensor, self.mean, self.std) class SpatialRandomCrop(object): """Crops a random spatial crop in a spatio-temporal numpy or tensor input [Channel, Time, Height, Width] """ def __init__(self, size): """ Args: size (tuple): in format (height, width) """ self.size = size def __call__(self, tensor): h, w = self.size _, _, tensor_h, tensor_w = tensor.shape if w > tensor_w or h > tensor_h: error_msg = ( 'Initial tensor spatial size should be larger then ' 'cropped size but got cropped sizes : ({w}, {h}) while ' 'initial tensor is ({t_w}, {t_h})'.format( t_w=tensor_w, t_h=tensor_h, w=w, h=h)) raise ValueError(error_msg) x1 = random.randint(0, tensor_w - w) y1 = random.randint(0, tensor_h - h) cropped = tensor[:, :, y1:y1 + h, x1:x1 + h] return cropped
AVID-CMA-main
utils/videotransforms/tensor_transforms.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np from PIL import Image import torch from utils.videotransforms.utils import images as imageutils class ClipToTensor(object): """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255] to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0] """ def __init__(self, channel_nb=3, div_255=True, numpy=False): self.channel_nb = channel_nb self.div_255 = div_255 self.numpy = numpy def __call__(self, clip): """ Args: clip (list of numpy.ndarray): clip (list of images) to be converted to tensor. """ # Retrieve shape if isinstance(clip[0], np.ndarray): h, w, ch = clip[0].shape assert ch == self.channel_nb, 'Got {0} instead of 3 channels'.format( ch) elif isinstance(clip[0], Image.Image): w, h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)]) # Convert for img_idx, img in enumerate(clip): if isinstance(img, np.ndarray): pass elif isinstance(img, Image.Image): img = np.array(img, copy=False) else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) img = imageutils.convert_img(img) np_clip[:, img_idx, :, :] = img if self.numpy: if self.div_255: np_clip = np_clip / 255 return np_clip else: tensor_clip = torch.from_numpy(np_clip) if not isinstance(tensor_clip, torch.FloatTensor): tensor_clip = tensor_clip.float() if self.div_255: tensor_clip = tensor_clip.div(255) return tensor_clip class ToTensor(object): """Converts numpy array to tensor """ def __call__(self, array): tensor = torch.from_numpy(array) return tensor
AVID-CMA-main
utils/videotransforms/volume_transforms.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numbers import numpy as np import PIL def crop_clip(clip, min_h, min_w, h, w): if isinstance(clip[0], np.ndarray): cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip] elif isinstance(clip[0], PIL.Image.Image): cropped = [ img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip ] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return cropped def resize_clip(clip, size, interpolation='bilinear'): if isinstance(clip[0], np.ndarray): if isinstance(size, numbers.Number): im_h, im_w, im_c = clip[0].shape # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[1], size[0] if interpolation == 'bilinear': np_inter = cv2.INTER_LINEAR else: np_inter = cv2.INTER_NEAREST scaled = [ cv2.resize(img, size, interpolation=np_inter) for img in clip ] elif isinstance(clip[0], PIL.Image.Image): if isinstance(size, numbers.Number): im_w, im_h = clip[0].size # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[1], size[0] if interpolation == 'bilinear': pil_inter = PIL.Image.NEAREST else: pil_inter = PIL.Image.BILINEAR scaled = [img.resize(size, pil_inter) for img in clip] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return scaled def get_resize_sizes(im_h, im_w, size): if im_w < im_h: ow = size oh = int(size * im_h / im_w) else: oh = size ow = int(size * im_w / im_h) return oh, ow
AVID-CMA-main
utils/videotransforms/functional.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import PIL import torch from utils.videotransforms.utils import images as imageutils class ToStackedTensor(object): """Converts a list of m (H x W x C) numpy.ndarrays in the range [0, 255] or PIL Images to a torch.FloatTensor of shape (m*C x H x W) in the range [0, 1.0] """ def __init__(self, channel_nb=3): self.channel_nb = channel_nb def __call__(self, clip): """ Args: clip (list of numpy.ndarray or PIL.Image.Image): clip (list of images) to be converted to tensor. """ # Retrieve shape if isinstance(clip[0], np.ndarray): h, w, ch = clip[0].shape assert ch == self.channel_nb, 'got {} channels instead of 3'.format( ch) elif isinstance(clip[0], PIL.Image.Image): w, h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) np_clip = np.zeros([self.channel_nb * len(clip), int(h), int(w)]) # Convert for img_idx, img in enumerate(clip): if isinstance(img, np.ndarray): pass elif isinstance(img, PIL.Image.Image): img = np.array(img, copy=False) else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) img = imageutils.convert_img(img) np_clip[img_idx * self.channel_nb:( img_idx + 1) * self.channel_nb, :, :] = img tensor_clip = torch.from_numpy(np_clip) return tensor_clip.float().div(255)
AVID-CMA-main
utils/videotransforms/stack_transforms.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numbers import random import numpy as np import PIL import torchvision import warnings import math from utils.videotransforms import functional as F from torchvision.transforms import functional as vF class Compose(object): """Composes several transforms Args: transforms (list of ``Transform`` objects): list of transforms to compose """ def __init__(self, transforms): self.transforms = transforms def __call__(self, clip): for t in self.transforms: clip = t(clip) return clip class RandomDrop(object): """Randomly drops frames in order to keep a fixed number of frames """ def __init__(self, num_frames): self.num_frames = num_frames def __call__(self, clip): assert len(clip) >= self.num_frames if len(clip) == self.num_frames: return clip idx = sorted(random.sample(range(len(clip)), k=self.num_frames)) return [clip[i] for i in idx] class UniformDrop(object): """Randomly drops frames in order to keep a fixed number of frames """ def __init__(self, num_frames=None, ss_ratio=None): self.num_frames = num_frames self.ss_ratio = ss_ratio def __call__(self, clip): if self.num_frames is not None: if len(clip) <= self.num_frames: return clip idx = np.linspace(0, len(clip)-1, self.num_frames, endpoint=True).astype(int) return [clip[i] for i in idx] elif self.ss_ratio is not None: if self.ss_ratio == 1: return clip idx = np.arange(0, len(clip), self.ss_ratio).astype(int) return [clip[i] for i in idx] class RandomHorizontalFlip(object): """Horizontally flip the list of given images randomly with a probability 0.5 """ def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Randomly flipped clip """ if random.random() < 0.5: if isinstance(clip[0], np.ndarray): return [np.fliplr(img) for img in clip] elif isinstance(clip[0], PIL.Image.Image): return [ img.transpose(PIL.Image.FLIP_LEFT_RIGHT) for img in clip ] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + ' but got list of {0}'.format(type(clip[0]))) return clip class RandomGray(object): """Horizontally flip the list of given images randomly with a probability 0.5 """ def __init__(self, p): self.p = p def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Randomly flipped clip """ rand_gray_clip = [] for img in clip: if random.random() < self.p: img = vF.to_grayscale(img) rand_gray_clip.append(img) return rand_gray_clip class RandomResize(object): """Resizes a list of (H x W x C) numpy.ndarray to the final size The larger the original image is, the more times it takes to interpolate Args: interpolation (str): Can be one of 'nearest', 'bilinear' defaults to nearest size (tuple): (widht, height) """ def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'): self.ratio = ratio self.interpolation = interpolation def __call__(self, clip): scaling_factor = random.uniform(self.ratio[0], self.ratio[1]) if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size new_w = int(im_w * scaling_factor) new_h = int(im_h * scaling_factor) new_size = (new_w, new_h) resized = F.resize_clip( clip, new_size, interpolation=self.interpolation) return resized class Resize(object): """Resizes a list of (H x W x C) numpy.ndarray to the final size The larger the original image is, the more times it takes to interpolate Args: interpolation (str): Can be one of 'nearest', 'bilinear' defaults to nearest size (tuple): (widht, height) """ def __init__(self, size, interpolation='nearest'): self.size = size self.interpolation = interpolation def __call__(self, clip): resized = F.resize_clip( clip, self.size, interpolation=self.interpolation) return resized class RandomCrop(object): """Extract random crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) if w > im_w or h > im_h: error_msg = ( 'Initial image size should be larger then ' 'cropped size but got cropped sizes : ({w}, {h}) while ' 'initial image is ({im_w}, {im_h})'.format( im_w=im_w, im_h=im_h, w=w, h=h)) raise ValueError(error_msg) x1 = random.randint(0, im_w - w) y1 = random.randint(0, im_h - h) cropped = F.crop_clip(clip, y1, x1, h, w) return cropped class CenterCrop(object): """Extract center crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) if w > im_w or h > im_h: error_msg = ( 'Initial image size should be larger then ' 'cropped size but got cropped sizes : ({w}, {h}) while ' 'initial image is ({im_w}, {im_h})'.format( im_w=im_w, im_h=im_h, w=w, h=h)) raise ValueError(error_msg) x1 = int(round((im_w - w) / 2.)) y1 = int(round((im_h - h) / 2.)) cropped = F.crop_clip(clip, y1, x1, h, w) return cropped class TenCrop(object): """Extract center crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ cropped = [] for frame in clip: cropped += list(vF.ten_crop(frame, self.size)) return cropped class RandomResizedCrop(object): """Crops a series of PIL Image to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=PIL.Image.BILINEAR): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") self.interpolation = interpolation self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if (in_ratio < min(ratio)): w = img.size[0] h = int(round(w / min(ratio))) elif (in_ratio > max(ratio)): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, clip): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(clip[0], self.scale, self.ratio) return [vF.resized_crop(img, i, j, h, w, self.size, self.interpolation) for img in clip] def __repr__(self): interpolate_str = '?' format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string class ColorJitter(object): """Randomly change the brightness, contrast and saturation and hue of the clip Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def get_params(self, brightness, contrast, saturation, hue): if brightness > 0: brightness_factor = random.uniform( max(0, 1 - brightness), 1 + brightness) else: brightness_factor = None if contrast > 0: contrast_factor = random.uniform( max(0, 1 - contrast), 1 + contrast) else: contrast_factor = None if saturation > 0: saturation_factor = random.uniform( max(0, 1 - saturation), 1 + saturation) else: saturation_factor = None if hue > 0: hue_factor = random.uniform(-hue, hue) else: hue_factor = None return brightness_factor, contrast_factor, saturation_factor, hue_factor def __call__(self, clip): """ Args: clip (list): list of PIL.Image Returns: list PIL.Image : list of transformed PIL.Image """ if isinstance(clip[0], np.ndarray): raise TypeError( 'Color jitter not yet implemented for numpy arrays') elif isinstance(clip[0], PIL.Image.Image): brightness, contrast, saturation, hue = self.get_params( self.brightness, self.contrast, self.saturation, self.hue) # Create img transform function sequence img_transforms = [] if brightness is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) if saturation is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) if hue is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) if contrast is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) random.shuffle(img_transforms) # Apply to all images jittered_clip = [] for img in clip: for func in img_transforms: img = func(img) jittered_clip.append(img) else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return jittered_clip class TemporalJitter(object): """Crop video sequence temporally with jitter Args: n_frames (int): number of output frames min_scale (float): minimum subsample rate (default 1.0) max_scale (float): maximum subsample rate (default 1.0) """ def __init__(self, n_frames, time_scale=(1.,1.)): self.n_frames = n_frames self.time_scale = time_scale def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ rate = self.time_scale[0] if self.time_scale[0] == self.time_scale[1] else random.uniform(self.time_scale[0], min(self.time_scale[1], float(len(clip))/float(self.n_frames))) clip_ss = [clip[int(t)] for t in np.arange(0, len(clip), rate)] if len(clip_ss) == self.n_frames: clip_out = clip_ss elif len(clip_ss) < self.n_frames: # Wrap to fill frames clip_out = [clip_ss[t%len(clip_ss)] for t in range(self.n_frames)] else: # Extract random crop max_init_t = len(clip_ss) - self.n_frames init_t = random.randint(0, max_init_t) clip_out = clip_ss[init_t:init_t + self.n_frames] return clip_out class TemporalCenterCrop(object): """Crop video sequence temporally with jitter Args: n_frames (int): number of output frames min_scale (float): minimum subsample rate (default 1.0) max_scale (float): maximum subsample rate (default 1.0) """ def __init__(self, n_frames, time_scale=1.): self.n_frames = n_frames self.time_scale = time_scale def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ clip_ss = [clip[int(t)] for t in np.arange(0, len(clip), self.time_scale)] if len(clip_ss) == self.n_frames: clip_out = clip_ss elif len(clip_ss) < self.n_frames: # Wrap to fill frames clip_out = [clip_ss[t%len(clip_ss)] for t in range(self.n_frames)] else: # Extract random crop init_t = (len(clip_ss) - self.n_frames)//2 clip_out = clip_ss[init_t:init_t + self.n_frames] return clip_out
AVID-CMA-main
utils/videotransforms/video_transforms.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def normalize(tensor, mean, std): """ Args: tensor (Tensor): Tensor to normalize Returns: Tensor: Normalized tensor """ tensor.sub_(mean).div_(std) return tensor
AVID-CMA-main
utils/videotransforms/utils/functional.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np def convert_img(img): """Converts (H, W, C) numpy.ndarray to (C, W, H) format """ if len(img.shape) == 3: img = img.transpose(2, 0, 1) if len(img.shape) == 2: img = np.expand_dims(img, 0) return img
AVID-CMA-main
utils/videotransforms/utils/images.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .video import * from .audio import * from .av_wrapper import *
AVID-CMA-main
models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import numpy as np class Basic2DBlock(nn.Module): def __init__(self, in_planes, out_planes, stride=(1, 1)): self.__dict__.update(locals()) super(Basic2DBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=(3, 3), padding=(1, 1), stride=stride, bias=False) self.bn1 = nn.BatchNorm2d(out_planes) self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=(3, 3), padding=(1, 1), bias=False) self.bn2 = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn2(self.conv2(x))) return x class BasicR2P1DBlock(nn.Module): def __init__(self, in_planes, out_planes, stride=(1, 1, 1)): super(BasicR2P1DBlock, self).__init__() spt_stride = (1, stride[1], stride[2]) tmp_stride = (stride[0], 1, 1) self.spt_conv1 = nn.Conv3d(in_planes, out_planes, kernel_size=(1, 3, 3), stride=spt_stride, padding=(0, 1, 1), bias=False) self.spt_bn1 = nn.BatchNorm3d(out_planes) self.tmp_conv1 = nn.Conv3d(out_planes, out_planes, kernel_size=(3, 1, 1), stride=tmp_stride, padding=(1, 0, 0), bias=False) self.tmp_bn1 = nn.BatchNorm3d(out_planes) self.spt_conv2 = nn.Conv3d(out_planes, out_planes, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=False) self.spt_bn2 = nn.BatchNorm3d(out_planes) self.tmp_conv2 = nn.Conv3d(out_planes, out_planes, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0), bias=False) self.out_bn = nn.BatchNorm3d(out_planes) self.relu = nn.ReLU(inplace=True) if in_planes != out_planes or any([s!=1 for s in stride]): self.res = True self.res_conv = nn.Conv3d(in_planes, out_planes, kernel_size=(1, 1, 1), stride=stride, padding=(0, 0, 0), bias=False) else: self.res = False def forward(self, x): x_main = self.tmp_conv1(self.relu(self.spt_bn1(self.spt_conv1(x)))) x_main = self.relu(self.tmp_bn1(x_main)) x_main = self.tmp_conv2(self.relu(self.spt_bn2(self.spt_conv2(x_main)))) x_res = self.res_conv(x) if self.res else x x_out = self.relu(self.out_bn(x_main + x_res)) return x_out
AVID-CMA-main
models/network_blocks.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn __all__ = [ 'av_wrapper' ] class Head(nn.Module): def __init__(self, input_dim, proj_dims): super(Head, self).__init__() if not isinstance(proj_dims, list): proj_dims = [proj_dims] projection = [] for i, d in enumerate(proj_dims): projection += [nn.Linear(input_dim, d)] input_dim = d if i < len(proj_dims)-1: projection += [nn.ReLU(inplace=True)] self.projection = nn.Sequential(*projection) self.out_dim = proj_dims[-1] def forward(self, x): return self.projection(x) class AV_Wrapper(nn.Module): def __init__(self, video_model, audio_model, proj_dim=128): super(AV_Wrapper, self).__init__() self.video_model = video_model self.audio_model = audio_model self.use_linear_proj = proj_dim is not None if proj_dim is not None: self.video_proj = Head(video_model.out_dim, proj_dim) self.audio_proj = Head(audio_model.out_dim, proj_dim) self.out_dim = self.video_proj.out_dim else: self.out_dim = video_model.out_dim def forward(self, video, audio): video_emb = self.video_model(video) video_emb = video_emb.view(video_emb.shape[0], video_emb.shape[1]) if self.use_linear_proj: video_emb = self.video_proj(video_emb) audio_emb = self.audio_model(audio) audio_emb = audio_emb.view(audio_emb.shape[0], audio_emb.shape[1]) if self.use_linear_proj: audio_emb = self.audio_proj(audio_emb) return video_emb, audio_emb def av_wrapper(video_backbone, video_backbone_args, audio_backbone, audio_backbone_args, proj_dim=128, checkpoint=None): import models assert video_backbone in models.__dict__, 'Unknown model architecture' assert audio_backbone in models.__dict__, 'Unknown model architecture' video_model = models.__dict__[video_backbone](**video_backbone_args) audio_model = models.__dict__[audio_backbone](**audio_backbone_args) model = AV_Wrapper(video_model, audio_model, proj_dim=proj_dim) if checkpoint is not None: ckp = torch.load(checkpoint, map_location='cpu') nn.DataParallel(model).load_state_dict(ckp['model']) return model
AVID-CMA-main
models/av_wrapper.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn from .network_blocks import Basic2DBlock __all__ = [ 'Conv2D' ] class Conv2D(nn.Module): def __init__(self, depth=10): super(Conv2D, self).__init__() assert depth==10 self.conv1 = nn.Sequential( nn.Conv2d(1, 64, kernel_size=7, padding=3, stride=2, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) self.block1 = Basic2DBlock(64, 64, stride=(2, 2)) self.block2 = Basic2DBlock(64, 128, stride=(2, 2)) self.block3 = Basic2DBlock(128, 256, stride=(2, 2)) self.block4 = Basic2DBlock(256, 512) self.pool = nn.AdaptiveMaxPool2d((1, 1)) self.out_dim = 512 def forward(self, x, return_embs=False): x_c1 = self.conv1(x) x_b1 = self.block1(x_c1) x_b2 = self.block2(x_b1) x_b3 = self.block3(x_b2) x_b4 = self.block4(x_b3) x_pool = self.pool(x_b4) if return_embs: return {'conv2x': x_b1, 'conv3x': x_b2, 'conv4x': x_b3, 'conv5x': x_b4, 'pool': x_pool} else: return x_pool
AVID-CMA-main
models/audio.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn from models.network_blocks import BasicR2P1DBlock class R2Plus1D(nn.Module): """ Adapted from https://github.com/facebookresearch/VMZ/blob/4c14ee6f8eae8e2ac97fc4c05713b8a112eb1f28/lib/models/video_model.py Adaptation has a full Conv3D stem, and does not adjust for the number of dimensions between the spatial and temporal convolution. """ def __init__(self, depth=18): super(R2Plus1D, self).__init__() self.conv1 = nn.Sequential( nn.Conv3d(3, 64, kernel_size=(3, 7, 7), padding=(1, 3, 3), stride=(1, 2, 2), bias=False), nn.BatchNorm3d(64), nn.ReLU(inplace=True), nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)) ) if depth == 10: self.conv2x = BasicR2P1DBlock(64, 64) self.conv3x = BasicR2P1DBlock(64, 128, stride=(2, 2, 2)) self.conv4x = BasicR2P1DBlock(128, 256, stride=(2, 2, 2)) self.conv5x = BasicR2P1DBlock(256, 512, stride=(2, 2, 2)) elif depth == 18: self.conv2x = nn.Sequential(BasicR2P1DBlock(64, 64), BasicR2P1DBlock(64, 64)) self.conv3x = nn.Sequential(BasicR2P1DBlock(64, 128, stride=(2, 2, 2)), BasicR2P1DBlock(128, 128)) self.conv4x = nn.Sequential(BasicR2P1DBlock(128, 256, stride=(2, 2, 2)), BasicR2P1DBlock(256, 256)) self.conv5x = nn.Sequential(BasicR2P1DBlock(256, 512, stride=(2, 2, 2)), BasicR2P1DBlock(512, 512)) elif depth == 34: self.conv2x = nn.Sequential(BasicR2P1DBlock(64, 64), BasicR2P1DBlock(64, 64), BasicR2P1DBlock(64, 64)) self.conv3x = nn.Sequential(BasicR2P1DBlock(64, 128, stride=(2, 2, 2)), BasicR2P1DBlock(128, 128), BasicR2P1DBlock(128, 128), BasicR2P1DBlock(128, 128)) self.conv4x = nn.Sequential(BasicR2P1DBlock(128, 256, stride=(2, 2, 2)), BasicR2P1DBlock(256, 256), BasicR2P1DBlock(256, 256), BasicR2P1DBlock(256, 256), BasicR2P1DBlock(256, 256), BasicR2P1DBlock(256, 256)) self.conv5x = nn.Sequential(BasicR2P1DBlock(256, 512, stride=(2, 2, 2)), BasicR2P1DBlock(512, 512), BasicR2P1DBlock(512, 512)) self.pool = nn.AdaptiveMaxPool3d((1, 1, 1)) self.out_dim = 512 def forward(self, x, return_embs=False): x_c1 = self.conv1(x) x_b1 = self.conv2x(x_c1) x_b2 = self.conv3x(x_b1) x_b3 = self.conv4x(x_b2) x_b4 = self.conv5x(x_b3) x_pool = self.pool(x_b4) if return_embs: return {'conv1': x_c1, 'conv2x': x_b1, 'conv3x': x_b2, 'conv4x': x_b3, 'conv5x': x_b4, 'pool': x_pool} else: return x_pool
AVID-CMA-main
models/video.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .avid import * from .avid_cma import *
AVID-CMA-main
criterions/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch import nn from torch.nn import functional as F import torch.distributed as dist import pprint from utils.distributed_utils import _gather_from_all from utils.alias_method import AliasMethod from criterions.nce import NCECriterion __all__ = ['AVID'] class AVIDSimilarityMemoryBank(nn.Module): def __init__(self, memory_size, embedding_dim, xModal=True, wModal=False, num_negatives=1024, momentum=0.5, device=0 ): super(AVIDSimilarityMemoryBank, self).__init__() self.num_negatives = num_negatives self.temperature = 0.07 if not isinstance(momentum, (list, tuple)): momentum = [momentum]*2 self.momentum = momentum self.device = device self.multinomial = AliasMethod(torch.ones(memory_size-1)) self.xModal = xModal self.wModal = wModal self.distributed = dist.is_available() and dist.is_initialized() self.rank = dist.get_rank() if self.distributed else 0 self.init_memory(memory_size, embedding_dim) def forward(self, video_emb, audio_emb, y): K = int(self.num_negatives) # Normalize embeddings bs, dim = video_emb.shape video_emb = F.normalize(video_emb, p=2, dim=1).view(bs, dim, 1) audio_emb = F.normalize(audio_emb, p=2, dim=1).view(bs, dim, 1) # Sample memories with torch.no_grad(): video_pos_mem = self.view1_mem[y].view(bs, 1, dim) audio_pos_mem = self.view2_mem[y].view(bs, 1, dim) idx = self.sample_negatives(y, K).to(video_emb.device) video_neg_mem = self.view1_mem[idx].view(bs, K, dim) audio_neg_mem = self.view2_mem[idx].view(bs, K, dim) # Compute scores def compute_scores(context_emb, target_embs, T): return [torch.bmm(trg, context_emb).squeeze(-1) / T for trg in target_embs] scores = {} if self.xModal: scores['v2a'] = compute_scores(video_emb, [audio_pos_mem, audio_neg_mem], self.temperature) scores['a2v'] = compute_scores(audio_emb, [video_pos_mem, video_neg_mem], self.temperature) if self.wModal: scores['v2v'] = compute_scores(video_emb, [video_pos_mem, video_neg_mem], self.temperature) scores['a2a'] = compute_scores(audio_emb, [audio_pos_mem, audio_neg_mem], self.temperature) # Update memory bank self.update_memory(video_emb.squeeze(-1), audio_emb.squeeze(-1), y) return scores def sample_negatives(self, y, K): bs = y.shape[0] idx = self.multinomial.draw(bs * K).view(bs, -1).to(y.device) idx = idx + (idx >= y.unsqueeze(1)).long() # Avoid self return idx def init_memory(self, num_items, embedding_dim): self.register_buffer('view1_mem', torch.randn(num_items, embedding_dim)) self.register_buffer('view2_mem', torch.randn(num_items, embedding_dim)) self.view1_mem = F.normalize(self.view1_mem, p=2, dim=1) self.view1_mem = self.view1_mem.cuda(self.device) self.view2_mem = F.normalize(self.view2_mem, p=2, dim=1) self.view2_mem = self.view2_mem.cuda(self.device) if self.distributed: dist.broadcast(self.view1_mem, 0) dist.broadcast(self.view2_mem, 0) dist.barrier() def update_memory(self, video_emb, audio_emb, y): video_mom = float(self.momentum[0]) audio_mom = float(self.momentum[1]) # gather embeddings from all gpus if self.distributed: video_emb_gathered = _gather_from_all(video_emb) audio_emb_gathered = _gather_from_all(audio_emb) y_gathered = _gather_from_all(y) else: video_emb_gathered = video_emb audio_emb_gathered = audio_emb y_gathered = y # update audio and video memories with torch.no_grad(): l1_pos = self.view1_mem.index_select(0, y_gathered.view(-1)) l1_pos.mul_(video_mom) l1_pos.add_(torch.mul(video_emb_gathered, 1 - video_mom)) updated_l1 = F.normalize(l1_pos, p=2, dim=1) self.view1_mem.index_copy_(0, y_gathered, updated_l1) l2_pos = self.view2_mem.index_select(0, y_gathered.view(-1)) l2_pos.mul_(audio_mom) l2_pos.add_(torch.mul(audio_emb_gathered, 1 - audio_mom)) updated_l2 = F.normalize(l2_pos, p=2, dim=1) self.view2_mem.index_copy_(0, y_gathered, updated_l2) def __repr__(self): num_negatives = int(self.num_negatives) view1_mom = float(self.momentum[0]) view2_mom = float(self.momentum[1]) repr_dict = { 'name': self._get_name(), 'num_negatives': num_negatives, 'momentum': [view1_mom, view2_mom], 'view1_buffer_size': self.view1_mem.shape, 'view2_buffer_size': self.view2_mem.shape, } return pprint.pformat(repr_dict, indent=2) class AVID(nn.Module): def __init__(self, num_data, embedding_dim, num_negatives=4096, momentum=0.9, xModal_coeff=1., wModal_coeff=0., checkpoint=None, device=0): super(AVID, self).__init__() ''' AVID criterion. This module receives the output embeddings of the video and audio models, computes their non-linear projections, manages the memory bank and computes the final loss. Args: - num_data: number of instances in the training set. - embedding_dim: output dimension of the non-linear projection. - num_negatives: number of negatives to draw from memory bank to compute the NCE loss. - momentum: memory bank EMA momemtum parameter. - xModal_coeff: coefficient for the cross modal loss. (Cross-AVID: 1.0 | Self-AVID: 0.0 | Joint-AVID: 1.0) - wModal_coeff: coefficient for the within modal loss. (Cross-AVID: 0.0 | Self-AVID: 1.0 | Joint-AVID: 1.0) - checkpoint: optinally specify a checkpoint path to restore the memory bank and partition function ''' self.nce_average = AVIDSimilarityMemoryBank( memory_size=num_data, embedding_dim=embedding_dim, num_negatives=num_negatives, momentum=momentum, xModal=xModal_coeff>0., wModal=wModal_coeff>0., device=device ) self.nce_average = self.nce_average.cuda(device) sum_coeff = (xModal_coeff + wModal_coeff) self.xModal_coeff = xModal_coeff / sum_coeff self.wModal_coeff = wModal_coeff / sum_coeff self.criterion = NCECriterion(num_data) # Restore memory bank and partition function if necessary if checkpoint is not None: ckp = torch.load(checkpoint, map_location='cpu')['train_criterion'] state_dict = self.state_dict() # Restore memory banks state_dict['nce_average.view1_mem'] = ckp['nce_average.view1_mem'] state_dict['nce_average.view2_mem'] = ckp['nce_average.view2_mem'] # Restore partition function Z = torch.stack([ckp[k] for k in ckp if 'avg_exp_score' in k]).mean() for k in state_dict: if 'avg_exp_score' in k: state_dict[k] = Z self.load_state_dict(state_dict) def forward(self, emb1, emb2, target): ''' Args - emb1: Video embeddings `(N, D)` - emb2: Audio embeddings `(N, D)` - taget: Intance labels `(N)` ''' tb_log = {} # Compare output embeddings to memory bank embeddings and get scores # scores given as: {task: [scores_positives, scores_negatives]} scores = self.nce_average(emb1, emb2, target) # Compute loss xModal_loss, wModal_loss = 0., 0 for k in scores: loss = self.criterion(*scores[k]) if k in {'v2a', 'a2v'}: xModal_loss += loss / 2. elif k in {'v2v', 'a2a'}: wModal_loss += loss / 2. # Tensorboard metrics tb_log[f'Loss/{k}'] = loss # Tensorboard metrics tb_log['Loss/xModal'] = xModal_loss tb_log['Loss/wModal'] = wModal_loss # Final loss total_loss = xModal_loss * self.xModal_coeff + wModal_loss * self.wModal_coeff return total_loss, tb_log def set_epoch(self, epoch): pass
AVID-CMA-main
criterions/avid.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch import nn import torch.distributed as dist from utils.distributed_utils import _gather_from_all class NCECriterion(nn.Module): def __init__(self, nLem): super(NCECriterion, self).__init__() self.nLem = nLem self.register_buffer('avg_exp_score', torch.tensor(-1.)) self.distributed = dist.is_available() and dist.is_initialized() def compute_partition_function(self, out): if self.avg_exp_score > 0: # Use precomputed value return self.avg_exp_score with torch.no_grad(): batch_mean = out.mean().unsqueeze(0) if self.distributed: batch_mean_gathered = _gather_from_all(batch_mean) all_batch_mean = batch_mean_gathered.mean().squeeze() else: all_batch_mean = batch_mean Z = all_batch_mean self.avg_exp_score = Z return self.avg_exp_score def forward(self, scores_pos, scores_neg): K = scores_neg.size(1) # Compute unnormalized distributions exp_scores_pos = torch.exp(scores_pos) exp_scores_neg = torch.exp(scores_neg) # Compute partition function and normalize with torch.no_grad(): avg_exp_score = self.compute_partition_function(exp_scores_neg) # eq 5.1 : P(origin=model) = Pmt / (Pmt + k*Pnt) Pmt = torch.div(exp_scores_pos, exp_scores_pos + K * avg_exp_score) lnPmtSum = -torch.log(Pmt).mean(-1) # eq 5.2 : P(origin=noise) = k*Pn / (Pms + k*Pn) Pon = torch.div(K * avg_exp_score, exp_scores_neg + K * avg_exp_score) lnPonSum = -torch.log(Pon).sum(-1) loss = (lnPmtSum + lnPonSum).mean() return loss
AVID-CMA-main
criterions/nce.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import multiprocessing as mp mp.set_start_method('spawn', force=True) import torch from torch import nn from torch.nn import functional as F import torch.distributed as dist import numpy as np import pprint from utils.alias_method import AliasMethod from criterions.nce import NCECriterion from criterions.avid import AVIDSimilarityMemoryBank __all__ = ['AVID_CMA'] class CMASampler: def __init__(self, video_mem, audio_mem, sampling_args): ''' Class responsible for finding the audio-visual correspondences from the audio and video memory banks. Correspondences are computed by calling the sample() method. To speed things up, this code will be distributed over different GPUs and synced at the end. :param video_mem: Video memory bank :param audio_mem: Audio memory bank :param sampling_args: Dictionary with two fields. `type`: Type of correspondence. Options are `consensus`, `union`, `video` and `audio`. Refer to the paper for their meaning. `pos_k`: number of positive correspondences to sample for each instance. ''' self.video_mem = video_mem.cpu() self.audio_mem = audio_mem.cpu() self.sampling_args = sampling_args def sample_instance(self, gpu, q_job, q_data): video_mem = self.video_mem.cuda(gpu) audio_mem = self.audio_mem.cuda(gpu) while True: query_idx = q_job.get() if query_idx is None: break # Compute video and audio cosine similarities video_sim = torch.mm(video_mem, video_mem[query_idx].t()) audio_sim = torch.mm(audio_mem, audio_mem[query_idx].t()) # Compute agreement score if self.sampling_args['type'] == 'consensus': similarity = torch.stack([video_sim, audio_sim], 0).min(dim=0)[0] elif self.sampling_args['type'] == 'union': similarity = torch.stack([video_sim, audio_sim], 0).max(dim=0)[0] elif self.sampling_args['type'] == 'video': similarity = video_sim elif self.sampling_args['type'] == 'audio': similarity = audio_sim else: raise ValueError # Return top-k correspondences pos_sim, pos_idx = torch.topk(similarity, self.sampling_args['pos_k']+1, dim=0, sorted=True) pos_index = pos_idx[1:].t().cpu().numpy() # Avoid self pos_index = np.sort(pos_index, axis=1) # Sort indexes so that negative sampling can be done efficiently q_data.put((query_idx, pos_index)) q_data.put((None, None)) def sample_dispatcher(self, q_job, workers=80): num_items = self.video_mem.shape[0] batch_size = 16 for i in range(0, num_items, batch_size): query_idx = list(range(i, min(i+batch_size, num_items))) q_job.put(query_idx) for _ in range(workers): q_job.put(None) def sample_gather(self, q_data, workers=80): num_items = self.video_mem.shape[0] positive_index = np.zeros((num_items, self.sampling_args['pos_k'])).astype(int) workers_done, done = 0, 0 while workers_done < workers: query_idx, pos_idx = q_data.get() if query_idx is None: workers_done += 1 else: done += pos_idx.shape[0] positive_index[query_idx] = pos_idx if done % (64*1000) == 0: print(f"Done {done}/{num_items}") return positive_index def sample(self): # Compute CMA correspondences. Runs on only one process. Distributes work over all gpus. num_workers = torch.cuda.device_count() q_job = mp.Queue(maxsize=1000) q_data = mp.Queue(maxsize=1000) # Start job launcher disp = mp.Process(target=self.sample_dispatcher, args=(q_job, num_workers), daemon=True) disp.start() # Start workers workers = [] for gpu in range(num_workers): w = mp.Process(target=self.sample_instance, args=(gpu, q_job, q_data), daemon=True) w.start() workers += [w] # Gather results from workers pos_index = self.sample_gather(q_data, num_workers) # Wait for all jobs to finish [w.join() for w in workers] disp.join() return pos_index class AVIDSimilarityPositiveExpansion(AVIDSimilarityMemoryBank): def __init__(self, memory_size, embedding_dim, xModalInst=True, wModalInst=False, xModalPos=False, wModalPos=True, num_negatives=1024, num_negatives_within=None, sampling_args=None, momentum=0.5, device=0, ): super().__init__(memory_size=memory_size, embedding_dim=embedding_dim, xModal=xModalInst, wModal=wModalInst, num_negatives=num_negatives, momentum=momentum, device=device) self.num_negatives_within = num_negatives_within self.multinomial = AliasMethod(torch.ones(memory_size - sampling_args['pos_k'])) self.sampling_args = sampling_args self.xModalInst = xModalInst self.wModalInst = wModalInst self.xModalPos = xModalPos self.wModalPos = wModalPos def forward(self, video_emb, audio_emb, y): bs, dim = video_emb.shape video_emb = F.normalize(video_emb, p=2, dim=1).view(bs, dim, 1) audio_emb = F.normalize(audio_emb, p=2, dim=1).view(bs, dim, 1) # Sample memories with torch.no_grad(): video_self_mem = self.view1_mem[y].view(bs, 1, dim) audio_self_mem = self.view2_mem[y].view(bs, 1, dim) pos_idx, neg_idx = self.memory_sampling(y) video_pos_mem = self.view1_mem[pos_idx] audio_pos_mem = self.view2_mem[pos_idx] video_neg_mem = self.view1_mem[neg_idx] audio_neg_mem = self.view2_mem[neg_idx] # Compute scores def compute_scores(context_emb, target_embs, T): return [torch.bmm(trg, context_emb).squeeze(-1) / T for trg in target_embs] # Instance Discrimination scores = {} if self.xModalInst: # Cross-modal discrimination scores['inst-v2a'] = compute_scores(video_emb, [audio_self_mem, audio_neg_mem], self.temperature) scores['inst-a2v'] = compute_scores(audio_emb, [video_self_mem, video_neg_mem], self.temperature) if self.wModalInst: # Within-modal discrimination scores['inst-v2a'] = compute_scores(video_emb, [audio_self_mem, audio_neg_mem], self.temperature) scores['inst-a2v'] = compute_scores(audio_emb, [video_self_mem, video_neg_mem], self.temperature) # Positive Set Discrimination if self.xModalPos: # Cross-modal discrimination scores['pos-v2a'] = compute_scores(video_emb, [audio_pos_mem, audio_neg_mem], self.temperature) scores['pos-a2v'] = compute_scores(audio_emb, [video_pos_mem, video_neg_mem], self.temperature) if self.wModalPos: # Within-modal discrimination # Potentially reduce number of negatives for within-modal discrimination wm_video_neg_mem, wm_audio_neg_mem = video_neg_mem, audio_neg_mem if self.num_negatives_within is not None: wm_video_neg_mem = video_neg_mem[:, :self.num_negatives_within] wm_audio_neg_mem = audio_neg_mem[:, :self.num_negatives_within] scores['pos-v2v'] = compute_scores(video_emb, [video_pos_mem, wm_video_neg_mem], self.temperature) scores['pos-a2a'] = compute_scores(audio_emb, [audio_pos_mem, wm_audio_neg_mem], self.temperature) # Update memory self.update_memory(video_emb.squeeze(-1), audio_emb.squeeze(-1), y) return scores def memory_sampling(self, y): # Draw positives positive_indexes = self.positive_set[y].long() # Draw negatives bs = y.shape[0] rand_idx = self.multinomial.draw(bs * self.num_negatives).view(bs, -1).to(y.device) # Avoid positives while sampling negatives (Positive list is sorted.) pos_idx = self.positive_set[y].long() ref = pos_idx - torch.range(0, pos_idx.shape[1]-1, dtype=pos_idx.dtype).to(pos_idx.device).unsqueeze(0) negative_indexes = rand_idx + (rand_idx.unsqueeze(2) >= ref.unsqueeze(1)).sum(2) return positive_indexes, negative_indexes def find_correspondences(self): if self.sampling_args['pos_k'] <= 0: return # Find CMA correspondences. Only do this on one process if running in distributed mode and sync at the end. positive_set = np.zeros((self.view1_mem.shape[0], self.sampling_args['pos_k'])).astype(int) if not self.distributed or self.distributed and self.rank == 0: torch.cuda.empty_cache() positive_set = CMASampler(self.view1_mem, self.view2_mem, self.sampling_args).sample() # Find CMA correspondences. Only do this on one process if running in distributed mode and sync at the end. if positive_set is not None: self.register_buffer('positive_set', torch.from_numpy(positive_set).int()) self.positive_set = self.positive_set.cuda(self.device) if self.distributed: dist.broadcast(self.positive_set, 0) if self.distributed: dist.barrier() def __repr__(self): num_negatives = int(self.num_negatives) view1_mom = float(self.momentum[0]) view2_mom = float(self.momentum[1]) repr_dict = { 'name': self._get_name(), 'num_negatives': num_negatives, 'momentum': [view1_mom, view2_mom], 'view1_buffer_size': self.view1_mem.shape, 'view2_buffer_size': self.view2_mem.shape, } return pprint.pformat(repr_dict, indent=2) class AVID_CMA(nn.Module): def __init__(self, num_data, embedding_dim, num_negatives=1024, num_negatives_within=None, momentum=0.5, xModalInstCoeff=1., wModalInstCoeff=0., xModalPosCoeff=0., wModalPosCoeff=1., sampling_args=None, checkpoint=None, resample_freq=-1, device=0): super(AVID_CMA, self).__init__() ''' AVID_CMA criterion. This module receives the output embeddings of the video and audio models, computes their non-linear projections, manages the memory bank, draws positive correspondences, and computes the final loss (weighted average between instance discrimination and positive discrimination losses). Args: - num_data: number of instances in the training set. - embedding_dim: output dimension of the non-linear projection. - num_negatives: number of negatives to draw from memory bank to compute the NCE loss. - num_negatives_within: optionally reduce the number of negatives for the within-modal loss. - momentum: memory bank EMA momentum parameter. - xModalInstCoeff: coefficient for the cross modal instance discrimination loss. (AVID-CMA: 1.0) - wModalInstCoeff: coefficient for the within modal instance discrimination loss. (AVID-AVID: 0.0) - xModalPosCoeff: coefficient for the cross modal positive discrimination loss. (AVID-CMA: 0.0) - wModalPosCoeff: coefficient for the within modal positive discrimination loss. (AVID-AVID: 1.0) - checkpoint: optionally specify a checkpoint path to restore the memory bank and partition function ''' # first setup the NCEAverage method to get the scores of the output wrt. memory bank negatives self.nce_average = AVIDSimilarityPositiveExpansion( memory_size=num_data, embedding_dim=embedding_dim, num_negatives=num_negatives, num_negatives_within=num_negatives_within, momentum=momentum, xModalInst=xModalInstCoeff>0., xModalPos=xModalPosCoeff>0., wModalInst=wModalInstCoeff>0., wModalPos=wModalPosCoeff>0., sampling_args=sampling_args, device=device ) self.nce_average = self.nce_average.cuda(device) # Loss coefficients sum_coeff = xModalInstCoeff + wModalInstCoeff + xModalPosCoeff + wModalPosCoeff self.xModalInstCoeff = xModalInstCoeff / sum_coeff self.wModalInstCoeff = wModalInstCoeff / sum_coeff self.xModalPosCoeff = xModalPosCoeff / sum_coeff self.wModalPosCoeff = wModalPosCoeff / sum_coeff # Setup loss function self.criterion = NCECriterion(num_data) # Restore memory bank and partition function from AVID checkpoint # Needs to be done before finding correspondences if checkpoint is not None: ckp = torch.load(checkpoint, map_location='cpu')['train_criterion'] state_dict = self.state_dict() # Restore memory banks state_dict['nce_average.view1_mem'] = ckp['nce_average.view1_mem'] state_dict['nce_average.view2_mem'] = ckp['nce_average.view2_mem'] # Restore partition function Z = torch.stack([ckp[k] for k in ckp if 'avg_exp_score' in k]).mean() for k in state_dict: if 'avg_exp_score' in k: state_dict[k] = Z self.load_state_dict(state_dict) # Find CMA correspondences self.resample_freq = resample_freq self.nce_average.find_correspondences() def forward(self, emb1, emb2, target): ''' Args - emb1: Video embeddings `(N, D)` - emb2: Audio embeddings `(N, D)` - taget: Intance labels `(N)` ''' tb_log = {} # Compare output embeddings to memory bank embeddings and get scores scores = self.nce_average(emb1, emb2, target) # Compute cross/within modal discrimination losses xModalInst_loss, wModalInst_loss, xModalPos_loss, wModalPos_loss = 0., 0., 0., 0. for k in scores: loss = self.criterion(*scores[k]) if k in {'inst-v2a', 'inst-a2v'}: xModalInst_loss += loss / 2. elif k in {'inst-v2v', 'inst-a2a'}: wModalInst_loss += loss / 2. elif k in {'pos-v2a', 'pos-a2v'}: xModalPos_loss += loss / 2. elif k in {'pos-v2v', 'pos-a2a'}: wModalPos_loss += loss / 2. # Metrics for tensorboard with torch.no_grad(): tb_log[f'Loss/{k}'] = loss # Compute final loss total_loss = xModalInst_loss * self.xModalInstCoeff total_loss += wModalInst_loss * self.wModalInstCoeff total_loss += xModalPos_loss * self.xModalPosCoeff total_loss += wModalPos_loss * self.wModalPosCoeff return total_loss, tb_log def set_epoch(self, epoch): # Recompute CMA correspondences every resample_freq epochs if self.resample_freq > 0 and epoch > 0 and epoch % self.resample_freq == 0: self.nce_average.find_correspondences()
AVID-CMA-main
criterions/avid_cma.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Evaluation script for object localization import json import argparse import torch import itertools import numpy as np from collections import defaultdict from utils import bbox_overlaps_batch, get_frm_mask from stanfordcorenlp import StanfordCoreNLP from tqdm import tqdm class ANetGrdEval(object): def __init__(self, reference_file=None, submission_file=None, split_file=None, val_split=None, iou_thresh=0.5, verbose=False): if not reference_file: raise IOError('Please input a valid reference file!') if not submission_file: raise IOError('Please input a valid submission file!') self.iou_thresh = iou_thresh self.verbose = verbose self.val_split = val_split self.import_ref(reference_file, split_file) self.import_sub(submission_file) def import_ref(self, reference_file=None, split_file=None): with open(split_file) as f: split_dict = json.load(f) split = {} for s in self.val_split: split.update({i:i for i in split_dict[s]}) with open(reference_file) as f: ref = json.load(f)['annotations'] ref = {k:v for k,v in ref.items() if k in split} self.ref = ref def import_sub(self, submission_file=None): with open(submission_file) as f: pred = json.load(f)['results'] self.pred = pred def gt_grd_eval(self): ref = self.ref pred = self.pred print('Number of videos in the reference: {}, number of videos in the submission: {}'.format(len(ref), len(pred))) results = defaultdict(list) for vid, anns in ref.items(): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0: continue # annotation not available ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), \ torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of word in sentence to evaluate for idx in sent_idx: sel_idx = [ind for ind, i in enumerate(ann['process_idx']) if idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes # Note that despite discouraged, a single word could be annotated across multiple boxes/frames assert(ref_bbox.size(0) > 0) class_name = ann['process_clss'][sel_idx[0]][ann['process_idx'][sel_idx[0]].index(idx)] if vid not in pred: results[class_name].append(0) # video not grounded elif seg not in pred[vid]: results[class_name].append(0) # segment not grounded elif idx not in pred[vid][seg]['idx_in_sent']: results[class_name].append(0) # object not grounded else: pred_ind = pred[vid][seg]['idx_in_sent'].index(idx) pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_ind])[:,:4], \ torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), \ ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), \ ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) results[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) print('Number of groundable objects in this split: {}'.format(len(results))) grd_accu = np.mean([sum(hm)*1./len(hm) for i,hm in results.items()]) print('-' * 80) print('The overall localization accuracy is {:.4f}'.format(grd_accu)) print('-' * 80) if self.verbose: print('Object frequency and grounding accuracy per class (descending by object frequency):') accu_per_clss = {(i, sum(hm)*1./len(hm)):len(hm) for i,hm in results.items()} accu_per_clss = sorted(accu_per_clss.items(), key=lambda x:x[1], reverse=True) for accu in accu_per_clss: print('{} ({}): {:.4f}'.format(accu[0][0], accu[1], accu[0][1])) return grd_accu def precision_recall_util(self, mode='all'): ref = self.ref pred = self.pred print('Number of videos in the reference: {}, number of videos in the submission: {}'.format(len(ref), len(pred))) nlp = StanfordCoreNLP('tools/stanford-corenlp-full-2018-02-27') props={'annotators': 'lemma','pipelineLanguage':'en', 'outputFormat':'json'} vocab_in_split = set() prec = defaultdict(list) prec_per_sent = defaultdict(list) for vid, anns in tqdm(ref.items()): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0 or vid not in pred or seg not in pred[vid]: continue # do not penalize if sentence not annotated prec_per_sent_tmp = [] # for each sentence ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates idx_in_sent = {} for box_idx, cls_lst in enumerate(ann['process_clss']): vocab_in_split.update(set(cls_lst)) for cls_idx, cls in enumerate(cls_lst): idx_in_sent[cls] = idx_in_sent.get(cls, []) + [ann['process_idx'][box_idx][cls_idx]] sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of gt object words exclude_obj = {json.loads(nlp.annotate(token, properties=props) )['sentences'][0]['tokens'][0]['lemma']: 1 for token_idx, token in enumerate(ann['tokens'] ) if (token_idx not in sent_idx and token != '')} for pred_idx, class_name in enumerate(pred[vid][seg]['clss']): if class_name in idx_in_sent: gt_idx = min(idx_in_sent[class_name]) # always consider the first match... sel_idx = [idx for idx, i in enumerate(ann['process_idx']) if gt_idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes assert (ref_bbox.size(0) > 0) pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_idx])[:, :4], torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) prec[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) prec_per_sent_tmp.append(1 if torch.max(overlap) > self.iou_thresh else 0) elif json.loads(nlp.annotate(class_name, properties=props))['sentences'][0]['tokens'][0]['lemma'] in exclude_obj: pass # do not penalize if gt object word not annotated (missed) else: if mode == 'all': prec[class_name].append(0) # hallucinated object prec_per_sent_tmp.append(0) prec_per_sent[vid + seg] = prec_per_sent_tmp nlp.close() # recall recall = defaultdict(list) recall_per_sent = defaultdict(list) for vid, anns in ref.items(): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0: # print('no annotation available') continue recall_per_sent_tmp = [] # for each sentence ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), \ torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of gt object words for gt_idx in sent_idx: sel_idx = [idx for idx, i in enumerate(ann['process_idx']) if gt_idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes # Note that despite discouraged, a single word could be annotated across multiple boxes/frames assert(ref_bbox.size(0) > 0) class_name = ann['process_clss'][sel_idx[0]][ann['process_idx'][sel_idx[0]].index(gt_idx)] if vid not in pred: recall[class_name].append(0) # video not grounded recall_per_sent_tmp.append(0) elif seg not in pred[vid]: recall[class_name].append(0) # segment not grounded recall_per_sent_tmp.append(0) elif class_name in pred[vid][seg]['clss']: pred_idx = pred[vid][seg]['clss'].index(class_name) # always consider the first match... pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_idx])[:,:4], \ torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), \ ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), \ ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) recall[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) recall_per_sent_tmp.append(1 if torch.max(overlap) > self.iou_thresh else 0) else: if mode == 'all': recall[class_name].append(0) # object not grounded recall_per_sent_tmp.append(0) recall_per_sent[vid + seg] = recall_per_sent_tmp return prec, recall, prec_per_sent, recall_per_sent, vocab_in_split def grd_eval(self, mode='all'): if mode == 'all': print('Evaluating on all object words.') elif mode == 'loc': print('Evaluating only on correctly-predicted object words.') else: raise Exception('Invalid loc mode!') prec, recall, prec_per_sent, rec_per_sent, vocab_in_split = self.precision_recall_util(mode=mode) # compute the per-class precision, recall, and F1 scores num_vocab = len(vocab_in_split) print('Number of groundable objects in this split: {}'.format(num_vocab)) print('Number of objects in prec and recall: {}, {}'.format(len(prec), len(recall))) prec_cls = np.sum([sum(hm)*1./len(hm) for i,hm in prec.items()])*1./num_vocab recall_cls = np.sum([sum(hm)*1./len(hm) for i,hm in recall.items()])*1./num_vocab f1_cls = 2. * prec_cls * recall_cls / (prec_cls + recall_cls) print('-' * 80) print('The overall precision_{0} / recall_{0} / F1_{0} are {1:.4f} / {2:.4f} / {3:.4f}'.format(mode, prec_cls, recall_cls, f1_cls)) print('-' * 80) if self.verbose: print('Object frequency and grounding accuracy per class (descending by object frequency):') accu_per_clss = {} for i in vocab_in_split: prec_clss = sum(prec[i])*1./len(prec[i]) if i in prec else 0 recall_clss = sum(recall[i])*1./len(recall[i]) if i in recall else 0 accu_per_clss[(i, prec_clss, recall_clss)] = (len(prec[i]), len(recall[i])) accu_per_clss = sorted(accu_per_clss.items(), key=lambda x:x[1][1], reverse=True) for accu in accu_per_clss: print('{} ({} / {}): {:.4f} / {:.4f}'.format(accu[0][0], accu[1][0], accu[1][1], accu[0][1], accu[0][2])) # compute the per-sent precision, recall, and F1 scores num_segment_without_labels = 0 prec, rec, f1 = [], [], [] for seg_id, prec_list in prec_per_sent.items(): if rec_per_sent[seg_id] == []: # skip the segment if no target objects num_segment_without_labels += 1 else: current_prec = 0 if prec_list == [] else np.mean(prec_list) # avoid empty prec_list current_rec = np.mean(rec_per_sent[seg_id]) # if precision and recall are both 0, set the f1 to be 0 if current_prec == 0.0 and current_rec == 0.0: current_f1_score = 0.0 else: current_f1_score = 2. * current_prec * current_rec / (current_prec + current_rec) # per-sent F1 prec.append(current_prec) rec.append(current_rec) f1.append(current_f1_score) num_predictions = 0 for _, pred_seg in self.pred.items(): num_predictions += len(pred_seg) # divide the scores with the total number of predictions avg_prec = np.sum(prec) / (num_predictions - num_segment_without_labels) avg_rec = np.sum(rec) / (num_predictions - num_segment_without_labels) avg_f1 = np.sum(f1) / (num_predictions - num_segment_without_labels) print('-' * 80) print('The overall precision_{0}_per_sent / recall_{0}_per_sent / F1_{0}_per_sent are {1:.4f} / {2:.4f} / {3:.4f}'.format(mode, avg_prec, avg_rec, avg_f1)) print('-' * 80) return prec_cls, recall_cls, f1_cls, avg_prec, avg_rec, avg_f1 def main(args): grd_evaluator = ANetGrdEval(reference_file=args.reference, submission_file=args.submission, split_file=args.split_file, val_split=args.split, iou_thresh=args.iou_thresh, verbose=args.verbose) if args.eval_mode == 'GT': print('Assuming the input boxes are based upon GT sentences.') grd_evaluator.gt_grd_eval() elif args.eval_mode == 'gen': print('Assuming the input boxes are based upon generated sentences.') grd_evaluator.grd_eval(mode=args.loc_mode) else: raise Exception('Invalid eval mode!') if __name__=='__main__': parser = argparse.ArgumentParser(description='ActivityNet-Entities object grounding evaluation script.') parser.add_argument('-s', '--submission', type=str, default='', help='submission grounding result file') parser.add_argument('-r', '--reference', type=str, default='data/anet_entities_cleaned_class_thresh50_trainval.json', help='reference file') parser.add_argument('--split_file', type=str, default='data/split_ids_anet_entities.json', help='path to the split file') parser.add_argument('--split', type=str, nargs='+', default=['validation'], help='which split(s) to evaluate') parser.add_argument('--eval_mode', type=str, default='GT', help='GT | gen, indicating whether the input is on GT sentences or generated sentences') parser.add_argument('--loc_mode', type=str, default='all', help='all | loc, when the input is on generate sentences, whether consider language error or not') parser.add_argument('--iou_thresh', type=float, default=0.5, help='the iou threshold for grounding correctness') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() main(args)
ActivityNet-Entities-main
scripts/eval_grd_anet_entities.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to print stats on the NP annotation file import numpy as np import json import csv import sys src_file = sys.argv[1] # 'anet_entities.json' dataset_file = sys.argv[2] # 'anet_captions_all_splits.json' split_file = sys.argv[3] # 'split_ids_anet_entities.json' if __name__ == '__main__': with open(src_file) as f: data = json.load(f)['database'] with open(dataset_file) as f: raw_data = json.load(f) split_dict = {} with open(split_file) as f: split = json.load(f) for s,ids in split.items(): split_dict.update({i:s for i in ids}) num_seg = np.sum([len(dat['segments']) for vid, dat in data.items()]) total_box = {} total_dur = [] seg_splits = {} for vid, dat in data.items(): for seg, ann in dat['segments'].items(): total_box[split_dict[vid]] = total_box.get(split_dict[vid], 0)+len(ann['objects']) total_dur.append(float(raw_data[vid]['timestamps'][int(seg)][1]-raw_data[vid]['timestamps'][int(seg)][0])) seg_splits[split_dict[vid]] = seg_splits.get(split_dict[vid], 0)+1 print('number of annotated video: {}'.format(len(data))) print('number of annotated video segments: {}'.format(num_seg)) print('number of segments in each split: {}'.format(seg_splits)) print('total duration in hr: {}'.format(np.sum(total_dur)/3600)) print('total number of noun phrase boxes: {}'.format(total_box))
ActivityNet-Entities-main
scripts/anet_entities_np_stats.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Based on # https://github.com/jiasenlu/NeuralBabyTalk/blob/master/misc/bbox_transform.py # Licensed under The MIT License # Copyright (c) 2017 Jiasen Lu # -------------------------------------------------------- # Reorganized and modified by Jianwei Yang and Jiasen Lu # -------------------------------------------------------- # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import torch import numpy as np def bbox_overlaps_batch(anchors, gt_boxes, frm_mask=None): """ anchors: (N, 4) ndarray of float gt_boxes: (b, K, 5) ndarray of float frm_mask: (b, N, K) ndarray of bool overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ batch_size = gt_boxes.size(0) if anchors.dim() == 2: assert frm_mask == None, 'mask not implemented yet' # hasn't updated the mask yet N = anchors.size(0) K = gt_boxes.size(1) anchors = anchors.view(1, N, 4).expand(batch_size, N, 4).contiguous() gt_boxes = gt_boxes[:,:,:4].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) elif anchors.dim() == 3: N = anchors.size(1) K = gt_boxes.size(1) if anchors.size(2) == 5: anchors = anchors[:,:,:5].contiguous() else: anchors = anchors[:,:,1:6].contiguous() gt_boxes = gt_boxes[:,:,:5].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 5).expand(batch_size, N, K, 5) query_boxes = gt_boxes.view(batch_size, 1, K, 5).expand(batch_size, N, K, 5) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) if frm_mask is not None: # proposal and gt should be on the same frame to overlap # frm_mask = ~frm_mask # bitwise not (~) does not work with uint8 in pytorch 1.3 frm_mask = 1 - frm_mask # print('Percentage of proposals that are in the annotated frame: {}'.format(torch.mean(frm_mask.float()))) overlaps = iw * ih / ua overlaps *= frm_mask.type(overlaps.type()) # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) else: raise ValueError('anchors input dimension is not correct.') return overlaps def get_frm_mask(proposals, gt_bboxs): # proposals: num_pps # gt_bboxs: num_box num_pps = proposals.shape[0] num_box = gt_bboxs.shape[0] return (np.tile(proposals.reshape(-1,1), (1,num_box)) != np.tile(gt_bboxs, (num_pps,1)))
ActivityNet-Entities-main
scripts/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to preprocess the raw annotation output to NP/object annotation files import os import sys import json import argparse import numpy as np from collections import Counter, defaultdict from stanfordcorenlp import StanfordCoreNLP def define_split(database): with open(args.train_cap_file) as f: train_ids = json.load(f).keys() with open(args.val_cap_file) as f: valtest_ids = json.load(f).keys() val_split = np.random.rand(len(valtest_ids))>=0.5 # split a half as the test split val_ids = [valtest_ids[i] for i,j in enumerate(val_split) if j] test_ids = [valtest_ids[i] for i,j in enumerate(val_split) if ~j] vid_ids = set(database.keys()) train_ann_ids = vid_ids.intersection(set(train_ids)) val_ann_ids = vid_ids.intersection(set(val_ids)) test_ann_ids = vid_ids.intersection(set(test_ids)) print('All data - total: {}, train split: {}, val split: {}, test split: {}'.format(len(train_ids+val_ids+test_ids), len(train_ids), len(val_ids), len(test_ids))) print('Annotated data - total: {}, train split: {}, val split: {}, and test split: {}'.format( len(vid_ids), len(train_ann_ids), len(val_ann_ids), len(test_ann_ids))) return [train_ids, val_ids, test_ids] def extract_attr(database, splits): split_dict = {} for split in splits: split_dict.update({s:s for s in split}) print('Object classes defined on {} videos, freq threshold is {}'.format(len(split_dict), args.freq_thresh)) attr_all = [] # all the attributes for vid_id, vid in database.items(): if split_dict.get(vid_id, -1) != -1: for seg_id, seg in vid['segments'].items(): for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) for box_id, box in obj['frame_ind'].items(): tmp = [] attr_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) if len(tmp) == 0: tmp.append(attr[1].lower()) # convert to lowercase else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr[1].lower()) else: attr_lst.append(tmp) tmp = [attr[1].lower()] if len(tmp) > 0: # the last one attr_lst.append(tmp) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: attr_all.extend([' '.join(i) for i in attr_lst]) return attr_all def prep_all(database, database_cap, obj_cls_lst, w2l, nlp): w2d = {} for ind, obj in enumerate(obj_cls_lst): w2d[obj] = ind avg_box = [] # number of boxes per segment avg_attr = [] # number of attributes per box attr_all = [] # all the attributes crowd_all = [] # all the crowd labels attr_dict = defaultdict(list) with open(args.attr_to_video_file) as f: for line in f.readlines(): line_split = line.split(',') attr_id = line_split[0] vid_name = line_split[-1] attr = ','.join(line_split[1:-1]) vid_id, seg_id = vid_name.strip().split('_segment_') attr_dict[(vid_id, str(int(seg_id)))].append([int(attr_id), attr]) print('Number of segments with attributes: {}'.format(len(attr_dict))) vid_seg_dict = {} for vid_id, vid in database.items(): for seg_id, _ in vid['segments'].items(): vid_seg_dict[(vid_id, seg_id)] = vid_seg_dict.get((vid_id, seg_id), 0) + 1 new_database = {} new_database_np = {} seg_counter = 0 for vid_id, cap in database_cap.items(): new_database_np[vid_id] = {'segments':{}} new_seg = {} for cap_id in range(len(cap['sentences'])): new_obj_lst = defaultdict(list) seg_id = str(cap_id) new_database_np[vid_id]['segments'][seg_id] = {'objects':[]} if vid_seg_dict.get((vid_id, seg_id), 0) == 0: new_obj_lst['tokens'] = nlp.word_tokenize(cap['sentences'][cap_id].encode('utf-8')) # sentences not in ANet-BB else: vid = database[vid_id] seg = vid['segments'][seg_id] # preprocess attributes attr_sent = sorted(attr_dict[(vid_id, seg_id)], key=lambda x:x[0]) start_ind = attr_sent[0][0] # legacy token issues from our annotation tool for ind, tup in enumerate(attr_sent): if attr_sent[ind][1] == '\\,': attr_sent[ind][1] = ',' new_obj_lst['tokens'] = [i[1] for i in attr_sent] # all the word tokens for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) np_ann = {} box_id = obj['frame_ind'].keys()[0] box = obj['frame_ind'].values()[0] np_ann['frame_ind'] = int(box_id) np_ann.update(box) if len(box['attributes']) > 0: # just in case the attribute is empty, though it should not be tmp = [] tmp_ind = [] tmp_obj = [] attr_lst = [] attr_ind_lst = [] tmp_np_ind = [] np_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered sorted_attr = [(x[0]-start_ind, x[1]) for x in sorted_attr] # index relative to the sent for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) attr_w = attr[1].lower() if len(tmp) == 0: tmp.append(attr_w) # convert to lowercase tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr_w) tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) tmp = [attr_w] tmp_np_ind = [attr[0]] if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj = [attr_l] tmp_ind = [attr[0]] else: tmp_obj = [] tmp_ind = [] else: tmp_obj = [] tmp_ind = [] if len(tmp) > 0: # the last one np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) assert(len(np_lst) > 0) np_ann['noun_phrases'] = np_lst np_ann.pop('attributes', None) new_database_np[vid_id]['segments'][seg_id]['objects'].append(np_ann) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: new_obj_lst['process_bnd_box'].append([box['xtl'], box['ytl'], box['xbr'], box['ybr']]) new_obj_lst['frame_ind'].append(int(box_id)) new_obj_lst['crowds'].append(box['crowds']) new_obj_lst['process_clss'].append(attr_lst) new_obj_lst['process_idx'].append(attr_ind_lst) avg_attr.append(len(attr_lst)) attr_all.extend([' '.join(i) for i in attr_lst]) crowd_all.append(box['crowds']) avg_box.append(len(new_obj_lst['frame_ind'])) # cound be 0 if len(new_obj_lst['frame_ind']) == 0: new_obj_lst['process_bnd_box'] = [] new_obj_lst['frame_ind'] = [] # all empty new_obj_lst['crowds'] = [] new_obj_lst['process_clss'] = [] new_obj_lst['process_idx'] = [] seg_counter += 1 new_seg[seg_id] = new_obj_lst new_database_np[vid_id]['segments'][seg_id]['tokens'] = new_obj_lst['tokens'] new_database[vid_id] = {'segments':new_seg} # quick stats print('Number of videos: {} (including empty ones)'.format(len(new_database))) print('Number of segments: {}'.format(seg_counter)) print('Average number of valid segments per video: {}'.format(np.mean([len(vid['segments']) for vid_id, vid in new_database.items()]))) print('Average number of box per segment: {} and frequency: {}'.format(np.mean(avg_box), Counter(avg_box))) print('Average number of attributes per box: {} and frequency: {} (for valid box only)'.format(np.mean(avg_attr), Counter(avg_attr))) crowd_freq = Counter(crowd_all) print('Percentage of crowds: {} (for valid box only)'.format(crowd_freq[1]*1./(crowd_freq[1]+crowd_freq[0]))) return new_database, new_database_np def freq_obj_list(attr_all, nlp, props): # generate a list of object classes num_nn_per_attr = [] anet_obj_cls = [] nn_wo_noun = [] # noun phrases that contain no nouns w2lemma = defaultdict(list) for i, v in enumerate(attr_all): if i%10000 == 0: print(i) out = json.loads(nlp.annotate(v.encode('utf-8'), properties=props)) assert(out['sentences'] > 0) counter = 0 for token in out['sentences'][0]['tokens']: if ('NN' in token['pos']) or ('PRP' in token['pos']): lemma_w = token['lemma'] anet_obj_cls.append(lemma_w) w2lemma[token['word']].append(lemma_w) counter += 1 num_nn_per_attr.append(counter) if counter == 0: nn_wo_noun.append(v) top_nn_wo_noun = Counter(nn_wo_noun) print('Frequency of NPs w/o nouns:') print(top_nn_wo_noun.most_common(10)) print('Frequency of number of nouns per attribute:') print(Counter(num_nn_per_attr)) top_obj_cls = Counter(anet_obj_cls) print('Top 10 objects:', top_obj_cls.most_common(20)) obj_cls_lst = [] for w,freq in top_obj_cls.items(): if freq >= args.freq_thresh: obj_cls_lst.append(w.encode('ascii')) w2l = {} for w, l in w2lemma.items(): # manually correct some machine lemmatization mistakes spec_w2l = {'outfits':'outfit', 'mariachi':'mariachi', 'barrios':'barrio', 'mans':'man', 'bags':'bag', 'aerobics':'aerobic', 'motobikes':'motobike', 'graffiti':'graffiti', 'semi':'semi', 'los':'los', 'tutus':'tutu'} if spec_w2l.get(w, -1) != -1: # one special case... w2l[w] = spec_w2l[w] print('Ambiguous lemma for: {}'.format(w)) else: assert(len(set(l)) == 1) w2l[w] = list(set(l))[0] print('Number of words derived from lemma visual words {}'.format(len(w2l))) return obj_cls_lst, w2l def main(args): nlp = StanfordCoreNLP(args.corenlp_path) props={'annotators': 'ssplit, tokenize, lemma','pipelineLanguage':'en', 'outputFormat':'json'} # load anet captions with open(args.train_cap_file) as f: database_cap = json.load(f) with open(args.val_cap_file) as f: database_cap.update(json.load(f)) print('Number of videos in ActivityNet Captions (train+val): {}'.format(len(database_cap))) # load raw annotation output anet bb with open(args.src_file) as f: database = json.load(f)['database'] print('Number of videos in ActivityNet-BB (train+val): {}'.format(len(database))) if os.path.isfile(args.split_file): with open(args.split_file) as f: all_splits = json.load(f) splits = [all_splits['training'], all_splits['validation'], all_splits['testing']] else: raise '[WARNING] Cannot find the split file! Uncomment this if you want to create a new split.' splits = define_split(database) all_splits = {'training':splits[0], 'validation':splits[1], 'testing':splits[2]} with open(args.split_file, 'w') as f: json.dump(all_splits, f) attr_all = extract_attr(database, splits[:2]) # define object classes on train/val data obj_cls_lst, w2l = freq_obj_list(attr_all, nlp, props) new_database, new_database_np = prep_all(database, database_cap, obj_cls_lst, w2l, nlp) # write raw annotation file new_database_np = {'database':new_database_np} with open(args.target_np_file, 'w') as f: json.dump(new_database_np, f) # write pre-processed annotation file new_database = {'vocab':obj_cls_lst, 'annotations':new_database} with open(args.target_file, 'w') as f: json.dump(new_database, f) nlp.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='ActivityNet-Entities dataset preprocessing script.') parser.add_argument('--dataset_root', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/', help='dataset root directory') parser.add_argument('--corenlp_path', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttn/tools/stanford-corenlp-full-2018-02-27', help='path to stanford core nlp toolkit') parser.add_argument('--freq_thresh', type=int, default=50, help='frequency threshold for determining object classes') parser.add_argument('--train_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/train.json') parser.add_argument('--val_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/val_1.json') args = parser.parse_args() args.src_file = args.dataset_root+'anet_bb.json' # the raw annotation file args.target_np_file = args.dataset_root+'anet_entities.json' # output np file args.target_file = args.dataset_root+'anet_entities_cleaned_class_thresh'+str(args.freq_thresh)+'.json' # output object file args.attr_to_video_file = args.dataset_root+'attr_to_video.txt' # from annotation tool args.split_file = args.dataset_root+'split_ids_anet_entities.json' # split file np.random.seed(123) # make reproducible main(args)
ActivityNet-Entities-main
scripts/attr_prep_tag_NP.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to print stats on the object annotation file import numpy as np import json import csv # import visdom import sys from collections import Counter src_file = sys.argv[1] # 'anet_entities_cleaned_class_thresh50_trainval.json' dataset_file = sys.argv[2] # 'anet_captions_all_splits.json' split_file = sys.argv[3] # 'split_ids_anet_entities.json' if __name__=='__main__': with open(src_file) as f: data = json.load(f)['annotations'] with open(dataset_file) as f: raw_data = json.load(f) split_dict = {} with open(split_file) as f: split = json.load(f) for s,ids in split.items(): split_dict.update({i:s for i in ids}) num_seg = np.sum([len(dat['segments']) for vid, dat in data.items()]) total_box = {} total_dur = [] seg_splits = {} box_per_seg = [] obj_per_box = [] count_obj = [] for vid, dat in data.items(): for seg, ann in dat['segments'].items(): total_box[split_dict[vid]] = total_box.get(split_dict[vid], 0)+len(ann['process_bnd_box']) total_dur.append(float(raw_data[vid]['timestamps'][int(seg)][1]-raw_data[vid]['timestamps'][int(seg)][0])) seg_splits[split_dict[vid]] = seg_splits.get(split_dict[vid], 0)+1 box_per_seg.append(len(ann['process_bnd_box'])) for c in ann['process_clss']: obj_per_box.append(len(c)) count_obj.extend(c) print('number of annotated video: {}'.format(len(data))) print('number of annotated video segments: {}'.format(num_seg)) print('number of segments in each split: {}'.format(seg_splits)) print('total duration in hr: {}'.format(np.sum(total_dur)/3600)) print('total number of phrase (not object) boxes: {}'.format(total_box)) print('box per segment, mean {}, std {}, count {}'.format(np.mean(box_per_seg), np.std(box_per_seg), Counter(box_per_seg))) print('object per box, mean {}, std {}, count {}'.format(np.mean(obj_per_box), np.std(obj_per_box), Counter(obj_per_box))) print('Top 10 object labels: {}'.format(Counter(count_obj).most_common(10))) """ # visualization vis = visdom.Visdom() vis.histogram(X=[i for i in box_per_seg if i < 20], opts={'numbins': 20, 'xtickmax':20, 'xtickmin':0, 'xmax':20, 'xmin':0, 'title':'Distribution of number of boxes per segment', 'xtickfont':{'size':14}, \ 'ytickfont':{'size':14}, 'xlabel':'Number of boxes', 'ylabel': 'Counts'}) vis.histogram(X=[i for i in obj_per_box if i < 100], opts={'numbins': 100, 'xtickmax':100, 'xtickmin':0, 'xmax':100, 'xmin':0, 'title':'Distribution of number of object labels per box', 'xtickfont':{'size':14}, \ 'ytickfont':{'size':14}, 'xlabel':'Number of object labels', 'ylabel': 'Counts'}) """
ActivityNet-Entities-main
scripts/anet_entities_object_stats.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os class Path(object): """ User-specific path configuration. Please complete the /path/to/* paths to point into valid directories. """ @staticmethod def db_root_dir(database=''): db_root = '/path/to/databases' db_names = {'PASCAL_MT', 'NYUD_MT', 'BSDS500', 'NYUD_raw', 'PASCAL', 'COCO', 'FSV', 'MSRA10K', 'PASCAL-S'} if database in db_names: return os.path.join(db_root, database) elif not database: return db_root else: raise NotImplementedError @staticmethod def save_root_dir(): return './' @staticmethod def exp_dir(): return './' @staticmethod def models_dir(): return '/path/to/pre-trained/models/' @staticmethod def seism_root_dir(): # For edge detection evaluation (optional) return '/path/to/seism'
astmt-master
mypath.py
astmt-master
experiments/__init__.py
astmt-master
experiments/classification/__init__.py
astmt-master
experiments/classification/imagenet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import os import copy import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets from fblib.util.classification.utils import convert_secs2time, time_string, time_file_str, AverageMeter from fblib.networks.classification import se_resnet, mobilenet_v2, resnet, resnext from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--data', default=Path.db_root_dir('Imagenet'), help='path to dataset') parser.add_argument('--arch', '-a', metavar='ARCH', default='x50') parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', help='number of data loading workers (default: 16)') parser.add_argument('--epochs', default=100, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=200, type=int, metavar='N', help='print frequency (default: 100)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--n_gpu', type=int, default=8, help='number of GPUs') parser.add_argument('--group_norm', type=str2bool, default=False, help='Group Normalization') args = parser.parse_args() args.prefix = time_file_str() return args def main(): args = parse_args() best_prec1 = 0 if not args.group_norm: save_dir = os.path.join(Path.exp_dir(), 'imagenet', args.arch) else: save_dir = os.path.join(Path.exp_dir(), 'imagenet', args.arch + '-GN') if not os.path.isdir(save_dir): os.makedirs(save_dir) log = open(os.path.join(save_dir, '{}.{}.log'.format(args.arch, args.prefix)), 'w') # create model print_log("=> creating model '{}'".format(args.arch), log) resol = 224 if args.arch == 'res26': model = resnet.resnet26(pretrained=False, group_norm=args.group_norm) elif args.arch == 'res50': model = resnet.resnet50(pretrained=False, group_norm=args.group_norm) elif args.arch == 'res101': model = resnet.resnet101(pretrained=False, group_norm=args.group_norm) elif args.arch == 'x50': model = resnext.resnext50_32x4d(pretrained=False) elif args.arch == 'x101': model = resnext.resnext101_32x4d(pretrained=False) elif args.arch == 'res26-se': model = se_resnet.se_resnet26(num_classes=1000) elif args.arch == 'res50-se': model = se_resnet.se_resnet50(num_classes=1000) elif args.arch == 'res101-se': model = se_resnet.se_resnet101(num_classes=1000) elif args.arch == 'mobilenet-v2': model = mobilenet_v2.mobilenet_v2(pretrained=False, n_class=1000, last_channel=2048) print_log("=> Model : {}".format(model), log) print_log("=> parameter : {}".format(args), log) if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features, device_ids=list(range(args.n_gpu))) model.cuda() else: model = torch.nn.DataParallel(model, device_ids=list(range(args.n_gpu))).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print_log("=> loading checkpoint '{}'".format(args.resume), log) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print_log("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']), log) else: raise ValueError("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(resol), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(resol), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: validate(val_loader, model, criterion) return filename = os.path.join(save_dir, 'checkpoint.{}.{}.pth.tar'.format(args.arch, args.prefix)) bestname = os.path.join(save_dir, 'best.{}.{}.pth.tar'.format(args.arch, args.prefix)) start_time = time.time() epoch_time = AverageMeter() for epoch in range(args.start_epoch, args.epochs): lr = adjust_learning_rate(optimizer, epoch, args) need_hour, need_mins, need_secs = convert_secs2time(epoch_time.val * (args.epochs - epoch)) need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs) print_log(' [{:s}] :: {:3d}/{:3d} ----- [{:s}] {:s} LR={:}'.format(args.arch, epoch, args.epochs, time_string(), need_time, lr), log) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, log, args) # evaluate on validation set prec1 = validate(val_loader, model, criterion, log, args) # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), 'args': copy.deepcopy(args), }, is_best, filename, bestname) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() log.close() def train(train_loader, model, criterion, optimizer, epoch, log, args): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) target_var = target.cuda(non_blocking=True) input_var = input.requires_grad_() # compute output output = model(input_var) loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target_var, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print_log('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5), log) def validate(val_loader, model, criterion, log, args): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() with torch.no_grad(): for i, (input_var, target) in enumerate(val_loader): target_var = target.cuda(non_blocking=True) # compute output output = model(input_var) loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target_var, topk=(1, 5)) losses.update(loss.item(), input_var.size(0)) top1.update(prec1.item(), input_var.size(0)) top5.update(prec5.item(), input_var.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print_log('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5), log) print_log(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, error1=100 - top1.avg), log) return top1.avg def save_checkpoint(state, is_best, filename, bestname): torch.save(state, filename) if is_best: shutil.copyfile(filename, bestname) def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def print_log(print_string, log): print("{}".format(print_string)) log.write('{}\n'.format(print_string)) log.flush() if __name__ == '__main__': main()
astmt-master
experiments/classification/imagenet/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torchvision import transforms from torch.utils.data import DataLoader from fblib.util.helpers import worker_seed import fblib.util.pdf_visualizer as viz # Losses from fblib.layers.loss import BalancedCrossEntropyLoss, SoftMaxwithLoss, NormalsLoss, DepthLoss # Dataloaders import fblib.dataloaders as dbs from fblib.dataloaders.combine_im_dbs import CombineIMDBs from fblib.layers.loss import normal_ize # Transformations from fblib.dataloaders import custom_transforms as tr # Collate for MIL from fblib.util.custom_collate import collate_mil def accuracy(output, target, topk=(1,), ignore_label=255): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = (target != ignore_label).sum().item() if batch_size == 0: return -1 _, pred = output.topk(maxk, 1, True, True) if pred.shape[-1] == 1: pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) else: correct = pred.eq(target.unsqueeze(1)) res = [] for _ in topk: correct_k = correct[:].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def eval_all_results(p): if 'DO_SEMSEG' in p and p.DO_SEMSEG: from fblib.evaluation.eval_semseg import eval_and_store_semseg for db in p['infer_db_names']: eval_and_store_semseg(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_HUMAN_PARTS' in p and p.DO_HUMAN_PARTS: from fblib.evaluation.eval_human_parts import eval_and_store_human_parts for db in p['infer_db_names']: eval_and_store_human_parts(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_NORMALS' in p and p.DO_NORMALS: from fblib.evaluation.eval_normals import eval_and_store_normals for db in p['infer_db_names']: eval_and_store_normals(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_SAL' in p and p.DO_SAL: from fblib.evaluation.eval_sal import eval_and_store_sal for db in p['infer_db_names']: eval_and_store_sal(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_DEPTH' in p and p.DO_DEPTH: from fblib.evaluation.eval_depth import eval_and_store_depth for db in p['infer_db_names']: eval_and_store_depth(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_ALBEDO' in p and p.DO_ALBEDO: from fblib.evaluation.eval_albedo import eval_and_store_albedo for db in p['infer_db_names']: eval_and_store_albedo(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], overfit=p.overfit) if 'DO_EDGE' in p and p.DO_EDGE and p['eval_edge']: from fblib.evaluation.eval_edges import sync_and_evaluate_one_folder for db in p['infer_db_names']: sync_and_evaluate_one_folder(database=db, save_dir=p['save_dir_root'], exp_name=p['exp_name'], prefix=p['tasks_name'], all_tasks_present=(p.MINI if 'MINI' in p else False)) def get_transformations(p): """ Get the transformations for training and testing """ # Training transformations # Horizontal flips with probability of 0.5 transforms_tr = [tr.RandomHorizontalFlip()] # Rotations and scaling transforms_tr.extend([tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25), flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS})]) # Fixed Resize to input resolution transforms_tr.extend([tr.FixedResize(resolutions={x: tuple(p.TRAIN.SCALE) for x in p.TASKS.FLAGVALS}, flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS})]) transforms_tr.extend([tr.AddIgnoreRegions(), tr.ToTensor()]) transforms_tr = transforms.Compose(transforms_tr) # Testing (during training transforms) transforms_ts = [] transforms_ts.extend([tr.FixedResize(resolutions={x: tuple(p.TEST.SCALE) for x in p.TASKS.FLAGVALS}, flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS})]) transforms_ts.extend([tr.AddIgnoreRegions(), tr.ToTensor()]) transforms_ts = transforms.Compose(transforms_ts) # Transformations to be used during inference transforms_infer = transforms_ts return transforms_tr, transforms_ts, transforms_infer def get_loss(p, task=None): if task == 'edge': criterion = BalancedCrossEntropyLoss(size_average=True, pos_weight=p['edge_w']) elif task == 'semseg' or task == 'human_parts': criterion = SoftMaxwithLoss() elif task == 'normals': criterion = NormalsLoss(normalize=True, size_average=True, norm=p['normloss']) elif task == 'sal': criterion = BalancedCrossEntropyLoss(size_average=True) elif task == 'depth': criterion = DepthLoss() elif task == 'albedo': criterion = torch.nn.L1Loss(reduction='elementwise_mean') else: raise NotImplementedError('Undefined Loss: Choose a task among ' 'edge, semseg, human_parts, sal, depth, albedo, or normals') return criterion def get_train_loader(p, db_name, transforms): print('Preparing train loader for db: {}'.format(db_name)) db_names = [db_name] if isinstance(db_name, str) else db_name dbs_train = {} for db in db_names: if db == 'PASCALContext': dbs_train[db] = dbs.PASCALContext(split=['train'], transform=transforms, retname=True, do_edge=p.DO_EDGE, do_human_parts=p.DO_HUMAN_PARTS, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_sal=p.DO_SAL, overfit=p['overfit']) elif db == 'VOC12': dbs_train[db] = dbs.VOC12(split=['train'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) elif db == 'SBD': dbs_train[db] = dbs.SBD(split=['train', 'val'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) elif db == 'NYUD_nrm': dbs_train[db] = dbs.NYUDRaw(split='train', transform=transforms, overfit=p['overfit']) elif db == 'NYUD': dbs_train[db] = dbs.NYUD_MT(split='train', transform=transforms, do_edge=p.DO_EDGE, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_depth=p.DO_DEPTH, overfit=p['overfit']) elif db == 'COCO': dbs_train[db] = dbs.COCOSegmentation(split='train2017', transform=transforms, retname=True, area_range=[1000, float("inf")], only_pascal_categories=True, overfit=p['overfit']) elif db == 'FSV': dbs_train[db] = dbs.FSVGTA(split='train', mini=False, transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, do_albedo=p.DO_ALBEDO, do_depth=p.DO_DEPTH, overfit=p['overfit']) else: raise NotImplemented("train_db_name: Choose among BSDS500, PASCALContext, VOC12, COCO, FSV, and NYUD") if len(dbs_train) == 1: db_train = dbs_train[list(dbs_train.keys())[0]] else: db_exclude = dbs.VOC12(split=['val'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) db_train = CombineIMDBs([dbs_train[x] for x in dbs_train], excluded=[db_exclude], repeat=[1, 1]) trainloader = DataLoader(db_train, batch_size=p['trBatch'], shuffle=True, drop_last=True, num_workers=4, worker_init_fn=worker_seed, collate_fn=collate_mil) return trainloader def get_test_loader(p, db_name, transforms, infer=False): print('Preparing test loader for db: {}'.format(db_name)) if db_name == 'BSDS500': db_test = dbs.BSDS500(split=['test'], transform=transforms, overfit=p['overfit']) elif db_name == 'PASCALContext': db_test = dbs.PASCALContext(split=['val'], transform=transforms, retname=True, do_edge=p.DO_EDGE, do_human_parts=p.DO_HUMAN_PARTS, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_sal=p.DO_SAL, overfit=p['overfit']) elif db_name == 'VOC12': db_test = dbs.VOC12(split=['val'], transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, overfit=p['overfit']) elif db_name == 'NYUD': db_test = dbs.NYUD_MT(split='val', transform=transforms, do_edge=p.DO_EDGE, do_semseg=p.DO_SEMSEG, do_normals=p.DO_NORMALS, do_depth=p.DO_DEPTH, overfit=p['overfit']) elif db_name == 'COCO': db_test = dbs.COCOSegmentation(split='val2017', transform=transforms, retname=True, area_range=[1000, float("inf")], only_pascal_categories=True, overfit=p['overfit']) elif db_name == 'FSV': db_test = dbs.FSVGTA(split='test', mini=True, transform=transforms, retname=True, do_semseg=p.DO_SEMSEG, do_albedo=p.DO_ALBEDO, do_depth=p.DO_DEPTH, overfit=p['overfit']) else: raise NotImplemented("test_db_name: Choose among BSDS500, PASCALContext, VOC12, COCO, FSV, and NYUD") drop_last = False if infer else True testloader = DataLoader(db_test, batch_size=p.TEST.BATCH_SIZE, shuffle=False, drop_last=drop_last, num_workers=2, worker_init_fn=worker_seed) return testloader def get_output(output, task): output = output.permute(0, 2, 3, 1) if task == 'normals': output = (normal_ize(output, dim=3) + 1.0) * 255 / 2.0 elif task in {'semseg', 'human_parts'}: _, output = torch.max(output, dim=3) elif task in {'edge', 'sal'}: output = torch.squeeze(255 * 1 / (1 + torch.exp(-output))) elif task in {'depth'}: pass else: raise ValueError('Select one of the valid tasks') return output.cpu().data.numpy()
astmt-master
experiments/dense_predict/common_configs.py
MAX_N_IMAGES_PER_GPU = { 'res26-8': 8, 'res26-16': 12, 'res50-8': 8, 'res50-16': 10, 'res101-8': 4, 'res101-16': 10, 'x50-8': 4, 'x50-16': 10, 'x101-8': 2, 'x101-16': 6, }
astmt-master
experiments/dense_predict/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import cv2 import argparse import torch import tarfile from six.moves import urllib from easydict import EasyDict as edict # Networks import fblib.networks.deeplab_multi_task.deeplab_se_resnet_multitask as se_resnet_multitask # Common configs from experiments.dense_predict.common_configs import get_loss, get_train_loader, get_test_loader, get_transformations from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='Multi-task learning with PASCAL') # Select tasks parser.add_argument('--active_tasks', type=int, nargs='+', default=[1, 1, 1, 1, 1], help='Which tasks to train?') parser.add_argument('--onlyVOC', type=str2bool, default=False, help='Use standard training and testing for semantic segmentation') # General parameters parser.add_argument('--arch', type=str, default='se_res26', help='network: se_res26, se_res50, se_res101') parser.add_argument('--pretr', type=str, default='imagenet', help='pre-trained model: "imagenet" or "scratch"') parser.add_argument('--trBatch', type=int, default=8, help='training batch size') parser.add_argument('-lr', type=float, default=0.001, help='initial learning rate. poly-learning rate is used.') parser.add_argument('--lr_dec', type=float, default=1, help='decoder learning rate multiplier') parser.add_argument('-wd', type=float, default=1e-4, help='Weight decay') parser.add_argument('--epochs', type=int, default=60, help='Total number of epochs for training') parser.add_argument('--resume_epoch', type=int, default=0, help='Resume Epoch #') parser.add_argument('--cls', type=str, default='atrous-v3', help='Classifier type') parser.add_argument('--stride', type=int, default=16, help='Output stride of ResNet backbone. If set to 16 saves significant memory') parser.add_argument('--trNorm', type=str2bool, default=True, help='train normalization layers of Backbone?') parser.add_argument('--dec_w', type=int, default=64, help='decoder width (default 256 in Deeplab v3+') parser.add_argument('--overfit', type=str2bool, default=False, help='overfit to small subset of data for debugging purposes') # Modulation Parameters parser.add_argument('--seenc', type=str2bool, default=True, help='Squeeze and excitation per task for encoder? False will still use 1 SE for all tasks') parser.add_argument('--sedec', type=str2bool, default=True, help='Squeeze and excitation per task for decoder? False will not use SE modules') parser.add_argument('--adapt', type=str2bool, default=True, help='Use parallel residual adapters?') parser.add_argument('--lr_tsk', type=float, default=-1, help='Task Specific layer learning rate multiplier') # Discriminator parameters parser.add_argument('--dscr', type=str, default='fconv', help='Use discriminator?') parser.add_argument('--lr_dscr', type=int, default=10, help='learning rate multiplier of discriminator?') parser.add_argument('--dscr_w', type=float, default=0.01, help='weight of discriminator in the range [0, 1]') parser.add_argument('--dscrd', type=int, default=2, help='Depth of discriminator') parser.add_argument('--dscrk', type=int, default=1, help='kernel size of discriminator') # Task-specific parameters parser.add_argument('--edge_w', type=float, default=0.95, help='weighting the positive loss for boundary detection as w * L_pos + (1 - w) * L_neg') return parser.parse_args() def create_config(): cfg = edict() args = parse_args() # Parse tasks assert (len(args.active_tasks) == 5) args.do_edge = args.active_tasks[0] args.do_semseg = args.active_tasks[1] args.do_human_parts = args.active_tasks[2] args.do_normals = args.active_tasks[3] args.do_sal = args.active_tasks[4] print('\nThis script was run with the following parameters:') for x in vars(args): print('{}: {}'.format(x, str(getattr(args, x)))) cfg.resume_epoch = args.resume_epoch cfg.DO_EDGE = args.do_edge cfg.DO_SEMSEG = args.do_semseg cfg.DO_HUMAN_PARTS = args.do_human_parts cfg.DO_NORMALS = args.do_normals cfg.DO_SAL = args.do_sal if not cfg.DO_EDGE and not cfg.DO_SEMSEG and not cfg.DO_HUMAN_PARTS and not cfg.DO_NORMALS and not cfg.DO_SAL: raise ValueError("Select at least one task") cfg['arch'] = args.arch cfg['pretr'] = args.pretr cfg['trBatch'] = args.trBatch cfg['lr'] = args.lr cfg['lr_dec'] = args.lr_dec cfg['wd'] = args.wd cfg['cls'] = args.cls cfg['epochs'] = args.epochs cfg['stride'] = args.stride cfg['trNorm'] = args.trNorm cfg['dec_w'] = args.dec_w # Set Modulation (Squeeze and Exciation, Residual Adapters) parameters cfg['seenc'] = args.seenc cfg['sedec'] = args.sedec cfg['adapters'] = args.adapt if cfg['sedec']: cfg['norm_per_task'] = True else: cfg['norm_per_task'] = False if args.dscr == 'None': args.dscr = None cfg['dscr_type'] = args.dscr cfg['lr_dscr'] = args.lr_dscr cfg['dscr_w'] = args.dscr_w cfg['dscrd'] = args.dscrd cfg['dscrk'] = args.dscrk task_args, name_args = get_exp_name(args) cfg['exp_folder_name'] = 'pascal_resnet' cfg['exp_name'] = "_".join(name_args) cfg['tasks_name'] = "_".join(task_args) cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name'], cfg['tasks_name']) if args.onlyVOC: cfg['train_db_name'] = ['VOC12', 'SBD'] cfg['test_db_name'] = 'VOC12' cfg['infer_db_names'] = ['VOC12', ] else: cfg['train_db_name'] = ['PASCALContext', ] cfg['test_db_name'] = 'PASCALContext' cfg['infer_db_names'] = ['PASCALContext', ] # Which tasks? cfg.TASKS = edict() cfg.TASKS.NAMES = [] cfg.TASKS.NUM_OUTPUT = {} # How many outputs per task? cfg.TASKS.TB_MIN = {} cfg.TASKS.TB_MAX = {} cfg.TASKS.LOSS_MULT = {} cfg.TASKS.FLAGVALS = {'image': cv2.INTER_CUBIC} cfg.TASKS.INFER_FLAGVALS = {} if cfg.DO_EDGE: # Edge Detection print('Adding task: Edge Detection') tmp = 'edge' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] cfg.TASKS.LOSS_MULT[tmp] = 50 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR # Add task-specific parameters from parser cfg['edge_w'] = args.edge_w cfg['eval_edge'] = False if cfg.DO_SEMSEG: # Semantic Segmentation print('Adding task: Semantic Segmentation') tmp = 'semseg' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 21 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_HUMAN_PARTS: # Human Parts Segmentation print('Adding task: Human Part Segmentation') tmp = 'human_parts' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 7 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 2 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_NORMALS: # Human Parts Segmentation print('Adding task: Normals') tmp = 'normals' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 3 cfg.TASKS.TB_MIN[tmp] = -1 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 10 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_CUBIC cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['normloss'] = 1 # Hard-coded L1 loss for normals if cfg.DO_SAL: # Saliency Estimation print('Adding task: Saliency') tmp = 'sal' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 5 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['lr_tsk'] = len(cfg.TASKS.NAMES) if args.lr_tsk < 0 else args.lr_tsk cfg.NETWORK = edict() # Visualize the network on Tensorboard / pdf? cfg.NETWORK.VIS_NET = False cfg.TRAIN = edict() cfg.TRAIN.SCALE = (512, 512) cfg.TRAIN.MOMENTUM = 0.9 cfg.TRAIN.TENS_VIS = True cfg.TRAIN.TENS_VIS_INTER = 1000 cfg.TRAIN.TEMP_LOSS_INTER = 1000 cfg.TEST = edict() # See evolution of the test set when training? cfg.TEST.USE_TEST = True cfg.TEST.TEST_INTER = 10 cfg.TEST.SCALE = (512, 512) cfg.SEED = 0 cfg.EVALUATE = True cfg.DEBUG = False cfg['overfit'] = args.overfit if cfg['overfit']: cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name']) cfg['exp_name'] = 'test' cfg['save_dir'] = os.path.join(cfg['save_dir_root'], cfg['exp_name']) return cfg def check_downloaded(p): def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() def _create_url(name): return 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/astmt/{}.tgz'.format(name) _model_urls = { 'pascal_resnet_edge_semseg_human_parts_normals_sal_' 'arch-se_res26_pretr-imagenet_trBatch-8_lr-0.001_epochs-60_trNorm_seenc_sedec_adapt_dscr-fconv_lr_dscr' '-10_dscr_w-0.01_dscrd-2_dscrk-1_edge_w-0.95_60', } ans = False _check = p['exp_folder_name'] + '_' + p['tasks_name'] + '_' + p['exp_name'] + '_' + str(p['resume_epoch']) _fpath = os.path.join(Path.exp_dir(), _check + '.tgz') if _check in _model_urls: if not os.path.isfile(os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth')): urllib.request.urlretrieve(_create_url(_check), _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.exp_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') ans = True return ans def get_net_resnet(p): """ Define the network (standard Deeplab ResNet101) and the trainable parameters """ if p['arch'] == 'se_res26': network = se_resnet_multitask.se_resnet26 elif p['arch'] == 'se_res50': network = se_resnet_multitask.se_resnet50 elif p['arch'] == 'se_res101': network = se_resnet_multitask.se_resnet101 else: raise NotImplementedError('ResNet: Choose between among se_res26, se_res50, and se_res101') print('Creating ResNet model: {}'.format(p.NETWORK)) net = network(tasks=p.TASKS.NAMES, n_classes=p.TASKS.NUM_OUTPUT, pretrained=p['pretr'], classifier=p['cls'], output_stride=p['stride'], train_norm_layers=p['trNorm'], width_decoder=p['dec_w'], squeeze_enc=p['seenc'], squeeze_dec=p['sedec'], adapters=p['adapters'], norm_per_task=p['norm_per_task'], dscr_type=p['dscr_type'], dscr_d=p['dscrd'], dscr_k=p['dscrk']) if p['resume_epoch'] != 0: print("Initializing weights from: {}".format( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth'))) state_dict_checkpoint = torch.load( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth') , map_location=lambda storage, loc: storage) net.load_state_dict(state_dict_checkpoint) return net def get_train_params(net, p): train_params = [{'params': se_resnet_multitask.get_lr_params(net, part='backbone', tasks=p.TASKS.NAMES), 'lr': p['lr']}, {'params': se_resnet_multitask.get_lr_params(net, part='decoder', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dec']}, {'params': se_resnet_multitask.get_lr_params(net, part='task_specific', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_tsk']}] if p['dscr_type'] is not None: train_params.append( {'params': se_resnet_multitask.get_lr_params(net, part='discriminator', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dscr']}) return train_params def get_exp_name(args): """ Creates the name experiment from the configuration file and the arguments """ task_dict = { 'do_edge': 0, 'do_semseg': 0, 'do_human_parts': 0, 'do_normals': 0, 'do_sal': 0 } name_dict = { 'arch': None, 'onlyVOC': False, 'pretr': None, 'trBatch': None, 'lr': None, 'wd': 1e-04, 'epochs': None, 'cls': 'atrous-v3', 'stride': 16, 'trNorm': False, 'dec_w': 64, 'seenc': False, 'sedec': False, 'adapt': False, 'dscr': None, 'lr_dscr': 1, 'dscr_w': ('dscr', None), 'dscrd': ('dscr', None), 'dscrk': ('dscr', None), 'edge_w': ('do_edge', None), 'lr_dec': 1, 'lr_tsk': -1, } # Experiment folder (task) string task_args = [x.replace('do_', '') for x in task_dict if getattr(args, x) != task_dict[x]] # Experiment name string name_args = [] for x in name_dict: # Check dependencies in tuple if isinstance(name_dict[x], tuple): elem = name_dict if name_dict[x][0] in name_dict else task_dict if elem[name_dict[x][0]] == getattr(args, name_dict[x][0]): continue if getattr(args, x) != name_dict[x]: tmp = getattr(args, x) if isinstance(tmp, list): tmp = "_".join([str(x) for x in tmp]) else: tmp = str(tmp) name_args.append(x + '-' + tmp) name_args = [x.replace('-True', '') for x in name_args] return task_args, name_args
astmt-master
experiments/dense_predict/pascal_resnet/config.py
MAX_N_IMAGES_PER_GPU = { 'se_res26-8': 10, 'se_res26-16': 16, 'se_res50-8': 8, 'se_res50-16': 10, 'se_res101-8': 2, 'se_res101-16': 8, }
astmt-master
experiments/dense_predict/pascal_resnet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import socket import timeit import cv2 from datetime import datetime import imageio import numpy as np # PyTorch includes import torch import torch.optim as optim from torch.nn.functional import interpolate # Custom includes from fblib.util.helpers import generate_param_report from fblib.util.dense_predict.utils import lr_poly from experiments.dense_predict import common_configs from fblib.util.mtl_tools.multitask_visualizer import TBVisualizer, visualize_network from fblib.util.model_resources.flops import compute_gflops from fblib.util.model_resources.num_parameters import count_parameters from fblib.util.dense_predict.utils import AverageMeter # Custom optimizer from fblib.util.optimizer_mtl.select_used_modules import make_closure # Configuration file from experiments.dense_predict.pascal_resnet import config as config # Tensorboard include from tensorboardX import SummaryWriter def main(): p = config.create_config() gpu_id = 0 device = torch.device("cuda:" + str(gpu_id) if torch.cuda.is_available() else "cpu") p.TEST.BATCH_SIZE = 32 # Setting parameters n_epochs = p['epochs'] print("Total training epochs: {}".format(n_epochs)) print(p) print('Training on {}'.format(p['train_db_name'])) snapshot = 10 # Store a model every snapshot epochs test_interval = p.TEST.TEST_INTER # Run on test set every test_interval epochs torch.manual_seed(p.SEED) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] if not os.path.exists(os.path.join(p['save_dir'], 'models')): if p['resume_epoch'] == 0: os.makedirs(os.path.join(p['save_dir'], 'models')) else: if not config.check_downloaded(p): print('Folder does not exist.No checkpoint to resume from. Exiting') exit(1) net = config.get_net_resnet(p) # Visualize the network if p.NETWORK.VIS_NET: visualize_network(net, p) gflops = compute_gflops(net, in_shape=(p['trBatch'], 3, p.TRAIN.SCALE[0], p.TRAIN.SCALE[1]), tasks=p.TASKS.NAMES[0]) print('GFLOPS per task: {}'.format(gflops / p['trBatch'])) print('\nNumber of parameters (in millions): {0:.3f}'.format(count_parameters(net) / 1e6)) print('Number of parameters (in millions) for decoder: {0:.3f}\n'.format(count_parameters(net.decoder) / 1e6)) net.to(device) if p['resume_epoch'] != n_epochs: criteria_tr = {} criteria_ts = {} running_loss_tr = {task: 0. for task in p.TASKS.NAMES} running_loss_ts = {task: 0. for task in p.TASKS.NAMES} curr_loss_task = {task: 0. for task in p.TASKS.NAMES} counter_tr = {task: 0 for task in p.TASKS.NAMES} counter_ts = {task: 0 for task in p.TASKS.NAMES} # Discriminator loss variables for logging running_loss_tr_dscr = 0 running_loss_ts_dscr = 0 # Logging into Tensorboard log_dir = os.path.join(p['save_dir'], 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) writer = SummaryWriter(log_dir=log_dir) # Training parameters and their optimizer train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) for task in p.TASKS.NAMES: # Losses criteria_tr[task] = config.get_loss(p, task) criteria_ts[task] = config.get_loss(p, task) criteria_tr[task].to(device) criteria_ts[task].to(device) # Preparation of the data loaders transforms_tr, transforms_ts, _ = config.get_transformations(p) trainloader = config.get_train_loader(p, db_name=p['train_db_name'], transforms=transforms_tr) testloader = config.get_test_loader(p, db_name=p['test_db_name'], transforms=transforms_ts) # TensorBoard Image Visualizer tb_vizualizer = TBVisualizer(tasks=p.TASKS.NAMES, min_ranges=p.TASKS.TB_MIN, max_ranges=p.TASKS.TB_MAX, batch_size=p['trBatch']) generate_param_report(os.path.join(p['save_dir'], exp_name + '.txt'), p) # Train variables num_img_tr = len(trainloader) num_img_ts = len(testloader) print("Training Network") # Main Training and Testing Loop for epoch in range(p['resume_epoch'], n_epochs): top1_dscr = AverageMeter() start_time = timeit.default_timer() # One training epoch net.train() alpha = 2. / (1. + np.exp(-10 * ((epoch + 1) / n_epochs))) - 1 # Ganin et al for gradient reversal if p['dscr_type'] is not None: print('Value of alpha: {}'.format(alpha)) for ii, sample in enumerate(trainloader): curr_loss_dscr = 0 # Grab the input inputs = sample['image'] inputs.requires_grad_() inputs = inputs.to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) loss_tasks = losses_tasks[task] running_loss_tr[task] += losses_tasks[task].item() curr_loss_task[task] = losses_tasks[task].item() counter_tr[task] += 1 # Store output for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: # measure loss, accuracy and record accuracy for discriminator loss_dscr = losses_dscr[task] running_loss_tr_dscr += losses_dscr[task].item() curr_loss_dscr += loss_dscr.item() prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) loss = (1 - p['dscr_w']) * loss_tasks + p['dscr_w'] * loss_dscr else: loss = loss_tasks # Backward pass inside make_closure to update only weights that were used during fw pass optimizer.zero_grad() optimizer.step(closure=make_closure(loss=loss, net=net)) # Print stuff and log epoch loss into Tensorboard if ii % num_img_tr == num_img_tr - 1: print('[Epoch: %d, numImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_tr[task] = running_loss_tr[task] / counter_tr[task] writer.add_scalar('data/total_loss_epoch' + task, running_loss_tr[task] / p.TASKS.LOSS_MULT[task], epoch) print('Loss %s: %f' % (task, running_loss_tr[task])) running_loss_tr[task] = 0 counter_tr[task] = 0 if p['dscr_type'] is not None: running_loss_tr_dscr = running_loss_tr_dscr / num_img_tr / len(p.TASKS.NAMES) writer.add_scalar('data/total_loss_epoch_dscr', running_loss_tr_dscr, epoch) print('Loss Discriminator: %f' % running_loss_tr_dscr) print('Train Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) writer.add_scalar('data/train_accuracy_dscr', top1_dscr.avg, epoch) stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log current train loss into Tensorboard for task in p.TASKS.NAMES: writer.add_scalar('data/train_loss_iter_' + task, curr_loss_task[task], ii + num_img_tr * epoch) curr_loss_task[task] = 0. if p['dscr_type'] is not None: writer.add_scalar('data/train_loss_dscr_iter', curr_loss_dscr, ii + num_img_tr * epoch) curr_loss_dscr = 0. # Log train images to Tensorboard if p['overfit'] and p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='train') if ii % num_img_tr == num_img_tr - 1: lr_ = lr_poly(p['lr'], iter_=epoch, max_iter=n_epochs) print('(poly lr policy) learning rate: {0:.6f}'.format(lr_)) train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=lr_, momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) optimizer.zero_grad() # Save the model if (epoch % snapshot) == snapshot - 1 and epoch != 0: torch.save(net.state_dict(), os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(epoch) + '.pth')) # One testing epoch if p.TEST.USE_TEST and epoch % test_interval == (test_interval - 1): print('Testing Phase') top1_dscr = AverageMeter() net.eval() start_time = timeit.default_timer() for ii, sample in enumerate(testloader): inputs = sample['image'].to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # forward pass of the mini-batch output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) running_loss_ts[task] += losses_tasks[task].item() counter_ts[task] += 1 # for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: running_loss_ts_dscr += losses_dscr[task].item() # measure accuracy and record loss for discriminator prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) # Print stuff if ii % num_img_ts == num_img_ts - 1: print('[Epoch: %d, numTestImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_ts[task] = running_loss_ts[task] / counter_ts[task] writer.add_scalar('data/test_loss_' + task + '_epoch', running_loss_ts[task] / p.TASKS.LOSS_MULT[task], epoch) print('Testing Loss %s: %f' % (task, running_loss_ts[task])) running_loss_ts[task] = 0 counter_ts[task] = 0 # Free the graph losses_tasks = {} if p['dscr_type'] is not None: running_loss_ts_dscr = running_loss_ts_dscr / num_img_ts / len(p.TASKS.NAMES) writer.add_scalar('data/test_loss_dscr', running_loss_ts_dscr, epoch) print('Loss Discriminator: %f' % running_loss_ts_dscr) writer.add_scalar('data/test_accuracy_dscr', top1_dscr.avg, epoch) print('Test Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) # Free the graph losses_dscr = {} stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log test images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='test') writer.close() # Generate Results net.eval() _, _, transforms_infer = config.get_transformations(p) for db_name in p['infer_db_names']: testloader = config.get_test_loader(p, db_name=db_name, transforms=transforms_infer, infer=True) save_dir_res = os.path.join(p['save_dir'], 'Results_' + db_name) print('Testing Network') # Main Testing Loop with torch.no_grad(): for ii, sample in enumerate(testloader): img, meta = sample['image'], sample['meta'] # Forward pass of the mini-batch inputs = img.to(device) tasks = net.tasks for task in tasks: output, _ = net.forward(inputs, task=task) save_dir_task = os.path.join(save_dir_res, task) if not os.path.exists(save_dir_task): os.makedirs(save_dir_task) output = interpolate(output, size=(inputs.size()[-2], inputs.size()[-1]), mode='bilinear', align_corners=False) output = common_configs.get_output(output, task) for jj in range(int(inputs.size()[0])): if len(sample[task][jj].unique()) == 1 and sample[task][jj].unique() == 255: continue fname = meta['image'][jj] result = cv2.resize(output[jj], dsize=(meta['im_size'][1][jj], meta['im_size'][0][jj]), interpolation=p.TASKS.INFER_FLAGVALS[task]) imageio.imwrite(os.path.join(save_dir_task, fname + '.png'), result.astype(np.uint8)) if p.EVALUATE: common_configs.eval_all_results(p) if __name__ == '__main__': main()
astmt-master
experiments/dense_predict/pascal_resnet/main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import cv2 import argparse import torch import tarfile from six.moves import urllib from easydict import EasyDict as edict # Networks import fblib.networks.deeplab_multi_task.deeplab_se_mobilenet_v2_multitask as se_mobilenet_v2 # Common configs from experiments.dense_predict.common_configs import get_loss, get_train_loader, get_test_loader, get_transformations from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='Multi-task Learning with PASCAL and MobileNet-v2') # Select tasks parser.add_argument('--active_tasks', type=int, nargs='+', default=[1, 1, 1, 1, 1], help='Which tasks to train?') # General parameters parser.add_argument('--arch', type=str, default='mnetv2', help='network: Mobilenet v2') parser.add_argument('--pretr', type=str, default='imagenet', help='pre-trained model: "imagenet" or "scratch"') parser.add_argument('--trBatch', type=int, default=16, help='training batch size') parser.add_argument('-lr', type=float, default=0.001, help='initial learning rate. poly-learning rate is used.') parser.add_argument('--lr_dec', type=float, default=1, help='decoder learning rate multiplier') parser.add_argument('-wd', type=float, default=1e-4, help='Weight decay') parser.add_argument('--epochs', type=int, default=130, help='total number of epochs for training') parser.add_argument('--resume_epoch', type=int, default=0, help='Resume Epoch #') parser.add_argument('--stride', type=int, default=16, help='output stride of ResNet backbone. If set to 16 saves significant memory') parser.add_argument('--trNorm', type=str2bool, default=True, help='train normalization layers of backbone?') parser.add_argument('--poly', type=str2bool, default=True, help='Use poly learning rate') parser.add_argument('--overfit', type=str2bool, default=False, help='overfit to small subset of data for debugging purposes') # Squeeze and Excitation Parameters parser.add_argument('--seenc', type=str2bool, default=True, help='Squeeze and excitation per task on encoder?') parser.add_argument('--sedec', type=str2bool, default=True, help='Squeeze and excitation per task on decoder?') parser.add_argument('--lr_tsk', type=float, default=-1, help='Task Specific layer learning rate multiplier') # Discriminator parameters parser.add_argument('--dscr', type=str, default='None', help='Use discriminator?') parser.add_argument('--lr_dscr', type=int, default=1, help='learning rate multiplier of discriminator?') parser.add_argument('--dscr_w', type=float, default=0, help='weight of discriminator in the range [0, 1]') parser.add_argument('--dscrd', type=int, default=2, help='Depth of discriminator') parser.add_argument('--dscrk', type=int, default=1, help='kernel size of discriminator') # Task-specific parameters parser.add_argument('--edge_w', type=float, default=0.95, help='weighting the positive loss for boundary detection as w * L_pos + (1 - w) * L_neg') return parser.parse_args() def create_config(): cfg = edict() args = parse_args() # Parse tasks assert (len(args.active_tasks) == 5) args.do_edge = args.active_tasks[0] args.do_semseg = args.active_tasks[1] args.do_human_parts = args.active_tasks[2] args.do_normals = args.active_tasks[3] args.do_sal = args.active_tasks[4] print('\nThis script was run with the following parameters:') for x in vars(args): print('{}: {}'.format(x, str(getattr(args, x)))) cfg.resume_epoch = args.resume_epoch cfg.DO_EDGE = args.do_edge cfg.DO_SEMSEG = args.do_semseg cfg.DO_HUMAN_PARTS = args.do_human_parts cfg.DO_NORMALS = args.do_normals cfg.DO_SAL = args.do_sal if not cfg.DO_EDGE and not cfg.DO_SEMSEG and not cfg.DO_HUMAN_PARTS and not cfg.DO_NORMALS and not cfg.DO_SAL: raise ValueError("Select at least one task") cfg['arch'] = args.arch cfg['pretr'] = args.pretr cfg['trBatch'] = args.trBatch cfg['lr'] = args.lr cfg['lr_dec'] = args.lr_dec cfg['wd'] = args.wd cfg['epochs'] = args.epochs cfg['stride'] = args.stride cfg['trNorm'] = args.trNorm cfg['poly'] = args.poly # Set squeeze and excitation parameters cfg['seenc'] = args.seenc cfg['sedec'] = args.sedec if args.dscr == 'None': args.dscr = None cfg['dscr_type'] = args.dscr cfg['lr_dscr'] = args.lr_dscr cfg['dscr_w'] = args.dscr_w cfg['dscrd'] = args.dscrd cfg['dscrk'] = args.dscrk task_args, name_args = get_exp_name(args) cfg['exp_folder_name'] = 'pascal_mnet' cfg['exp_name'] = "_".join(name_args) cfg['tasks_name'] = "_".join(task_args) cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name'], cfg['tasks_name']) cfg['train_db_name'] = ['PASCALContext', ] cfg['test_db_name'] = 'PASCALContext' cfg['infer_db_names'] = ['PASCALContext', ] # Which tasks? cfg.TASKS = edict() cfg.TASKS.NAMES = [] cfg.TASKS.NUM_OUTPUT = {} # How many outputs per task? cfg.TASKS.TB_MIN = {} cfg.TASKS.TB_MAX = {} cfg.TASKS.LOSS_MULT = {} cfg.TASKS.FLAGVALS = {'image': cv2.INTER_CUBIC} cfg.TASKS.INFER_FLAGVALS = {} if cfg.DO_EDGE: # Edge Detection print('Adding task: Edge Detection') tmp = 'edge' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] cfg.TASKS.LOSS_MULT[tmp] = 50 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR # Add task-specific parameters from parser cfg['edge_w'] = args.edge_w cfg['eval_edge'] = False if cfg.DO_SEMSEG: # Semantic Segmentation print('Adding task: Semantic Segmentation') tmp = 'semseg' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 21 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_HUMAN_PARTS: # Human Parts Segmentation print('Adding task: Human Part Segmentation') tmp = 'human_parts' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 7 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 2 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_NORMALS: # Human Parts Segmentation print('Adding task: Normals') tmp = 'normals' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 3 cfg.TASKS.TB_MIN[tmp] = -1 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 10 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_CUBIC cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['normloss'] = 1 # Hard-coded L1 loss for normals if cfg.DO_SAL: # Saliency Estimation print('Adding task: Saliency') tmp = 'sal' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 5 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['lr_tsk'] = len(cfg.TASKS.NAMES) if args.lr_tsk < 0 else args.lr_tsk cfg.NETWORK = edict() # Visualize the network on Tensorboard / pdf? cfg.NETWORK.VIS_NET = False cfg.TRAIN = edict() cfg.TRAIN.SCALE = (512, 512) cfg.TRAIN.MOMENTUM = 0.9 cfg.TRAIN.TENS_VIS = False cfg.TRAIN.TENS_VIS_INTER = 1000 cfg.TRAIN.TEMP_LOSS_INTER = 1000 cfg.TEST = edict() # See evolution of the test set when training? cfg.TEST.USE_TEST = True cfg.TEST.TEST_INTER = 10 cfg.TEST.SCALE = (512, 512) cfg.SEED = 0 cfg.EVALUATE = True cfg.DEBUG = False cfg['overfit'] = args.overfit if cfg['overfit']: cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name']) cfg['exp_name'] = 'test' cfg['save_dir'] = os.path.join(cfg['save_dir_root'], cfg['exp_name']) return cfg def check_downloaded(p): def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() def _create_url(name): return 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/astmt/{}.tgz'.format(name) _model_urls = { 'pascal_mnet_edge_semseg_human_parts_normals_sal_' 'arch-mnetv2_pretr-imagenet_trBatch-16_lr-0.001_epochs-130_trNorm_poly_seenc_sedec_edge_w-0.95_130' } ans = False _check = p['exp_folder_name'] + '_' + p['tasks_name'] + '_' + p['exp_name'] + '_' + str(p['resume_epoch']) _fpath = os.path.join(Path.exp_dir(), _check + '.tgz') if _check in _model_urls: if not os.path.isfile(os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth')): urllib.request.urlretrieve(_create_url(_check), _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.exp_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') ans = True return ans def get_net_mnet(p): """ Define the network (standard Deeplab ResNet101) and the trainable parameters """ print('Creating DeepLab with Mobilenet-V2 model: {}'.format(p.NETWORK)) network = se_mobilenet_v2.se_mobilenet_v2 net = network(n_classes=p.TASKS.NUM_OUTPUT, pretrained=p['pretr'], tasks=p.TASKS.NAMES, output_stride=p['stride'], train_norm_layers=p['trNorm'], mod_enc=p['seenc'], mod_dec=p['sedec'], use_dscr=(p['dscr_type'] == 'fconv'), dscr_k=p['dscrk'], dscr_d=p['dscrd']) if p['resume_epoch'] != 0: print("Initializing weights from: {}".format( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth'))) state_dict_checkpoint = torch.load( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth') , map_location=lambda storage, loc: storage) net.load_state_dict(state_dict_checkpoint) return net def get_train_params(net, p, lr): print('Adjusting learning rate') print('Base lr: {}'.format(lr)) print('Decoder lr: {}'.format(lr * p['lr_dec'])) print('Task-specific lr: {}'.format(lr * p['lr_tsk'])) train_params = [{'params': se_mobilenet_v2.get_lr_params(net, part='backbone', tasks=p.TASKS.NAMES), 'lr': lr}, {'params': se_mobilenet_v2.get_lr_params(net, part='decoder', tasks=p.TASKS.NAMES), 'lr': lr * p['lr_dec']}, {'params': se_mobilenet_v2.get_lr_params(net, part='task_specific', tasks=p.TASKS.NAMES), 'lr': lr * p['lr_tsk']}] if p['dscr_type'] is not None: print('Discriminator lr: {}'.format(lr * p['lr_dscr'])) train_params.append( {'params': se_mobilenet_v2.get_lr_params(net, part='discriminator', tasks=p.TASKS.NAMES), 'lr': lr * p['lr_dscr']}) return train_params def get_exp_name(args): """ Creates the name experiment from the configuration file and the arguments """ task_dict = { 'do_edge': 0, 'do_semseg': 0, 'do_human_parts': 0, 'do_normals': 0, 'do_sal': 0 } name_dict = { 'arch': None, 'pretr': None, 'trBatch': None, 'lr': None, 'wd': 1e-04, 'epochs': None, 'stride': 16, 'trNorm': False, 'poly': False, 'seenc': False, 'sedec': False, 'dscr': None, 'lr_dscr': 1, 'dscr_w': ('dscr', None), 'dscrd': ('dscr', None), 'dscrk': ('dscr', None), 'edge_w': ('do_edge', None), 'lr_dec': 1, 'lr_tsk': -1, } # Experiment folder (task) string task_args = [x.replace('do_', '') for x in task_dict if getattr(args, x) != task_dict[x]] # Experiment name string name_args = [] for x in name_dict: # Check dependencies in tuple if isinstance(name_dict[x], tuple): elem = name_dict if name_dict[x][0] in name_dict else task_dict if elem[name_dict[x][0]] == getattr(args, name_dict[x][0]): continue if getattr(args, x) != name_dict[x]: tmp = getattr(args, x) if isinstance(tmp, list): tmp = "_".join([str(x) for x in tmp]) else: tmp = str(tmp) name_args.append(x + '-' + tmp) name_args = [x.replace('-True', '') for x in name_args] return task_args, name_args
astmt-master
experiments/dense_predict/pascal_mnet/config.py
MAX_N_IMAGES_PER_GPU = { 'mnetv2-8': 10, 'mnetv2-16': 16, }
astmt-master
experiments/dense_predict/pascal_mnet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import socket import timeit import cv2 from datetime import datetime import imageio import numpy as np # PyTorch includes import torch import torch.optim as optim from torch.nn.functional import interpolate # Custom includes from fblib.util.helpers import generate_param_report from fblib.util.dense_predict.utils import lr_poly from experiments.dense_predict import common_configs from fblib.util.mtl_tools.multitask_visualizer import TBVisualizer from fblib.util.model_resources.flops import compute_gflops from fblib.util.model_resources.num_parameters import count_parameters from fblib.util.dense_predict.utils import AverageMeter # Custom optimizer from fblib.util.optimizer_mtl.select_used_modules import make_closure # Configuration from experiments.dense_predict.pascal_mnet import config # Tensorboard include from tensorboardX import SummaryWriter def main(): p = config.create_config() gpu_id = 0 device = torch.device("cuda:" + str(gpu_id) if torch.cuda.is_available() else "cpu") p.TEST.BATCH_SIZE = 32 # Setting parameters n_epochs = p['epochs'] print("Total training epochs: {}".format(n_epochs)) print(p) print('Training on {}'.format(p['train_db_name'])) snapshot = 10 # Store a model every snapshot epochs test_interval = p.TEST.TEST_INTER # Run on test set every test_interval epochs torch.manual_seed(p.SEED) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] if not os.path.exists(os.path.join(p['save_dir'], 'models')): if p['resume_epoch'] == 0: os.makedirs(os.path.join(p['save_dir'], 'models')) else: if not config.check_downloaded(p): print('Folder does not exist.No checkpoint to resume from. Exiting') exit(1) net = config.get_net_mnet(p) gflops = compute_gflops(net, in_shape=(p['trBatch'], 3, p.TRAIN.SCALE[0], p.TRAIN.SCALE[1]), tasks=p.TASKS.NAMES[0]) print('GFLOPS per task: {}'.format(gflops / p['trBatch'])) print('\nNumber of parameters (in millions): {0:.3f}'.format(count_parameters(net) / 1e6)) print('Number of parameters (in millions) for decoder: {0:.3f}\n'.format(count_parameters(net.decoder) / 1e6)) net.to(device) if p['resume_epoch'] != n_epochs: criteria_tr = {} criteria_ts = {} running_loss_tr = {task: 0. for task in p.TASKS.NAMES} running_loss_ts = {task: 0. for task in p.TASKS.NAMES} curr_loss_task = {task: 0. for task in p.TASKS.NAMES} counter_tr = {task: 0 for task in p.TASKS.NAMES} counter_ts = {task: 0 for task in p.TASKS.NAMES} # Discriminator loss variables for logging running_loss_tr_dscr = 0 running_loss_ts_dscr = 0 # Logging into Tensorboard log_dir = os.path.join(p['save_dir'], 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) writer = SummaryWriter(log_dir=log_dir) # Training parameters and their optimizer train_params = config.get_train_params(net, p, p['lr']) optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) for task in p.TASKS.NAMES: # Losses criteria_tr[task] = config.get_loss(p, task) criteria_ts[task] = config.get_loss(p, task) criteria_tr[task].to(device) criteria_ts[task].to(device) # Preparation of the data loaders transforms_tr, transforms_ts, _ = config.get_transformations(p) trainloader = config.get_train_loader(p, db_name=p['train_db_name'], transforms=transforms_tr) testloader = config.get_test_loader(p, db_name=p['test_db_name'], transforms=transforms_ts) # TensorBoard Image Visualizer tb_vizualizer = TBVisualizer(tasks=p.TASKS.NAMES, min_ranges=p.TASKS.TB_MIN, max_ranges=p.TASKS.TB_MAX, batch_size=p['trBatch']) generate_param_report(os.path.join(p['save_dir'], exp_name + '.txt'), p) # Train variables num_img_tr = len(trainloader) num_img_ts = len(testloader) print("Training Network") # Main Training and Testing Loop for epoch in range(p['resume_epoch'], n_epochs): top1_dscr = AverageMeter() start_time = timeit.default_timer() # One training epoch net.train() alpha = 2. / (1. + np.exp(-10 * ((epoch + 1) / n_epochs))) - 1 # Ganin et al for gradient reversal if p['dscr_type'] is not None: print('Value of alpha: {}'.format(alpha)) for ii, sample in enumerate(trainloader): curr_loss_dscr = 0 # Grab the input inputs = sample['image'] inputs.requires_grad_() inputs = inputs.to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) loss_tasks = losses_tasks[task] running_loss_tr[task] += losses_tasks[task].item() curr_loss_task[task] = losses_tasks[task].item() counter_tr[task] += 1 # Store output for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: # measure loss, accuracy and record accuracy for discriminator loss_dscr = losses_dscr[task] running_loss_tr_dscr += losses_dscr[task].item() curr_loss_dscr += loss_dscr.item() prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) loss = (1 - p['dscr_w']) * loss_tasks + p['dscr_w'] * loss_dscr else: loss = loss_tasks # Backward pass inside make_closure to update only weights that were used during fw pass optimizer.zero_grad() optimizer.step(closure=make_closure(loss=loss, net=net)) # Print stuff and log epoch loss into Tensorboard if ii % num_img_tr == num_img_tr - 1: print('[Epoch: %d, numImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_tr[task] = running_loss_tr[task] / counter_tr[task] writer.add_scalar('data/total_loss_epoch' + task, running_loss_tr[task] / p.TASKS.LOSS_MULT[task], epoch) print('Loss %s: %f' % (task, running_loss_tr[task])) running_loss_tr[task] = 0 counter_tr[task] = 0 if p['dscr_type'] is not None: running_loss_tr_dscr = running_loss_tr_dscr / num_img_tr / len(p.TASKS.NAMES) writer.add_scalar('data/total_loss_epoch_dscr', running_loss_tr_dscr, epoch) print('Loss Discriminator: %f' % running_loss_tr_dscr) print('Train Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) writer.add_scalar('data/train_accuracy_dscr', top1_dscr.avg, epoch) stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log current train loss into Tensorboard for task in p.TASKS.NAMES: writer.add_scalar('data/train_loss_iter_' + task, curr_loss_task[task], ii + num_img_tr * epoch) curr_loss_task[task] = 0. if p['dscr_type'] is not None: writer.add_scalar('data/train_loss_dscr_iter', curr_loss_dscr, ii + num_img_tr * epoch) curr_loss_dscr = 0. # Log train images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='train') if p['poly'] and ii % num_img_tr == num_img_tr - 1: lr_ = lr_poly(p['lr'], iter_=epoch, max_iter=n_epochs) print('(poly lr policy) learning rate: {0:.6f}'.format(lr_)) train_params = config.get_train_params(net, p, lr_) optimizer = optim.SGD(train_params, lr=lr_, momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) optimizer.zero_grad() # Save the model if (epoch % snapshot) == snapshot - 1 and epoch != 0: torch.save(net.state_dict(), os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(epoch) + '.pth')) # One testing epoch if p.TEST.USE_TEST and epoch % test_interval == (test_interval - 1): print('Testing Phase') top1_dscr = AverageMeter() net.eval() start_time = timeit.default_timer() for ii, sample in enumerate(testloader): inputs = sample['image'].to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass of the mini-batch output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) running_loss_ts[task] += losses_tasks[task].item() counter_ts[task] += 1 # For logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: running_loss_ts_dscr += losses_dscr[task].item() # measure accuracy and record loss for discriminator prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) # Print stuff if ii % num_img_ts == num_img_ts - 1: print('[Epoch: %d, numTestImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_ts[task] = running_loss_ts[task] / counter_ts[task] writer.add_scalar('data/test_loss_' + task + '_epoch', running_loss_ts[task] / p.TASKS.LOSS_MULT[task], epoch) print('Testing Loss %s: %f' % (task, running_loss_ts[task])) running_loss_ts[task] = 0 counter_ts[task] = 0 # Free the graph losses_tasks = {} if p['dscr_type'] is not None: running_loss_ts_dscr = running_loss_ts_dscr / num_img_ts / len(p.TASKS.NAMES) writer.add_scalar('data/test_loss_dscr', running_loss_ts_dscr, epoch) print('Loss Discriminator: %f' % running_loss_ts_dscr) writer.add_scalar('data/test_accuracy_dscr', top1_dscr.avg, epoch) print('Test Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) # Free the graph losses_dscr = {} stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log test images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='test') writer.close() # Generate Results net.eval() _, _, transforms_infer = config.get_transformations(p) for db_name in p['infer_db_names']: testloader = config.get_test_loader(p, db_name=db_name, transforms=transforms_infer, infer=True) save_dir_res = os.path.join(p['save_dir'], 'Results_' + db_name) print('Testing network') # Main Testing Loop with torch.no_grad(): for ii, sample in enumerate(testloader): img, meta = sample['image'], sample['meta'] # Forward pass of the mini-batch inputs = img.to(device) tasks = net.tasks for task in tasks: output, _ = net.forward(inputs, task=task) save_dir_task = os.path.join(save_dir_res, task) if not os.path.exists(save_dir_task): os.makedirs(save_dir_task) output = interpolate(output, size=(inputs.size()[-2], inputs.size()[-1]), mode='bilinear', align_corners=False) output = common_configs.get_output(output, task) for jj in range(int(inputs.size()[0])): if len(sample[task][jj].unique()) == 1 and sample[task][jj].unique() == 255: continue fname = meta['image'][jj] result = cv2.resize(output[jj], dsize=(meta['im_size'][1][jj], meta['im_size'][0][jj]), interpolation=p.TASKS.INFER_FLAGVALS[task]) imageio.imwrite(os.path.join(save_dir_task, fname + '.png'), result.astype(np.uint8)) if p.EVALUATE: common_configs.eval_all_results(p) if __name__ == '__main__': main()
astmt-master
experiments/dense_predict/pascal_mnet/main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import cv2 import argparse import torch import tarfile from six.moves import urllib from easydict import EasyDict as edict # Networks import fblib.networks.deeplab_multi_task.deeplab_se_resnet_multitask as se_resnet_multitask # Common configs from experiments.dense_predict.common_configs import get_loss, get_train_loader, get_test_loader, get_transformations from fblib.util.mypath import Path def parse_args(): def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='Multi-task Learning for NYUD') # Select tasks parser.add_argument('--active_tasks', type=int, nargs='+', default=[1, 1, 1, 1], help='Which tasks to train?') # General parameters parser.add_argument('--arch', type=str, default='se_res50', help='network: se_res26, se_res50, se_res101') parser.add_argument('--pretr', type=str, default='imagenet', help='pre-trained model: "imagenet" or "scratch"') parser.add_argument('--trBatch', type=int, default=8, help='training batch size') parser.add_argument('-lr', type=float, default=0.001, help='initial learning rate. poly-learning rate is used.') parser.add_argument('--lr_dec', type=float, default=1, help='decoder learning rate multiplier') parser.add_argument('-wd', type=float, default=1e-4, help='Weight decay') parser.add_argument('--epochs', type=int, default=200, help='Total number of epochs for training') parser.add_argument('--resume_epoch', type=int, default=0, help='Resume Epoch #') parser.add_argument('--cls', type=str, default='atrous-v3', help='Classifier type') parser.add_argument('--stride', type=int, default=16, help='Output stride of ResNet backbone. If set to 16 saves significant memory') parser.add_argument('--trNorm', type=str2bool, default=True, help='train normalization layers of Backbone?') parser.add_argument('--dec_w', type=int, default=64, help='decoder width (default 256 in Deeplab v3+') parser.add_argument('--overfit', type=str2bool, default=False, help='overfit to small subset of data for debugging purposes') # Modulation Parameters parser.add_argument('--seenc', type=str2bool, default=True, help='Squeeze and excitation per task for encoder? False will still use 1 SE for all tasks') parser.add_argument('--sedec', type=str2bool, default=True, help='Squeeze and excitation per task for decoder? False will not use SE modules') parser.add_argument('--adapt', type=str2bool, default=True, help='Use parallel residual adapters?') parser.add_argument('--lr_tsk', type=float, default=-1, help='Task Specific layer learning rate multiplier') # Discriminator parameters parser.add_argument('--dscr', type=str, default='fconv', help='Use discriminator?') parser.add_argument('--lr_dscr', type=int, default=10, help='learning rate multiplier of discriminator?') parser.add_argument('--dscr_w', type=float, default=0.01, help='weight of discriminator in the range [0, 1]') parser.add_argument('--dscrd', type=int, default=2, help='Depth of discriminator') parser.add_argument('--dscrk', type=int, default=3, help='Kernel size of discriminator') # Task-specific parameters parser.add_argument('--edge_w', type=float, default=0.8, help='Weighting the positive loss for boundary detection as w * L_pos + (1 - w) * L_neg') return parser.parse_args() def create_config(): cfg = edict() args = parse_args() # Parse tasks assert (len(args.active_tasks) == 4) args.do_edge = args.active_tasks[0] args.do_semseg = args.active_tasks[1] args.do_normals = args.active_tasks[2] args.do_depth = args.active_tasks[3] print('\nThis script was run with the following parameters:') for x in vars(args): print('{}: {}'.format(x, str(getattr(args, x)))) cfg.resume_epoch = args.resume_epoch cfg.DO_EDGE = args.do_edge cfg.DO_SEMSEG = args.do_semseg cfg.DO_NORMALS = args.do_normals cfg.DO_DEPTH = args.do_depth if not cfg.DO_EDGE and not cfg.DO_SEMSEG and not cfg.DO_NORMALS and not cfg.DO_DEPTH: raise ValueError("Select at least one task") cfg['arch'] = args.arch cfg['pretr'] = args.pretr cfg['trBatch'] = args.trBatch cfg['lr'] = args.lr cfg['lr_dec'] = args.lr_dec cfg['wd'] = args.wd cfg['cls'] = args.cls cfg['epochs'] = args.epochs cfg['stride'] = args.stride cfg['trNorm'] = args.trNorm cfg['dec_w'] = args.dec_w # Set Modulation (Squeeze and Exciation, Residual Adapters) parameters cfg['seenc'] = args.seenc cfg['sedec'] = args.sedec cfg['adapters'] = args.adapt if cfg['sedec']: cfg['norm_per_task'] = True else: cfg['norm_per_task'] = False if args.dscr == 'None': args.dscr = None cfg['dscr_type'] = args.dscr cfg['lr_dscr'] = args.lr_dscr cfg['dscr_w'] = args.dscr_w cfg['dscrd'] = args.dscrd cfg['dscrk'] = args.dscrk task_args, name_args = get_exp_name(args) cfg['exp_folder_name'] = 'nyud_resnet' cfg['exp_name'] = "_".join(name_args) cfg['tasks_name'] = "_".join(task_args) cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name'], cfg['tasks_name']) cfg['train_db_name'] = ['NYUD', ] cfg['test_db_name'] = 'NYUD' cfg['infer_db_names'] = ['NYUD', ] # Which tasks? cfg.TASKS = edict() cfg.TASKS.NAMES = [] cfg.TASKS.NUM_OUTPUT = {} # How many outputs per task? cfg.TASKS.TB_MIN = {} cfg.TASKS.TB_MAX = {} cfg.TASKS.LOSS_MULT = {} cfg.TASKS.FLAGVALS = {'image': cv2.INTER_CUBIC} cfg.TASKS.INFER_FLAGVALS = {} if cfg.DO_EDGE: # Edge Detection print('Adding task: Edge Detection') tmp = 'edge' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] cfg.TASKS.LOSS_MULT[tmp] = 50 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR # Add task-specific parameters from parser cfg['edge_w'] = args.edge_w cfg['eval_edge'] = False if cfg.DO_SEMSEG: # Semantic Segmentation print('Adding task: Semantic Segmentation') tmp = 'semseg' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 41 cfg.TASKS.TB_MIN[tmp] = 0 cfg.TASKS.TB_MAX[tmp] = cfg.TASKS.NUM_OUTPUT[tmp] - 1 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_NEAREST cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_NEAREST if cfg.DO_NORMALS: # Human Parts Segmentation print('Adding task: Normals') tmp = 'normals' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 3 cfg.TASKS.TB_MIN[tmp] = -1 cfg.TASKS.TB_MAX[tmp] = 1 cfg.TASKS.LOSS_MULT[tmp] = 10 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_CUBIC cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['normloss'] = 1 # Hard-coded L1 loss for normals if cfg.DO_DEPTH: # Depth Estimation print('Adding task: Depth') tmp = 'depth' cfg.TASKS.NAMES.append(tmp) cfg.TASKS.NUM_OUTPUT[tmp] = 1 cfg.TASKS.TB_MIN[tmp] = 1 cfg.TASKS.TB_MAX[tmp] = 10 cfg.TASKS.LOSS_MULT[tmp] = 1 cfg.TASKS.FLAGVALS[tmp] = cv2.INTER_LINEAR cfg.TASKS.INFER_FLAGVALS[tmp] = cv2.INTER_LINEAR cfg['lr_tsk'] = len(cfg.TASKS.NAMES) if args.lr_tsk < 0 else args.lr_tsk cfg.NETWORK = edict() # Visualize the network on Tensorboard / pdf? cfg.NETWORK.VIS_NET = False cfg.TRAIN = edict() cfg.TRAIN.SCALE = (512, 512) cfg.TRAIN.MOMENTUM = 0.9 cfg.TRAIN.TENS_VIS = True cfg.TRAIN.TENS_VIS_INTER = 1000 cfg.TRAIN.TEMP_LOSS_INTER = 1000 cfg.TEST = edict() # See evolution of the test set when training? cfg.TEST.USE_TEST = True cfg.TEST.TEST_INTER = 10 cfg.TEST.SCALE = (512, 512) cfg.SEED = 0 cfg.EVALUATE = True cfg.DEBUG = False cfg['overfit'] = args.overfit if cfg['overfit']: cfg['save_dir_root'] = os.path.join(Path.exp_dir(), cfg['exp_folder_name']) cfg['exp_name'] = 'test' cfg['save_dir'] = os.path.join(cfg['save_dir_root'], cfg['exp_name']) return cfg def check_downloaded(p): def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() def _create_url(name): return 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/astmt/{}.tgz'.format(name) _model_urls = { 'nyud_resnet_edge_semseg_normals_depth_' 'arch-se_res50_pretr-imagenet_trBatch-8_lr-0.001_epochs-200_trNorm_seenc_sedec_adapt_dscr-fconv_lr_dscr' '-10_dscr_w-0.01_dscrd-2_dscrk-3_edge_w-0.8_200', } ans = False _check = p['exp_folder_name'] + '_' + p['tasks_name'] + '_' + p['exp_name'] + '_' + str(p['resume_epoch']) _fpath = os.path.join(Path.exp_dir(), _check + '.tgz') if _check in _model_urls: if not os.path.isfile(os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth')): urllib.request.urlretrieve(_create_url(_check), _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.exp_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') ans = True return ans def get_net_resnet(p): """ Define the network (standard Deeplab ResNet101) and the trainable parameters """ if p['arch'] == 'se_res26': network = se_resnet_multitask.se_resnet26 elif p['arch'] == 'se_res50': network = se_resnet_multitask.se_resnet50 elif p['arch'] == 'se_res101': network = se_resnet_multitask.se_resnet101 else: raise NotImplementedError('ResNet: Choose between among se_res26, se_res50, and se_res101') print('Creating ResNet model: {}'.format(p.NETWORK)) net = network(tasks=p.TASKS.NAMES, n_classes=p.TASKS.NUM_OUTPUT, pretrained=p['pretr'], classifier=p['cls'], output_stride=p['stride'], train_norm_layers=p['trNorm'], width_decoder=p['dec_w'], squeeze_enc=p['seenc'], squeeze_dec=p['sedec'], adapters=p['adapters'], norm_per_task=p['norm_per_task'], dscr_type=p['dscr_type'], dscr_d=p['dscrd'], dscr_k=p['dscrk']) if p['resume_epoch'] != 0: print("Initializing weights from: {}".format( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth'))) state_dict_checkpoint = torch.load( os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(p['resume_epoch'] - 1) + '.pth') , map_location=lambda storage, loc: storage) net.load_state_dict(state_dict_checkpoint) return net def get_train_params(net, p): train_params = [{'params': se_resnet_multitask.get_lr_params(net, part='backbone', tasks=p.TASKS.NAMES), 'lr': p['lr']}, {'params': se_resnet_multitask.get_lr_params(net, part='decoder', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dec']}, {'params': se_resnet_multitask.get_lr_params(net, part='task_specific', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_tsk']}] if p['dscr_type'] is not None: train_params.append( {'params': se_resnet_multitask.get_lr_params(net, part='discriminator', tasks=p.TASKS.NAMES), 'lr': p['lr'] * p['lr_dscr']}) return train_params def get_exp_name(args): """ Creates the name experiment from the configuration file and the arguments """ task_dict = { 'do_edge': 0, 'do_semseg': 0, 'do_normals': 0, 'do_depth': 0 } name_dict = { 'arch': None, 'pretr': None, 'trBatch': None, 'lr': None, 'wd': 1e-04, 'epochs': None, 'cls': 'atrous-v3', 'stride': 16, 'trNorm': False, 'dec_w': 64, 'seenc': False, 'sedec': False, 'adapt': False, 'dscr': None, 'lr_dscr': 1, 'dscr_w': ('dscr', None), 'dscrd': ('dscr', None), 'dscrk': ('dscr', None), 'edge_w': ('do_edge', None), 'lr_dec': 1, 'lr_tsk': -1, } # Experiment folder (task) string task_args = [x.replace('do_', '') for x in task_dict if getattr(args, x) != task_dict[x]] # Experiment name string name_args = [] for x in name_dict: # Check dependencies in tuple if isinstance(name_dict[x], tuple): elem = name_dict if name_dict[x][0] in name_dict else task_dict if elem[name_dict[x][0]] == getattr(args, name_dict[x][0]): continue if getattr(args, x) != name_dict[x]: tmp = getattr(args, x) if isinstance(tmp, list): tmp = "_".join([str(x) for x in tmp]) else: tmp = str(tmp) name_args.append(x + '-' + tmp) name_args = [x.replace('-True', '') for x in name_args] return task_args, name_args
astmt-master
experiments/dense_predict/nyud_resnet/config.py
MAX_N_IMAGES_PER_GPU = { 'se_res26-8': 10, 'se_res26-16': 16, 'se_res50-8': 8, 'se_res50-16': 16, 'se_res101-8': 2, 'se_res101-16': 10, }
astmt-master
experiments/dense_predict/nyud_resnet/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import socket import timeit import cv2 from datetime import datetime import imageio import scipy.io as sio import numpy as np # PyTorch includes import torch import torch.optim as optim from torch.nn.functional import interpolate # Custom includes from fblib.util.helpers import generate_param_report from fblib.util.dense_predict.utils import lr_poly from experiments.dense_predict import common_configs from fblib.util.mtl_tools.multitask_visualizer import TBVisualizer, visualize_network from fblib.util.model_resources.flops import compute_gflops from fblib.util.model_resources.num_parameters import count_parameters from fblib.util.dense_predict.utils import AverageMeter # Custom optimizer from fblib.util.optimizer_mtl.select_used_modules import make_closure # Configuration file from experiments.dense_predict.nyud_resnet import config as config # Tensorboard include from tensorboardX import SummaryWriter def main(): p = config.create_config() gpu_id = 0 device = torch.device("cuda:" + str(gpu_id) if torch.cuda.is_available() else "cpu") p.TEST.BATCH_SIZE = 32 # Setting parameters n_epochs = p['epochs'] print("Total training epochs: {}".format(n_epochs)) print(p) print('Training on {}'.format(p['train_db_name'])) snapshot = 10 # Store a model every snapshot epochs test_interval = p.TEST.TEST_INTER # Run on test set every test_interval epochs torch.manual_seed(p.SEED) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] if not os.path.exists(os.path.join(p['save_dir'], 'models')): if p['resume_epoch'] == 0: os.makedirs(os.path.join(p['save_dir'], 'models')) else: if not config.check_downloaded(p): print('Folder does not exist.No checkpoint to resume from. Exiting') exit(1) net = config.get_net_resnet(p) # Visualize the network if p.NETWORK.VIS_NET: visualize_network(net, p) gflops = compute_gflops(net, in_shape=(p['trBatch'], 3, p.TRAIN.SCALE[0], p.TRAIN.SCALE[1]), tasks=p.TASKS.NAMES[0]) print('GFLOPS per task: {}'.format(gflops / p['trBatch'])) print('\nNumber of parameters (in millions): {0:.3f}'.format(count_parameters(net) / 1e6)) print('Number of parameters (in millions) for decoder: {0:.3f}\n'.format(count_parameters(net.decoder) / 1e6)) net.to(device) if p['resume_epoch'] != n_epochs: criteria_tr = {} criteria_ts = {} running_loss_tr = {task: 0. for task in p.TASKS.NAMES} running_loss_ts = {task: 0. for task in p.TASKS.NAMES} curr_loss_task = {task: 0. for task in p.TASKS.NAMES} counter_tr = {task: 0 for task in p.TASKS.NAMES} counter_ts = {task: 0 for task in p.TASKS.NAMES} # Discriminator loss variables for logging running_loss_tr_dscr = 0 running_loss_ts_dscr = 0 # Logging into Tensorboard log_dir = os.path.join(p['save_dir'], 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) writer = SummaryWriter(log_dir=log_dir) # Training parameters and their optimizer train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) for task in p.TASKS.NAMES: # Losses criteria_tr[task] = config.get_loss(p, task) criteria_ts[task] = config.get_loss(p, task) criteria_tr[task].to(device) criteria_ts[task].to(device) # Preparation of the data loaders transforms_tr, transforms_ts, _ = config.get_transformations(p) trainloader = config.get_train_loader(p, db_name=p['train_db_name'], transforms=transforms_tr) testloader = config.get_test_loader(p, db_name=p['test_db_name'], transforms=transforms_ts) # TensorBoard Image Visualizer tb_vizualizer = TBVisualizer(tasks=p.TASKS.NAMES, min_ranges=p.TASKS.TB_MIN, max_ranges=p.TASKS.TB_MAX, batch_size=p['trBatch']) generate_param_report(os.path.join(p['save_dir'], exp_name + '.txt'), p) # Train variables num_img_tr = len(trainloader) num_img_ts = len(testloader) print("Training Network") # Main Training and Testing Loop for epoch in range(p['resume_epoch'], n_epochs): top1_dscr = AverageMeter() start_time = timeit.default_timer() # One training epoch net.train() alpha = 2. / (1. + np.exp(-10 * ((epoch + 1) / n_epochs))) - 1 # Ganin et al for gradient reversal if p['dscr_type'] is not None: print('Value of alpha: {}'.format(alpha)) for ii, sample in enumerate(trainloader): curr_loss_dscr = 0 # Grab the input inputs = sample['image'] inputs.requires_grad_() inputs = inputs.to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) loss_tasks = losses_tasks[task] running_loss_tr[task] += losses_tasks[task].item() curr_loss_task[task] = losses_tasks[task].item() counter_tr[task] += 1 # Store output for logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: # measure loss, accuracy and record accuracy for discriminator loss_dscr = losses_dscr[task] running_loss_tr_dscr += losses_dscr[task].item() curr_loss_dscr += loss_dscr.item() prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) loss = (1 - p['dscr_w']) * loss_tasks + p['dscr_w'] * loss_dscr else: loss = loss_tasks # Backward pass inside make_closure to update only weights that were used during fw pass optimizer.zero_grad() optimizer.step(closure=make_closure(loss=loss, net=net)) # Print stuff and log epoch loss into Tensorboard if ii % num_img_tr == num_img_tr - 1: print('[Epoch: %d, numImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_tr[task] = running_loss_tr[task] / counter_tr[task] writer.add_scalar('data/total_loss_epoch' + task, running_loss_tr[task] / p.TASKS.LOSS_MULT[task], epoch) print('Loss %s: %f' % (task, running_loss_tr[task])) running_loss_tr[task] = 0 counter_tr[task] = 0 if p['dscr_type'] is not None: running_loss_tr_dscr = running_loss_tr_dscr / num_img_tr / len(p.TASKS.NAMES) writer.add_scalar('data/total_loss_epoch_dscr', running_loss_tr_dscr, epoch) print('Loss Discriminator: %f' % running_loss_tr_dscr) print('Train Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) writer.add_scalar('data/train_accuracy_dscr', top1_dscr.avg, epoch) stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log current train loss into Tensorboard for task in p.TASKS.NAMES: writer.add_scalar('data/train_loss_iter_' + task, curr_loss_task[task], ii + num_img_tr * epoch) curr_loss_task[task] = 0. if p['dscr_type'] is not None: writer.add_scalar('data/train_loss_dscr_iter', curr_loss_dscr, ii + num_img_tr * epoch) curr_loss_dscr = 0. # Log train images to Tensorboard if p['overfit'] and p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='train') if ii % num_img_tr == num_img_tr - 1: lr_ = lr_poly(p['lr'], iter_=epoch, max_iter=n_epochs) print('(poly lr policy) learning rate: {0:.6f}'.format(lr_)) train_params = config.get_train_params(net, p) optimizer = optim.SGD(train_params, lr=lr_, momentum=p.TRAIN.MOMENTUM, weight_decay=p['wd']) optimizer.zero_grad() # Save the model if (epoch % snapshot) == snapshot - 1 and epoch != 0: torch.save(net.state_dict(), os.path.join(p['save_dir'], 'models', 'model_epoch-' + str(epoch) + '.pth')) # One testing epoch if p.TEST.USE_TEST and epoch % test_interval == (test_interval - 1): print('Testing Phase') top1_dscr = AverageMeter() net.eval() start_time = timeit.default_timer() for ii, sample in enumerate(testloader): inputs = sample['image'].to(device) task_gts = list(sample.keys()) tasks = net.tasks gt_elems = {x: sample[x].to(device, non_blocking=True) for x in tasks} uniq = {x: gt_elems[x].unique() for x in gt_elems} outputs = {} for task in tasks: if task not in task_gts: continue if len(uniq[task]) == 1 and uniq[task][0] == 255: continue # Forward pass of the mini-batch output = {} features = {} output[task], features[task] = net.forward(inputs, task=task) losses_tasks, losses_dscr, outputs_dscr, grads, task_labels \ = net.compute_losses(output, features, criteria_tr, gt_elems, alpha, p) running_loss_ts[task] += losses_tasks[task].item() counter_ts[task] += 1 # For logging outputs[task] = output[task].detach() if p['dscr_type'] is not None: running_loss_ts_dscr += losses_dscr[task].item() # measure accuracy and record loss for discriminator prec1 = common_configs.accuracy(outputs_dscr[task].data, task_labels[task], topk=(1,)) if prec1 != -1: top1_dscr.update(prec1[0].item(), task_labels[task].size(0)) # Print stuff if ii % num_img_ts == num_img_ts - 1: print('[Epoch: %d, numTestImages: %5d]' % (epoch, ii + 1)) for task in p.TASKS.NAMES: running_loss_ts[task] = running_loss_ts[task] / counter_ts[task] writer.add_scalar('data/test_loss_' + task + '_epoch', running_loss_ts[task] / p.TASKS.LOSS_MULT[task], epoch) print('Testing Loss %s: %f' % (task, running_loss_ts[task])) running_loss_ts[task] = 0 counter_ts[task] = 0 # Free the graph losses_tasks = {} if p['dscr_type'] is not None: running_loss_ts_dscr = running_loss_ts_dscr / num_img_ts / len(p.TASKS.NAMES) writer.add_scalar('data/test_loss_dscr', running_loss_ts_dscr, epoch) print('Loss Discriminator: %f' % running_loss_ts_dscr) writer.add_scalar('data/test_accuracy_dscr', top1_dscr.avg, epoch) print('Test Accuracy Discriminator: Prec@1 {top1.avg:.3f} Error@1 {error1:.3f}'.format( top1=top1_dscr, error1=100 - top1_dscr.avg)) # Free the graph losses_dscr = {} stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time) + "\n") # Log test images to Tensorboard if p.TRAIN.TENS_VIS and ii % p.TRAIN.TENS_VIS_INTER == 0: curr_iter = ii + num_img_tr * epoch tb_vizualizer.visualize_images_tb(writer, sample, outputs, global_step=curr_iter, tag=ii, phase='test') writer.close() # Generate Results net.eval() _, _, transforms_infer = config.get_transformations(p) for db_name in p['infer_db_names']: testloader = config.get_test_loader(p, db_name=db_name, transforms=transforms_infer, infer=True) save_dir_res = os.path.join(p['save_dir'], 'Results_' + db_name) print('Testing Network') # Main Testing Loop with torch.no_grad(): for ii, sample in enumerate(testloader): img, meta = sample['image'], sample['meta'] # Forward pass of the mini-batch inputs = img.to(device) tasks = net.tasks for task in tasks: output, _ = net.forward(inputs, task=task) save_dir_task = os.path.join(save_dir_res, task) if not os.path.exists(save_dir_task): os.makedirs(save_dir_task) output = interpolate(output, size=(inputs.size()[-2], inputs.size()[-1]), mode='bilinear', align_corners=False) output = common_configs.get_output(output, task) for jj in range(int(inputs.size()[0])): if len(sample[task][jj].unique()) == 1 and sample[task][jj].unique() == 255: continue # Parameters fname = meta['image'][jj] result = cv2.resize(output[jj], dsize=(meta['im_size'][1][jj], meta['im_size'][0][jj]), interpolation=p.TASKS.INFER_FLAGVALS[task]) if task == 'depth': sio.savemat(os.path.join(save_dir_task, fname + '.mat'), {'depth': result}) else: imageio.imwrite(os.path.join(save_dir_task, fname + '.png'), result.astype(np.uint8)) if p.EVALUATE: common_configs.eval_all_results(p) if __name__ == '__main__': main()
astmt-master
experiments/dense_predict/nyud_resnet/main.py
import os PROJECT_ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
astmt-master
fblib/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F class AttentionModuleFree(nn.Module): """ Attention Module """ def __init__(self, input_size, offset=0.): super(AttentionModuleFree, self).__init__() # randomly initialize parameters self.weight = nn.Parameter(torch.rand(1, input_size, 1, 1) + offset) def forward(self, x): return torch.mul(self.weight, x) class AttentionModule(AttentionModuleFree): """ AttentionModuleFree with restricted real-valued parameters within range [0, 1] """ def __init__(self, input_size): super(AttentionModule, self).__init__(input_size, offset=10) # randomly initialize the parameters self.sigm = nn.Sigmoid() def forward(self, x): return torch.mul(self.sigm(self.weight), x) class Conv2dAttentionAdapters(nn.Module): """ 2D convolution followed by optional per-task transformation. The transformation can include the following: - Residual adapters (in parallel) - Attention modules (per-task feature multiplications) with gating, which can be binary or real-valued During forward pass, except for the input tensor, the index of the task is required """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, n_tasks=1, adapters=False, attention=False, bn_per_task=False, binary_attention=False): super(Conv2dAttentionAdapters, self).__init__() self.adapters = adapters self.attention = attention self.bn_per_task = bn_per_task and (self.adapters or self.attention) self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) if self.attention: print('Constructing attention modules.') if binary_attention: print('Binary attention!') att_module = AttentionModuleFree else: att_module = AttentionModule self.attend = nn.ModuleList([att_module(out_channels) for i in range(n_tasks)]) if self.adapters: print('Constructing parallel residual adapters.') self.adapt = nn.ModuleList([ nn.Conv2d(in_channels, out_channels, stride=stride, kernel_size=1, bias=False)for i in range(n_tasks)]) if self.bn_per_task: print('Constructing per task batchnorm layers') self.bn = nn.ModuleList([nn.BatchNorm2d(out_channels) for i in range(n_tasks)]) else: self.bn = nn.BatchNorm2d(out_channels) def forward(self, x, task=None): if self.adapters: adapt = self.adapt[task](x) x = self.conv(x) if self.attention: # print('Attend, task {}'.format(task)) x = self.attend[task](x) if self.adapters: # print('adapt, task {}'.format(task)) x += adapt if self.bn_per_task: # print('Bnorm, task {}'.format(task)) x = self.bn[task](x) else: x = self.bn(x) return x class XPathLayer(nn.Module): """ Create per task ResNeXt path """ def __init__(self, in_channels, interm_channels, out_channels, stride, n_tasks): super(XPathLayer, self).__init__() self.conv_reduce = nn.ModuleList([nn.Conv2d(in_channels=in_channels, out_channels=interm_channels, kernel_size=1, stride=1, padding=0, bias=False) for i in range(n_tasks)]) self.bn_reduce = nn.ModuleList([nn.BatchNorm2d(interm_channels) for i in range(n_tasks)]) self.conv = nn.ModuleList([nn.Conv2d(in_channels=interm_channels, out_channels=interm_channels, kernel_size=3, stride=stride, padding=1) for i in range(n_tasks)]) self.bn = nn.ModuleList([nn.BatchNorm2d(interm_channels) for i in range(n_tasks)]) self.conv_expand = nn.ModuleList([nn.Conv2d(in_channels=interm_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=False) for i in range(n_tasks)]) self.bn_expand = nn.ModuleList([nn.BatchNorm2d(out_channels) for i in range(n_tasks)]) def forward(self, x, task=None): if task is None: raise NotImplementedError('XPathLayer: Task not given at forward pass') # Reduce x = self.conv_reduce[task](x) x = self.bn_reduce[task](x) x = F.relu(x, inplace=True) # Process x = self.conv[task](x) x = self.bn[task](x) x = F.relu(x, inplace=True) # Expand x = self.conv_expand[task](x) x = self.bn_expand[task](x) return x
astmt-master
fblib/layers/attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.nn.functional as F class Normalize(object): """Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): for i in range(len(self.mean)): tensor[:, i, :, :].sub_(self.mean[i]).div_(self.std[i]) return tensor class ImageFeatures(nn.Module): """ Forward pass of an image on a pre-trained imagenet model. Resurns output and features of the forward pass. """ def __init__(self, net, mean=None, std=None): super(ImageFeatures, self).__init__() if not mean: mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] self.normalize = Normalize(mean=mean, std=std) self.net = net def forward(self, x): x = (x - x.min()) / (x.max() - x.min()) x = F.interpolate(x, size=(224, 224), mode='bilinear', align_corners=False) x = self.normalize(x) out, features = self.net(x) return out, features def main(): import os import torch import pickle import cv2 import numpy as np import urllib.request from fblib import PROJECT_ROOT_DIR from fblib.networks.classification.resnet import resnet101 classes = pickle.load(urllib.request.urlopen( 'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee' '/imagenet1000_clsid_to_human.pkl')) model = resnet101(pretrained=True, features=True) model = ImageFeatures(model) img = cv2.imread(os.path.join(PROJECT_ROOT_DIR, 'util/img/cat.jpg')).astype(np.float32) img = img[:, :, :, np.newaxis] img = img.transpose((3, 2, 0, 1)) img = torch.from_numpy(img.astype(np.float32)) model = model.eval() with torch.no_grad(): output, features = model(img) output = torch.nn.functional.softmax(output, dim=1) print(output.max()) print(output.argmax()) print(classes[np.asscalar(output.argmax().numpy())]) if __name__ == '__main__': main()
astmt-master
fblib/layers/image_features.py
astmt-master
fblib/layers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch.autograd import Function class ReverseLayerF(Function): @staticmethod def forward(ctx, x, alpha): ctx.alpha = alpha return x.view_as(x) @staticmethod def backward(ctx, grad_output): output = grad_output.neg() * ctx.alpha return output, None
astmt-master
fblib/layers/reverse_grad.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.module import Module import numpy as np class SoftMaxwithLoss(Module): """ This function returns cross entropy loss for semantic segmentation """ def __init__(self): super(SoftMaxwithLoss, self).__init__() self.softmax = nn.LogSoftmax(dim=1) self.criterion = nn.NLLLoss(ignore_index=255) def forward(self, out, label): assert not label.requires_grad # out shape batch_size x channels x h x w # label shape batch_size x 1 x h x w label = label[:, 0, :, :].long() loss = self.criterion(self.softmax(out), label) return loss class BalancedCrossEntropyLoss(Module): """ Balanced Cross Entropy Loss with optional ignore regions """ def __init__(self, size_average=True, batch_average=True, pos_weight=None): super(BalancedCrossEntropyLoss, self).__init__() self.size_average = size_average self.batch_average = batch_average self.pos_weight = pos_weight def forward(self, output, label, void_pixels=None): assert (output.size() == label.size()) labels = torch.ge(label, 0.5).float() # Weighting of the loss, default is HED-style if self.pos_weight is None: num_labels_pos = torch.sum(labels) num_labels_neg = torch.sum(1.0 - labels) num_total = num_labels_pos + num_labels_neg w = num_labels_neg / num_total else: w = self.pos_weight output_gt_zero = torch.ge(output, 0).float() loss_val = torch.mul(output, (labels - output_gt_zero)) - torch.log( 1 + torch.exp(output - 2 * torch.mul(output, output_gt_zero))) loss_pos_pix = -torch.mul(labels, loss_val) loss_neg_pix = -torch.mul(1.0 - labels, loss_val) if void_pixels is not None and not self.pos_weight: w_void = torch.le(void_pixels, 0.5).float() loss_pos_pix = torch.mul(w_void, loss_pos_pix) loss_neg_pix = torch.mul(w_void, loss_neg_pix) num_total = num_total - torch.ge(void_pixels, 0.5).float().sum() w = num_labels_neg / num_total loss_pos = torch.sum(loss_pos_pix) loss_neg = torch.sum(loss_neg_pix) final_loss = w * loss_pos + (1 - w) * loss_neg if self.size_average: final_loss /= float(np.prod(label.size())) elif self.batch_average: final_loss /= label.size()[0] return final_loss class BinaryCrossEntropyLoss(Module): """ Binary Cross Entropy with ignore regions, not balanced. """ def __init__(self, size_average=True, batch_average=True): super(BinaryCrossEntropyLoss, self).__init__() self.size_average = size_average self.batch_average = batch_average def forward(self, output, label, void_pixels=None): assert (output.size() == label.size()) labels = torch.ge(label, 0.5).float() output_gt_zero = torch.ge(output, 0).float() loss_val = torch.mul(output, (labels - output_gt_zero)) - torch.log( 1 + torch.exp(output - 2 * torch.mul(output, output_gt_zero))) loss_pos_pix = -torch.mul(labels, loss_val) loss_neg_pix = -torch.mul(1.0 - labels, loss_val) if void_pixels is not None: w_void = torch.le(void_pixels, 0.5).float() loss_pos_pix = torch.mul(w_void, loss_pos_pix) loss_neg_pix = torch.mul(w_void, loss_neg_pix) loss_pos = torch.sum(loss_pos_pix) loss_neg = torch.sum(loss_neg_pix) final_loss = loss_pos + loss_neg if self.size_average: final_loss /= float(np.prod(label.size())) elif self.batch_average: final_loss /= label.size()[0] return final_loss class ImGrad(nn.Module): """ Compute the spatial gradients of input with Sobel filter, in order to penalize gradient mismatch. Used for depth prediction """ def __init__(self): super(ImGrad, self).__init__() self.convx = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) self.convy = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) fx = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]]) fy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) weight_x = torch.from_numpy(fx).float().unsqueeze(0).unsqueeze(0) weight_y = torch.from_numpy(fy).float().unsqueeze(0).unsqueeze(0) self.convx.weight.data = weight_x self.convy.weight.data = weight_y for p in self.parameters(): p.requires_grad = False def forward(self, x): grad_x = self.convx(x) grad_y = self.convy(x) return grad_x, grad_y class GradLoss(nn.Module): """ Compute gradient loss using ImGrad """ def __init__(self, ignore_label=255): super(GradLoss, self).__init__() self.imgrad = ImGrad() self.ignore_label = ignore_label def forward(self, out, label): if self.ignore_label: n_valid = torch.sum(label != self.ignore_label).item() label[label == self.ignore_label] = 0 out_grad_x, out_grad_y = self.imgrad(out) label_grad_x, label_grad_y = self.imgrad(label) out_grad = torch.cat((out_grad_y, out_grad_x), dim=1) label_grad = torch.cat((label_grad_y, label_grad_x), dim=1) # L1 norm loss = torch.abs(out_grad - label_grad) if self.ignore_label: loss = torch.sum(loss) / n_valid else: loss = torch.mean(loss) return loss class RMSE_log(nn.Module): def __init__(self, ignore_label=255): super(RMSE_log, self).__init__() self.ignore_label = ignore_label def forward(self, out, label): out[out <= 0] = 1e-6 log_mse = (torch.log(label) - torch.log(out)) ** 2 # Only inside valid pixels if self.ignore_label: n_valid = torch.sum(label != self.ignore_label).item() log_mse[label == self.ignore_label] = 0 log_mse = torch.sum(log_mse) / n_valid else: log_mse = torch.mean(log_mse) loss = torch.sqrt(log_mse) return loss class L1loss(nn.Module): """ L1 loss with ignore labels """ def __init__(self, ignore_label=255): super(L1loss, self).__init__() self.loss_func = F.l1_loss self.ignore_label = ignore_label def forward(self, out, label): if self.ignore_label: n_valid = torch.sum(label != self.ignore_label).item() loss = torch.abs(out - label) loss[label == self.ignore_label] = 0 loss = loss.sum() if self.ignore_label: loss.div_(max(n_valid, 1e-6)) else: loss.div(float(np.prod(label.size()))) return loss class DepthLoss(nn.Module): """ Loss for depth prediction. Combination of L1 loss and Gradient loss """ def __init__(self): super(DepthLoss, self).__init__() self.diff_loss = L1loss(ignore_label=255) self.grad_loss = GradLoss(ignore_label=255) def forward(self, out, label): loss_diff = self.diff_loss(out, label) loss_grad = self.grad_loss(out, label) loss = loss_diff + loss_grad return loss def normal_ize(bottom, dim=1): qn = torch.norm(bottom, p=2, dim=dim).unsqueeze(dim=dim) + 1e-12 return bottom.div(qn) class Normalize(nn.Module): def __init__(self): super(Normalize, self).__init__() def forward(self, bottom): qn = torch.norm(bottom, p=2, dim=1).unsqueeze(dim=1) + 1e-12 top = bottom.div(qn) return top class NormalsLoss(Module): """ L1 loss with ignore labels normalize: normalization for surface normals """ def __init__(self, size_average=True, normalize=False, norm=1): super(NormalsLoss, self).__init__() self.size_average = size_average if normalize: self.normalize = Normalize() else: self.normalize = None if norm == 1: print('Using L1 loss for surface normals') self.loss_func = F.l1_loss elif norm == 2: print('Using L2 loss for surface normals') self.loss_func = F.mse_loss else: raise NotImplementedError def forward(self, out, label, ignore_label=255): assert not label.requires_grad if ignore_label: n_valid = torch.sum(label != ignore_label).item() out[label == ignore_label] = 0 label[label == ignore_label] = 0 if self.normalize is not None: out = self.normalize(out) loss = self.loss_func(out, label, reduction='sum') if self.size_average: if ignore_label: loss.div_(max(n_valid, 1e-6)) else: loss.div_(float(np.prod(label.size()))) return loss def normals_test(): from fblib.dataloaders.pascal_context import PASCALContext flagvals = {'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'human_parts': cv2.INTER_NEAREST, 'normals': cv2.INTER_CUBIC} transform = Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals=flagvals), tr.FixedResize(resolutions={x: (512, 512) for x in flagvals}, flagvals=flagvals), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset_human = PASCALContext(split=['train', 'val'], transform=transform, retname=True, do_edge=True, do_human_parts=True, do_semseg=True, do_normals=True) dataloader = torch.utils.data.DataLoader(dataset_human, batch_size=2, shuffle=False, num_workers=0) criterion = NormalsLoss(normalize=True) for i, sample in enumerate(dataloader): assert (sample['normals'].size()[2:] == sample['image'].size()[2:]) loss = criterion(sample['normals'], sample['normals']) print('Sample number: {}. Loss: {} (should be very close to 0)'.format(i, loss.item())) def depth_test(): from fblib.dataloaders.nyud import NYUD_MT flagvals = {'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'normals': cv2.INTER_LINEAR, 'depth': cv2.INTER_LINEAR} transform = Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals=flagvals), tr.FixedResize(resolutions={x: (512, 512) for x in flagvals}, flagvals=flagvals), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset_human = NYUD_MT(split=['train', 'val'], transform=transform, retname=True, do_edge=True, do_semseg=True, do_normals=True, do_depth=True) dataloader = torch.utils.data.DataLoader(dataset_human, batch_size=2, shuffle=False, num_workers=0) criterion = DepthLoss() for i, sample in enumerate(dataloader): loss = criterion(sample['depth'], sample['depth']) print('Sample number: {}. Loss: {} (should be 0)'.format(i, loss.item())) if __name__ == '__main__': import cv2 from torchvision.transforms import Compose import fblib.dataloaders.custom_transforms as tr normals_test()
astmt-master
fblib/layers/loss.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import torch from torch.nn import functional as F def logit(x): return np.log(x/(1-x+1e-08)+1e-08) def sigmoid_np(x): return 1/(1+np.exp(-x)) def center_crop(x, height, width): crop_h = torch.FloatTensor([x.size()[2]]).sub(height).div(-2) crop_w = torch.FloatTensor([x.size()[3]]).sub(width).div(-2) # fixed indexing for PyTorch 0.4 return F.pad(x, [int(crop_w.ceil()[0]), int(crop_w.floor()[0]), int(crop_h.ceil()[0]), int(crop_h.floor()[0])]) def upsample_filt(size): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] return (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) def interp_surgery(lay): """ Set parameters s.t. deconvolutional layers compute bilinear interpolation Only for deconvolution without groups """ m, k, h, w = lay.weight.data.size() if m != k: print('input + output channels need to be the same') raise ValueError if h != w: print('filters need to be square') raise ValueError filt = upsample_filt(h) for i in range(m): lay.weight[i, i, :, :].data.copy_(torch.from_numpy(filt)) return lay.weight.data
astmt-master
fblib/layers/misc_layers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn from fblib.util.custom_container import SequentialMultiTask class SELayer(nn.Module): """ Squeeze and Excitation Layer """ def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SELayerMultiTaskDict(nn.Module): """ Squeeze and Excitation Layer for multiple tasks (dict) """ def __init__(self, channel, reduction=16, tasks=None): super(SELayerMultiTaskDict, self).__init__() self.tasks = tasks self.avg_pool = nn.AdaptiveAvgPool2d(1) if self.tasks is None: self.fc = nn.Sequential(nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid()) else: print('Initializing squeeze and excitation modules:') self.fc = nn.ModuleDict() for task in self.tasks: print('SE for task: {}'.format(task)) self.fc[task] = SequentialMultiTask(nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid()) def forward(self, x, task=None): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) if self.tasks: y = self.fc[task](y).view(b, c, 1, 1) else: y = self.fc(y).view(b, c, 1, 1) return x * y class ConvCoupledSE(nn.Module): """ SE-layer per task, coupled with convolutions and batchnorm. Possibility to place convolutions before/after bn, deploy bn per task, and use/not use SE attention. """ def __init__(self, tasks, process_layers=None, norm=None, norm_kwargs=None, norm_per_task=False, squeeze=False, adapters=False, se_after_relu=True, reduction=16): super(ConvCoupledSE, self).__init__() self.norm_per_task = norm_per_task self.squeeze = squeeze self.adapters = adapters self.se_after_relu = se_after_relu if not isinstance(process_layers, list): process_layers = [process_layers] self.process = nn.Sequential(*process_layers) se_module = SELayerMultiTaskDict if self.squeeze: self.se = se_module(process_layers[-1].out_channels, tasks=tasks, reduction=reduction) if self.adapters: print('Using parallel adapters') self.adapt = nn.ModuleDict({task: nn.Conv2d(process_layers[-1].in_channels, process_layers[-1].out_channels, kernel_size=1, bias=False) for task in tasks}) if self.norm_per_task: self.norm = nn.ModuleDict({task: norm(**norm_kwargs) for task in tasks}) else: self.norm = norm(**norm_kwargs) self.relu = nn.ReLU(inplace=True) def forward(self, x, task): if self.adapters: x = self.process(x) + self.adapt[task](x) else: x = self.process(x) if self.squeeze and not self.se_after_relu: x = self.se(x, task) if self.norm_per_task: x = self.norm[task](x) else: x = self.norm(x) x = self.relu(x) if self.squeeze and self.se_after_relu: x = self.se(x, task) return x
astmt-master
fblib/layers/squeeze.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch.autograd import Variable from torchvision import models from graphviz import Digraph def make_dot(var, params): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad """ param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '(' + (', ').join(['%d' % v for v in size]) + ')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable node_name = '%s\n %s' % (param_map.get(id(u)), size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) if type(var) == list: for ii in range(0, len(var)): add_nodes(var[ii].grad_fn) elif type(var) == dict: for x in var: add_nodes(var[x].grad_fn) else: add_nodes(var.grad_fn) return dot if __name__ == "__main__": inputs = torch.randn(1, 3, 224, 224) resnet18 = models.resnet18() y = resnet18(Variable(inputs)) g = make_dot(y, resnet18.state_dict()) g.view()
astmt-master
fblib/util/pdf_visualizer.py
astmt-master
fblib/util/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import collections import re from torch._six import string_classes, int_classes _use_shared_memory = False r"""Whether to use shared memory in default_collate""" numpy_type_map = { 'float64': torch.DoubleTensor, 'float32': torch.FloatTensor, 'float16': torch.HalfTensor, 'int64': torch.LongTensor, 'int32': torch.IntTensor, 'int16': torch.ShortTensor, 'int8': torch.CharTensor, 'uint8': torch.ByteTensor, } def collate_mil(batch): """ Puts each data field into a tensor with outer dimension batch size. Custom-made for supporting MIL """ error_msg = "batch must contain tensors, numbers, dicts or lists; found {}" elem_type = type(batch[0]) if isinstance(batch[0], torch.Tensor): out = None if _use_shared_memory: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = batch[0].storage()._new_shared(numel) out = batch[0].new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray': # array of string classes and object if re.search('[SaUO]', elem.dtype.str) is not None: raise TypeError(error_msg.format(elem.dtype)) return torch.stack([torch.from_numpy(b) for b in batch], 0) if elem.shape == (): # scalars py_type = float if elem.dtype.name.startswith('float') else int return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) elif isinstance(batch[0], int_classes): return torch.LongTensor(batch) elif isinstance(batch[0], float): return torch.DoubleTensor(batch) elif isinstance(batch[0], string_classes): return batch elif isinstance(batch[0], collections.Mapping): batch_modified = {key: collate_mil([d[key] for d in batch]) for key in batch[0] if key.find('idx') < 0} if 'edgeidx' in batch[0]: batch_modified['edgeidx'] = [batch[x]['edgeidx'] for x in range(len(batch))] return batch_modified elif isinstance(batch[0], collections.Sequence): transposed = zip(*batch) return [collate_mil(samples) for samples in transposed] raise TypeError((error_msg.format(type(batch[0]))))
astmt-master
fblib/util/custom_collate.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import cv2 import numpy as np # set random seed in each worker worker_seed = lambda x: np.random.seed((torch.initial_seed()) % 2 ** 32) def tens2image(tens): """Converts tensor with 2 or 3 dimensions to numpy array""" im = tens.numpy() if im.shape[0] == 1: im = np.squeeze(im, axis=0) if im.ndim == 3: im = im.transpose((1, 2, 0)) return im def pascal_color_map(N=256, normalized=False): """ Python implementation of the color map function for the PASCAL VOC data set. Official Matlab version can be found in the PASCAL VOC devkit http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit """ def bitget(byteval, idx): return (byteval & (1 << idx)) != 0 dtype = 'float32' if normalized else 'uint8' cmap = np.zeros((N, 3), dtype=dtype) for i in range(N): r = g = b = 0 c = i for j in range(8): r = r | (bitget(c, 0) << 7 - j) g = g | (bitget(c, 1) << 7 - j) b = b | (bitget(c, 2) << 7 - j) c = c >> 3 cmap[i] = np.array([r, g, b]) cmap = cmap / 255 if normalized else cmap return cmap def fixed_resize(sample, resolution, flagval=None): """ Fixed resize to resolution (tuple): resize image to size specified by tuple eg. (512, 512). resolution (int): bring smaller side to resolution eg. image of shape 321 x 481 -> 512 x 767 """ if flagval is None: if ((sample == 0) | (sample == 1)).all(): flagval = cv2.INTER_NEAREST else: flagval = cv2.INTER_CUBIC if isinstance(resolution, int): tmp = [resolution, resolution] tmp[int(np.argmax(sample.shape[:2]))] = int( round(float(resolution) / np.min(sample.shape[:2]) * np.max(sample.shape[:2]))) resolution = tuple(tmp) if sample.ndim == 2 or (sample.ndim == 3 and sample.shape[2] == 3): sample = cv2.resize(sample, resolution[::-1], interpolation=flagval) else: tmp = sample sample = np.zeros(np.append(resolution, tmp.shape[2]), dtype=np.float32) for ii in range(sample.shape[2]): sample[:, :, ii] = cv2.resize(tmp[:, :, ii], resolution[::-1], interpolation=flagval) return sample def im_normalize(im, max_value=1): """ Normalize image to range 0 - max_value """ imn = max_value * (im - im.min()) / max((im.max() - im.min()), 1e-8) return imn def generate_param_report(logfile, param): log_file = open(logfile, 'w') for key, val in param.items(): log_file.write(key + ':' + str(val) + '\n') log_file.close() def ind2sub(array_shape, inds): rows, cols = [], [] for k in range(len(inds)): if inds[k] == 0: continue cols.append((inds[k].astype('int') // array_shape[1])) rows.append((inds[k].astype('int') % array_shape[1])) return rows, cols def main(): import matplotlib.pyplot as plt from torch.utils.data import DataLoader from fblib.dataloaders.bsds import BSDS500 from fblib.dataloaders.custom_transforms import ToTensor db = BSDS500(transform=ToTensor()) dataloader = DataLoader(db, batch_size=1) for i, sample in enumerate(dataloader): img = sample['image'] plt.imshow(im_normalize(fixed_resize(tens2image(img), resolution=512))) plt.show() if __name__ == "__main__": main()
astmt-master
fblib/util/helpers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from collections import OrderedDict from torch.nn.modules.container import Sequential class SequentialMultiTask(Sequential): """A sequential container for multiple tasks. Forward pass re-written to incorporate multiple tasks """ def __init__(self, *args): super(SequentialMultiTask, self).__init__(*args) def __getitem__(self, idx): if isinstance(idx, slice): return SequentialMultiTask(OrderedDict(list(self._modules.items())[idx])) else: return self._get_item_by_idx(self._modules.values(), idx) def forward(self, input, task=None): for module in self._modules.values(): if task is None: input = module(input) else: input = module(input, task) return input
astmt-master
fblib/util/custom_container.py
astmt-master
fblib/util/classification/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import time import random class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def time_string(): ISOTIMEFORMAT = '%Y-%m-%d %X' string = '[{}]'.format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time()))) return string def convert_secs2time(epoch_time): need_hour = int(epoch_time / 3600) need_mins = int((epoch_time - 3600 * need_hour) / 60) need_secs = int(epoch_time - 3600 * need_hour - 60 * need_mins) return need_hour, need_mins, need_secs def time_file_str(): ISOTIMEFORMAT = '%Y-%m-%d' string = '{}'.format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time()))) return string + '-{}'.format(random.randint(1, 10000))
astmt-master
fblib/util/classification/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torchvision import utils as vutils import fblib.util.pdf_visualizer as viz from fblib.util.mypath import Path def visualize_network(net, p): net.eval() x = torch.randn(1, 3, 512, 512) x.requires_grad_() # pdf visualizer y = {} for task in p.TASKS.NAMES: y[task], _ = net.forward(x, task) g = viz.make_dot(y, net.state_dict()) g.view(directory=Path.save_root_dir()) class TBVisualizer(object): def __init__(self, tasks, min_ranges, max_ranges, batch_size): # Visualization settings self.grid_input = { 'image': { 'range': (0, 255), 'normalize': True, 'scale_each': True, 'nrow': batch_size }} self.grid_output = {} for task in tasks: min_range = min_ranges[task] max_range = max_ranges[task] self.grid_input[task] = { 'range': (min_range, max_range), 'normalize': True, 'scale_each': True, 'nrow': batch_size } self.grid_output[task+'_pred'] = { 'range': (min_range, max_range), 'normalize': True, 'scale_each': True, 'nrow': batch_size } def visualize_images_tb(self, writer, sample, outputs, global_step, tag, phase='train'): """Vizualize images into Tensorboard writer: Tensorboardx summary writer sample: dataloader sample that contains a dict of tensors, aka images and groundtruths grid_input: see function get_visualizer() grid_output: see function get_visualizer() global_step: global iteration num tag: current iteration num to tag on tensorboard phase: 'train' or 'test """ for k in list(self.grid_input.keys()): if k in sample.keys(): elem = sample[k].detach() if k in {'normals', 'depth'}: elem[elem == 255] = 0 img_grid = vutils.make_grid(elem, **self.grid_input[k]) writer.add_image(f'{k}_gt/{phase}_{tag}', img_grid, global_step) for k in list(outputs.keys()): if (k + '_pred') in self.grid_output.keys(): output = outputs[k].detach() if k == 'normals': elem = self._normalize(output) elif k in {'depth', 'albedo'}: elem = output elif output.size()[1] == 1: elem = 1 / (1 + torch.exp(-output)) else: _, argmax_pred = torch.max(output, dim=1) argmax_pred = argmax_pred.type(torch.FloatTensor) elem = torch.unsqueeze(argmax_pred, 1) img_grid = vutils.make_grid(elem, **self.grid_output[k + '_pred']) writer.add_image(f'{k}_pred/{phase}_{tag}', img_grid, global_step) @staticmethod def _normalize(bottom): qn = torch.norm(bottom, p=2, dim=1).unsqueeze(dim=1) + 1e-12 return bottom.div(qn)
astmt-master
fblib/util/mtl_tools/multitask_visualizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def imagenet_categ_names(): return { 0: 'tench, Tinca tinca', 1: 'goldfish, Carassius auratus', 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', 3: 'tiger shark, Galeocerdo cuvieri', 4: 'hammerhead, hammerhead shark', 5: 'electric ray, crampfish, numbfish, torpedo', 6: 'stingray', 7: 'cock', 8: 'hen', 9: 'ostrich, Struthio camelus', 10: 'brambling, Fringilla montifringilla', 11: 'goldfinch, Carduelis carduelis', 12: 'house finch, linnet, Carpodacus mexicanus', 13: 'junco, snowbird', 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea', 15: 'robin, American robin, Turdus migratorius', 16: 'bulbul', 17: 'jay', 18: 'magpie', 19: 'chickadee', 20: 'water ouzel, dipper', 21: 'kite', 22: 'bald eagle, American eagle, Haliaeetus leucocephalus', 23: 'vulture', 24: 'great grey owl, great gray owl, Strix nebulosa', 25: 'European fire salamander, Salamandra salamandra', 26: 'common newt, Triturus vulgaris', 27: 'eft', 28: 'spotted salamander, Ambystoma maculatum', 29: 'axolotl, mud puppy, Ambystoma mexicanum', 30: 'bullfrog, Rana catesbeiana', 31: 'tree frog, tree-frog', 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', 33: 'loggerhead, loggerhead turtle, Caretta caretta', 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', 35: 'mud turtle', 36: 'terrapin', 37: 'box turtle, box tortoise', 38: 'banded gecko', 39: 'common iguana, iguana, Iguana iguana', 40: 'American chameleon, anole, Anolis carolinensis', 41: 'whiptail, whiptail lizard', 42: 'agama', 43: 'frilled lizard, Chlamydosaurus kingi', 44: 'alligator lizard', 45: 'Gila monster, Heloderma suspectum', 46: 'green lizard, Lacerta viridis', 47: 'African chameleon, Chamaeleo chamaeleon', 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', 49: 'African crocodile, Nile crocodile, Crocodylus niloticus', 50: 'American alligator, Alligator mississipiensis', 51: 'triceratops', 52: 'thunder snake, worm snake, Carphophis amoenus', 53: 'ringneck snake, ring-necked snake, ring snake', 54: 'hognose snake, puff adder, sand viper', 55: 'green snake, grass snake', 56: 'king snake, kingsnake', 57: 'garter snake, grass snake', 58: 'water snake', 59: 'vine snake', 60: 'night snake, Hypsiglena torquata', 61: 'boa constrictor, Constrictor constrictor', 62: 'rock python, rock snake, Python sebae', 63: 'Indian cobra, Naja naja', 64: 'green mamba', 65: 'sea snake', 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus', 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus', 68: 'sidewinder, horned rattlesnake, Crotalus cerastes', 69: 'trilobite', 70: 'harvestman, daddy longlegs, Phalangium opilio', 71: 'scorpion', 72: 'black and gold garden spider, Argiope aurantia', 73: 'barn spider, Araneus cavaticus', 74: 'garden spider, Aranea diademata', 75: 'black widow, Latrodectus mactans', 76: 'tarantula', 77: 'wolf spider, hunting spider', 78: 'tick', 79: 'centipede', 80: 'black grouse', 81: 'ptarmigan', 82: 'ruffed grouse, partridge, Bonasa umbellus', 83: 'prairie chicken, prairie grouse, prairie fowl', 84: 'peacock', 85: 'quail', 86: 'partridge', 87: 'African grey, African gray, Psittacus erithacus', 88: 'macaw', 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', 90: 'lorikeet', 91: 'coucal', 92: 'bee eater', 93: 'hornbill', 94: 'hummingbird', 95: 'jacamar', 96: 'toucan', 97: 'drake', 98: 'red-breasted merganser, Mergus serrator', 99: 'goose', 100: 'black swan, Cygnus atratus', 101: 'tusker', 102: 'echidna, spiny anteater, anteater', 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', 104: 'wallaby, brush kangaroo', 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', 106: 'wombat', 107: 'jellyfish', 108: 'sea anemone, anemone', 109: 'brain coral', 110: 'flatworm, platyhelminth', 111: 'nematode, nematode worm, roundworm', 112: 'conch', 113: 'snail', 114: 'slug', 115: 'sea slug, nudibranch', 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore', 117: 'chambered nautilus, pearly nautilus, nautilus', 118: 'Dungeness crab, Cancer magister', 119: 'rock crab, Cancer irroratus', 120: 'fiddler crab', 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus', 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', 124: 'crayfish, crawfish, crawdad, crawdaddy', 125: 'hermit crab', 126: 'isopod', 127: 'white stork, Ciconia ciconia', 128: 'black stork, Ciconia nigra', 129: 'spoonbill', 130: 'flamingo', 131: 'little blue heron, Egretta caerulea', 132: 'American egret, great white heron, Egretta albus', 133: 'bittern', 134: 'crane', 135: 'limpkin, Aramus pictus', 136: 'European gallinule, Porphyrio porphyrio', 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana', 138: 'bustard', 139: 'ruddy turnstone, Arenaria interpres', 140: 'red-backed sandpiper, dunlin, Erolia alpina', 141: 'redshank, Tringa totanus', 142: 'dowitcher', 143: 'oystercatcher, oyster catcher', 144: 'pelican', 145: 'king penguin, Aptenodytes patagonica', 146: 'albatross, mollymawk', 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', 149: 'dugong, Dugong dugon', 150: 'sea lion', 151: 'Chihuahua', 152: 'Japanese spaniel', 153: 'Maltese dog, Maltese terrier, Maltese', 154: 'Pekinese, Pekingese, Peke', 155: 'Shih-Tzu', 156: 'Blenheim spaniel', 157: 'papillon', 158: 'toy terrier', 159: 'Rhodesian ridgeback', 160: 'Afghan hound, Afghan', 161: 'basset, basset hound', 162: 'beagle', 163: 'bloodhound, sleuthhound', 164: 'bluetick', 165: 'black-and-tan coonhound', 166: 'Walker hound, Walker foxhound', 167: 'English foxhound', 168: 'redbone', 169: 'borzoi, Russian wolfhound', 170: 'Irish wolfhound', 171: 'Italian greyhound', 172: 'whippet', 173: 'Ibizan hound, Ibizan Podenco', 174: 'Norwegian elkhound, elkhound', 175: 'otterhound, otter hound', 176: 'Saluki, gazelle hound', 177: 'Scottish deerhound, deerhound', 178: 'Weimaraner', 179: 'Staffordshire bullterrier, Staffordshire bull terrier', 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', 181: 'Bedlington terrier', 182: 'Border terrier', 183: 'Kerry blue terrier', 184: 'Irish terrier', 185: 'Norfolk terrier', 186: 'Norwich terrier', 187: 'Yorkshire terrier', 188: 'wire-haired fox terrier', 189: 'Lakeland terrier', 190: 'Sealyham terrier, Sealyham', 191: 'Airedale, Airedale terrier', 192: 'cairn, cairn terrier', 193: 'Australian terrier', 194: 'Dandie Dinmont, Dandie Dinmont terrier', 195: 'Boston bull, Boston terrier', 196: 'miniature schnauzer', 197: 'giant schnauzer', 198: 'standard schnauzer', 199: 'Scotch terrier, Scottish terrier, Scottie', 200: 'Tibetan terrier, chrysanthemum dog', 201: 'silky terrier, Sydney silky', 202: 'soft-coated wheaten terrier', 203: 'West Highland white terrier', 204: 'Lhasa, Lhasa apso', 205: 'flat-coated retriever', 206: 'curly-coated retriever', 207: 'golden retriever', 208: 'Labrador retriever', 209: 'Chesapeake Bay retriever', 210: 'German short-haired pointer', 211: 'vizsla, Hungarian pointer', 212: 'English setter', 213: 'Irish setter, red setter', 214: 'Gordon setter', 215: 'Brittany spaniel', 216: 'clumber, clumber spaniel', 217: 'English springer, English springer spaniel', 218: 'Welsh springer spaniel', 219: 'cocker spaniel, English cocker spaniel, cocker', 220: 'Sussex spaniel', 221: 'Irish water spaniel', 222: 'kuvasz', 223: 'schipperke', 224: 'groenendael', 225: 'malinois', 226: 'briard', 227: 'kelpie', 228: 'komondor', 229: 'Old English sheepdog, bobtail', 230: 'Shetland sheepdog, Shetland sheep dog, Shetland', 231: 'collie', 232: 'Border collie', 233: 'Bouvier des Flandres, Bouviers des Flandres', 234: 'Rottweiler', 235: 'German shepherd, German shepherd dog, German police dog, alsatian', 236: 'Doberman, Doberman pinscher', 237: 'miniature pinscher', 238: 'Greater Swiss Mountain dog', 239: 'Bernese mountain dog', 240: 'Appenzeller', 241: 'EntleBucher', 242: 'boxer', 243: 'bull mastiff', 244: 'Tibetan mastiff', 245: 'French bulldog', 246: 'Great Dane', 247: 'Saint Bernard, St Bernard', 248: 'Eskimo dog, husky', 249: 'malamute, malemute, Alaskan malamute', 250: 'Siberian husky', 251: 'dalmatian, coach dog, carriage dog', 252: 'affenpinscher, monkey pinscher, monkey dog', 253: 'basenji', 254: 'pug, pug-dog', 255: 'Leonberg', 256: 'Newfoundland, Newfoundland dog', 257: 'Great Pyrenees', 258: 'Samoyed, Samoyede', 259: 'Pomeranian', 260: 'chow, chow chow', 261: 'keeshond', 262: 'Brabancon griffon', 263: 'Pembroke, Pembroke Welsh corgi', 264: 'Cardigan, Cardigan Welsh corgi', 265: 'toy poodle', 266: 'miniature poodle', 267: 'standard poodle', 268: 'Mexican hairless', 269: 'timber wolf, grey wolf, gray wolf, Canis lupus', 270: 'white wolf, Arctic wolf, Canis lupus tundrarum', 271: 'red wolf, maned wolf, Canis rufus, Canis niger', 272: 'coyote, prairie wolf, brush wolf, Canis latrans', 273: 'dingo, warrigal, warragal, Canis dingo', 274: 'dhole, Cuon alpinus', 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus', 276: 'hyena, hyaena', 277: 'red fox, Vulpes vulpes', 278: 'kit fox, Vulpes macrotis', 279: 'Arctic fox, white fox, Alopex lagopus', 280: 'grey fox, gray fox, Urocyon cinereoargenteus', 281: 'tabby, tabby cat', 282: 'tiger cat', 283: 'Persian cat', 284: 'Siamese cat, Siamese', 285: 'Egyptian cat', 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', 287: 'lynx, catamount', 288: 'leopard, Panthera pardus', 289: 'snow leopard, ounce, Panthera uncia', 290: 'jaguar, panther, Panthera onca, Felis onca', 291: 'lion, king of beasts, Panthera leo', 292: 'tiger, Panthera tigris', 293: 'cheetah, chetah, Acinonyx jubatus', 294: 'brown bear, bruin, Ursus arctos', 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus', 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', 297: 'sloth bear, Melursus ursinus, Ursus ursinus', 298: 'mongoose', 299: 'meerkat, mierkat', 300: 'tiger beetle', 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', 302: 'ground beetle, carabid beetle', 303: 'long-horned beetle, longicorn, longicorn beetle', 304: 'leaf beetle, chrysomelid', 305: 'dung beetle', 306: 'rhinoceros beetle', 307: 'weevil', 308: 'fly', 309: 'bee', 310: 'ant, emmet, pismire', 311: 'grasshopper, hopper', 312: 'cricket', 313: 'walking stick, walkingstick, stick insect', 314: 'cockroach, roach', 315: 'mantis, mantid', 316: 'cicada, cicala', 317: 'leafhopper', 318: 'lacewing, lacewing fly', 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", 320: 'damselfly', 321: 'admiral', 322: 'ringlet, ringlet butterfly', 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', 324: 'cabbage butterfly', 325: 'sulphur butterfly, sulfur butterfly', 326: 'lycaenid, lycaenid butterfly', 327: 'starfish, sea star', 328: 'sea urchin', 329: 'sea cucumber, holothurian', 330: 'wood rabbit, cottontail, cottontail rabbit', 331: 'hare', 332: 'Angora, Angora rabbit', 333: 'hamster', 334: 'porcupine, hedgehog', 335: 'fox squirrel, eastern fox squirrel, Sciurus niger', 336: 'marmot', 337: 'beaver', 338: 'guinea pig, Cavia cobaya', 339: 'sorrel', 340: 'zebra', 341: 'hog, pig, grunter, squealer, Sus scrofa', 342: 'wild boar, boar, Sus scrofa', 343: 'warthog', 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius', 345: 'ox', 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', 347: 'bison', 348: 'ram, tup', 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis', 350: 'ibex, Capra ibex', 351: 'hartebeest', 352: 'impala, Aepyceros melampus', 353: 'gazelle', 354: 'Arabian camel, dromedary, Camelus dromedarius', 355: 'llama', 356: 'weasel', 357: 'mink', 358: 'polecat, fitch, foulmart, foumart, Mustela putorius', 359: 'black-footed ferret, ferret, Mustela nigripes', 360: 'otter', 361: 'skunk, polecat, wood pussy', 362: 'badger', 363: 'armadillo', 364: 'three-toed sloth, ai, Bradypus tridactylus', 365: 'orangutan, orang, orangutang, Pongo pygmaeus', 366: 'gorilla, Gorilla gorilla', 367: 'chimpanzee, chimp, Pan troglodytes', 368: 'gibbon, Hylobates lar', 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus', 370: 'guenon, guenon monkey', 371: 'patas, hussar monkey, Erythrocebus patas', 372: 'baboon', 373: 'macaque', 374: 'langur', 375: 'colobus, colobus monkey', 376: 'proboscis monkey, Nasalis larvatus', 377: 'marmoset', 378: 'capuchin, ringtail, Cebus capucinus', 379: 'howler monkey, howler', 380: 'titi, titi monkey', 381: 'spider monkey, Ateles geoffroyi', 382: 'squirrel monkey, Saimiri sciureus', 383: 'Madagascar cat, ring-tailed lemur, Lemur catta', 384: 'indri, indris, Indri indri, Indri brevicaudatus', 385: 'Indian elephant, Elephas maximus', 386: 'African elephant, Loxodonta africana', 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', 389: 'barracouta, snoek', 390: 'eel', 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', 392: 'rock beauty, Holocanthus tricolor', 393: 'anemone fish', 394: 'sturgeon', 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus', 396: 'lionfish', 397: 'puffer, pufferfish, blowfish, globefish', 398: 'abacus', 399: 'abaya', 400: "academic gown, academic robe, judge's robe", 401: 'accordion, piano accordion, squeeze box', 402: 'acoustic guitar', 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier', 404: 'airliner', 405: 'airship, dirigible', 406: 'altar', 407: 'ambulance', 408: 'amphibian, amphibious vehicle', 409: 'analog clock', 410: 'apiary, bee house', 411: 'apron', 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', 413: 'assault rifle, assault gun', 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack', 415: 'bakery, bakeshop, bakehouse', 416: 'balance beam, beam', 417: 'balloon', 418: 'ballpoint, ballpoint pen, ballpen, Biro', 419: 'Band Aid', 420: 'banjo', 421: 'bannister, banister, balustrade, balusters, handrail', 422: 'barbell', 423: 'barber chair', 424: 'barbershop', 425: 'barn', 426: 'barometer', 427: 'barrel, cask', 428: 'barrow, garden cart, lawn cart, wheelbarrow', 429: 'baseball', 430: 'basketball', 431: 'bassinet', 432: 'bassoon', 433: 'bathing cap, swimming cap', 434: 'bath towel', 435: 'bathtub, bathing tub, bath, tub', 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon', 437: 'beacon, lighthouse, beacon light, pharos', 438: 'beaker', 439: 'bearskin, busby, shako', 440: 'beer bottle', 441: 'beer glass', 442: 'bell cote, bell cot', 443: 'bib', 444: 'bicycle-built-for-two, tandem bicycle, tandem', 445: 'bikini, two-piece', 446: 'binder, ring-binder', 447: 'binoculars, field glasses, opera glasses', 448: 'birdhouse', 449: 'boathouse', 450: 'bobsled, bobsleigh, bob', 451: 'bolo tie, bolo, bola tie, bola', 452: 'bonnet, poke bonnet', 453: 'bookcase', 454: 'bookshop, bookstore, bookstall', 455: 'bottlecap', 456: 'bow', 457: 'bow tie, bow-tie, bowtie', 458: 'brass, memorial tablet, plaque', 459: 'brassiere, bra, bandeau', 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty', 461: 'breastplate, aegis, egis', 462: 'broom', 463: 'bucket, pail', 464: 'buckle', 465: 'bulletproof vest', 466: 'bullet train, bullet', 467: 'butcher shop, meat market', 468: 'cab, hack, taxi, taxicab', 469: 'caldron, cauldron', 470: 'candle, taper, wax light', 471: 'cannon', 472: 'canoe', 473: 'can opener, tin opener', 474: 'cardigan', 475: 'car mirror', 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig', 477: "carpenter's kit, tool kit", 478: 'carton', 479: 'car wheel', 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', 481: 'cassette', 482: 'cassette player', 483: 'castle', 484: 'catamaran', 485: 'CD player', 486: 'cello, violoncello', 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone', 488: 'chain', 489: 'chainlink fence', 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', 491: 'chain saw, chainsaw', 492: 'chest', 493: 'chiffonier, commode', 494: 'chime, bell, gong', 495: 'china cabinet, china closet', 496: 'Christmas stocking', 497: 'church, church building', 498: 'cinema, movie theater, movie theatre, movie house, picture palace', 499: 'cleaver, meat cleaver, chopper', 500: 'cliff dwelling', 501: 'cloak', 502: 'clog, geta, patten, sabot', 503: 'cocktail shaker', 504: 'coffee mug', 505: 'coffeepot', 506: 'coil, spiral, volute, whorl, helix', 507: 'combination lock', 508: 'computer keyboard, keypad', 509: 'confectionery, confectionary, candy store', 510: 'container ship, containership, container vessel', 511: 'convertible', 512: 'corkscrew, bottle screw', 513: 'cornet, horn, trumpet, trump', 514: 'cowboy boot', 515: 'cowboy hat, ten-gallon hat', 516: 'cradle', 517: 'crane', 518: 'crash helmet', 519: 'crate', 520: 'crib, cot', 521: 'Crock Pot', 522: 'croquet ball', 523: 'crutch', 524: 'cuirass', 525: 'dam, dike, dyke', 526: 'desk', 527: 'desktop computer', 528: 'dial telephone, dial phone', 529: 'diaper, nappy, napkin', 530: 'digital clock', 531: 'digital watch', 532: 'dining table, board', 533: 'dishrag, dishcloth', 534: 'dishwasher, dish washer, dishwashing machine', 535: 'disk brake, disc brake', 536: 'dock, dockage, docking facility', 537: 'dogsled, dog sled, dog sleigh', 538: 'dome', 539: 'doormat, welcome mat', 540: 'drilling platform, offshore rig', 541: 'drum, membranophone, tympan', 542: 'drumstick', 543: 'dumbbell', 544: 'Dutch oven', 545: 'electric fan, blower', 546: 'electric guitar', 547: 'electric locomotive', 548: 'entertainment center', 549: 'envelope', 550: 'espresso maker', 551: 'face powder', 552: 'feather boa, boa', 553: 'file, file cabinet, filing cabinet', 554: 'fireboat', 555: 'fire engine, fire truck', 556: 'fire screen, fireguard', 557: 'flagpole, flagstaff', 558: 'flute, transverse flute', 559: 'folding chair', 560: 'football helmet', 561: 'forklift', 562: 'fountain', 563: 'fountain pen', 564: 'four-poster', 565: 'freight car', 566: 'French horn, horn', 567: 'frying pan, frypan, skillet', 568: 'fur coat', 569: 'garbage truck, dustcart', 570: 'gasmask, respirator, gas helmet', 571: 'gas pump, gasoline pump, petrol pump, island dispenser', 572: 'goblet', 573: 'go-kart', 574: 'golf ball', 575: 'golfcart, golf cart', 576: 'gondola', 577: 'gong, tam-tam', 578: 'gown', 579: 'grand piano, grand', 580: 'greenhouse, nursery, glasshouse', 581: 'grille, radiator grille', 582: 'grocery store, grocery, food market, market', 583: 'guillotine', 584: 'hair slide', 585: 'hair spray', 586: 'half track', 587: 'hammer', 588: 'hamper', 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier', 590: 'hand-held computer, hand-held microcomputer', 591: 'handkerchief, hankie, hanky, hankey', 592: 'hard disc, hard disk, fixed disk', 593: 'harmonica, mouth organ, harp, mouth harp', 594: 'harp', 595: 'harvester, reaper', 596: 'hatchet', 597: 'holster', 598: 'home theater, home theatre', 599: 'honeycomb', 600: 'hook, claw', 601: 'hoopskirt, crinoline', 602: 'horizontal bar, high bar', 603: 'horse cart, horse-cart', 604: 'hourglass', 605: 'iPod', 606: 'iron, smoothing iron', 607: "jack-o'-lantern", 608: 'jean, blue jean, denim', 609: 'jeep, landrover', 610: 'jersey, T-shirt, tee shirt', 611: 'jigsaw puzzle', 612: 'jinrikisha, ricksha, rickshaw', 613: 'joystick', 614: 'kimono', 615: 'knee pad', 616: 'knot', 617: 'lab coat, laboratory coat', 618: 'ladle', 619: 'lampshade, lamp shade', 620: 'laptop, laptop computer', 621: 'lawn mower, mower', 622: 'lens cap, lens cover', 623: 'letter opener, paper knife, paperknife', 624: 'library', 625: 'lifeboat', 626: 'lighter, light, igniter, ignitor', 627: 'limousine, limo', 628: 'liner, ocean liner', 629: 'lipstick, lip rouge', 630: 'Loafer', 631: 'lotion', 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', 633: "loupe, jeweler's loupe", 634: 'lumbermill, sawmill', 635: 'magnetic compass', 636: 'mailbag, postbag', 637: 'mailbox, letter box', 638: 'maillot', 639: 'maillot, tank suit', 640: 'manhole cover', 641: 'maraca', 642: 'marimba, xylophone', 643: 'mask', 644: 'matchstick', 645: 'maypole', 646: 'maze, labyrinth', 647: 'measuring cup', 648: 'medicine chest, medicine cabinet', 649: 'megalith, megalithic structure', 650: 'microphone, mike', 651: 'microwave, microwave oven', 652: 'military uniform', 653: 'milk can', 654: 'minibus', 655: 'miniskirt, mini', 656: 'minivan', 657: 'missile', 658: 'mitten', 659: 'mixing bowl', 660: 'mobile home, manufactured home', 661: 'Model T', 662: 'modem', 663: 'monastery', 664: 'monitor', 665: 'moped', 666: 'mortar', 667: 'mortarboard', 668: 'mosque', 669: 'mosquito net', 670: 'motor scooter, scooter', 671: 'mountain bike, all-terrain bike, off-roader', 672: 'mountain tent', 673: 'mouse, computer mouse', 674: 'mousetrap', 675: 'moving van', 676: 'muzzle', 677: 'nail', 678: 'neck brace', 679: 'necklace', 680: 'nipple', 681: 'notebook, notebook computer', 682: 'obelisk', 683: 'oboe, hautboy, hautbois', 684: 'ocarina, sweet potato', 685: 'odometer, hodometer, mileometer, milometer', 686: 'oil filter', 687: 'organ, pipe organ', 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO', 689: 'overskirt', 690: 'oxcart', 691: 'oxygen mask', 692: 'packet', 693: 'paddle, boat paddle', 694: 'paddlewheel, paddle wheel', 695: 'padlock', 696: 'paintbrush', 697: "pajama, pyjama, pj's, jammies", 698: 'palace', 699: 'panpipe, pandean pipe, syrinx', 700: 'paper towel', 701: 'parachute, chute', 702: 'parallel bars, bars', 703: 'park bench', 704: 'parking meter', 705: 'passenger car, coach, carriage', 706: 'patio, terrace', 707: 'pay-phone, pay-station', 708: 'pedestal, plinth, footstall', 709: 'pencil box, pencil case', 710: 'pencil sharpener', 711: 'perfume, essence', 712: 'Petri dish', 713: 'photocopier', 714: 'pick, plectrum, plectron', 715: 'pickelhaube', 716: 'picket fence, paling', 717: 'pickup, pickup truck', 718: 'pier', 719: 'piggy bank, penny bank', 720: 'pill bottle', 721: 'pillow', 722: 'ping-pong ball', 723: 'pinwheel', 724: 'pirate, pirate ship', 725: 'pitcher, ewer', 726: "plane, carpenter's plane, woodworking plane", 727: 'planetarium', 728: 'plastic bag', 729: 'plate rack', 730: 'plow, plough', 731: "plunger, plumber's helper", 732: 'Polaroid camera, Polaroid Land camera', 733: 'pole', 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', 735: 'poncho', 736: 'pool table, billiard table, snooker table', 737: 'pop bottle, soda bottle', 738: 'pot, flowerpot', 739: "potter's wheel", 740: 'power drill', 741: 'prayer rug, prayer mat', 742: 'printer', 743: 'prison, prison house', 744: 'projectile, missile', 745: 'projector', 746: 'puck, hockey puck', 747: 'punching bag, punch bag, punching ball, punchball', 748: 'purse', 749: 'quill, quill pen', 750: 'quilt, comforter, comfort, puff', 751: 'racer, race car, racing car', 752: 'racket, racquet', 753: 'radiator', 754: 'radio, wireless', 755: 'radio telescope, radio reflector', 756: 'rain barrel', 757: 'recreational vehicle, RV, R.V.', 758: 'reel', 759: 'reflex camera', 760: 'refrigerator, icebox', 761: 'remote control, remote', 762: 'restaurant, eating house, eating place, eatery', 763: 'revolver, six-gun, six-shooter', 764: 'rifle', 765: 'rocking chair, rocker', 766: 'rotisserie', 767: 'rubber eraser, rubber, pencil eraser', 768: 'rugby ball', 769: 'rule, ruler', 770: 'running shoe', 771: 'safe', 772: 'safety pin', 773: 'saltshaker, salt shaker', 774: 'sandal', 775: 'sarong', 776: 'sax, saxophone', 777: 'scabbard', 778: 'scale, weighing machine', 779: 'school bus', 780: 'schooner', 781: 'scoreboard', 782: 'screen, CRT screen', 783: 'screw', 784: 'screwdriver', 785: 'seat belt, seatbelt', 786: 'sewing machine', 787: 'shield, buckler', 788: 'shoe shop, shoe-shop, shoe store', 789: 'shoji', 790: 'shopping basket', 791: 'shopping cart', 792: 'shovel', 793: 'shower cap', 794: 'shower curtain', 795: 'ski', 796: 'ski mask', 797: 'sleeping bag', 798: 'slide rule, slipstick', 799: 'sliding door', 800: 'slot, one-armed bandit', 801: 'snorkel', 802: 'snowmobile', 803: 'snowplow, snowplough', 804: 'soap dispenser', 805: 'soccer ball', 806: 'sock', 807: 'solar dish, solar collector, solar furnace', 808: 'sombrero', 809: 'soup bowl', 810: 'space bar', 811: 'space heater', 812: 'space shuttle', 813: 'spatula', 814: 'speedboat', 815: "spider web, spider's web", 816: 'spindle', 817: 'sports car, sport car', 818: 'spotlight, spot', 819: 'stage', 820: 'steam locomotive', 821: 'steel arch bridge', 822: 'steel drum', 823: 'stethoscope', 824: 'stole', 825: 'stone wall', 826: 'stopwatch, stop watch', 827: 'stove', 828: 'strainer', 829: 'streetcar, tram, tramcar, trolley, trolley car', 830: 'stretcher', 831: 'studio couch, day bed', 832: 'stupa, tope', 833: 'submarine, pigboat, sub, U-boat', 834: 'suit, suit of clothes', 835: 'sundial', 836: 'sunglass', 837: 'sunglasses, dark glasses, shades', 838: 'sunscreen, sunblock, sun blocker', 839: 'suspension bridge', 840: 'swab, swob, mop', 841: 'sweatshirt', 842: 'swimming trunks, bathing trunks', 843: 'swing', 844: 'switch, electric switch, electrical switch', 845: 'syringe', 846: 'table lamp', 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle', 848: 'tape player', 849: 'teapot', 850: 'teddy, teddy bear', 851: 'television, television system', 852: 'tennis ball', 853: 'thatch, thatched roof', 854: 'theater curtain, theatre curtain', 855: 'thimble', 856: 'thresher, thrasher, threshing machine', 857: 'throne', 858: 'tile roof', 859: 'toaster', 860: 'tobacco shop, tobacconist shop, tobacconist', 861: 'toilet seat', 862: 'torch', 863: 'totem pole', 864: 'tow truck, tow car, wrecker', 865: 'toyshop', 866: 'tractor', 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', 868: 'tray', 869: 'trench coat', 870: 'tricycle, trike, velocipede', 871: 'trimaran', 872: 'tripod', 873: 'triumphal arch', 874: 'trolleybus, trolley coach, trackless trolley', 875: 'trombone', 876: 'tub, vat', 877: 'turnstile', 878: 'typewriter keyboard', 879: 'umbrella', 880: 'unicycle, monocycle', 881: 'upright, upright piano', 882: 'vacuum, vacuum cleaner', 883: 'vase', 884: 'vault', 885: 'velvet', 886: 'vending machine', 887: 'vestment', 888: 'viaduct', 889: 'violin, fiddle', 890: 'volleyball', 891: 'waffle iron', 892: 'wall clock', 893: 'wallet, billfold, notecase, pocketbook', 894: 'wardrobe, closet, press', 895: 'warplane, military plane', 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin', 897: 'washer, automatic washer, washing machine', 898: 'water bottle', 899: 'water jug', 900: 'water tower', 901: 'whiskey jug', 902: 'whistle', 903: 'wig', 904: 'window screen', 905: 'window shade', 906: 'Windsor tie', 907: 'wine bottle', 908: 'wing', 909: 'wok', 910: 'wooden spoon', 911: 'wool, woolen, woollen', 912: 'worm fence, snake fence, snake-rail fence, Virginia fence', 913: 'wreck', 914: 'yawl', 915: 'yurt', 916: 'web site, website, internet site, site', 917: 'comic book', 918: 'crossword puzzle, crossword', 919: 'street sign', 920: 'traffic light, traffic signal, stoplight', 921: 'book jacket, dust cover, dust jacket, dust wrapper', 922: 'menu', 923: 'plate', 924: 'guacamole', 925: 'consomme', 926: 'hot pot, hotpot', 927: 'trifle', 928: 'ice cream, icecream', 929: 'ice lolly, lolly, lollipop, popsicle', 930: 'French loaf', 931: 'bagel, beigel', 932: 'pretzel', 933: 'cheeseburger', 934: 'hotdog, hot dog, red hot', 935: 'mashed potato', 936: 'head cabbage', 937: 'broccoli', 938: 'cauliflower', 939: 'zucchini, courgette', 940: 'spaghetti squash', 941: 'acorn squash', 942: 'butternut squash', 943: 'cucumber, cuke', 944: 'artichoke, globe artichoke', 945: 'bell pepper', 946: 'cardoon', 947: 'mushroom', 948: 'Granny Smith', 949: 'strawberry', 950: 'orange', 951: 'lemon', 952: 'fig', 953: 'pineapple, ananas', 954: 'banana', 955: 'jackfruit, jak, jack', 956: 'custard apple', 957: 'pomegranate', 958: 'hay', 959: 'carbonara', 960: 'chocolate sauce, chocolate syrup', 961: 'dough', 962: 'meat loaf, meatloaf', 963: 'pizza, pizza pie', 964: 'potpie', 965: 'burrito', 966: 'red wine', 967: 'espresso', 968: 'cup', 969: 'eggnog', 970: 'alp', 971: 'bubble', 972: 'cliff, drop, drop-off', 973: 'coral reef', 974: 'geyser', 975: 'lakeside, lakeshore', 976: 'promontory, headland, head, foreland', 977: 'sandbar, sand bar', 978: 'seashore, coast, seacoast, sea-coast', 979: 'valley, vale', 980: 'volcano', 981: 'ballplayer, baseball player', 982: 'groom, bridegroom', 983: 'scuba diver', 984: 'rapeseed', 985: 'daisy', 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", 987: 'corn', 988: 'acorn', 989: 'hip, rose hip, rosehip', 990: 'buckeye, horse chestnut, conker', 991: 'coral fungus', 992: 'agaric', 993: 'gyromitra', 994: 'stinkhorn, carrion fungus', 995: 'earthstar', 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', 997: 'bolete', 998: 'ear, spike, capitulum', 999: 'toilet tissue, toilet paper, bathroom tissue'}
astmt-master
fblib/util/db_info/imagenet_categ.py
astmt-master
fblib/util/db_info/__init__.py
astmt-master
fblib/util/model_resources/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch # ---- Public functions def compute_gflops(net, in_shape=(1, 3, 224, 224), tasks=None): net = add_flops_counting_methods(net) net = net.cuda().train() net.start_flops_count() inputs = torch.rand(in_shape).requires_grad_().cuda() if not tasks: _ = net(inputs) else: _ = net.forward(inputs, tasks) gflops = net.compute_average_flops_cost() / 1e9 / 2 return gflops def add_flops_counting_methods(net_main_module): """Adds flops counting functions to an existing model. After that the flops count should be activated and the model should be run on an input image. Example: fcn = add_flops_counting_methods(fcn) fcn = fcn.cuda().train() fcn.start_flops_count() _ = fcn(batch) fcn.compute_average_flops_cost() / 1e9 / 2 # Result in GFLOPs per image in batch Important: dividing by 2 only works for resnet models -- see below for the details of flops computation. Attention: we are counting multiply-add as two flops in this work, because in most resnet models convolutions are bias-free (BN layers act as bias there) and it makes sense to count muliply and add as separate flops therefore. This is why in the above example we divide by 2 in order to be consistent with most modern benchmarks. For example in "Spatially Adaptive Computation Time for Residual Networks" by Figurnov et al multiply-add was counted as two flops. This module computes the average flops which is necessary for dynamic networks which have different number of executed layers. For static networks it is enough to run the network once and get statistics (above example). Implementation: The module works by adding batch_count to the main module which tracks the sum of all batch sizes that were run through the network. Also each convolutional layer of the network tracks the overall number of flops performed. The parameters are updated with the help of registered hook-functions which are being called each time the respective layer is executed. Parameters ---------- net_main_module : torch.nn.Module Main module containing network Returns ------- net_main_module : torch.nn.Module Updated main module with new methods/attributes that are used to compute flops. """ # adding additional methods to the existing module object, # this is done this way so that each function has access to self object net_main_module.start_flops_count = start_flops_count.__get__(net_main_module) net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module) net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module) net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(net_main_module) net_main_module.reset_flops_count() # Adding varialbles necessary for masked flops computation net_main_module.apply(add_flops_mask_variable_or_reset) return net_main_module def compute_average_flops_cost(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Returns current mean flops consumption per image. """ batches_count = self.__batch_counter__ if batches_count == 0: print('Please divide manually with the batch size') batches_count = 1 flops_sum = 0 for module in self.modules(): if is_supported_instance(module): flops_sum += module.__flops__ return flops_sum / batches_count def start_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Activates the computation of mean flops consumption per image. Call it before you run the network. """ add_batch_counter_hook_function(self) self.apply(add_flops_counter_hook_function) def stop_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Stops computing the mean flops consumption per image. Call whenever you want to pause the computation. """ remove_batch_counter_hook_function(self) self.apply(remove_flops_counter_hook_function) def reset_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Resets statistics computed so far. """ add_batch_counter_variables_or_reset(self) self.apply(add_flops_counter_variable_or_reset) def add_flops_mask(module, mask): def add_flops_mask_func(module): if isinstance(module, torch.nn.Conv2d): module.__mask__ = mask module.apply(add_flops_mask_func) def remove_flops_mask(module): module.apply(add_flops_mask_variable_or_reset) # ---- Internal functions def is_supported_instance(module): if isinstance(module, torch.nn.Conv2d) \ or isinstance(module, torch.nn.Linear) \ or isinstance(module, torch.nn.Upsample): return True return False def empty_flops_counter_hook(module, input, output): module.__flops__ += 0 def conv_flops_counter_hook(conv_module, input, output): # Can have multiple inputs, getting the first one input = input[0] batch_size = input.shape[0] output_height, output_width = output.shape[2:] kernel_height, kernel_width = conv_module.kernel_size in_channels = conv_module.in_channels out_channels = conv_module.out_channels # We count multiply-add as 2 flops if conv_module.groups == 1: # Normal convolution conv_per_position_flops = 2 * kernel_height * kernel_width * in_channels * out_channels else: # Grouped convolution d_in = in_channels // conv_module.groups d_out = out_channels // conv_module.groups conv_per_position_flops = 2 * kernel_height * kernel_width * d_in * d_out * conv_module.groups active_elements_count = batch_size * output_height * output_width if conv_module.__mask__ is not None: # (b, 1, h, w) flops_mask = conv_module.__mask__.expand(batch_size, 1, output_height, output_width) active_elements_count = flops_mask.sum() overall_conv_flops = conv_per_position_flops * active_elements_count bias_flops = 0 if conv_module.bias is not None: bias_flops = out_channels * active_elements_count overall_flops = overall_conv_flops + bias_flops conv_module.__flops__ += overall_flops def upsample_flops_counter_hook(module, input, output): output_size = output[0] batch_size = output_size.shape[0] output_elements_count = batch_size for val in output_size.shape[1:]: output_elements_count *= val module.__flops__ += output_elements_count def linear_flops_counter_hook(module, input, output): input = input[0] batch_size = input.shape[0] module.__flops__ += batch_size * input.shape[1] * output.shape[1] def batch_counter_hook(module, input, output): # Can have multiple inputs, getting the first one input = input[0] # print(input) batch_size = input.shape[0] module.__batch_counter__ += batch_size def add_batch_counter_variables_or_reset(module): module.__batch_counter__ = 0 def add_batch_counter_hook_function(module): if hasattr(module, '__batch_counter_handle__'): return handle = module.register_forward_hook(batch_counter_hook) module.__batch_counter_handle__ = handle def remove_batch_counter_hook_function(module): if hasattr(module, '__batch_counter_handle__'): module.__batch_counter_handle__.remove() del module.__batch_counter_handle__ def add_flops_counter_variable_or_reset(module): if is_supported_instance(module): module.__flops__ = 0 def add_flops_counter_hook_function(module): if is_supported_instance(module): if hasattr(module, '__flops_handle__'): return if isinstance(module, torch.nn.Conv2d): handle = module.register_forward_hook(conv_flops_counter_hook) elif isinstance(module, torch.nn.Linear): handle = module.register_forward_hook(linear_flops_counter_hook) elif isinstance(module, torch.nn.Upsample): handle = module.register_forward_hook(upsample_flops_counter_hook) else: handle = module.register_forward_hook(empty_flops_counter_hook) module.__flops_handle__ = handle def remove_flops_counter_hook_function(module): if is_supported_instance(module): if hasattr(module, '__flops_handle__'): module.__flops_handle__.remove() del module.__flops_handle__ # Also being run in the initialization def add_flops_mask_variable_or_reset(module): if is_supported_instance(module): module.__mask__ = None
astmt-master
fblib/util/model_resources/flops.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)
astmt-master
fblib/util/model_resources/num_parameters.py
astmt-master
fblib/util/dense_predict/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def lr_poly(base_lr, iter_, max_iter=100, power=0.9): return base_lr * ((1 - float(iter_) / max_iter) ** power) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
astmt-master
fblib/util/dense_predict/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn def traverse_graph(var): """ Args: var: output Variable """ seen = set() var_lst = [] def add_nodes(var): if var not in seen: if hasattr(var, 'variable'): u = var.variable if isinstance(u, nn.Parameter): var_lst.append(u) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: add_nodes(u[0]) # handle multiple outputs if isinstance(var, tuple): for v in var: add_nodes(v.grad_fn) else: add_nodes(var.grad_fn) return var_lst def make_closure(loss, net): def closure(): used_vars = traverse_graph(loss) loss.backward() for p in net.parameters(): exists = False for v in used_vars: exists = (p is v) if exists: break if not exists: p.grad = None return loss return closure def make_closure_fast(loss, net): def closure(): used_vars = set(traverse_graph(loss)) loss.backward() for p in net.parameters(): if p not in used_vars: p.grad = None return loss return closure class MWENet(nn.Module): def __init__(self): super(MWENet, self).__init__() self.a = nn.Parameter(torch.rand(1)) self.b = nn.Parameter(torch.rand(1)) self.c = nn.Parameter(torch.rand(1)) def forward_b(self, x): x = self.a * x x = x ** self.b return x def forward_c(self, x): x = self.a * x x = x ** self.c return x def print_params(self, txt='Before'): print('{0}: a: {1:.7f}, b: {2:.7f}, c: {3:.7f}'.format( txt, self.a[0].detach().numpy(), self.b[0].detach().numpy(), self.c[0].detach().numpy())) def perform_first_iter(net, optimizer, x): out_b = net.forward_b(x) out_c = net.forward_c(x) loss = (1 - out_b) + (2 - out_c) optimizer.zero_grad() loss.backward() optimizer.step() def test_default_optimizer(): print('\n Using default optimizer. All parameters should change') x = torch.rand(1, requires_grad=True) net = MWENet() optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.99, weight_decay=0.001) # First backward to get some momentum going perform_first_iter(net, optimizer, x) # Without modified optimizer out_b = net.forward_b(x) loss = (1 - out_b) # Before net.print_params() optimizer.zero_grad() loss.backward() optimizer.step() # After: c must get updated without being part of the graph net.print_params('After ') def test_modified_optimizer(): print('\n Using modified optimizer. parameter c should not change') x = torch.rand(1, requires_grad=True) net = MWENet() optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.99, weight_decay=0.0001) # First backward to get some momentum going perform_first_iter(net, optimizer, x) # With modified optimizer out_b = net.forward_b(x) loss = (1 - out_b) # Before net.print_params() optimizer.zero_grad() optimizer.step(closure=make_closure(loss, net)) # After: c SHOULD NOT get updated because it's not part of the graph net.print_params('After ') if __name__ == '__main__': test_default_optimizer() test_modified_optimizer()
astmt-master
fblib/util/optimizer_mtl/select_used_modules.py
astmt-master
fblib/util/optimizer_mtl/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os from fblib.util.mypath import Path import numpy as np import torch.utils.data as data import cv2 class FSVGTA(data.Dataset): def __init__(self, root=Path.db_root_dir('FSV'), split='test', mini=True, transform=None, retname=True, overfit=False, do_semseg=False, do_albedo=False, do_depth=False, prune_rare_classes=True, ): self.root = root self.transform = transform self.prune = [] if prune_rare_classes: self.prune = [1, 4, 5, 6, 7] self.split = split self.retname = retname # Original Images self.im_ids = [] self.images = [] _image_dir = os.path.join(root, 'gta_' + split) # Semantic segmentation self.do_semseg = do_semseg self.semsegs = [] # Albedo self.do_albedo = do_albedo self.albedos = [] # Depth self.do_depth = do_depth self.depths = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(root, 'gt_sets') print("Initializing dataloader for FSV GTA {} set".format(self.split)) with open(os.path.join(os.path.join(_splits_dir, 'gta_' + self.split + '.txt')), "r") as f: lines = f.read().splitlines() if split == 'test' and mini: lines = lines[0:len(lines):int(len(lines)/5000)] for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + "_final.webp") # assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Semantic Segmentation _semseg = os.path.join(_image_dir, line + "_object_id.png") # assert os.path.isfile(_semseg) self.semsegs.append(_semseg) # Albedo _albedo = os.path.join(_image_dir, line + "_albedo.webp") # assert os.path.isfile(_albedo) self.albedos.append(_albedo) # Depth Estimation _depth = os.path.join(_image_dir, line + "_disparity.webp") # assert os.path.isfile(_depth) self.depths.append(_depth) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) if self.do_albedo: assert (len(self.images) == len(self.albedos)) if self.do_depth: assert (len(self.images) == len(self.depths)) # Uncomment to overfit to one image if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_semseg: _semseg = self._load_semseg(index) if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.do_albedo: _albedo = self._load_albedo(index) if _albedo.shape[:2] != _img.shape[:2]: _depth = cv2.resize(_albedo, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['albedo'] = _albedo if self.do_depth: _depth = self._load_depth(index) if _depth.shape[:2] != _img.shape[:2]: _depth = cv2.resize(_depth, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['depth'] = _depth if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = cv2.imread(self.images[index])[:, :, ::-1].astype(np.float32) return _img def _load_semseg(self, index): _semseg = cv2.imread(self.semsegs[index])[:, :, -1].astype(np.float32) # Prune rare classes if self.prune: uniq = np.unique(_semseg) for cls in self.prune: if cls in uniq: _semseg[_semseg == cls] = 0 _semseg = np.maximum(_semseg - 1, 0) return _semseg def _load_albedo(self, index): _albedo = cv2.imread(self.albedos[index])[:, :, ::-1].astype(np.float32) / 255. return _albedo def _load_depth(self, index): _depth = cv2.imread(self.depths[index]) _depth = (_depth[:, :, 0] * 256 * 256 + _depth[:, :, 1] * 256 + _depth[:, :, 2]).astype(np.float32) / 8192 return _depth def __str__(self): return 'FSV GTA Multitask (split=' + str(self.split) + ')'
astmt-master
fblib/dataloaders/fsv.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import os.path from pycocotools.coco import COCO import torch.utils.data as data from PIL import Image import numpy as np from fblib.util.mypath import Path class CocoCaptions(data.Dataset): """`MS Coco Captions <http://mscoco.org/dataset/#captions-challenge2015>`_ Dataset. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. Example: .. code:: python import torchvision.datasets as dset import torchvision.transforms as transforms cap = dset.CocoCaptions(root = 'dir where images are', annFile = 'json annotation file', transform=transforms.ToTensor()) print('Number of samples: ', len(cap)) img, target = cap[3] # load 4th sample print("Image Size: ", img.size()) print(target) Output: :: Number of samples: 82783 Image Size: (3L, 427L, 640L) [u'A plane emitting smoke stream flying over a mountain.', u'A plane darts across a bright blue sky behind a mountain covered in snow', u'A plane leaves a contrail above the snowy mountain top.', u'A mountain that has a plane flying overheard in the distance.', u'A mountain view with a plume of smoke in the background'] """ def __init__(self, root, annFile, transform=None, target_transform=None): self.root = os.path.expanduser(root) self.coco = COCO(annFile) self.ids = list(self.coco.imgs.keys()) self.transform = transform self.target_transform = target_transform def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is a list of captions for the image. """ coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) anns = coco.loadAnns(ann_ids) target = [ann['caption'] for ann in anns] path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)).convert('RGB') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.ids) class CocoDetection(data.Dataset): """`MS Coco Captions <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, root, annFile, transform=None, target_transform=None): self.root = root self.coco = COCO(annFile) self.ids = list(self.coco.imgs.keys()) self.transform = transform self.target_transform = target_transform def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``. """ coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) target = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.root, path)).convert('RGB') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.ids) class COCOSegmentation(data.Dataset): """`MS Coco Captions <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset. Args: split (string): Select split of the dataset, eg 'val2014' or 'train2014' area_range (list): Select min and max size of the objects eg [500, float("inf")] pascal_categories (boolean): Select only the categories of pascal db_root (string): Root folder where the coco dataset is stored, folder containing annotation and images folders. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.ToTensor`` retname (boolean): Return metadata about the sample """ PASCAL_CAT_DICT = {'airplane': 1, 'bicycle': 2, 'bird': 3, 'boat': 4, 'bottle': 5, 'bus': 6, 'car': 7, 'cat': 8, 'chair': 9, 'cow': 10, 'dining table': 11, 'dog': 12, 'horse': 13, 'motorcycle': 14, 'person': 15, 'potted plant': 16, 'sheep': 17, 'couch': 18, 'train': 19, 'tv': 20} def __init__(self, split, area_range=[], only_pascal_categories=False, mask_per_class=True, db_root=Path.db_root_dir('COCO'), n_samples=-1, transform=None, retname=True, overfit=False ): self.split = split self.root = os.path.join(db_root, 'images', split) annFile = os.path.join(db_root, 'annotations', 'instances_' + split + '.json') self.coco = COCO(annFile) self.pascal_cat_name = ['person', 'bird', 'cat', 'cow', 'dog', 'horse', 'sheep', 'airplane', 'bicycle', 'boat', 'bus', 'car', 'motorcycle', 'train', 'bottle', 'chair', 'dining table', 'potted plant', 'couch', 'tv'] self.only_pascal_categories = only_pascal_categories if self.only_pascal_categories: cat_ids = self.coco.getCatIds(catNms=self.pascal_cat_name) else: cat_ids = self.coco.getCatIds() self.img_ids = list(self.coco.imgs.keys()) self.ids = self.coco.getAnnIds(imgIds=self.img_ids, areaRng=area_range, catIds=cat_ids) self.transform = transform self.area_range = area_range self.cat_ids = cat_ids self.mask_per_class = mask_per_class self.retname = retname if self.mask_per_class: self._select_imgs() if n_samples > 0: if self.mask_per_class: self.img_ids = list(self.img_ids)[:n_samples] else: self.ids = self.ids[:n_samples] if overfit: n_of = 64 self.img_ids = list(self.img_ids)[:n_of] # Display stats if self.mask_per_class: print("Number of images: {:d}".format(len(self.img_ids))) else: print('Number of images: {:d}\nNumber of objects: {:d}'.format(len(self.coco.imgs), len(self.ids))) def _select_imgs(self): lst = [] for x in self.img_ids: ids_area = self.coco.getAnnIds(imgIds=x, areaRng=self.area_range, catIds=self.cat_ids) ids = self.coco.getAnnIds(imgIds=x, areaRng=[0, float('Inf')], catIds=self.cat_ids) if ids_area and len(ids) == len(ids_area): lst.append(x) self.img_ids = lst def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``. """ coco = self.coco if self.mask_per_class: img_id = self.img_ids[index] ann_meta = [] for cat_id in self.cat_ids: ids = coco.getAnnIds(imgIds=img_id, catIds=cat_id) ann_meta.append(coco.loadAnns(ids)) cat_id = self.cat_ids else: ann_meta = coco.loadAnns(self.ids[index]) img_id = ann_meta[0]["image_id"] cat_id = ann_meta[0]['category_id'] img_meta = coco.loadImgs(img_id)[0] path = img_meta['file_name'] sample = {} if self.retname: sample['meta'] = {'image': str(path).split('.')[0], 'object': str(self.ids[index]), 'category': cat_id, 'im_size': (img_meta['height'], img_meta['width'])} try: img = np.array(Image.open(os.path.join(self.root, path)).convert('RGB')).astype(np.float32) if self.mask_per_class: target = np.zeros([img.shape[0], img.shape[1]]) for ii in range(len(cat_id)): ann_meta_class = ann_meta[ii] target_tmp = np.zeros([img.shape[0], img.shape[1]]) for ann in ann_meta_class: target_tmp = np.logical_or(target_tmp > 0, np.array(coco.annToMask(ann)) > 0) if self.only_pascal_categories: coco_cat_name = self.coco.cats[self.cat_ids[ii]]['name'] if coco_cat_name in self.pascal_cat_name: target[target_tmp > 0] = self.PASCAL_CAT_DICT[coco_cat_name] else: target[target_tmp > 0] = ii + 1 else: target = np.zeros([img.shape[0], img.shape[1], 1]) for ann in ann_meta: target = np.logical_or(target, np.array(coco.annToMask(ann).reshape([img.shape[0], img.shape[1], 1]))) target = target.astype(np.float32) except ValueError: img = np.zeros((100, 100, 3)) target = np.zeros((100, 100)) print('Error reading image ' + str(path) + ' with object id ' + str(self.ids[index])) sample['image'] = img if self.mask_per_class: sample['semseg'] = target else: sample['gt'] = target if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): if self.mask_per_class: return len(self.img_ids) else: return len(self.ids) def __str__(self): return 'COCOSegmentation(split='+str(self.split)+', area_range='+str(self.area_range) + ')' if __name__ == "__main__": from matplotlib.pyplot import imshow, show import torchvision.transforms as transforms import fblib.dataloaders.custom_transforms as tr transform = transforms.Compose([tr.ToTensor()]) dataset = COCOSegmentation(split='val2017', transform=None, retname=True, area_range=[1000, float("inf")], only_pascal_categories=True, overfit=True) for i in range(len(dataset)): sample = dataset[i] imshow(sample['semseg']) show()
astmt-master
fblib/dataloaders/coco.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.utils.data as data class CombineIMDBs(data.Dataset): """ Combine two datasets, for example to create VOC and SBD training set """ def __init__(self, dataloaders, excluded=None, repeat=None): self.dataloaders = dataloaders self.excluded = excluded self.im_ids = [] # Combine object lists for dl in dataloaders: for elem in dl.im_ids: if elem not in self.im_ids: self.im_ids.append(elem) # Exclude if excluded: for dl in excluded: for elem in dl.im_ids: if elem in self.im_ids: self.im_ids.remove(elem) if repeat: self.repeat = repeat assert(len(repeat) == len(dataloaders)) else: self.repeat = [1] * len(dataloaders) # Get object pointers self.im_list = [] new_im_ids = [] num_images = 0 for ii, dl in enumerate(dataloaders): for jj, curr_im_id in enumerate(dl.im_ids): if (curr_im_id in self.im_ids) and (curr_im_id not in new_im_ids): for r in range(self.repeat[ii]): new_im_ids.append(curr_im_id) self.im_list.append({'db_ii': ii, 'im_ii': jj}) num_images += 1 self.im_ids = new_im_ids print('Combined number of images: {:d}\n'.format(num_images)) def __getitem__(self, index): _db_ii = self.im_list[index]["db_ii"] _im_ii = self.im_list[index]['im_ii'] # print("db_id: {}, im_id: {}".format(_db_ii, _im_ii)) sample = self.dataloaders[_db_ii].__getitem__(_im_ii) if 'meta' in sample.keys(): sample['meta']['db'] = str(self.dataloaders[_db_ii]) return sample def __len__(self): return len(self.im_ids) def __str__(self): include_db = [str(db) for db in self.dataloaders] exclude_db = [str(db) for db in self.excluded] return 'Included datasets:'+str(include_db)+'\n'+'Excluded datasets:'+str(exclude_db) if __name__ == '__main__': from matplotlib import pyplot as plt import fblib.dataloaders as dataloaders pascal_train = dataloaders.VOC12(split='train', do_semseg=True) sbd = dataloaders.SBD(split=['train', 'val'], do_semseg=True) pascal_val = dataloaders.VOC12(split='val', do_semseg=True) dataset = CombineIMDBs([pascal_train, sbd], excluded=[pascal_val]) for i, sample in enumerate(dataset): plt.imshow(sample['image']/255.) plt.show() plt.imshow(sample['semseg']) plt.show()
astmt-master
fblib/dataloaders/combine_im_dbs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile import cv2 import numpy as np import torch.utils.data as data from six.moves import urllib from fblib.util.mypath import Path class MSRA(data.Dataset): """ MSRA10k dataset for Saliency Estimation """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/MSRA10K.tgz' FILE = 'MSRA10K.tgz' def __init__(self, root=Path.db_root_dir('MSRA10K'), download=True, split='trainval', transform=None, retname=True, overfit=False): if download: self._download() self.transform = transform self.retname = retname self.root = root self.gt_dir = os.path.join(self.root, 'gt') self.image_dir = os.path.join(self.root, 'Imgs') _splits_dir = os.path.join(self.root, 'gt_sets') self.split = split if isinstance(self.split, str): self.split = [self.split] self.images = [] self.gts = [] self.im_ids = [] for sp in self.split: with open(os.path.join(os.path.join(_splits_dir, sp + '.txt')), "r") as f: lines = f.readlines() for line in lines: line = line.strip() _image = os.path.join(self.image_dir, line + ".jpg") _gt = os.path.join(self.gt_dir, line + ".png") assert os.path.isfile(_image) assert os.path.isfile(_gt) self.im_ids.append(line) self.images.append(_image) self.gts.append(_gt) assert (len(self.images) == len(self.gts) == len(self.im_ids)) if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of images: {:d}'.format(len(self.im_ids))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img _sal = self._load_sal(index) sample['sal'] = _sal if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.im_ids) def _load_img(self, index): # Read Image _img = cv2.imread(self.images[index])[:, :, ::-1].astype(np.float32) return _img def _load_sal(self, index): # Read Target object _gt = cv2.imread(self.gts[index], flags=0).astype(np.float32) / 255. return _gt def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'MSRA(split=' + str(self.split) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = MSRA() for i, sample in enumerate(dataset): plt.imshow(sample['image']/255) plt.show() plt.imshow(sample['sal']) plt.show()
astmt-master
fblib/dataloaders/msra10k.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile import json import cv2 import numpy as np import scipy.io as sio import torch.utils.data as data from PIL import Image from skimage.morphology import thin from six.moves import urllib from fblib import PROJECT_ROOT_DIR from fblib.util.mypath import Path class PASCALContext(data.Dataset): """ PASCAL-Context dataset, for multiple tasks Included tasks: 1. Edge detection, 2. Semantic Segmentation, 3. Human Part Segmentation, 4. Surface Normal prediction (distilled), 5. Saliency (distilled) """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/PASCAL_MT.tgz' FILE = 'PASCAL_MT.tgz' HUMAN_PART = {1: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 1, 'lhand': 1, 'llarm': 1, 'llleg': 1, 'luarm': 1, 'luleg': 1, 'mouth': 1, 'neck': 1, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 1, 'rhand': 1, 'rlarm': 1, 'rlleg': 1, 'ruarm': 1, 'ruleg': 1, 'torso': 1}, 4: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 4, 'lhand': 3, 'llarm': 3, 'llleg': 4, 'luarm': 3, 'luleg': 4, 'mouth': 1, 'neck': 2, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 4, 'rhand': 3, 'rlarm': 3, 'rlleg': 4, 'ruarm': 3, 'ruleg': 4, 'torso': 2}, 6: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 6, 'lhand': 4, 'llarm': 4, 'llleg': 6, 'luarm': 3, 'luleg': 5, 'mouth': 1, 'neck': 2, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 6, 'rhand': 4, 'rlarm': 4, 'rlleg': 6, 'ruarm': 3, 'ruleg': 5, 'torso': 2}, 14: {'hair': 1, 'head': 1, 'lear': 1, 'lebrow': 1, 'leye': 1, 'lfoot': 14, 'lhand': 8, 'llarm': 7, 'llleg': 13, 'luarm': 6, 'luleg': 12, 'mouth': 1, 'neck': 2, 'nose': 1, 'rear': 1, 'rebrow': 1, 'reye': 1, 'rfoot': 11, 'rhand': 5, 'rlarm': 4, 'rlleg': 10, 'ruarm': 3, 'ruleg': 9, 'torso': 2} } VOC_CATEGORY_NAMES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] CONTEXT_CATEGORY_LABELS = [0, 2, 23, 25, 31, 34, 45, 59, 65, 72, 98, 397, 113, 207, 258, 284, 308, 347, 368, 416, 427] def __init__(self, root=Path.db_root_dir('PASCAL_MT'), download=True, split='val', transform=None, area_thres=0, retname=True, overfit=False, do_edge=True, do_human_parts=False, do_semseg=False, do_normals=False, do_sal=False, num_human_parts=6, ): self.root = root if download: self._download() image_dir = os.path.join(self.root, 'JPEGImages') self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.area_thres = area_thres self.retname = retname # Edge Detection self.do_edge = do_edge self.edges = [] edge_gt_dir = os.path.join(self.root, 'pascal-context', 'trainval') # Semantic Segmentation self.do_semseg = do_semseg self.semsegs = [] # Human Part Segmentation self.do_human_parts = do_human_parts part_gt_dir = os.path.join(self.root, 'human_parts') self.parts = [] self.human_parts_category = 15 self.cat_part = json.load(open(os.path.join(os.path.dirname(__file__), '../util/db_info/pascal_part.json'), 'r')) self.cat_part["15"] = self.HUMAN_PART[num_human_parts] self.parts_file = os.path.join(os.path.join(self.root, 'ImageSets', 'Parts'), ''.join(self.split) + '.txt') # Surface Normal Estimation self.do_normals = do_normals _normal_gt_dir = os.path.join(self.root, 'normals_distill') self.normals = [] if self.do_normals: with open(os.path.join(PROJECT_ROOT_DIR, 'util/db_info/nyu_classes.json')) as f: cls_nyu = json.load(f) with open(os.path.join(PROJECT_ROOT_DIR, 'util/db_info/context_classes.json')) as f: cls_context = json.load(f) self.normals_valid_classes = [] for cl_nyu in cls_nyu: if cl_nyu in cls_context and cl_nyu != 'unknown': self.normals_valid_classes.append(cls_context[cl_nyu]) # Custom additions due to incompatibilities self.normals_valid_classes.append(cls_context['tvmonitor']) # Saliency self.do_sal = do_sal _sal_gt_dir = os.path.join(self.root, 'sal_distill') self.sals = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(self.root, 'ImageSets', 'Context') self.im_ids = [] self.images = [] print("Initializing dataloader for PASCAL {} set".format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(image_dir, line + ".jpg") assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Edges _edge = os.path.join(edge_gt_dir, line + ".mat") assert os.path.isfile(_edge) self.edges.append(_edge) # Semantic Segmentation _semseg = self._get_semseg_fname(line) assert os.path.isfile(_semseg) self.semsegs.append(_semseg) # Human Parts _human_part = os.path.join(self.root, part_gt_dir, line + ".mat") assert os.path.isfile(_human_part) self.parts.append(_human_part) _normal = os.path.join(self.root, _normal_gt_dir, line + ".png") assert os.path.isfile(_normal) self.normals.append(_normal) _sal = os.path.join(self.root, _sal_gt_dir, line + ".png") assert os.path.isfile(_sal) self.sals.append(_sal) if self.do_edge: assert (len(self.images) == len(self.edges)) if self.do_human_parts: assert (len(self.images) == len(self.parts)) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) if self.do_normals: assert (len(self.images) == len(self.normals)) if self.do_sal: assert (len(self.images) == len(self.sals)) if not self._check_preprocess_parts(): print('Pre-processing PASCAL dataset for human parts, this will take long, but will be done only once.') self._preprocess_parts() if self.do_human_parts: # Find images which have human parts self.has_human_parts = [] for ii in range(len(self.im_ids)): if self.human_parts_category in self.part_obj_dict[self.im_ids[ii]]: self.has_human_parts.append(1) else: self.has_human_parts.append(0) # If the other tasks are disabled, select only the images that contain human parts, to allow batching if not self.do_edge and not self.do_semseg and not self.do_sal and not self.do_normals: print('Ignoring images that do not contain human parts') for i in range(len(self.parts) - 1, -1, -1): if self.has_human_parts[i] == 0: del self.im_ids[i] del self.images[i] del self.parts[i] del self.has_human_parts[i] print('Number of images with human parts: {:d}'.format(np.sum(self.has_human_parts))) # Overfit to n_of images if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] if self.do_edge: self.edges = self.edges[:n_of] if self.do_semseg: self.semsegs = self.semsegs[:n_of] if self.do_human_parts: self.parts = self.parts[:n_of] if self.do_normals: self.normals = self.normals[:n_of] if self.do_sal: self.sals = self.sals[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_edge: _edge = self._load_edge(index) if _edge.shape != _img.shape[:2]: _edge = cv2.resize(_edge, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['edge'] = _edge if self.do_human_parts: _human_parts, _ = self._load_human_parts(index) if _human_parts.shape != _img.shape[:2]: _human_parts = cv2.resize(_human_parts, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['human_parts'] = _human_parts if self.do_semseg: _semseg = self._load_semseg(index) if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.do_normals: _normals = self._load_normals_distilled(index) if _normals.shape[:2] != _img.shape[:2]: _normals = cv2.resize(_normals, _img.shape[:2][::-1], interpolation=cv2.INTER_CUBIC) sample['normals'] = _normals if self.do_sal: _sal = self._load_sal_distilled(index) if _sal.shape[:2] != _img.shape[:2]: _sal = cv2.resize(_sal, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['sal'] = _sal if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_edge(self, index): # Read Target object _tmp = sio.loadmat(self.edges[index]) _edge = cv2.Laplacian(_tmp['LabelMap'], cv2.CV_64F) _edge = thin(np.abs(_edge) > 0).astype(np.float32) return _edge def _load_human_parts(self, index): if self.has_human_parts[index]: # Read Target object _part_mat = sio.loadmat(self.parts[index])['anno'][0][0][1][0] _inst_mask = _target = None for _obj_ii in range(len(_part_mat)): has_human = _part_mat[_obj_ii][1][0][0] == self.human_parts_category has_parts = len(_part_mat[_obj_ii][3]) != 0 if has_human and has_parts: if _inst_mask is None: _inst_mask = _part_mat[_obj_ii][2].astype(np.float32) _target = np.zeros(_inst_mask.shape) else: _inst_mask = np.maximum(_inst_mask, _part_mat[_obj_ii][2].astype(np.float32)) n_parts = len(_part_mat[_obj_ii][3][0]) for part_i in range(n_parts): cat_part = str(_part_mat[_obj_ii][3][0][part_i][0][0]) mask_id = self.cat_part[str(self.human_parts_category)][cat_part] mask = _part_mat[_obj_ii][3][0][part_i][1].astype(bool) _target[mask] = mask_id if _target is not None: _target, _inst_mask = _target.astype(np.float32), _inst_mask.astype(np.float32) else: _target, _inst_mask = np.zeros((512, 512), dtype=np.float32), np.zeros((512, 512), dtype=np.float32) return _target, _inst_mask else: return np.zeros((512, 512), dtype=np.float32), np.zeros((512, 512), dtype=np.float32) def _load_semseg(self, index): _semseg = np.array(Image.open(self.semsegs[index])).astype(np.float32) return _semseg def _load_normals_distilled(self, index): _tmp = np.array(Image.open(self.normals[index])).astype(np.float32) _tmp = 2.0 * _tmp / 255.0 - 1.0 labels = sio.loadmat(os.path.join(self.root, 'pascal-context', 'trainval', self.im_ids[index] + '.mat')) labels = labels['LabelMap'] _normals = np.zeros(_tmp.shape, dtype=np.float) for x in np.unique(labels): if x in self.normals_valid_classes: _normals[labels == x, :] = _tmp[labels == x, :] return _normals def _load_sal_distilled(self, index): _sal = np.array(Image.open(self.sals[index])).astype(np.float32) / 255. _sal = (_sal > 0.5).astype(np.float32) return _sal def _get_semseg_fname(self, fname): fname_voc = os.path.join(self.root, 'semseg', 'VOC12', fname + '.png') fname_context = os.path.join(self.root, 'semseg', 'pascal-context', fname + '.png') if os.path.isfile(fname_voc): seg = fname_voc elif os.path.isfile(fname_context): seg = fname_context else: seg = None print('Segmentation for im: {} was not found'.format(fname)) return seg def _check_preprocess_parts(self): _obj_list_file = self.parts_file if not os.path.isfile(_obj_list_file): return False else: self.part_obj_dict = json.load(open(_obj_list_file, 'r')) return list(np.sort([str(x) for x in self.part_obj_dict.keys()])) == list(np.sort(self.im_ids)) def _preprocess_parts(self): self.part_obj_dict = {} obj_counter = 0 for ii in range(len(self.im_ids)): # Read object masks and get number of objects if ii % 100 == 0: print("Processing image: {}".format(ii)) part_mat = sio.loadmat( os.path.join(self.root, 'human_parts', '{}.mat'.format(self.im_ids[ii]))) n_obj = len(part_mat['anno'][0][0][1][0]) # Get the categories from these objects _cat_ids = [] for jj in range(n_obj): obj_area = np.sum(part_mat['anno'][0][0][1][0][jj][2]) obj_cat = int(part_mat['anno'][0][0][1][0][jj][1]) if obj_area > self.area_thres: _cat_ids.append(int(part_mat['anno'][0][0][1][0][jj][1])) else: _cat_ids.append(-1) obj_counter += 1 self.part_obj_dict[self.im_ids[ii]] = _cat_ids with open(self.parts_file, 'w') as outfile: outfile.write('{{\n\t"{:s}": {:s}'.format(self.im_ids[0], json.dumps(self.part_obj_dict[self.im_ids[0]]))) for ii in range(1, len(self.im_ids)): outfile.write( ',\n\t"{:s}": {:s}'.format(self.im_ids[ii], json.dumps(self.part_obj_dict[self.im_ids[ii]]))) outfile.write('\n}\n') print('Preprocessing for parts finished') def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'PASCAL_MT(split=' + str(self.split) + ')' def test_all(): import matplotlib.pyplot as plt import torch import fblib.dataloaders.custom_transforms as tr from torchvision import transforms from fblib.util.custom_collate import collate_mil transform = transforms.Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'human_parts': cv2.INTER_NEAREST, 'normals': cv2.INTER_CUBIC, 'sal': cv2.INTER_NEAREST}), tr.FixedResize(resolutions={'image': (512, 512), 'edge': (512, 512), 'semseg': (512, 512), 'human_parts': (512, 512), 'normals': (512, 512), 'sal': (512, 512)}, flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'human_parts': cv2.INTER_NEAREST, 'normals': cv2.INTER_CUBIC, 'sal': cv2.INTER_NEAREST}), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset = PASCALContext(split='train', transform=transform, retname=True, do_edge=True, do_semseg=True, do_human_parts=True, do_normals=True, do_sal=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=False, num_workers=0) # plt.ion() for i, sample in enumerate(dataloader): print(i) for j in range(sample['image'].shape[0]): f, ax_arr = plt.subplots(2, 3) for k in range(len(ax_arr)): for l in range(len(ax_arr[k])): ax_arr[k][l].cla() ax_arr[0][0].set_title('Input Image') ax_arr[0][0].imshow(np.transpose(sample['image'][j], (1, 2, 0))/255.) ax_arr[0][1].set_title('Edge') ax_arr[0][1].imshow(np.transpose(sample['edge'][j], (1, 2, 0))[:, :, 0]) ax_arr[0][2].set_title('Semantic Segmentation') ax_arr[0][2].imshow(np.transpose(sample['semseg'][j], (1, 2, 0))[:, :, 0] / 20.) ax_arr[1][0].set_title('Human Part Segmentation') ax_arr[1][0].imshow(np.transpose(sample['human_parts'][j], (1, 2, 0))[:, :, 0] / 6.) ax_arr[1][1].set_title('Surface Normals') ax_arr[1][1].imshow(np.transpose(sample['normals'][j], (1, 2, 0))) ax_arr[1][2].set_title('Saliency') ax_arr[1][2].imshow(np.transpose(sample['sal'][j], (1, 2, 0))[:, :, 0]) plt.show() break if __name__ == '__main__': test_all()
astmt-master
fblib/dataloaders/pascal_context.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile import cv2 from PIL import Image import numpy as np import torch.utils.data as data import scipy.io as sio from six.moves import urllib from fblib.util.mypath import Path class NYUD_MT(data.Dataset): """ NYUD dataset for multi-task learning. Includes edge detection, semantic segmentation, surface normals, and depth prediction """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/NYUD_MT.tgz' FILE = 'NYUD_MT.tgz' def __init__(self, root=Path.db_root_dir('NYUD_MT'), download=True, split='val', transform=None, retname=True, overfit=False, do_edge=True, do_semseg=False, do_normals=False, do_depth=False, ): self.root = root if download: self._download() self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.retname = retname # Original Images self.im_ids = [] self.images = [] _image_dir = os.path.join(root, 'images') # Edge Detection self.do_edge = do_edge self.edges = [] _edge_gt_dir = os.path.join(root, 'edge') # Semantic segmentation self.do_semseg = do_semseg self.semsegs = [] _semseg_gt_dir = os.path.join(root, 'segmentation') # Surface Normals self.do_normals = do_normals self.normals = [] _normal_gt_dir = os.path.join(root, 'normals') # Depth self.do_depth = do_depth self.depths = [] _depth_gt_dir = os.path.join(root, 'depth') # train/val/test splits are pre-cut _splits_dir = os.path.join(root, 'gt_sets') print('Initializing dataloader for NYUD {} set'.format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), 'r') as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + '.jpg') assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Edges _edge = os.path.join(self.root, _edge_gt_dir, line + '.png') assert os.path.isfile(_edge) self.edges.append(_edge) # Semantic Segmentation _semseg = os.path.join(self.root, _semseg_gt_dir, line + '.mat') assert os.path.isfile(_semseg) self.semsegs.append(_semseg) _normal = os.path.join(self.root, _normal_gt_dir, line + '.jpg') assert os.path.isfile(_normal) self.normals.append(_normal) _depth = os.path.join(self.root, _depth_gt_dir, line + '.mat') assert os.path.isfile(_depth) self.depths.append(_depth) if self.do_edge: assert (len(self.images) == len(self.edges)) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) if self.do_normals: assert (len(self.images) == len(self.normals)) if self.do_depth: assert (len(self.images) == len(self.depths)) # Uncomment to overfit to one image if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_edge: _edge = self._load_edge(index) if _edge.shape != _img.shape[:2]: _edge = cv2.resize(_edge, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['edge'] = _edge if self.do_semseg: _semseg = self._load_semseg(index) if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.do_normals: _normals = self._load_normals(index) if _normals.shape[:2] != _img.shape[:2]: _normals = cv2.resize(_normals, _img.shape[:2][::-1], interpolation=cv2.INTER_CUBIC) sample['normals'] = _normals if self.do_depth: _depth = self._load_depth(index) if _depth.shape[:2] != _img.shape[:2]: _depth = cv2.resize(_depth, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['depth'] = _depth if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_edge(self, index): _edge = np.array(Image.open(self.edges[index])).astype(np.float32) / 255. return _edge def _load_semseg(self, index): # Note: Related works are ignoring the background class (40-way classification), such as: # _semseg = np.array(sio.loadmat(self.semsegs[index])['segmentation']).astype(np.float32) - 1 # _semseg[_semseg == -1] = 255 # However, all experiments of ASTMT were conducted by using 41-way classification: _semseg = np.array(sio.loadmat(self.semsegs[index])['segmentation']).astype(np.float32) return _semseg def _load_normals(self, index): _tmp = np.array(Image.open(self.normals[index])).astype(np.float32) _normals = 2.0 * _tmp / 255.0 - 1.0 return _normals def _load_depth(self, index): _depth = np.array(sio.loadmat(self.depths[index])['depth']).astype(np.float32) return _depth def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'NYUD Multitask (split=' + str(self.split) + ')' class NYUDRaw(data.Dataset): """ NYUD dataset for Surface Normal and Depth Estimation using NYUD raw data. """ def __init__(self, root=Path.db_root_dir('NYUD_raw'), split='train', transform=None, do_normals=True, do_depth=False, retname=True, overfit=False, ): self.root = root self.transform = transform self.split = split self.retname = retname self.do_normals = do_normals self.do_depth = do_depth # Original Images self.im_ids = [] self.images = [] _image_dir = os.path.join(root, self.split, 'images') _mask_gt_dir = os.path.join(root, self.split, 'masks') # Surface Normals self.normals = [] nrm_ext = '.png' if self.split == 'train' else '.jpg' self.masks = [] _normal_gt_dir = os.path.join(root, self.split, 'normals') # Monocular depth self.depths = [] _depth_gt_dir = os.path.join(root, self.split, 'depth') # train/val/test splits are pre-cut _splits_dir = os.path.join(root, 'gt_sets') print('Initializing dataloader for NYUD Raw, {} set'.format(self.split)) with open(os.path.join(os.path.join(_splits_dir, self.split + '.txt')), 'r') as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + '.jpg') assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) if self.do_normals: # Normals _normal = os.path.join(self.root, _normal_gt_dir, line + nrm_ext) assert os.path.isfile(_normal) self.normals.append(_normal) if self.do_depth: # Depth _depth = os.path.join(self.root, _depth_gt_dir, line + '.mat') assert os.path.isfile(_depth) self.depths.append(_depth) if self.split == 'train': # Masks (only available for train data) _mask = os.path.join(self.root, _mask_gt_dir, line + '.png') assert os.path.isfile(_mask) self.masks.append(_mask) if self.do_normals: assert(len(self.images) == len(self.normals)) if self.do_depth: assert(len(self.images) == len(self.depths)) if self.split == 'train': assert(len(self.images) == len(self.masks)) # uncomment to overfit to one image if overfit: n_of = 64 self.images = self.images[:n_of] self.im_ids = self.im_ids[:n_of] # display stats print('number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_normals: _normals = self._load_normals(index) sample['normals'] = _normals if self.do_depth: _depth = self._load_depth(index) sample['depth'] = _depth if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def _load_img(self, index): _img = cv2.imread(self.images[index])[:, :, ::-1].astype(np.float32) return _img def _load_normals(self, index): _tmp = cv2.imread(self.normals[index])[:, :, ::-1].astype(np.float32) _normals = 2.0 * _tmp / 255.0 - 1.0 if self.split == 'train': _mask = cv2.imread(self.masks[index], 0) _normals[_mask == 0, :] = 0 return _normals def _load_depth(self, index): _depth = np.array(sio.loadmat(self.depths[index])['depth']).astype(np.float32) if self.split == 'train': _mask = cv2.imread(self.masks[index], 0) _depth[_mask == 0] = 0 return _depth def __len__(self): return len(self.images) def __str__(self): return 'NYUD-v2 Raw,split=' + str(self.split) + ')' def test_mt(): transform = transforms.Compose([tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-90, 90), scales=(1., 1.), flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'normals': cv2.INTER_LINEAR, 'depth': cv2.INTER_LINEAR}), tr.FixedResize(resolutions={'image': (512, 512), 'edge': (512, 512), 'semseg': (512, 512), 'normals': (512, 512), 'depth': (512, 512)}, flagvals={'image': cv2.INTER_CUBIC, 'edge': cv2.INTER_NEAREST, 'semseg': cv2.INTER_NEAREST, 'normals': cv2.INTER_LINEAR, 'depth': cv2.INTER_LINEAR}), tr.AddIgnoreRegions(), tr.ToTensor()]) dataset = NYUD_MT(split='train', transform=transform, retname=True, do_edge=True, do_semseg=True, do_normals=True, do_depth=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=5, shuffle=False, num_workers=5) for i, sample in enumerate(dataloader): imshow(sample['image'][0, 0]) show() imshow(sample['edge'][0, 0]) show() imshow(sample['semseg'][0, 0]) show() imshow(sample['normals'][0, 0]) show() imshow(sample['depth'][0, 0]) show() if __name__ == '__main__': from matplotlib.pyplot import imshow, show import torch import fblib.dataloaders.custom_transforms as tr from torchvision import transforms test_mt()
astmt-master
fblib/dataloaders/nyud.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy.random as random import numpy as np import torch import cv2 import math import fblib.util.helpers as helpers class ScaleNRotate(object): """Scale (zoom-in, zoom-out) and Rotate the image and the ground truth. Args: two possibilities: 1. rots (tuple): (minimum, maximum) rotation angle scales (tuple): (minimum, maximum) scale 2. rots [list]: list of fixed possible rotation angles scales [list]: list of fixed possible scales """ def __init__(self, rots=(-30, 30), scales=(.75, 1.25), semseg=False, flagvals=None): assert (isinstance(rots, type(scales))) self.rots = rots self.scales = scales self.semseg = semseg self.flagvals = flagvals def __call__(self, sample): if type(self.rots) == tuple: # Continuous range of scales and rotations rot = (self.rots[1] - self.rots[0]) * random.random() - \ (self.rots[1] - self.rots[0])/2 sc = (self.scales[1] - self.scales[0]) * random.random() - \ (self.scales[1] - self.scales[0]) / 2 + 1 elif type(self.rots) == list: # Fixed range of scales and rotations rot = self.rots[random.randint(0, len(self.rots))] sc = self.scales[random.randint(0, len(self.scales))] for elem in sample.keys(): if 'meta' in elem: continue tmp = sample[elem] h, w = tmp.shape[:2] center = (w / 2, h / 2) assert(center != 0) # Strange behaviour warpAffine M = cv2.getRotationMatrix2D(center, rot, sc) if self.flagvals is None: if ((tmp == 0) | (tmp == 1)).all(): flagval = cv2.INTER_NEAREST elif 'gt' in elem and self.semseg: flagval = cv2.INTER_NEAREST else: flagval = cv2.INTER_CUBIC else: flagval = self.flagvals[elem] if elem == 'normals': # Rotate Normals properly in_plane = np.arctan2(tmp[:, :, 0], tmp[:, :, 1]) nrm_0 = np.sqrt(tmp[:, :, 0] ** 2 + tmp[:, :, 1] ** 2) rot_rad= rot * 2 * math.pi / 360 tmp[:, :, 0] = np.sin(in_plane + rot_rad) * nrm_0 tmp[:, :, 1] = np.cos(in_plane + rot_rad) * nrm_0 tmp = cv2.warpAffine(tmp, M, (w, h), flags=flagval) sample[elem] = tmp return sample def __str__(self): return 'ScaleNRotate:(rot='+str(self.rots)+',scale='+str(self.scales)+')' class FixedResize(object): """Resize the image and the ground truth to specified resolution. Args: resolutions (dict): the list of resolutions """ def __init__(self, resolutions=None, flagvals=None): self.resolutions = resolutions self.flagvals = flagvals if self.flagvals is not None: assert(len(self.resolutions) == len(self.flagvals)) def __call__(self, sample): # Fixed range of scales if self.resolutions is None: return sample elems = list(sample.keys()) for elem in elems: if 'meta' in elem or 'bbox' in elem: continue if elem in self.resolutions: if self.resolutions[elem] is None: continue if isinstance(sample[elem], list): if sample[elem][0].ndim == 3: output_size = np.append(self.resolutions[elem], [3, len(sample[elem])]) else: output_size = np.append(self.resolutions[elem], len(sample[elem])) tmp = sample[elem] sample[elem] = np.zeros(output_size, dtype=np.float32) for ii, crop in enumerate(tmp): if self.flagvals is None: sample[elem][..., ii] = helpers.fixed_resize(crop, self.resolutions[elem]) else: sample[elem][..., ii] = helpers.fixed_resize(crop, self.resolutions[elem], flagval=self.flagvals[elem]) else: if self.flagvals is None: sample[elem] = helpers.fixed_resize(sample[elem], self.resolutions[elem]) else: sample[elem] = helpers.fixed_resize(sample[elem], self.resolutions[elem], flagval=self.flagvals[elem]) if elem == 'normals': N1, N2, N3 = sample[elem][:, :, 0], sample[elem][:, :, 1], sample[elem][:, :, 2] Nn = np.sqrt(N1 ** 2 + N2 ** 2 + N3 ** 2) + np.finfo(np.float32).eps sample[elem][:, :, 0], sample[elem][:, :, 1], sample[elem][:, :, 2] = N1/Nn, N2/Nn, N3/Nn else: del sample[elem] return sample def __str__(self): return 'FixedResize:'+str(self.resolutions) class RandomResize(object): """Randomly resize the image and the ground truth to specified scales. Args: scales (list): the list of scales """ def __init__(self, scales=[0.5, 0.8, 1]): self.scales = scales def __call__(self, sample): # Fixed range of scales sc = self.scales[random.randint(0, len(self.scales))] for elem in sample.keys(): if 'meta' in elem or 'bbox' in elem: continue tmp = sample[elem] if ((tmp == 0) | (tmp == 1)).all(): flagval = cv2.INTER_NEAREST else: flagval = cv2.INTER_CUBIC tmp = cv2.resize(tmp, None, fx=sc, fy=sc, interpolation=flagval) sample[elem] = tmp return sample def __str__(self): return 'RandomResize:'+str(self.scales) class FixedResizeRatio(object): """Fixed resize for the image and the ground truth to specified scale. Args: scales (float): the scale """ def __init__(self, scale=None, flagvals=None): self.scale = scale self.flagvals = flagvals def __call__(self, sample): for elem in sample.keys(): if 'meta' in elem: continue if elem in self.flagvals: if self.flagvals[elem] is None: continue tmp = sample[elem] tmp = cv2.resize(tmp, None, fx=self.scale, fy=self.scale, interpolation=self.flagvals[elem]) sample[elem] = tmp return sample def __str__(self): return 'FixedResizeRatio: '+str(self.scale) class RandomHorizontalFlip(object): """Horizontally flip the given image and ground truth randomly with a probability of 0.5.""" def __call__(self, sample): if random.random() < 0.5: for elem in sample.keys(): if 'meta' in elem: continue else: tmp = sample[elem] tmp = cv2.flip(tmp, flipCode=1) sample[elem] = tmp if elem == 'normals': sample[elem][:, :, 0] *= -1 return sample def __str__(self): return 'RandomHorizontalFlip' class NormalizeImage(object): """ Return the given elements between 0 and 1 """ def __init__(self, norm_elem='image', clip=False): self.norm_elem = norm_elem self.clip = clip def __call__(self, sample): if isinstance(self.norm_elem, tuple): for elem in self.norm_elem: if np.max(sample[elem]) > 1: sample[elem] /= 255.0 else: if self.clip: sample[self.norm_elem] = np.clip(sample[self.norm_elem], 0, 255) if np.max(sample[self.norm_elem]) > 1: sample[self.norm_elem] /= 255.0 return sample def __str__(self): return 'NormalizeImage' class ToImage(object): """ Return the given elements between 0 and 255 """ def __init__(self, norm_elem='image', custom_max=255.): self.norm_elem = norm_elem self.custom_max = custom_max def __call__(self, sample): if isinstance(self.norm_elem, tuple): for elem in self.norm_elem: tmp = sample[elem] sample[elem] = self.custom_max * (tmp - tmp.min()) / (tmp.max() - tmp.min() + 1e-10) else: tmp = sample[self.norm_elem] sample[self.norm_elem] = self.custom_max * (tmp - tmp.min()) / (tmp.max() - tmp.min() + 1e-10) return sample def __str__(self): return 'NormalizeImage' class AddIgnoreRegions(object): """Add Ignore Regions""" def __call__(self, sample): for elem in sample.keys(): tmp = sample[elem] if elem == 'normals': # Check areas with norm 0 Nn = np.sqrt(tmp[:, :, 0] ** 2 + tmp[:, :, 1] ** 2 + tmp[:, :, 2] ** 2) tmp[Nn == 0, :] = 255. sample[elem] = tmp elif elem == 'human_parts': # Check for images without human part annotations if (tmp == 0).all(): tmp = 255 * np.ones(tmp.shape, dtype=tmp.dtype) sample[elem] = tmp elif elem == 'depth': tmp[tmp == 0] = 255. sample[elem] = tmp return sample class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample): for elem in sample.keys(): if 'meta' in elem: continue elif 'bbox' in elem: tmp = sample[elem] sample[elem] = torch.from_numpy(tmp) continue tmp = sample[elem] if tmp.ndim == 2: tmp = tmp[:, :, np.newaxis] # swap color axis because # numpy image: H x W x C # torch image: C X H X W tmp = tmp.transpose((2, 0, 1)) sample[elem] = torch.from_numpy(tmp.astype(np.float32)) return sample def __str__(self): return 'ToTensor'
astmt-master
fblib/dataloaders/custom_transforms.py
from .bsds import BSDS500 from .coco import COCOSegmentation from .fsv import FSVGTA from .nyud import NYUD_MT, NYUDRaw from .pascal_context import PASCALContext from .pascal_voc import VOC12 from .sbd import SBD from .msra10k import MSRA from .pascal_sal import PASCALS __all__ = ['BSDS500', 'COCOSegmentation', 'FSVGTA', 'NYUD_MT', 'NYUDRaw', 'PASCALContext', 'VOC12', 'SBD', 'MSRA', 'PASCALS']
astmt-master
fblib/dataloaders/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import errno import cv2 import hashlib import tarfile import numpy as np import scipy.io as sio import torch.utils.data as data from PIL import Image from six.moves import urllib from fblib.util.mypath import Path class SBD(data.Dataset): URL = 'http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz' FILE = 'benchmark.tgz' MD5 = '82b4d87ceb2ed10f6038a1cba92111cb' BASE_DIR = 'benchmark_RELEASE/dataset' VOC_CATEGORY_NAMES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] def __init__(self, root=Path.db_root_dir('PASCAL'), download=True, split='val', transform=None, retname=True, do_semseg=True, overfit=False, ): self.root = root _sbd_root = os.path.join(self.root, self.BASE_DIR) _inst_dir = os.path.join(_sbd_root, 'inst') _cat_dir = os.path.join(_sbd_root, 'cls') _image_dir = os.path.join(_sbd_root, 'img') if download: self._download() self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.retname = retname self.do_semseg = do_semseg if self.do_semseg: self.semsegs = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(_sbd_root) self.im_ids = [] self.images = [] print("Initializing dataloader for SBD {} set".format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + ".jpg") assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Semantic Segmentation if self.do_semseg: _semseg = os.path.join(_cat_dir, line + '.mat') assert os.path.isfile(_semseg) self.semsegs.append(_semseg) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) # Uncomment to overfit to one image if overfit: n_of = 32 self.im_ids = self.im_ids[:n_of] self.images = self.images[:n_of] if self.do_semseg: self.semsegs = self.semsegs[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_semseg: _semseg = self._load_semseg(index) if _semseg is not None: if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_semseg(self, index): _semseg = sio.loadmat(self.semsegs[index])['GTcls'][0][0][1] _semseg = np.array(_semseg).astype(np.float32) return _semseg def _check_integrity(self): _fpath = os.path.join(self.root, self.FILE) if not os.path.isfile(_fpath): print("{} does not exist".format(_fpath)) return False _md5c = hashlib.md5(open(_fpath, 'rb').read()).hexdigest() if _md5c != self.MD5: print(" MD5({}) did not match MD5({}) expected for {}".format( _md5c, self.MD5, _fpath)) return False return True def _download(self): _fpath = os.path.join(self.root, self.FILE) try: os.makedirs(self.root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise if self._check_integrity(): print('Files already downloaded and verified') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting the tar file') tar = tarfile.open(_fpath) os.chdir(self.root) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def get_img_size(self, idx=0): img = Image.open(os.path.join(self.root, 'JPEGImages', self.images[idx] + '.jpg')) return list(reversed(img.size)) def __str__(self): return 'SBD(split=' + str(self.split) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = SBD(split=['train', 'val'], retname=True, do_semseg=True) for i, sample in enumerate(dataset): plt.imshow(sample['image']/255.) plt.show() plt.imshow(sample['semseg']) plt.show()
astmt-master
fblib/dataloaders/sbd.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import print_function import torch.utils.data as data from PIL import Image import os import os.path import errno import numpy as np import torch import codecs import random from fblib.util.mypath import Path class MNIST(data.Dataset): """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ urls = [ 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', ] raw_folder = 'raw' processed_folder = 'processed' training_file = 'training.pt' test_file = 'test.pt' def __init__(self, root=Path.db_root_dir('MNIST'), train=True, transform=None, target_transform=None, download=False, multitask=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.train = train # training set or test set self.multitask = multitask if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: self.train_data, self.train_labels = torch.load( os.path.join(self.root, self.processed_folder, self.training_file)) else: self.test_data, self.test_labels = torch.load( os.path.join(self.root, self.processed_folder, self.test_file)) if multitask: self._process_labels() def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if not self.multitask: if self.train: img, target = self.train_data[index], self.train_labels[index] else: img, target = self.test_data[index], self.test_labels[index] else: if self.train: img, target, orig = self.train_data[index], self.train_labels_multitask[index], self.train_labels[index] else: img, target, orig = self.test_data[index], self.test_labels_multitask[index], self.test_labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.numpy(), mode='L') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if not self.multitask: return img, target else: return img, target, orig def __len__(self): if self.train: return len(self.train_data) else: return len(self.test_data) def _process_labels(self): elem = self.train_labels if self.train else self.test_labels temp = [[0] * 2 for i in range(len(elem))] for i in range(len(elem)): # Create two conflicting tasks if elem[i] >= 5: temp[i][0] = 1 if elem[i] % 2 == 1: temp[i][1] = 1 if self.train: self.train_labels_multitask = temp else: self.test_labels_multitask = temp def _check_exists(self): return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \ os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file)) def download(self): """Download the MNIST data if it doesn't exist in processed_folder already.""" from six.moves import urllib import gzip if self._check_exists(): return # download files try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise for url in self.urls: print('Downloading ' + url) data = urllib.request.urlopen(url) filename = url.rpartition('/')[2] file_path = os.path.join(self.root, self.raw_folder, filename) with open(file_path, 'wb') as f: f.write(data.read()) with open(file_path.replace('.gz', ''), 'wb') as out_f, \ gzip.GzipFile(file_path) as zip_f: out_f.write(zip_f.read()) os.unlink(file_path) # process and save as torch files print('Processing...') training_set = ( read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')), read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte')) ) test_set = ( read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')), read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte')) ) with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f: torch.save(test_set, f) print('Done!') def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) tmp = 'train' if self.train is True else 'test' fmt_str += ' Split: {}\n'.format(tmp) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class FashionMNIST(MNIST): """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ urls = [ 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz', ] class EMNIST(MNIST): """`EMNIST <https://www.nist.gov/itl/iad/image-group/emnist-dataset/>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist. split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``, ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies which one to use. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip' splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist') def __init__(self, root, split, **kwargs): if split not in self.splits: raise ValueError('Split "{}" not found. Valid splits are: {}'.format( split, ', '.join(self.splits), )) self.split = split self.training_file = self._training_file(split) self.test_file = self._test_file(split) super(EMNIST, self).__init__(root, **kwargs) def _training_file(self, split): return 'training_{}.pt'.format(split) def _test_file(self, split): return 'test_{}.pt'.format(split) def download(self): """Download the EMNIST data if it doesn't exist in processed_folder already.""" from six.moves import urllib import gzip import shutil import zipfile if self._check_exists(): return # download files try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise print('Downloading ' + self.url) data = urllib.request.urlopen(self.url) filename = self.url.rpartition('/')[2] raw_folder = os.path.join(self.root, self.raw_folder) file_path = os.path.join(raw_folder, filename) with open(file_path, 'wb') as f: f.write(data.read()) print('Extracting zip archive') with zipfile.ZipFile(file_path) as zip_f: zip_f.extractall(raw_folder) os.unlink(file_path) gzip_folder = os.path.join(raw_folder, 'gzip') for gzip_file in os.listdir(gzip_folder): if gzip_file.endswith('.gz'): print('Extracting ' + gzip_file) with open(os.path.join(raw_folder, gzip_file.replace('.gz', '')), 'wb') as out_f, \ gzip.GzipFile(os.path.join(gzip_folder, gzip_file)) as zip_f: out_f.write(zip_f.read()) shutil.rmtree(gzip_folder) # process and save as torch files for split in self.splits: print('Processing ' + split) training_set = ( read_image_file(os.path.join(raw_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))), read_label_file(os.path.join(raw_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split))) ) test_set = ( read_image_file(os.path.join(raw_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))), read_label_file(os.path.join(raw_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split))) ) with open(os.path.join(self.root, self.processed_folder, self._training_file(split)), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.root, self.processed_folder, self._test_file(split)), 'wb') as f: torch.save(test_set, f) print('Done!') class MultiMNIST(MNIST): def __init__(self, root=Path.db_root_dir('MNIST'), train=True, transform=None, target_transform=None, download=False): super(MultiMNIST, self).__init__(root, train, transform, target_transform, download, multitask=False) def __getitem__(self, index1): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if self.train: image_lst = self.train_data target_lst = self.train_labels else: image_lst = self.test_data target_lst = self.test_labels if self.train: index2 = random.randint(0, self.__len__() - 1) else: index2 = self.__len__() - 1 - index1 img1, target1 = image_lst[index1], target_lst[index1] img2, target2 = image_lst[index2], target_lst[index2] shift = 2 img = torch.zeros(img1.size()) img[:28-shift, :28-shift] = img1[shift:, shift:] img[shift:, shift:] = torch.max(img[shift:, shift:], img2[:28-shift, :28-shift].float()) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.numpy().astype(np.uint8), mode='L') if self.transform is not None: img = self.transform(img) return img, target1, target2 def get_int(b): return int(codecs.encode(b, 'hex'), 16) def read_label_file(path): with open(path, 'rb') as f: data = f.read() assert get_int(data[:4]) == 2049 length = get_int(data[4:8]) parsed = np.frombuffer(data, dtype=np.uint8, offset=8) return torch.from_numpy(parsed).view(length).long() def read_image_file(path): with open(path, 'rb') as f: data = f.read() assert get_int(data[:4]) == 2051 length = get_int(data[4:8]) num_rows = get_int(data[8:12]) num_cols = get_int(data[12:16]) images = [] parsed = np.frombuffer(data, dtype=np.uint8, offset=16) return torch.from_numpy(parsed).view(length, num_rows, num_cols) if __name__ == '__main__': import torchvision.transforms as transforms from torch.utils.data import DataLoader from matplotlib import pyplot as plt trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) db_train = MultiMNIST(train=True, transform=trans, download=True) db_test = MultiMNIST(train=False, transform=trans, download=True) trainloader = DataLoader(db_train, batch_size=64, shuffle=True, num_workers=2, pin_memory=True) for ii, (img, label1, label2) in enumerate(trainloader): plt.imshow(img[0, 0, :, :]) plt.show()
astmt-master
fblib/dataloaders/mnist_multitask.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import tarfile from PIL import Image import numpy as np from glob import glob import scipy.io as sio import torch.utils.data as data from six.moves import urllib from fblib.util.mypath import Path class BSDS500(data.Dataset): """ BSDS500 datasets for edge detection. """ URL = 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL/BSDS500.tgz' FILE = 'BSDS500.tgz' def __init__(self, root=Path.db_root_dir('BSDS500'), download=True, split=['train', 'val'], transform=None, retname=True, n_votes=1, overfit=False): if download: self._download() self.transform = transform self.retname = retname self.n_votes = n_votes self.root = root self.gt_dir = os.path.join(self.root, 'data', 'groundTruth') self.image_dir = os.path.join(self.root, 'data', 'images') _splits_dir = os.path.join(self.root, 'lists') if not os.path.exists(os.path.join(_splits_dir)): os.mkdir(os.path.join(_splits_dir)) self.split = split self._get_images_trainval() if isinstance(self.split, str): self.split = [self.split] self.images = [] self.gts = [] self.im_ids = [] for sp in self.split: with open(os.path.join(os.path.join(_splits_dir, sp + '.txt')), "r") as f: lines = f.readlines() for line in lines: line = line.strip() _image = os.path.join(self.image_dir, sp, line + ".jpg") _gt = os.path.join(self.gt_dir, sp, line + ".mat") assert os.path.isfile(_image) assert os.path.isfile(_gt) self.im_ids.append(line) self.images.append(_image) self.gts.append(_gt) assert (len(self.images) == len(self.gts) == len(self.im_ids)) if overfit: n_of = 16 self.images = self.images[:n_of] self.gts = self.gts[:n_of] self.im_ids = self.im_ids[:n_of] # Display stats print('Number of images: {:d}'.format(len(self.im_ids))) def __getitem__(self, index): sample = {} _img = self._load_img(index) sample['image'] = _img _edge = self._load_edge(index) sample['edge'] = _edge if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.im_ids) def _get_images_trainval(self): for sp in self.split: if os.path.isfile(os.path.join(self.root, 'lists', sp + '.txt')): continue img_list = glob(os.path.join(self.gt_dir, sp, '*.mat')) img_list = sorted([x.split('/')[-1].split('.')[-2] for x in img_list]) split_f = os.path.join(self.root, 'lists', sp + '.txt') with open(split_f, 'w') as f: for img in img_list: assert os.path.isfile(os.path.join(self.image_dir, sp, img + '.jpg')) f.write('{}\n'.format(img)) def _load_img(self, index): # Read Image _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_edge(self, index): # Read Target object _gt_mat = sio.loadmat(self.gts[index]) _target = np.zeros(_gt_mat['groundTruth'][0][0]['Boundaries'][0][0].shape) for i in range(len(_gt_mat['groundTruth'][0])): _target += _gt_mat['groundTruth'][0][i]['Boundaries'][0][0] if self.n_votes and self.n_votes > 0: _target = (_target >= self.n_votes).astype(np.float32) else: _target = (_target / max(1e-8, _target.max())).astype(np.float32) return _target def _download(self): _fpath = os.path.join(Path.db_root_dir(), self.FILE) if os.path.isfile(_fpath): print('Files already downloaded') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting tar file') tar = tarfile.open(_fpath) os.chdir(Path.db_root_dir()) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def __str__(self): return 'BSDS500(split=' + str(self.split) + ', n_votes=' + str(self.n_votes) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = BSDS500() for i, sample in enumerate(dataset): plt.imshow(sample['image'] / 255.) plt.show() plt.imshow(sample['edge']) plt.show()
astmt-master
fblib/dataloaders/bsds.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import sys import errno import cv2 import hashlib import tarfile import numpy as np import torch.utils.data as data from PIL import Image from six.moves import urllib from fblib.util.mypath import Path class VOC12(data.Dataset): URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar" FILE = "VOCtrainval_11-May-2012.tar" MD5 = '6cd6e144f989b92b3379bac3b3de84fd' BASE_DIR = 'VOCdevkit/VOC2012' VOC_CATEGORY_NAMES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] def __init__(self, root=Path.db_root_dir('PASCAL'), download=True, split='val', transform=None, area_thres=0, retname=True, suppress_void_pixels=False, do_semseg=True, overfit=False, ): self.root = root _voc_root = os.path.join(self.root, self.BASE_DIR) _inst_dir = os.path.join(_voc_root, 'SegmentationObject') _cat_dir = os.path.join(_voc_root, 'SegmentationClass') _image_dir = os.path.join(_voc_root, 'JPEGImages') if download: self._download() self.transform = transform if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.area_thres = area_thres self.retname = retname self.suppress_void_pixels = suppress_void_pixels self.do_semseg = do_semseg if self.do_semseg: self.semsegs = [] # train/val/test splits are pre-cut _splits_dir = os.path.join(_voc_root, 'ImageSets', 'Segmentation') self.im_ids = [] self.images = [] print("Initializing dataloader for PASCAL VOC12 {} set".format(''.join(self.split))) for splt in self.split: with open(os.path.join(os.path.join(_splits_dir, splt + '.txt')), "r") as f: lines = f.read().splitlines() for ii, line in enumerate(lines): # Images _image = os.path.join(_image_dir, line + ".jpg") assert os.path.isfile(_image) self.images.append(_image) self.im_ids.append(line.rstrip('\n')) # Semantic Segmentation if self.do_semseg: _semseg = os.path.join(_cat_dir, line + '.png') assert os.path.isfile(_semseg) self.semsegs.append(_semseg) if self.do_semseg: assert (len(self.images) == len(self.semsegs)) # Uncomment to overfit to one image if overfit: n_of = 32 self.im_ids = self.im_ids[:n_of] self.images = self.images[:n_of] if self.do_semseg: self.semsegs = self.semsegs[:n_of] # Display stats print('Number of dataset images: {:d}'.format(len(self.images))) def __getitem__(self, index): # if index == 1102: # print('hi') sample = {} _img = self._load_img(index) sample['image'] = _img if self.do_semseg: _semseg = self._load_semseg(index) if _semseg is not None: if _semseg.shape != _img.shape[:2]: _semseg = cv2.resize(_semseg, _img.shape[:2][::-1], interpolation=cv2.INTER_NEAREST) sample['semseg'] = _semseg if self.retname: sample['meta'] = {'image': str(self.im_ids[index]), 'im_size': (_img.shape[0], _img.shape[1])} if self.transform is not None: sample = self.transform(sample) return sample def __len__(self): return len(self.images) def _check_integrity(self): _fpath = os.path.join(self.root, self.FILE) if not os.path.isfile(_fpath): print("{} does not exist".format(_fpath)) return False _md5c = hashlib.md5(open(_fpath, 'rb').read()).hexdigest() if _md5c != self.MD5: print(" MD5({}) did not match MD5({}) expected for {}".format( _md5c, self.MD5, _fpath)) return False return True def _download(self): _fpath = os.path.join(self.root, self.FILE) try: os.makedirs(self.root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise if self._check_integrity(): print('Files already downloaded and verified') return else: print('Downloading ' + self.URL + ' to ' + _fpath) def _progress(count, block_size, total_size): sys.stdout.write('\r>> %s %.1f%%' % (_fpath, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() urllib.request.urlretrieve(self.URL, _fpath, _progress) # extract file cwd = os.getcwd() print('\nExtracting the tar file') tar = tarfile.open(_fpath) os.chdir(self.root) tar.extractall() tar.close() os.chdir(cwd) print('Done!') def _load_img(self, index): _img = np.array(Image.open(self.images[index]).convert('RGB')).astype(np.float32) return _img def _load_semseg(self, index): _semseg = np.array(Image.open(self.semsegs[index])).astype(np.float32) if self.suppress_void_pixels: _semseg[_semseg == 255] = 0 return _semseg def get_img_size(self, idx=0): img = Image.open(os.path.join(self.root, 'JPEGImages', self.images[idx] + '.jpg')) return list(reversed(img.size)) def __str__(self): return 'VOC12(split=' + str(self.split) + ',area_thres=' + str(self.area_thres) + ')' if __name__ == '__main__': from matplotlib import pyplot as plt dataset = VOC12(split='train', retname=True, do_semseg=True, suppress_void_pixels=True) for i, sample in enumerate(dataset): plt.imshow(sample['image']/255.) plt.show() plt.imshow(sample['semseg']) plt.show()
astmt-master
fblib/dataloaders/pascal_voc.py