state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case h_C σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R g : τ → MvPolynomial σ R a✝ : R ⊢ (rename k) (eval₂ C (g ∘ k) (C a✝)) = eval₂ C (⇑(rename k) ∘ g) ((rename k) (C a✝))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.199_0.3NqVCwOs1E93kvK
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g)
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R g : τ → MvPolynomial σ R ⊢ ∀ (p q : MvPolynomial σ R), (rename k) (eval₂ C (g ∘ k) p) = eval₂ C (⇑(rename k) ∘ g) ((rename k) p) → (rename k) (eval₂ C (g ∘ k) q) = eval₂ C (⇑(rename k) ∘ g) ((rename k) q) → (rename k) (eval₂ C (g ∘ k) (p + q)) = eval₂ C (⇑(rename k) ∘ g) ((rename k) (p + q))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> ·
intros
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.199_0.3NqVCwOs1E93kvK
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g)
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R g : τ → MvPolynomial σ R p✝ q✝ : MvPolynomial σ R a✝¹ : (rename k) (eval₂ C (g ∘ k) p✝) = eval₂ C (⇑(rename k) ∘ g) ((rename k) p✝) a✝ : (rename k) (eval₂ C (g ∘ k) q✝) = eval₂ C (⇑(rename k) ∘ g) ((rename k) q✝) ⊢ (rename k) (eval₂ C (g ∘ k) (p✝ + q✝)) = eval₂ C (⇑(rename k) ∘ g) ((rename k) (p✝ + q✝))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.199_0.3NqVCwOs1E93kvK
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g)
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R g : τ → MvPolynomial σ R ⊢ ∀ (p : MvPolynomial σ R) (n : σ), (rename k) (eval₂ C (g ∘ k) p) = eval₂ C (⇑(rename k) ∘ g) ((rename k) p) → (rename k) (eval₂ C (g ∘ k) (p * X n)) = eval₂ C (⇑(rename k) ∘ g) ((rename k) (p * X n))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> ·
intros
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.199_0.3NqVCwOs1E93kvK
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g)
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R g : τ → MvPolynomial σ R p✝ : MvPolynomial σ R n✝ : σ a✝ : (rename k) (eval₂ C (g ∘ k) p✝) = eval₂ C (⇑(rename k) ∘ g) ((rename k) p✝) ⊢ (rename k) (eval₂ C (g ∘ k) (p✝ * X n✝)) = eval₂ C (⇑(rename k) ∘ g) ((rename k) (p✝ * X n✝))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.199_0.3NqVCwOs1E93kvK
theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g)
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R j : τ g : σ → MvPolynomial σ R ⊢ (rename (Prod.mk j)) (eval₂ C g p) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) p
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by
apply MvPolynomial.induction_on p
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by
Mathlib.Data.MvPolynomial.Rename.206_0.3NqVCwOs1E93kvK
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x)
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R j : τ g : σ → MvPolynomial σ R ⊢ ∀ (a : R), (rename (Prod.mk j)) (eval₂ C g (C a)) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) (C a)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> ·
intros
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.206_0.3NqVCwOs1E93kvK
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x)
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R j : τ g : σ → MvPolynomial σ R a✝ : R ⊢ (rename (Prod.mk j)) (eval₂ C g (C a✝)) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) (C a✝)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.206_0.3NqVCwOs1E93kvK
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x)
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R j : τ g : σ → MvPolynomial σ R ⊢ ∀ (p q : MvPolynomial σ R), (rename (Prod.mk j)) (eval₂ C g p) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) p → (rename (Prod.mk j)) (eval₂ C g q) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) q → (rename (Prod.mk j)) (eval₂ C g (p + q)) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) (p + q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> ·
intros
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.206_0.3NqVCwOs1E93kvK
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x)
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R j : τ g : σ → MvPolynomial σ R p✝ q✝ : MvPolynomial σ R a✝¹ : (rename (Prod.mk j)) (eval₂ C g p✝) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) p✝ a✝ : (rename (Prod.mk j)) (eval₂ C g q✝) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) q✝ ⊢ (rename (Prod.mk j)) (eval₂ C g (p✝ + q✝)) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) (p✝ + q✝)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.206_0.3NqVCwOs1E93kvK
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x)
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R j : τ g : σ → MvPolynomial σ R ⊢ ∀ (p : MvPolynomial σ R) (n : σ), (rename (Prod.mk j)) (eval₂ C g p) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) p → (rename (Prod.mk j)) (eval₂ C g (p * X n)) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) (p * X n)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> ·
intros
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.206_0.3NqVCwOs1E93kvK
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x)
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p : MvPolynomial σ R j : τ g : σ → MvPolynomial σ R p✝ : MvPolynomial σ R n✝ : σ a✝ : (rename (Prod.mk j)) (eval₂ C g p✝) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) p✝ ⊢ (rename (Prod.mk j)) (eval₂ C g (p✝ * X n✝)) = eval₂ C (fun x => (rename (Prod.mk j)) (g x)) (p✝ * X n✝)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.206_0.3NqVCwOs1E93kvK
theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x)
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p✝ : MvPolynomial σ R g : σ × τ → S i : σ p : MvPolynomial τ R ⊢ eval₂ f g ((rename (Prod.mk i)) p) = eval₂ f (fun j => g (i, j)) p
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by
apply MvPolynomial.induction_on p
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by
Mathlib.Data.MvPolynomial.Rename.213_0.3NqVCwOs1E93kvK
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p✝ : MvPolynomial σ R g : σ × τ → S i : σ p : MvPolynomial τ R ⊢ ∀ (a : R), eval₂ f g ((rename (Prod.mk i)) (C a)) = eval₂ f (fun j => g (i, j)) (C a)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> ·
intros
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.213_0.3NqVCwOs1E93kvK
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p✝ : MvPolynomial σ R g : σ × τ → S i : σ p : MvPolynomial τ R a✝ : R ⊢ eval₂ f g ((rename (Prod.mk i)) (C a✝)) = eval₂ f (fun j => g (i, j)) (C a✝)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.213_0.3NqVCwOs1E93kvK
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p✝ : MvPolynomial σ R g : σ × τ → S i : σ p : MvPolynomial τ R ⊢ ∀ (p q : MvPolynomial τ R), eval₂ f g ((rename (Prod.mk i)) p) = eval₂ f (fun j => g (i, j)) p → eval₂ f g ((rename (Prod.mk i)) q) = eval₂ f (fun j => g (i, j)) q → eval₂ f g ((rename (Prod.mk i)) (p + q)) = eval₂ f (fun j => g (i, j)) (p + q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> ·
intros
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.213_0.3NqVCwOs1E93kvK
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p✝¹ : MvPolynomial σ R g : σ × τ → S i : σ p p✝ q✝ : MvPolynomial τ R a✝¹ : eval₂ f g ((rename (Prod.mk i)) p✝) = eval₂ f (fun j => g (i, j)) p✝ a✝ : eval₂ f g ((rename (Prod.mk i)) q✝) = eval₂ f (fun j => g (i, j)) q✝ ⊢ eval₂ f g ((rename (Prod.mk i)) (p✝ + q✝)) = eval₂ f (fun j => g (i, j)) (p✝ + q✝)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.213_0.3NqVCwOs1E93kvK
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p✝ : MvPolynomial σ R g : σ × τ → S i : σ p : MvPolynomial τ R ⊢ ∀ (p : MvPolynomial τ R) (n : τ), eval₂ f g ((rename (Prod.mk i)) p) = eval₂ f (fun j => g (i, j)) p → eval₂ f g ((rename (Prod.mk i)) (p * X n)) = eval₂ f (fun j => g (i, j)) (p * X n)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> ·
intros
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> ·
Mathlib.Data.MvPolynomial.Rename.213_0.3NqVCwOs1E93kvK
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : R →+* S k : σ → τ g✝ : τ → S p✝¹ : MvPolynomial σ R g : σ × τ → S i : σ p p✝ : MvPolynomial τ R n✝ : τ a✝ : eval₂ f g ((rename (Prod.mk i)) p✝) = eval₂ f (fun j => g (i, j)) p✝ ⊢ eval₂ f g ((rename (Prod.mk i)) (p✝ * X n✝)) = eval₂ f (fun j => g (i, j)) (p✝ * X n✝)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros
simp [*]
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros
Mathlib.Data.MvPolynomial.Rename.213_0.3NqVCwOs1E93kvK
theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R ⊢ ∃ s q, p = (rename Subtype.val) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by
classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R ⊢ ∃ s q, p = (rename Subtype.val) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical
apply induction_on p
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R ⊢ ∀ (a : R), ∃ s q, C a = (rename Subtype.val) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p ·
intro r
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p ·
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R r : R ⊢ ∃ s q, C r = (rename Subtype.val) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r
exact ⟨∅, C r, by rw [rename_C]⟩
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R r : R ⊢ C r = (rename Subtype.val) (C r)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by
rw [rename_C]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R ⊢ ∀ (p q : MvPolynomial σ R), (∃ s q, p = (rename Subtype.val) q) → (∃ s q_1, q = (rename Subtype.val) q_1) → ∃ s q_1, p + q = (rename Subtype.val) q_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ ·
rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ ·
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_add.intro.intro.intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R s : Finset σ p : MvPolynomial { x // x ∈ s } R t : Finset σ q : MvPolynomial { x // x ∈ t } R ⊢ ∃ s_1 q_1, (rename Subtype.val) p + (rename Subtype.val) q = (rename Subtype.val) q_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩
refine' ⟨s ∪ t, ⟨_, _⟩⟩
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_add.intro.intro.intro.intro.refine'_1 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R s : Finset σ p : MvPolynomial { x // x ∈ s } R t : Finset σ q : MvPolynomial { x // x ∈ t } R ⊢ MvPolynomial { x // x ∈ s ∪ t } R
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ ·
refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ ·
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_add.intro.intro.intro.intro.refine'_1.refine'_1 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R s : Finset σ p : MvPolynomial { x // x ∈ s } R t : Finset σ q : MvPolynomial { x // x ∈ t } R ⊢ ∀ a ∈ s, id a ∈ s ∪ t
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;>
simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;>
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_add.intro.intro.intro.intro.refine'_1.refine'_2 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R s : Finset σ p : MvPolynomial { x // x ∈ s } R t : Finset σ q : MvPolynomial { x // x ∈ t } R ⊢ ∀ a ∈ t, id a ∈ s ∪ t
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;>
simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;>
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_add.intro.intro.intro.intro.refine'_2 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R s : Finset σ p : MvPolynomial { x // x ∈ s } R t : Finset σ q : MvPolynomial { x // x ∈ t } R ⊢ (rename Subtype.val) p + (rename Subtype.val) q = (rename Subtype.val) ((rename (Subtype.map id (_ : ∀ a ∈ s, a ∈ s ∪ t))) p + (rename (Subtype.map id (_ : ∀ a ∈ t, a ∈ s ∪ t))) q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] ·
simp only [rename_rename, AlgHom.map_add]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] ·
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_add.intro.intro.intro.intro.refine'_2 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R s : Finset σ p : MvPolynomial { x // x ∈ s } R t : Finset σ q : MvPolynomial { x // x ∈ t } R ⊢ (rename Subtype.val) p + (rename Subtype.val) q = (rename (Subtype.val ∘ Subtype.map id (_ : ∀ a ∈ s, a ∈ s ∪ t))) p + (rename (Subtype.val ∘ Subtype.map id (_ : ∀ a ∈ t, a ∈ s ∪ t))) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add]
rfl
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add]
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R ⊢ ∀ (p : MvPolynomial σ R) (n : σ), (∃ s q, p = (rename Subtype.val) q) → ∃ s q, p * X n = (rename Subtype.val) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl ·
rintro p n ⟨s, p, rfl⟩
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl ·
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_X.intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R n : σ s : Finset σ p : MvPolynomial { x // x ∈ s } R ⊢ ∃ s_1 q, (rename Subtype.val) p * X n = (rename Subtype.val) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩
refine' ⟨insert n s, ⟨_, _⟩⟩
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_X.intro.intro.refine'_1 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R n : σ s : Finset σ p : MvPolynomial { x // x ∈ s } R ⊢ MvPolynomial { x // x ∈ insert n s } R
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ ·
refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ ·
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_X.intro.intro.refine'_1 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R n : σ s : Finset σ p : MvPolynomial { x // x ∈ s } R ⊢ ∀ a ∈ s, id a ∈ insert n s
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩
simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_X.intro.intro.refine'_2 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R n : σ s : Finset σ p : MvPolynomial { x // x ∈ s } R ⊢ (rename Subtype.val) p * X n = (rename Subtype.val) ((rename (Subtype.map id (_ : ∀ a ∈ s, a ∈ insert n s))) p * X { val := n, property := (_ : n ∈ insert n s) })
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] ·
simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] ·
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
case h_X.intro.intro.refine'_2 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p✝ : MvPolynomial σ R n : σ s : Finset σ p : MvPolynomial { x // x ∈ s } R ⊢ (rename Subtype.val) p * X n = (rename (Subtype.val ∘ Subtype.map id (_ : ∀ a ∈ s, a ∈ insert n s))) p * X n
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul]
rfl
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul]
Mathlib.Data.MvPolynomial.Rename.227_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p₁ p₂ : MvPolynomial σ R ⊢ ∃ s q₁ q₂, p₁ = (rename Subtype.val) q₁ ∧ p₂ = (rename Subtype.val) q₂
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by
obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p₂ : MvPolynomial σ R s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R ⊢ ∃ s q₁_1 q₂, (rename Subtype.val) q₁ = (rename Subtype.val) q₁_1 ∧ p₂ = (rename Subtype.val) q₂
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁
obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case intro.intro.intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ ∃ s q₁_1 q₂_1, (rename Subtype.val) q₁ = (rename Subtype.val) q₁_1 ∧ (rename Subtype.val) q₂ = (rename Subtype.val) q₂_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂
classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case intro.intro.intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ ∃ s q₁_1 q₂_1, (rename Subtype.val) q₁ = (rename Subtype.val) q₁_1 ∧ (rename Subtype.val) q₂ = (rename Subtype.val) q₂_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical
use s₁ ∪ s₂
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case h σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ ∃ q₁_1 q₂_1, (rename Subtype.val) q₁ = (rename Subtype.val) q₁_1 ∧ (rename Subtype.val) q₂ = (rename Subtype.val) q₂_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂
use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case h σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ ∃ q₂_1, (rename Subtype.val) q₁ = (rename Subtype.val) ((rename (inclusion (_ : s₁ ⊆ s₁ ∪ s₂))) q₁) ∧ (rename Subtype.val) q₂ = (rename Subtype.val) q₂_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁
use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case h σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ (rename Subtype.val) q₁ = (rename Subtype.val) ((rename (inclusion (_ : s₁ ⊆ s₁ ∪ s₂))) q₁) ∧ (rename Subtype.val) q₂ = (rename Subtype.val) ((rename (inclusion (_ : s₂ ⊆ s₁ ∪ s₂))) q₂)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂
constructor
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case h.left σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ (rename Subtype.val) q₁ = (rename Subtype.val) ((rename (inclusion (_ : s₁ ⊆ s₁ ∪ s₂))) q₁)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)]
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case h.left σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ (rename Subtype.val) q₁ = (rename (Subtype.val ∘ inclusion (_ : s₁ ⊆ s₁ ∪ s₂))) q₁
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)]
rfl
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)]
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case h.right σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ (rename Subtype.val) q₂ = (rename Subtype.val) ((rename (inclusion (_ : s₂ ⊆ s₁ ∪ s₂))) q₂)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)]
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
case h.right σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s₁ : Finset σ q₁ : MvPolynomial { x // x ∈ s₁ } R s₂ : Finset σ q₂ : MvPolynomial { x // x ∈ s₂ } R ⊢ (rename Subtype.val) q₂ = (rename (Subtype.val ∘ inclusion (_ : s₂ ⊆ s₁ ∪ s₂))) q₂
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)]
rfl
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)]
Mathlib.Data.MvPolynomial.Rename.250_0.3NqVCwOs1E93kvK
/-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S p : MvPolynomial σ R ⊢ ∃ n f, ∃ (_ : Injective f), ∃ q, p = (rename f) q
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by
obtain ⟨s, q, rfl⟩ := exists_finset_rename p
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by
Mathlib.Data.MvPolynomial.Rename.271_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s : Finset σ q : MvPolynomial { x // x ∈ s } R ⊢ ∃ n f, ∃ (_ : Injective f), ∃ q_1, (rename Subtype.val) q = (rename f) q_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p
let n := Fintype.card { x // x ∈ s }
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p
Mathlib.Data.MvPolynomial.Rename.271_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s : Finset σ q : MvPolynomial { x // x ∈ s } R n : ℕ := Fintype.card { x // x ∈ s } ⊢ ∃ n f, ∃ (_ : Injective f), ∃ q_1, (rename Subtype.val) q = (rename f) q_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s }
let e := Fintype.equivFin { x // x ∈ s }
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s }
Mathlib.Data.MvPolynomial.Rename.271_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s : Finset σ q : MvPolynomial { x // x ∈ s } R n : ℕ := Fintype.card { x // x ∈ s } e : { x // x ∈ s } ≃ Fin (Fintype.card { x // x ∈ s }) := Fintype.equivFin { x // x ∈ s } ⊢ ∃ n f, ∃ (_ : Injective f), ∃ q_1, (rename Subtype.val) q = (rename f) q_1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s }
refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s }
Mathlib.Data.MvPolynomial.Rename.271_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s : Finset σ q : MvPolynomial { x // x ∈ s } R n : ℕ := Fintype.card { x // x ∈ s } e : { x // x ∈ s } ≃ Fin (Fintype.card { x // x ∈ s }) := Fintype.equivFin { x // x ∈ s } ⊢ (rename Subtype.val) q = (rename (Subtype.val ∘ ⇑e.symm)) ((rename ⇑e) q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩
rw [← rename_rename, rename_rename e]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩
Mathlib.Data.MvPolynomial.Rename.271_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S s : Finset σ q : MvPolynomial { x // x ∈ s } R n : ℕ := Fintype.card { x // x ∈ s } e : { x // x ∈ s } ≃ Fin (Fintype.card { x // x ∈ s }) := Fintype.equivFin { x // x ∈ s } ⊢ (rename Subtype.val) q = (rename Subtype.val) ((rename (⇑e.symm ∘ ⇑e)) q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e]
simp only [Function.comp, Equiv.symm_apply_apply, rename_rename]
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e]
Mathlib.Data.MvPolynomial.Rename.271_0.3NqVCwOs1E93kvK
/-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ c : ℤ →+* R g : τ → R p : MvPolynomial σ ℤ ⊢ eval₂ c (g ∘ f) p = eval₂ c g ((rename f) p)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by
apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul]
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by
Mathlib.Data.MvPolynomial.Rename.284_0.3NqVCwOs1E93kvK
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p)
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ c : ℤ →+* R g : τ → R p : MvPolynomial σ ℤ n : ℤ ⊢ eval₂ c (g ∘ f) (C n) = eval₂ c g ((rename f) (C n))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by
simp only [eval₂_C, rename_C]
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by
Mathlib.Data.MvPolynomial.Rename.284_0.3NqVCwOs1E93kvK
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p)
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ c : ℤ →+* R g : τ → R p✝ p q : MvPolynomial σ ℤ hp : eval₂ c (g ∘ f) p = eval₂ c g ((rename f) p) hq : eval₂ c (g ∘ f) q = eval₂ c g ((rename f) q) ⊢ eval₂ c (g ∘ f) (p + q) = eval₂ c g ((rename f) (p + q))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by
simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by
Mathlib.Data.MvPolynomial.Rename.284_0.3NqVCwOs1E93kvK
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p)
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ c : ℤ →+* R g : τ → R p✝ p : MvPolynomial σ ℤ n : σ hp : eval₂ c (g ∘ f) p = eval₂ c g ((rename f) p) ⊢ eval₂ c (g ∘ f) (p * X n) = eval₂ c g ((rename f) (p * X n))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by
simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul]
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by
Mathlib.Data.MvPolynomial.Rename.284_0.3NqVCwOs1E93kvK
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p)
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ hf : Injective f φ : MvPolynomial σ R d : σ →₀ ℕ ⊢ coeff (Finsupp.mapDomain f d) ((rename f) φ) = coeff d φ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by
classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add]
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by
Mathlib.Data.MvPolynomial.Rename.293_0.3NqVCwOs1E93kvK
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ hf : Injective f φ : MvPolynomial σ R d : σ →₀ ℕ ⊢ coeff (Finsupp.mapDomain f d) ((rename f) φ) = coeff d φ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical
apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ)
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical
Mathlib.Data.MvPolynomial.Rename.293_0.3NqVCwOs1E93kvK
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d
Mathlib_Data_MvPolynomial_Rename
case h1 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ hf : Injective f φ : MvPolynomial σ R d : σ →₀ ℕ ⊢ ∀ (u : σ →₀ ℕ) (a : R), coeff (Finsupp.mapDomain f d) ((rename f) ((monomial u) a)) = coeff d ((monomial u) a)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive ·
intro u r
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive ·
Mathlib.Data.MvPolynomial.Rename.293_0.3NqVCwOs1E93kvK
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d
Mathlib_Data_MvPolynomial_Rename
case h1 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ hf : Injective f φ : MvPolynomial σ R d u : σ →₀ ℕ r : R ⊢ coeff (Finsupp.mapDomain f d) ((rename f) ((monomial u) r)) = coeff d ((monomial u) r)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r
rw [rename_monomial, coeff_monomial, coeff_monomial]
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r
Mathlib.Data.MvPolynomial.Rename.293_0.3NqVCwOs1E93kvK
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d
Mathlib_Data_MvPolynomial_Rename
case h1 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ hf : Injective f φ : MvPolynomial σ R d u : σ →₀ ℕ r : R ⊢ (if Finsupp.mapDomain f u = Finsupp.mapDomain f d then r else 0) = if u = d then r else 0
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial]
simp only [(Finsupp.mapDomain_injective hf).eq_iff]
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial]
Mathlib.Data.MvPolynomial.Rename.293_0.3NqVCwOs1E93kvK
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d
Mathlib_Data_MvPolynomial_Rename
case h2 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ hf : Injective f φ : MvPolynomial σ R d : σ →₀ ℕ ⊢ ∀ (p q : MvPolynomial σ R), coeff (Finsupp.mapDomain f d) ((rename f) p) = coeff d p → coeff (Finsupp.mapDomain f d) ((rename f) q) = coeff d q → coeff (Finsupp.mapDomain f d) ((rename f) (p + q)) = coeff d (p + q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] ·
intros
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] ·
Mathlib.Data.MvPolynomial.Rename.293_0.3NqVCwOs1E93kvK
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d
Mathlib_Data_MvPolynomial_Rename
case h2 σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ hf : Injective f φ : MvPolynomial σ R d : σ →₀ ℕ p✝ q✝ : MvPolynomial σ R a✝¹ : coeff (Finsupp.mapDomain f d) ((rename f) p✝) = coeff d p✝ a✝ : coeff (Finsupp.mapDomain f d) ((rename f) q✝) = coeff d q✝ ⊢ coeff (Finsupp.mapDomain f d) ((rename f) (p✝ + q✝)) = coeff d (p✝ + q✝)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros
simp only [*, AlgHom.map_add, coeff_add]
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros
Mathlib.Data.MvPolynomial.Rename.293_0.3NqVCwOs1E93kvK
@[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : ∀ (u : σ →₀ ℕ), Finsupp.mapDomain f u = d → coeff u φ = 0 ⊢ coeff d ((rename f) φ) = 0
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by
classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : ∀ (u : σ →₀ ℕ), Finsupp.mapDomain f u = d → coeff u φ = 0 ⊢ coeff d ((rename f) φ) = 0
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical
rw [rename_eq, ← not_mem_support_iff]
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : ∀ (u : σ →₀ ℕ), Finsupp.mapDomain f u = d → coeff u φ = 0 ⊢ d ∉ support (Finsupp.mapDomain (Finsupp.mapDomain f) φ)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff]
intro H
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff]
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : ∀ (u : σ →₀ ℕ), Finsupp.mapDomain f u = d → coeff u φ = 0 H : d ∈ support (Finsupp.mapDomain (Finsupp.mapDomain f) φ) ⊢ False
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H
replace H := mapDomain_support H
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : ∀ (u : σ →₀ ℕ), Finsupp.mapDomain f u = d → coeff u φ = 0 H : d ∈ Finset.image (Finsupp.mapDomain f) φ.support ⊢ False
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H
rw [Finset.mem_image] at H
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : ∀ (u : σ →₀ ℕ), Finsupp.mapDomain f u = d → coeff u φ = 0 H : ∃ a ∈ φ.support, Finsupp.mapDomain f a = d ⊢ False
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H
obtain ⟨u, hu, rfl⟩ := H
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R u : σ →₀ ℕ hu : u ∈ φ.support h : ∀ (u_1 : σ →₀ ℕ), Finsupp.mapDomain f u_1 = Finsupp.mapDomain f u → coeff u_1 φ = 0 ⊢ False
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H
specialize h u rfl
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R u : σ →₀ ℕ hu : u ∈ φ.support h : coeff u φ = 0 ⊢ False
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl
simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R u : σ →₀ ℕ hu : u ∈ φ.support h : coeff u φ = 0 ⊢ False
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says
simp only [Finsupp.mem_support_iff, ne_eq] at h hu
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
case intro.intro σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R u : σ →₀ ℕ h : coeff u φ = 0 hu : ¬φ u = 0 ⊢ False
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu
contradiction
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu
Mathlib.Data.MvPolynomial.Rename.306_0.3NqVCwOs1E93kvK
theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : coeff d ((rename f) φ) ≠ 0 ⊢ ∃ u, Finsupp.mapDomain f u = d ∧ coeff u φ ≠ 0
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by
contrapose! h
theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by
Mathlib.Data.MvPolynomial.Rename.319_0.3NqVCwOs1E93kvK
theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S f : σ → τ φ : MvPolynomial σ R d : τ →₀ ℕ h : ∀ (u : σ →₀ ℕ), Finsupp.mapDomain f u = d → coeff u φ = 0 ⊢ coeff d ((rename f) φ) = 0
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h
apply coeff_rename_eq_zero _ _ _ h
theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h
Mathlib.Data.MvPolynomial.Rename.319_0.3NqVCwOs1E93kvK
theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ✝ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S τ : Type u_6 f : σ → τ φ : MvPolynomial σ R ⊢ constantCoeff ((rename f) φ) = constantCoeff φ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by
apply φ.induction_on
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by
Mathlib.Data.MvPolynomial.Rename.325_0.3NqVCwOs1E93kvK
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ✝ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S τ : Type u_6 f : σ → τ φ : MvPolynomial σ R ⊢ ∀ (a : R), constantCoeff ((rename f) (C a)) = constantCoeff (C a)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on ·
intro a
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on ·
Mathlib.Data.MvPolynomial.Rename.325_0.3NqVCwOs1E93kvK
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
Mathlib_Data_MvPolynomial_Rename
case h_C σ : Type u_1 τ✝ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S τ : Type u_6 f : σ → τ φ : MvPolynomial σ R a : R ⊢ constantCoeff ((rename f) (C a)) = constantCoeff (C a)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a
simp only [constantCoeff_C, rename_C]
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a
Mathlib.Data.MvPolynomial.Rename.325_0.3NqVCwOs1E93kvK
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ✝ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S τ : Type u_6 f : σ → τ φ : MvPolynomial σ R ⊢ ∀ (p q : MvPolynomial σ R), constantCoeff ((rename f) p) = constantCoeff p → constantCoeff ((rename f) q) = constantCoeff q → constantCoeff ((rename f) (p + q)) = constantCoeff (p + q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] ·
intro p q hp hq
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] ·
Mathlib.Data.MvPolynomial.Rename.325_0.3NqVCwOs1E93kvK
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
Mathlib_Data_MvPolynomial_Rename
case h_add σ : Type u_1 τ✝ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S τ : Type u_6 f : σ → τ φ p q : MvPolynomial σ R hp : constantCoeff ((rename f) p) = constantCoeff p hq : constantCoeff ((rename f) q) = constantCoeff q ⊢ constantCoeff ((rename f) (p + q)) = constantCoeff (p + q)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq
simp only [hp, hq, RingHom.map_add, AlgHom.map_add]
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq
Mathlib.Data.MvPolynomial.Rename.325_0.3NqVCwOs1E93kvK
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ✝ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S τ : Type u_6 f : σ → τ φ : MvPolynomial σ R ⊢ ∀ (p : MvPolynomial σ R) (n : σ), constantCoeff ((rename f) p) = constantCoeff p → constantCoeff ((rename f) (p * X n)) = constantCoeff (p * X n)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq simp only [hp, hq, RingHom.map_add, AlgHom.map_add] ·
intro p n hp
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq simp only [hp, hq, RingHom.map_add, AlgHom.map_add] ·
Mathlib.Data.MvPolynomial.Rename.325_0.3NqVCwOs1E93kvK
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
Mathlib_Data_MvPolynomial_Rename
case h_X σ : Type u_1 τ✝ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝¹ : CommSemiring R inst✝ : CommSemiring S τ : Type u_6 f : σ → τ φ p : MvPolynomial σ R n : σ hp : constantCoeff ((rename f) p) = constantCoeff p ⊢ constantCoeff ((rename f) (p * X n)) = constantCoeff (p * X n)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq simp only [hp, hq, RingHom.map_add, AlgHom.map_add] · intro p n hp
simp only [hp, rename_X, constantCoeff_X, RingHom.map_mul, AlgHom.map_mul]
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq simp only [hp, hq, RingHom.map_add, AlgHom.map_add] · intro p n hp
Mathlib.Data.MvPolynomial.Rename.325_0.3NqVCwOs1E93kvK
@[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝² : CommSemiring R inst✝¹ : CommSemiring S p : MvPolynomial σ R f : σ → τ inst✝ : DecidableEq τ h : Injective f ⊢ support ((rename f) p) = Finset.image (Finsupp.mapDomain f) (support p)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq simp only [hp, hq, RingHom.map_add, AlgHom.map_add] · intro p n hp simp only [hp, rename_X, constantCoeff_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.constant_coeff_rename MvPolynomial.constantCoeff_rename end Coeff section Support theorem support_rename_of_injective {p : MvPolynomial σ R} {f : σ → τ} [DecidableEq τ] (h : Function.Injective f) : (rename f p).support = Finset.image (Finsupp.mapDomain f) p.support := by
rw [rename_eq]
theorem support_rename_of_injective {p : MvPolynomial σ R} {f : σ → τ} [DecidableEq τ] (h : Function.Injective f) : (rename f p).support = Finset.image (Finsupp.mapDomain f) p.support := by
Mathlib.Data.MvPolynomial.Rename.341_0.3NqVCwOs1E93kvK
theorem support_rename_of_injective {p : MvPolynomial σ R} {f : σ → τ} [DecidableEq τ] (h : Function.Injective f) : (rename f p).support = Finset.image (Finsupp.mapDomain f) p.support
Mathlib_Data_MvPolynomial_Rename
σ : Type u_1 τ : Type u_2 α : Type u_3 R : Type u_4 S : Type u_5 inst✝² : CommSemiring R inst✝¹ : CommSemiring S p : MvPolynomial σ R f : σ → τ inst✝ : DecidableEq τ h : Injective f ⊢ support (Finsupp.mapDomain (Finsupp.mapDomain f) p) = Finset.image (Finsupp.mapDomain f) (support p)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import Mathlib.Data.MvPolynomial.Basic #align_import data.mv_polynomial.rename from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4" /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `MvPolynomial.rename` * `MvPolynomial.renameEquiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `MvPolynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : MvPolynomial σ α` -/ noncomputable section open BigOperators open Set Function Finsupp AddMonoidAlgebra open BigOperators variable {σ τ α R S : Type*} [CommSemiring R] [CommSemiring S] namespace MvPolynomial section Rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : MvPolynomial σ R →ₐ[R] MvPolynomial τ R := aeval (X ∘ f) #align mv_polynomial.rename MvPolynomial.rename @[simp] theorem rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_C MvPolynomial.rename_C @[simp] theorem rename_X (f : σ → τ) (i : σ) : rename f (X i : MvPolynomial σ R) = X (f i) := eval₂_X _ _ _ set_option linter.uppercaseLean3 false in #align mv_polynomial.rename_X MvPolynomial.rename_X theorem map_rename (f : R →+* S) (g : σ → τ) (p : MvPolynomial σ R) : map f (rename g p) = rename g (map f p) := by apply MvPolynomial.induction_on p (fun a => by simp only [map_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, AlgHom.map_add, RingHom.map_add]) fun p n hp => by simp only [hp, rename_X, map_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.map_rename MvPolynomial.map_rename @[simp] theorem rename_rename (f : σ → τ) (g : τ → α) (p : MvPolynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _ by simp only [rename, aeval_eq_eval₂Hom] -- porting note: the Lean 3 proof of this was very fragile and included a nonterminal `simp`. -- Hopefully this is less prone to breaking rw [eval₂_comp_left (eval₂Hom (algebraMap R (MvPolynomial α R)) (X ∘ g)) C (X ∘ f) p] simp only [(· ∘ ·), eval₂Hom_X'] refine' eval₂Hom_congr _ rfl rfl ext1; simp only [comp_apply, RingHom.coe_comp, eval₂Hom_C] #align mv_polynomial.rename_rename MvPolynomial.rename_rename @[simp] theorem rename_id (p : MvPolynomial σ R) : rename id p = p := eval₂_eta p #align mv_polynomial.rename_id MvPolynomial.rename_id theorem rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.mapDomain f) r := by rw [rename, aeval_monomial, monomial_eq (s := Finsupp.mapDomain f d), Finsupp.prod_mapDomain_index] · rfl · exact fun n => pow_zero _ · exact fun n i₁ i₂ => pow_add _ _ _ #align mv_polynomial.rename_monomial MvPolynomial.rename_monomial theorem rename_eq (f : σ → τ) (p : MvPolynomial σ R) : rename f p = Finsupp.mapDomain (Finsupp.mapDomain f) p := by simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply, X_pow_eq_monomial, ← monomial_finsupp_sum_index] rfl #align mv_polynomial.rename_eq MvPolynomial.rename_eq theorem rename_injective (f : σ → τ) (hf : Function.Injective f) : Function.Injective (rename f : MvPolynomial σ R → MvPolynomial τ R) := by have : (rename f : MvPolynomial σ R → MvPolynomial τ R) = Finsupp.mapDomain (Finsupp.mapDomain f) := funext (rename_eq f) rw [this] exact Finsupp.mapDomain_injective (Finsupp.mapDomain_injective hf) #align mv_polynomial.rename_injective MvPolynomial.rename_injective section variable {f : σ → τ} (hf : Function.Injective f) open Classical /-- Given a function between sets of variables `f : σ → τ` that is injective with proof `hf`, `MvPolynomial.killCompl hf` is the `AlgHom` from `R[τ]` to `R[σ]` that is left inverse to `rename f : R[σ] → R[τ]` and sends the variables in the complement of the range of `f` to `0`. -/ def killCompl : MvPolynomial τ R →ₐ[R] MvPolynomial σ R := aeval fun i => if h : i ∈ Set.range f then X <| (Equiv.ofInjective f hf).symm ⟨i, h⟩ else 0 #align mv_polynomial.kill_compl MvPolynomial.killCompl theorem killCompl_comp_rename : (killCompl hf).comp (rename f) = AlgHom.id R _ := algHom_ext fun i => by dsimp rw [rename, killCompl, aeval_X, comp_apply, aeval_X, dif_pos, Equiv.ofInjective_symm_apply] #align mv_polynomial.kill_compl_comp_rename MvPolynomial.killCompl_comp_rename @[simp] theorem killCompl_rename_app (p : MvPolynomial σ R) : killCompl hf (rename f p) = p := AlgHom.congr_fun (killCompl_comp_rename hf) p #align mv_polynomial.kill_compl_rename_app MvPolynomial.killCompl_rename_app end section variable (R) /-- `MvPolynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def renameEquiv (f : σ ≃ τ) : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R := { rename f with toFun := rename f invFun := rename f.symm left_inv := fun p => by rw [rename_rename, f.symm_comp_self, rename_id] right_inv := fun p => by rw [rename_rename, f.self_comp_symm, rename_id] } #align mv_polynomial.rename_equiv MvPolynomial.renameEquiv @[simp] theorem renameEquiv_refl : renameEquiv R (Equiv.refl σ) = AlgEquiv.refl := AlgEquiv.ext rename_id #align mv_polynomial.rename_equiv_refl MvPolynomial.renameEquiv_refl @[simp] theorem renameEquiv_symm (f : σ ≃ τ) : (renameEquiv R f).symm = renameEquiv R f.symm := rfl #align mv_polynomial.rename_equiv_symm MvPolynomial.renameEquiv_symm @[simp] theorem renameEquiv_trans (e : σ ≃ τ) (f : τ ≃ α) : (renameEquiv R e).trans (renameEquiv R f) = renameEquiv R (e.trans f) := AlgEquiv.ext (rename_rename e f) #align mv_polynomial.rename_equiv_trans MvPolynomial.renameEquiv_trans end section variable (f : R →+* S) (k : σ → τ) (g : τ → S) (p : MvPolynomial σ R) theorem eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename MvPolynomial.eval₂_rename theorem eval₂Hom_rename : eval₂Hom f g (rename k p) = eval₂Hom f (g ∘ k) p := eval₂_rename _ _ _ _ #align mv_polynomial.eval₂_hom_rename MvPolynomial.eval₂Hom_rename theorem aeval_rename [Algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂Hom_rename _ _ _ _ #align mv_polynomial.aeval_rename MvPolynomial.aeval_rename theorem rename_eval₂ (g : τ → MvPolynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_eval₂ MvPolynomial.rename_eval₂ theorem rename_prod_mk_eval₂ (j : τ) (g : σ → MvPolynomial σ R) : rename (Prod.mk j) (p.eval₂ C g) = p.eval₂ C fun x => rename (Prod.mk j) (g x) := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.rename_prodmk_eval₂ MvPolynomial.rename_prod_mk_eval₂ theorem eval₂_rename_prod_mk (g : σ × τ → S) (i : σ) (p : MvPolynomial τ R) : (rename (Prod.mk i) p).eval₂ f g = eval₂ f (fun j => g (i, j)) p := by apply MvPolynomial.induction_on p <;> · intros simp [*] #align mv_polynomial.eval₂_rename_prodmk MvPolynomial.eval₂_rename_prod_mk theorem eval_rename_prod_mk (g : σ × τ → R) (i : σ) (p : MvPolynomial τ R) : eval g (rename (Prod.mk i) p) = eval (fun j => g (i, j)) p := eval₂_rename_prod_mk (RingHom.id _) _ _ _ #align mv_polynomial.eval_rename_prodmk MvPolynomial.eval_rename_prod_mk end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : MvPolynomial σ R) : ∃ (s : Finset σ) (q : MvPolynomial { x // x ∈ s } R), p = rename (↑) q := by classical apply induction_on p · intro r exact ⟨∅, C r, by rw [rename_C]⟩ · rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩ refine' ⟨s ∪ t, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p + rename (Subtype.map id _) q <;> simp (config := { contextual := true }) only [id.def, true_or_iff, or_true_iff, Finset.mem_union, forall_true_iff] · simp only [rename_rename, AlgHom.map_add] rfl · rintro p n ⟨s, p, rfl⟩ refine' ⟨insert n s, ⟨_, _⟩⟩ · refine' rename (Subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩ simp (config := { contextual := true }) only [id.def, or_true_iff, Finset.mem_insert, forall_true_iff] · simp only [rename_rename, rename_X, Subtype.coe_mk, AlgHom.map_mul] rfl #align mv_polynomial.exists_finset_rename MvPolynomial.exists_finset_rename /-- `exists_finset_rename` for two polynomials at once: for any two polynomials `p₁`, `p₂` in a polynomial semiring `R[σ]` of possibly infinitely many variables, `exists_finset_rename₂` yields a finite subset `s` of `σ` such that both `p₁` and `p₂` are contained in the polynomial semiring `R[s]` of finitely many variables. -/ theorem exists_finset_rename₂ (p₁ p₂ : MvPolynomial σ R) : ∃ (s : Finset σ) (q₁ q₂ : MvPolynomial s R), p₁ = rename (↑) q₁ ∧ p₂ = rename (↑) q₂ := by obtain ⟨s₁, q₁, rfl⟩ := exists_finset_rename p₁ obtain ⟨s₂, q₂, rfl⟩ := exists_finset_rename p₂ classical use s₁ ∪ s₂ use rename (Set.inclusion <| s₁.subset_union_left s₂) q₁ use rename (Set.inclusion <| s₁.subset_union_right s₂) q₂ constructor -- porting note: was `<;> simp <;> rfl` but Lean couldn't infer the arguments · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_left s₂)] rfl · -- This used to be `rw`, but we need `erw` after leanprover/lean4#2644 erw [rename_rename (Set.inclusion <| s₁.subset_union_right s₂)] rfl #align mv_polynomial.exists_finset_rename₂ MvPolynomial.exists_finset_rename₂ /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : MvPolynomial σ R) : ∃ (n : ℕ) (f : Fin n → σ) (_hf : Injective f) (q : MvPolynomial (Fin n) R), p = rename f q := by obtain ⟨s, q, rfl⟩ := exists_finset_rename p let n := Fintype.card { x // x ∈ s } let e := Fintype.equivFin { x // x ∈ s } refine' ⟨n, (↑) ∘ e.symm, Subtype.val_injective.comp e.symm.injective, rename e q, _⟩ rw [← rename_rename, rename_rename e] simp only [Function.comp, Equiv.symm_apply_apply, rename_rename] #align mv_polynomial.exists_fin_rename MvPolynomial.exists_fin_rename end Rename theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := by apply MvPolynomial.induction_on p (fun n => by simp only [eval₂_C, rename_C]) (fun p q hp hq => by simp only [hp, hq, rename, eval₂_add, AlgHom.map_add]) fun p n hp => by simp only [eval₂_mul, hp, eval₂_X, comp_apply, map_mul, rename_X, eval₂_mul] #align mv_polynomial.eval₂_cast_comp MvPolynomial.eval₂_cast_comp section Coeff @[simp] theorem coeff_rename_mapDomain (f : σ → τ) (hf : Injective f) (φ : MvPolynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.mapDomain f) = φ.coeff d := by classical apply φ.induction_on' (P := fun ψ => coeff (Finsupp.mapDomain f d) ((rename f) ψ) = coeff d ψ) -- Lean could no longer infer the motive · intro u r rw [rename_monomial, coeff_monomial, coeff_monomial] simp only [(Finsupp.mapDomain_injective hf).eq_iff] · intros simp only [*, AlgHom.map_add, coeff_add] #align mv_polynomial.coeff_rename_map_domain MvPolynomial.coeff_rename_mapDomain theorem coeff_rename_eq_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.mapDomain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := by classical rw [rename_eq, ← not_mem_support_iff] intro H replace H := mapDomain_support H rw [Finset.mem_image] at H obtain ⟨u, hu, rfl⟩ := H specialize h u rfl simp? at h hu says simp only [Finsupp.mem_support_iff, ne_eq] at h hu contradiction #align mv_polynomial.coeff_rename_eq_zero MvPolynomial.coeff_rename_eq_zero theorem coeff_rename_ne_zero (f : σ → τ) (φ : MvPolynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.mapDomain f = d ∧ φ.coeff u ≠ 0 := by contrapose! h apply coeff_rename_eq_zero _ _ _ h #align mv_polynomial.coeff_rename_ne_zero MvPolynomial.coeff_rename_ne_zero @[simp] theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ := by apply φ.induction_on · intro a simp only [constantCoeff_C, rename_C] · intro p q hp hq simp only [hp, hq, RingHom.map_add, AlgHom.map_add] · intro p n hp simp only [hp, rename_X, constantCoeff_X, RingHom.map_mul, AlgHom.map_mul] #align mv_polynomial.constant_coeff_rename MvPolynomial.constantCoeff_rename end Coeff section Support theorem support_rename_of_injective {p : MvPolynomial σ R} {f : σ → τ} [DecidableEq τ] (h : Function.Injective f) : (rename f p).support = Finset.image (Finsupp.mapDomain f) p.support := by rw [rename_eq]
exact Finsupp.mapDomain_support_of_injective (mapDomain_injective h) _
theorem support_rename_of_injective {p : MvPolynomial σ R} {f : σ → τ} [DecidableEq τ] (h : Function.Injective f) : (rename f p).support = Finset.image (Finsupp.mapDomain f) p.support := by rw [rename_eq]
Mathlib.Data.MvPolynomial.Rename.341_0.3NqVCwOs1E93kvK
theorem support_rename_of_injective {p : MvPolynomial σ R} {f : σ → τ} [DecidableEq τ] (h : Function.Injective f) : (rename f p).support = Finset.image (Finsupp.mapDomain f) p.support
Mathlib_Data_MvPolynomial_Rename
n : ℕ ⊢ ∀ {v w : Fin n}, Adj (pathGraph n) v w → (fun u => decide (↑u % 2 = 0)) v ≠ (fun u => decide (↑u % 2 = 0)) w
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by
intro u v
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.24_0.jXeFS7nTQciTQGN
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
n : ℕ u v : Fin n ⊢ Adj (pathGraph n) u v → (fun u => decide (↑u % 2 = 0)) u ≠ (fun u => decide (↑u % 2 = 0)) v
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v
rw [pathGraph_adj]
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.24_0.jXeFS7nTQciTQGN
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
n : ℕ u v : Fin n ⊢ ↑u + 1 = ↑v ∨ ↑v + 1 = ↑u → (fun u => decide (↑u % 2 = 0)) u ≠ (fun u => decide (↑u % 2 = 0)) v
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj]
rintro (h | h)
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj]
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.24_0.jXeFS7nTQciTQGN
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
case inl n : ℕ u v : Fin n h : ↑u + 1 = ↑v ⊢ (fun u => decide (↑u % 2 = 0)) u ≠ (fun u => decide (↑u % 2 = 0)) v
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;>
simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff]
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;>
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.24_0.jXeFS7nTQciTQGN
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
case inr n : ℕ u v : Fin n h : ↑v + 1 = ↑u ⊢ (fun u => decide (↑u % 2 = 0)) u ≠ (fun u => decide (↑u % 2 = 0)) v
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;>
simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff]
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;>
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.24_0.jXeFS7nTQciTQGN
/-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
n : ℕ h : 2 ≤ n ⊢ Function.Injective fun v => { val := ↑v, isLt := (_ : ↑v < n) }
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by
rintro v w
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
n : ℕ h : 2 ≤ n v w : Fin 2 ⊢ (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w
rw [Fin.mk.injEq]
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
n : ℕ h : 2 ≤ n v w : Fin 2 ⊢ ↑v = ↑w → v = w
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq]
exact Fin.ext
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq]
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
n : ℕ h : 2 ≤ n ⊢ ∀ {a b : Fin 2}, Adj (pathGraph n) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } a) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } b) ↔ Adj (pathGraph 2) a b
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by
intro v w
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
n : ℕ h : 2 ≤ n v w : Fin 2 ⊢ Adj (pathGraph n) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } v) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } w) ↔ Adj (pathGraph 2) v w
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w
fin_cases v
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
case head n : ℕ h : 2 ≤ n w : Fin 2 ⊢ Adj (pathGraph n) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } { val := 0, isLt := (_ : 0 < 2) }) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } w) ↔ Adj (pathGraph 2) { val := 0, isLt := (_ : 0 < 2) } w
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;>
fin_cases w
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;>
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
case tail.head n : ℕ h : 2 ≤ n w : Fin 2 ⊢ Adj (pathGraph n) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } w) ↔ Adj (pathGraph 2) { val := 1, isLt := (_ : (fun a => a < 2) 1) } w
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;>
fin_cases w
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;>
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
case head.head n : ℕ h : 2 ≤ n ⊢ Adj (pathGraph n) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } { val := 0, isLt := (_ : 0 < 2) }) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } { val := 0, isLt := (_ : 0 < 2) }) ↔ Adj (pathGraph 2) { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) }
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;> fin_cases w <;>
simp [pathGraph, ← Fin.coe_covby_iff]
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;> fin_cases w <;>
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings
case head.tail.head n : ℕ h : 2 ≤ n ⊢ Adj (pathGraph n) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } { val := 0, isLt := (_ : 0 < 2) }) ({ toFun := fun v => { val := ↑v, isLt := (_ : ↑v < n) }, inj' := (_ : ∀ ⦃v w : Fin 2⦄, (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) v = (fun v => { val := ↑v, isLt := (_ : ↑v < n) }) w → v = w) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }) ↔ Adj (pathGraph 2) { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }
/- Copyright (c) 2023 Iván Renison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Iván Renison -/ import Mathlib.Combinatorics.SimpleGraph.Coloring import Mathlib.Combinatorics.SimpleGraph.Hasse import Mathlib.Data.Nat.Parity import Mathlib.Data.ZMod.Basic /-! # Concrete colorings of common graphs This file defines colorings for some common graphs ## Main declarations * `SimpleGraph.pathGraph.bicoloring`: Bicoloring of a path graph. -/ namespace SimpleGraph /-- Bicoloring of a path graph -/ def pathGraph.bicoloring (n : ℕ) : Coloring (pathGraph n) Bool := Coloring.mk (fun u ↦ u.val % 2 = 0) <| by intro u v rw [pathGraph_adj] rintro (h | h) <;> simp [← h, not_iff, Nat.succ_mod_two_eq_zero_iff] /-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;> fin_cases w <;>
simp [pathGraph, ← Fin.coe_covby_iff]
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v := ⟨v, trans v.2 h⟩ inj' := by rintro v w rw [Fin.mk.injEq] exact Fin.ext map_rel_iff' := by intro v w fin_cases v <;> fin_cases w <;>
Mathlib.Combinatorics.SimpleGraph.ConcreteColorings.32_0.jXeFS7nTQciTQGN
/-- Embedding of `pathGraph 2` into the first two elements of `pathGraph n` for `2 ≤ n` -/ def pathGraph_two_embedding (n : ℕ) (h : 2 ≤ n) : pathGraph 2 ↪g pathGraph n where toFun v
Mathlib_Combinatorics_SimpleGraph_ConcreteColorings